WorldWideScience

Sample records for substantial distributed generation

  1. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, PA

    2003-01-01

    . A lowered district heating demand and thereby lowered CHP-bound electricity generation would appear to increase the possibility of integration wind power but due to the ancillary services supplied by CHP plants, the situation is in fact the opposite. Heat savings may not be technically feasible......, if a certain production is required regardless of whether over-all electricity generation is sufficient. This article analyses this and although heat savings do have a negative impact on the amount of wind power the system may integrate a given moment in certain cases, associated fuel savings are notable......In Denmark, the integration of wind power is affected by a large amount of cogeneration of heat and power. With ancillary services supplied by large-scale condensation and combined heat and power (CHP) plants, a certain degree of large-scale generation is required regardless of momentary wind input...

  2. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2004-01-01

    The integration of flutuating wind power is an important issue for the future development of sustainable energy systems. In Denmark, the integration is affected by a large amount of cogeneration of heat and power. This gives possibilities as well as sets restraints. The paper shows...... that with ancillary services supplied by large-scale condensation and CHP-plants, a certain degree of large-scale generation is required regardless of momentary wind input....

  3. Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology

    International Nuclear Information System (INIS)

    Amor, Mourad Ben; Samson, Rejean; Lesage, Pascal; Pineau, Pierre-Olivier

    2010-01-01

    Renewable distributed electricity generation can play a significant role in meeting today's energy policy goals, such as reducing greenhouse gas emissions, improving energy security, while adding supply to meet increasing energy demand. However, the exact potential benefits are still a matter of debate. The objective of this study is to evaluate the life cycle implications (environmental, economic and energy) of distributed generation (DG) technologies. A complementary objective is to compare the life cycle implications of DG technologies with the centralized electricity production representing the Northeastern American context. Environmental and energy implications are modeled according to the recommendations in the ISO 14040 standard and this, using different indicators: Human Health; Ecosystem Quality; Climate Change; Resources and Non-Renewable Energy Payback Ratio. Distinctly, economic implications are modeled using conventional life cycle costing. DG technologies include two types of grid-connected photovoltaic panels (3 kWp mono-crystalline and poly-crystalline) and three types of micro-wind turbines (1, 10 and 30 kW) modeled for average, below average and above average climatic conditions in the province of Quebec (Canada). A sensitivity analysis was also performed using different scenarios of centralized energy systems based on average and marginal (short- and long-term) technology approaches. Results show the following. First, climatic conditions (i.e., geographic location) have a significant effect on the results for the environmental, economic and energy indicators. More specifically, it was shown that the 30 kW micro-wind turbine is the best technology for above average conditions, while 3 kWp poly-crystalline photovoltaic panels are preferable for below average conditions. Second, the assessed DG technologies do not show benefits in comparison to the centralized Quebec grid mix (average technology approach). On the other hand, the 30 kW micro

  4. Financing Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.

    2001-06-29

    This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

  5. Financing Distributed Generation

    International Nuclear Information System (INIS)

    Walker, A.

    2001-01-01

    This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market

  6. GASIFICATION FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  7. Distributed generation induction and permanent magnet generators

    CERN Document Server

    Lai, L

    2007-01-01

    Distributed power generation is a technology that could help to enable efficient, renewable energy production both in the developed and developing world. It includes all use of small electric power generators, whether located on the utility system, at the site of a utility customer, or at an isolated site not connected to the power grid. Induction generators (IGs) are the cheapest and most commonly used technology, compatible with renewable energy resources. Permanent magnet (PM) generators have traditionally been avoided due to high fabrication costs; however, compared with IGs they are more reliable and productive. Distributed Generation thoroughly examines the principles, possibilities and limitations of creating energy with both IGs and PM generators. It takes an electrical engineering approach in the analysis and testing of these generators, and includes diagrams and extensive case study examples o better demonstrate how the integration of energy sources can be accomplished. The book also provides the ...

