WorldWideScience

Sample records for subtropical dry forest

  1. FUEL CONDITIONS ASSOCIATED WITH NATIVE AND EXOTIC GRASSES IN A SUBTROPICAL DRY FOREST IN PUERTO RICO

    Science.gov (United States)

    Jarrod M. Thaxton; Skip J. Van Bloem; Stefanie Whitmire

    2012-01-01

    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of...

  2. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume

    Science.gov (United States)

    Thomas J. Brandeis; Matthew Delaney; Bernard R. Parresol; Larry Royer

    2006-01-01

    Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory...

  3. Diet preferences of goats in a subtropical dry forest and implications for habitat management

    Science.gov (United States)

    Genie M. Fleming; Joseph Wunderle Jr.; David N. Ewert

    2016-01-01

    As part of an experimental study of using controlled goat grazing to manage winter habitat of the Kirtland’s warbler (Setophaga kirtlandii), an endangered Nearctic neotropical migratory bird, we evaluated diet preferences of domesticated goats within early successional subtropical dry forest in The Bahamas. We expected goats would show a low preference for two plants (...

  4. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    International Nuclear Information System (INIS)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-01-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the

  5. Increasing surface albedo in the dry subtropical forests of South America: the role of agriculture expansion and management

    Science.gov (United States)

    Houspanossian, J.; Kuppel, S.; Gimenez, R.; Jobbagy, E. G.; Nosetto, M. D.

    2014-12-01

    The increase in surface albedo inherent to land clearing and cultivation (land-cover change, LCC) in the subtropical dry forests of the South American Chaco offsets part of the radiative forcing (RF) of the related carbon emissions. The magnitude of these albedo changes, however, is also dependent on shifts in agricultural practices (land-management change, LMC) and will influence the net effect on Earth's radiation balance as well as other potential feedbacks on climate. We quantified the surface albedo changes between 2001 and 2013 and the consequent shifts in the radiation balance resulting from LCC and LMC, using MODIS imagery a columnar radiation model parameterized with satellite data. Agricultural systems replacing dry forests presented a large variety of managements, ranging from pasture systems with remnant trees to different grain crops, displaying a wide range of phenologies. Cultivated lands showed higher and more variable albedo values (mean = 0.162, Standard Deviation = 0.013, n = 10,000 pixels) than the dry forests they replace (mean = 0.113, SD = 0.010, n = 10,000). These albedo contrasts resulted in a cooling RF of deforestation of -10.1 W m-2 on average, but both livestock and grain crop production systems showed large differences among the different land management options. For instance, livestock systems based on open pasture lands showed higher albedo change and RF (0.06 and -16.3 W m-2, respectively) than silvopastoral systems (0.02 and -4.4 W m-2). Similarly in cropping systems, the replacement of double-cropping by single summer crops, a widespread process in the region lately, resulted in higher albedo change (0.06 vs. 0.08) and RF (-16.3 vs. -22.3 W m-2). Although the effects of LCC on climate are widely acknowledged, those of LMC are still scarcely understood. In the Chaco region, the latter could play an important role and offer a yet-overlooked pathway to influence the radiative balance of our planet.

  6. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    Science.gov (United States)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  7. Novel dry forests in southwestern Puerto Rico

    Science.gov (United States)

    Sandra Molina Colón; Ariel E. Lugo; Olga Ramos

    2011-01-01

    We report results of new research on (1) community composition of novel subtropical dry forests developing on abandoned pastures and agricultural fields in both private and protected public lands and (2) seed germination and growth rates of plantings of native tree species on degraded soils. We found that novel dry forests were dominated by introduced species, which...

  8. Novelty and its ecological implications to dry forest functioning and conservation

    Science.gov (United States)

    Ariel Lugo; Heather. Erickson

    2017-01-01

    Tropical and subtropical dry forest life zones support forests with lower stature and species richness than do tropical and subtropical life zones with greater water availability. The number of naturalized species that can thrive and mix with native species to form novel forests in dry forest conditions in Puerto Rico and the US Virgin Islands is lower than in other...

  9. Different Patterns of Changes in the Dry Season Diameter at Breast Height of Dominant and Evergreen Tree Species in a Mature Subtropical Forest in South China

    Institute of Scientific and Technical Information of China (English)

    Jun-Hua Yan; Guo-Yi Zhou; De-Qiang Zhang; Xu-Li Tang; Xu Wang

    2006-01-01

    Information on changes in diameter at breast height (DBH) is important for net primary production (NPP)estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change were measured under field conditions during the dry season for three dominant and native tree species in a monsoon evergreen broad-leaved forest in the Dinghushan Biosphere Reserve. For each tree species,different patterns of DBH change were observed. In the case of the fast-growing tree species Castanopsis chinensis Hance, large diurnal fluctuations occur, with a peak DBH in the early morning (around 05:00 h) that decreases to a minimum by about 14:00 h. Both Schima superba Gardn. et Chemp and Cryptocarya chinensis (Hance) Hemsl. exhibited less diurnal swelling and shrinkage. Diurnal fluctuations for these species were observed on a few occasions over the period of observation. Graphical comparisons and statistical analysis of changes in DBH with meteorological variables indicate that for different trees, the different changes in DBH observed responded to different meteorological variables. Large stem changes were found to occur for Ca. chinensis trees that were associated with variations in solar radiation. However, both S. superba and Cr. chinensis were found to be less sensitive to solar radiation. Changes in the DBH of these two species were found to be controlled mainly by soil temperature and soil moisture. During the later dry season, with a lower soil temperature and soil moisture, all three tree species stopped growing and only negligible shrinkage, expansion, or fluctuation occurred, suggesting that the optimum time to measure tree growth in the Dinghushan Biosphere Reserve is the later dry season.

  10. Regional variation in Caribbean dry forest tree species composition

    Science.gov (United States)

    Janet Franklin; Julie Ripplinger; Ethan H. Freid; Humfredo Marcano-Vega; David W. Steadman

    2015-01-01

    How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (...

  11. ABOVE GROUND BIOMASS MICRONUTRIENTS IN A SEASONAL SUBTROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Hamilton Luiz Munari Vogel

    2015-06-01

    Full Text Available In the above ground biomass of a native forest or plantation are stored large quantities of nutrients, with few studies in the literature, especially concerning micronutrients. The present work aimed to quantify the micronutrients in above ground biomass in a Seasonal Subtropical forest in Itaara-RS, Brazil. For the above ground biomass evaluation, 20 trees of five different diameter classes were felled. The above ground biomass was separated in the following compartments: stem wood, stem bark, branches and leaves. The contents of B, Cu, Fe, Mn and Zn in the biomass samples were determined. The stock of micronutrients in the biomass for each component was obtained based on the estimated dry biomass, multiplied by the nutrient content. The total production of above ground biomass was estimated at 210.0 Mg.ha-1. The branches, stem wood, stem bark and leaves corresponded to 48.8, 43.3, 5.4 and 2.4% of the above ground biomass. The lower levels of B, Cu, Fe and Mn are in stem wood, except for Zn; in the branches and trunk wood are the largest stocks of B, Cu, Fe and Mn. In the branches, leaves and trunk bark are stored most micronutrients, pointing to the importance of these to remain on the soil.

  12. Non-native grass removal and shade increase soil moisture and seedling performance during Hawaiian dry forest restoration

    Science.gov (United States)

    Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist

    2012-01-01

    Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...

  13. Forest Type and Tree Characteristics Determine the Vertical Distribution of Epiphytic Lichen Biomass in Subtropical Forests

    Directory of Open Access Journals (Sweden)

    Su Li

    2017-11-01

    Full Text Available Epiphytic lichens are an important component in subtropical forests and contribute greatly to forest biodiversity and biomass. However, information on epiphytic lichens still remains scarce in forest conservation owing to the difficulty of accessing all canopy layers for direct observation. Here, epiphytic lichens were quantified on 73 whole trees in five forest types in Southwest China to clarify the vertical stratification of their biomass in subtropical forests. Lichen biomass was significantly influenced by forest type and host attributes, varying from 187.11 to 8.55 g∙tree−1 among forest types and from 289.81 to <0.01 g∙tree−1 among tree species. The vertical stratification of lichen biomass was also determined by forest type, which peaked at the top in primary Lithocarpus forest and middle-aged oak secondary forest and in the middle upper heights in other forests. Overall, the proportion of lichen biomass accounted for 73.17–100.00% of total lichen biomass on branches and 0.00–26.83% on trunks in five forests, and 64.53–100.00% and 0.00–35.47% on eight host species. Seven functional groups showed marked and various responses to tree height between and among forest types. This information improves our understanding of the distribution of epiphytic lichens in forest ecosystems and the promotion of forest management in subtropical China.

  14. Tropical savannas and dry forests.

    Science.gov (United States)

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. How to restore dry forest ecosystems

    OpenAIRE

    Nalvarte, Jaime

    2012-01-01

    AIDER is a Peruvian non-governmental organization working since 1992 on forest management activities, watershed management and urban forest management on tropical humid and dry forest at a national level. AIDER and the José Ignacio Távara Pasapera rural community have been working on dry forest management and recovery since 1992. This paper summarizes the activity of AIDER in the dry forests for the purpose of recovering degraded forest areas and conserve existing forests by developing sustai...

  16. Throughfall patterns of a Subtropical Atlantic Forest in Brazil

    Science.gov (United States)

    Macedo Sá, João Henrique; Borges Chaffe, Pedro Luiz; Yuimi de Oliveira, Debora; Nery Giglio, Joana; Kobiyama, Masato

    2017-04-01

    The interception process is responsible for the spatial and temporal redistribution of the precipitation that reaches the ground. This process is important especially in forested areas since it influences recycling of moisture from the air and also the amount of water that effectively reaches the ground. The contact of the precipitation with the canopy influences on the water quality, increasing the concentration of various nutrients in the throughfall (Tf) and stemflow (Sf). Brazil, only about 8% of the original Atlantic Forest cover remains. That is an important biome and little is known about the characteristics of rainfall interception of this forest. The total interception loss in forested areas is usually formulated as the gross precipitation (P) minus the sum of the throughfall (Tf) and the stemflow (Sf). The stems characteristics influence on Sf, meanwhile, the value of Tf strongly depends on the canopy and leaf structures. Because of the complex structure of the canopy, these characteristics are usually expressed by the simpler Leaf Area Index (LAI) or the Canopy Cover Fraction (CCF). The Araponga river experimental catchment (ARA) with 5.3 ha is on the northern plateau of Santa Catarina State, southern Brazil. It is an area completely covered by secondary subtropical Atlantic Forest, the regional climate is the Köppen Cfb type, i.e., temperate climate without dry season and with warm summer (the mean temperature of the hottest month is always under 22°C). The objectives of the present study were (i) to evaluate the spatial and temporal variation of canopy cover; (ii) to influence of the interception process on the precipitation quality; and (iii) to explore the relation between canopy cover and throughfall. Inside the catchment, 9 Tf gauges were installed 40 cm above the soil surface in order to include the interception by shrub. 28 hand-made gauges were installed on a circular area of 3 m radius to analyze the spatial variability of throughfall. During

  17. Rainfall, fog and throughfall dynamics in a sub-tropical ridge-top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain)

    NARCIS (Netherlands)

    García-Santos, G.; Bruijnzeel, L.A.

    2011-01-01

    Mixed tree-heath/beech forest is a type of subtropical montane cloud forest found on wind- and fog-exposed ridges in the Canary Islands. With a dry season of 5 months and an annual precipitation of 600-700 mm, the extra water inputs through fog interception assume particular importance in this

  18. Biodiversity promotes tree growth during succession in subtropical forest.

    Directory of Open Access Journals (Sweden)

    Martin Barrufol

    Full Text Available Losses of plant species diversity can affect ecosystem functioning, with decreased primary productivity being the most frequently reported effect in experimental plant assemblages, including tree plantations. Less is known about the role of biodiversity in natural ecosystems, including forests, despite their importance for global biogeochemical cycling and climate. In general, experimental manipulations of tree diversity will take decades to yield final results. To date, biodiversity effects in natural forests therefore have only been reported from sample surveys or meta-analyses with plots not initially selected for diversity. We studied biomass and growth of subtropical forests stands in southeastern China. Taking advantage of variation in species recruitment during secondary succession, we adopted a comparative study design selecting forest plots to span a gradient in species richness. We repeatedly censored the stem diameter of two tree size cohorts, comprising 93 species belonging to 57 genera and 33 families. Tree size and growth were analyzed in dependence of species richness, the functional diversity of growth-related traits, and phylogenetic diversity, using both general linear and structural equation modeling. Successional age covaried with diversity, but differently so in the two size cohorts. Plot-level stem basal area and growth were positively related with species richness, while growth was negatively related to successional age. The productivity increase in species-rich, functionally and phylogenetically diverse plots was driven by both larger mean sizes and larger numbers of trees. The biodiversity effects we report exceed those from experimental studies, sample surveys and meta-analyses, suggesting that subtropical tree diversity is an important driver of forest productivity and re-growth after disturbance that supports the provision of ecological services by these ecosystems.

  19. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region

    Science.gov (United States)

    Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin

    2014-01-01

    Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529

  20. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  1. Impacts of tropical cyclones on hydrochemistry of a subtropical forest

    Directory of Open Access Journals (Sweden)

    C. T. Chang

    2013-10-01

    Full Text Available Tropical cyclones (typhoons/hurricanes have major impacts on the biogeochemistry of forest ecosystems, but the stochastic nature and the long intervals between storms means that there are limited data on their effects. We characterised the impacts of 14 typhoons over six years on hydrochemistry of a subtropical forest plantation in Taiwan, a region experiencing frequent typhoons. Typhoons contributed 1/3 of the annual rainfall on average, but ranged from 4 to 55%. The stochastic nature of annual typhoon related precipitation poses a challenge with respect to managing the impacts of these extreme events. This challenge is exacerbated by the fact that typhoon-related rainfall is not significantly correlated with wind velocity, the current focus of weather forecasts. Thus, little advance warning is provided for the hydrological impacts of these storms. The typhoons we studied contributed approximately one third of the annual input and output of most nutrients (except nitrogen during an average 9.5 day yr−1 period, resulting in nutrient input/output rates an order of magnitude greater than during non-typhoon months. Nitrate output balanced input during the non-typhoon period, but during the typhoon period an average of 10 kg ha−1 yr−1 nitrate was lost. Streamwater chemistry exhibited similarly high variability during typhoon and non-typhoon periods and returned to pre-typhoon levels one to three weeks following each typhoon. The streamwater chemistry appears to be very resilient in response to typhoons, resulting in minimal loss of nutrients.

  2. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Tan Zhenghong; Zhang Yiping; Zhang Yongjiang; Song Qinhai; Cao Kunfang; Schaefer, D A; Liu Yuhong; Liang Naishen; Hsia, Yue-Joe; Zhou Guoyi; Li Yuelin; Yan Junhua; Juang, Jehn-Yih; Chu Housen; Yu Guirui; Sun Xiaomin

    2012-01-01

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  3. Temporal dynamics of a subtropical urban forest in San Juan, Puerto Rico, 2001-2010

    Science.gov (United States)

    J. M. Tucker Lima; C. L. Staudhammer; T. J. Brandeis; F. J. Escobedo; W. Zipperer

    2013-01-01

    Several studies report urban tree growth and mortality rates as well as species composition, structural dynamics, and other characteristics of urban forests in mostly temperate, inland urban areas. Temporal dynamics of urban forests in subtropical and tropical forest regions are, until now, little explored and represent a new and important direction for study and...

  4. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas

    International Nuclear Information System (INIS)

    Shaheen, H.; Khan, R.W.A.; Hussain, K.; Ullah, T.S.; Mehmood, A.

    2016-01-01

    Estimation of carbon sequestration in forest ecosystem is necessary to mitigate impacts of climate change. Current research project was focused to assess the Carbon contents in standing trees and soil of different subtropical forest sites in Kashmir. Tree biomass was estimated by using allometric equations whereas Soil carbon was calculated by Walkey-Black titration method. Total carbon stock was computed as 186.27 t/ha with highest value of 326 t/ha recorded from Pinus roxburghii forest whereas lowest of 75.86 t/ha at mixed forest. Average biomass carbon was found to be 151.38 t/ha with a maximum value of 294.7 t/ha and minimum of 43.4 t/ha. Pinus roxburghii was the most significant species having biomass value of 191.8 t/ha, followed by Olea cuspidata (68.9 t/ha), Acacia modesta (12.71 t/ha), Dalbergia sissoo (12.01 t/ha), Broussonetia papyrifera (5.93 t/ha), Punica granatum (2.27 t/ha), Mallotus philippensis (2.2 t/ha), Albizia lebbeck (1.8t/ha), Ficus palmata (1.51 t/ha), Acacia arabica (1.4 t/ha), Melia azedarach, (1.14 t/ha) and Ficus carica (1.07 t/ha) respectively. Recorded value of tree density was 492/ha; average DBH was 87.27 cm; tree height was 13.3m; and regeneration value was 83 seedlings/ha. Soil carbon stocks were found to be 34.89 t/ha whereas agricultural soil carbon was calculated as 27.18 t/ha. Intense deforestation was represented by a stump density of 147.4/ha. The results of Principal Component Analysis (PCA) revealed the distinct species clusters on the basis of location, biomass and Carbon stock values. Pinus roxburghii and Olea cuspidata were found to be the major contributors of carbon stock having maximum vector lengths in the PCA Biplot. Forest in the area needs to be managed in a sustainable manner to increase its carbon sequestration potential. (author)

  5. Mapping the occurrence of Chromolaena odorata (L.) in subtropical forest gaps using environmental and remote sensing data

    CSIR Research Space (South Africa)

    Malahlela, OE

    2015-07-01

    Full Text Available Globally, subtropical forests are rich in biodiversity. However, the native biodiversity in these forests is threatened by the presence of invasive species such as Chromolaena odorata (L.) King and Robinson, which thrives in forest canopy gaps. Our...

  6. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  7. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China.

    Science.gov (United States)

    Zhou, Guoyi; Peng, Changhui; Li, Yuelin; Liu, Shizhong; Zhang, Qianmei; Tang, Xuli; Liu, Juxiu; Yan, Junhua; Zhang, Deqiang; Chu, Guowei

    2013-04-01

    Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change. © 2012 Blackwell Publishing Ltd.

  8. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-01-01

    To date, N 2 O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15 N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N 2 O production in four subtropical acid forest soils (pH 2 O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N 2 O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N 2 O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N 2 O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N 2 O product ratios from nitrification. The ratio of N 2 O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N 2 O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N 2 O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N 2 O production. → While, contribution of autotrophic nitrification to N 2 O production was little. → Ratios of N 2 O-N emission from nitrification were higher than those in most previous references.

  9. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  10. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2013-03-01

    Full Text Available Subtropical forests in southern China have received chronically large amounts of atmogenic nitrogen (N, causing N saturation. Recent studies suggest that a significant proportion of the N input is returned to the atmosphere, in part as nitrous oxide (N2O. We measured N2O emission fluxes by closed chamber technique throughout two years in a Masson pine-dominated headwater catchment with acrisols (pH ~ 4 at Tieshanping (Chongqing, SW China and assessed the spatial and temporal variability in two landscape elements typical for this region: a mesic forested hillslope (HS and a hydrologically connected, terraced groundwater discharge zone (GDZ in the valley bottom. High emission rates of up to 1800 μg N2O-N m−2 h−1 were recorded on the HS shortly after rain storms during monsoonal summer, whereas emission fluxes during the dry winter season were generally low. Overall, N2O emission was lower in GDZ than on HS, rendering the mesic HS the dominant source of N2O in this landscape. Temporal variability of N2O emissions on HS was largely explained by soil temperature (ST and moisture, pointing at denitrification as a major process for N removal and N2O production. The concentration of nitrate (NO3− in pore water on HS was high even in the rainy season, apparently never limiting denitrification and N2O production. The concentration of NO3− decreased along the terraced GDZ, indicating efficient N removal, but with moderate N2O-N loss. The extrapolated annual N2O fluxes from soils on HS (0.54 and 0.43 g N2O-N m−2 yr−1 for a year with a wet and a dry summer, respectively are among the highest N2O fluxes reported from subtropical forests so far. Annual N2O-N emissions amounted to 8–10% of the annual atmogenic N deposition, suggesting that forests on acid soils in southern China are an important, hitherto overlooked component of the anthropogenic N2O budget.

  11. Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities

    Science.gov (United States)

    Francisco Escobedo; Sebastian Varela; Min Zhao; John E. Wagner; Wayne Zipperer

    2010-01-01

    Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and...

  12. DRY DEPOSITION OF POLLUTANTS TO FORESTS

    Science.gov (United States)

    We report on the results of an extensive field campaign to measure dry deposition of ozone and sulfur dioxide to a sample of forest types in the United States. Measurements were made for full growing seasons over a deciduous forest in Pennsylvania and a mixed deciduous-conifer...

  13. Impacts of disturbance initiated by road construction in a subtropical cloud forest in the Luquillo Experimental Forest, Puerto Rico

    Science.gov (United States)

    Lydia P. Olander; F.N Scatena; Whendee L. Silver

    1998-01-01

    The impacts of road construction and the spread of exotic vegetation, which are common threats to upper elevation tropical forests, were evaluated in the subtropical cloud forests of Puerto Rico. The vegetation, soil and microclimate of 6-month-old road®lls, 35-year-old road®lls and mature forest with and without grass understories were compared. Recent road®lls had...

  14. Response of Termite (Blattodea: Termitoidae) Assemblages to Lower Subtropical Forest Succession: A Case Study in Dinghushan Biosphere Reserve, China.

    Science.gov (United States)

    Li, Zhi-Qiang; Ke, Yun-Ling; Zeng, Wen-Hui; Zhang, Shi-Jun; Wu, Wen-Jing

    2016-02-01

    Termite (Blattodea: Termitoidae) assemblages have important ecological functions and vary in structure between habitats, but have not been studied in lower subtropical forests. To examine whether differences in the richness and relative abundance of termite species and functional groups occur in lower subtropical regions, termite assemblages were sampled in Dinghushan Biosphere Reserve, China, among pine forest, pine and broad-leaved mixed forest (mixed forest), and monsoon evergreen broad-leaved forest (monsoon forest). The dominant functional group was wood-feeding termites (family Termitidae), and the mixed forest hosted the greatest richness and relative abundance. Soil-feeding termites were absent from the lower subtropical system, while humus-feeding termites were sporadically distributed in mixed forest and monsoon forest. The species richness and functional group abundance of termites in our site may be linked to the forest succession. Altitude, soil temperature, air temperature, surface air relative humidity, and litter depth were significant influences on species and functional group diversity.

  15. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest

    NARCIS (Netherlands)

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S.; Wang, Yongfan; Staehelin, Christian; Yu, Shixiao

    Observational evidence increasingly suggests that the JanzenConnell effect extends beyond the species boundary. However, this has not been confirmed experimentally. Herein, we present both observational and experimental evidence for a phylogenetic JanzenConnell effect. In a subtropical forest in

  16. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  17. Atmospheric deposition of nitrogen at five subtropical forested sites in South China

    International Nuclear Information System (INIS)

    Chen, Xi Yun; Mulder, Jan

    2007-01-01

    Elevated concentrations of reactive nitrogen (N) in precipitation have been reported for many cities in China. Due to increased use of fossil fuels and expansion in agriculture, further increases in deposition of ammonia (NH x ) and reactive N oxides (NO y ) are predicted. Increased deposition of reactive N is likely to affect N dynamics and N runoff in forest ecosystems. Yet, in China little work has been done to quantify the levels of atmospheric N deposition in such systems. Here, we assess the deposition of inorganic N (ammonium, NH 4 + and nitrate, NO 3 - ) for five subtropical forest ecosystems in remote and urban areas of South China. Annual volume-weighted concentrations in bulk precipitation range from 0.18 to 1.55 mg NH 4 + -N L - 1 and from 0.12 to 0.74 mg NO 3 - -N L - 1 . These values are large and several times greater than those reported for remote sites of the world. The fluxes of total inorganic N (TIN) in wet-only deposition range from 0.8 to 2.3 g N m - 2 yr - 1 , with NH 4 + -N contributing 54% to 77%. Both the tree canopy and the ground vegetation layer are important in determining the net N flux reaching the forest floor, but the net effect varies from site to site. At TieShanPing (TSP), close to Chongqing city, and at CaiJiaTang (CJT), near Shaoshan (Hunan province), the canopy represents a net source of N, probably due to dry deposition. At the other three sites (LiuChongGuan (LCG), LeiGongShan (LGS), both in Guizhou province, and LiuXiHe (LXH) in Guangdong), a net loss of reactive N from precipitation water occurs in the canopy, probably due to uptake processes. The total annual atmospheric TIN load is estimated to range from at least 0.8 g N m - 2 yr - 1 to 4.0 g N m - 2 yr - 1 , with a considerable contribution from dry deposition. Concentrations and fluxes of inorganic N in tree canopy throughfall are greater than those in North America. Also the contribution of NH 4 + -N to TIN fluxes in throughfall (40% to 70%) is greater than in North

  18. Perception of beekeepers about the melliferous plants from the Dry Forest of the Northwest (Dominican Republic).

    OpenAIRE

    Thomas May; Sesar Rodríguez

    2012-01-01

    The melliferous flora honey and its flowering in the subtropical dry forest area of the Northwest, of the Dominican Republic were studied. A survey of 30 local beekeepers as well as four semi-structured interviews on important plants for beekeeping were applied. Plants were scored according to their importance by observation is confirmed in the field visits bees species observed and consulted information secondary on flowering dates and features honey, secondary data, and applied the index Ja...

  19. Water use efficiency in a primary subtropical evergreen forest in Southwest China.

    Science.gov (United States)

    Song, Qing-Hai; Fei, Xue-Hai; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Wu, Chuan-Sheng; Lu, Zhi-Yun; Luo, Kang; Gao, Jin-Bo; Liu, Yu-Hong

    2017-02-20

    We calculated water use efficiency (WUE) using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from ~2.28 to 2.68 g C kg H 2 O -1 . The multiyear average WUE was 2.48 ± 0.17 (mean ± standard deviation) g C kg H 2 O -1 . WUE increased greatly in the driest year (2009), due to a larger decline in ET than in GPP. At the diurnal scale, WUE in the wet season reached 5.1 g C kg H 2 O -1 in the early morning and 4.6 g C kg H 2 O -1 in the evening. WUE in the dry season reached 3.1 g C kg H 2 O -1 in the early morning and 2.7 g C kg H 2 O -1 in the evening. During the leaf emergence stage, the variation of WUE could be suitably explained by water-related variables (relative humidity (RH), soil water content at 100 cm (SWC_100)), solar radiation and the green index (Sgreen). These results revealed large variation in WUE at different time scales, highlighting the importance of individual site characteristics.

  20. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  1. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu

    2009-01-01

    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  2. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    Science.gov (United States)

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  3. Tree diversity promotes insect herbivory in subtropical forests of south-east China.

    Science.gov (United States)

    Schuldt, Andreas; Baruffol, Martin; Böhnke, Martin; Bruelheide, Helge; Härdtle, Werner; Lang, Anne C; Nadrowski, Karin; von Oheimb, Goddert; Voigt, Winfried; Zhou, Hongzhang; Assmann, Thorsten; Fridley, Jason

    2010-07-01

    1.Insect herbivory can strongly affect ecosystem processes, and its relationship with plant diversity is a central topic in biodiversity-functioning research. However, very little is known about this relationship from complex ecosystems dominated by long-lived individuals, such as forests, especially over gradients of high plant diversity.2.We analysed insect herbivory on saplings of 10 tree and shrub species across 27 forest stands differing in age and tree species richness in an extraordinarily diverse subtropical forest ecosystem in China. We tested whether plant species richness significantly influences folivory in these highly diverse forests or whether other factors play a more important role at such high levels of phytodiversity.3.Leaf damage was assessed on 58 297 leaves of 1284 saplings at the end of the rainy season in 2008, together with structural and abiotic stand characteristics.4.Species-specific mean damage of leaf area ranged from 3% to 16%. Herbivory increased with plant species richness even after accounting for potentially confounding effects of stand characteristics, of which stand age-related aspects most clearly covaried with herbivory. Intraspecific density dependence or other abiotic factors did not significantly influence overall herbivory across forest stands.5.Synthesis.The positive herbivory-plant diversity relationship indicates that effects related to hypotheses of resource concentration, according to which a reduction in damage by specialized herbivores might be expected as host plant concentration decreases with increasing plant diversity, do not seem to be major determinants for overall herbivory levels in our phytodiverse subtropical forest ecosystem. We discuss the potential role of host specificity of dominant herbivores, which are often expected to show a high degree of specialization in many (sub)tropical forests. In the forest system we studied, a much higher impact of polyphagous species than traditionally assumed might

  4. Distribution of functional traits in subtropical trees across environmental and forest use gradients

    Science.gov (United States)

    Blundo, Cecilia; Malizia, Lucio R.; González-Espinosa, Mario

    2015-11-01

    The relationship between functional traits and environmental factors contribute to understanding community structure and predicting which species will be able to elude environmental filters in different habitats. We selected 10 functional traits related to morphology, demography and regeneration niche in 54 subtropical premontane tree species to describe their main axes of functional differentiation. We derived species traits, environmental variables and species abundance data from 20 1-ha permanent plots established in a seasonal subtropical premontane forest in northwestern Argentina. We analyzed the relationship between species functional traits and environmental factors through RLQ and fourth-corner analyzes. We found an axis of structural differentiation that segregates understory from canopy species, and an axis of functional differentiation that segregates species that maximize resource acquisition from those that promote resource conservation. Environmental and forest use gradients operate hierarchically over subtropical premontane tree species influencing the distribution of demographic and morphological traits. The interaction between climatic and topographic factors influences the distribution of species functional traits at the regional scale. In addition, the history of forest use seems to operate at the landscape scale and explains the distribution of species traits reflecting a trade-off between resource acquisition and resource conservation strategies in secondary forests across different successional stages. Our results support the idea that functional traits may be used to analyze community structure and dynamics through niche differentiation and environmental filtering processes.

  5. [Characteristics of floor litter and soil arthropod community in different types ot subtropical forest in Ailao Mountain of Yunnan, Southwest China].

    Science.gov (United States)

    Yang, Zhao; Yang, Xiao-Dong

    2011-11-01

    By using line transect method, an investigation was conducted on the floor litter and soil arthropod community in a mid mountain wet evergreen broad-leaved forest, a mossy dwarf forest, and a Populus bonatii forest in Ailao Mountain of Yunnan in April (dry and hot season), June (rainy season), and December (dry and cold season), 2005. In both dry and rainy seasons, the existing floor litter mass, C storage, and C/N ratio in the three forests all increased in the order of mossy dwarf forest > P. bonatii forest > evergreen broad-leaved forest, but the N storage had less difference. In the floor litter layer of the forests, Acari and Collembola were the dominant groups of soil arthropod community, while Diptera larvae, Coleoptera, ants, and Homoptera were the common groups. The Sorenson coefficients of soil arthropod community in the three forests were extremely great. No significant differences were observed in the soil arthropod density (ind x m(-2)) in the floor litter layer among the three forests, but the relative density (ind x g(-1)) of soil arthropods was higher in the evergreen broad-leaved forest and P. bonatii forest than in the mossy dwarf forest. In the three forests, the density of soil arthropods was significantly higher in dry season than in rainy season, but the Shannon diversity index had less difference. There were significant positive correlations between the existing floor litter mass and the individual density (ind x m(-2)) and dominant groups of soil arthropod communities in dry and hot season (April), but negative correlations between the existing floor litter mass and the relative density (ind x g(-1)) of soil arthropod communities and Acari in dry and cold season (December). The individual densities of Collembola and Coleoptera also had positive correlations with the N storage of the existing floor litter mass in the three forests. It was considered that the floor litter and the development of soil arthropod community in the litter layer of

  6. Caribbean dry forest networking: an opportunity for conservation

    Science.gov (United States)

    K. Banda-Rodriguez; J. Weintritt; R.T. Pennington

    2016-01-01

    Seasonally dry tropical forest is the most threatened tropical forest in the world. Though its overall plant species diversity is lower than in neighboring biomes such as rain forest, species endemism can be high, and its conservation has often been neglected. Caribbean dry forests face diverse threats including tourism, agriculture, and climate change. The Latin...

  7. FLORULA URBAN FRAGMENT OF TROPICAL DRY FOREST

    Directory of Open Access Journals (Sweden)

    Willington Barranco-Pérez

    2016-01-01

    Full Text Available The aim of this study was to record the composition of plant species in an urban fragment of tropical dry forest of secondary regeneration (bs-T to generate information that can be used in the planning and management of green spaces in the city of Santa Marta. Transects of 2 x 50 m were established equivalent to 0.1 ha and all species were counted >1.0 cm DBH (Diameter at Breast Height: 1.3m. 100 species of angiosperms were recorded of which 47% have herbaceous habit. The number of species recorded in this study represents 39.6% of the species reported for the hills of Santa Marta and 3.8% for the dry forests of Colombia. It is suggested to isolate this type of secondary formations of any intervention and contemplate the reintroduction of individuals and conservation strategies.

  8. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Directory of Open Access Journals (Sweden)

    Xiaqin Luo

    2017-10-01

    Full Text Available Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration. Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density, species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broad-leaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests. The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.

  9. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Institute of Scientific and Technical Information of China (English)

    Xiaqin Luo; Min Cao; Min Zhang; Xiaoyang Song; Jieqiong Li; Akihiro Nakamura; Roger Kitching

    2017-01-01

    Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported,how soil seed banks vary with elerational gradients in different climatic zones is still unknown.This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province,southwest China.Similarity between the soil seed bank and standing vegetation was also examined.We collected soil samples from sites spanning 12 elevations in tropical rain forests,subtropical evergreen broadleaved forests and subalpine coniferous forests,and transported them to a glasshouse for germination trials for species identification.The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests.Seeds of woody species dominated the soil seed banks of tropical and subtropical forests,while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests,followed by subtropical forests but were completely absent from subalpine forests.

  10. Geomorphological impacts of a tornado disturbance in a subtropical forest

    Science.gov (United States)

    Jonathan Phillips; Daniel A. Marion; Chad Yocum; Stephanie H. Mehlhope; Jeff W. Olson

    2015-01-01

    We studied tree uprooting associated with an EF2 tornado that touched down in portions of the Ouachita Mountains in western Arkansas in 2009. In the severe blowdown areas all trees in the mixed shortleaf pine–hardwood forest were uprooted or broken, with no relationship between tree species or size and whether uprooting or breakage occurred. There was also no...

  11. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    Science.gov (United States)

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  12. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  13. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  14. Effects of model choice and forest structure on inventory-based estimations of Puerto Rican forest biomass

    Science.gov (United States)

    Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo

    2005-01-01

    Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...

  15. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  16. Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique.

    Science.gov (United States)

    Purahong, Witoon; Pietsch, Katherina A; Lentendu, Guillaume; Schöps, Ricardo; Bruelheide, Helge; Wirth, Christian; Buscot, François; Wubet, Tesfaye

    2017-01-01

    The deadwood mycobiome, also known as wood-inhabiting fungi (WIF), are among the key players in wood decomposition, having a large impact on nutrient cycling in forest soils. However, our knowledge of WIF richness and distribution patterns in different forest biomes is limited. Here, we used pyrotag sequencing of the fungal internal transcribed spacer (ITS2) region to characterize the deadwood mycobiome of two tree species with greatly different wood characteristics ( Schima superba and Pinus massoniana ) in a Chinese subtropical forest ecosystem. Specifically, we tested (i) the effects of tree species and wood quality properties on WIF OTU richness and community composition; (ii) the role of biotic and abiotic factors in shaping the WIF communities; and (iii) the relationship between WIF OTU richness, community composition and decomposition rates. Due to different wood chemical properties, we hypothesized that the WIF communities derived from the two tree species would be correlated differently with biotic and abiotic factors. Our results show that deadwood in subtropical forests harbors diverse fungal communities comprising six ecological functional groups. We found interesting colonization patterns for this subtropical biome, where Resinicium spp. were highly detected in both broadleaved and coniferous deadwood. In addition, the members of Xylariales were frequently found in Schima . The two deadwood species differed significantly in WIF OTU richness ( Pinus > Schima ) and community composition ( P < 0.001). Variations in WIF community composition of both tree species were significantly explained by wood pH and ecological factors (biotic: deadwood species, basal area and abiotic: soil pH), but the WIF communities derived from each tree species correlated differently with abiotic factors. Interestingly, we found that deadwood decomposition rate significantly correlated with WIF communities and negatively correlated with WIF OTU richness. We conclude that the

  17. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Directory of Open Access Journals (Sweden)

    D. Tian

    2017-07-01

    Full Text Available Reactive nitrogen (N increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings, and ground-cover plants (ferns according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1 and N100 fertilized plots (100 kg N ha−1 yr−1, while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical

  18. Mercury dynamics and mass balance in a subtropical forest, southwestern China

    Directory of Open Access Journals (Sweden)

    M. Ma

    2016-04-01

    Full Text Available The mid-subtropical forest area in southwest China was affected by anthropogenic mercury (Hg emissions over the past 3 decades. We quantified mercury dynamics on the forest field and measured fluxes and pools of Hg in litterfall, throughfall, stream water and forest soil in an evergreen broadleaved forest field in southwestern China. Total Hg (THg input by the throughfall and litterfall was assessed at 32.2 and 42.9 µg m−2 yr−1, respectively, which was remarkably higher than those observed from other forest fields in the background of North America and Europe. Hg fluxes across the soil–air interface (18.6 mg m−2 yr−1 and runoff and/or stream flow (7.2 µg m−2 yr−1 were regarded as the dominant ways for THg export from the forest field. The forest field hosts an enormous amount of atmospheric Hg, and its reserves is estimated to be 25 341 µg m2. The ratio of output to input Hg fluxes (0.34 is higher compared with other study sites. The higher output / input ratio may represent an important ecological risk for the downstream aquatic ecosystems, even if the forest field could be an effective sink of Hg.

  19. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    International Nuclear Information System (INIS)

    Fischer, J.C. von; Tieszen, L.L.

    1995-01-01

    We examined natural abundances of 13 C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ 13 C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO 2 . Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more 13 C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO 2 , (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  20. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.C. von [Cornell University, Ithaca, NY (United States); Tieszen, L. L.

    1995-06-15

    We examined natural abundances of {sup 13}C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ{sup 13}C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO{sub 2}. Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more {sup 13}C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO{sub 2}, (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  1. Transfer of 137Cs from soil to plants in a wet montane forest in subtropical Taiwan

    International Nuclear Information System (INIS)

    Chih-Yu Chiu

    1999-01-01

    The distribution of 137 Cs in an undisturbed, multistoried, subtropical wet montane forest ecosystem surrounding Yuanyang Lake (lake surface level ca. 1670 m, in northeastern Taiwan), was investigated. The mossy forest here represents a currently-rare perhumid temperate environment in subtropical region. The radioactivity concentration of 137 Cs was determined by γ-spectroscopy with a Ge(Li) detector. Although the soil is extremely acidic (pH 3.3 to 3.6) and the rainfall is high, 137 Cs is evidently retained in the organic layer. The radioactivity concentration of 137 Cs in surface soil ranges from 28 to 71 Bq x kg -1 . The concentrations of 137 Cs in the ground moss layer and litter were much lower than that in the soil organic layer; this suggests that 137 Cs detected is not from the newly deposited radioactive fallout. The radioactivity concentration and transfer factor (TF) of 137 Cs varied with plant species. Shrubs and ferns have higher values than a coniferous tree (Taiwan cedar). The TF in this ecosystem is as high as 0.21 to 1.88. The high values of TF is attributed to the abundance of the organic matter in the forest soils. The rapid recycling of 137 Cs through the soil-plant system of this undisturbed multistoried ecosystem suggests the existence of an internal cycling that help the accumulation of 137 Cs in this ecosystem. (author)

  2. Effect of fragmentation on the Costa Rican dry forest avifauna

    OpenAIRE

    Barrantes, Gilbert; Ocampo, Diego; Ram?rez-Fern?ndez, Jos? D.; Fuchs, Eric J.

    2016-01-01

    Deforestation and changes in land use have reduced the tropical dry forest to isolated forest patches in northwestern Costa Rica. We examined the effect of patch area and length of the dry season on nestedness of the entire avian community, forest fragment assemblages, and species occupancy across fragments for the entire native avifauna, and for a subset of forest dependent species. Species richness was independent of both fragment area and distance between fragments. Similarity in bird comm...

  3. The arboreal component of a dry forest in Northeastern Brazil

    OpenAIRE

    Rodal,M. J. N.; Nascimento,L. M.

    2006-01-01

    The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto) and to the deciduous thorn woodlands (Caatinga sensu stricto) of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid ...

  4. The arboreal component of a dry forest in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    M. J. N. Rodal

    Full Text Available The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto and to the deciduous thorn woodlands (Caatinga sensu stricto of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8° 35’ - 8° 38’ S and 38° 02’ - 38° 04’ W between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1 a humid forest/dry forest transition; and (2 a deciduous thorn-woodland/ dry forest transition.

  5. The arboreal component of a dry forest in Northeastern Brazil.

    Science.gov (United States)

    Rodal, M J N; Nascimento, L M

    2006-05-01

    The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto) and to the deciduous thorn woodlands (Caatinga sensu stricto) of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8 degrees 35 - 8 degrees 38 S and 38 degrees 02 - 38 degrees 04 W) between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1) a humid forest/dry forest transition; and (2) a deciduous thorn-woodland/ dry forest transition.

  6. Effects of forest conversion on the assemblages' structure of aquatic insects in subtropical regions

    Directory of Open Access Journals (Sweden)

    Tiago R.N. Bertaso

    2015-03-01

    Full Text Available The effects of forest conversion to agricultural land uses on assemblages of aquatic insects were analyzed in subtropical streams. Organisms and environmental variables were collected in six low-order streams: three streams located in a forested area, and three in areas converted to agricultural land uses. We expected that the aquatic insects' assemblage attributes would be significantly affected by forest conversion, as well as by environmental variables. Streams in converted areas presented lower species richness, abundance and proportion of sensitive insect taxa. The ANOSIM test evidenced strong difference in EPT assemblage structure between streams of forested and converted areas. The ISA test evidenced several EPT genera with high specificity to streams in forested areas and only one genus related to streams in converted areas. Thus, the impacts of the conversion of forested area to agricultural land uses have significantly affected the EPT assemblages, while environmental variables were not affected. We suggest that the effects detected can be influenced by two processes related to vegetation cover: i lower input of allochthonous material, and ii increased input of fine sediments in streams draining converted areas.

  7. Sixty-two years of change in subtropical wet forest structure and composition at El Verde, Puerto Rico

    Science.gov (United States)

    A.P. Drew; J.D. Boley; Y. Zhao; F.H. Wadsworth

    2009-01-01

    A plot established in 1943 in a subtropical wet forest at the Luquillo Experimental Forest of Puerto Rico has been assessed periodically for changes in species and size of all trees >4cm diameter. Forest dynamics on a 0.72ha plot (EV-3) at 400masl at El Verde show recovery principally from hurricanes of 1928 and 1932, timber stand improvement in 1958, and from...

  8. Breeding biology of passerines in a subtropical montane forest in northwestern Argentina

    Science.gov (United States)

    Auer, S.K.; Bassar, R.D.; Fontaine, J.J.; Martin, T.E.

    2007-01-01

    The breeding ecology of south temperate bird species is less widely known than that of north temperate species, yet because they comprise a large portion of the world's avian diversity, knowledge of their breeding ecology can contribute to a more comprehensive understanding of the geographic diversity of avian reproductive traits and life history strategies. We provide the first detailed examination of the reproductive strategies of 18 forest passerines of subtropical, northwestern Argentina. Mean clutch sizes were smaller and egg mass was greater than for north temperate birds, but differed among species and nest types, with cavity-nesters having larger clutches than species with open-cup and enclosed nests. Across all species, the average breeding season duration was 50 days; thus, the common perception that southern species have smaller clutch sizes because of longer breeding seasons is not supported in this community. Daily nest predation rates were influenced by nest type, cavity nests suffering the least from predation, as found in north temperate systems. Only females incubated eggs in all but one species, whereas both parents fed and cared for nestlings in all species. Mean nest attentiveness was low compared to north temperate passerines. Mean hourly nestling feeding rates differed among species and were negatively related to nest predation risk. In short, coexisting species in this subtropical forest varied in their life history strategies, in part correlated with variation in nest predation risk, but also differing from north temperate species. ?? The Cooper Ornithological Society 2007.

  9. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    Science.gov (United States)

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody

  10. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  11. The Influence of Forest Management Regimes on Deforestation in a Central Indian Dry Deciduous Forest Landscape

    OpenAIRE

    Shivani Agarwal; Harini Nagendra; Rucha Ghate

    2016-01-01

    This research examines the impact of forest management regimes, with various degrees of restriction, on forest conservation in a dry deciduous Indian forest landscape. Forest change is mapped using Landsat satellite images from 1977, 1990, 1999, and 2011. The landscape studied has lost 1478 km2 of dense forest cover between 1977 and 2011, with a maximum loss of 1002 km2 of dense forest between 1977 and 1990. The number of protected forest areas has increased, concomitant with an increase in r...

  12. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    Science.gov (United States)

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  13. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    Directory of Open Access Journals (Sweden)

    S. Seitz

    2017-12-01

    Full Text Available This study investigated the development of biological soil crusts (biocrusts in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF China, the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  14. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    Science.gov (United States)

    Seitz, Steffen; Nebel, Martin; Goebes, Philipp; Käppeler, Kathrin; Schmidt, Karsten; Shi, Xuezheng; Song, Zhengshan; Webber, Carla L.; Weber, Bettina; Scholten, Thomas

    2017-12-01

    This study investigated the development of biological soil crusts (biocrusts) in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF) China), the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  15. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    Science.gov (United States)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  16. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Directory of Open Access Journals (Sweden)

    Kumar Munesh

    2009-08-01

    Full Text Available Abstract Background The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC. However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known. Results This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha-1 and from 141.6 to 124.8 t C ha-1 in temperature (Quercus leucotrichophora and subtropical (Pinus roxburghii forests, respectively. Conclusion The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation

  17. Dynamics of ecosystem services provided by subtropical forests in Southeast China during succession as measured by donor and receiver value

    Science.gov (United States)

    The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtr...

  18. Effect of urbanization on the structure and functional traits of remnant subtropical evergreen broad-leaved forests in South China

    Science.gov (United States)

    Liujing Huang; Hongfeng Chen; Hai Ren; Jun Wang; Qinfeng Guo

    2013-01-01

    We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of...

  19. Preliminary Response of Soil Fauna to Simulated N Deposition in Three Typical Subtropical Forests

    Institute of Scientific and Technical Information of China (English)

    XU Guo-Liang; MO Jiang-Ming; ZHOU Guo-Yi; FU Sheng-Lei

    2006-01-01

    A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m-2 year-1), and a medium N (10 g m-2 year-1) was performed in each of the three typical forests, a pine (Pinus massoniana Lamb.) forest (PF), a pine-broadleaf mixed forest (MF) and a mature monsoon evergreen broadleaf forest (MEBF), of the Dinghushan Biosphere Reserve in subtropical China to study the response of soil fauna community to additions of N. Higher NH4+ and NO3- concentrations and a lower soil pH occurred in the medium N treatment of MEBF, whereas the NO3- concentration was the lowest in PF after the additions of N. The response of the density, group abundance and diversity index of soil fauna to addition of N varied with the forest type,and all these variables decreased with increasing N under MEBF but the trend was opposite under PF. The N treatments had no significant effects on these variables under MF. Compared with the control plots, the medium N treatment had significant negative effect on soil fauna under MEBF. The group abundance of soil fauna increased significantly with additions of higher N rates under PF. These results suggested that the response of soil fauna to N deposition varied with the forest type and N deposition rate, and soil N status is one of the important factors affecting the response of soil fauna to N deposition.

  20. Climatology and forest decay - stresses caused by dry periods

    International Nuclear Information System (INIS)

    Havlik, D.

    1991-01-01

    In the discussion of forest decline in the Eighties, stresses due to dry weather is often named as a secondary cause. The concept of 'climatological dry periods' is introduced in this article and applied to records for the Basel and Aachen regions. The time distribution of dry periods of different length and different water deficiency (40 mm, 60 mm, 100 mm) is analyzed. In the case of the Basel data, the dry periods are related to the 'forest damage caused by draught' recorded for the Basel region since 1930. The results support the theory that increasingly larger and more frequent dry periods with water shortage have contributed significantly to forest damage in the last 15 years. Apart from the 'dry stress' itself, also the enhanced production of photooxidants is a damaging mechanism. (orig.) [de

  1. [Soil microbial community structure of two types of forests in the mid-subtropics of China].

    Science.gov (United States)

    Han, Shi-zhong; Gao, Ren; Li, Ai-ping; Ma, Hong-liang; Yin, Yun-feng; Si, You-tao; Chen, Shi-dong; Zheng, Qun-rui

    2015-07-01

    Soil microbial community structures were analyzed by biomarker method of phospholipid fatty acid (PLFA) for a natural forest dominated by Castanopsis fabri (CF) and an adjacent plantation of Cunninghamia lanceolata (CL) in the mid-subtropics of China. The results showed that the amounts of total PLFAs, bacterial PLFAs, fungal PLFAs, gram-positive bacterial PLFAs and gramnegative bacterial PLFAs in the 0-10 cm soil layer were higher than in the 10-20 cm soil layer, and each type of PLFAs in CF were higher than in CL. In either soil layer of the two forest types, the contents of bacterial PLFAs were significantly higher than those of fungal PLFAs. In the two forests, the contents of bacterial PLFAs accounted for 44%-52% of total PLFAs, while the contents of fungal PLFAs just accounted for 6%-8%, indicating the bacteria were dominant in the soils of the two vegetation types. Principal component analysis showed that the influence of vegetation types was greater than soil depth on the microbial community structures. Correlation analysis showed that gram-negative bacterial PLFAs, gram-positive bacterial PLFAs and bacterial PLFAs were significantly negatively correlated with pH, positively with water content, and the PLFAs of main soil microorganism groups were significantly positively correlated with soil total nitrogen, organic carbon, C/N and ammonium.

  2. Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China

    International Nuclear Information System (INIS)

    Zhou, Jun; Wang, Zhangwei; Zhang, Xiaoshan; Chen, Jian

    2015-01-01

    Tieshanping catchment in southwest China was supposed to a large pool of atmospheric mercury. This work was aimed to examine THg (total mercury) concentrations, pools and influence factors in the acidic forest. THg concentrations were highly elevated in the study area, which was significantly depended on TOM (total organic matter) concentrations and altitudinal elevation, whereas negatively correlated with soil pH. The pools of mercury accumulated in soils were correlated strongly with the stocks of TOM and altitude, ranged from 5.9 to 32 mg m −2 and averaged 14.5 mg m −2 , indicating that the acidic forest was a great sink of atmospheric mercury in southwest China. THg concentrations in stream waters decreased with altitude increasing and regression analyses showed that soil/air exchange flux would be increased with the decrease of altitude. Present results suggest that elevation increasing decreases THg losses as low THg concentrations in runoffs and volatilization from soils. - Highlights: • Soil THg pools and influence factors were studied at an acidic catchment in southwestern China. • THg concentrations was increased significantly with TOM concentrations and altitude increasing, decreased with pH. • THg pools in soils were highly elevated and deepened on TOM pools and altitude. • Difference in THg output by volatilization and runoff was a major reason for THg distribution at different altitudes. - Mercury pools increased with altitude increasing as mercury lost more at low elevation area in acidic subtropical forest

  3. Long-term Seedling Dynamics of Tree Species in a Subtropical Rain Forest, Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Hao Chang-Yang

    2013-03-01

    Full Text Available Knowledge of demographical rates at seedling stage is critical for understanding forest composition and dynamics. We monitored the seedling dynamics of tree species in a subtropical rain forest in Fushan, northern Taiwan (24°45’ N, 121°35’ E during an 8-yr period (2003–2010. There were great temporal fluctuations in the seedling density, which might be largely driven by the pulses of seedling recruitment. Interspecific variation in the seedling abundance, however, was not related to the reproductive adult abundance. Previous studies showed that frequent typhoon disturbances contributed to the high canopy openness and high understory light availability at Fushan, which might benefit tree regeneration. But our results do not support this idea. Most of the newly recruited seedlings died within six months and only grew 1.55 ± 0.20 cm per year, which might be suppressed by the dense understory vegetation. Our results suggested that the majority of tree species in Fushan were recruitment limited, which might have important consequences for species coexistence. High temporal variability in recruitment density and low growth rates of seedlings emphasize the importance of long-term studies to our understandings of forest dynamics.

  4. Testing Dragonflies as Species Richness Indicators in a Fragmented Subtropical Atlantic Forest Environment.

    Science.gov (United States)

    Renner, S; Sahlén, G; Périco, E

    2016-06-01

    We surveyed 15 bodies of water among remnants of the Atlantic Forest biome in southern Brazil for adult dragonflies and damselflies to test whether an empirical selection method for diversity indicators could be applied in a subtropical ecosystem, where limited ecological knowledge on species level is available. We found a regional species pool of 34 species distributed in a nested subset pattern with a mean of 11.2 species per locality. There was a pronounced difference in species composition between spring, summer, and autumn, but no differences in species numbers between seasons. Two species, Homeoura chelifera (Selys) and Ischnura capreolus (Hagen), were the strongest candidates for regional diversity indicators, being found only at species-rich localities in our surveyed area and likewise in an undisturbed national forest reserve, serving as a reference site for the Atlantic Forest. Using our selection method, we found it possible to obtain a tentative list of diversity indicators without having detailed ecological information of each species, providing a reference site is available for comparison. The method thus allows for indicator species to be selected in blanco from taxonomic groups that are little known. We hence argue that Odonata can already be incorporated in ongoing assessment programs in the Neotropics, which would also increase the ecological knowledge of the group and allow extrapolation to other taxa.

  5. [Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China].

    Science.gov (United States)

    Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian

    2015-02-01

    Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the species-specific and generalized BAEs using biomass measurement for 9 common broadleaved trees (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in species-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total tree than a combined variable (D2 H) of D and H (tree height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 species decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 tree species decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by tree species and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in tree species and model types.

  6. Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China

    Science.gov (United States)

    Yu, Qian; Luo, Yao; Wang, Shuxiao; Wang, Zhiqi; Hao, Jiming; Duan, Lei

    2018-01-01

    Mercury (Hg) exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM) was used to continuously observe gaseous elemental mercury (GEM) fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ) and a moderately polluted site (Huitong, HT, near a large Hg mine) in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m-2 h-1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT) when compared with that in the mildly polluted site (QYZ) may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration in polluted areas because of Hg

  7. Species composition and community structure of subtropical forest stands in western himalayan foothills of kashmir

    International Nuclear Information System (INIS)

    Shaheen, H.; Malik, N. M.; Dar, M. E. U. I.

    2015-01-01

    Lesser Himalayan subtropical forests have unique species composition due to diverse climatic and topographic factors which create numerous microhabitats. Phytosociological characteristics, structural attributes and biological spectrum of plant communities in the forests of Himalayan foothills in Kashmir were analyzed. A total of 65 species belonging to 26 plant families were recorded constituting 6 plant communities. Average value of diversity recorded for the communities was 2.44; species richness 4.01; whereas evenness was found to be 0.48. The species data indicated random distribution of species with a hump shaped diversity pattern directly correlated with increasing altitude. Themeda anathera was the dominant species with an importance value percentage of 14.7 percentage followed by Pinus roxburghii (9.6 percentage), Mallotus philippenensis (5.2 percentage), Malvastrum coromandelianum (5.1 percentage), Acacia modesta (5 percentage), Olea ferruginea (3.8 percentage) and Oxalis corniculata (3.2 percentage). Vegetation was dominated by Therophytes (30 percentage) and megaphanerophytes (23.3) with dominant leaf spectrum as leptophylls (31.6 percentage). Thirty seven percent plants had medicinal values followed by 31 percentage having fodder values where as 12 percentage used as fuel. Principal component analyses and cluster analyses revealed the association of dominant species with specific sites due to prevailing environmental conditions. The distribution of species in ordination diagrams indicated a continuous change in species composition along the altitudinal gradient. Key stone tree species were subject to immense tree felling resulting in deteriorating changes in forest structure. Visual indicators showed over grazing at all the studied sites evident from the dominance of unpalatable species. Local forest stands demand immediate attention of policy makers as well as forest management so that local diversity and floristic richness could be conserved and

  8. Photo series for quantifying forest fuels in Mexico: montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental

    Science.gov (United States)

    Jorge E. Morfin-Rios; Ernesto Alvarado-Celestino; Enrique J. Jardel-Pelaez; Robert E. Vihnanek; David K. Wright; Jose M. Michel-Fuentes; Clinton S. Wright; Roger D. Ottmar; David V. Sandberg; Andres Najera-Diaz

    2008-01-01

    Single wide-angle and stereo photographs display a range of forest ecosystems conditions and fuel loadings in montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental of Mexico. Each group of photographs includes inventory information summarizing overstory vegetation composition and...

  9. Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China.

    Science.gov (United States)

    Nizami, Syed Moazzam; Yiping, Zhang; Zheng, Zheng; Zhiyun, Lu; Guoping, Yang; Liqing, Sha

    2017-03-01

    Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha -1 . The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.

  10. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest.

    Science.gov (United States)

    Song, Liang; Zhang, Yong-Jiang; Chen, Xi; Li, Su; Lu, Hua-Zheng; Wu, Chuan-Sheng; Tan, Zheng-Hong; Liu, Wen-Yao; Shi, Xian-Meng

    2015-07-01

    Fan life forms are bryophytes with shoots rising from vertical substratum that branch repeatedly in the horizontal plane to form flattened photosynthetic surfaces, which are well suited for intercepting water from moving air. However, detailed water relations, gas exchange characteristics of fan bryophytes and their adaptations to particular microhabitats remain poorly understood. In this study, we measured and analyzed microclimatic data, as well as water release curves, pressure-volume relationships and photosynthetic water and light response curves for three common fan bryophytes in an Asian subtropical montane cloud forest (SMCF). Results demonstrate high relative humidity but low light levels and temperatures in the understory, and a strong effect of fog on water availability for bryophytes in the SMCF. The facts that fan bryophytes in dry air lose most of their free water within 1 h, and a strong dependence of net photosynthesis rates on water content, imply that the transition from a hydrated, photosynthetically active state to a dry, inactive state is rapid. In addition, fan bryophytes developed relatively high cell wall elasticity and the osmoregulatory capacity to tolerate desiccation. These fan bryophytes had low light saturation and compensation point of photosynthesis, indicating shade tolerance. It is likely that fan bryophytes can flourish on tree trunks in the SMCF because of substantial annual precipitation, average relative humidity, and frequent and persistent fog, which can provide continual water sources for them to intercept. Nevertheless, the low water retention capacity and strong dependence of net photosynthesis on water content of fan bryophytes indicate a high risk of unbalanced carbon budget if the frequency and severity of drought increase in the future as predicted.

  11. Phytogeography and conservation of neotropical dry forest with emphasis on Columbia

    OpenAIRE

    Banda Rodriguez, Karina Paola

    2017-01-01

    Dry forest is one of the most threatened tropical forests in the world. Human impact has caused its massive transformation but conservation of dry forest has often been neglected across Latin America. In Colombia, less than 10% of the original extension of dry forest remains. This thesis studies the phytogeography of neotropical dry forest and its relevance for conservation using data from 1602 tree species inventories made in dry forests across Latin America and the Caribbean ...

  12. Phosphatase activity in relation to key litter and soil properties in mature subtropical forests in China.

    Science.gov (United States)

    Hou, Enqing; Chen, Chengrong; Wen, Dazhi; Liu, Xian

    2015-05-15

    Phosphatase-mediated phosphorus (P) mineralization is one of the critical processes in biogeochemical cycling of P and determines soil P availability in forest ecosystems; however, the regulation of soil phosphatase activity remains elusive. This study investigated the potential extracellular activities of acid phosphomonoesterase (AcPME) and phosphodiesterase (PDE) and how they were related to key edaphic properties in the L horizon (undecomposed litter) and F/H horizon (fermented and humified litter) and the underlying mineral soil at the 0-15cm depth in eight mature subtropical forests in China. AcPME activity decreased significantly in the order of F/H horizon>L horizon>mineral soil horizon, while the order for PDE activity was L horizon=F/H horizon>mineral soil horizon. AcPME (X axis) and PDE (Y axis) activities were positively correlated in all horizons with significantly higher slope in the L and F/H horizons than in the mineral soil horizon. Both AcPME and PDE activities were positively related to microbial biomass C, moisture content and water-holding capacity in the L horizon, and were positively related to soil C:P, N:P and C:N ratios and fine root (diameter≤2mm) biomass in the mineral soil horizon. Both enzyme activities were also interactively affected by forest and horizon, partly due to the interactive effect of forest and horizon on microbial biomass. Our results suggest that modulator(s) of the potential extracellular activity of phosphatases vary with horizon, depending on the relative C, P and water availability of the horizon. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Monitoring Temporal Variation to Assess Changes in the Structure of Subtropical Atlantic Forest Butterfly Communities.

    Science.gov (United States)

    Iserhard, Cristiano Agra; Romanowski, Helena Piccoli; Richter, Aline; Mendonça, Milton de Souza

    2017-08-01

    The study of fauna through long-term surveys is important in unveiling how temporal patterns shape the structure of communities in tropical habitats. The butterfly assemblage of the subtropical Atlantic Forest may be considered highly diverse and shows changes in diversity and composition over time, highlighting the importance of long-term inventories. This work assessed temporal diversity patterns in the distribution and composition of butterfly assemblages in an Atlantic Forest site in southern Brazil using combined data from three years of standardized sampling with entomological nets, increasing the knowledge on this group in the Neotropics for monitoring and conservation. The butterfly fauna was analyzed in terms of richness, abundance, and composition. The inventories reached 401 species, with 14,442 butterfly individuals sampled. All the diversity parameters evaluated show significant differences between the first year of sampling compared to the second and third years. The latter had higher values of richness and abundance, followed by the first and second years. Hesperiidae was the richest family, followed by Nymphalidae and Lycaenidae, indicating a good representation of the assemblage as a whole. The results of this work are important for developing conservation programs in the Atlantic Forest and other forested environments in the neotropics, especially concerning reliable diversity assessments for the monitoring and management of protected areas. Decision making and public policy might also benefit from knowledge on temporal patterns of diversity regarding the maintenance of native habitats and integrity of biomes and their associated fauna. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Tropical dry forest recovery : processes and causes of change

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.

    2009-01-01

    Seasonally dry areas are one of the preferred zones for human inhabitance in the tropics. Large forest areas are converted to other land uses and many are covered by secondary forests that grow naturally after cessation of disturbance. Surprisingly, secondary succession in these strongly seasonal

  15. Phytophthora pseudopolonica sp. nov., a new species recovered from stream water in subtropical forests of China.

    Science.gov (United States)

    Li, Wen-Wen; Zhao, Wen-Xia; Huai, Wen-Xia

    2017-09-01

    A new species of the genus Phytophthora was isolated from stream water in the subtropical forests of China during a survey of forest Phytophthora from 2011 to 2013. This new species is formally described here and named Phytophthora pseudopolonica sp. nov. This new homothallic species is distinct from other known Phytophthora species in morphology and produces nonpapillate and noncaducous sporangia with internal proliferation. Spherical hyphal swellings and thin-walled chlamydospores are abundant when the species is kept in sterile water. The P. pseudopolonica sp. nov. forms smooth oogonia with paragynous and sometimes amphigynous antheridia. The optimum growth temperature of the species is 30 °C in V8-juice agar with β-sitosterol, yet it barely grows at 5 °C and 35 °C. Based on sequences of the internal transcribed spacer and the combined β-tubulin and elongation factor 1α gene sequence data, isolates of the new species cluster together into a single branch and are close to Phytophthora polonicabelonging to clade 9.

  16. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    Science.gov (United States)

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem.

  17. 76 FR 71342 - Proposed CERCLA Administrative Cost Recovery Settlement; River Forest Dry Cleaners Site, River...

    Science.gov (United States)

    2011-11-17

    ... Settlement; River Forest Dry Cleaners Site, River Forest, Cook County, IL AGENCY: Environmental Protection... response costs concerning the River Forest Dry Cleaners site in River Forest, Cook County, Illinois with... code: C-14J, Chicago, Illinois 60604. Comments should reference the River Forest Dry Cleaners Site...

  18. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  19. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  20. Contrasting regeneration strategies in climax and long-lived pioneer tree species in a subtropical forest.

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    Full Text Available 1: This study investigated 15 coexisting dominant species in a humid subtropical evergreen broad-leaved forest in southwest China, consisting of long-lived pioneers and climax species occurring in natural and disturbed regimes. The authors hypothesized that there would be non-tradeoff scaling relationships between sprouting and seed size among species, with the aim of uncovering the ecological relationship between plant sprouting and seed characteristics in the two functional groups. 2: The sprouting variations of the species were initially examined using pairwise comparisons between natural and disturbed habitats within and across species and were noted to show a continuum in persistence niches across the forest dominants, which may underlie the maintenance of plant diversity. Second, a significantly positive, rather than tradeoff, relationship between sprout number and seed size across species within each of the two functional groups was observed, and an obvious elevational shift with a common slope among the two groups in their natural habitat was examined. The results indicate the following: 1 the relationship of seed size vs. sprouts in the natural habitat is more likely to be bet-hedging among species within a guild in a forest; 2 climax species tend to choose seeding rather than sprouting regeneration, and vice versa for the long-lived pioneers; and 3 the negative correlation between sprouting and seed dispersal under disturbed conditions may imply a tradeoff between dispersal and persistence in situ during the process of plant regeneration. 3: These findings may be of potential significance for urban greening using native species.

  1. Forest response to heat waves at the dry timberline

    Science.gov (United States)

    Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.

    2012-04-01

    Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.

  2. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  3. Gaseous elemental mercury (GEM fluxes over canopy of two typical subtropical forests in south China

    Directory of Open Access Journals (Sweden)

    Q. Yu

    2018-01-01

    Full Text Available Mercury (Hg exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM was used to continuously observe gaseous elemental mercury (GEM fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ and a moderately polluted site (Huitong, HT, near a large Hg mine in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m−2 h−1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT when compared with that in the mildly polluted site (QYZ may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration

  4. Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests?

    Science.gov (United States)

    Wei, Hui; Chen, Xiaomei; Xiao, Guoliang; Guenet, Bertrand; Vicca, Sara; Shen, Weijun

    2015-01-01

    Soil temperature and moisture are widely-recognized controlling factors on heterotrophic soil respiration (Rh), although they often explain only a portion of Rh variability. How other soil physicochemical and microbial properties may contribute to Rh variability has been less studied. We conducted field measurements on Rh half-monthly and associated soil properties monthly for two years in four subtropical forests of southern China to assess influences of carbon availability and microbial properties on Rh. Rh in coniferous forest was significantly lower than that in the other three broadleaf species-dominated forests and exhibited obvious seasonal variations in the four forests (P < 0.05). Temperature was the primary factor influencing the seasonal variability of Rh while moisture was not in these humid subtropical forests. The quantity and decomposability of dissolved organic carbon (DOC) were significantly important to Rh variations, but the effect of DOC content on Rh was confounded with temperature, as revealed by partial mantel test. Microbial biomass carbon (MBC) was significantly related to Rh variations across forests during the warm season (P = 0.043). Our results suggest that DOC and MBC may be important when predicting Rh under some conditions, and highlight the complexity by mutual effects of them with environmental factors on Rh variations. PMID:26670822

  5. An Old-Growth Definition for Dry and Dry-Mesic Oak-Pine Forests.

    Science.gov (United States)

    David L. White; F. Thomas. Lloyd

    1998-01-01

    Dry and dry-mesic oak-pine forests are widely distributed from New Jersey to Texas, but representative old-growth stands are rare. Historical accounts of composition, along with information from existing old-growth stands, were used to characterize this type. Shortleaf pine and white oak were the most widely distributed trees across all old-growth stands. Shortleaf was...

  6. Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India

    Directory of Open Access Journals (Sweden)

    Fenella Mary War Nongkhlaw

    2014-12-01

    Full Text Available The present study was aimed to investigate the endophytic and epiphytic bacteria associated with selected ethnomedicinal plants from the pristine subtropical forests of Meghalaya and analyse them for plant growth promotion and antagonistic ability. This study is an attempt to explore plant associated bacteria which are beneficial to host plants, and thus aid in the conservation of ethnomedicinal plants of the studied subtropical forests, which are dwindling due to exploitation. The plant growth promotion parameters like indole acetic acid (IAA production, mineral phosphate solubilisation, acid phosphatase activity, presence of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC gene, nitrogen fixation, cellulose digestion, chitin and pectin degradation were screened among the isolates. The study revealed significant differences in bacterial population not only between the epiphytic and endophytic microhabitats, but also amongst the host plants. Out of the 70 isolated plant associated bacteria, Bacillus sp., Serratia sp., Pseudomonas sp., Pantoea sp., and Lysinibacillus sp. showed potent plant growth promotion properties. Bacillus siamensis C53 and B. subtilis cenB showed significant antagonistic activity against the tested pathogens. This study indicated the isolates inhabiting the plants prevalent in the subtropical sacred forests could be explored for use as plant growth promoters while practising the cultivation and conservation of ethnomedicinal plants. Rev. Biol. Trop. 62 (4: 1295-1308. Epub 2014 December 01.

  7. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China.

    Directory of Open Access Journals (Sweden)

    Enqing Hou

    Full Text Available Nitrogen (N is considered the dominant limiting nutrient in temperate regions, while phosphorus (P limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based in foliage, litter (L layer and mixture of fermentation and humus (F/H layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16-20 for foliage, ca. 25 for forest floors. The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.

  8. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-ting; ZHU Wei-xing; MO Jiang-ming; ZHOU Guo-yi; GUNDERSEN Per

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions.Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching,and higher soil C/N ratios. Mineral soil extractable NH4+-N and NO3--N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4+-N in the mature forest. In contrast, inorganic N (both NH4+-N and NO3--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.

  9. Deforestation trends of tropical dry forests in central Brazil

    Science.gov (United States)

    Bianchi, Carlos A.; Haig, Susan M.

    2013-01-01

    Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.

  10. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  11. Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales.

    Science.gov (United States)

    Purschke, Oliver; Michalski, Stefan G; Bruelheide, Helge; Durka, Walter

    2017-12-01

    Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species- and individual-level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between-plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late-successional stages, there was high presence-/absence-based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.

  12. Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China

    Science.gov (United States)

    Zhou, Lei; Wang, Shaoqiang; Chi, Yonggang; Li, Qingkang; Huang, Kun; Yu, Quanzhou

    2015-12-01

    The mechanism underlying the effect of drought on the photosynthetic traits of leaves in forest ecosystems in subtropical regions is unclear. In this study, three limiting processes (stomatal, mesophyll and biochemical limitations) that control the photosynthetic capacity and three resource use efficiencies (intrinsic water use efficiency (iWUE), nitrogen use efficiency (NUE) and light use efficiency (LUE)), which were characterized as the interactions between photosynthesis and environmental resources, were estimated in two species (Schima superba and Pinus massoniana) under drought conditions. A quantitative limitation analysis demonstrated that the drought-induced limitation of photosynthesis in Schima superba was primarily due to stomatal limitation, whereas for Pinus massoniana, both stomatal and non-stomatal limitations generally exhibited similar magnitudes. Although the mesophyll limitation represented only 1% of the total limitation in Schima superba, it accounted for 24% of the total limitations for Pinus massoniana. Furthermore, a positive relationship between the LUE and NUE and a marginally negative relationship or trade-off between the NUE and iWUE were observed in the control plots. However, drought disrupted the relationships between the resource use efficiencies. Our findings may have important implications for reducing the uncertainties in model simulations and advancing the understanding of the interactions between ecosystem functions and climate change.

  13. Determinants of Tree Assemblage Composition at the Mesoscale within a Subtropical Eucalypt Forest

    Science.gov (United States)

    Hero, Jean-Marc; Butler, Sarah A.; Lollback, Gregory W.; Castley, James G.

    2014-01-01

    A variety of environmental processes, including topography, edaphic and disturbance factors can influence vegetation composition. The relative influence of these patterns has been known to vary with scale, however, few studies have focused on environmental drivers of composition at the mesoscale. This study examined the relative importance of topography, catchment flow and soil in influencing tree assemblages in Karawatha Forest Park; a South-East Queensland subtropical eucalypt forest embedded in an urban matrix that is part of the Terrestrial Ecosystem Research Network South-East Queensland Peri-urban SuperSite. Thirty-three LTER plots were surveyed at the mesoscale (909 ha), where all woody stems ≥1.3 m high rooted within plots were sampled. Vegetation was divided into three cohorts: small (≥1–10 cm DBH), intermediate (≥10–30 cm DBH), and large (≥30 cm DBH). Plot slope, aspect, elevation, catchment area and location and soil chemistry and structure were also measured. Ordinations and smooth surface modelling were used to determine drivers of vegetation assemblage in each cohort. Vegetation composition was highly variable among plots at the mesoscale (plots systematically placed at 500 m intervals). Elevation was strongly related to woody vegetation composition across all cohorts (R2: 0.69–0.75). Other topographic variables that explained a substantial amount of variation in composition were catchment area (R2: 0.43–0.45) and slope (R2: 0.23–0.61). Soil chemistry (R2: 0.09–0.75) was also associated with woody vegetation composition. While species composition differed substantially between cohorts, the environmental variables explaining composition did not. These results demonstrate the overriding importance of elevation and other topographic features in discriminating tree assemblage patterns irrespective of tree size. The importance of soil characteristics to tree assemblages was also influenced by topography, where ridge top sites were

  14. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    Science.gov (United States)

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests

  15. Carbon and water vapore balance in a primary subtropical evergreen forest in Southewest China under a changing climate

    Science.gov (United States)

    Song, Q. H.; Zhang, Y. P.

    2017-12-01

    The Ailaoshan Nature Reserve in Yunnan province, southwestern China hosts about 5000 ha of primary subtropical evergreen mountain cloud forest. A widespread and severe drought occurred in southwestern China in 2009 and 2010, providing a unique opportunity to directly evaluate how water use efficiency (WUE) changes with drought stress in the primary subtropical forest. We calculated WUE using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from 2.28 to 2.68 g C kg H2O-1. The multiyear average WUE was 2.48 ± 0.17 (mean ± standard deviation) g C kg H2O-1. WUE increased greatly in the driest year (2009), due to a larger decline in ET than in GPP. Unfortunately, the same study site experienced a particularly extreme climate anomaly during January 2015, with a heavy snow of up to 50 cm in depth, which led to severe forest damage. The forest canopy was severely damaged by the heavy snow, and the leaf area index (LAI) decreased significantly from January to July 2015. GPP, net ecosystem exchange (NEE), and Ecosystem respiration (Reco) all sharply decreased in 2015 after the heavy snow. On average, a strong decrease of 544 g C m-2 year-1 in annual NEE in 2015 was associated with a decrease of 829 g C m-2 year-1 in annual GPP and a decrease of 285 g C m-2 year-1 in annual Reco. Overall, annual net C uptake in 2015 was reduced by 76% compared to the mean C uptake of the previous four years. A sharp increase in carbon uptake was also observed in 2016, indicating that long-term, continuous measurements should be carried out to evaluate the overall response to the disturbance.

  16. Botanical and ecological basis for the resilience of Antillean dry forests

    Science.gov (United States)

    A.E. Lugo; E. Medina; J. Carlos Trejo Torres; E. Helmer

    2006-01-01

    Dry forest environments limit the number of species that can survive there. Antillean dry forests have low floristic diversity and stature, high density of small and medium-sized trees, and are among the least conserved of the tropical forests. Their canopies are smooth with no emergent trees and have high species dominance. Antillean dry forests occur mostly on...

  17. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers (OTCs) of ambient [CO2] (≈390μmol L−1) and elevated [CO2] environment (25%above ambient) during wet and dry seasons in 2011–2013 at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer (CF), integration of chemical and organic sources, and application of increased (25%higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  18. Impacts of increasing typhoons on the structure and function of a subtropical forest: reflections of a changing climate.

    Science.gov (United States)

    Lin, Kuo-Chuan; Hamburg, Steven P; Wang, Lixin; Duh, Chin-Tzer; Huang, Chu-Mei; Chang, Chung-Te; Lin, Teng-Chiu

    2017-07-07

    Due to their destructive and sporadic nature, it is often difficult to evaluate and predict the effects of typhoon on forest ecosystem patterns and processes. We used a 21-yr record of litterfall rates to explore the influence of typhoon frequency and intensity, along with other meteorological variables, on ecosystem dynamics in a subtropical rainforest. Over the past half century there has been an increasing frequency of strong typhoons (category 3; >49.6 m s -1 ; increase of 1.5 typhoons/decade) impacting the Fushan Experimental Forest, Taiwan. At Fushan strong typhoons drive total litterfall mass with an average of 1100 kg ha -1 litterfall typhoon -1 . While mean typhoon season litterfall has been observed to vary by an order of magnitude, mean litterfall rates associated with annual leaf senescence vary by typhoon frequency, total annual litter mass increased gradually over the 21-year record following three major typhoons in 1994. Monthly maximum wind speed was predictive of monthly litterfall, yet the influence of precipitation and temperature was only evident in non-typhoon affected months. The response of this subtropical forest to strong typhoons suggests that increasing typhoon frequency has already shifted ecosystem structure and function (declining carbon sequestration and forest stature).

  19. Seed ecology and regeneration in dry Afromontane forests of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Teketay, D. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Vegetation Ecology

    1996-12-31

    Various aspects of seed and regeneration ecology: germination requirements of seeds, seed longevity in the soil, soil seed banks in forests, gaps and arable land as well as density, survival and growth of seedlings were investigated within the dry Afromontane region in Ethiopia. In laboratory germination tests, 60% of the species studied exhibited some degree of initial dormancy and the optimum constant temperature for germination was between 20 and 25 deg C in the majority of the species. A few species showed a requirement for fluctuating temperatures and germination was suppressed or completely inhibited in several, mainly small-seeded, species when they were incubated in darkness or in light filtered through green leaves. Hard-seeded species required scarification treatments to improve germination, indicating seed-coat imposed dormancy. Dry storage reduced the germinability of seeds in a few species, suggesting a recalcitrant behaviour, while seeds of many species remained unaffected. During four years of storage in forest soils, seeds of 2 out of 8 species germinated in the soil almost completely within a year, 2 of the species maintained nearly full viability, while 4 were intermediate. The generally high levels of dormancy and somewhat extended viability of seeds in the soil may have been selected for under a climate of seasonal drought and unreliable rainfall that characterizes the dry Afromontane region. Dry Afromontane forests have a potential to recover in relatively short time after natural and man-made disturbances, e.g. after carefully managed selective cutting. However, the common practice of clearing forests and converting them into permanent arable land destroys the sources of regrowth thereby preventing regeneration of the forest vegetation. Therefore, the fate of dry Afromontane forests depends on the protection, careful management and conservation of the remaining patches. 102 refs, 4 figs, 1 tab

  20. Phosphorus addition mitigates N2O and CH4 emissions in N-saturated subtropical forest, SW China

    Directory of Open Access Journals (Sweden)

    L. Yu

    2017-06-01

    Full Text Available Chronically elevated nitrogen (N deposition has led to severe nutrient imbalance in forest soils. Particularly in tropical and subtropical forest ecosystems, increasing N loading has aggravated phosphorus (P limitation of biomass production, and has resulted in elevated emissions of nitrous oxide (N2O and reduced uptake of methane (CH4, both of which are important greenhouse gases. Yet, the interactions of N and P and their effects on greenhouse gas emissions remain elusive. Here, we report N2O and CH4 emissions together with soil N and P data for a period of 18 months following a single P addition (79 kg P ha−1, as NaH2PO4 powder to an N-saturated, Masson pine-dominated forest soil at TieShanPing (TSP, Chongqing, south-western (SW China. We observed a significant decline in both nitrate (NO3− concentrations in soil water (5 and 20 cm depths and in soil N2O emissions, following P application. We hypothesise that enhanced N uptake by plants in response to P addition, resulted in less available NO3− for denitrification. By contrast to most other forest ecosystems, TSP is a net source of CH4. P addition significantly decreased CH4 emissions and turned the soil from a net source into a net sink. Based on our observation and previous studies in South America and China, we believe that P addition relieves N inhibition of CH4 oxidation. Within the 1.5 years after P addition, no significant increase of forest growth was observed and P stimulation of forest N uptake by understorey vegetation remains to be confirmed. Our study indicates that P fertilisation of N-saturated, subtropical forest soils may mitigate N2O and CH4 emissions, in addition to alleviating nutrient imbalances and reducing losses of N through NO3− leaching.

  1. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests.