  8. Trends of distributed generation development in Lithuania

    International Nuclear Information System (INIS)

    Miskinis, Vaclovas; Norvaisa, Egidijus; Galinis, Arvydas; Konstantinaviciute, Inga

    2011-01-01

    The closure of Ignalina Nuclear Power Plant, impact of recent global recession of the economy, as well as changes and problems posed by the global climate change require significant alterations in the Lithuanian energy sector development. This paper describes the current status and specific features of the Lithuanian power system, and in particular discusses the role of the distributed generators. Country's energy policy during last two decades was focused on substantial modernisation of the energy systems, their reorganisation and creation of appropriate institutional structure and necessary legal basis. The most important factors stimulating development of distributed generation in Lithuania are the following: international obligations to increase contribution of power plants using renewable energy sources into electricity production balance; development of small (with capacity less than 50 MW) cogeneration power plants; implementation of energy policy directed to promotion of renewable energy sources and cogeneration. Analysis of the legal and economic environment, as well as principles of regulation of distributed generation and barriers to its development is presented. - Highlights: → Paper describes current status and specific features of the Lithuanian power system. → Analysis of the legal and economic environment regarding distributed generation. → Current situation is not favourable for distributed generation development. → Problems, barriers, principles of regulation of distributed generation is presented. → New energy policy regarding distributed generation and renewables.

  9. Designing Distributed Generation in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Linvill, Carl [Regulatory Assistance Project, Montepelier, VT (United States); Brutkoski, Donna [Regulatory Assistance Project, Montepelier, VT (United States)

    2017-05-15

    Mexico's energy reform will have far-reaching effects on how people produce and consume electricity in the country. Market liberalization will open the door to an increasing number of options for Mexican residential, commercial, and industrial consumers, and distributed generation (DG), which for Mexico includes generators of less than 500 kilowatts (kW) of capacity connected to the distribution network. Distributed generation is an option for consumers who want to produce their own electricity and provide electricity services to others. This report seeks to provide guidance to Mexican officials on designing DG economic and regulatory policies.

  10. Grid Synchronization for Distributed Generations

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2017-01-01

    Distributed generators (DGs) like photovoltaic arrays, wind turbines, and fuel cell modules, as well as distributed storage (DS) units introduce some advantages to the power systems and make it more reliable, flexible, and controllable in comparison with the conventional power systems. Grid...... of interfaces needs to be synchronized with the grid or microgird, and hence, a precise synchronization algorithm—mostly based on phase-locked loop—is required to estimate the phase angle and frequency of the voltage at the coupling point. Unlike synchronous generators, in power electronic interfaced DGs...... grid. Therefore, the synchronization is an important issue in DGs to have a stable and reliable operation....

  11. Distributively generated matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-04-01

    It is known that if R is a near ring with identity then (I,+) is abelian if (I + ,+) is abelian and (I,+) is abelian if (I*,+) is abelian [S.J. Abbasi, J.D.P. Meldrum, 1991]. This paper extends these results. We show that if R is a distributively generated near ring with identity then (I,+) is included in Z(R), the center of R, if (I + ,+) is included in Z(M n (R)), the center of matrix near ring M n (R). Furthermore (I,+) is included in Z(R) if (I*,+) is included in Z(M n (R)). (author). 5 refs

  12. Analysis on Voltage Profile of Distribution Network with Distributed Generation

    Science.gov (United States)

    Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua

    2018-02-01

    Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.

  13. Distributed Energy Generation for Climate Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Stout, Sherry; Hotchkiss, Eliza

    2017-05-24

    Distributed generation can play a critical role in supporting climate adaptation goals. This infographic style poster will showcase the role of distributed generation in achieving a wide range of technical and policy goals and social services associated with climate adaptation.

  14. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds.

    Science.gov (United States)

    Sakai, Hiroaki; Iwai, Toru; Matsubara, Chie; Usui, Yuto; Okamura, Masaki; Yatou, Osamu; Terada, Yasuko; Aoki, Naohiro; Nishida, Sho; Yoshida, Kaoru T

    2015-09-01

    Phytic acid (myo-inositol hexakisphosphate; InsP6) is the storage compound of phosphorus and many mineral elements in seeds. To determine the role of InsP6 in the accumulation and distribution of mineral elements in seeds, we performed fine mappings of mineral elements through synchrotron-based X-ray microfluorescence analysis using developing seeds from two independent low phytic acid (lpa) mutants of rice (Oryza sativa L.). The reduced InsP6 in lpa seeds did not affect the translocation of mineral elements from vegetative organs into seeds, because the total amounts of phosphorus and the other mineral elements in lpa seeds were identical to those in the wild type (WT). However, the reduced InsP6 caused large changes in mineral localization within lpa seeds. Phosphorus and potassium in the aleurone layer of lpa greatly decreased and diffused into the endosperm. Zinc and copper, which were broadly distributed from the aleurone layer to the inner endosperm in the WT, were localized in the narrower space around the aleurone layer in lpa mutants. We also confirmed that similar distribution changes occurred in transgenic rice with the lpa phenotype. Using these results, we discussed the role of InsP6 in the dynamic accumulation and distribution patterns of mineral elements during seed development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Loss optimization in distribution networks with distributed generation