    Science.gov (United States)

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil

    2017-07-01

    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological

  2. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China

    Science.gov (United States)

    Tang, X.; Liu, S.; Zhou, G.; Zhang, Dongxiao; Zhou, C.

    2006-01-01

    The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean ?? SD) were 7.7 ?? 4.6MgCO2-Cha-1 yr-1, 3.2 ?? 1.2 kg N2ONha-1 yr-1, and 3.4 ?? 0.9 kgCH4-Cha-1 yr-1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17-44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer. ?? 2006 Blackwell Publishing Ltd.

  3. Anomalous, extreme weather disrupts obligate seed dispersal mutualism: snow in a subtropical forest ecosystem.

    Science.gov (United States)

    Zhou, Youbing; Newman, Chris; Chen, Jin; Xie, Zongqiang; Macdonald, David W

    2013-09-01

    Ongoing global climate change is predicted to increase the frequency and magnitude of extreme weather events, impacting population dynamics and community structure. There is, however, a critical lack of case studies considering how climatic perturbations affect biotic interactions. Here, we document how an obligate seed dispersal mutualism was disrupted by a temporally anomalous and meteorologically extreme interlude of unseasonably frigid weather, with accompanying snowstorms, in subtropical China, during January-February 2008. Based on the analysis of 5892 fecal samples (representing six mammalian seed dispersers), this event caused a substantial disruption to the relative seed dispersal function for the raisin tree Hovenia dulcis from prestorm 6.29 (2006) and 11.47 (2007), down to 0.35 during the storm (2008). Crucially, this was due to impacts on mammalian seed dispersers and not due to a paucity of fruit, where 4.63 fruit per branch were available in January 2008, vs. 3.73 in 2006 and 3.58 in 2007. An induced dietary shift occurred among omnivorous carnivores during this event, from the consumption fruit to small mammals and birds, reducing their role in seed dispersal substantially. Induced range shift extinguished the functionality of herbivorous mammals completely, however, seed dispersal function was compensated in part by three omnivorous carnivores during poststorm years, and thus while the mutualism remained intact it was enacted by a narrower assemblage of species, rendering the system more vulnerable to extrinsic perturbations. The storm's extended effects also had anthropogenic corollaries - migrating ungulates becoming exposed to heightened levels of illegal hunting - causing long-term modification to the seed dispersal community and mutualism dynamics. Furthermore, degraded forests proved especially vulnerable to the storm's effects. Considering increasing climate variability and anthropogenic disturbance, the impacts of such massive, aberrant

  4. Simulated dry deposition of nitric acid near forest edges

    NARCIS (Netherlands)

    DeJong, JJM; Klaassen, W; Jong, J.J.M. de

    1997-01-01

    Dry deposition is simulated to understand and generalize observations of enhanced deposition of air pollution near forest edges. Nitric acid is taken as an example as its deposition velocity is often assumed to be determined by turbulent transport only. The simulations are based on the

  5. Propagation of dry tropical forest trees in Mexico

    Science.gov (United States)

    Martha A. Cervantes Sanchez

    2002-01-01

    There is a distinct lack of technical information on the propagation of native tree species from the dry tropical forest ecosystem in Mexico. This ecosystem has come under heavy human pressures to obtain several products such as specialty woods for fuel, posts for fences and construction, forage, edible fruits, stakes for horticulture crops, and medicinal products. The...

  6. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    Science.gov (United States)

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  7. Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions

    Directory of Open Access Journals (Sweden)

    Tang, C. Q.

    2015-12-01

    Full Text Available This paper analyzes the geographic distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, and compares with other subtropical regions in the east of China in terms of forest types, pertinent species, and spatial distribution along latitudinal, longitudinal and altitudinal gradients. In general, for both the western and the eastern subtropical regions, the evergreen broad-leaved forests are dominated by species of Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia, and Michelia, (Magnoliaceae, while in southwestern China there are more diverse forest types including semi-humid, monsoon, mid-montane moist and humid evergreen broad-leaved forests, but only monsoon and humid forests in the east. The Yunnan area has more varied species of Lithocarpus or Cyclobalanopsis or Castanopsis as dominants than does eastern China, where the chief dominant genus is Castanopsis. The upper limits of the evergreen broad-leaved forests are mainly 2400–2800 m in western Yunnan and western Sichuan, much higher than in eastern China (600–1500, but 2500 m in Taiwan. Also discussed are the environmental effects on plant diversity of the evergreen broad-leaved forest ecosystems exemplified by Yunnan and Taiwan.En este trabajo se analiza los patrones de distribución geográfica de los bosques subtropicales perennifolios de hoja ancha del suroeste de china, y se comparan con los de otras regiones subtropicales del este de China en términos de tipología de bosque, especies relevantes, y distribución espacial a lo largo de un gradiente latitudinal, longitudinal y altitudinal. De manera general, los bosques perennifolios de hoja ancha de la regiones subtropicales tanto orientales como occidentales presentan dominancia de especies de Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia y Michelia

  8. Inorganic and organic nitrogen acquisition by a fern Dicranopteris dichotoma in a subtropical forest in South China.

    Directory of Open Access Journals (Sweden)

    Xingliang Xu

    Full Text Available The fern Dicranopteris dichotoma is an important pioneer species of the understory in Masson pine (Pinus massoniana forests growing on acidic soils in the subtropical and tropical China. To improve our understanding of the role of D. dichotoma in nitrogen (N uptake of these forests, a short-term (15N experiment was conducted at mountain ridge (MR, with low N level and mountain foot (MF, with high N level. We injected (15N tracers as (15NH4, (15NO3 or (15N-glycine into the soil surrounding each plant at both MR and MF sites. Three hours after tracer injection, the fern D. dichotoma took up 15NH4+ significantly faster at MF than at MR, but it showed significantly slower uptake of (15NO3- at MF than at MR. Consequently, (15NO3- made greater contribution to the total N uptake (50% to the total N uptake at MR than at MF, but (15N-glycine only contributed around 11% at both sites. Twenty-four hours after tracer injection, D. dichotoma preferred (15NH4+ (63% at MR, whereas it preferred (15NO3- (47% at MF. We concluded that the D. dichotoma responds distinctly in its uptake pattern for three available N species over temporal and spatial scales, but mainly relies on inorganic N species in the subtropical forest. This suggests that the fern employs different strategies to acquire available N which depends on N levels and time.

  9. Temporal dynamics and leaf trait variability in Neotropical dry forests

    Science.gov (United States)

    Hesketh, Michael Sean

    This thesis explores the variability of leaf traits resulting from changes in season, ecosystem successional stage, and site characteristics. In chapter two, I present a review of the use of remote sensing analysis for the evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn from studies on land cover characterization, biodiversity assessment, and evaluation of forest structural characteristics, that addressing temporal variability in spectral properties is an essential element in the monitoring of these ecosystems. Chapter three describes the effect of wet-dry seasonality on spectral classification of tree and liana species. Highly accurate classification (> 80%) was possible using data from either the wet or dry season. However, this accuracy decreased by a factor of ten when data from the wet season was classified using an algorithm trained on the dry, or vice versa. I also address the potential creation of a spectral taxonomy of species, but found that any clustering based on spectral properties resulted in markedly different arrangements in the wet and dry seasons. In chapter 4, I address the variation present in both physical and spectral leaf traits according to changes in forest successional stage at dry forest sites in Mexico and Costa Rica. I found significant differences in leaf traits between successional stages, but more strongly so in Costa Rica. This variability deceased the accuracy of spectral classification of tree species by a factor of four when classifying data using an algorithm trained on a different successional stage. Chapter 5 shows the influence of seasonality and succession on trait variability in Mexico. Differences in leaf traits between successional stages were found to be greater during the dry season, but were sufficient in both seasons to negatively influence spectral classification of tree species. Throughout this thesis, I show clear and unambiguous evidence of the variability of key physical and spectral

  10. Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests?

    Science.gov (United States)

    Wei, Hui; Chen, Xiaomei; Xiao, Guoliang; Guenet, Bertrand; Vicca, Sara; Shen, Weijun

    2015-12-16

    Soil temperature and moisture are widely-recognized controlling factors on heterotrophic soil respiration (Rh), although they often explain only a portion of Rh variability. How other soil physicochemical and microbial properties may contribute to Rh variability has been less studied. We conducted field measurements on Rh half-monthly and associated soil properties monthly for two years in four subtropical forests of southern China to assess influences of carbon availability and microbial properties on Rh. Rh in coniferous forest was significantly lower than that in the other three broadleaf species-dominated forests and exhibited obvious seasonal variations in the four forests (P forests. The quantity and decomposability of dissolved organic carbon (DOC) were significantly important to Rh variations, but the effect of DOC content on Rh was confounded with temperature, as revealed by partial mantel test. Microbial biomass carbon (MBC) was significantly related to Rh variations across forests during the warm season (P = 0.043). Our results suggest that DOC and MBC may be important when predicting Rh under some conditions, and highlight the complexity by mutual effects of them with environmental factors on Rh variations.

  11. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers(OTCs) of ambient [CO2](≈ 390 μmol L-1) and elevated [CO2] environment(25% above ambient) during wet and dry seasons in 2011–2013at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer(CF), integration of chemical and organic sources, and application of increased(25% higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  12. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers.

    Science.gov (United States)

    Malizia, Agustina; Easdale, Tomás A; Grau, H Ricardo

    2013-01-01

    Recent studies have shown directional changes in old-growth tropical forests, but changes are complex and diverse, and their drivers unclear. Here, we report rapid net structural and compositional changes in an old-growth subtropical forest and we assess the functional nature of these changes to test hypothetical drivers including recovery from past disturbances, reduction in ungulate browsing, CO2 fertilization, and increases in rainfall and temperature. The study relies on 15 years of demographic monitoring within 8 ha of subtropical montane forest in Argentina. Between 1992 and 2007, stem density markedly increased by 50% (12 stems ha(-1) y(-1)) and basal area by 6% (0.13 m(2) ha(-1) y(-1)). Increased stem density resulted from enhanced recruitment of understory treelets (Piper tucumanum, Eugenia uniflora, Allophylus edulis) into small size classes. Among 27 common tree species, net population growth was negatively correlated with maximum tree size and longevity, and positively correlated with leaf size and leaf nutrient content, especially so when initial population size was controlled for. Changes were inconsistent with predictions derived from past disturbances (no increase in shade-tolerant or long-lived late-succesional species), rainfall or temperature increase (no increase in evergreen or deciduous species, respectively). However, the increase in nutrient-rich soft-leaved species was consistent with exclusion of large herbivores two decades before monitoring started; and CO2 fertilization could help explain the disproportionate increase in small stems. Reductions in populations of large vertebrates have been observed in many otherwise undisturbed tropical forests, and our results suggest they can have important structural and functional repercussions in these forests.

  13. Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest.

    Science.gov (United States)

    He, Dong; Chen, Yongfa; Zhao, Kangning; Cornelissen, J H C; Chu, Chengjin

    2018-02-03

    How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species. In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA-habitat relationships were compared among these three groups. Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA-habitat association than high-variability species. For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the

  14. Quantifying Components of Soil Respiration and Their Response to Abiotic Factors in Two Typical Subtropical Forest Stands, Southwest China

    Science.gov (United States)

    Yu, Lei; Wang, Yujie; Wang, Yunqi; Sun, Suqi; Liu, Liziyuan

    2015-01-01

    Separating the components of soil respiration and understanding the roles of abiotic factors at a temporal scale among different forest types are critical issues in forest ecosystem carbon cycling. This study quantified the proportions of autotrophic (R A) and heterotrophic (R H) in total soil (R T) respiration using trenching and litter removal. Field studies were conducted in two typical subtropical forest stands (broadleaf and needle leaf mixed forest; bamboo forest) at Jinyun Mountain, near the Three Georges Reservoir in southwest China, during the growing season (Apr.–Sep.) from 2010 to 2012. The effects of air temperature (AT), soil temperature (ST) and soil moisture (SM) at 6cm depth, solar radiation (SR), pH on components of soil respiration were analyzed. Results show that: 1) SR, AT, and ST exhibited a similar temporal trend. The observed abiotic factors showed slight interannual variability for the two forest stands. 2) The contributions of R H and R A to R T for broadleaf and needle leaf mixed forest were 73.25% and 26.75%, respectively, while those for bamboo forest were 89.02% and 10.98%, respectively; soil respiration peaked from June to July. In both stands, CO2 released from the decomposition of soil organic matter (SOM), the strongest contributor to R T, accounted for over 63% of R H. 3) AT and ST were significantly positively correlated with R T and its components (psoil respiration. 4) Components of soil respiration were significantly different between two forest stands (psoil respiration and its components. PMID:25680112

  15. Epizoochory in dry forest iguanas: an overlooked seed dispersal mechanism?

    Directory of Open Access Journals (Sweden)

    Eloisa Lasso

    2015-01-01

    Full Text Available The role of animals as seed dispersal vectors is widely acknowledged, including dispersal by reptiles (saurochory. Most reports of saurochory have been via endozoochory, through feces deposition. We present the first evidence of epizoochory in Iguanas from a dry forest in Colombia via seeds attached to the snout. Our results show that seeds of a cactus Melocactus curvispinus ingested by iguana suffers from their passage through the digestive tract while seeds transported while attached to the snout germinate faster and in higher numbers. Our data suggest that we may have overlooked an alternative means of seed dispersal by lizards that does not comprise a passage through their digestive tract, and that deserves further attention for the understanding of dry forest ecology.

  16. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession.

    Science.gov (United States)

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.

  17. Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.

    Directory of Open Access Journals (Sweden)

    Nancai Pei

    Full Text Available Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

  18. Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season

    Directory of Open Access Journals (Sweden)

    Karina F. Hisatugo

    2014-01-01

    Full Text Available In aquatic ecosystems, bacteria are controlled by several organisms in the food chain, such as protozoa, that use them as food source. This study aimed to quantify the ingestion and clearance rates of bacteria by ciliates and heterotrophic nanoflagellates (HNF in a subtropical freshwater reservoir (Monjolinho reservoir -São Carlos -Brazil during one year period, in order to verify their importance as consumers and controllers of bacteria in two seasons, a dry/cold and a rainy/warm one. For this purpose, in situ bacterivory experiments were carried out bimonthly using fluorescently labeled bacteria with 5-(4,6 diclorotriazin-2yl aminofluorescein (DTAF. Although ciliates have shown the highest individual ingestion and clearance rates, bacterivory was dominated by HNF, who showed higher population ingestion rates (mean of 9,140 bacteria h-1mL-1 when compared to ciliates (mean of 492 bacteria h-1mL-1. The greater predation impact on bacterial communities was caused mainly by the small HNF (< 5 µm population, especially in the rainy season, probably due to the abundances of these organisms, the precipitation, trophic index state and water temperature that were higher in this period. Thus, the protozoan densities together with environmental variables were extremely relevant in determining the seasonal pattern of bacterivory in Monjolinho reservoir.

  19. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  20. High NDVI and Potential Canopy Photosynthesis of South American Subtropical Forests despite Seasonal Changes in Leaf Area Index and Air Temperature

    Directory of Open Access Journals (Sweden)

    Piedad M. Cristiano

    2014-02-01

    Full Text Available The canopy photosynthesis and carbon balance of the subtropical forests are not well studied compared to temperate and tropical forest ecosystems. The main objective of this study was to assess the seasonal dynamics of Normalized Difference Vegetation Index (NDVI and potential canopy photosynthesis in relation to seasonal changes in leaf area index (LAI, chlorophyll concentration, and air temperatures of NE Argentina subtropical forests throughout the year. We included in the analysis several tree plantations (Pinus, Eucalyptus and Araucaria species that are known to have high productivity. Field studies in native forests and tree plantations were conducted; stem growth rates, LAI and leaf chlorophyll concentration were measured. MODIS satellite-derived LAI (1 km SIN Grid and NDVI (250m SIN Grid from February 2000 to 2012 were used as a proxy of seasonal dynamics of potential photosynthetic activity at the stand level. The remote sensing LAI of the subtropical forests decreased every year from 6 to 5 during the cold season, similar to field LAI measurements, when temperatures were 10 °C lower than during the summer. The yearly maximum NDVI values were observed during a few months in autumn and spring (March through May and November, respectively because high and low air temperatures may have a small detrimental effect on photosynthetic activity during both the warm and the cold seasons. Leaf chlorophyll concentration was higher during the cold season than the warm season which may have a compensatory effect on the seasonal variation of the NDVI values. The NDVI of the subtropical forest stands remained high and fairly constant throughout the year (the intra-annual coefficient of variation was 1.9%, and were comparable to the values of high-yield tree plantations. These results suggest that the humid subtropical forests in NE Argentina potentially could maintain high canopy photosynthetic activity throughout the year and thus this ecosystem may

  1. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    Science.gov (United States)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  2. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes.

    Science.gov (United States)

    Reis, Carla Roberta Gonçalves; Nardoto, Gabriela Bielefeld; Rochelle, André Luis Casarin; Vieira, Simone Aparecida; Oliveira, Rafael Silva

    2017-03-01

    Mangroves exhibit low species richness compared to other tropical forests, but great structural and functional diversity. Aiming to contribute to a better understanding of the functioning of mangrove forests, we investigated nitrogen (N) dynamics in two physiographic types of mangroves (fringe and basin forests) in southeastern Brazil. Because fringe forests are under great influence of tidal flushing we hypothesized that these forests would exhibit higher N cycling rates in sediment and higher N losses to the atmosphere compared to basin forests. We quantified net N mineralization and nitrification rates in sediment and natural abundance of N stable isotopes (δ 15 N) in the sediment-plant-litter system. The fringe forest exhibited higher net N mineralization rates and δ 15 N in the sediment-plant-litter system, but net nitrification rates were similar to those of the basin forest. The results of the present study suggest that fringe forests exhibit higher N availability and N cycling in sediment compared to basin forests.

  3. [A comparative study on soil fauna in native secondary evergreen broad-leaved forest and Chinese fir plantation forests in subtropics].

    Science.gov (United States)

    Yan, Shaokui; Wang, Silong; Hu, Yalin; Gao, Hong; Zhang, Xiuyong

    2004-10-01

    In this study, we investigated the response of soil animal communities to the replacement of native secondary forest by Chinese fir plantation forest and successive rotation of Chinese fir in subtropics. Three adjacent forest stands, i.e., native secondary evergreen broad-leaved forest stand (control) and Chinese fir plantation stands of first (20 yr) and second (20 yr) rotations were selected for the comparison of soil fauna. All animals were extracted from the floor litter and 0-15 cm soil layer of the stands in Summer, 2003 by using Tullgren method, wet funnel method and hand-sorting method. Compared to two Chinese fir plantation forests, the native secondary evergreen broad-leaved forest had a higher abundance and a higher taxonomic diversity of animals in soil and litter, but there were no significant differences in the biomass and productivity of soil fauna between all study stands. The abundance or diversity did not differ significantly between the first rotation and second rotation stands, too. The results supported that vegetation cover might be one of the main forces driving the development of soil animal communities, and the effect of successive rotation of Chinese fir on the development of soil fauna was a slow-running process.

  4. Persistent Soil Seed Banks for Natural Rehabilitation of Dry Tropical Forests in Northern Ethiopia

    OpenAIRE

    Gebrehiwot, K.; Heyn, M.; Reubens, B.; Hermy, M.; Muys, B.

    2007-01-01

    Dry tropical forests are threatened world-wide by conversion to grazing land, secondary forest, savannah or arable land. In Ethiopia, natural dry forest cover has been decreasing at an alarming rate over the last decennia and has reached a critical level. Efforts like the rehabilitation of dry forests to curb this ecological degradation, need a stronger scientific basis than currently available. The aim of the present research was to test the hypothesis whether soil seed banks can contribute ...

  5. Radiation budget changes with dry forest clearing in temperate Argentina.

    Science.gov (United States)

    Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G

    2013-04-01

    Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.

  6. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    Science.gov (United States)

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  7. [Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region].

    Science.gov (United States)

    Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan

    2016-02-01

    The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (P<0.05). However, to air and soil moisture, Re and GEP had different responses, that was, GEP was more vulnerable by the decrease of the soil moisture compared with Re. Besides, the raising of saturation vapour pressure promoted the Re modestly but inhibited the GEP, which was supposed to be the main reason for NEP decrease of bamboo forest ecosystem in Anji, from July to August in 2013.

  8. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    OpenAIRE

    J. I. Nirmal Kumar,; Kanti Patel,; Rohit Bhoi Kumar

    2011-01-01

    Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (≥ 3.0 cm DBH); 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The fo...

  9. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    Directory of Open Access Journals (Sweden)

    Qinggang Wang

    Full Text Available The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1 the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2 The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3 Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47% of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4 We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66% than shrub species (18%. We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  10. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    Science.gov (United States)

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  11. Climatic Characteristics of the Subtropical Mountainous Cloud Forest at the Yuanyang Lake Long-Term Ecological Research Site, Taiwan

    Directory of Open Access Journals (Sweden)

    I-Ling Lai

    2006-12-01

    Full Text Available To better understand the climatic characteristics in a subtropical mountainous cloud forest at the Yuanyang Lake long-term ecological research site, weather data collected from January 1994 to December 2004 were analyzed in the present study. The obvious seasonal changes in climatic factors were observed at this site. The annual mean air temperature was 12.7°C. The lowest temperature was recorded in February (monthly mean 5.9°C, and the highest one was taken in July (monthly mean 18.1°C. Winter featured light rain with a prolonged occurrence of fog, resulting in a large reduction of radiation. In summer, fog occurred once in the early morning and the other time from afternoon to evening. The latter one was associated with the wind direction changes and usually accompanied with short moderate to heavy convective rain. Consequently the photosynthetic photon flux density (PPFD was high in the morning but reduced drastically in the afternoon. Typhoons occurred in the summer had contributed to 37% of the annual rainfall, usually resulting in torrential rain events and sharp increases in the water level of this lake. As a matter of fact, perhumid environment of this site was attributed to abundant rainfall (mean annual precipitation 3396 mm and high frequency (up to 40% of foggy time. Such conditions would reduce the intensity of solar radiation and PPFD. The average annual solar radiation at the site was 2475 MJ m-2, and annual PPFD was 5713 mol m-2. The average degree of reduction of PPFD under foggy condition was up to 88%. Such climatic characteristics are suggested to constrain the growth of plants and play an important role in competition among plant species in this cloud forest. It is considered that the distinct seasonal fluctuation in environmental factors, perhumid and dim light conditions are the most distinguished characteristics of this subtropical mountainous cloud forest ecosystem.

  12. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    Science.gov (United States)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  13. Spatial resolution of transport parameters in a subtropical karst conduit system during dry and wet seasons

    Science.gov (United States)

    Ender, Anna; Goeppert, Nadine; Goldscheider, Nico

    2018-04-01

    Karst aquifers are characterized by a high degree of hydrologic variability and spatial heterogeneity of transport parameters. Tracer tests allow the quantification of these parameters, but conventional point-to-point experiments fail to capture spatiotemporal variations of flow and transport. The goal of this study was to elucidate the spatial distribution of transport parameters in a karst conduit system at different flow conditions. Therefore, six tracer tests were conducted in an active and accessible cave system in Vietnam during dry and wet seasons. Injections and monitoring were done at five sites along the flow system: a swallow hole, two sites inside the cave, and two springs draining the system. Breakthrough curves (BTCs) were modeled with CXTFIT software using the one-dimensional advection-dispersion model and the two-region nonequilibrium model. In order to obtain transport parameters in the individual sections of the system, a multi-pulse injection approach was used, which was realized by using the BTCs from one section as input functions for the next section. Major findings include: (1) In the entire system, mean flow velocities increase from 183 to 1,043 m/h with increasing discharge, while (2) the proportion of immobile fluid regions decrease; (3) the lowest dispersivity was found at intermediate discharge; (4) in the individual cave sections, flow velocities decrease along the flow direction, related to decreasing gradients, while (5) dispersivity is highest in the middle section of the cave. The obtained results provide a valuable basis for the development of an adapted water management strategy for a projected water-supply system.

  14. Taboos and forest governance: informal protection of hot spot dry forest in southern Madagascar.

    Science.gov (United States)

    Tengö, Maria; Johansson, Kristin; Rakotondrasoa, Fanambinantsoa; Lundberg, Jakob; Andriamaherilala, Jean-Aimé; Rakotoarisoa, Jean-Aimé; Elmqvist, Thomas

    2007-12-01

    In the dry forest of southern Madagascar, a region of global conservation priority, formally protected areas are nearly totally absent. We illustrate how the continued existence of unique forest habitats in the Androy region is directly dependent on informal institutions, taboos, regulating human behavior. Qualitative interviews to map and analyze the social mechanisms underlying forest protection have been combined with vegetation analyses of species diversity and composition. Of 188 forest patches, 93% were classified as protected, and in Southern Androy all remaining forest patches larger than 5 ha were protected. Eight different types of forests, with a gradient of social fencing from open access to almost complete entry prohibitions, were identified. Transgressions were well enforced with strong sanctions of significant economic as well as religious importance. Analyses of species diversity between protected and unprotected forests were complicated because of size differences and access restrictions. However, since, for example, in southern Androy >90% of the total remaining forest cover is protected through taboos, these informal institutions represent an important, and presently the only, mechanism for conservation of the highly endemic forest species. We conclude that social aspects, such as local beliefs and legitimate sanctioning systems, need to be analyzed and incorporated along with biodiversity studies for successful conservation.

  15. Effects of reforestation on ammonia-oxidizing microbial community composition and abundance in subtropical acidic forest soils.

    Science.gov (United States)

    Wu, Ruo-Nan; Meng, Han; Wang, Yong-Feng; Gu, Ji-Dong

    2018-06-01

    Forest ecosystems have great ecological values in mitigation of climate change and protection of biodiversity of flora and fauna; re-forestry is commonly used to enhance the sequestration of atmospheric CO 2 into forest storage biomass. Therefore, seasonal and spatial dynamics of the major microbial players in nitrification, ammonia-oxidizing archaea (AOA) and bacteria (AOB), in acidic soils of young and matured revegetated forests were investigated to elucidate the changes of microbial communities during forest restoration, and compared to delineate the patterns of community shifts under the influences of environmental factors. AOA were more abundant than AOB in both young and matured revegetated forest soils in both summer and winter seasons. In summer, however, the abundance of amoA-AOA decreased remarkably (p < 0.01), ranging from 1.90 (± 0.07) × 10 8 copies per gram dry soil in matured forest to 5.04 (± 0.43) × 10 8 copies per gram dry soil in young forest, and amoA-AOB was below detection limits to obtain any meaningful values. Moreover, exchangeable Al 3+ and organic matter were found to regulate the physiologically functional nitrifiers, especially AOA abundance in acidic forest soils. AOB community in winter showed stronger correlation with the restoration status of revegetated forests and AOA community dominated by Nitrosotalea devanaterra, in contrast, was more sensitive to the seasonal and spatial variations of environmental factors. These results enrich the current knowledge of nitrification during re-forestry and provide valuable information to developmental status of revegetated forests for management through microbial analysis.

  16. Light Diffusion in the Tropical Dry Forest of Costa Rica

    Science.gov (United States)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  17. Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan

    Directory of Open Access Journals (Sweden)

    Azita Ahmad Zawawi

    2015-04-01

    Full Text Available Aim of study: To present an approach for estimating tree heights, stand density and crown patches using LiDAR data in a subtropical broad-leaved forest. Area of study: The study was conducted within the Yambaru subtropical evergreen broad-leaved forest, Okinawa main island, Japan. Materials and methods: A digital canopy height model (CHM was extracted from the LiDAR data for tree height estimation and a watershed segmentation method was applied for the individual crown delineation. Dominant tree canopy layers were estimated using multi-scale filtering and local maxima detection. The LiDAR estimation results were then compared to the ground inventory data and a high resolution orthophoto image for accuracy assessment. Main results: A Wilcoxon matched pair test suggests that LiDAR data is highly capable of estimating tree height in a subtropical forest (z = 4.0, p = 0.345, but has limitation to detect small understory trees and a single tree delineation. The results show that there is a statistically significant different type of crown detection from LiDAR data over forest inventory (z = 0, p = 0.043. We also found that LiDAR computation results underestimated the stand density and overestimated the crown size. Research highlights: Most studies involving crown detection and tree height estimation have focused on the analysis of plantations, boreal forests and temperate forests, and less was conducted on tropical and/or subtropical forests. Our study tested the capability of LiDAR as an effective application for analyzing a highly dense forest

  18. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution

    Directory of Open Access Journals (Sweden)

    Y. T. Fang

    2008-03-01

    Full Text Available The nitrogen (N emissions to the atmosphere and N deposition to forest ecosystems are increasing rapidly in Southeast Asia, but little is known about the fates and effects of elevated N deposition in forest ecosystems in this warm and humid region. Here we report the concentrations and fluxes of dissolved inorganic (DIN and organic N (DON in precipitation, throughfall, surface runoff and soil solution for three subtropical forests in a region of South China under high air pollution over two years (2004 and 2005, to investigate how deposited N is processed, and to examine the importance of DON in the N budget. The precipitation DIN input was 32–34 kg N ha−1 yr−1. An additional input of 18 kg N ha−1 yr−1 as DON was measured in 2005, which to our knowledge is the highest DON flux ever measured in precipitation. A canopy uptake of DIN was indicated in two young conifer dominated forests (72–85% of DIN input reached the floor in throughfall, whereas no uptake occurred in an old-growth broadleaf forest. The DON fluxes in throughfall were similar to that in precipitation in all forests. In the younger forests, DIN was further retained in the soil, with 41–63% of precipitation DIN leached below the 20-cm soil depth. Additionally, about half of the DON input was retained in these forests. The N retention in two young aggrading forests (21–28 kg N ha−1 yr−1 was in accordance with the estimates of N accumulation in biomass and litter accretion. In the old-growth forest, no N retention occurred, but rather a net loss of 8–16 kg N ha−1 yr−1 from the soil was estimated. In total up to 60 kg N ha−1 yr−1 was leached from the old-growth forest, indicating that this forest was completely N saturated and could not retain additional anthropogenic N inputs. We found that the majority of DIN deposition as well as of DIN leaching

  19. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Science.gov (United States)

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  20. Avian relationships with wildfire at two dry forest locations with different historical fire regimes

    Science.gov (United States)

    Quresh Latif; Jamie Sanderlin; Vicki Saab; William Block; Jonathan Dudley

    2016-01-01

    Wildfire is a key factor influencing bird community composition in western North American forests. We need to understand species and community responses to wildfire and how responses vary regionally to effectively manage dry conifer forests for maintaining biodiversity. We compared avian relationships with wildfire burn severity between two dry forest...

  1. Pan tropical biomass equations for Mexico's dry forests

    Directory of Open Access Journals (Sweden)

    José Návar

    2014-12-01

    Full Text Available This study reports a set of robust regional M-tree allometric equations for Mexico's tropical dry forests and their application to a forest inventory dataset for the States of Durango and Sinaloa, Mexico. Calculated M data from 15 reported equations were fitted, applied and validated for regional and global models. Proposed theoretical models, empirically derived equations, as well as global and local reported equations were fitted and applied to calculated M-tree data using wood specific gravity, diameter at breast height, and top height as exogenous variables. Empirically-derived, computer-based equations assessed the M-tree evaluations slightly better than the theoretical, the global and the local models. However, the theoretical models projected compatible M-tree values and deserve further attention once wood specific gravity data are collected in the field. Using the best fit equation, mean M plot density values of 30, 41 and 35 Mg ha-1 were estimated from 57 plots (1,600 m² each, 217 plots (1,000 m² each and 166 plots (1,000 m² each in the tropical dry forests of the States of Durango, Tiniaquis and Vado Hondo (Sinaloa, respectively. The large sample size, the richness of the tested allometric models, the economic and ecological importance of this data-source, and the spatial coverage of these equations made this dataset uniquely useful for biomass, charcoal, and other bio-energy estimations, as well as for understanding the inherent heterogeneity of the stand-structure in dynamic tropical forest environments.

  2. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.

    Science.gov (United States)

    Song, Liang; Liu, Wen-Yao; Ma, Wen-Zhang; Qi, Jin-Hua

    2012-11-01

    A field manipulation experiment was conducted in a subtropical montane cloud forest in southwestern China to determine the possible responses of epiphytic bryophytes to increasing nitrogen (N) deposition from community to physiology level, and to find sensitive epiphytic bryophytes that may be used as indicators for assessing the degree of N pollution. N addition had significantly negative effects on species richness and cover of the epiphytic bryophyte community. Harmful effects of high N loads were recorded for chlorophyll, growth, and vitality of the species tested. The decline of some epiphytic bryophytes may result from detrimental effects on degradation to photosynthetic pigments. Bazzania himalayana (Mitt.) Schiffn., Bazzania ovistipula (Steph.) Mizut., and Homaliodendron flabellatum (Sm.) Fleisch. are candidates in atmospheric nitrogen monitoring. Epiphytic bryophytes in the montane cloud forest are very sensitive to increasing N deposition and often difficult to recover once they have been destroyed, providing early detection of enhanced N pollution for trees or even the whole forest ecosystem. The inference that increasing N pollution may lead to loss of biodiversity is a concern to the developing economy in western China, and should alert the government to the adverse impacts caused by increased industrial pollution during the process of China's West Development.

  3. Tree species traits but not diversity mitigate stem breakage in a subtropical forest following a rare and extreme ice storm.

    Directory of Open Access Journals (Sweden)

    Karin Nadrowski

    Full Text Available Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level.

  4. Indirect approach for estimation of forest degradation in non-intact dry forest

    DEFF Research Database (Denmark)

    Dons, Klaus; Bhattarai, Sushma; Meilby, Henrik

    2016-01-01

    Background Implementation of REDD+ requires measurement and monitoring of carbon emissions from forest degradation in developing countries. Dry forests cover about 40 % of the total tropical forest area, are home to large populations, and hence often display high disturbance levels....... They are susceptible to gradual but persistent degradation and monitoring needs to be low cost due to the low potential benefit from carbon accumulation per unit area. Indirect remote sensing approaches may provide estimates of subsistence wood extraction, but sampling of biomass loss produces zero-inflated continuous...... data that challenges conventional statistical approaches. We introduce the use of Tweedie Compound Poisson distributions from the exponential dispersion family with Generalized Linear Models (CPGLM) to predict biomass loss as a function of distance to nearest settlement in two forest areas in Tanzania...

  5. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    Science.gov (United States)

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bushy-tailed woodrat abundance in dry forests of eastern Washington.

    Science.gov (United States)

    John F. Lehmkuhl; Keith D. Kistler; James S. Begley

    2006-01-01

    We studied bushy-tailed woodrats (Neotonza cinerea occidentalis) in the eastern Washington Cascade Range to estimate their density and survival in 3 typical dry forest cover types. We predicted woodrat density to be high, moderate, and low in mature mixed-conifer forests, young mixed-conifer forests, and open ponderosa pine forests, respectively....

  7. Soil fauna and leaf species, but not species diversity, affect initial soil erosion in a subtropical forest plantation

    Science.gov (United States)

    Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas

    2017-04-01

    In subtropical parts of China, high rainfall intensities cause continuous soil losses and thereby provoke severe harms to ecosystems. In woodlands, it is not the tree canopy, but mostly an intact forest floor that provides protection from soil erosion. Although the protective role of leaf litter covers against soil losses is known for a long time, little research has been conducted on the processes involved. For instance, the role of different leaf species and leaf species diversity has been widely disregarded. Furthermore, the impact of soil meso- and macrofauna within the litter layer on soil losses remains unclear. To investigate how leaf litter species and diversity as well as soil meso- and macrofauna affect sediment discharge in a subtropical forest ecosystem, a field experiment was carried out in Xingangshan, Jiangxi Province, PR China (BEF China). A full-factorial random design with 96 micro-scale runoff plots and seven domestic leaf species in three diversity levels and a bare ground feature were established. Erosion was initiated with a rainfall simulator. This study confirms that leaf litter cover generally protects forest soils from water erosion (-82 % sediment discharge on leaf covered plots compared to bare plots) and this protection is gradually removed as the litter layer decomposes. Different leaf species showed variable impacts on sediment discharge and thus erosion control. This effect can be related to different leaf habitus, leaf decomposition rates and food preferences of litter decomposing meso- and macrofauna. In our experiment, runoff plots with leaf litter from Machilus thunbergii in monoculture showed the highest sediment discharge (68.0 g m-2), whereas plots with Cyclobalanopsis glauca in monoculture showed the smallest rates (7.9 g m-2). At the same time, neither leaf species diversity, nor functional diversity showed any significant influence, only a negative trend could be observed. Nevertheless, the protective effect of the leaf

  8. ALOS PALSAR Applications in the Tropics and Subtropics: Characterisation, Mapping and Detecting Change in Forests and Coastal Wetlands

    Science.gov (United States)

    Lucas, Richard; Carreiras, Joao; Proisy, Christophe; Buniting, Peter

    2008-11-01

    Research undertaken as part of the Japanese Space Exploration Agency (JAXA) Principal Investigator (PI) and Kyoto and Carbon (K&C) programs has focused on the regional characterization (growth stage as a function of biomass and structure) and mapping of forests across northern Australia and mangroves (including wetlands) in selected tropical regions (northern Australia, Belize, French Guiana and Brazil) using Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) data, either singularly or in conjunction with other remote sensing (e.g., optical) data. Comparison against existing baseline datasets has allowed these data to be used for detecting change in these tropical and subtropical regions. Regional products (e.g., forest growth stage, mangrove/wetland extent and change) generated from the K&C dual polarimetric strip data are anticipated to benefit conservation of these ecosystems and allow better assessments of carbon stocks and changes in these as a function of natural and anthropogenic drivers, thereby supporting key international conventions.

  9. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China.

    Science.gov (United States)

    Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.

  10. A study of the dry forest communities in the Dominican Republic

    Directory of Open Access Journals (Sweden)

    Antonio García-Fuentes

    2015-03-01

    Full Text Available This paper is a floristic and phytosociological study of the dry forest communities of the Dominican Republic. A total of 69 relevés in dry forest biotopes were carried out. The samples were subsequently subjected to Detrended Correspondence Analysis for the determination and study of possible groupings. The study does not cover tree formations growing on serpentines, nor the so-called semideciduous forests, peculiar to areas with higher rainfall. A total of nine phytocoenoses were identified. The most significant results led to the description of six new phytosociological associations: Simaroubetum berteroani(thorny dry forest on coastal dunes, Phyllostylo rhamnoidis-Prosopidetum juliflorae (southern Dominican disturbed dry forest, Consoleo moniliformis-Camerarietum linearifoliae(dry forest on hard limestones, Lemaireocereo hystricis-Prosopidetum juliflorae(northern Dominican disturbed dry forest, Lycio americani-Prosopidetum juliflorae (disturbed dry forest on saline soils and Guettardo ellipticae-Guapiretum discoloris (dry forest on flat-topped hillocks in Montecristi. This is an important step forward in the phytosociological and floristic studies of the Caribbean territories.

  11. A study of the dry forest communities in the Dominican Republic.

    Science.gov (United States)

    García-Fuentes, Antonio; Torres-Cordero, Juan A; Ruiz-Valenzuela, Luis; Lendínez-Barriga, María Lucía; Quesada-Rincón, Juan; Valle-Tendero, Francisco; Veloz, Alberto; León, Yolanda M; Salazar-Mendías, Carlos

    2015-03-01

    This paper is a floristic and phytosociological study of the dry forest communities of the Dominican Republic. A total of 69 relevés in dry forest biotopes were carried out. The samples were subsequently subjected to Detrended Correspondence Analysis for the determination and study of possible groupings. The study does not cover tree formations growing on serpentines, nor the so-called semideciduous forests, peculiar to areas with higher rainfall. A total of nine phytocoenoses were identified. The most significant results led to the description of six new phytosociological associations: Simaroubetum berteroani (thorny dry forest on coastal dunes), Phyllostylo rhamnoidis-Prosopidetum juliflorae (southern Dominican disturbed dry forest), Consoleo moniliformis-Camerarietum linearifoliae (dry forest on hard limestones), Lemaireocereo hystricis-Prosopidetum juliflorae (northern Dominican disturbed dry forest), Lycio americani-Prosopidetum juliflorae (disturbed dry forest on saline soils) and Guettardo ellipticae-Guapiretum discoloris (dry forest on flat-topped hillocks in Montecristi). This is an important step forward in the phytosociological and floristic studies of the Caribbean territories.

  12. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  13. Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-03-01

    Full Text Available Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE, and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and

  14. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  15. Recovery of Biomass Following Shifting Cultivation in Dry Tropical Forests of the Yucatan

    OpenAIRE

    Read, L; Lawrence, Deborah; Foster, David Russell

    2003-01-01

    Land-use change in the tropics is creating secondary forest at an unprecedented rate. In the tropical Americas, mature dry tropical forest is rapidly being converted to secondary forest during the fallow period of shifting cultivation. This study addresses changes in forest biomass during forest recovery following shifting cultivation of maize (corn) in the Southern Yucatan Peninsular Region (SYPR), Mexico. We sampled stems .1 cm diameter at breast height at 36 study sites in t...

  16. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    Science.gov (United States)

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field

  17. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Science.gov (United States)

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  18. Breeding birds in riparian and upland dry forests of the Cascade Range

    Science.gov (United States)

    John F. Lehmkuhl; E. Dorsey Burger; Emily K. Drew; John P. Lindsey; Maryellen Haggard; Kent Z. Woodruff

    2007-01-01

    We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along six third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland mesic forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii...

  19. Restoring dry and moist forests of the inland northwestern United States [Chapter 23

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham

    2015-01-01

    The complex topography of the Inland Northwestern United States (58.4 million ha) interacts with soils and a highly variable climate to provide a mosaic of dry and moist mixed conifer forest settings. Approximately 20% of the area is covered by dry forests dominated by Pinus ponderosa, Pseudotsuga menziesii and contains a diversity of lower vegetation ranging from a...

  20. Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme

    Science.gov (United States)

    Susan Cordell; Moana McClellan; Yvonne Yarber Carter; Lisa J. Hadway

    2008-01-01

    Hawaiian tropical dry forests contain diverse assemblages of woody canopy species, including many endemic and endangered species that warrant conservation attention before completely disappearing. Today, tropical dry forests in Hawaii are not viable ecosystems. Poor land use practices, fragmentation, non-native plant invasions, and inadequate native vegetation...

  1. Quantifying Rainfall Interception Loss of a Subtropical Broadleaved Forest in Central Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen

    2016-01-01

    Full Text Available The factors controlling seasonal rainfall interception loss are investigated by using a double-mass curve analysis, based on direct measurements of high-temporal resolution gross rainfall, throughfall and stemflow from 43 rainfall events that occurred in central Taiwan from April 2008 to April 2009. The canopy water storage capacity for the wet season was estimated to be 1.86 mm, about twice that for the dry season (0.91 mm, likely due to the large reduction in the leaf area index (LAI from 4.63 to 2.23 (m2·m−2. Changes in seasonal canopy structure and micro-meteorological conditions resulted in temporal variations in the amount of interception components, and rainfall partitioning into stemflow and throughfall. Wet canopy evaporation after rainfall contributed 41.8% of the wet season interception loss, but only 17.1% of the dry season interception loss. Wet canopy evaporation during rainfall accounted for 82.9% of the dry season interception loss, but only 58.2% of the wet season interception loss. Throughfall accounted for over 79.7% of the dry season precipitation and 76.1% of the wet season precipitation, possibly due to the change in gap fraction from 64.2% in the dry season to 50.0% in the wet season. The reduced canopy cover in the dry season also produced less stemflow than that of the wet season. The rainfall stemflow ratio ( P s f / P g was reduced from 12.6% to 8.9%. Despite relatively large changes in canopy structure, seasonal variation of the ratio of rainfall partitioned to interception was quite small. Rainfall interception loss accounted for nearly 12% of gross precipitation for both dry and wet seasons.

  2. Ammonia-Oxidizing Archaea Are More Resistant Than Denitrifiers to Seasonal Precipitation Changes in an Acidic Subtropical Forest Soil

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-07-01

    Full Text Available Seasonal precipitation changes are increasingly severe in subtropical areas. However, the responses of soil nitrogen (N cycle and its associated functional microorganisms to such precipitation changes remain unclear. In this study, two projected precipitation patterns were manipulated: intensifying the dry-season drought (DD and extending the dry-season duration (ED but increasing the wet-season storms following the DD and ED treatment period. The effects of these two contrasting precipitation patterns on soil net N transformation rates and functional gene abundances were quantitatively assessed through a resistance index. Results showed that the resistance index of functional microbial abundance (-0.03 ± 0.08 was much lower than that of the net N transformation rate (0.55 ± 0.02 throughout the experiment, indicating that microbial abundance was more responsive to precipitation changes compared with the N transformation rate. Spring drought under the ED treatment significantly increased the abundances of both nitrifying (amoA and denitrifying genes (nirK, nirS, and nosZ, while changes in these gene abundances overlapped largely with control treatment during droughts in the dry season. Interestingly, the resistance index of the ammonia-oxidizing archaea (AOA amoA abundance was significantly higher than that of the denitrifying gene abundances, suggesting that AOA were more resistant to the precipitation changes. This was attributed to the stronger environmental adaptability and higher resource utilization efficiency of the AOA community, as indicated by the lack of correlations between AOA gene abundance and environmental factors [i.e., soil water content, ammonium (NH4+ and dissolved organic carbon concentrations] during the experiment.

  3. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    Science.gov (United States)

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  4. Vegetation description and phytoclimatic gradients of subtropical forests of nandiar khuwar catchment district battagram

    International Nuclear Information System (INIS)

    Haq, F.; Iqbal, Z.; Ahmad, H.

    2015-01-01

    This paper communicates an analytical exploration of the vegetational profile in the subtropical zone of Nandiar Khuwar catchment area, District Battagrtam, Pakistan. On the basis of physiognomy of vegetation the study area was divided into 16 stands. Six plant communities were recognized by TWINSPAN classification. Among biological spectrum nanophanerophytes was dominated with 36 species and leaf size spectra were dominated by microphyll contributing 63 species. Similarity index was maximum (33.61) between Pinus, Micromeria, Rubus community and Pinus, Rubus, Cynodon community. In Bray-Curtis ordination the maximum ordination scores were recorded for axis 2 (0.921). The gradient length was maximum (3.35) for axis 1 with eigenvalue 0.50. Total variance (inertia) in the species data were 2.92, explanatory variables account for 100%. Among environmental variables the maximum positive strength were recorded for altitude (0.818) and Phosphorous (0.801) while maximum negative strength were recorded for wind speed (-0.864), barometric pressure (-0.825) and temperature (-0.820). (author)

  5. Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data

    CSIR Research Space (South Africa)

    Cho, Moses A

    2013-10-01

    Full Text Available the utility of new remote sensing tools to model the spatial distribution of leaf N concentration in a forested landscape undergoing deforestation in KwaZulu-Natal, South Africa. Leaf N was mapped using models developed from RapidEye imagery; a relatively new...

  6. Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico

    Science.gov (United States)

    Aaron B. Shiels; Jess K. Zimmerman; Diana C. García-Montiel; Inge Jonckheere; Jennifer Holm; David Horton; Nicholas. Brokaw

    2010-01-01

    1. We simulated two key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on woody plant recruitment and forest structure. 2. We increased canopy openness by trimming branches and added or subtracted canopy detritus in a factorial design. Plant responses were...

  7. N isotopes and N cycle in the TieShanPing subtropical forest ecosystem, Southwestern China.

    Science.gov (United States)

    Jiang, Chun-lai; Zhang, Xiao-Shan

    2009-07-01

    Nitrogen is essential for forest growth and forest stand development. It is commonly a limited factor for forest productivity. We examined delta (15)N values in soils and plants by studying the sources of N used by vegetation and cycles of N in a 43-year-old plantation of the TieShanPing forest ecosystem in southwestern China, dominated by massone pine (Pinus massoniana). The N concentration of plant materials ranges from 1.1% to 2.2%. The nitrogen concentration of P. massoniana was 1.3% while soils showed the concentration of 0.04-0.15%. Regarding natural abundance of (15)N, large significant variation (-6.0 per thousand to -3.8 per thousand) in delta (15)N values was observed among shrub and tree leaves. delta (15)N values were also significantly varied from -4.7 per thousand to -3.8 per thousand among the pioneer species in the plantation. Soil delta (15)N values (3.1-6.3 per thousand) were significantly enriched compared to those values in plant samples. Despite the negative delta (15)N values of the vegetation cover, the high delta (15)N values in the topsoil indicate that return of N to soils by litter-fall is minimal on TieShanPing and the present forests do not change very much the soil (15)N signals at the surface layer. The positive delta (15)N values may also indicate large N losses from the soil system vial leaching, volatilization and plant uptake.

  8. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  9. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    Science.gov (United States)

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  10. Plant Trait Dataset for Tree-Like Growth Forms Species of the Subtropical Atlantic Rain Forest in Brazil

    Directory of Open Access Journals (Sweden)

    Arthur Vinicius Rodrigues

    2018-05-01

    Full Text Available Plant functional traits have been incorporated in studies of vegetation ecology to better understand the mechanisms of ecological processes. For this reason, a global effort has been made to collect functional traits data for as many species as possible. In light of this, we identified the most common species of an area of 15,335 km2 inserted in the subtropical Atlantic Rain Forest in Southern Brazil. Then, we compiled functional trait information mostly from field samples, but also from herbarium and literature. The dataset presents traits of leaf, branch, maximum potential height, seed mass, and dispersion syndrome of 117 species, including trees, tree ferns, and palms. We also share images of anatomical features of branches used to measure wood traits. Data tables present mean trait values at individual and species level. Images of wood and stomatal features may be useful to assess other anatomical traits that were not covered in the data tables for the anatomical determination of species and/or for educational purposes.

  11. Measuring species diversity in a subtropical forest across a tree size gradient: a comparison of diversity indices

    International Nuclear Information System (INIS)

    Ke, X.; Su, Z.; Hu, Y.; Zhou, Y.; Xu, M.

    2017-01-01

    Shannon-Wiener index and Simpson's diversity index together with other metrics, e.g., richness, number of stems per species or species-specific density (N: S ratio), and kurtosis, were applied to characterize the woody plant diversity patterns of a subtropical broadleaved forest in south China. The aims of our study were to compare the efficacy and sensitivity to community diversity measures between Shannon-Wiener index and Simpson's diversity index. Tree census data from a 5-ha sample plot was partitioned into 3 datasets by diameter class to represent 3 distinct woody plant communities for the characterization of diversity across communities. The 5-ha sample plot of the forest had a total abundance of 23,301 tree stems = 1 cm DBH and a richness of 139 species. The majority of tree stems were seedlings (41.1%) and saplings (38.8%), whereas canopy trees only accounted for 20.1% of the total tree stems. Both Shannon-Wiener index and Simpson's diversity index decreased significantly in response to a decrease in the N: S ratio across the datasets, but Shannon-Wiener index was more sensitive to plot-based richness changes and had a higher efficacy in predicting changes in species richness. Our findings are contrary to the general belief that Shannon-Wiener index is an insensitive measure of the character of the N: S relationship and have demonstrated that it remains a good measure for species diversity in plant community studies for its sensitivity and efficacy. We also suggest that the kurtosis statistic can be used as a new diversity measure due to its sensitivity to diversity change. (author)

  12. Monitoring hymenoptera and diptera pollinators in a sub-tropical forest of southern punjab, pakistan

    International Nuclear Information System (INIS)

    Bashir, M.; Sajjad, A.

    2013-01-01

    Bees (Hymenoptera) and flies (Diptera) play an essential role in natural and agricultural ecosystems as pollinators of flowering plants while pollinators are declining around the world. Colored pan traps and Malaise traps have widely been used for monitoring pollinators. However, their efficiencies may vary with landscapes and type of fauna in a particular habitat. A yearlong study was carried out during 2009 to investigate the relative efficacy of colored pan traps and Malaise traps towards sampling flies and bees for the first time in a sub-tropical wildlife sanctuary Pirowal of Southern Punjab, Pakistan. Fifteen pan traps (5 each of 3 colors i.e. white, red and blue) were deployed against one Malaise trap for 7 hours (9:00-16:00 hrs) on fortnightly basis. For the comparison and confirmation of an insect as a floral visitor, collection with the hand net was also performed. It was concluded that hand net collection is essential to have a comprehensive list of floral visitors of an area as the maximum number (63) of species and their abundance (5428 individuals) were recorded with it. Malaise trap collected only 671 individuals of 48 species. Although blue, yellow and white pan traps caught 46, 51 and 35 species but the numbers of individuals (1383) were fairly higher than that of Malaise traps. Keeping in view the cost effectiveness and better performance of colored pan traps, we recommend species specific pan trap colors when targeting certain groups or species, nevertheless variety of pan colors should be used when sampling overall biodiversity. We generalize these findings for both bees and flies due to similar collection pattern i.e. the maximum abundance and diversity in hand net method followed by pan traps and Malaise traps. (author)

  13. Availability and immobilization of 137Cs in subtropical high mountain forest and grassland soils

    International Nuclear Information System (INIS)

    Chiu, C.-Y.; Wang, C.-J.; Huang, C.-C.

    2008-01-01

    To understand the behavior of 137 Cs in undisturbed soils after nuclear fallout deposition between the 1940s and 1980s, we investigated the speciation of 137 Cs in soils in forest and its adjacent grassland from a volcano and subalpine area in Taiwan. We performed sequential extraction of 137 Cs (i.e., fractions readily exchangeable, bound to microbial biomass, bound to Fe-Mn oxides, bound to organic matter, persistently bound and residual). For both the forest and grassland soils, 137 Cs was mainly present in the persistently bound (31-41%) and residual (22-62%) fractions. The proportions of 137 Cs labile fractions - bound to exchangeable sites, microbial biomass, Mn-Fe oxides, and organic matter - were lower than those of the recalcitrant fractions. The labile fractions in the forest soils were also higher than those in the grassland soils, especially in the volcanic soil. The results suggest that the labile form of 137 Cs was mostly transferred to the persistently bound and resistant fractions after long-term deposition of fallout. The readily exchangeable 137 Cs fraction was higher in soils with higher organic matter content or minor amounts of 2:1 silicate clay minerals

  14. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    Science.gov (United States)

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  15. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia

    Science.gov (United States)

    González-M, Roy; García, Hernando; Isaacs, Paola; Cuadros, Hermes; López-Camacho, René; Rodríguez, Nelly; Pérez, Karen; Mijares, Francisco; Castaño-Naranjo, Alejandro; Jurado, Rubén; Idárraga-Piedrahíta, Álvaro; Rojas, Alicia; Vergara, Hernando; Pizano, Camila

    2018-04-01

    Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands where there is a marked period of drought during the year. In the Neotropics, dry forests occur across contrasting biogeographical regions that contain high beta diversity and endemism, but also strong anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being ideal for studying how these variables relate to dry forest species composition, successional stage and conservation status. Here, we explore the variation in climate and soil conditions, floristic composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571 dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall seasonality, as high variation in precipitation and temperature were correlated with soil characteristics. In fact, based on environmental factors and floristic composition, the dry forests of Colombia are clustered in three distinctive groups, with high species turnover across and within regions, as reported for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF fragments were not only small in size, but highly irregular in shape in all regions, and comprising mostly early and intermediate successional stages, with very little mature forest left at the national level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle ranching and human infrastructure being the most pressing disturbances throughout the country. Thus, although environmental factors and floristic composition of dry forests vary across regions at the national level, dry forests are equally threatened by deforestation, degradation

  16. Phyllostomid bat occurrence in successional stages of neotropical dry forests.

    Directory of Open Access Journals (Sweden)

    Luis Daniel Avila-Cabadilla

    Full Text Available Tropical dry forests (TDFs are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration, in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance and assemblage level (species richness and composition, guild composition. We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1 the distinctive environmental conditions of each region, (2 the specific behavior and ecological requirements of the regional bat species, (3 the composition, structure and phenological patterns of plant assemblages in the different stages, and (4 the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable

  17. Phyllostomid Bat Occurrence in Successional Stages of Neotropical Dry Forests

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Stoner, Kathryn Elizabeth; Nassar, Jafet M.; Espírito-Santo, Mario M.; Alvarez-Añorve, Mariana Yolotl; Aranguren, Carla I.; Henry, Mickael; González-Carcacía, José A.; Dolabela Falcão, Luiz A.; Sanchez-Azofeifa, Gerardo Arturo

    2014-01-01

    Tropical dry forests (TDFs) are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration), in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late) in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance) and assemblage level (species richness and composition, guild composition). We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1) the distinctive environmental conditions of each region, (2) the specific behavior and ecological requirements of the regional bat species, (3) the composition, structure and phenological patterns of plant assemblages in the different stages, and (4) the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable tool for

  18. Broadcast seeding as a potential tool to reestablish native species in degraded dry forest ecosystems in Hawaii

    Science.gov (United States)

    S. Brooks; S. Cordell; L. Perry

    2009-01-01

    Hawaiian dry forests currently occupy a small fraction of their former range, and worldwide tropical dry forests are one of the most human-altered systems. Many small-scale projects have been successful in restoring native dry forests in abandoned pastures and degraded woodlands by outplanting after invasive species removal, but this is a costly approach. In this...

  19. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  20. Estimation of Throughfall and Stemflow Bacterial Flux in a Subtropical Oak-Cedar Forest

    Science.gov (United States)

    Bittar, Thais B.; Pound, Preston; Whitetree, Ansley; Moore, L. Dean; Van Stan, John T.

    2018-02-01

    Transport pathways of microbes between ecosystem spheres (atmosphere, phyllosphere, and pedosphere) represent major fluxes in nutrient cycles and have the potential to affect microbially mediated biogeochemical processes. Novel data on bacterial fluxes from the phyllosphere to the pedosphere during rainfall via throughfall (rain dripping from/through the canopy) and stemflow (rain funneled down tree stems) are reported. Bacterial concentrations were quantified using flow cytometry and validated with quantitative polymerase chain reaction assays in rainfall samples from an oak-cedar forest in coastal Georgia (southeastern U.S.). Bacteria concentrations (cells mL-1) and storm-normalized fluxes (cells m-2 h-1, cells m-2 mm-1) were greater for cedar versus oak. Total bacterial flux was 1.5 × 1016 cells ha-1 yr-1. These previously unexamined bacterial fluxes are interpreted in the context of major elemental pools and fluxes in forests and could represent inoculum-level sources of bacteria (if alive), and organic matter and inorganic solute inputs (if lysed) to soils.

  1. Neotropical dry forest wildlife water hole use and management

    Directory of Open Access Journals (Sweden)

    Christopher Vaughan

    1999-12-01

    Full Text Available Selected wildlife species diurnal use of a natural water hole (QD and an artificial water hole (AW were studied during 1990 dry season at Guanacaste Conservation Area, Costa Rica. In total, 919 individuals (six mammal and one game bird species consumed water from QD, while 713 individuals (four mammal species consumed water from AW. Estimated daily water consumption by selected wildlife species was 29.7 l at QD and 27.3 l at AW. Estimated 24-h water consumed by all wildlife species or evaporated was 44.6 l at QD and 41.1 l at AW. This resulted from summing: a water consumed by studied species, b estimated 24-hour water consumed by other wildlife (QD = 14.85 l, AW = 13.65 l and c daily water evaporation (QD = 0.04 l, AW = 0.10 l. During a 120-day dry season, AW required about 4 932 l of water from the park administration. Management implications for neotropical dry forest water holes are discussed.Se estudió el uso diurno de un ojo de agua natural (QD y otro artificial (AW a finales de la época seca de 1990 en el Area de Conservacion de Guanacaste, Costa Rica. En total 919 individuos (seis especies de mamíferos y una de ave cinegética consumieron agua de QD y 713 individuos (cuatro especies de mamíferos de AQ. Se estimó que en un dia, las especies de vida silvestre estudiados tomaron 29.7 l y 27.3 l de agua de QD y AW, respectivamente. El total de agua consumido o evaporado de cada ojo de agua durante 24-horas fue estimado en 44.6 l en QD y 41.1 l en AW, con base en: a agua bebida durante 12 h por las especies seleccionadas, b agua bebida por todos los otros individuos durante 24 h (QD = 14.85 l, AW = 13.65 l y c evaporación diaria (QD = 0.04 l, AW = 0.01 l. Para abastecer AW durante una epoca seca de 120 días, la administración del parque debe proveer 4 932 l de agua. Se discute las implicaciones de manejo en las regiones de bosque seco neotropical.

  2. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Science.gov (United States)

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Huang, Li-hua; Xiao, Yin-long; Chen, Gang; Hu, Hong-ling; Liu, Li; Zheng, Jiang-kun; Xu, Zhen-Feng; Chen, Liang-hua

    2013-01-01

    The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m) were 351.7 and 7752.8 kg ha(-1). Open field nitrogen deposition at the study site was 113.8 kg N ha(-1) yr(-1), which was one of the highest in the world. N-NH4(+), N-NO3(-) and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(-) and DON but not N-NH4(+). The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1) yr(-1), due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  3. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  4. Can lowland dry forests represent a refuge from avian malaria for native Hawaiian birds?

    Science.gov (United States)

    Tucker-Mohl, Katherine; Hart, Patrick; Atkinson, Carter T.

    2010-01-01

    Hawaii's native birds have become increasingly threatened over the past century. Introduced mosquito borne diseases such as avian malaria may be responsible for the near absence of endemic Hawaiian forest birds in low-elevation habitats. The recent recognition that some native Hawaiian forest birds may be repopulating moist lowland habitats as a result of evolved resistance to this disease has increased the conservation value of these areas. Here, we investigate whether remnant low elevation dry forests on Hawaii Island provide natural 'refuges' from mosquito-transmitted malaria by nature of their low rainfall and absence of suitable natural sources of water for mosquito breeding. Unlike lowland wet forests where high rates of disease transmission may be selecting for disease resistance, lowland dry forests may provide some refuge for native forest birds without natural resistance to malaria. We mistnetted forest birds in two lowland dry forests and tested all native birds by microscopy and serology for avian malaria caused by the Plasmodium relictum parasite. We also conducted surveys for standing water and mosquito larvae. Overall prevalence of infections with Plasmodium relictum in the Hawaii Amakihi Hemignathus virens virens was 15%. Most infected birds had lowlevel parasitemias, suggesting chronic infections. Although avian malaria is present in these lowland dry forest Amakihi populations, infection rates are significantly lower than in wet forest populations at similar elevations. Sources of breeding mosquitoes in these forests appeared to be largely anthropogenic; thus, there is potential to manage dry forests as mosquito-free habitat for Hawaii Amakihi and other Hawaiian forest birds.

  5. Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models

    Science.gov (United States)

    Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.

    2017-12-01

    It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry

  6. Understanding isoprene photooxidation using observations and modeling over a subtropical forest in the southeastern US

    Directory of Open Access Journals (Sweden)

    L. Su

    2016-06-01

    Full Text Available The emission, dispersion, and photochemistry of isoprene (C5H8 and related chemical species in the convective boundary layer (CBL during sunlit daytime were studied over a mixed forest in the southeastern United States by combining ground-based and aircraft observations. Fluxes of isoprene and monoterpenes were quantified at the top of the forest canopy using a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS. Snapshot (∼  2 min sampling duration vertical profiles of isoprene, methyl vinyl ketone (MVK + methacrolein (MACR, and monoterpenes were collected from aircraft every hour in the CBL (100–1000 m. Both ground-based and airborne collected volatile organic compound (VOC data are used to constrain the initial conditions of a mixed-layer chemistry model (MXLCH, which is applied to examine the chemical evolution of the O3–NOx–HOx–VOC system and how it is affected by boundary layer dynamics in the CBL. The chemical loss rate of isoprene (∼  1 h is similar to the turbulent mixing timescale (0.1–0.5 h, which indicates that isoprene concentrations are equally dependent on both photooxidation and boundary layer dynamics. Analysis of a model-derived concentration budget suggests that diurnal evolution of isoprene inside the CBL is mainly controlled by surface emissions and chemical loss; the diurnal evolution of O3 is dominated by entrainment. The NO to HO2 ratio (NO : HO2 is used as an indicator of anthropogenic impact on the CBL chemical composition and spans a wide range (1–163. The fate of hydroxyl-substituted isoprene peroxyl radical (HOC5H8OO·; ISOPOO is strongly affected by NO : HO2, shifting from NO-dominant to NO–HO2-balanced conditions from early morning to noontime. This chemical regime change is reflected in the diurnal evolution of isoprene hydroxynitrates (ISOPN and isoprene hydroxy hydroperoxides (ISOPOOH.

  7. Floristic diversity and vegetation structure of the remnant subtropical broad leaved forests from Kabal valley, Swat, Pakistan

    International Nuclear Information System (INIS)

    Ilyas, M.; Qureshi, R.; Akhtar, N.

    2018-01-01

    Under the prevailing anthropogenic and deteriorating environmental conditions, subtropical broad leaved forests in Pakistan are vanishing at a rapid pace. Muslim communities living in rural areas pay great respect and sanctity to the graveyards and avoid interference with the natural vegetation in these sites. The relics of the natural climax plant communities can be seen in the Muslim graveyards of almost every village of Kabal valley, Swat. Little attention has been given to the significance of cultural norms and religious beliefs in conserving phytodiversity. The present endeavor was undertaken to quantify the existing phytodiversity from the studied area during 2010 to 2014. Species and environmental data from 40 releves measuring 10 x 10 m size laid in different Muslim graveyards was stored in TURBOVEG and exported to JUICE for analysis through Two Way Hierarchical Cluster Analysis and Canonical Correspondence Analysis (CCA). The vegetation comprised of an association dominated by Olea ferruginea and Celtis eriocarpa with five distinct communities based on floristic components and environmental variables. Soil moisture, pH, phosphorus, organic matter content and altitude were the main determining factors in establishing these plant communities. The vegetation was stratified with the highest tree layer (17.48+-2.94m), shrub layer (1.85+-0.28m) and herb layer (65.25+-17.79cm). The canopy covered the area about 84.38+-11.83%, of which tree layer shared 69.25+-16.15%, shrub layer 37.63+-11.43% and herb layer56.50+-11.72%. In all, 229 vascular plant species were recorded from the sampled area. Mean species richness was 28.83+-6.69, followed by Shannon index (2.59+-0.32), Simpson index (0.85+-0.06) and evenness index (0.78+-0.07). The significance of indigenous peoples' beliefs and taboos in biodiversity conservation has been discussed in the paper. (author)

  8. Spatial Patterns and Interspecific Associations of Three Canopy Species at Different Life Stages in a Subtropical Forest,China

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Shi-Guang Wei; Zhong-Liang Huang; Wan-Hui Ye; Hong-Lin Cao

    2008-01-01

    Spatial patterns of species at different life stages are an important aspect for understanding causal mechanisms that facilitate species co-existence.Using Ripley's univariate L(t) and bivariate L12(t) functions,we analyzed the spatial patterns and interspecific associations of three canopy species at different life history stages in a 20-ha subtropical forest plot in Dinghushan Nature Reserve.Based on diameter at breast height (DBH),four life stages were distinguished.Castanopsis chinensis and Schima superba showed a unimodal DBH distribution.Engelhardtia roxburghiana showed a bimodal curve.L(t) function analysis showed significantly aggregated distributions of all three species at later life stages and random distribution at early life stages at some scales.From the analysis of L12(t) function,the results showed the positive association was a dominant pattern for most species pairs at most scales but the intensity of association decreases with the increase of life stages.Juveniles of the three species had no negative intra- and interspecific associations with the older life stages.Only premature trees were suppressed by overmature trees at some scales.Considering these results,we found three canopy-dominant species that lacked regeneration.There was no direct competition occurring between understorey individuals.Young trees can grow well under conspecific species with two other species.Longevity and lack of regeneration led to a large number of trees stored in mature and overmature stages,therefore,intra-and inter-competition can be strong at later life stages.

  9. Comparative Studies on Community Ecology of Two Types of Subtropical Forests Grown in Silicate and Limestone Habitats in the Northern Part of Okinawa Island, Japan

    Directory of Open Access Journals (Sweden)

    S. M. Feroz

    2008-06-01

    Full Text Available In order to compare woody species diversity, spatial distribution of trees and stand structure on the basis of the architectural stratification between two types of subtropical forests in the northern part of Okinawa Island, Japan, tree censuses in a 750 m2 plot in silicate habitat and a 1000 m2 plot in limestone habitat were performed. It was found that both subtropical forests growing in silicate and limestone habitats consisted of four architectural layers. A total of 26 families, 43 genera, 60 species and 4684 individuals larger than 0.1 m high in the silicate habitat, and 31 families, 51 genera, 62 species and 4798 individuals larger than 0.0 m high in the limestone habitat, were recorded. As a result, the floristic composition in the silicate habitat was quite different from that in the limestone habitat in terms of similarity index ( Π C = 0.07; approximately only one-sixth of the species were in common. The floristic composition among layers was more similar in the silicate habitat than in the limestone habitat. Castanopsis sieboldii (Mak. Hatusima was the most dominant species in the silicate habitat, but was completely absent in the limestone habitat where Cinnamomum japonicum Sieb. ex Nees was the most dominant species. The potential number of species in the silicate forest (62 was lower than that in the limestone forest (71. However, the woody species diversity was higher in the silicate forest than in the limestone forest. The values of H′ and J′ tended to increase from the top layer downward except for the bottom layer in the silicate forest, while this increasing trend was reversed in the limestone forest. It follows that high woody species diversity in the silicate forest depended on small-sized trees, whereas in the limestone forest it depended on big-sized trees. The spatial distribution of trees in the forests was random in each layer, except the top layer, where there existed a double-clump structure. High degree of

  10. Phenology of Guarea macrophylla Vahl (Meliaceae in subtropical riparian forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    A. Müller

    2017-08-01

    Full Text Available Abstract Climate is one of the main factors that affect plant behavior. The phenology of Guarea macrophylla Vahl, which is a small tree used for reforestation of degraded areas, was monitored for 18 months in a riparian forest at the Schmidt Stream, Campo Bom, in the state of Rio Grande do Sul, southern Brazil. Vegetative (leaf fall and leaf flushing and reproductive events were observed, with the latter divided into flowering (flower buds and anthesis and fruiting (unripe, ripening and ripe fruit. Phenological events were related to temperature, photoperiod and precipitation and their seasonality was verified by circular statistical analysis. Vegetative phenophases were continuous; they were not related to climate factors and presented low intensity, emphasizing the perennial aspect of the species. Flowering occurred during spring and summer. Both flower buds and anthesis were related to temperature and photoperiod. Fruiting was constant and went through all stages of development. Unripe fruits developed during the months with the lowest photoperiod and ripen more intensely in winter, on colder days. Ripe fruit became available for dispersal in spring, in times of longer photoperiod and higher temperatures. Except for leaf fall, all other phenological events showed seasonality in their manifestation. The one-month difference between the onsets of the flowering phases observed in this study indicated that local climate changes induced the early occurrence of this phenophase.

  11. The Arbuscular Mycorrhizal Fungus Funneliformis mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition

    Directory of Open Access Journals (Sweden)

    Heng Gui

    2017-06-01

    Full Text Available Bacterial communities and arbuscular mycorrhizal fungi (AMF co-occur in the soil, however, the interaction between these two groups during litter decomposition remains largely unexplored. In order to investigate the effect of AMF on soil bacterial communities, we designed dual compartment microcosms, where AMF (Funneliformis mosseae was allowed access (AM to, or excluded (NM from, a compartment containing forest soil and litterbags. Soil samples from this compartment were analyzed at 0, 90, 120, 150, and 180 days. For each sample, Illumina sequencing was used to assess any changes in the soil bacterial communities. We found that most of the obtained operational taxonomic units (OTUs from both treatments belonged to the phylum of Proteobacteria, Acidobacteria, and Actinobacteria. The community composition of bacteria at phylum and class levels was slightly influenced by both time and AMF. In addition, time and AMF significantly affected bacterial genera (e.g., Candidatus Solibacter, Dyella, Phenylobacterium involved in litter decomposition. Opposite to the bacterial community composition, we found that overall soil bacterial OTU richness and diversity are relatively stable and were not significantly influenced by either time or AMF inoculation. OTU richness at phylum and class levels also showed consistent results with overall bacterial OTU richness. Our study provides new insight into the influence of AMF on soil bacterial communities at the genus level.

  12. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Sandeep Pulla

    Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  13. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    Science.gov (United States)

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  14. Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S.

    2014-01-01

    Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in

  15. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that

  16. Estimating the opportunity costs of activities that cause degradation in tropical dry forest: Implications for REDD +

    NARCIS (Netherlands)

    Borrego, Armonia; Skutsch, Margaret

    2014-01-01

    The viability of national REDD + programs will depend in part on whether funds generated from sales of carbon credits are sufficient to cover the opportunity costs (OC) of forgone uses of the forest. We present the results of a study in which OC were estimated in dry tropical forest, in western

  17. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  18. Measurement of the dry deposition flux of NH3 on to coniferous forest

    NARCIS (Netherlands)

    Duyzer, J.H.; Verhagen, H.L.M.; Weststrate, J.H.; Bosveld, F.C.

    1992-01-01

    The dry deposition flux of NH3 to coniferous forest was determined by the micrometeorological gradient method using a 36m high tower. Aerodynamic characteristics of the site were studied, using a second tower erected in the forest 100m from the first. Fluxes and gradients of heat and momentum

  19. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought

  20. Manual of design and installation of Forest Service water spray dry kiln

    Science.gov (United States)

    L.V. Teesdale

    1920-01-01

    The best thing that can be said of any dry kiln is that when it is run by a properly informed operator the temperature, humidity, and circulation are constant and uniform. In an endeavor to produce a kiln in which each of these could be regulated independently of the others, the Forest Products Laboratory designed and developed the "Forest Service Humidity...

  1. SRTM-DEM and Landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua

    Science.gov (United States)

    S.E. Sesnie; S.E. Hagell; S.M. Otterstrom; C.L. Chambers; B.G. Dickson

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation may further endanger arboreal mammals that play...

  2. SRTM-DEM AND LANDSAT ETM+ DATA FOR MAPPING TROPICAL DRY FOREST COVER AND BIODIVERSITY ASSESSMENT IN NICARAGUA

    OpenAIRE

    Brett G. Dickson; Carol L. Chambers; Sarah M. Otterstrom; Suzanne E. Hagell; Steven E. Sesnie

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but hasreceived far less attention than forest in wet tropical areas. Land use change threatens to greatly reducethe extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentationmay further endanger arboreal mammals that play principal role in the dispersal of large seeded fruits, plantcommunity assembly and diversity in these systems. Data on the spatial...

  3. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel

    2010-06-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.

  4. Wood Decomposition of Cyrilla racemiflora (Cyrillaceae) in Puerto Rican Dry and Wet Forests: A 13-year Case Study.

    Science.gov (United States)

    Juan A. Torres; Grizelle Gonzalez

    2005-01-01

    We studied the decomposition of Cyrilla racemiflora logs over a 13-yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood-inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs...

  5. Dry forest resilience varies under simulated climate‐management scenarios in a central Oregon, USA landscape.

    Science.gov (United States)

    Halofsky, Joshua S; Halofsky, Jessica E; Burcsu, Theresa; Hemstrom, Miles A

    Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate-informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active management scenario characterized by light to moderate thinning from below and some prescribed fire, planting, and salvage logging. Without climate change, area in dry province forest types remained constant. With climate change, dry mixed-conifer forests increased in area (by an average of 21–26% by 2100), and moist mixed-conifer forests decreased in area (by an average of 36–60% by 2100), under both management scenarios. Average area in dry mixed-conifer forests varied little by management scenario, but potential decreases in the moist mixed-conifer forest were lower with active management. With changing climate in the dry province of central Oregon, our results suggest the likelihood of sustaining current levels of dense, moist mixed-conifer forests with large-diameter, old trees is low (less than a 10% chance) irrespective of management scenario; an opposite trend was observed under no climate change simulations. However, results also suggest active management within the dry and moist mixed-conifer forests that creates less dense forest conditions can increase the persistence of larger-diameter, older trees across the landscape. Owing to projected increases in wildfire, our results also suggest future distributions of tree structures will differ from the present. Overall, our projections indicate proactive management can increase forest resilience and sustain some societal

  6. The effects of forest-savanna-grassland gradients on bird communities of Chiquitano Dry Forests domain, in western Brazil.

    Science.gov (United States)

    Godoi, Mauricio N; Souza, Edivaldo O DE

    2016-01-01

    Different vegetation types are distributed in mountains according to altitude, topography and soil. The composition and structure of bird communities in these areas can change in relation to the vegetation gradient, with particular communities occupying each habitat type. In this study we present the changes in composition, species richness and bird abundance over the gradient of forests, savannas and altitudinal grasslands of Maciço do Urucum, a mountainous region located in the Chiquitano Dry Forests domain in western Brazil. We recorded 165 bird species through qualitative and quantitative methods. Forested savannas, riparian forests and submontane forests presented the highest richness and abundance of birds, while arboreal savannas and altitudinal grasslands had intermediate and low values, respectively. The bird composition was similar between riparian and submontane forests, while other vegetation types present more dissimilar bird communities. Our results show differences in composition, richness and bird abundance among the vegetation types present at Maciço do Urucum, and highlight an important function of vegetation gradients for the conservation of bird communities in mountains. Additionally, this is the first study of the bird communities in the Brazilian Chiquitano Dry Forests, an important domain in the west of Brazil which has been poorly studied.

  7. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia

    DEFF Research Database (Denmark)

    Aynekulu, Ermias; Aerts, Raf; Denich, Manfred

    2016-01-01

    We studied the diversity, community composition and natural regeneration of woody species in an isolated but relatively large (> 1,000 ha) dry Afromontane forest in northern Ethiopia to assess its importance for regional forest biodiversity conservation. The principal human-induced disturbance...... in biodiversity through local extinction of indigenous tree species. Despite the problems associated with conserving plant species diversity in small and isolated populations, this relic forest is of particular importance for regional conservation of forest biodiversity, as species with high conservation value...

  8. floristic composition and structure of the dry afromontane forest at ...

    African Journals Online (AJOL)

    ADMIN

    Key words/phrases: Bale Mountains, floristic composition, plant community, vegetation structure. INTRODUCTION .... from ground was estimated for each tree and shrub species by ...... and environmental factors characterizing coffee forests in ...

  9. Strong spatial structure, Pliocene diversification and cryptic diversity in the Neotropical dry forest spider Sicarius cariri.

    Science.gov (United States)

    Magalhaes, Ivan L F; Oliveira, Ubirajara; Santos, Fabrício R; Vidigal, Teofânia H D A; Brescovit, Antonio D; Santos, Adalberto J

    2014-11-01

    The Brazilian Caatinga is part of the seasonally dry tropical forests, a vegetation type disjunctly distributed throughout the Neotropics. It has been suggested that during Pleistocene glacial periods, these dry forests had a continuous distribution, so that these climatic shifts may have acted as important driving forces of the Caatinga biota diversification. To address how these events affected the distribution of a dry forest species, we chose Sicarius cariri, a spider endemic to the Caatinga, as a model. We studied the phylogeography of one mitochondrial and one nuclear gene and reconstructed the paleodistribution of the species using modelling algorithms. We found two allopatric and deeply divergent clades within S. cariri, suggesting that this species as currently recognized might consist of more than one independently evolving lineage. Sicarius cariri populations are highly structured, with low haplotype sharing among localities, high fixation index and isolation by distance. Models of paleodistribution, Bayesian reconstructions and coalescent simulations suggest that this species experienced a reduction in its population size during glacial periods, rather than the expansion expected by previous hypotheses on the paleodistribution of dry forest taxa. In addition to that, major splits of intraspecific lineages of S. cariri took place in the Pliocene. Taken together, these results indicate S. cariri has a complex diversification history dating back to the Tertiary, suggesting the history of dry forest taxa may be significantly older than previously thought. © 2014 John Wiley & Sons Ltd.

  10. Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States

    Directory of Open Access Journals (Sweden)

    Nicholas T. Luchetti

    2017-01-01

    Full Text Available La brisa marina (BM es una importante fuente de precipitación de verano en Carolina del Norte (NC en su sigla en inglés, sudeste de Estados Unidos. Sin embargo, no todos los eventos de BM producen precipitación. En este trabajo se utiliza una climatología de eventos de BM lluviosos y secos en NC para investigar las condiciones que conducen a la precipitación. Se utilizaron imágenes de radar para detectar 88 eventos de BM ocurridos a lo largo de la costa NC entre mayo y septiembre de 2009 a 2012. La mayoría (85% de los eventos de BM ocurrieron durante períodos de viento hacia el mar (53% o viento paralelo a la costa (22%. Los eventos BM se separaron en eventos secos (53% y lluviosos (47% y se analizaron las diferencias en los parámetros dinámicos y termodinámicos del entorno en el que se formaron. Se encontraron diferencias significativas en las condiciones dinámicas y termodinámicas. Eventos de BM secos ocurrieron bajo vientos más fuertes (6,00 ± 2,36 ms-1 que los eventos de BM lluviosos (4,02 ± 2,16 ms-1. Las BM lluviosas ocurrieron bajo valores de energía potencial convectiva disponible más altos y valores del parámetro de inhibición convectiva más bajos, condiciones que favorecen la lluvia. En general, los eventos de BM lluviosos representaron el 20-30% de la precipitación a lo largo de la región costera de NC de mayo a septiembre. La posición de la Alta Subtropical del Atlántico Norte (ASAN controla la disponibilidad de humedad y los vientos a lo largo de la costa de NC, proporcionando así un mecanismo de control de escala sinóptica para la precipitación de la BM. En particular, cuando la cresta occidental de la ASAN se localiza a lo largo de la costa sureste de los Estados Unidos, se produce un flujo de sudoeste húmedo a lo largo de la costa NC que puede favorecer la ocurrencia de eventos de BM lluviosos.