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2017-01-01

    in highly active distribution grids. This issue is tackled by formulating a hybrid loss optimization problem and solved using the Interior Point Method. Sensitivity analysis is used to identify the optimum location of storage units. Different scenarios of reconfiguration, storage and distributed generation......This paper presents a novel power loss minimization approach in distribution grids considering network reconfiguration, distributed generation and storage installation. Identification of optimum configuration in such scenario is one of the main challenges faced by distribution system operators...

  16. Banding of connection standards for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This report presents the views of distributed network operators (DNOs), developers, equipment manufacturers and consultants on the current banding of distributed generation in terms of connection standards and recommendations. The Documents ER G59/1, ER G75/1, ER G83/1 and ETR 113/1 covering recommendations for the connection of embedded generating plant to distribution systems and guidance notes for the protection of embedded generating plant are examined. The way in which the recommendations are applied in practice is investigated. Multiple distribution generator installations, fault ride through, and banding are considered as well as both protection required and maximum generator sizes at respective voltage levels.

  17. Review of distributed generation planning: objectives, constraints ...

    African Journals Online (AJOL)

    The Distributed Generation (DG) technologies, which include both conventional and non-conventional type of energy sources for generating power, are gaining momentum and play major role in distribution system as an alternative distribution system planning option. The penetration of DGs is potentially beneficial if ...

  18. Distributed coordination of energy storage with distributed generators

    NARCIS (Netherlands)

    Yang, Tao; Wu, Di; Stoorvogel, Antonie Arij; Stoustrup, Jakob

    2016-01-01

    With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal DER coordination problem considering

  19. Distributed generation: definition, benefits and issues

    OpenAIRE

    Guido Pepermans; Johan Driesen; Dries Haeseldonckx

    2003-01-01

    This paper starts from the observation that there is a renewed interest in small-scale electricity generation. The authors start with a survey of existing small-scale generation technologies and then move on with a discussion of the major benefits and issues of small-scale electricity generation. Different technologies are evaluated in terms of their possible contribution to the listed benefits and issues. Small-scale generation is also commonly called distributed generation, embedded generat...

  20. Power Generation and Distribution via Distributed Coordination Control

    OpenAIRE

    Kim, Byeong-Yeon; Oh, Kwang-Kyo; Ahn, Hyo-Sung

    2014-01-01

    This paper presents power coordination, power generation, and power flow control schemes for supply-demand balance in distributed grid networks. Consensus schemes using only local information are employed to generate power coordination, power generation and power flow control signals. For the supply-demand balance, it is required to determine the amount of power needed at each distributed power node. Also due to the different power generation capacities of each power node, coordination of pow...

  1. The Operational Risk Assessment for Distribution Network with Distributed Generations

    Science.gov (United States)

    Hua, Xie; Yaqi, Wu; Yifan, Wang; Qian, Sun; Jianwei, Ma

    2017-05-01

    Distribution network is an important part of the power system and is connected to the consumers directly. Many distributed generations that have discontinuous output power are connected in the distribution networks, which may cause adverse impact to the distribution network. Therefore, to ensure the security and reliability of distribution network with numerous distributed generations, the risk analysis is necessary for this kind of distribution networks. After study of stochastic load flow algorithm, this paper applies it in the static security risk assessment. The wind and photovoltaic output probabilistic model are built. The voltage over-limit is chosen to calculate the risk indicators. As a case study, the IEEE 33 system is simulated for analyzing impact of distributed generations on system risk in the proposed method.

  2. Rural electrification strategies for distributed generation

    CERN Document Server

    Zerriffi, Hisham

    2011-01-01

    Small-scale Distributed Generation (DG), which run off diesel generators, could provide electricity to rural communities without an electricity grid. Rural Electrification compares around 20 DG enterprises and projects in Brazil, Cambodia and China, and each is a possible model for distributed rural electrification.