  11. Ammonium and phosphate enrichment across the dry-wet transition and their ecological relevance in a subtropical reservoir, China.

    Science.gov (United States)

    Mo, Qiongli; Chen, Nengwang; Zhou, Xingpeng; Chen, Jixin; Duan, Shuiwang

    2016-07-13

    Small river reservoirs are widespread and can be ecologically sensitive across the dry-wet transition under monsoon climate with respect to nutrient loading and phenology. Monthly sampling and high-frequency in situ measurements were conducted for a river reservoir (southeast China) in 2013-2014 to examine the seasonal pattern of nutrients and phytoplankton. We found that nutrient concentrations were runoff-mediated and determined by watershed inputs and, in some cases, by internal cycling depending on hydrology and temperature. Ammonium and phosphate were relatively enriched in February-March (a transitional period from dry/cold to wet/hot climate), which can be ascribed to initial flushing runoff from human/animal waste and spring fertilizer use. A phytoplankton bloom (mainly Chlorophyta) occurred during April after a surge of water temperature, probably due to the higher availability of inorganic nutrients and sunlight and suitable hydraulic residence time (medium flow) in the transitional period. The concentration of phytoplankton was low during May-June (wet-hot climate) when the concentrations of total suspended matter (TSM) were highest, likely owing to the "shading" effect of TSM and turbulence of high flow conditions. Nutrient-algae shifts across the dry-wet season and vertical profiles suggested that algal blooms seem to be fueled primarily by phosphate and ammonium rather than nitrate. Current findings of a strong temporal pattern and the relationship between physical parameters, nutrient and biota would improve our understanding of drivers of change in water quality and ecosystem functions with dam construction.

  12. Tree diversity in the tropical dry forest of Bannerghatta National Park in Eastern Ghats, Southern India

    Directory of Open Access Journals (Sweden)

    Gopalakrishna S. Puttakame

    2015-12-01

    Full Text Available Tree species inventories, particularly of poorly known dry deciduous forests, are needed to protect and restore forests in degraded landscapes. A study of forest stand structure, and species diversity and density of trees with girth at breast height (GBH ≥10 cm was conducted in four management zones of Bannerghatta National Park (BNP in the Eastern Ghats of Southern India. We identified 128 tree species belonging to 45 families in 7.9 hectares. However, 44 species were represented by ≤ 2 individuals. Mean diversity values per site for the dry forest of BNP were: tree composition (23.8 ±7.6, plant density (100.69 ± 40.02, species diversity (2.56 ± 0.44 and species richness (10.48 ± 4.05. Tree diversity was not significantly different (P>0.05 across the four management zones in the park. However, the number of tree species identified significantly (P<0.05 increased with increasing number of sampling sites, but majority of the species were captured. Similarly, there were significant variations (p<0.05 between tree diameter class distributions. Juveniles accounted for 87% of the tree population. The structure of the forest was not homogeneous, with sections ranging from poorly structured to highly stratified configurations. The study suggests that there was moderate tree diversity in the tropical dry thorn forest of Bannerghatta National Park, but the forest was relatively young.

  13. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  14. Plant diversity patterns in neotropical dry forests and their conservation implications.

    Science.gov (United States)

    Banda-R, Karina; Delgado-Salinas, Alfonso; Dexter, Kyle G; Linares-Palomino, Reynaldo; Oliveira-Filho, Ary; Prado, Darién; Pullan, Martin; Quintana, Catalina; Riina, Ricarda; Rodríguez M, Gina M; Weintritt, Julia; Acevedo-Rodríguez, Pedro; Adarve, Juan; Álvarez, Esteban; Aranguren B, Anairamiz; Arteaga, Julián Camilo; Aymard, Gerardo; Castaño, Alejandro; Ceballos-Mago, Natalia; Cogollo, Álvaro; Cuadros, Hermes; Delgado, Freddy; Devia, Wilson; Dueñas, Hilda; Fajardo, Laurie; Fernández, Ángel; Fernández, Miller Ángel; Franklin, Janet; Freid, Ethan H; Galetti, Luciano A; Gonto, Reina; González-M, Roy; Graveson, Roger; Helmer, Eileen H; Idárraga, Álvaro; López, René; Marcano-Vega, Humfredo; Martínez, Olga G; Maturo, Hernán M; McDonald, Morag; McLaren, Kurt; Melo, Omar; Mijares, Francisco; Mogni, Virginia; Molina, Diego; Moreno, Natalia Del Pilar; Nassar, Jafet M; Neves, Danilo M; Oakley, Luis J; Oatham, Michael; Olvera-Luna, Alma Rosa; Pezzini, Flávia F; Dominguez, Orlando Joel Reyes; Ríos, María Elvira; Rivera, Orlando; Rodríguez, Nelly; Rojas, Alicia; Särkinen, Tiina; Sánchez, Roberto; Smith, Melvin; Vargas, Carlos; Villanueva, Boris; Pennington, R Toby

    2016-09-23

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale. Copyright © 2016, American Association for the Advancement of Science.

  15. Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya.

    Science.gov (United States)

    Glenday, Julia

    2008-07-01

    Concerns about rapid tropical deforestation, and its contribution to rising atmospheric concentrations of greenhouse gases, increase the importance of monitoring terrestrial carbon storage in changing landscapes. Emerging markets for carbon emission offsets may offer developing nations needed incentives for reforestation, rehabilitation, and avoided deforestation. However, relatively little empirical data exists regarding carbon storage in African tropical forests, particularly for those in arid or semi-arid regions. Kenya's 416 km(2) Arabuko-Sokoke Forest (ASF) is the largest remaining fragment of East African coastal dry forest and is considered a global biodiversity hotspot (Myers et al. 2000), but has been significantly altered by past commercial logging and ongoing extraction. Forest carbon storage for ASF was estimated using allometric equations for tree biomass, destructive techniques for litter and herbaceous vegetation biomass, and spectroscopy for soils. Satellite imagery was used to assess land cover changes from 1992 to 2004. Forest and thicket types (Cynometra webberi dominated, Brachystegia spiciformis dominated, and mixed species forest) had carbon densities ranging from 58 to 94 Mg C/ha. The ASF area supported a 2.8-3.0 Tg C carbon stock. Although total forested area in ASF did not change over the analyzed time period, ongoing disturbances, quantified by the basal area of cut tree stumps per sample plot, correlated with decreased carbon densities. Madunguni Forest, an adjoining forest patch, lost 86% of its forest cover and at least 76% of its terrestrial carbon stock in the time period. Improved management of wood harvesting in ASF and rehabilitation of Madunguni Forest could substantially increase terrestrial carbon sequestration in the region.

  16. Forest vegetation as a sink for atmospheric particulates: Quantitative studies in rain and dry deposition

    International Nuclear Information System (INIS)

    Russel, I.J.; Choquette, C.E.; Fang, S.; Dundulis, W.P.; Pao, A.A.; Pszenny, A.A.P.

    1981-01-01

    Radionuclides in the atmosphere are associated with nonradioactive air particulates and hence serve to trace the fluxes of air particulates to various surfaces. Natural and artificial radioactivities found in the atmosphere have been measured in vegetation for 10 years to elucidate some of the mechanisms of acquirement by forest trees of atmospheric particulates. Whole tree analysis, in conjunction with soil assay, have served to establish the fraction of the flux of radionuclides retained by above-ground tissues of a forest stand. Interpretation is facilitated because most radionuclides in the atmosphere are superficially acquired. Typically 5--20% of the total open field flux is retained by the forest canopy in a moderately rainy climate (120 cm/year). Short-lived daughters of radon give a dry deposition velocity of particulates in the Aitken size range of 0.03--0.05 cm/s, thus permitting an estimate of transient removal by forest canopies by dry deposition of this size fraction

  17. Heterogeneity of terrestrial bromeliad colonies and regeneration of Acacia praecox (Fabaceae in a humid-subtropical-Chaco forest, Argentina

    Directory of Open Access Journals (Sweden)

    Ignacio M Barberis

    2005-09-01

    Full Text Available In several tropical and subtropical forests, plants of the understorey act as an ecological filter that differentially affects woody species regeneration. In convex sectors of the Schinopsis balansae (Anacardiaceae forests of the Southeastern Chaco there are dense colonies of terrestrial bromeliads. These may influence forest regeneration by intercepting rain water and propagules in their tanks. Within colonies, the spatial distribution of bromeliads is clumped because their clonal growth leaves numerous internal gaps. In this study we describe the internal heterogeneity of three bromeliad colonies (plots and analyze how this heterogeneity affects Acacia praecox regeneration (i.e. seedling recruitment and survival. In January 1996, we randomly placed three transects with 150 contiguous quadrats of 100 cm² in each plot. For each quadrat we recorded the type of floor cover (i.e. bromeliads, herbs, litter, or bare soil and the presence of A. praecox seeds or seedlings. In July 1996 we relocated the transects and recorded seedling survival. Bromeliad colonies showed a high internal heterogeneity. Almost half of the 450 quadrats were covered by two terrestrial bromeliads. Aechmea distichantha was recorded in 81% of all quadrats with bromeliads, and Bromelia serra in the others. All quadrats with bromeliads were covered by litter. Half of them were occupied by the bases of bromeliads and the others were covered by their leaves. In contrast, where bromeliads were not present, soil surface was covered by litter in 83% and by herbaceous vegetation in 11% of the quadrats; very few quadrats were covered by bare soil. In January 1996, we recorded 127 seeds and 176 seedlings of A. praecox. Seed and seedling densities of A. praecox were similar in quadrats with and without bromeliads, but variability in seedling density of A. praecox was higher within than among plots. Seed density was higher in quadrats covered by bromeliad leaves than inside the tanks

  18. Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation

    International Nuclear Information System (INIS)

    Erisman, Jan Willem; Draaijers, Geert

    2003-01-01

    The influence of forest characteristics on deposition can be modelled reasonably well; forest edge effects and dynamical processes are still uncertain. - Dry deposition of gases and particles to forests is influenced by factors influencing the turbulent transport, such as wind speed, tree height, canopy closure, LAI, etc. as well as by factors influencing surface condition, such as precipitation, relative humidity, global radiation, etc. In this paper, an overview of these factors is given and it is shown which are the most important determining temporal and spatial variation of dry deposition of sodium and sulphur. Furthermore, it is evaluated how well current deposition models are able to describe the temporal and spatial variation in dry deposition. It is concluded that the temporal variation is not modelled well enough, because of limited surface-wetness exchange parameterisations. The influence of forest characteristics are modelled reasonably well, provided enough data describing the forests and the spatial variation in concentration is available. For Europe these data are not available. The means to decrease the atmospheric deposition through forest management is discussed

  19. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest

    OpenAIRE

    Santos,Cleandson Ferreira; Borges,Magno

    2015-01-01

    AbstractINTRODUCTION: This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil.METHODS: Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models.RESULTS: Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition.CO...

  20. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Science.gov (United States)

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and

  1. Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest.

    Science.gov (United States)

    Cheng, Dongliang; Zhong, Quanlin; Niklas, Karl J; Ma, Yuzhu; Yang, Yusheng; Zhang, Jianhua

    2015-02-01

    Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs. In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log-log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made. The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants. The results support the AP theory's prediction that MA scales nearly one-to-one with MR (i.e. MA ∝ MR (≈1·0)) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents

  2. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  3. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  4. Successional position of dry Andean dwarf forest species as a basis for restoration trials

    NARCIS (Netherlands)

    Groenendijk, J.P.; Duivenvoorden, J.F.; Cleef, A.M.; Rietman, N.

    2005-01-01

    The successional affinity of nine woody species was inferred from the structure, diversity and disturbance history of the vegetation where these occurred. This was done in order to obtain a basis for a restoration experiment, currently in execution, in the dry Andean dwarf forest zone on the edge of

  5. Succesional change and resilience of a very dry tropical deciduous forest following shifting agriculture

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.; Bongers, F.J.J.M.; Pérez-García, E.; Meave, J.

    2008-01-01

    We analyzed successional patterns in a very dry tropical deciduous forest by using 15 plots differing in age after abandonment and contrasted them to secondary successions elsewhere in the tropics. We used multivariate ordination and nonlinear models to examine changes in composition and structure

  6. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest

    NARCIS (Netherlands)

    Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E.

    2009-01-01

    Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1-5 yr

  7. Sympatric occurrence of four Cathartid vultures in the dry forests of ...

    African Journals Online (AJOL)

    dry forests of north-western Peru. Robert S R Williams. Frankfurt Zoological Society and Asociación TuTierra. rob@szfperu.org. This photograph, taken with a cameratrap, shows four species of Cathartid vultures: Andean Condor Vultur gryphus, King. Vulture Sarcoramphus papa, Turkey. Vulture Cathartes aura and Black ...

  8. Plant diversity patterns in neotropical dry forests and their conservation implications

    Science.gov (United States)

    K. Banda-R; A. Delgado-Salinas; K. G. Dexter; R. Linares-Palomino; A. Oliveira-Filho; D. Prado; M. Pullan; C. Quintana; R. Riina; G. M. Rodriguez M.; J. Weintritt; P. Acevedo-Rodriguez; J. Adarve; E. Alvarez; A. Aranguren B.; J. C. Arteaga; G. Aymard; A. Castano; N. Ceballos-Mago; A. Cogollo; H. Cuadros; F. Delgado; W. Devia; H. Duenas; L. Fajardo; A. Fernandez; M. A. Fernandez; J. Franklin; E. H. Freid; L. A. Galetti; R. Gonto; R. Gonzalez-M.; R. Graveson; E. H. Helmer; A. Idarraga; R. Lopez; H. Marcano-Vega; O. G. Martinez; H. M. Maturo; M. McDonald; K. McLaren; O. Melo; F. Mijares; V. Mogni; D. Molina; N. d. P. Moreno; J. M. Nassar; D. M. Neves; L. J. Oakley; M. Oatham; A. R. Olvera-Luna; F. F. Pezzini; O. J. R. Dominguez; M. E. Rios; O. Rivera; N. Rodriguez; A. Rojas; T. Sarkinen; R. Sanchez; M. Smith; C. Vargas; B. Villanueva; R. T. Pennington

    2016-01-01

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than...

  9. Bark traits and life-history strategies of tropical dry- and moist forest trees

    NARCIS (Netherlands)

    Poorter, L.; McNeil, A.; Hurtado, V.H.; Prins, H.H.T.; Putz, F.E.

    2014-01-01

    1.Bark is crucial to trees because it protects their stems against fire and other hazards and because of its importance for assimilate transport, water relationships and repair. We evaluate size-dependent changes in bark thickness for 50 woody species from a moist forest and 50 species from a dry

  10. Hydrologic ramifications of an increased role of wildland fire across the rangeland-dry forest continuum

    Science.gov (United States)

    The increased role of wildland fire across the rangeland-dry forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Much of the Intermountain West now exists in a state in which rangeland and woodland wildfires stimulated by invasive che...

  11. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  12. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    Science.gov (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  13. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Directory of Open Access Journals (Sweden)

    Holly Sitters

    Full Text Available Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated

  14. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Science.gov (United States)

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  15. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995

    DEFF Research Database (Denmark)

    Andersen, H.V.; Hovmand, M.F.; Hummelshøj, P.

    1999-01-01

    The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons...... measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during...... at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest...

  16. Mechanisms of carbon, nitrogen and water changes during restoration and succession in tropical and subtropical forest ecosystems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ With the objective of finding answers to some fundamental problems in ecology and forestry,Prof.ZHOU Guoyi and his colleagues from the CAS South China Botanical Garden set out to clarify whether the oldgrowth forests are actually carbon sinks;how the forest ecosystems,either successional or rehabilitative,react to the nitrogen deposition scenarios and whether there are different reactions working as mechanisms between the mature and immature forest ecosystems.

  17. Restoring and managing low-severity fire in dry-forest landscapes of the western USA.

    Science.gov (United States)

    Baker, William L

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short ( 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning.

  18. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    Science.gov (United States)

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary

  19. Bet-hedging dry-forest resilience to climate-change threats in the western USA based on historical forest structure

    Directory of Open Access Journals (Sweden)

    William Lawrence Baker

    2015-01-01

    Full Text Available Dry forests are particularly subject to wildfires, insect outbreaks, and droughts that likely will increase with climate change. Efforts to increase resilience of dry forests often focus on removing most small trees to reduce wildfire risk. However, small trees often survive other disturbances and could provide broader forest resilience, but small trees are thought to have been historically rare. We used direct records by land surveyors in the late-1800s along 22,206 km of survey lines in 1.7 million ha of dry forests in the western USA to test this idea. These systematic surveys (45,171 trees of historical forests reveal that small trees dominated (52-92% of total trees dry forests. Historical forests also included diverse tree sizes and species, which together provided resilience to several types of disturbances. Current risk to dry forests from insect outbreaks is 5.6 times the risk of higher-severity wildfires, with small trees increasing forest resilience to insect outbreaks. Removal of most small trees to reduce wildfire risk may compromise the bet-hedging resilience, provided by small trees and diverse tree sizes and species, against a broad array of unpredictable future disturbances.

  20. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.

    Science.gov (United States)

    Lima, Robson B DE; Bufalino, Lina; Alves, Francisco T; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Currently, there is a lack of studies on the correct utilization of continuous distributions for dry tropical forests. Therefore, this work aims to investigate the diameter structure of a brazilian tropical dry forest and to select suitable continuous distributions by means of statistic tools for the stand and the main species. Two subsets were randomly selected from 40 plots. Diameter at base height was obtained. The following functions were tested: log-normal; gamma; Weibull 2P and Burr. The best fits were selected by Akaike's information validation criterion. Overall, the diameter distribution of the dry tropical forest was better described by negative exponential curves and positive skewness. The forest studied showed diameter distributions with decreasing probability for larger trees. This behavior was observed for both the main species and the stand. The generalization of the function fitted for the main species show that the development of individual models is needed. The Burr function showed good flexibility to describe the diameter structure of the stand and the behavior of Mimosa ophthalmocentra and Bauhinia cheilantha species. For Poincianella bracteosa, Aspidosperma pyrifolium and Myracrodum urundeuva better fitting was obtained with the log-normal function.

  1. Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina).

    Science.gov (United States)

    Tálamo, Andrés; Barchuk, Alicia H; Garibaldi, Lucas A; Trucco, Carlos E; Cardozo, Silvana; Mohr, Federico

    2015-07-01

    Successful persistence of dry forests depends on tree regeneration, which depends on a balance of complex biotic interactions. In particular, the relative importance and interactive effects of shrubs and herbivores on tree regeneration are unclear. In a manipulative study, we investigated if thornless shrubs have a direct net effect, an indirect positive effect mediated by livestock, and/or an indirect negative effect mediated by small vertebrates on tree regeneration of two key species of Chaco forest (Argentina). In a spatial association study, we also explored the existence of net positive interactions from thorny and thornless shrubs. The number of Schinopsis lorentzii seedlings was highest under artificial shade with native herbivores and livestock excluded. Even excluding livestock, no seedlings were found with natural conditions (native herbivores present with natural shade or direct sunlight) at the end of the experiment. Surprisingly, seedling recruitment was not enhanced under thornless shrubs, because there was a complementary positive effect of shade and interference. Moreover, thornless shrubs had neither positive nor negative effects on regeneration of S. lorentzii. Regeneration of Aspidosperma quebracho-blanco was minimal in all treatments. In agreement with the experiment, spatial distributions of saplings of both tree species were independent of thornless shrubs, but positively associated with thorny shrubs. Our results suggest that in general thornless shrubs may have a negligible effect and thorny shrubs a net positive effect on tree regeneration in dry forests. These findings provide a conceptual framework for testing the impact of biotic interactions on seedling recruitment in other dry forests.

  2. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico

    Science.gov (United States)

    Verduzco, Vivian S.; Garatuza-Payán, Jaime; Yépez, Enrico A.; Watts, Christopher J.; Rodríguez, Julio C.; Robles-Morua, Agustin; Vivoni, Enrique R.

    2015-10-01

    Due to their large extent and high primary productivity, tropical dry forests (TDF) are important contributors to atmospheric carbon exchanges in subtropical and tropical regions. In northwest Mexico, a bimodal precipitation regime that includes winter precipitation derived from Pacific storms and summer precipitation from the North American monsoon (NAM) couples water availability with ecosystem processes. We investigated the net ecosystem production of a TDF ecosystem using a 4.5 year record of water and carbon fluxes obtained from the eddy covariance method complemented with remotely sensed data. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer that respiration is mainly due to decomposition of soil organic matter accumulated from the prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production but can be overwhelmed by the strength of the primary productivity during the NAM. Precipitation characteristics during NAM have significant controls on sustaining carbon fixation in the TDF into the fall season. We identified that a threshold of ~350 to 400 mm of monsoon precipitation leads to a switch in the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This monsoonal precipitation threshold is typically exceeded one out of every 2 years. The close coupling of winter and summer periods with respect to carbon fluxes suggests that the annual carbon balance is dependent on precipitation amounts in both seasons in TDF ecosystems.

  3. Berenty Reserve—A Gallery Forest in Decline in Dry Southern Madagascar—Towards Forest Restoration

    Directory of Open Access Journals (Sweden)

    Vanessa Winchester

    2018-01-01

    Full Text Available Berenty Reserve, a fully protected gallery forest beside the Mandrare River is renowned for its lemurs, but the continuous canopy of the main forest is shrinking, fragmenting and degrading. The aim of this study, before any restoration can be considered, is to investigate why canopy-cover is declining and define the forest’s vegetation status and composition. Our study includes analysis of tamarind age (the dominant species and regeneration, forest extent, climate and soil. Measurement of trunk circumference and annual rings indicated a median age of 190 years, near the accepted maximum for tamarinds. There is no regeneration of tamarind seedlings under the canopy and an invasive vine, Cissus quadrangularis suffocates any regeneration on the forest margins. A vegetation survey, based on fifteen transects, broadly characterized three forest areas: continuous canopy near the river, transitional canopy with fewer tall trees, and degraded dryland; the survey also provided a list of the 18 most common tree species. Ring counts of flood-damaged roots combined with measurement to the riverbank show that erosion rates, up to 19.5 cm/year, are not an immediate threat to forest extent. The highly variable climate shows no trend and analysis of forest soil indicates compatibility with plant growth.

  4. Interpretation of Upper-Storey Canopy Area in Subtropical Broad-leaved Forests in Okinawa Island Using Laser Scanning Data

    International Nuclear Information System (INIS)

    Noor Janatun Naim Jemali; Shiba, M.; Azita Ahmad Zawawi; Noor Janatun Naim Jemali

    2015-01-01

    Conventional forest inventory practice took huge of effort, and is time- and cost- consuming. With the aid of remote sensing technology by light detection and ranging (LiDAR), those unbearable factors could be minimized. LiDAR is able to capture forest characteristic information and is well known for estimating forest structure accurately in many studies. Forest monitoring related to forest resource inventory (FRI) becomes more effective by utilizing LiDAR data and it is tremendously useful, especially to distinguish information on density, growth and distribution of trees in a selected area. In this study, LiDAR data was utilized aimed to delineate crown cover and estimate upper-storey canopy area in Yambaru Forest using object-based segmentation and classification techniques. Agreement between field survey and LiDAR data analysis showed that only 33.7 % of upper-storey canopy area was successfully delineated. The low accuracy level of canopy detection in Yambaru Forest area was expected mainly due to tree structure, density and topographic condition. (author)

  5. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    Science.gov (United States)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  6. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    Science.gov (United States)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  7. SENSITIVITY ANALYSIS OF BIOME-BGC MODEL FOR DRY TROPICAL FORESTS OF VINDHYAN HIGHLANDS, INDIA

    OpenAIRE

    M. Kumar; A. S. Raghubanshi

    2012-01-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to...

  8. Changes in Mauna Kea Dry Forest Structure 2000-2014

    Science.gov (United States)

    Banko, Paul C.; Brinck, Kevin W.

    2014-01-01

    Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers

  9. Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China.

    Science.gov (United States)

    Xu, Mengjie; Ji, Haibao; Zhuang, Shunyao

    2018-01-01

    Latitude is an important factor that influences the carbon stock of Moso bamboo (Phyllostachys pubescens) forests. Accurate estimation of the carbon stock of Moso bamboo forest can contribute to sufficient evaluation of forests in carbon sequestration worldwide. Nevertheless, the effect of latitude on the carbon stock of Moso bamboo remains unclear. In this study, a field survey with 36 plots of Moso bamboo forests along a latitude gradient was conducted to investigate carbon stock. Results showed that the diameter at breast height (DBH) of Moso bamboo culms increased from 8.37 cm to 10.12 cm that well fitted by Weibull model, whereas the bamboo culm density decreased from 4722 culm ha-1 to 3400 culm ha-1 with increasing latitude. The bamboo biomass carbon decreased from 60.58 Mg C ha-1 to 48.31 Mg C ha-1 from north to south. The total carbon stock of Moso bamboo forests, which comprises soil and biomass carbon, ranged from 87.83 Mg C ha-1 to 119.5 Mg C ha-1 and linearly increased with latitude. As a fast-growing plant, Moso bamboo could be harvested amounts of 6.0 Mg C ha-1 to 7.6 Mg C ha-1 annually, which indicates a high potential of this species for carbon sequestration. Parameters obtained in this study can be used to accurately estimate the carbon stock of Moso bamboo forest to establish models of the global carbon balance.

  10. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Science.gov (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of gamma irradiation on the qualitative characteristics of freeze dried forest fruits

    International Nuclear Information System (INIS)

    Nacheva, I; Miteva, P.; Metodieva, P.; Todorova, Ya.; Loginovska, K.

    2012-01-01

    The purpose of the present investigation was to establish the effect of a combined technological processing - freeze drying and gamma sterilization - with irradiation doses of 2 and 4 kGy on the qualitative characteristics on a set of forest fruits - blackberry, blueberry, aronia, strawberry and black elder. The results prove that the freeze drying technology and the applied irradiation dose of 2 kGy is sufficient to preserve the quality and prolong the shelf life of the studied products without damage of their physical-chemical and microbiological characteristics

  12. Impact of livestock on a mosquito community (Diptera: Culicidae in a Brazilian tropical dry forest

    Directory of Open Access Journals (Sweden)

    Cleandson Ferreira Santos

    2015-08-01

    Full Text Available AbstractINTRODUCTION: This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil.METHODS: Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models.RESULTS: Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition.CONCLUSIONS: This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.

  13. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest.

    Science.gov (United States)

    Santos, Cleandson Ferreira; Borges, Magno

    2015-01-01

    This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil. Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models. Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition. This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.

  14. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    Science.gov (United States)

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  15. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia

    Science.gov (United States)

    Dutrieux, Loïc Paul; Verbesselt, Jan; Kooistra, Lammert; Herold, Martin

    2015-09-01

    Automatically detecting forest disturbances as they occur can be extremely challenging for certain types of environments, particularly those presenting strong natural variations. Here, we use a generic structural break detection framework (BFAST) to improve the monitoring of forest cover loss by combining multiple data streams. Forest change monitoring is performed using Landsat data in combination with MODIS or rainfall data to further improve the modelling and monitoring. We tested the use of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall derived index as external regressors. The method was evaluated on a dry tropical forest area in lowland Bolivia where forest cover loss is known to occur, and we validated the results against a set of ground truth samples manually interpreted using the TimeSync environment. We found that the addition of an external regressor allows to take advantage of the difference in spatial extent between human induced and naturally induced variations and only detect the processes of interest. Of all configurations, we found the 13 by 13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%. Compared with a single pixel approach, the proposed method produced better time-series model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The presented approach seems particularly relevant for areas with high inter-annual natural variability, such as forests regularly experiencing exceptional drought events.

  16. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    Science.gov (United States)

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  17. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.

  18. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest

    Science.gov (United States)

    Sparkle L. Malone; Paula J. Fornwalt; Mike A. Battaglia; Marin E. Chambers; Jose M. Iniguez; Carolyn H. Sieg

    2018-01-01

    We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11-12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving) trees, in three 4-ha plots following the 2002 Hayman Fire...

  19. Water flow and energy balance for a tropical dry semideciduous forest

    Science.gov (United States)

    Andrade, J. L.; Garruña-Hernandez, R.; Leon-Palomo, M.; Us-Santamaria, R.; Sima, J. L.

    2013-05-01

    Tropical forests cool down locally because increase water evaporation from the soil to the atmosphere, reduce albedo and help forming clouds that reflect solar radiation back to the atmosphere; this, aligned to the carbon catchment, increase forests value. We will present an estimation of the sap flow and energy balance for the tropical dry semideciduous forest at Kiuic, Yucatan, Mexico during a year. We use a meteorological tower equipped with a rain gauge, temperature and relative humidity, heat flow plates, thermocouples and volumetric soil water content. We recorded net radiation and soil heat flux and estimated sensible heat and latent heat. Besides, we estimated latent heat by measuring sap flow directly in tres using disispation constant heat probes during the rainy season. Results show the influence of the seasonality on net radiation, air temperatura and vapor pressure deficit, because during the dry season his variables were higher and with more duation than during the rainy and early dry season. Sap flow was different for trees belonging to the family Fabaceae compared to trees from other families.

  20. Estimation of Black Carbon Emissions from Dry Dipterocarp Forest Fires in Thailand

    Directory of Open Access Journals (Sweden)

    Ubonwan Chaiyo

    2014-12-01

    Full Text Available This study focused on the estimation of black carbon emissions from dry dipterocarp forest fires in Thailand. Field experiments were set up at the natural forest, Mae Nam Phachi wildlife sanctuary, Ratchaburi Province, Thailand. The dead leaves were the main component consumed of the surface biomass with coverage higher than 90% in volume and mass. The dead leaves load was 342 ± 190 g∙m−2 and followed by a little mass load of twig, 100 g∙m−2. The chemical analysis of the dead leaves showed that the carbon content in the experimental biomass fuel was 45.81 ± 0.04%. From the field experiments, it was found that 88.38 ± 2.02% of the carbon input was converted to carbon released to the atmosphere, while less than 10% were left in the form of residues, and returned to soil. The quantity of dead leaves consumed to produce each gram of carbon released was 2.40 ± 0.02 gdry biomass burned. From the study, the emissions factor of carbon dioxide, carbon monoxide, particulate matter (PM2.5 and black carbon amounted 1329, 90, 26.19 and 2.83 g∙kg−1dry biomass burned, respectively. In Thailand, the amount of black carbon emissions from dry dipterocarp forest fires amounted 17.43 tonnes∙y−1.

  1. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    Science.gov (United States)

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the study region.

  3. Sources and sinks of diversification and conservation priorities for the Mexican tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Judith X Becerra

    Full Text Available Elucidating the geographical history of diversification is critical for inferring where future diversification may occur and thus could be a valuable aid in determining conservation priorities. However, it has been difficult to recognize areas with a higher likelihood of promoting diversification. We reconstructed centres of origin of lineages and identified areas in the Mexican tropical dry forest that have been important centres of diversification (sources and areas where species are maintained but where diversification is less likely to occur (diversity sinks. We used a molecular phylogeny of the genus Bursera, a dominant member of the forest, along with information on current species distributions. Results indicate that vast areas of the forest have historically functioned as diversity sinks, generating few or no extant Bursera lineages. Only a few areas have functioned as major engines of diversification. Long-term preservation of biodiversity may be promoted by incorporation of such knowledge in decision-making.

  4. [Diversity, structure and regeneration of the seasonally dry tropical forest of Yucatán Peninsula, Mexico].

    Science.gov (United States)

    Hernández-Ramírez, Angélica María; García-Méndez, Socorro

    2015-09-01

    Seasonally dry tropical forests are considered as the most endangered ecosystem in lowland tropics. The aim of this study was to characterize the floristic composition, richness, diversity, structure and regeneration of a seasonally dry tropical forest landscape constituted by mature forest, secondary forest and seasonally inundated forest located in the Northeastern part of the Yucatán Peninsula, Mexico. We used the Gentry's standard inventory plot methodology (0.1 ha per forest type in 2007) for facilitating comparison with other Mesoamerican seasonally dry tropical forests. A total of 77 species belonging to 32 families were observed in the study area. Fabaceae and Euphorbiaceae were the families with the largest taxonomic richness in the three forest types. Low levels of β diversity were observed among forest types (0.19-0.40), suggesting a high turnover of species at landscape level. The non-regenerative species were dominant (50-51 %), followed by regenerative species (30- 28 %), and colonizer species (14-21 %) in the three forest types. Zoochory was the most common dispersal type in the study area. The 88 % of the observed species in the study area were distributed in Central America. Some floristic attributes of the seasonally dry tropical forest of the Yucatán Peninsula, fall into the values reported for Mesoamerican seasonally dry tropical forests. Natural disturbances contributed to explain the high number of individuals, the low number of liana species, as well as the low values of basal area observed in this study. Our results suggested that the seasonally dry tropical forest of Yucatán Peninsula seems to be resilient to natural disturbances (hurricane) in terms of the observed number of species and families, when compared with the reported values in Mesoamerican seasonally dry tropical forests. Nonetheless, the recovery and regeneration of vegetation in long-term depends on animal-dispersed species. This study highlights the importance of

  5. Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest.

    Science.gov (United States)

    Toby Pennington, R; Lavin, Matt

    2017-07-01

    The Andes are the world's longest mountain chain, and the tropical Andes are the world's richest biodiversity hot spot. The origin of the tropical Andean cordillera is relatively recent because the elevation of the mountains was relatively low (400-2500 m palaeoelevations) only 10 MYA with final uplift being rapid. These final phases of the Andean orogeny are thought to have had a fundamental role in shaping processes of biotic diversification and biogeography, with these effects reaching far from the mountains themselves by changing the course of rivers and deposition of mineral-rich Andean sediments across the massive Amazon basin. In a recent issue of Molecular Ecology, Oswald, Overcast, Mauck, Andersen, and Smith (2017) investigate the biogeography and diversification of bird species in the Andes of Peru and Ecuador. Their study is novel in its focus on tropical dry forests (Figure 1) rather than more mesic biomes such as rain forests, cloud forests and paramos, which tend to be the focus of science and conservation in the Andean hot spot. It is also able to draw powerful conclusions via the first deployment of genomic approaches to a biogeographic question in the threatened dry forests of the New World. © 2017 John Wiley & Sons Ltd.

  6. Regeneration complexities of Pinus gerardiana in dry temperate forests of Indian Himalaya.

    Science.gov (United States)

    Kumar, Raj; Shamet, G S; Mehta, Harsh; Alam, N M; Kaushal, Rajesh; Chaturvedi, O P; Sharma, Navneet; Khaki, B A; Gupta, Dinesh

    2016-04-01

    Pinus gerardiana is considered an important species in dry temperate forests of North-Western Indian Himalaya because of its influence on ecological processes and economic dependence of local people in the region. But, large numbers of biotic and abiotic factors have affected P. gerardiana in these forests; hence, there is a crucial need to understand the regeneration dynamics of this tree species. The present investigation was conducted in P. gerardiana forests to understand vegetation pattern and regeneration processes on different sites in the region. Statistical analysis was performed to know variability in growing stock and regeneration on sample plots, while correlation coefficients and regression models were developed to find the relationship between regeneration and site factors. The vegetation study showed dominance of P. gerardiana, which is followed by Cedrus deodara, Pinus wallichiana and Quercus ilex in the region. The growing stock of P. gerardiana showed steep increasing and then steadily declining trend from lower to higher diameter class. The distribution of seedling, sapling, pole and trees was not uniform at different sites and less number of plots in each site were observed to have effective conditions for continuous regeneration, but mostly showed extremely limited regeneration. Regeneration success ranging from 8.44 to 15.93 % was recorded in different sites of the region, which suggests that in different sites regeneration success is influenced by collection of cone for extracting seed, grazing/browsing and physico-chemical properties of soil. Regeneration success showed significant correlation and relationship with most of abiotic and biotic factors. The regeneration success is lower than the requirement of sustainable forest, but varies widely among sites in dry temperate forests of Himalaya. More forest surveys are required to understand the conditions necessary for greater success of P. gerardiana in the region.

  7. Simulating fuel treatment effects in dry forests of the western United States: testing the principles of a fire-safe forest

    Science.gov (United States)

    Morris C. Johnson; Maureen C Kennedy; David L. Peterson

    2011-01-01

    We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Dougl. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We...

  8. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China.

    Science.gov (United States)

    Wang, Yixiang; Zhu, Xudan; Bai, Shangbin; Zhu, Tingting; Qiu, Wanting; You, Yujie; Wu, Minjuan; Berninger, Frank; Sun, Zhibin; Zhang, Hui; Zhang, Xiaohong

    2018-04-15

    Reforestation after clear-cutting is used to facilitate rapid establishment of new stands. However, reforestation may cause additional soil disturbance by affecting soil temperature and moisture, thus potentially influencing soil respiration. Our aim was to compare the effects of different reforestation methods on soil CO 2 flux after clear-cutting in a Chinese fir plantation in subtropical China: uncut (UC), clear-cut followed by coppicing regeneration without soil preparation (CC), clear-cut followed by coppicing regeneration and reforestation with soil preparation, tending in pits and replanting (CCR P ), and clear-cut followed by coppicing regeneration and reforestation with overall soil preparation, tending and replanting (CCR O ). Clear-cutting significantly increased the mean soil temperature and decreased the mean soil moisture. Compared to UC, CO 2 fluxes were 19.19, 37.49 and 55.93 mg m -2 h -1 higher in CC, CCR P and CCR O , respectively (P soil temperature, litter mass and the mixing of organic matter with mineral soil. The results suggest that, when compared to coppicing regeneration, reforestation practices result in additional CO 2 released, and that regarding the CO 2 emissions, soil preparation and tending in pits is a better choice than overall soil preparation and tending. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effects of post-hurricane fertilization and debris removal on earthworm abundance and biomass in subtropical forests in Puerto Rico

    Science.gov (United States)

    Grizelle Gonzalez; Y. Li; X. Zou

    2007-01-01

    Hurricanes are a common disturbance in the Caribbean, striking the island of Puerto Rico on average every 21 years. Hurricane Hugo (1989) distributed the canopy litter onto the forest floor changing the chemistry and quantity of litter inputs to the soil. In this study, we determined the effect of inorganic fertilization on earthworm abundance, biomass, and species...

  10. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Science.gov (United States)

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  11. Dry deposition of sulfur: a 23-year record for the Hubbard Brook Forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Likens, G E; Eaton, J S [Inst. of Ecosystem Studies, The New York Botanical Garden, NY (US); Bormann, F H [School of Forestry and Environmental Studies Yale Univ., New Haven, CT (US); Hedin, L O [Dept. of Biology, Yale Univ., New Haven, CT (US); Driscoll, C T [Dept. of Civil and Environmental Engineering, Syracuse, NY (US)

    1990-01-01

    Dry deposition of S was estimated for watershed-ecosystems of the Hubbard Brook Experimental Forest from 1964-65 through 1986-87. Two approaches, a regression analysis of bulk precipitation inputs and stream outputs and a mass-balance method, gave similar average values for Watershed 6 430 and 410 eq SO{sub 4}{sup =}/ha-yr, respectively, for this 23-year period. Dry deposition contributed about 37% of total S deposition, varying from 12% in 1964-65 to 61% in 1983-84. Long-term data from 'replicated' watershed-ecosystems showed that temporal variability in estimates of dry deposition was considerably greater than spatial (between watersheds) variability.

  12. Estimating Above-Ground Biomass in Sub-Tropical Buffer Zone Community Forests, Nepal, Using Sentinel 2 Data

    Directory of Open Access Journals (Sweden)

    Santa Pandit

    2018-04-01

    Full Text Available Accurate assessment of above-ground biomass (AGB is important for the sustainable management of forests, especially buffer zone (areas within the protected area, where restrictions are placed upon resource use and special measure are undertaken to intensify the conservation value of protected area areas with a high dependence on forest products. This study presents a new AGB estimation method and demonstrates the potential of medium-resolution Sentinel-2 Multi-Spectral Instrument (MSI data application as an alternative to hyperspectral data in inaccessible regions. Sentinel-2 performance was evaluated for a buffer zone community forest in Parsa National Park, Nepal, using field-based AGB as a dependent variable, as well as spectral band values and spectral-derived vegetation indices as independent variables in the Random Forest (RF algorithm. The 10-fold cross-validation was used to evaluate model effectiveness. The effect of the input variable number on AGB prediction was also investigated. The model using all extracted spectral information plus all derived spectral vegetation indices provided better AGB estimates (R2 = 0.81 and RMSE = 25.57 t ha−1. Incorporating the optimal subset of key variables did not improve model variance but reduced the error slightly. This result is explained by the technically-advanced nature of Sentinel-2, which includes fine spatial resolution (10, 20 m and strategically-positioned bands (red-edge, conducted in flat topography with an advanced machine learning algorithm. However, assessing its transferability to other forest types with varying altitude would enable future performance and interpretability assessments of Sentinel-2.

  13. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Directory of Open Access Journals (Sweden)

    Madelon Lohbeck

    Full Text Available Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment and in 17 wet secondary forest sites (<1-25 years after abandonment. We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during

  14. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    OpenAIRE

    Janssen, T; Ametsisi, G; Collins, M; Adu-Bredu, S; Oliveras-Menor, I; Mitchard, ETA; Veenendaal, EM

    2017-01-01

    Abstract Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South America and Africa, also, if not foremost, inside formally protected areas. Here, we significantly extend the baseline of tropical dry forest loss inside a protected area in Ghana using a generali...

  15. Light habitat, structure, diversity and dynamic of the tropical dry forest

    Directory of Open Access Journals (Sweden)

    Omar Melo-Cruz

    2017-01-01

    Full Text Available Tropical dry forests are complex and fragile ecosystems with high anthropic intervention and restricted reproductive cycles. These have unique richness, structural diversity, physiological and phenological . This research was executed  in the Upper Magdalena Valley, in four forest fragments with different successional stages. In each fragment four permanent plots of 0.25 ha were established and lighting habitat associated with richness, relative abundance and rarity of species. The forest dynamics included the mortality, recruitment and diameter growth for a period of 5.25 years. The species rischness found in the mature riparian forestis higher than that reported in other studies of similar areas in Valle del Cauca and the Atlantic coast.  The values of richness, diversity and rarity species are more evidenced  than the magnitudes found in  drier areas of Tolima. The structure, diversity and dynamics of forests were correlated with the lighting habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. Forests with dense canopy have limited availability of photosynthetically active radiation in understory related low species richness, while illuminated undergrowth are richer and heterogeneous.

  16. Do variations in the composition and structure of vegetation allow floristic groups to be detected in a subtropical moist forest in southern Brazil?

    Directory of Open Access Journals (Sweden)

    João Paulo de Maçaneiro

    2016-12-01

    Full Text Available Variations in vegetation based on topographic location have become an interest of researchers. However, few studies have verified floristic associations related to the topographic position of a slope. In this work, we analyzed if variations in vegetation allow floristic groups to be detected in a subtropical moist forest. The vegetation was sampled in 25 plots of 400 m² distributed systematically, where individuals with a DBH ≥ 5.0 cm were measured. We sampled 1,727 individuals and 144 species. The NMDS ordination segregated three groups based on the topographic position of the slope (Monte Carlo, P ≥ 0.05; ANOSIM, P < 0.001. Euterpe edulis and Sloanea guianensis were notable in the lower and middle sections of the slope, whereas Ocotea aciphylla and Alchornea triplinervia were notable in the upper section. Some species were indicators of the analyzed sectors, such as Actinostemon concolor and Alsophila setosa in the lower section, Cyathea corcovadensis and Rudgea recurva in the middle section, and Myrcia pulchra and Podocarpus sellowii in the upper section. Our results indicate that the floristic and structural variations observed by Veloso and Klein (1959 and Klein (1980; 1984 for Vale do Itajaí in Santa Catarina are statistically valid today, because we verified the formation of different groups according to the topographic position of the slope.

  17. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    International Nuclear Information System (INIS)

    Huang Wenjuan; Zhou Guoyi; Liu Juxiu; Zhang Deqiang; Xu Zhihong; Liu Shizhong

    2012-01-01

    The effects of elevated carbon dioxide (CO 2 ) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N 2 fixers and one N 2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO 2 and N addition. Foliar N:P ratios in the non-N 2 fixers showed some negative responses to elevated CO 2 , while N addition reduced foliar N:P ratios in the N 2 fixer. The results suggest that N addition would facilitate the N 2 fixer rather than the non-N 2 fixers to regulate the stoichiometric balance under elevated CO 2 . - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N 2 fixer under elevated CO 2 . - N addition could facilitate the N 2 fixer rather than the non-N 2 fixers to regulate foliar N and P stoichiometry under elevated CO 2 in subtropical forests.

  18. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    Science.gov (United States)

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.

  19. The interaction of land-use legacies and hurricane disturbance in subtropical wet forest: twenty-one years of change

    OpenAIRE

    Hogan, James Aaron; Zimmerman, Jess K.; Thompson, Jill; Nytch, Christopher J.; Uriarte, Maria

    2016-01-01

    Disturbance shapes plant communities over a wide variety of spatial and temporal scales. How natural and anthropogenic disturbance interact to shape ecological communities is highly variable and begs a greater understanding. We used five censuses spanning the years 1990–2011 from the 16-ha Luquillo Forest Dynamics Plot (LFDP) in northeast Puerto Rico to investigate the interplay of human land-use legacies dating to the early 20th century and two recent hurricanes (Hugo, 1989 and Georges, 1998...

  20. Interspecific variation in leaf pigments and nutrients of five tree species from a subtropical forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    MÁRCIA BÜNDCHEN

    2016-01-01

    Full Text Available ABSTRACT The purpose of this study was to analyze the seasonal variation in the nutrient and pigment content of leaves from five tree species - of which three are perennial (Cupania vernalis, Matayba elaeagnoides and Nectandra lanceolata and two are deciduous (Cedrela fissilis and Jacaranda micrantha - in an ecotone between a Deciduous Seasonal Forest and a Mixed Ombrophilous Forest in the state of Santa Catarina, Brazil. Leaf samples were collected in the four seasons of the year to determine the content of macronutrients (N, K, P, Mg, Ca, S and photosynthetic pigments (Chla, Chlb, Chltot, Cartot, Chla:Chlb and Cartot:Chltot. The principal component analysis showed that leaf pigments contributed to the formation of the first axis, which explains most of the data variance for all species, while leaf nutrient contribution showed strong interspecific variation. These results demonstrate that the studied species have different strategies for acquisition and use of mineral resources and acclimation to light, which are determinant for them to coexist in the forest environment.

  1. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region.

    Science.gov (United States)

    Greenwood, Sarah; Chen, Jan-Chang; Chen, Chaur-Tzuhn; Jump, Alistair S

    2014-12-01

    Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60 years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate. © 2014 John Wiley & Sons Ltd.

  2. Biodiversity and functional regeneration during secondary succession in a tropical dry forest: from microorganisms to mammals

    Science.gov (United States)

    do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.

    2015-12-01

    In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.

  3. Ecological consequences of alternative fuel reduction treatments in seasonally dry forests: the national fire and fire surrogate study

    Science.gov (United States)

    J.D. McIver; C.J. Fettig

    2010-01-01

    This special issue of Forest Science features the national Fire and Fire Surrogate study (FFS), a niultisite, multivariate research project that evaluates the ecological consequences of prescribed fire and its mechanical surrogates in seasonally dry forests of the United States. The need for a comprehensive national FFS study stemmed from concern that information on...

  4. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  5. Reproductive Performance of Holstein Dairy Cows Grazing in Dry-summer Subtropical Climatic Conditions: Effect of Heat Stress and Heat Shock on Meiotic Competence and In vitro Fertilization.

    Science.gov (United States)

    Pavani, Krishna; Carvalhais, Isabel; Faheem, Marwa; Chaveiro, Antonio; Reis, Francisco Vieira; da Silva, Fernando Moreira

    2015-03-01

    The present study was designed to evaluate how environmental factors in a dry-summer subtropical climate in Terceira-Azores (situated in the North Atlantic Ocean: 38° 43' N 27° 12' W) can affect dairy cow (Holstein) fertility, as well as seasonal influence on in vitro oocytes maturation and embryos development. Impact of heat shock (HS) effects on in vitro oocyte's maturation and further embryo development after in vitro fertilization (IVF) was also evaluated. For such purpose the result of the first artificial insemination (AI) performed 60 to 90 days after calving of 6,300 cows were recorded for one year. In parallel, climatic data was obtained at different elevation points (n = 5) from 0 to 1,000 m and grazing points from 0 to 500 m, in Terceira island, and the temperature humidity index (THI) was calculated. For in vitro experiments, oocytes (n = 706) were collected weekly during all year, for meiotic maturation and IVF. Further, to evaluate HS effect, 891 oocytes were collected in the cold moths (December, January, February and March) and divided in three groups treated to HS for 24 h during in vitro maturation at: C (Control = 38.5°C), HS1 (39.5°C) and HS2 (40.5°C). Oocytes from each group were used for meiotic assessment and IVF. Cleavage, morula and blastocyst development were evaluated respectively on day 2, 6, and 9 after IVF. A negative correlation between cow's conception rate (CR) and THI in grazing points (-91.3%; p<0.001) was observed. Mean THI in warmer months (June, July, August and September) was 71.7±0.7 and the CR (40.2±1.5%) while in cold months THI was 62.8±0.2 and CR was 63.8±0.4%. A similar impact was obtained with in vitro results in which nuclear maturation rate (NMR) ranged from 78.4% (±8.0) to 44.3% (±8.1), while embryos development ranged from 53.8% (±5.8) to 36.3% (±3.3) in cold and warmer months respectively. In vitro HS results showed a significant decline (p<0.05) on NMR of oocytes for every 1°C rising temperature (78

  6. Reproductive Performance of Holstein Dairy Cows Grazing in Dry-summer Subtropical Climatic Conditions: Effect of Heat Stress and Heat Shock on Meiotic Competence and Fertilization

    Directory of Open Access Journals (Sweden)

    Krishna Pavani

    2015-03-01

    Full Text Available The present study was designed to evaluate how environmental factors in a dry-summer subtropical climate in Terceira-Azores (situated in the North Atlantic Ocean: 38° 43′ N 27° 12′ W can affect dairy cow (Holstein fertility, as well as seasonal influence on in vitro oocytes maturation and embryos development. Impact of heat shock (HS effects on in vitro oocyte’s maturation and further embryo development after in vitro fertilization (IVF was also evaluated. For such purpose the result of the first artificial insemination (AI performed 60 to 90 days after calving of 6,300 cows were recorded for one year. In parallel, climatic data was obtained at different elevation points (n = 5 from 0 to 1,000 m and grazing points from 0 to 500 m, in Terceira island, and the temperature humidity index (THI was calculated. For in vitro experiments, oocytes (n = 706 were collected weekly during all year, for meiotic maturation and IVF. Further, to evaluate HS effect, 891 oocytes were collected in the cold moths (December, January, February and March and divided in three groups treated to HS for 24 h during in vitro maturation at: C (Control = 38.5°C, HS1 (39.5°C and HS2 (40.5°C. Oocytes from each group were used for meiotic assessment and IVF. Cleavage, morula and blastocyst development were evaluated respectively on day 2, 6, and 9 after IVF. A negative correlation between cow’s conception rate (CR and THI in grazing points (−91.3%; p<0.001 was observed. Mean THI in warmer months (June, July, August and September was 71.7±0.7 and the CR (40.2±1.5% while in cold months THI was 62.8±0.2 and CR was 63.8±0.4%. A similar impact was obtained with in vitro results in which nuclear maturation rate (NMR ranged from 78.4% (±8.0 to 44.3% (±8.1, while embryos development ranged from 53.8% (±5.8 to 36.3% (±3.3 in cold and warmer months respectively. In vitro HS results showed a significant decline (p<0.05 on NMR of oocytes for every 1°C rising

  7. Mixed-Severity Fire Fosters Heterogeneous Spatial Patterns of Conifer Regeneration in a Dry Conifer Forest

    Directory of Open Access Journals (Sweden)

    Sparkle L. Malone

    2018-01-01

    Full Text Available We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11–12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving trees, in three 4-ha plots following the 2002 Hayman Fire. Residual tree density ranged from 167 to 197 trees ha−1 (TPH, and these trees were clustered at distances up to 30 m. Post-fire regenerating conifers, which ranged in density from 241 to 1036 TPH, were also clustered at distances up to at least 30 m. Moreover, residual tree locations drove post-fire regenerating conifer locations, with the two showing a pattern of repulsion. Topography and post-fire sprouting tree species locations further drove post-fire conifer regeneration locations. These results provide a foundation for anticipating how the reintroduction of mixed-severity fire may affect long-term forest structure, and also yield insights into how historical mixed-severity fire may have regulated the spatially heterogeneous conditions commonly described for pre-settlement dry conifer forests of Colorado and elsewhere.

  8. Multi-Temporal Monitoring Of Ecological Succession In Tropical Dry Forests Using Angular - Hyperspectral Data (Chris/Proba)

    Science.gov (United States)

    Garcia Millan, V. E.

    2015-12-01

    The tropical dry forest is the largest and most threatened ecosystem in Latin America. Remote sensing can effectively contribute to the surveillance of conservation measurements and laws through the monitoring of natural protected areas, at the required temporal and spatial scales. CHRIS/PROBA is the only satellite that presents quasi-simultaneous multi-angular pointing and hyperspectral spectroscopy. These two characteristics permit the study of structural and compositional traces of successional stages within the tropical dry forest. The current study presents the results of mapping the succession of tropical dry forest in the Parque Estadual de la Mata-Seca, in Minas Gerais, Brazil, using a temporal analysis of CHRIS/PROBA images in a time frame of 7 years, between 2008 and 2014. For the purpose the -55° angle of observation has been used, which enhances spectral differences between successional stages. Spectral Angle Mapper has been used for mapping succession of tropical dry forest and afterwards Change Detection Analysis has been performed. Based on our observations, the tropical dry forest in the Parque Estadual de la Mataseca recovers at a fast rate, for the observed period (2008-2014). More than the 50% of the early and intermediate forests has been recovered to a mature forest. Significantly, around a 12% of old pastures have been converted into forest. The spatial analysis also reveals that the areas that recover most rapidly are located in the east of the Park, close to mature forests. The provision of seeds from these forests might be the cause for the fast recovery.

  9. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.

    Science.gov (United States)

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2013-07-01

    In theory, plants can alter the distribution of leaves along the lengths of their twigs (i.e., within-twig leaf distribution patterns) to optimize light interception in the context of the architectures of their leaves, branches and canopies. We hypothesized that (i) among canopy tree species sharing similar light environments, deciduous trees will have more evenly spaced within-twig leaf distribution patterns compared with evergreen trees (because deciduous species tend to higher metabolic demands than evergreen species and hence require more light), and that (ii) shade-adapted evergreen species will have more evenly spaced patterns compared with sun-adapted evergreen ones (because shade-adapted species are generally light-limited). We tested these hypotheses by measuring morphological traits (i.e., internode length, leaf area, lamina mass per area, LMA; and leaf and twig inclination angles to the horizontal) and physiological traits (i.e., light-saturated net photosynthetic rates, Amax; light saturation points, LSP; and light compensation points, LCP), and calculated the 'evenness' of within-twig leaf distribution patterns as the coefficient of variation (CV; the higher the CV, the less evenly spaced leaves) of within-twig internode length for 9 deciduous canopy tree species, 15 evergreen canopy tree species, 8 shade-adapted evergreen shrub species and 12 sun-adapted evergreen shrub species in a subtropical broad-leaved rainforest in eastern China. Coefficient of variation was positively correlated with large LMA and large leaf and twig inclination angles, which collectively specify a typical trait combination adaptive to low light interception, as indicated by both ordinary regression and phylogenetic generalized least squares analyses. These relationships were also valid within the evergreen tree species group (which had the largest sample size). Consistent with our hypothesis, in the canopy layer, deciduous species (which were characterized by high LCP, LSP and

  10. [Effects of forest regeneration patterns on the quantity and chemical structure of soil solution dissolved organic matter in a subtropical forest.

    Science.gov (United States)

    Yuan, Xiao Chun; Lin, Wei Sheng; Pu, Xiao Ting; Yang, Zhi Rong; Zheng, Wei; Chen, Yue Min; Yang, Yu Sheng

    2016-06-01

    Using the negative pressure sampling method, the concentrations and spectral characte-ristics of dissolved organic matter (DOM) of soil solution were studied at 0-15, 15-30, 30-60 cm layers in Castanopsis carlesii forest (BF), human-assisted naturally regenerated C. carlesii forest (RF), C. carlesii plantation (CP) in evergreen broad-leaved forests in Sanming City, Fujian Pro-vince. The results showed that the overall trend of dissolved organic carbon (DOC) concentrations in soil solution was RF>CP>BF, and the concentration of dissolved organic nitrogen (DON) was highest in C. carlesii plantation. The concentrations of DOC and DON in surface soil (0-15 cm) were all significantly higher than in the subsurface (30-60 cm). The aromatic index (AI) was in the order of RF>CP>BF, and as a whole, the highest AI was observed in the surface soil. Higher fluorescence intensity and a short wave absorption peak (320 nm) were observed in C. carlesii plantation, suggesting the surface soil of C. carlesii plantation was rich in decomposed substance content, while the degree of humification was lower. A medium wave absorption peak (380 nm) was observed in human-assisted naturally regenerated C. carlesii forest, indicating the degree of humification was higher which would contribute to the storage of soil fertility. In addition, DOM characte-ristics in 30-60 cm soil solution were almost unaffected by forest regeneration patterns.

  11. The importance of forest disturbance for the recruitment of the large arborescent palm Attalea maripa in a seasonally-dry Amazonian forest

    OpenAIRE

    Salm,Rodolfo

    2005-01-01

    The hypothesis that forest disturbance is important for the recruitment of the large arborescent palms Attalea maripa was tested with a natural experiment in the Pinkaití site (7º 46'S; 51º 57'W), a seasonally-dry Amazonian forest. A 8,000 m long trail, that crosses, in its lower half, an open forest along the Pinkaití stream bottomlands and, on its upper half, a dense forest on a hill, was divided in 160 0.15 ha (50x30 m) sampling units. At each unit, adult palms were counted and percentage ...

  12. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    NARCIS (Netherlands)

    Janssen, Thomas A.J.; Ametsitsi, George K.D.; Collins, Murray; Adu-Bredu, Stephen; Oliveras, Imma; Mitchard, Edward T.A.; Veenendaal, Elmar M.

    2018-01-01

    Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South America

  13. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    NARCIS (Netherlands)

    Janssen, Thomas A.J.; Ametsitsi, George K.D.; Collins, Murray; Adu-Bredu, Stephen; Oliveras, Imma; Mitchard, Edward T.A.; Veenendaal, Elmar M.

    2018-01-01

    Abstract Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South

  14. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras.

    Science.gov (United States)

    Paul F. Hessburg; James K. Agee; Jerry F. Franklin

    2005-01-01

    Prior to Euro-American settlement, dry ponderosa pine and mixed conifer forests (hereafter, the "dry forests") of the Inland Northwest were burned by frequent low- or mixed-severity fires. These mostly surface fires maintained low and variable tree densities, light and patchy ground fuels, simplified forest structure, and favored fire-tolerant trees, such as...

  15. Influence of an Ice Storm on Aboveground Biomass of Subtropical Evergreen Broadleaf Forest in Lechang, Nanling Mountains of Southern China

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2012-01-01

    Full Text Available This study focuses on the influence of the 2008 ice storm in China and subsequent forest rehabilitation dynamics up until 2011. All seven plots studied exhibited significant damage, with the total number of damaged trees varying between 63 and 92%. In addition, most trees suffered stem bending in 2008 and the extent of damage varied with tree diameter at breast high (DBH. Relationships between loss of biomass as dead trees and stand characteristics were analyzed by multiple stepwise regression. The results showed that the decrease in biomass (Y could be related to altitude (X1, slope (X2, and aboveground biomass (AGB in 2008 (X5 according to the following formula: Y=−0.02456X1+0.2815X5−1.480X2+51.23. After 2 to 3 years, tree numbers had declined in all seven plots. The mean increase in AGB (4.9 t ha−1 for six of the plots was less than the biomass loss as dead trees (9.4 t ha−1 over the 3 year periods. This corresponds to a release of CO2 to the atmosphere for each plot. Therefore, the forests of Lechang in the Nanling Montains have probably acted as a carbon source to the atmosphere for a short period after the 2008 ice storm.

  16. Comparison of the population structure of the fiddler crab Uca vocator (Herbst, 1804 from three subtropical mangrove forests

    Directory of Open Access Journals (Sweden)

    Karine Delevati Colpo

    2004-03-01

    Full Text Available The population structure of U. vocator was investigated during a one-year period in three mangrove forests in southeast Brazil. The study specifically addressed comparisons on individual size , juvenile recruitment and sex-ratio. The structure of the mangrove forests, i.e. density, basal area, and diameter, and the physical properties of sediments, i.e. texture and organic matter contents, were also examined. A catch-per-unit-effort (CPUE technique was used to sample the crab populations using 15-min sampling periods by two people. Males always outnumbered females, probably due to ecological and behavioural attributes of these crabs. The median size of fiddler crabs differed among the sampled populations. The mangroves at Indaiá and Itamambuca showed higher productivity than those at Itapanhaú, where oil spills impacting the shore were reported. Marked differences were found regarding individual size , either their size at the onset of sexual maturity or their asymptotic size, suggesting that food availability may be favouring growth in the studied populations.

  17. Assessment of a subtropical riparian forest focusing on botanical, meteorological, ecological characterization and chemical analysis of rainwater

    Directory of Open Access Journals (Sweden)

    Vanessa Graeff

    2018-05-01

    Full Text Available Riparian forests are heterogeneous environments, in which epiphytes find ideal conditions to develop. These plants absorb the necessary nutrients for survival from the atmosphere, and their occurrence and distribution can be influenced by the quality and quantity of precipitation. The objective of this research was to perform an integrated analysis of botanical, meteorological and chemical precipitation parameters so as to compare them in fragments of the riparian forest in the lower (São Leopoldo-SL and upper (Caraá-CA stretches of the Rio dos Sinos Hydrographic Basin (RSHB, RS, Brazil. Rainwater was chemically analyzed, the community structure of epiphytic ferns was surveyed and the ecological characterization was evaluated through the Rapid Habitat Assessment Protocol (RHAP. The results showed that the chemical composition of rainwater is influenced by the environment of each area. In the upper stretch (CA, for instance, the main contribution is that of marine ions, while in the lower stretch (SL, the most impacting aspects are urbanization and industrialization. Similarly, the results depict a reduction of richness and a simplification of the community structure of epiphytic ferns and their environmental quality according to the RHAP categories, towards the base level of the RSHB. The integrated analysis, in which different methods were applied, proved to be an efficient tool to evaluate environmental quality. This analysis considers that a greater number of biotic and abiotic variables may be applied in different scenarios.

  18. Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America

    Science.gov (United States)

    Portillo, C. A.; Cao, G.; Smith, V.

    2015-12-01

    Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.

  19. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Brooke E Crowley

    Full Text Available Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation

  20. Is splash erosion potential species specific? Measuring of splash erosion potential under forest in different succession stages along a biodiversity gradient in the humid subtropics

    Science.gov (United States)

    Geißler, C.; Kühn, P.; Scholten, T.

    2009-04-01

    It is widely accepted that (forest) vegetation is a key control for the type and intensity of soil erosion. The current paradigm is that natural or quasi-natural vegetation protects the soil from erosion and that agricultural vegetation or land use generally enhances erosion. The latter was in focus of most research during the last decades and less interest was paid on natural systems, which are more difficult to study. Nevertheless, afforestation is widely used as a measure of soil protection against soil erosion. Rainfall can be highly erosive particularly in the humid subtropics. Regarding climate change, also precipitation regime may change in direction to even more severe storms and higher rainfall intensities; it is a research field of growing importance. Key mechanisms of a vegetation cover in reducing or enhancing erosion are modifications of drop-size distribution, retention of raindrop impact on the soil and changes in amount and spatial distribution of rainfall at the ground surface. Controlling determinants are rainfall intensity, drop size distribution, drop fall velocity, height of the canopy as well as density of the canopy, crown and leaf traits, LAI and coverage by a litter layer. Large drops are supposed to be significant sources of splash detachment in forests (Brandt 1989; Vis 1986). However, the mechanisms of reducing (or enhancing?) splash detachment under forest in relation to species richness and species composition are not well understood. Some studies indicate that raindrop impact is species specific (Calder 2001; Nanko et al. 2006) and some neglect the effects of species specific impacts (Foot & Morgan 2005). Our research uses different methods of rainfall characterization (splash cups, tipping-bucket rain gauge, laser distrometer) to reveal the described mechanisms from the canopy through different vegetation layers to the ground. First results of splash cup measurements (revised after Ellison 1947) show that sand loss under vegetation

  1. Mega-fire Recovery in Dry Conifer Forests of the Interior West

    Science.gov (United States)

    Malone, S. L.; Fornwalt, P.; Chambers, M. E.; Battaglia, M.

    2015-12-01

    Wildfire is a complex landscape process with great uncertainty in whether trends in size and severity are shifting trajectories for ecosystem recovery that are outside of the historical range of variability. Considering that wildfire size and severity is likely to increase into the future with a drier climate, it is important that we understand wildfire effects and ecosystem recovery. To evaluate how ecosystems recover from wildfire we measured spatial patterns in regeneration and mapped tree refugia within mega-fire perimeters (Hayman, Jasper, Bobcat, and Grizzly Gulch) in ponderosa pine (Pinus ponderosa) dominated forest. On average, high severity fire effects accounted for > 15% of burned area and increased with fire size. Areas with high severity fire effects contained 1 - 15% tree refugia cover, compared to 37 - 70% observed in low severity areas . Large high severity patches with low coverage of tree refugia, were more frequent in larger fires and regeneration distances required to initiate forest recovery far exceeded 1.5 canopy height or 200 m, distances where the vast majority of regeneration is likely to arise. Using a recovery model driven by distance, we estimate recovery times between 300 to > 1000 years for these mega-fires. In Western dry conifer forests, large patches of stand replacing fire are likely to lead to uneven aged forest and very long recovery times.

  2. Influence of matrix type on tree community assemblages along tropical dry forest edges.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Gallardo-Vásquez, Julio César; Alvarez-Añorve, Mariana Y; Avila-Cabadilla, Luis Daniel

    2014-05-01

    • Anthropogenic habitat edges have strong negative consequences for the functioning of tropical ecosystems. However, edge effects on tropical dry forest tree communities have been barely documented.• In Chamela, Mexico, we investigated the phylogenetic composition and structure of tree assemblages (≥5 cm dbh) along edges abutting different matrices: (1) disturbed vegetation with cattle, (2) pastures with cattle and, (3) pastures without cattle. Additionally, we sampled preserved forest interiors.• All edge types exhibited similar tree density, basal area and diversity to interior forests, but differed in species composition. A nonmetric multidimensional scaling ordination showed that the presence of cattle influenced species composition more strongly than the vegetation structure of the matrix; tree assemblages abutting matrices with cattle had lower scores in the ordination. The phylogenetic composition of tree assemblages followed the same pattern. The principal plant families and genera were associated according to disturbance regimes as follows: pastures and disturbed vegetation (1) with cattle and (2) without cattle, and (3) pastures without cattle and interior forests. All habitats showed random phylogenetic structures, suggesting that tree communities are assembled mainly by stochastic processes. Long-lived species persisting after edge creation could have important implications in the phylogenetic structure of tree assemblages.• Edge creation exerts a stronger influence on TDF vegetation pathways than previously documented, leading to new ecological communities. Phylogenetic analysis may, however, be needed to detect such changes. © 2014 Botanical Society of America, Inc.

  3. Identifying tropical dry forests extent and succession via the use of machine learning techniques

    Science.gov (United States)

    Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo

    2017-12-01

    Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.

  4. Post-fire regeneration in seasonally dry tropical forest fragments in southeastern Brazil.

    Science.gov (United States)

    Costa, Mayke B; Menezes, Luis Fernando T DE; Nascimento, Marcelo T

    2017-01-01

    Seasonally dry tropical forest is one of the highly threatened biome. However, studies on the effect of fire on these tree communities are still scarce. In this context, a floristic and structural survey in three forest areas in the southeast of Brazil that were affected by fire between 14 and 25 years ago was performed with the objective of evaluating post-fire regeneration. In each site, five systematically placed plots (25 m x 25 m each) were established. The more recently burnt site had significantly lower values of richness and diversity than the other two sites. However, the sites did not differ in density and basal area. Annona dolabripetala, Astronium concinnum, Joannesia princeps and Polyandrococos caudescens were within the 10 most important species for the three sites. Comparing these data with adjacent mature forests, the results indicated differences both in structural and floristic aspects, suggesting that the time after fire was not sufficient for recuperation of these areas. The recovery process indicate at least 190 years for areas return to basal area values close to those observed in mature forests nearby.

  5. Isolation with asymmetric gene flow during the nonsynchronous divergence of dry forest birds.

    Science.gov (United States)

    Oswald, Jessica A; Overcast, Isaac; Mauck, William M; Andersen, Michael J; Smith, Brian Tilston

    2017-03-01

    Dry forest bird communities in South America are often fragmented by intervening mountains and rainforests, generating high local endemism. The historical assembly of dry forest communities likely results from dynamic processes linked to numerous population histories among codistributed species. Nevertheless, species may diversify in the same way through time if landscape and environmental features, or species ecologies, similarly structure populations. Here we tested whether six co-distributed taxon pairs that occur in the dry forests of the Tumbes and Marañón Valley of northwestern South America show concordant patterns and modes of diversification. We employed a genome reduction technique, double-digest restriction site-associated DNA sequencing, and obtained 4407-7186 genomewide SNPs. We estimated demographic history in each taxon pair and inferred that all pairs had the same best-fit demographic model: isolation with asymmetric gene flow from the Tumbes into the Marañón Valley, suggesting a common diversification mode. Overall, we also observed congruence in effective population size (N e ) patterns where ancestral N e were 2.9-11.0× larger than present-day Marañón Valley populations and 0.3-2.0× larger than Tumbesian populations. Present-day Marañón Valley N e was smaller than Tumbes. In contrast, we found simultaneous population isolation due to a single event to be unlikely as taxon pairs diverged over an extended period of time (0.1-2.9 Ma) with multiple nonoverlapping divergence periods. Our results show that even when populations of codistributed species asynchronously diverge, the mode of their differentiation can remain conserved over millions of years. Divergence by allopatric isolation due to barrier formation does not explain the mode of differentiation between these two bird assemblages; rather, migration of individuals occurred before and after geographic isolation. © 2017 John Wiley & Sons Ltd.

  6. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    International Nuclear Information System (INIS)

    Kauffman, J.B.; Cummings, D.L.; Sanford, R.L. Jr.; Salcedo, I.H.; Sampaio, E.V.S.B.

    1993-01-01

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest (open-quotes Caatingaclose quotes) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was ∼74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (< O.64 cm diameter). While these components comprised only 30% of the prefire aboveground biomass, they accounted for ∼60% of the aboveground pools of N and P. Three experimental fires were conducted during the 1989 burning season. Consumption was 78, 88, and 95% of the total aboveground biomass. As much as 96% of the prefire aboveground N and C pools and 56% of the prefire aboveground P pool was lost. Nitrogen losses exceeded 500 kg/ha and P losses exceeded 20 kg/ha in the fires of the greatest severity. With increasing fire severity, the concentrations of N and P in ash decreased while the concentration of Ca increased. Greater ecosystem losses of these nutrients occurred with increasing fire severity. Following fire, up to 47% of the residual aboveground N and 84% of the residual aboveground P were in the form of ash, quickly lost from the site via wind erosion. Fires appeared to have a minor immediate effect on total N, C, or P in the soils. However, soils in forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. It would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less. 38 refs., 2 figs., 7 tabs

  7. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community.

    Science.gov (United States)

    Reyes-García, C; Mejia-Chang, M; Griffiths, H

    2012-02-01

    • Vascular epiphytes have developed distinct lifeforms to maximize water uptake and storage, particularly when delivered as pulses of precipitation, dewfall or fog. The seasonally dry forest of Chamela, Mexico, has a community of epiphytic bromeliads with Crassulacean acid metabolism showing diverse morphologies and stratification within the canopy. We hypothesize that niche differentiation may be related to the capacity to use fog and dew effectively to perform photosynthesis and to maintain water status. • Four Tillandsia species with either 'tank' or 'atmospheric' lifeforms were studied using seasonal field data and glasshouse experimentation, and compared on the basis of water use, leaf water δ(18) O, photosynthetic and morphological traits. • The atmospheric species, Tillandsia eistetteri, with narrow leaves and the lowest succulence, was restricted to the upper canopy, but displayed the widest range of physiological responses to pulses of precipitation and fog, and was a fog-catching 'nebulophyte'. The other atmospheric species, Tillandsia intermedia, was highly succulent, restricted to the lower canopy and with a narrower range of physiological responses. Both upper canopy tank species relied on tank water and stomatal closure to avoid desiccation. • Niche differentiation was related to capacity for water storage, dependence on fog or dewfall and physiological plasticity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  8. Diametric structure in a tropical dry forest fragment in the Cerrado Eco-Museum region, Brazil

    International Nuclear Information System (INIS)

    Imana Encinas Jose, Antunes Santana Otacilio; Rainier Imana Christian

    2011-01-01

    In a tropical dry forest area of the Brazilian central region, the DBH distribution of 742 trees ≥ 5 cm was analyzed in a 4000 m 2 area. Eighty three tree species were found, of which 25 species with more than 10 individuals were analyzed for this study. The frequency histograms were obtained through the Meyer and Gaussian equations. The DBH distribution of the population showed a negative exponential inverse J curve. Of the 25 species selected, 14 exhibited the same pattern. Eight species presented a tendency near the normal distribution while three species had an abnormal pattern. We concluded that the observed fragment is in a natural auto regenerative status.

  9. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    DEFF Research Database (Denmark)

    Rannik, Üllar; Zhou, Luxi; Zhou, Putian

    2016-01-01

    of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport...... of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded...... the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading...

  10. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition

    Science.gov (United States)

    Santiago, L. S.; Silvera, K.; Andrade, J. L.; Dawson, T. E.

    2017-11-01

    Tropical dry forests (TDFs) undergo a substantial dry season in which plant species must endure several months of drought. Although TDFs support a diverse array of plant growth forms, it is not clear how they vary in mechanisms for coping with seasonal drought. We measured organic tissue stable isotopic composition of carbon (δ13C) and nitrogen (δ15N) across six plant growth forms including epiphytes, terrestrial succulents, trees, shrubs, herbs, and vines, and oxygen (δ18O) of four growth forms, to distinguish among patterns of resource acquisition and evaluate mechanisms for surviving annual drought in a lowland tropical dry forest in Yucatan, Mexico. Terrestrial succulent and epiphyte δ13C was around -14‰, indicating photosynthesis through the Crassulacean acid metabolism pathway, and along with one C4 herb were distinct from mean values of all other growth forms, which were between -26 and -29‰ indicating C3 photosynthesis. Mean tissue δ15N across epiphytes was -4.95‰ and was significantly lower than all other growth forms, which had values around +3‰. Tissue N concentration varied significantly among growth forms with epiphytes and terrestrial succulents having significantly lower values of about 1% compared to trees, shrubs, herbs and vines, which were around 3%. Tissue C concentration was highest in trees, shrubs and vines, intermediate in herbs and epiphytes and lowest in terrestrial succulents. δ18O did not vary among growth forms. Overall, our results suggest several water-saving aspects of resource acquisition, including the absolute occurrence of CAM photosynthesis in terrestrial succulents and epiphytes, high concentrations of leaf N in some species, which may facilitate CO2 drawdown by photosynthetic enzymes for a given stomatal conductance, and potentially diverse N sources ranging from atmospheric N in epiphytes with extremely depleted δ15N values, and a large range of δ15N values among trees, many of which are legumes and dry season

  11. Patterns of forest composition and their long term environmental drivers in the tropical dry forest transition zone of southern Africa

    Directory of Open Access Journals (Sweden)

    Vera De Cauwer

    2016-09-01

    Full Text Available Background Tropical dry forests cover less than 13 % of the world’s tropical forests and their area and biodiversity are declining. In southern Africa, the major threat is increasing population pressure, while drought caused by climate change is a potential threat in the drier transition zones to shrub land. Monitoring climate change impacts in these transition zones is difficult as there is inadequate information on forest composition to allow disentanglement from other environmental drivers. Methods This study combined historical and modern forest inventories covering an area of 21,000 km2 in a transition zone in Namibia and Angola to distinguish late succession tree communities, to understand their dependence on site factors, and to detect trends in the forest composition over the last 40 years. Results The woodlands were dominated by six tree species that represented 84 % of the total basal area and can be referred to as Baikiaea - Pterocarpus woodlands. A boosted regression tree analysis revealed that late succession tree communities are primarily determined by climate and topography. The Schinziophyton rautanenii and Baikiaea plurijuga communities are common on slightly inclined dune or valley slopes and had the highest basal area (5.5 – 6.2 m2 ha−1. The Burkea africana - Guibourtia coleosperma and Pterocarpus angolensis – Dialium englerianum communities are typical for the sandy plateaux and have a higher proportion of smaller stems caused by a higher fire frequency. A decrease in overall basal area or a trend of increasing domination by the more drought and cold resilient B. africana community was not confirmed by the historical data, but there were significant decreases in basal area for Ochna pulchra and the valuable fruit tree D. englerianum. Conclusions The slope communities are more sheltered from fire, frost and drought but are more susceptible to human expansion. The community with the important timber tree P

  12. Evaluating the Applicability of Phi Coefficient in Indicating Habitat Preferences of Forest Soil Fauna Based on a Single Field Study in Subtropical China.

    Science.gov (United States)

    Cui, Yang; Wang, Silong; Yan, Shaokui

    2016-01-01

    Phi coefficient directly depends on the frequencies of occurrence of organisms and has been widely used in vegetation ecology to analyse the associations of organisms with site groups, providing a characterization of ecological preference, but its application in soil ecology remains rare. Based on a single field experiment, this study assessed the applicability of phi coefficient in indicating the habitat preferences of soil fauna, through comparing phi coefficient-induced results with those of ordination methods in charactering soil fauna-habitat(factors) relationships. Eight different habitats of soil fauna were implemented by reciprocal transfer of defaunated soil cores between two types of subtropical forests. Canonical correlation analysis (CCorA) showed that ecological patterns of fauna-habitat relationships and inter-fauna taxa relationships expressed, respectively, by phi coefficients and predicted abundances calculated from partial redundancy analysis (RDA), were extremely similar, and a highly significant relationship between the two datasets was observed (Pillai's trace statistic = 1.998, P = 0.007). In addition, highly positive correlations between phi coefficients and predicted abundances for Acari, Collembola, Nematode and Hemiptera were observed using linear regression analysis. Quantitative relationships between habitat preferences and soil chemical variables were also obtained by linear regression, which were analogous to the results displayed in a partial RDA biplot. Our results suggest that phi coefficient could be applicable on a local scale in evaluating habitat preferences of soil fauna at coarse taxonomic levels, and that the phi coefficient-induced information, such as ecological preferences and the associated quantitative relationships with habitat factors, will be largely complementary to the results of ordination methods. The application of phi coefficient in soil ecology may extend our knowledge about habitat preferences and distribution

  13. Utilization of lightflecks by seedlings of five dominant tree species of different subtropical forest successional stages under low-light growth conditions.