  3. The future of distributed generation

    International Nuclear Information System (INIS)

    Moore, M.

    2004-01-01

    This presentation outlined the value of distributed energy resources (DER) in terms of greater energy security and flexibility. The benefits that DER provide to consumers include: clean electricity, low cost electricity, reduced price volatility, greater reliability and power quality, energy and load management and combined heat and power. The benefits that DER provide to suppliers include: reduced electric line loss, reduced transmission and distribution congestion; deferment of grid investment and better grid asset utilization, improved grid reliability and ancillary services such as voltage stability, contingency reserves and black start capability. These benefits can be achieved through customer choice, open market access, time of use pricing and easy interconnection. It was noted that the integration of distributed power systems requires a change in policy and planning strategies. DER systems can be powered by advanced turbines, reciprocating engines, fuel cells, photovoltaics, wind power, thermally activated technologies and microturbines. The new DER test facility at the National renewable Energy Laboratory tests the capabilities of various energy sources. tabs., figs

  4. Distributed Generation (DG) practices in the US

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-20

    This document forms an annex to a report, 'Technical solutions to enable embedded generation growth', which is one of a series of studies commissioned by the UK Department of Trade and Industry into various aspects of embedded generation with the aim of supporting the development and deployment of electrical sources (particularly their ease of connection to the network) in the UK. The annex describes current practice with distributed generation in the USA. The wide range of practices relating to distributed generation and the lack of a specific government policy to encourage distributed generation are noted. The USA has a wide range of utility practices and a wide range of distributed generation practices are being attempted. The present approach, which is set against the beginnings of deregulation in the USA relies on market forces with a few subsidies.

  5. Report on Distributed Generation Penetration Study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.; Ye, Z.

    2003-08-01

    This report documents part of a multiyear research program dedicated to the development of requirements to support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept. The report focuses on the dynamic behavior of power systems when a significant portion of the total energy resource is distributed generation. It also focuses on the near-term reality that the majority of new DG relies on rotating synchronous generators for energy conversion.

  6. Alternative energy and distributed generation: thinking generations ahead

    International Nuclear Information System (INIS)

    Hunt, P.D.

    2001-01-01

    Alternative Energy will be discussed in the context of Distributed Generation, which is defined as a delivery platform for micro-power generation, close to the end-users, that can also supplement regional electricity grids. Many references in the paper pertain to Alberta. This is for two reasons: First, familiarity by the author, and more importantly, Alberta is the first region in Canada that has de-regulated it's electricity sector. De-regulation allows independent and smaller power generators to enter the market. Focussing on Alberta, with some references to other Canadian provinces and USA, electricity consumption trends will be reviewed and the pressures to decentralize electricity generation discussed. Re-structuring of the electricity sector, convergence of power generation and natural gas industries, advances in technologies, and environmental concerns are collectively contributing to the creation of a new business called 'Distributed Generation'. Efficiency benefits of combined heat and power associated with the more prominent emerging distributed generation technologies like micro-turbines and fuel cells, will be highlighted. Areas of research, development and demonstration that will enable the successful deployment of Distributed Generation will be suggested with respect to Generation Technologies, Systems Controls, Supporting Infrastructure, and Socio-Political Barriers. Estimates of investments in the various alternative energy technologies will be presented. Using current trends and emerging technologies the Paper will conclude with some predictions of future scenarios. (author)

  7. The Impact of Connecting Distributed Generation to the Distribution System

    Directory of Open Access Journals (Sweden)

    E. V. Mgaya

    2007-01-01

    Full Text Available This paper deals with the general problem of utilizing of renewable energy sources to generate electric energy. Recent advances in renewable energy power generation technologies, e.g., wind and photovoltaic (PV technologies, have led to increased interest in the application of these generation devices as distributed generation (DG units. This paper presents the results of an investigation into possible improvements in the system voltage profile and reduction of system losses when adding wind power DG (wind-DG to a distribution system. Simulation results are given for a case study, and these show that properly sized wind DGs, placed at carefully selected sites near key distribution substations, could be very effective in improving the distribution system voltage profile and reducing power losses, and hence could  improve the effective capacity of the system. 

  8. Distributed Generation to Counter Grid Vulnerability

    National Research Council Canada - National Science Library

    Nerad, Anton H

    2007-01-01

    ... power generation and distribution capabilities, outline several terrorist designs for disruption to it and the resulting economic impact, and provide a possible solution with the adoption of a concept...

  9. Islanding Operation of Distribution System with Distributed Generations

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    The growing interest in distributed generations (DGs) due to environmental concern and various other reasons have resulted in significant penetration of DGs in many distribution system worldwide. DGs come with many benefits. One of the benefits is improved reliability by supplying load during power...

  10. Defining and evaluating the capacity value of distributed generation.

    OpenAIRE

    Dent, C.J.; Hernandez-Ortiz, A.; Blake, S.R.; Miller, D.; Roberts, D.

    2015-01-01

    Installed capacities of distributed generation (DG) are projected to increase substantially in Great Britain and many other power systems. This paper will discuss the definition of capacity value of DG arising from its ability to support additional demand without the need for new network capacity, in analogy with the definition of effective load carrying capability (ELCC) at transmission level. This calculated ELCC depends on the precise detail of its definition; in particular in a demand gro...

  11. Transient stability analysis of a distribution network with distributed generators

    NARCIS (Netherlands)

    Xyngi, I.; Ishchenko, A.; Popov, M.; Van der Sluis, L.

    2009-01-01

    This letter describes the transient stability analysis of a 10-kV distribution network with wind generators, microturbines, and CHP plants. The network being modeled in Matlab/Simulink takes into account detailed dynamic models of the generators. Fault simulations at various locations are

  12. Multicriteria Reconfiguration of Distribution Network with Distributed Generation

    OpenAIRE

    Voropai, N. I.; Bat-Undraal, B.

    2012-01-01

    The paper addresses the problem of multicriteria reconfiguration of distribution network with distributed generation according to the criterion of minimum power loss under normal conditions and the criterion of power supply reliability under postemergency conditions. Efficient heuristic and multicriteria methods are used to solve the problem including advanced ant colony algorithm for minimum loss reconfiguration of distribution network, the sorting-out algorithm of cell formation for island ...

  13. Control and operation of distributed generation in distribution systems

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    Many distribution systems nowadays have significant penetration of distributed generation (DG)and thus, islanding operation of these distribution systems is becoming a viable option for economical and technical reasons. The DG should operate optimally during both grid-connected and island...... algorithm, which uses average rate of change off requency (Af5) and real power shift RPS), in the islanded mode. RPS will increase or decrease the power set point of the generator with increasing or decreasing system frequency, respectively. Simulation results show that the proposed method can operate...

  14. Loss Allocation in a Distribution System with Distributed Generation Units

    DEFF Research Database (Denmark)

    Lund, Torsten; Nielsen, Arne Hejde; Sørensen, Poul Ejnar

    2007-01-01

    In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed...... generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system...

  15. Ancillary service provision from distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the findings of a study undertaken to investigate the potential for establishing ancillary service markets at the distribution level in the UK. Existing arrangements for ancillary service markets globally, the design of these markets, regulatory and legislative changes that may be required, different forms of distributed generation (DG), and prospects of increasing the connection to the distributed network are examined along with commercial frameworks and technical procedures, infrastructure requirements, and the effects on different market participants. The scope for new ancillary services at the distribution level, ancillary services from DG, the prospects for DG, commercial and technical aspects, and impact assessments are reviewed.

  16. Ancillary service provision from distributed generation

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the findings of a study undertaken to investigate the potential for establishing ancillary service markets at the distribution level in the UK. Existing arrangements for ancillary service markets globally, the design of these markets, regulatory and legislative changes that may be required, different forms of distributed generation (DG), and prospects of increasing the connection to the distributed network are examined along with commercial frameworks and technical procedures, infrastructure requirements, and the effects on different market participants. The scope for new ancillary services at the distribution level, ancillary services from DG, the prospects for DG, commercial and technical aspects, and impact assessments are reviewed

  17. Distributed generation: definition, benefits and issues

    International Nuclear Information System (INIS)

    Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D'haeseleer, W.