    Science.gov (United States)

    Zhang, Q; Chen, Y J; Song, L Y; Liu, N; Sun, L L; Peng, C L

    2012-05-01

    We selected five typical tree species, including one early-successional species (ES) Pinus massoniana Lamb., two mid-successional species (MS) Schima superba Gardn. et Champ. and Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils. and two late-successional species (LS) Cryptocarya concinna Hance. and Acmena acuminatissima (BI.) Merr et Perry., which represent the plants at three successional periods in Dinghushan subtropical forest succession of southern China. Potted seedlings of the five species were grown under 12% of full sunlight for 36 months. The ES and MS showed the slowest and fastest responses to lightflecks, respectively, which correlated with the rate of stomatal opening. In contrast to P. massoniana and C. concinna, the other three species exhibited a high induction loss. Early-successional species showed the lowest specific leaf area and chlorophyll content, the highest photosynthetic capacity (A(max)) and respiratory carbon losses (R(d)). Compared with ES and MS, LS showed lower A(max) and R(d). The five tree species showed a similar chlorophyll a/b ratio after long-term low-light adaptations. On the other hand, LS had a relatively higher de-epoxidation state to protect themselves from excess light during lightflecks. Our results indicated that (i) slower responses to lightflecks could partially explain why ES species could not achieve seedling regeneration in low-light conditions; (ii) fast responses to lightflecks could partially explain why MS species could achieve seedling regeneration in low-light conditions; and (iii) smaller respiratory carbon losses might confer on the LS species a competitive advantage in low-light conditions.

  14. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    Science.gov (United States)

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments

  15. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations

    Directory of Open Access Journals (Sweden)

    ROBSON B. DE LIMA

    2017-08-01

    Full Text Available ABSTRACT Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005 generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005 is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

  16. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations.

    Science.gov (United States)

    Lima, Robson B DE; Alves, Francisco T; Oliveira, Cinthia P DE; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

  17. Diptera of Medico-Legal Importance Associated With Pig Carrion in a Tropical Dry Forest.

    Science.gov (United States)

    Vasconcelos, S D; Salgado, R L; Barbosa, T M; Souza, J R B

    2016-06-20

    The diversity of necrophagous Diptera is largely unknown in seasonally dry tropical forests, despite their medical, veterinary, and forensic relevance. We performed a study in the dry Caatinga forest exclusive to Brazil in order to assess the diversity and temporal pattern of Diptera species using pig carcasses as substrates. Adults were collected daily until complete skeletonization. We collected 17,142 adults from 18 families, 10 of which comprise species with known necrophagous habits. The most abundant families were Calliphoridae (47.3% of specimens), Sarcophagidae (20.8%), and Muscidae (15.5%), whereas Sarcophagidae stood out in terms of richness with 21 species. The native Cochliomyia macellaria (F.) (Diptera: Calliphoridae) and the invasive Chrysomya albiceps (Wiedmann) (Calliphoridae) were the dominant species. A total of 18 species reached the carcass during the first 48 h postdeath. The bloated and active decay stages had the highest richness and abundance of dipterans. From a forensic standpoint, C. macellaria and C. albiceps are likely to aid in establishing postmortem interval due to their early arrival and high abundance on the carcass. Despite harsh environmental conditions, the Caatinga harbors a rich assemblage of dipterans that play a key role in carrion decomposition. Their medico-veterinary importance is strengthened by the poor local sanitary conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    Science.gov (United States)

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  19. Phytossociology of wood community in Seasonal Dry Montane Forest in Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Learth Cunha

    2013-06-01

    Full Text Available The Pico do Jabre Seasonally Dry Montane Forest in Paraiba state, Brazil, the highest regional elevation, 1197 m, distant 360 km the sea was assessed aiming to survey its phytosociology and woody structure. In 36 systematic sampling plots, 10x50m, individuals, Dbh > 4.8cm, had their diameters and height measured. Botanical samples were collected during five years and vouchers were deposited at the Paraiba Federal University Herbaria (JPB. It was found 2050 trees distributed in 64 species of 51 genera of 31 families, which accounted for 1138 ind.ha-1 and 22.45 m2.ha -1. Diversity and equability were assessed as H' = 3.17 nats.ind-1 and J' = 0.76 similar to some others regional seasonally dry montane forest communities. Malpighiaceae, Myrtaceae, Erythroxylaceae, Vochysiaceae, Celastraceae, Rutaceae, Sapindaceae e Fabaceae-Faboideae stood out and summed 66.72% of the total VI. Byrsonima nitidifolia, Eugenia ligustrina, Calisthene microphylla, Maytenus distichophylla and Erythroxylum mucronatum species accounted for 120.79 (40.3% of the total VI. B. nitidifolia ecological dominance is firstly reported in the Brazilian northeast region.

  20. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.

    Science.gov (United States)

    Power, M J; Whitney, B S; Mayle, F E; Neves, D M; de Boer, E J; Maclean, K S

    2016-06-05

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  1. Response of the Fine Root Production, Phenology, and Turnover Rate of Six Shrub Species from a Subtropical Forest to a Soil Moisture Gradient and Shading

    Science.gov (United States)

    Fu, X.; Dai, X.; Wang, H.

    2015-12-01

    Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics

  2. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment.

    Science.gov (United States)

    Kröber, Wenzel; Li, Ying; Härdtle, Werner; Ma, Keping; Schmid, Bernhard; Schmidt, Karsten; Scholten, Thomas; Seidler, Gunnar; von Oheimb, Goddert; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2015-09-01

    While functional diversity (FD) has been shown to be positively related to a number of ecosystem functions including biomass production, it may have a much less pronounced effect than that of environmental factors or species-specific properties. Leaf and wood traits can be considered particularly relevant to tree growth, as they reflect a trade-off between resources invested into growth and persistence. Our study focussed on the degree to which early forest growth was driven by FD, the environment (11 variables characterizing abiotic habitat conditions), and community-weighted mean (CWM) values of species traits in the context of a large-scale tree diversity experiment (BEF-China). Growth rates of trees with respect to crown diameter were aggregated across 231 plots (hosting between one and 23 tree species) and related to environmental variables, FD, and CWM, the latter two of which were based on 41 plant functional traits. The effects of each of the three predictor groups were analyzed separately by mixed model optimization and jointly by variance partitioning. Numerous single traits predicted plot-level tree growth, both in the models based on CWMs and FD, but none of the environmental variables was able to predict tree growth. In the best models, environment and FD explained only 4 and 31% of variation in crown growth rates, respectively, while CWM trait values explained 42%. In total, the best models accounted for 51% of crown growth. The marginal role of the selected environmental variables was unexpected, given the high topographic heterogeneity and large size of the experiment, as was the significant impact of FD, demonstrating that positive diversity effects already occur during the early stages in tree plantations.

  3. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest.

    Science.gov (United States)

    Cuautle, M; Vergara, C H; Badano, E I

    2016-04-01

    Ants have been used to assess land use conversion, because they reflect environmental change, and their response to these changes have been useful in the identification of bioindicators. We evaluated ant diversity and composition associated to different land use change in a temperate forest (above 2000 m asl) in Mexico. The study was carried out in "Flor del Bosque" Park a vegetation mosaic of native Oak Forests and introduced Eucalyptus and grasslands. Species richness, dominance and diversity rarefaction curves, based on ant morphospecies and functional groups, were constructed and compared among the three vegetation types, for the rainy and the dry seasons of 2008-2009. Jaccard and Sorensen incidence-based indices were calculated to obtain similarity values among all the habitats. The Oak Forest was a rich dominant community, both in species and functional groups; the Eucalyptus plantation was diverse with low dominance. The most seasonality habitat was the grassland, with low species and high functional group diversity during the dry seasons, but the reverse pattern during the wet season. The Oak Forest was more similar to the Eucalyptus plantation than to the grassland, particularly during the dry season. Oak Forests are dominated by Cold Climate Specialists, specifically Prenolepis imparis (Say). The Eucalyptus and the grassland are characterized by generalized Myrmicinae, as Pheidole spp. and Monomorium ebenium (Forel). The conservation of the native Oak Forest is primordial for the maintenance of Cold Climate Specialist ant communities. The microclimatic conditions in this forest, probably, prevented the invasion by opportunistic species.

  4. Long-term persistence and fire resilience of oak shrubfields in dry conifer forests of northern New Mexico

    Science.gov (United States)

    Guiterman, Christopher H.; Margolis, Ellis; Allen, Craig D.; Falk, Donald A.; Swetnam, Thomas W.

    2017-01-01

    Extensive high-severity fires are creating large shrubfields in many dry conifer forests of the interior western USA, raising concerns about forest-to-shrub conversion. This study evaluates the role of disturbance in shrubfield formation, maintenance and succession in the Jemez Mountains, New Mexico. We compared the environmental conditions of extant Gambel oak (Quercus gambelii) shrubfields with adjoining dry conifer forests and used dendroecological methods to determine the multi-century fire history and successional dynamics of five of the largest shrubfields (76–340 ha). Across the study area, 349 shrubfields (5–368 ha) occur in similar topographic and climate settings as dry conifer forests. This suggests disturbance, rather than other biophysical factors, may explain their origins and persistence. Gambel oak ages and tree-ring fire scars in our sampled shrubfields indicate they historically (1664–1899) burned concurrently with adjoining conifer forests and have persisted for over 115 years in the absence of fire. Aerial imagery from 1935 confirmed almost no change in sampled shrubfield patch sizes or boundaries over the twentieth century. The largest shrubfield we identified is less than 4% the size of the largest conifer-depleted and substantially shrub-dominated area recently formed in the Jemez following extensive high-severity wildfires, indicating considerable departure from historical patterns and processes. Projected hotter droughts and increasingly large high-severity fires could trigger more forest-to-shrub transitions and maintain existing shrubfields, inhibiting conifer forest recovery. Restoration of surface fire regimes and associated historical forest structures likely could reduce the rate and patch size of dry conifer forests being converted to shrubfields.

  5. Efficient way back litters nutrient potential of a tropical forest of bank. Sierra Nevada of Santa Marta Colombia

    International Nuclear Information System (INIS)

    Fuentes Molina, Natalia; Rodriguez Barrios, Javier Alfredo

    2012-01-01

    In three representative forests along the River Gaira, (subtropical wet forest, subtropical moist forest and tropical thorn mount), were measured over six months (wet and dry seasons) fluxes of nitrogen and phosphorus through the litter. Concentrations of nutrients (nitrogen and phosphorus) in the litter were relatively similar in the three Nevada de Santa Marta Colombia. Fuentes, Rodriguez. vegetation types (1.71% n and 0.12% p for the subtropical moist forest, followed by the tropical thorn mount with 1.50% n and 0.10% p and the subtropical wet forest with 1.39% n and 0.08% p), with the most significant differences found for nitrogen, which is the major nutrient with the absolute maximum in the subtropical rain forest set in the middle stretch of the basin. The greatest returns on biomass and nutrients occurred in the subtropical moist forest and tropical thorn mount set in the middle and lower reaches of the basin. The leaves showed high concentration of n and consequently, given the high production values of the different fractions, a high potential return of n (78.6 kg ha-1 yr-1). The foliar p concentration showed a potential return of 4.9 kgha1yr-1 and high values of the indices of efficiency in their use (iev: 2888.5) and foliar resorption (ern: 98.2), was the nutrient most limiting.

  6. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador

    Science.gov (United States)

    Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium. PMID:29267357

  7. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  8. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador.

    Science.gov (United States)

    Manchego, Carlos E; Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.

  9. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  10. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.

    Science.gov (United States)

    Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J

    2016-05-01

    We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.

  11. Impact of habitat degradation on phlebotominae (Diptera: Psychodidae) of tropical dry forests in Northern Colombia.

    Science.gov (United States)

    Travi, Bruno L; Adler, Gregory H; Lozano, Margarita; Cadena, Horacio; Montoya-Lerma, James

    2002-05-01

    We examined changes in the phlebotomine fauna resulting from human intervention in a tropical dry forest of Northern Colombia where visceral and cutaneous leishmaniases are endemic. A natural forest reserve (Colosó) and a highly degraded area (San Andrés de Sotavento [SAS]) were sampled monthly for 8 mo using Shannon traps, sticky traps, and resting-site collections. Overall abundances were higher in Colosó (15,988) than in SAS (2,324). and species richness of phlebotomines was greater in the forest reserve (11 species) than in the degraded habitat (seven species). Fisher alpha, a measure of diversity, reinforced this trend. Both sand fly communities were dominated by Lutzomyia evansi (Nuòez-Tovar), vector of Leishmania chagasi (Cunha & Chagas), representing 92 and 81% of all captures in Colosó and SAS, respectively. Lutzomyia longipalpis (Lutz & Neiva), the common vector of visceral leishmaniasis, accounted for 4-7% of the sand fly community. Lutzornyia panamensis (Shannon) and Lutzomya gomezi (Nitzulescu), putative vectors of Leishmania braziliensis (Vianna), had low abundances at both study sites. The zoophilic species Lutzomyia cayennensis (Floch & Abonneuc) and Lutzomyia trinidadensis (Newstead) were present in variable numbers according to trapping methods and site. Habitat degradation negatively affected sand fly communities, but medically important species were able to exploit modified environments, thereby contributing to Lishmania endemicity.

  12. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    Science.gov (United States)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  13. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    Directory of Open Access Journals (Sweden)

    Ü. Rannik

    2016-03-01

    Full Text Available A 1-D atmospheric boundary layer (ABL model coupled with a detailed atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict the ABL and detailed aerosol population (characterized by the number size distribution time evolution. The model was applied over a period of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading us to assume well-mixed properties of air, the fluxes at the canopy top frequently deviated from deposition inside the forest. This was due to transformation of aerosol concentration throughout the ABL and resulting complicated pattern of vertical transport. Therefore we argue that the comparison of timescales of aerosol dynamics and deposition defined for the processes below the flux measurement level do not unambiguously describe the importance of aerosol dynamics for vertical transport above the canopy. We conclude that under dynamical conditions reported in the current study the micrometeorological particle flux measurements can significantly deviate from the dry deposition into the canopy. The deviation can be systematic for certain size ranges so that the

  14. Variation of biomass and carbon pool with NDVI and altitude in sub-tropical forests of northwestern Himalaya.

    Science.gov (United States)

    Bhardwaj, D R; Banday, Muneesa; Pala, Nazir A; Rajput, Bhalendra Singh

    2016-11-01

    In the present study, forests at three altitudes, viz., A 1 (600-900 m), A 2 (900-1200 m) and A 3 (1200-1500 m) above mean sea level having normalised differential vegetation index (NDVI) values of N 1 (0.0-0.1), N 2 (0.1-0.2), N 3 (0.2-0.3), N 4 (0.3-0.4) and N 5 (0.4-0.5) were selected for studying their relationship with the biomass and carbon pool in the state of Himachal Pradesh, India. The study reported maximum stem density of (928 trees ha -1 ) at the A 2 altitude and minimum in the A 3 and A 1 with 600 trees ha -1 each. The stem densities in relation to NDVIs were observed in the order N 5 > N 3 > N 4 > N 1 > N 2 and did not show any definite trend with increasing altitude. Highest stem volume (295.7 m 3  ha -1 ) was observed in N 1 NDVI and minimum (194.1 m 3  ha -1 ) in N 3 index. The trend observed for stem biomass at different altitudes was A 3 > A 1 > A 2 and for NDVIs, it was N 5 > N 1 > N 4 > N 2 > N 3 . Maximum aboveground biomass (265.83 t ha -1 ) was recorded in the 0.0-0.1 NDVI and minimum (169.05 t ha -1 ) in 0.2-0.3 NDVI index. Significantly, maximum total soil carbon density (90.82 t C ha -1 ) was observed in 0.4-0.5 NDVI followed by 0.3-0.4 NDVI (77.12 t C ha -1 ). The relationship between soil carbon and other studied parameters was derived through different functions simultaneously. Cubic function showed highest r 2 in most cases, followed by power, inverse and exponential function. The relationship with NDVI showed highest r 2 (0.62) through cubic functions. In relationship between ecosystem carbon with other parameters of different altitudinal gradient and NDVI, only one positively significant relation was formed with total density (0.579) through cubic function. The present study thus reveals that soil carbon density was directly related to altitude and NDVIs, but the vegetation carbon density did not bear any significant relation with altitude and NDVI.

  15. Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis.

    Directory of Open Access Journals (Sweden)

    Warita Alves de Melo

    Full Text Available Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM, which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM. We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers and nuclear (ITS nrDNA genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM. Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the

  16. Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis.

    Science.gov (United States)

    de Melo, Warita Alves; Lima-Ribeiro, Matheus S; Terribile, Levi Carina; Collevatti, Rosane G

    2016-01-01

    Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM), which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae) to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM). We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin) and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM). Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the South

  17. Phytogeographical patterns of dry forests sensu stricto in northern Minas Gerais State, Brazil.

    Science.gov (United States)

    Arruda, Daniel M; Ferreira-Júnior, Walnir G; Duque-Brasil, Reinaldo; Schaefer, Carlos E R

    2013-01-01

    The Deciduous Complex that occurs in northern Minas Gerais State, Brazil, raises questions about the floristic affinities of these formations in relation to neighboring phytogeographical domains. Little is known about the identity of the seasonal forest formations that comprise this complex, or about its relationships to abiotic components, such as soils, topography and climate. This study aimed to recognize the patterns of floristic similarity of all studied fragments of dry forest of northern Minas Gerais with soil and climate attributes, based on the available database. Cluster analysis indicated the existence of two floristic groups that had clear associations with either the Koppen's BSh (semi-arid) or Aw (seasonal tropical) climates. Likewise, the subdivisions of these groups showed clear associations with the dominant soil classes in the region. The Red-Yellow Latosol is the dominant soil classes in the BSh climatic domain, seconded by alluvial areas associated with Fluvic Neosols. The Aw domain comprised a much varied set of soils: Nitosols, Argisols, Cambisols and Litholic Neosols, most derived from the Bambuí limestone/slate formation. The ecotonal nature of northern Minas Gerais State provides a complex interaction between the flora of neighboring phytogeographical domains. This, allied to pedogeomorphological factors, allowed a better understanding of the effects of late Quaternary climate changes for the Deciduous Complex evolution. We conclude that the Latosols under present-day semi-arid climates (BSh) are relicts of former wetter climates, during which humid forest (semideciduous) expansion took place. Later, these semideciduous forests were subjected to a much drier climate, when selection for deciduousness led to the present-days Deciduous Complex scenario.

  18. The Tetramerium lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc hypothesis for South American seasonally dry forests.

    Science.gov (United States)

    Côrtes, Ana Luiza A; Rapini, Alessandro; Daniel, Thomas F

    2015-06-01

    The Tetramerium lineage (Acanthaceae) presents a striking ecological structuring in South America, with groups concentrated in moist forests or in seasonally dry forests. In this study, we investigate the circumscription and relationships of the South American genera as a basis for better understanding historic interactions between dry and moist biomes in the Neotropics. We dated the ancestral distribution of the Tetramerium lineage based on one nuclear and four plastid DNA regions. Maximum parsimony, maximum likelihood, and Bayesian inference analyses were performed for this study using 104 terminals. Phylogenetic divergences were dated using a relaxed molecular clock approach and ancestral distributions obtained from dispersal-vicariance analyses. The genera Pachystachys, Schaueria, and Thyrsacanthus are nonmonophyletic. A dry forest lineage dispersed from North America to South America and reached the southwestern part of the continent between the end of the Miocene and beginning of the Pleistocene. This period coincides with the segregation between Amazonian and Atlantic moist forests that established the geographic structure currently found in the group. The South American genera Pachystachys, Schaueria, and Thyrsacanthus need to be recircumscribed. The congruence among biogeographical events found for the Tetramerium lineage suggests that the dry forest centers currently dispersed throughout South America are relatively old remnants, probably isolated since the Neogene, much earlier than the Last Glacial Maximum postulated by the Pleistocene Arc hypothesis. In addition to exploring the Pleistocene Arc hypothesis, this research also informs evolution in a lineage with numerous geographically restricted and threatened species. © 2015 Botanical Society of America, Inc.

  19. Vegetation and Lepidoptera in Seasonally Dry Tropical Forests. Community structure along climate zones, forest succession and seasonality in the Southern Yucatán, Mexico

    NARCIS (Netherlands)

    Essens, T.; Leyequien, E.; Pozo, C.

    2010-01-01

    Seasonally dry tropical forests are worldwide recognized as important ecosystems for biodiversity conservation. Increasing agricultural activities (e.g., slash-and-burn agriculture) leads to a heterogeneous landscape matrix; and as ecological succession takes over in abandoned fields, plant and

  20. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    Science.gov (United States)

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  1. Phylogenetic classification of the world's tropical forests.

    Science.gov (United States)

    Slik, J W Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C, Gerardo A; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L; Bastin, Jean-François; Bellingham, Peter J; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H S; Davidar, Priya; DeWalt, Saara J; Din, Hazimah; Drake, Donald R; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M; Grogan, James; Hakeem, Khalid Rehman; Harris, David J; Harrison, Rhett D; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M Shah; Ibarra-Manríquez, Guillermo; Hanum, I Faridah; Imai, Nobuo; Jansen, Patrick A; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kessler, Michael; Killeen, Timothy J; Kooyman, Robert M; Laumonier, Yves; Laurance, Susan G; Laurance, William F; Lawes, Michael J; Letcher, Susan G; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R; Martin, Emanuel H; Calderado Leal Matos, Darley; Meave, Jorge A; Melo, Felipe P L; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D; Munguía-Rosas, Miguel A; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R; Powers, Jennifer S; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S B; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z; Saner, Philippe; Santos, Braulio; Dos Santos, João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V J; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Webb, Edward L; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo

    2018-02-20

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: ( i ) Indo-Pacific, ( ii ) Subtropical, ( iii ) African, ( iv ) American, and ( v ) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. Copyright © 2018 the Author(s). Published by PNAS.

  2. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    Science.gov (United States)

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some

  3. CLIMATE-TREE GROWTH RELATIONSHIPS OF Mimosa tenuiflora IN SEASONALLY DRY TROPICAL FOREST, BRAZIL

    Directory of Open Access Journals (Sweden)

    Patrícia Póvoa Mattos

    2015-03-01

    Full Text Available Mimosa tenuiflora is a native pioneer tree from the Caatinga used commercially as firewood due to its high calorific value. It is deciduous, its trunk does not reach large diameters and it has good regrowth capacity. This study intended to determine the annual increment in diameter of M. tenuiflora and its correlation with rainfall, as basis for fuel wood management. Disks from the stem base of M. tenuiflora trees were collected in 2008 in Sertânia and Serra Talhada, Pernambuco State, from regrowth of trees coppiced in 2003 and in Limoeiro do Norte, Ceará State, from a plantation established in 2002. The trees have well-defined annual growth rings, highly correlated with annual precipitation and are well-suited for dendrochronological investigations. Forest managers must consider the influence of previous drier years in the wood production when predicting fuel wood harvesting. The high growth correlation with the previous year’s rainfall in regions where the rains start after photoperiodic stimulation indicate the necessity of understanding the growth dynamics of the species under dry forest conditions through additional ecophysiology studies.

  4. Myiarchus flycatchers are the primary seed dispersers of Bursera longipes in a Mexican dry forest

    Directory of Open Access Journals (Sweden)

    R. Carlos Almazán-Núñez

    2016-06-01

    Full Text Available We evaluated the seed dispersal of Bursera longipes by birds along a successional gradient of tropical dry forest (TDF in southwestern Mexico. B. longipes is an endemic tree to the TDF in the Balsas basin. The relative abundance of frugivorous birds, their frequency of visits to B. longipes and the number of removed fruits were recorded at three study sites with different stages of forest succession (early, intermediate and mature characterized by distinct floristic and structural elements. Flycatchers of the Myiarchus and Tyrannus genera removed the majority of fruits at each site. Overall, visits to B. longipes were less frequent at the early successional site. Birds that function as legitimate dispersers by consuming whole seeds and regurgitating or defecating intact seeds in the process also remove the pseudoaril from seeds, thereby facilitating the germination process. The highest germination percentages were recorded for seeds that passed through the digestive system of two migratory flycatchers: M. cinerascens and M. nutingii. Perch plants, mainly composed of legumes (e.g., Eysenhardtia polystachya, Acacia cochliacantha, Calliandra eryophylla, Mimosa polyantha, serve also as nurse plants since the number of young individuals recruited from B. longipes was higher under these than expected by chance. This study shows that Myiarchus flycatchers are the most efficient seed dispersers of B. longipes across all successional stages. This suggests a close mutualistic relationship derived from adaptive processes and local specializations throughout the distribution of both taxa, as supported by the geographic mosaic theory of coevolution.

  5. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  6. The impact of an invasive African bunchgrass (Pennisetum setaceum) on water availability and productivity of canopy trees within a tropical dry forest in Hawaii

    Science.gov (United States)

    Susan Cordell; D. R. Sandquist

    2008-01-01

    Tropical dry forests are among the Earth's most threatened ecosystems. On the Island of Hawaii the African bunchgrass Pennisetum setaceum (fountain grass) dominates the understorey of the few remaining fragments of native dry forests and is contributing to the degradation of this once diverse ecosystem. In this study, we...

  7. Birds surveyed in the harvested and unharvested areas of a reduced-impact logged forestry concession, located in the lowland subtropical humid forests of the Department of Santa Cruz, Bolivia.

    Directory of Open Access Journals (Sweden)

    Felton, A.

    2007-01-01

    Full Text Available As part of a larger study of reduced-impactlogging effects on bird community composition,we surveyed birds from December to Februaryduring the 2003-2004 wet-season within harvestedand unharvested blocks of the La Chonta forestryconcession, Department of Santa Cruz, Bolivia.The logged forest was harvested using reduced-impactlogging techniques between one and fouryears previously. During point count surveys, weidentified 5062 individual birds, belonging to 155species, and 33 families. We provide a list of birdspecies found within the harvested andunharvested blocks of the concession for thebenefit of other researchers assessing theresponses of Neotropical avifauna to disturbance,and to facilitate increased understanding of thediverse bird assemblages found within thelowland subtropical humid forests of Bolivia.

  8. Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015

    Science.gov (United States)

    Dupin, Mariana G. V.; Espírito-Santo, Mário M.; Leite, Marcos E.; Silva, Jhonathan O.; Rocha, André M.; Barbosa, Rômulo S.; Anaya, Felisa C.

    2018-03-01

    Tropical Dry Forests (TDFs) have been broadly converted into pastures and crops, with direct consequences to biodiversity, ecosystem services, and social welfare. Such land use and cover changes (LUCC) usually are strongly influenced by government environmental and development policies. The present study aimed at analyzing LUCC in Brazilian TDFs between 2000 and 2015, using the north of Minas Gerais state (128 000 km2) as a case study. We evaluated the potential biophysical and social-economic drivers of TDF loss, natural regeneration and net area change at the county level. Further, we determined the effects of these LUCC variables on socioeconomic indicators. We identified a considerable change in TDF cover, expressed as 9825 km2 of deforestation and 6523 km2 of regeneration, which resulted in a net loss of 3302 km2. The annual rate of TDF cover change was -1.2%, which is extremely high for a vegetation type that is protected as part of the Atlantic Rain Forest biome since 1993. TDF deforestation was directly affected by county area and by the increase in cattle density, and inversely affected by terrain declivity, indicating that land conversion is mostly driven by cattle ranching in flat regions. TDF regeneration was directly affected by county area and inversely affected by the increase in population density and terrain declivity. LUCC variables did not affect welfare indicators, undermining claims from rural sectors that TDF protection would cause a socioeconomic burden for northern Minas Gerais. Our results highlight the importance of naturally regenerating secondary forests to the maintenance of ecosystem integrity and its services, which are frequently neglected in conservation strategies. Hegemonic macroeconomic policies affecting TDFs have been deeply rooted in deforestation for commodities production, and need urgent review because they cause long-term environmental impacts without evidence of welfare gains.

  9. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    Science.gov (United States)

    Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  10. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    Directory of Open Access Journals (Sweden)

    Christopher Blair

    Full Text Available Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  11. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    Science.gov (United States)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere

  12. Landscape Genetics of Leaf-Toed Geckos in the Tropical Dry Forest of Northern Mexico

    Science.gov (United States)

    Blair, Christopher; Jiménez Arcos, Victor H.; Mendez de la Cruz, Fausto R.; Murphy, Robert W.

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by F ST and D est. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted. PMID:23451230

  13. Diurnal flight behavior of Ichneumonoidea (Insecta: Hymenoptera) related to environmental factors in a tropical dry forest.

    Science.gov (United States)

    González-Moreno, A; Bordera, S; Leirana-Alcocer, J; Delfín-González, H

    2012-06-01

    The biology and behavior of insects are strongly influenced by environmental conditions such as temperature and precipitation. Because some of these factors present a within day variation, they may be causing variations on insect diurnal flight activity, but scant information exists on the issue. The aim of this work was to describe the patterns on diurnal variation of the abundance of Ichneumonoidea and their relation with relative humidity, temperature, light intensity, and wind speed. The study site was a tropical dry forest at Ría Lagartos Biosphere Reserve, Mexico; where correlations between environmental factors (relative humidity, temperature, light, and wind speed) and abundance of Ichneumonidae and Braconidae (Hymenoptera: Ichneumonoidea) were estimated. The best regression model for explaining abundance variation was selected using the second order Akaike Information Criterion. The optimum values of temperature, humidity, and light for flight activity of both families were also estimated. Ichneumonid and braconid abundances were significantly correlated to relative humidity, temperature, and light intensity; ichneumonid also showed significant correlations to wind speed. The second order Akaike Information Criterion suggests that in tropical dry conditions, relative humidity is more important that temperature for Ichneumonoidea diurnal activity. Ichneumonid wasps selected toward intermediate values of relative humidity, temperature and the lowest wind speeds; while Braconidae selected for low values of relative humidity. For light intensity, braconids presented a positive selection for moderately high values.

  14. Insect herbivores associated with an evergreen tree Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) in a tropical dry forest.

    Science.gov (United States)

    Silva, J O; Neves, F S

    2014-08-01

    Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) is a tree species found in Brazilian tropical dry forests that retain their leaves during the dry season. That being, we addressed the following question: i) How do insect diversity (sap-sucking and chewing), leaf herbivory and defensive traits (tannin and leaf sclerophylly) vary on the evergreen tree species G. marginata between seasons? The abundance of sap-sucking insects was higher in the dry season than in the rainy season. However, we did not verify any difference in the species richness and abundance of chewing insects between seasons. Leaf herbivory was higher in the rainy season, whereas leaf sclerophylly was higher in the dry season. However, herbivory was not related to sclerophylly. Insect herbivores likely decrease their folivory activity during the dry season due to life history patterns or changes in behaviour, possibly entering diapause or inactivity during this period. Therefore, G. marginata acts as a likely keystone species, serving as a moist refuge for the insect fauna during the dry season in tropical dry forest, and the presence of this evergreen species is crucial to conservation strategies of this threatened ecosystem.

  15. Environmental history of the dry forest biome of Guerrero, Mexico, and human impact during the last c. 2700 years

    NARCIS (Netherlands)

    Berrio, J.C.; Hooghiemstra, H.; van Geel, B.; Ludlow-Wiegers, B.

    2006-01-01

    Two lake sediment cores from Madre del Sur mountain range, Guerrero State, west-central Mexico were studied to examine the past dynamics of the dry forest biome. Pollen, spores of coprophilous fungi, cyanobacteria and lithological changes are presented. The 390-cm Tixtla core (17°30′N, 99°24′W, 1400

  16. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    Science.gov (United States)

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  17. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  18. Patterns and correlates of plant diversity differ between common and rare species in a neotropical dry forest

    NARCIS (Netherlands)

    Tetetla-Rangel, Erika; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Hoekstra, Paul H.

    2017-01-01

    Determining which factors affect species richness is important for conservation theory and practice. However, richness of common and rare species may be affected by different factors. We use an extensive inventory of woody plants from a tropical dry forest landscape in Yucatan, Mexico to assess the

  19. Long-term changes in above ground biomass after disturbance in a neotropical dry forest, Hellshire Hills, Jamaica

    DEFF Research Database (Denmark)

    Niño, Milena; McLaren, Kurt P.; Meilby, Henrik

    2014-01-01

    We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cu...

  20. Mapping tropical dry forest habitats integrating landsat NDVI, Ikonos imagery, and topographic information in the Caribbean island of Mona.

    Science.gov (United States)

    Martinuzzi, Sebastiáin; Gould, William A; Ramos Gonzalez, Olga M; Martinez Robles, Alma; Calle Maldonado, Paulina; Pérez-Buitrago, Néstor; Fumero Caban, José J

    2008-06-01

    Assessing the status of tropical dry forest habitats using remote sensing technologies is one of the research priorities for Neotropical forests. We developed a simple method for mapping vegetation and habitats in a tropical dry forest reserve, Mona Island, Puerto Rico, by integrating the Normalized Difference Vegetation Index (NDVI) from Landsat, topographic information, and high-resolution Ikonos imagery. The method was practical for identifying vegetation types in areas with a great variety of plant communities and complex relief, and can be adapted to other dry forest habitats of the Caribbean Islands. NDVI was useful for identifying the distribution of forests, woodlands, and shrubland, providing a natural representation of the vegetation patterns on the island. The use of Ikonos imagery allowed increasing the number of land cover classes. As a result, sixteen land-cover types were mapped over the 5500 ha area, with a kappa coefficient of accuracy equal to 79%. This map is a central piece for modeling vertebrate species distribution and biodiversity patterns by the Puerto Rico Gap Analysis Project, and it is of great value for assisting research and management actions in the island.

  1. The role of nitrogen fixation in neotropical dry forests: insights from ecosystem modeling and field data

    Science.gov (United States)

    Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.

    2016-12-01

    Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an

  2. Microhabitat partitioning between leiuperidae and bufonidae species (amphibia: anura) in tropical dry forest areas in Colombian Caribbean

    International Nuclear Information System (INIS)

    Blanco Torres, Argelina; Bonilla Gomez, Maria Argenis

    2010-01-01

    We analyzed partitioning of microhabitats by five species of frogs in the families, Bufonidae (Rhinella marina, r. granulosa), and Leiuperidae (Engystomops pustulosus, Pleurodema brachyops and Pseudopaludicola pusilla) in six different localities of the Colombian Caribbean with tropical dry forest fragments and different land uses. We identified 29 types of microhabitats; permanent ponds in pastures with trees (CPPA) and flooded pastures without trees (PISA) were the most important environmental used. Engystomops pustulosus used the must microhabitats, and none are used by specialist species. Thus, differences in the use of resource on regional and local scales appeared. Dynamics of microhabitat uses was influenced by the climatic variations of the tropical dry forest. Microhabitats distribution as a mechanism of coexistence in these species is implemented for dry season but in rainfall season this mechanism not exists.

  3. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    Science.gov (United States)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  4. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    Science.gov (United States)

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  5. Traditional and formal ecological knowledge to assess harvesting and conservation of a Mexican Tropical Dry Forest.

    Science.gov (United States)

    Monroy-Ortiz, Columba; García-Moya, Edmundo; Romero-Manzanares, Angélica; Luna-Cavazos, Mario; Monroy, Rafael

    2018-05-15

    This research integrates Traditional and Formal Ecological Knowledge (TEK / FEK) of a Tropical Dry Forest in central Mexico, in order to assess harvesting and conservation of the non-timber forest species. We were interested in: knowing the structure and diversity of the forest community; identifying which are the tree resources of common interest to the users through participatory workshops. A further interest was to identify those resources which are important to local people in terms of preservation; explaining the relationship of the species with some environmental factors; and visualizing which management practices endanger or facilitate the conservation of species. Studied areas were defined and labelled on a map drawn by local informants, where they indicated those plant species of common interest for preservation. Ethnobotanical techniques were used to reveal the TEK and assess harvesting and conservation of the species. With the FEK through community and population ecology, we detected the importance of five environmental factors, obtained various ecological indicators of the vegetation, and studied the population structure of the relevant species. The FEK was analyzed using descriptive and multivariate statistics. As a result, low density and small basal area of trees were registered. Species richness and diversity index were similar to other natural protected areas in Mexico. Tree species harvested shown an asymmetric distribution of diameters. Harvesting, elevation, and accessibility were the most influential factors on tree density. FEK demonstrated that TEK is helpful for the assessment of forest harvesting. Ecological analysis complemented the local knowledge detecting that Lysiloma tergemina is a species non-identified for the people as interesting, although we discover that it is a threatened species by over-harvesting. Haematoxylum brasiletto was identified as important for conservation due to its scarcity and medicinal use. Our results advanced

  6. Propagules of arbuscular mycorrhizal fungi in a secondary dry forest of Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Patricia Guadarrama

    2008-03-01

    Full Text Available Plant cover loss due to changes in land use promotes a decrease in spore diversity of arbuscular mycorrhizal fungi (AMF, viable mycelium and, therefore, in AMF colonization, this has an influence in community diversity and, as a consequence, in its recovery. To evaluate different AMF propagules, nine plots in a tropical dry forest with secondary vegetation were selected: 0, 1, 7, 10, 14, 18, 22, 25, and 27 years after abandonment in Nizanda, Oaxaca, Mexico. The secondary vegetation with different stages of development is a consequence of slash and burn agriculture, and posterior abandonment. Soil samples (six per plot were collected and percentage of AMF field colonization, extrarradical mycelium, viable spore density, infectivity and most probable number (MPN of AMF propagules were quantified through a bioassay. Means for field colonization ranged between 40 % and 70 %, mean of total mycelium length was 15.7 ± 1.88 mg-1 dry soil, with significant differences between plots; however, more than 40 % of extracted mycelium was not viable, between 60 and 456 spores in 100 g of dry soil were recorded, but more than 64 % showed some kind of damage. Infectivity values fluctuated between 20 % and 50 %, while MPN showed a mean value of 85.42 ± 44.17 propagules (100 g dry soil. We conclude that secondary communities generated by elimination of vegetation with agricultural purposes in a dry forest in Nizanda do not show elimination of propagules, probably as a consequence of the low input agriculture practices in this area, which may encourage natural regeneration. Rev. Biol. Trop. 56 (1: 269-277. Epub 2008 March 31.La vegetación secundaria con diferentes grados de desarrollo es consecuencia de prácticas agrícolas de roza-tumba-quema y su posterior abandono. La remoción de la vegetación por cambios de uso de suelo promueve una disminución en la diversidad de esporas, micelio viable y por lo tanto de la colonización de los hongos micorriz

  7. Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    Monica T. Rother

    2017-05-01

    Full Text Available In recent years, warming climate and increased fire activity have raised concern about post-fire recovery of western U.S. forests. We assessed relationships between climate variability and tree establishment after fire in dry ponderosa pine forests of the Colorado Front Range. We harvested and aged over 400 post-fire juvenile ponderosa pine (Pinus ponderosa and Douglas-fir (Pseudotsuga menziesii trees using an improved tree-ring based approach that yielded annually-resolved dates and then assessed relationships between climate variability and pulses of tree establishment. We found that tree establishment was largely concentrated in years of above-average moisture availability in the growing season, including higher amounts of precipitation and more positive values of the Palmer Drought Severity Index. Under continued climate change, drier conditions associated with warming temperatures may limit forest recovery after fire, which could result in lower stand densities or shifts to non-forested vegetation in some areas.

  8. Diameter growth of subtropical trees in Puerto Rico

    Science.gov (United States)

    Thomas J. Brandeis

    2009-01-01

    Puerto Rico’s forests consist of young, secondary stands still recovering from a long history of island-wide deforestation that largely abated in the mid-20th century. Limited knowledge about growth rates of subtropical tree species in these forests makes it difficult to accurately predict forest yield, biomass accumulation, and carbon...

  9. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Directory of Open Access Journals (Sweden)

    Jorge Omar López-Martínez

    Full Text Available Two main theories have attempted to explain variation in plant species composition (β-diversity. Niche theory proposes that most of the variation is related to environment (environmental filtering, whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning, and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position, whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and

  10. Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology.

    Science.gov (United States)

    Swenson, Nathan G; Enquist, Brian J

    2009-08-01

    Species diversity is promoted and maintained by ecological and evolutionary processes operating on species attributes through space and time. The degree to which variability in species function regulates distribution and promotes coexistence of species has been debated. Previous work has attempted to quantify the relative importance of species function by using phylogenetic relatedness as a proxy for functional similarity. The key assumption of this approach is that function is phylogenetically conserved. If this assumption is supported, then the phylogenetic dispersion in a community should mirror the functional dispersion. Here we quantify functional trait dispersion along several key axes of tree life-history variation and on multiple spatial scales in a Neotropical dry-forest community. We next compare these results to previously reported patterns of phylogenetic dispersion in this same forest. We find that, at small spatial scales, coexisting species are typically more functionally clustered than expected, but traits related to adult and regeneration niches are overdispersed. This outcome was repeated when the analyses were stratified by size class. Some of the trait dispersion results stand in contrast to the previously reported phylogenetic dispersion results. In order to address this inconsistency we examined the strength of phylogenetic signal in traits at different depths in the phylogeny. We argue that: (1) while phylogenetic relatedness may be a good general multivariate proxy for ecological similarity, it may have a reduced capacity to depict the functional mechanisms behind species coexistence when coexisting species simultaneously converge and diverge in function; and (2) the previously used metric of phylogenetic signal provided erroneous inferences about trait dispersion when married with patterns of phylogenetic dispersion.