    2005-01-01

    This paper starts from the observation that there is a renewed interest in small-scale electricity generation. The authors start with a survey of existing small-scale generation technologies and then move on with a discussion of the major benefits and issues of small-scale electricity generation. Different technologies are evaluated in terms of their possible contribution to the listed benefits and issues. Small-scale generation is also commonly called distributed generation, embedded generation or decentralised generation. In a final section, an attempt is made to define the latter concepts more precisely. It appears that there is no consensus on a precise definition as the concept encompasses many technologies and applications

  18. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  19. Reliability Evaluation of Distribution System with Distributed Generation

    Science.gov (United States)

    Chen, Guoyan; Zhang, Feng; You, Dahai; Wang, Yong; Lu, Guojun; Zou, Qi; Liu, Hengwei; Qian, Junjie; Xu, Heng

    2017-07-01

    Distribution system reliability assessment is an important part of power system reliability assessment. In recent years, distributed generations (DG) are more and more connected to distribution system because of its flexible and friendly environment features, which imposes a great influence on distribution system reliability. Hence, a reliability evaluation method suitable for distribution system with DG is imperative, which is proposed in this paper. First, a probabilistic model of DG output is established based on the generation characteristics of DG. Second, the island operation mode of distribution system with DG is researched, subsequently, the calculation method of the probability of island successful operation is put forward on the basis of DG model and the load model. Third, a reliability assessment methodology of distribution system with DG is proposed by improving the traditional minimal path algorithm for reliability evaluation of distribution system. Finally, some results are obtained by applying the proposed method to the IEEE-RBTS Bus6 system, which are consistent with the well-known facts. In this way, the proposed method is proved to be reasonable and effective.

  20. Distribution planning with reliability options for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Trebolle, David [Union Fenosa Distribucion, C/Antonio Lopez, 19, 28026 Madrid (Spain); Gomez, Tomas; Cossent, Rafael; Frias, Pablo [Instituto de Investigacion Tecnologica, Escuela Tecnica Superior de Ingenieria, Universidad Pontificia Comillas, C/Quintana 21, 28008 Madrid (Spain)

    2010-02-15

    The promotion of electricity generation from renewable energy sources (RES) and combined heat and power (CHP) has resulted in increasing penetration levels of distributed generation (DG). However, large-scale connection of DG involves profound changes in the operation and planning of electricity distribution networks. Distribution System Operators (DSOs) play a key role since these agents have to provide flexibility to their networks in order to integrate DG. Article 14.7 of EU Electricity Directive states that DSOs should consider DG as an alternative to new network investments. This is a challenging task, particularly under the current regulatory framework where DSOs must be legally and functionally unbundled from other activities in the electricity sector. This paper proposes a market mechanism, referred to as reliability options for distributed generation (RODG), which provides DSOs with an alternative to the investment in new distribution facilities. The mechanism proposed allocates the firm capacity required to DG embedded in the distribution network through a competitive auction. Additionally, RODG make DG partly responsible for reliability and provide DG with incentives for a more efficient operation taking into account the network conditions. (author)

  1. Distribution planning with reliability options for distributed generation

    International Nuclear Information System (INIS)

    Trebolle, David; Gomez, Tomas; Cossent, Rafael; Frias, Pablo

    2010-01-01

    The promotion of electricity generation from renewable energy sources (RES) and combined heat and power (CHP) has resulted in increasing penetration levels of distributed generation (DG). However, large-scale connection of DG involves profound changes in the operation and planning of electricity distribution networks. Distribution System Operators (DSOs) play a key role since these agents have to provide flexibility to their networks in order to integrate DG. Article 14.7 of EU Electricity Directive states that DSOs should consider DG as an alternative to new network investments. This is a challenging task, particularly under the current regulatory framework where DSOs must be legally and functionally unbundled from other activities in the electricity sector. This paper proposes a market mechanism, referred to as reliability options for distributed generation (RODG), which provides DSOs with an alternative to the investment in new distribution facilities. The mechanism proposed allocates the firm capacity required to DG embedded in the distribution network through a competitive auction. Additionally, RODG make DG partly responsible for reliability and provide DG with incentives for a more efficient operation taking into account the network conditions. (author)

  2. Review on Islanding Operation of Distribution System with Distributed Generation

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    The growing environmental concern and various benefits of distributed generation (DG) have resulted in significant penetration of DG in many distribution systems worldwide. One of the major expected benefits of DG is the improvement in the reliability of power supply by supplying load during power...... outage by operating in an island mode. However, there are many challenges to overcome before islanding operation of a distribution system with DG can become a viable solution in future. This paper reviews some of the major challenges with islanding operation and explores some possible solutions...