  11. Effects of past burning frequency on plant species structure and composition in dry dipterocarp forest

    Science.gov (United States)

    Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.

    2009-04-01

    Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency

  12. Seasonality in the dung beetle community in a Brazilian tropical dry forest: Do small changes make a difference?

    Science.gov (United States)

    Medina, Anderson Matos; Lopes, Priscila Paixão

    2014-01-01

    Dung beetle (Coleoptera: Scarabaeoidea: Scarabaeinae) activity is influenced by rainfall seasonality. We hypothesized that rainfall might also play a major role in regulating the community structure of this group. In this study, we describe seasonal changes in the richness, composition, and structure of the Scarabaeinae community in a Brazilian tropical dry forest. A fragment of arboreal Caatinga was sampled using baited pitfall traps during the early dry season (EDS), late dry season (LDS), early wet season (EWS), and middle wet season (MWS). We compared the dung beetle community in each season in relationship to species richness, rank-dominance, curves, and composition. We collected 1352 Scarabaeinae individuals , belonging to 15 species. Dichotomius aff. laevicollis Felsche (Coleoptera: Scarabaeidae) was the dominant species, representing 73.89% of the individuals. There were no seasonal changes in the rank dominance curves; all had a single dominant species and a few species with low abundance, typical for arid areas. Estimated richness was highest in MWS, followed by EWS. Dry-season samples (EDS and LDS) had lower richness, with no significant difference between the dry seasons. Although species richness increased as the habitat became wetter, the difference between the wet and dry seasons was small, which differs completely from the findings of other studies in Neotropical dry forests, where almost all species cease activities in the dry season. Species composition changes were found in non-metric multidimensional scaling and sustained by analysis of similarity. All the seasons had pairwise differences in composition, with the exception of EDS and MWS, which indicates that the dung beetle community in this fragment requires more than three months of drought to trigger changes in species composition; this is probably due to small changes in the forest canopy. There was no difference in composition between EDS and MWS. As in other tropical dry forests, although

  13. Effect of drought on productivity in a Costa Rican tropical dry forest

    Science.gov (United States)

    Castro, S. M.; Sanchez-Azofeifa, G. A.; Sato, H.

    2018-04-01

    Climate models predict that precipitation patterns in tropical dry forests (TDFs) will change, with an overall reduction in rainfall amount and intensification of dry intervals, leading to greater susceptibility to drought. In this paper, we explore the effect of drought on phenology and carbon dynamics of a secondary TDF located in the Santa Rosa National Park (SRNP), Costa Rica. Through the use of optical sensors and an eddy covariance flux tower, seasonal phenology and carbon fluxes were monitored over a four-year period (2013-2016). Over this time frame, annual precipitation varied considerably. Total precipitation amounts for the 2013-2016 seasons equaled 1591.8 mm (+14.4 mm SD), 1112.9 mm (+9.9 mm SD), 600.8 mm (+7.6 mm SD), and 1762.2 mm (+13.9 mm SD), respectively. The 2014 and 2015 (ENSO) seasonal precipitation amounts represent a 30% and 63% reduction in precipitation, respectively, and were designated as drought seasons. Phenology was affected by precipitation patterns and availability. The onset of green-up was closely associated with pre-seasonal rains. Drought events lead to seasonal NDVI minimums and changes in phenologic cycle length. Carbon fluxes, assimilation, and photosynthetic light use efficiency were negatively affected by drought. Seasonal minimums in photosynthetic rates and light use efficiency were observed during drought events, and gross primary productivity was reduced by 13% and 42% during drought seasons 2014 and 2015, respectively. However, all four growth seasons were net carbon sinks. Results from this study contribute towards a deeper understanding of the impact of drought on TDF phenology and carbon dynamics.

  14. Species biogeography predicts drought responses in a seasonally dry tropical forest

    Science.gov (United States)

    Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.

    2017-12-01

    The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative

  15. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.; Welty, Justin L.

    2012-01-01

    We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post-treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30-m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in untreated areas and significantly lower than the potential wildfire severity of the treated areas had treatments not been implemented. At the pixel level, wildfire severity was best predicted by an interaction between prescribed fire severity, topographic moisture, heat load, and pre-fire vegetation volume. Prescribed fire severity and vegetation volume were the most influential predictors. Prescribed fire severity, and its influence on wildfire severity, was highest in relatively warm and dry locations, which were able to burn under spring conditions. In contrast, wildfire severity peaked in cooler, more mesic locations that dried later in the summer and supported greater vegetation volume. We found considerable evidence that prescribed fires have landscape-level influences within treatment boundaries; most notable was an interaction between distance from the prescribed fire perimeter and distance from treated patch edges, which explained up to 66% of the variation in wildfire severity. Early season prescribed fires may not directly target the locations most at risk of high severity wildfire, but proximity of these areas to treated patches and the discontinuity of fuels following treatment may influence wildfire severity and explain how even low severity treatments can be effective management tools in fire-prone landscapes.

  16. Phylogeography of Partamona rustica (Hymenoptera, Apidae), an Endemic Stingless Bee from the Neotropical Dry Forest Diagonal.

    Science.gov (United States)

    Miranda, Elder Assis; Batalha-Filho, Henrique; Congrains, Carlos; Carvalho, Antônio Freire; Ferreira, Kátia Maria; Del Lama, Marco Antonio

    2016-01-01

    The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV). These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability.

  17. Phylogeography of Partamona rustica (Hymenoptera, Apidae, an Endemic Stingless Bee from the Neotropical Dry Forest Diagonal.

    Directory of Open Access Journals (Sweden)

    Elder Assis Miranda

    Full Text Available The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV. These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability.

  18. INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS

    Directory of Open Access Journals (Sweden)

    Cleandson Ferreira SANTOS

    2015-06-01

    Full Text Available In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.

  19. INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE) IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS.

    Science.gov (United States)

    Santos, Cleandson Ferreira; Silva, Alex Chavier; Rodrigues, Raquel Andrade; de Jesus, Jamilli Sanndy Ramos; Borges, Magno Augusto Zazá

    2015-01-01

    In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF) fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.

  20. Phenotypic, genetic and symbiotic characterization of Erythrina velutina rhizobia from Caatinga dry forest.

    Science.gov (United States)

    Rodrigues, Dalila Ribeiro; Silva, Aleksandro Ferreira da; Cavalcanti, Maria Idaline Pessoa; Escobar, Indra Elena Costa; Fraiz, Ana Carla Resende; Ribeiro, Paula Rose de Almeida; Ferreira Neto, Reginaldo Alves; Freitas, Ana Dolores Santiago de; Fernandes-Júnior, Paulo Ivan

    2018-02-02

    Erythrina velutina ("mulungu") is a legume tree from Caatinga that associates with rhizobia but the diversity and symbiotic ability of "mulungu" rhizobia are poorly understood. The aim of this study was to characterize "mulungu" rhizobia from Caatinga. Bacteria were obteined from Serra Talhada and Caruaru in Caatinga under natural regeneration. The bacteria were evaluated to the amplification of nifH and nodC and to metabolic characteristics. Ten selected bacteria identified by 16S rRNA sequences. They were tested in vitro to NaCl and temperature tolerance, auxin production and calcium phosphate solubilization. The symbiotic ability were assessed in an greenhouse experiment. A total of 32 bacteria were obtained and 17 amplified both symbiotic genes. The bacteria showed a high variable metabolic profile. Bradyrhizobium (6), Rhizobium (3) and Paraburkholderia (1) were identified, differing from their geographic origin. The isolates grew up to 45°C to 0.51molL -1 of NaCl. Bacteria which produced more auxin in the medium with l-tryptophan and two Rhizobium and one Bradyrhizobium were phosphate solubilizers. All bacteria nodulated and ESA 90 (Rhizobium sp.) plus ESA 96 (Paraburkholderia sp.) were more efficient symbiotically. Diverse and efficient rhizobia inhabit the soils of Caatinga dry forests, with the bacterial differentiation by the sampling sites. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    Science.gov (United States)

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-09-21

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.

  2. Litter decomposition, N2-fixer abundance, and microbial dynamics govern tropical dry forest recovery to land use change

    Science.gov (United States)

    Trierweiler, A.; Powers, J. S.; Xu, X.; Gei, M. G.; Medvigy, D.

    2017-12-01

    As one of the most threatened tropical biomes, Seasonal Dry Tropical Forests (TDF) have undergone extensive land-use change. However, some areas are undergoing recovery into secondary forests. Despite their broad distribution (42% of tropical forests), they are under-studied compared to wet tropical forests and our understanding of their biogeochemical cycling and belowground processes are limited. Here, we use models along with field measurements to improve our understanding of nutrient cycling and limitation in secondary TDFs. We ask (1) Is there modeling evidence that tropical dry forests can become nutrient limited? (2) What are the most important mechanisms employed to avoid nutrient limitation? (3) How might climate change alter biogeochemical cycling and nutrient limitation in recovering TDF? We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs and incorporates a range of plant functional groups (including deciduousness and N2-fixation) and multiple resource constraints (carbon, nitrogen, phosphorus, and water). In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies using N2-fixing bacteria and mycorrhizal fungi according to the nutrient limitation status. We ran the model for a nutrient gradient of field sites in Costa Rica and explored the sensitivity of nutrient limitation to key mechanisms including litter respiration, N resorption, N2-fixation, and overflow respiration. Future runs will evaluate how CO2 and climate change affect recovering TDFs. We found increasing nutrient limitation across the nutrient gradient of sites. Nitrogen limitation dominated the nutrient limitation signal. In the model, forest litter accumulation was negatively correlated with site fertility in Costa Rican forests. Our sensitivity analyses indicate that N2-fixer abundance, decomposition rates, and adding more explicit microbial dynamics are key factors in overcoming

  3. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Science.gov (United States)

    2011-01-01

    Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be

  4. Forgotten forests--issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study.

    Science.gov (United States)

    Särkinen, Tiina; Iganci, João R V; Linares-Palomino, Reynaldo; Simon, Marcelo F; Prado, Darién E

    2011-11-24

    South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be particularly useful for mapping

  5. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Directory of Open Access Journals (Sweden)

    Särkinen Tiina

    2011-11-01

    Full Text Available Abstract Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1 poor spatial resolution, and (2 poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in

  6. Initial Response of Pine Seedlings and Weeds to Dried Sewage Sludge in Rehabilitation of an Eroded Forest Site

    Science.gov (United States)

    Charles R. Berry

    1977-01-01

    Dried sewage sludge was applied at rates of 0, 17, 34, and 69 metric tons/ha on a badly eroded forest site in the Piedmont region of northeast Georgia. Production of weed bio mass varied directly with amount of sludge applied. Heigh growth for both shortleafand loblolly pine seedlings appeared to be greater on plots receiving 17 metric tons of sludge/ha, bu differences...

  7. Long-term understory vegetation dynamics and responses to ungulate exclusion in the dry forest of Mona Island

    Science.gov (United States)

    J. Rojas-Sandoval; E.J. Melendez-Ackerman; J. Fumero-Caban; M. Garcia-Bermudez; J. Sustache; S. Aragon; M. Morales-Vargas; G. Olivieri; D.S. Fernandez

    2016-01-01

    Mona Island protects one of the most important remnants of Caribbean dry forests and hosts a high diversity of rare and endangered plant and animal species. Feral ungulates (goats and pigs) were introduced to the island ~500 y ago, and their populations may be threatening the conservation of Mona Island’s native biodiversity. In this study, we used permanent fenced and...

  8. Changes in composition and structure of a tropical dry forest following intermittent Cattle grazing

    Directory of Open Access Journals (Sweden)

    Margaret Stern

    2002-12-01

    Full Text Available In northwestern Costa Rica, cattle are being used as a "management tool" to reduce the amount of combustible material, mainly dominated by Hyparrhenia rufa, an African grass. This project is being developed within Parque Nacional Palo Verde and Reserva Biológica Lomas Barbudal, both of which fonn part of the only remaining tropical dry forests in Mesoamerica. To determine the short-term effects of cattle grazing on the natural vegetation, we compared the floristic composition within Palo Verde in an area under intermittent cattle grazing with an area that has not been grazed. There were significantly fewer plant species in the area with intermittent cattle grazing compared to the area with no grazing. Floristic composition of these two habitats was different as reflected by both Fisher's alpha values and the Shannon index of diversity, both of which were significantly higher in the ungrazed site. The ungrazed area contained more plant species and was more similar to mature forest. The structure of the vegetation was significantly different between the intermittently grazed and ungrazed sites with more small stems (1-5 cm dbh and fewer large stems (>5 cm dbh in the intermittently grazed habitat. These results indicate that cattle grazing has an impact on the dry forest by reducing the relative abundance and density of larger tree species and by changing the species composition and structure of the community. The current management plan implemented in Palo Verde and Lomas Barbudal is not appropriate because of the impact that cattle have on the structure of the natural vegetation and should not be considered a viable alternative in other protected areas of dry forest in the Neotropics. We suggest that alternative fire prevention measures be evaluated including hand-cutting H. rufa, the creation of more frequent and larger fire breaks, and the development of green breaks.En el noroeste de Costa Rica se utiliza ganado como una "herramienta de

  9. Tropical dry forest status and relative importance of woody flora, islands of Old Providence and Santa Catalina, Colombia, Southwestern Caribbean

    International Nuclear Information System (INIS)

    Linares, Jorge Ruiz; Fandino Orozco, Maria Claudia

    2009-01-01

    The purpose of this paper is to present evidence on the condition of the Dry Tropical Forest (DtF) in Old Providence. A chronological study was carried out in order to assess the land cover change in DtF between 1944 and 2005. Additionally, we established 109 plots 2 x 50 m, following the protocol by Gentry (1982); and species abundance models were fitted to the data. It is concluded that up to 2000 the forest recovered, yet, in 2005 it retreated to 1990 levels. The lognormal distribution suggests that the forest is indeed in good condition. Anacardiaceae is the family with the highest Importance Value Index (IVI) while Acacia collinsii is the species with the highest IVI.

  10. The influence of vegetation on bird distribution in dry forests and oak woodlands of western Mexico

    Directory of Open Access Journals (Sweden)

    Pablo Corcuera

    2006-06-01

    Full Text Available The bird species distribution along a dry forest-oak woodland vegetation gradient was studied in autumn and spring in two consecutive years. Intra-seasonal comparisons showed that bird species had similar distributions in each of the two years. Inter-seasonal changes were mainly due to compositional differences even though resident species generally used similar habitats in both seasons. Ordination analyses, based on the first year bird species abundances, showed a clearly segregated distribution between forest and woodland birds. Within these two vegetation types, the distribution tended to be more individualistic. Nevertheless further habitats could be identified according to groups of birds having similar distributions. These habitats did not correspond to the plant associations which resulted from a previous classification of the vegetation. Observations of the plant use by the birds during the study period showed that, in most cases, the plant variables associated with ordination analyses are unlikely to be very important for the bird species life cycles. Rev. Biol. Trop. 54(2: 657-672. Epub 2005 Jun 01.Se estudió la distribución de especies de aves a lo largo de un gradiente de vegetación bosque seco - bosque de encino en el otoño y primavera de dos años consecutivos. Las comparaciones intra-estacionales mostraron distribuciones similares de las especies de aves en ambos años. Los cambios inter-estacionales se debieron principalmente a diferencias en la composición, aunque las especies residentes normalmente usan hábitats similares en ambas estaciones. Los análisis de ordenación, basados en las abundancias de las aves en el primer año de muestreo, mostraron una distribución claramente segregada entre aves del bosque seco y del bosque de encino. Aunque la distribución de las especies fue más azarosa dentro de cada tipo de vegetación, se pudieron identificar ciertos hábitats en base a grupos de aves con distribuciones

  11. Structure and Composition of a Dry Mixed-Conifer Forest in Absence of Contemporary Treatments, Southwest, USA

    Directory of Open Access Journals (Sweden)

    Douglas Cram

    2017-09-01

    Full Text Available Dry mixed-conifer forests in the Southwest occupy an important ecological and hydrological role in upper watersheds. In the absence of reoccurring fire and silvicultural treatments over the last 50 years, we quantified forest structure and composition on prevailing north and south aspects of a dry mixed-conifer forest in southcentral New Mexico using mixed models and ordination analysis in preparation for an experiment in ecological restoration. Results indicated overstory and midstory were dominated by Douglas-fir (Pseudotsuga menziesii and shade tolerant/fire intolerant white fir (Abies concolor with interspersed mature aspen on north aspects, and Douglas-fir and Southwestern white pine (Pinus strobiformis on south aspects. Ponderosa pine (Pinus ponderosa, which was historically co-dominant with Douglas-fir on north and south aspects, was subdominant on south aspects and almost entirely absent on north aspects. Regeneration was dominated by white fir saplings and seedlings on north aspects while ponderosa pine was completely absent. South aspect saplings and seedlings were characterized by Douglas-fir and Southwestern white pine, but almost no ponderosa pine. Ordination analysis characterized the effect of aspect on species composition. Understanding contemporary forest structure and composition is important when planning for desired future conditions that are to be achieved through ecological restoration using silvicultural techniques designed to foster resilience.

  12. Control of dry season evapotranspiration over the Amazonian forest as inferred from observations at a southern Amazon forest site

    NARCIS (Netherlands)

    Negrón Juárez, R.I.; Hodnett, M.G.; Fu, R.; Goulden, M.L.; Randow, von C.

    2007-01-01

    The extent to which soil water storage can support an average dry season evapotranspiration (ET) is investigated using observations from the Rebio Jarú site for the period of 2000 to 2002. During the dry season, when total rainfall is less than 100 mm, the soil moisture storage available to root

  13. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  14. Occurrence of termites (Isoptera on living and standing dead trees in a tropical dry forest in Mexico

    Directory of Open Access Journals (Sweden)

    Nancy Calderón-Cortés

    2018-05-01

    Full Text Available Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2 than in riparian forests (0.022 and 0.027 trees/m2, even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2 than in larger class sizes (0–0.02 trees/m2. Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  15. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    Science.gov (United States)

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  16. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 06: Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2005-01-01

    The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...

  17. Phylogenetic classification of the world’s tropical forests

    Science.gov (United States)

    Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean-François; Bellingham, Peter J.; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H. S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Hussain, M. Shah; Ibarra-Manríquez, Guillermo; Hanum, I. Faridah; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Calderado Leal Matos, Darley; Meave, Jorge A.; Melo, Felipe P. L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S. B.; Rolim, Samir; Rovero, Francesco; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd. Said, Mohd. Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; dos Santos, João Roberto; Sarker, Swapan Kumar; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V. J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. PMID:29432167

  18. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Iris Juan-Baeza

    Full Text Available Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae and Ipomoea pauciflora (Convolvulaceae were selected in each plot (N = 110 trees. Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp. was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and

  19. Comparing Methods for Prioritising Protected Areas for Investment: A Case Study Using Madagascar's Dry Forest Reptiles.

    Directory of Open Access Journals (Sweden)

    Charlie J Gardner

    Full Text Available There are insufficient resources available to manage the world's existing protected area portfolio effectively, so the most important sites should be prioritised in investment decision-making. Sophisticated conservation planning and assessment tools developed to identify locations for new protected areas can provide an evidence base for such prioritisations, yet decision-makers in many countries lack the institutional support and necessary capacity to use the associated software. As such, simple heuristic approaches such as species richness or number of threatened species are generally adopted to inform prioritisation decisions. However, their performance has never been tested. Using the reptile fauna of Madagascar's dry forests as a case study, we evaluate the performance of four site prioritisation protocols used to rank the conservation value of 22 established and candidate protected areas. We compare the results to a benchmark produced by the widely-used systematic conservation planning software Zonation. The four indices scored sites on the basis of: i species richness; ii an index based on species' Red List status; iii irreplaceability (a key metric in systematic conservation planning; and, iv a novel Conservation Value Index (CVI, which incorporates species-level information on endemism, representation in the protected area system, tolerance of habitat degradation and hunting/collection pressure. Rankings produced by the four protocols were positively correlated to the results of Zonation, particularly amongst high-scoring sites, but CVI and Irreplaceability performed better than Species Richness and the Red List Index. Given the technological capacity constraints experienced by decision-makers in the developing world, our findings suggest that heuristic metrics can represent a useful alternative to more sophisticated analyses, especially when they integrate species-specific information related to extinction risk. However, this can

  20. Comparing Methods for Prioritising Protected Areas for Investment: A Case Study Using Madagascar's Dry Forest Reptiles.

    Science.gov (United States)

    Gardner, Charlie J; Raxworthy, Christopher J; Metcalfe, Kristian; Raselimanana, Achille P; Smith, Robert J; Davies, Zoe G

    2015-01-01

    There are insufficient resources available to manage the world's existing protected area portfolio effectively, so the most important sites should be prioritised in investment decision-making. Sophisticated conservation planning and assessment tools developed to identify locations for new protected areas can provide an evidence base for such prioritisations, yet decision-makers in many countries lack the institutional support and necessary capacity to use the associated software. As such, simple heuristic approaches such as species richness or number of threatened species are generally adopted to inform prioritisation decisions. However, their performance has never been tested. Using the reptile fauna of Madagascar's dry forests as a case study, we evaluate the performance of four site prioritisation protocols used to rank the conservation value of 22 established and candidate protected areas. We compare the results to a benchmark produced by the widely-used systematic conservation planning software Zonation. The four indices scored sites on the basis of: i) species richness; ii) an index based on species' Red List status; iii) irreplaceability (a key metric in systematic conservation planning); and, iv) a novel Conservation Value Index (CVI), which incorporates species-level information on endemism, representation in the protected area system, tolerance of habitat degradation and hunting/collection pressure. Rankings produced by the four protocols were positively correlated to the results of Zonation, particularly amongst high-scoring sites, but CVI and Irreplaceability performed better than Species Richness and the Red List Index. Given the technological capacity constraints experienced by decision-makers in the developing world, our findings suggest that heuristic metrics can represent a useful alternative to more sophisticated analyses, especially when they integrate species-specific information related to extinction risk. However, this can require access to

  1. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  2. A comprehensive guide to fuel management practices for dry mixed conifer forests in the northwestern United States: Mechanical, chemical, and biological fuel treatment methods

    Science.gov (United States)

    Theresa B. Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist

    2014-01-01

    Several mechanical approaches to managing vegetation fuels hold promise when applied to the dry mixed conifer forests in the western United States. These are most useful to treat surface, ladder, and crown fuels. There are a variety of techniques to remove or alter all kinds of plant biomass (live, dead, or decomposed) that affect forest resilience. It is important for...

  3. Climate change impacts detection in dry forested ecosystem as indicated by vegetation cover change in -Laikipia, of Kenya.

    Science.gov (United States)

    M'mboroki, Kiambi Gilbert; Wandiga, Shem; Oriaso, Silas Odongo

    2018-03-29

    The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the

  4. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    Science.gov (United States)

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among

  5. Back to the Future: Building resilience in Colorado Front Range forests using research findings and a new guide for restoration of ponderosa and dry-mixed conifer landscapes

    Science.gov (United States)

    Sue Miller; Rob Addington; Greg Aplet; Mike Battaglia; Tony Cheng; Jonas Feinstein; Jeff Underhill

    2018-01-01

    Historically, the ponderosa and dry mixed-conifer forests of the Colorado Front Range were more open and grassy, and trees of all size classes were found in a grouped arrangement with sizable openings between the clumps. As a legacy of fire suppression, today’s forests are denser, with smaller trees. Proactive restoration of this forest type will help to reduce fuel...

  6. Exito reproductivo de plantas ornitócoras en un relicto de selva subtropical en Argentina Reproductive success of bird-dispersed plants in a subtropical forest relict in Argentina

    Directory of Open Access Journals (Sweden)

    NORBERTO H. MONTALDO

    2000-09-01

    Full Text Available En un relicto de selva ribereña situado en la región central de Argentina (Punta Lara, provincia de Buenos Aires se estudió la fenología reproductiva, y la producción y dispersión de diásporas de cinco especies arbóreas nativas y de dos malezas exóticas (Rubus ulmifolius y Ligustrum lucidum. Además se determinó el poder germinativo de las semillas y la tasa de reclutamiento y características de las plántulas. En el último medio siglo las malezas invadieron la selva, amenazando actualmente con destruirla. El elenco de aves frugívoras del área es reducido y está integrado por siete especies residentes y una migratoria. Hay plantas nativas que manifiestan limitaciones reproductivas por escasa producción y/o dispersión de diásporas. Si bien las plantas exóticas no superan significativamente a las nativas en las relaciones fruto/ flor y frutos consumidos/ frutos disponibles, las primeras tienen ventajas en la cantidad de semillas que incorporan al medio por unidad (m2 de superficie de copa (ca. 1700 vs. 800 en la nativa que más dispersa, y en su germinación abundante (Ligustrum o en la habilidad competitiva de sus plántulas (Rubus. El éxito de las malezas se explicaría en gran parte por su agresividad intrínseca y por la situación de marginalidad ecológica de esta comunidad selvática, ya que muchas especies se encuentran en el extremo meridional de su distribuciónReproductive phenology, diaspore production, diaspore removal, and seed-dispersal by birds of five indigenous and two alien (Rubus ulmifolius and Ligustrum lucidum woody species were studied in a riparian forest relict located in central Argentina (Punta Lara, Buenos Aires Province. Seed germination, recruitment, and seedling traits of these plants were also determined. During the last half century the weeds heavily invaded the forest, presently constituting a serious threat to the survival of this natural community. In the area the fruit-eating bird assemblage

  7. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva Ribeiro Gonçalves

    Full Text Available Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition, in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  8. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs).

    Science.gov (United States)

    Gonçalves, Gabriela Silva Ribeiro; Cerqueira, Pablo Vieira; Brasil, Leandro Schlemmer; Santos, Marcos Pérsio Dantas

    2017-01-01

    Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition), in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  9. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Science.gov (United States)

    Elmqvist, Thomas; Pyykönen, Markku; Tengö, Maria; Rakotondrasoa, Fanambinantsoa; Rabakonandrianina, Elisabeth; Radimilahy, Chantal

    2007-05-02

    Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000) and covering 5500 km(2), and made a time-series analysis of three distinct large-scale patterns: 1) loss of forest cover, 2) increased forest cover, and 3) stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  10. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Directory of Open Access Journals (Sweden)

    Thomas Elmqvist

    Full Text Available Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000 and covering 5500 km(2, and made a time-series analysis of three distinct large-scale patterns: 1 loss of forest cover, 2 increased forest cover, and 3 stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  11. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    Science.gov (United States)

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  12. Diversity and Phenology of Wild Bees in a Highly Disturbed Tropical Dry Forest "Desierto de la Tatacoa", Huila-Colombia.

    Science.gov (United States)

    Poveda-Coronel, C A; Riaño-Jiménez, D; Cure, J R

    2018-01-12

    Colombian tropical dry forest is considered the most endangered tropical biome due to anthropic activities. Desierto de la Tatacoa (DsT) is an example of high disturbed tropical dry forest which still maintains a high biodiversity. The objective of the study was to record the diversity and phenology of wild bees in this place by monthly sampling between December 2014 and December 2016 in a 9-km 2 area. During the study, there was a prolonged El Niño-Southern Oscillation period. Bees were collected by entomological nets, malaise traps, eugenol scent trapping, and nest traps. Shannon index was calculated to estimate diversity and Simpson index to determine dominance of a species. The effect of environmental conditions (wet and dry season) in richness and abundance was analyzed by paired T tests. A total of 3004 bee specimens were collected, belonging to 80 species from Apidae, Megachilidae, Halictidae, and Colletidae. Apidae was the most diverse. Shannon index value was 2.973 (discarding Apis mellifera Linnaeus 1758 data); thus, DsT can be considered as a zone of high wild bee diversity. Dry and rainy season showed differences in diversity (p < 0.05). Rainy season showed larger blooming periods and higher bee diversity than dry season. In both seasons, social species were dominant (e.g., A. mellifera or Trigona fulviventris Guérin 1844). Although DsT is a highly disturbed ecosystem, this study found it has the second highest number of genera and the fourth highest number of species reported in Colombia.

  13. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China

    Directory of Open Access Journals (Sweden)

    Yiping Hou

    2018-01-01

    Full Text Available Extensive studies on hydrological responses to forest change have been published for centuries, yet partitioning the hydrological effects of forest change, climate variability and other factors in a large watershed remains a challenge. In this study, we developed a single watershed approach combining the modified double mass curve (MDMC and the time series multivariate autoregressive integrated moving average model (ARIMAX to separate the impact of forest change, climate variability and other factors on dry season runoff variation in two large watersheds in China. The Zagunao watershed was examined for the deforestation effect, while the Meijiang watershed was examined to study the hydrological impact of reforestation. The key findings are: (1 both deforestation and reforestation led to significant reductions in dry season runoff, while climate variability yielded positive effects in the studied watersheds; (2 the hydrological response to forest change varied over time due to changes in soil infiltration and evapotranspiration after vegetation regeneration; (3 changes of subalpine natural forests produced greater impact on dry season runoff than alteration of planted forests. These findings are beneficial to water resource and forest management under climate change and highlight a better planning of forest operations and management incorporated trade-off between carbon and water in different forests.

  14. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  15. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico

    Directory of Open Access Journals (Sweden)

    Eliane Ceccon

    2009-06-01

    Full Text Available In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest’s capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE. We found a strong seasonality in seed rain (96% of seeds fell in the dry season in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard’s similarity index between E and WE sites was relatively low (0.57. Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%, followed by anemochory (39% and zoochory (13%. In relation to seed density, anemochory was the most frequent dispersal mode (88%. Most species in the zone were categorized as small seeds (92%, and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the

  16. Aspergillus and Penicillium (Eurotiales: Trichocomaceae) in soils of the Brazilian tropical dry forest: diversity in an area of environmental preservation.

    Science.gov (United States)

    Barbosa, Renan do Nascimento; Bezerra, Jadson Diogo Pereira; Costa, Phelipe Manoel Oller; de Lima-Júnior, Nelson Correia; Alves de Souza Galvão, Ivana Roberta Gomes; Alves dos Santos-Júnior, Anthony; Fernandes, Maria José; de Souza-Motta, Cristina Maria; Oliveira, Neiva Tinti

    2016-03-01

    Soil is a complex biological system that plays a key role for plants and animals, especially in dry forests such as the Caatinga. Fungi from soils, such as Aspergillus and Penicillium, can be used as bioindica- tors for biodiversity conservation. The aim of this study was to isolate and identify species of Aspergillus and Penicillium in soil, from the municipalities of Tupanatinga and Ibimirim, with dry forests, in the Catimbau National Park. Five collections were performed in each area during the drought season of 2012, totaling 25 soil samples per area. Fungi were isolated by suspending soil samples in sterile distilled water and plating on Sabouraud Agar media plus Chloramphenicol and Rose Bengal, and Glycerol Dicloran Agar. Isolates were identified by morphological taxonomy in the Culture Collection Laboratory and confirmed by sequencing of the Internal Transcribed Spacer of rDNA. A total of 42 species were identified, of which 22 belong to the genus Aspergillus and 20 to Penicillium. Penicillium isolates showed uniform distribution from the collecting area in Tupanatinga, and the evenness indices found were 0.92 and 0.88 in Tupanatinga and Ibimirim, respectively. Among isolates of Aspergillus evenness, the value found in Tupanatinga (0.85) was very close to that found in Ibimirim (0.86). High diversity and low dominance of fungi in soil samples was observed. These results con- tributed to the estimation of fungal diversity in dry environments of the Caatinga, where diversity is decreasing in soils that have undergone disturbance.

  17. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    Science.gov (United States)

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  18. Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Paramesha Mallegowda

    2015-02-01

    Full Text Available Most wildlife habitats and migratory routes are extremely threatened due to increasing demands on forestland and forest resources by burgeoning human population. Corridor landscape in Biligiri Rangaswamy Temple Tiger Reserve (BRT is one among them, subjected to various anthropogenic pressures. Human habitation, intensive farming, coffee plantations, ill-planned infrastructure developments and rapid spreading of invasive plant species Lantana camara, pose a serious threat to wildlife habitat and their migration. Aim of this work is to create detailed NDVI based land change maps and to use them to identify time-series trends in greening and browning in forest corridors in the study area and to identify the drivers that are influencing the observed changes. Over the four decades in BRT, NDVI increased in the core area of the forest and reduced in the fringe areas. The change analysis between 1973 and 2014 shows significant changes; browning due to anthropogenic activities as well as natural processes and greening due to Lantana spread. This indicates that the change processes are complex, involving multiple driving factors, such as socio-economic changes, high population growth, historical forest management practices and policies. Our study suggests that the use of updated and accurate change detection maps will be useful in taking appropriate site specific action-oriented conservation decisions to restore and manage the degraded critical wildlife corridors in human-dominated landscape.

  19. Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?

    NARCIS (Netherlands)

    Grogan, Kenneth; Pflugmacher, Dirk; Hostert, Patrick; Verbesselt, Jan; Fensholt, Rasmus

    2016-01-01

    Tropical environments present a unique challenge for optical time series analysis, primarily owing to fragmented data availability, persistent cloud cover and atmospheric aerosols. Additionally, little is known of whether the performance of time series change detection is affected by diverse forest

  20. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.; Meave, J.; Poorter, L.; Pérez- García, E.A.; Bongers, F.

    2010-01-01

    The development of forest succession theory has been based on studies in temperate and tropical wet forests. As rates and pathways of succession vary with the environment, advances in successional theory and study approaches are challenged by controversies derived from such variation and by the

  1. The sensitivity of wet and dry tropical forests to climate change in Bolivia

    NARCIS (Netherlands)

    Seiler, C.; Hutjes, R.W.A.; Kruijt, B.; Hickler, T.

    2015-01-01

    Bolivia's forests contribute to the global carbon and water cycle, as well as to global biodiversity. The survival of these forests may be at risk due to climate change. To explore the associated mechanisms and uncertainties, a regionally adapted dynamic vegetation model was implemented for the

  2. OZONE AND SULFUR DIOXIDE DRY DEPOSITION TO FORESTS: OBSERVATIONS AND MODEL EVALUATION

    Science.gov (United States)

    Fluxes and deposition velocities of O3 and SO2 were measured over both a deciduous and a mixed coniferous-deciduous forest for full growing seasons. Fluxes and deposition velocities of O3 were measured over a coniferous forest for a month. Mean deposition velocities of 0.35 t...

  3. Separation of gaseous and particulate dry deposition of sulfur at a forest edge in Denmark

    International Nuclear Information System (INIS)

    Beier, C.

    1991-01-01

    Throughfall deposition of SO 4 -2 and Na + to a spruce [Picea abies (L.) Karst.] forest edge in Denmark was measured during 1 yr. The deposition of both SO 4 -2 and Na + was highly elevated at the forest edge with Na + showingthe steepest gradient. Using Na + as a model-substance for the deposition of particles and assuming that 6 to 24% of the SO 4 -2 deposition in throughfall inside the stand originated from particles, the relative contribution of particulate and gaseous S to the throughfall deposition at the forest edge could be estimated. The deposition of particulate S showed a strong dependence on the distance to the forest edge. Thus, particulate S contributed 25 to 100% of the net throughfall deposition under the front tree, whereas particulate S only contributed 6 to 24% inside the stand. The gaseous deposition showed a more moderate dependence on the forest edge and did not exceed the change in leaf area index

  4. Phylogenetic classification of the world's tropical forests

    DEFF Research Database (Denmark)

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodriguez, Victor

    2018-01-01

    -Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between......Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern...... phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal...

  5. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Global-Scale Patterns of Forest Fragmentation

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2000-12-01

    Full Text Available We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale to 59,049 km 2 (243 x 243 pixels, "large" scale were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe-Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types and Europe-Asia (four types, in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland. The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf.

  7. Global-scale patterns of forest fragmentation

    Science.gov (United States)

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  8. Dry deposition of O_3 and SO_2 estimated from gradient measurements above a temperate mixed forest

    International Nuclear Information System (INIS)

    Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming

    2016-01-01

    Vertical profiles of O_3 and SO_2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O_3 and SO_2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (V_d) were 0.35 (0.27) and 0.59 (0.54) cm s"−"1, respectively, for O_3 and SO_2. V_d(O_3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s"−"1 in August and the lowest of 0.09 cm s"−"1 in February. In contrast, seasonal variations of V_d(SO_2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s"−"1 (December). The different seasonal variations between O_3 and SO_2 were caused by the enhanced SO_2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of V_d in early morning in summer months for both O_3 and SO_2. Canopy wetness increased the non-stomatal uptake of O_3 while decreasing the stomatal uptake. This also applied to SO_2, but additional factors such as surface acidity also played an important role on the overall uptake. - Highlights: • Application of a modified gradient-method for quantifying dry deposition is demonstrated. • A five-year dry deposition database is developed for O_3 and SO_2 over a mixed forest. • Canopy wetness enhances non-stomatal O_3 uptake while inhibits stomatal uptake. • High surface acidity reduces SO_2 dry deposition. - Capsule: A five-year dataset of O_3 and SO_2 dry deposition velocities was generated from concentration gradient measurement data using a modified gradient method.

  9. Floristic composition of the dry tropical forest in biological reserve (sanctuary "Los Besotes" and phenology of the dominant arboreal species (Valledupar, Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    Mary Lee Berdugo Lattke

    2015-01-01

    Full Text Available Based on the floristic composition and structural aspects, the formation tropical dry forest of the reserve "Los Besotes" (Valledupar, Cesar; 248 y 1046m of altitude was characterized. In 35 individuals from nine dominant tree species in two forest types, the phenological characteristics were assessed. Seven monitoring were performed along one year according to the scheme of distribution of rainfall. The leaf fall in the forests of Myrcianthes aff. fragrans and Brosimum alicastrum did not exceed 20% regardless of the climatic period (drought or rainy seasons. In others dominant understory species the leaf fall was less than 40%, thus species of the canopy are classified as evergreen while those of the understory as semideciduous. Blooming peaked during the dry season while fruit production peaked during the two rainy seasons. In the forest ofBursera simaruba and Pterocarpus acapulcensis the leaf fall exceeded 60% in the dry season, while in the rainy season was only 30%. The leaf fall increased to 60% in others dominant understory species. Both canopy as well as understory species are deciduous. Blooming was observed during the dry season (December to March, and July, but it is also likely to occur in October; fruit production was observed at the end of the rainy season. In the tropical dry forest formation evergreen plant communities with low values of leaf fall (40% and deciduous communities with values greater than 60% are recognized.

  10. Impacts of artificial reservoirs on floristic diversity and plant functional traits in dry forests after 15 years.

    Science.gov (United States)

    Lopes, S F; Vale, V S; Prado Júnior, J A; Schiavini, I

    2015-08-01

    Dams are of paramount importance to a wide variety of human services and many of their environmental problems are known; however, there are few studies in the world addressing the impacts on the native vegetation previously distant from water bodies which became close to the lakeshore created by a dam. Thus, this paper aims to analyze the responses of a dry forest to a dam after 15 years. For this, 20 random samples of 40 trees were made, 10 close to the lakeshore and 10 distant from it, by applying the central square point method. Close to the dam, we found higher values regarding basal area, number of trees, number of evergreen trees, and zoochoric syndrome, but there were lower values of Shannon's diversity index. Therefore, the impacts of the dam after 15 years caused several changes to the tree community. The greater basal area close to the dam suggests that water deficit during the dry season was decreased and plants have thicker trunks. On the other hand, this sector had much more zoochoric syndrome and a larger number of evergreen trees than plots which are distant from water, suggesting changes with regard to the community's ecological functions. Furthermore, structural floristic data shows that the sector close to the dam is less similar to other deciduous forests within the same geographical region than the sector distant from water, thus providing evidence of the impacts of dams on the tree community.

  11. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    Science.gov (United States)

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  12. Impacts of artificial reservoirs on floristic diversity and plant functional traits in dry forests after 15 years

    Directory of Open Access Journals (Sweden)

    SF Lopes

    Full Text Available AbstractDams are of paramount importance to a wide variety of human services and many of their environmental problems are known; however, there are few studies in the world addressing the impacts on the native vegetation previously distant from water bodies which became close to the lakeshore created by a dam. Thus, this paper aims to analyze the responses of a dry forest to a dam after 15 years. For this, 20 random samples of 40 trees were made, 10 close to the lakeshore and 10 distant from it, by applying the central square point method. Close to the dam, we found higher values regarding basal area, number of trees, number of evergreen trees, and zoochoric syndrome, but there were lower values of Shannon’s diversity index. Therefore, the impacts of the dam after 15 years caused several changes to the tree community. The greater basal area c