  3. Distributed generation and distribution market diversity in Europe

    International Nuclear Information System (INIS)

    Lopes Ferreira, H.; Costescu, A.; L'Abbate, A.; Minnebo, P.; Fulli, G.

    2011-01-01

    The unbundling of the electricity power system will play a key role on the deployment of distributed generation (DG) in European distribution systems evolving towards Smart Grids. The present paper firstly reviews the relevant European Union (EU) regulatory framework: specific attention is paid to the concept of unbundling of power distribution sector in Europe. Afterwards, the focus is on the current state of penetration of DG technologies in the EU Member States and the corresponding interrelations with distribution features. A comparison between the unbundling of the distribution and supply markets using econometric indicators such as the Herfindahl-Hirschmann (I HH ) and the Shannon-Wiener (I SW ) indices is then presented. Finally, a comparative analysis between these indices and the current level of penetration of distributed generation in most EU is shown; policy recommendations conclude the paper. - Highlights: →The EU regulatory framework and the concept of unbundling are addressed. →A comparison between the unbundling of the distribution and supply markets is shown. →The Herfindahl-Hirschmann and the Shannon-Wiener econometric indices are applied. →A comparison between the indices and the penetration level of DG in EU is presented. →A comparison between the indices and the penetration level of DG in EU is presented.

  4. impact of photovoltaic distributed generation on unbalance ...

    African Journals Online (AJOL)

    pc

    2017-11-24

    Nov 24, 2017 ... profile and rapid integration of distributed generation (DG) are imperative to compute reactive power status at the point of coupling (PCC) during each iteration of load flow computation. In this work, a fuzzy expert system based photo voltaic DG placement has been utilized to evaluate stochastic unbalance ...

  5. OPTIMAL LOCATION OF DISTRIBUTED GENERATION ON THE ...

    African Journals Online (AJOL)

    OPTIMAL LOCATION OF DISTRIBUTED GENERATION ON THE NIGERIAN POWER SYSTEM. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  6. Impact of photovoltaic distributed generation on unbalance ...

    African Journals Online (AJOL)

    In a smart grid environment, voltage sensitive composite load characteristics, poor voltage profile and rapid integration of distributed generation (DG) are imperative to compute reactive power status at the point of coupling (PCC) during each iteration of load flow computation. In this work, a fuzzy expert system based photo ...

  7. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sy; Moritz, Bob

    2001-09-01

    potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  8. On the Optimal Design of Distributed Generation Policies: Is Net Metering Ever Optimal?

    OpenAIRE

    Brown, David; Sappington, David

    2014-01-01

    Electricity customers who install solar panels often are paid the prevailing retail price for the electricity they generate. We show that this "net metering" policy typically is not optimal. A payment for distributed generation (w) that is below the retail price of electricity (r) will induce the welfare-maximizing level of distributed generation (DG) when centralized generation and DG produce similar (pollution) externalities. However, w can optimally exceed r when DG entails a substantial r...

  9. Electric distribution systems and embedded generation capacity

    International Nuclear Information System (INIS)

    Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P.

    2006-01-01

    The main policy issues of European States are sustainable energy supply promotion and liberalization of energy markets, which introduced market competition in electricity production and created support mechanisms to encourage renewable electricity production and consumption. As a result of liberalization, any generator, including small-scale and renewable energy based units, can sell electricity on the free market. In order to meet future sustainability targets, connection of a higher number of Distributed Generation (DG) units to the electrical power system is expected, requiring changes in the design and operation of distribution electricity systems, as well as changes in electricity network regulation. In order to assist distribution system operators in planning and managing DG connections and in maximizing DG penetration and renewable sources exploitation, this paper proposed a reconfiguration methodology based on a Genetic Algorithm (GA), that was tested on a 70-bus system with DG units. The simulation results confirmed that the methodology represents a suitable tool for distribution system operators when dealing with DG capacity expansion and power loss issues, providing information regarding the potential penetration network-wide and allowing maximum exploitation of renewable generation. 35 refs., 4 tabs., 6 figs

  10. Small Distributed Renewable Energy Generation for Low Voltage Distribution Networks

    Directory of Open Access Journals (Sweden)

    Chindris M.

    2016-08-01

    Full Text Available Driven by the existing energy policies, the use of renewable energy has increased considerably all over the world in order to respond to the increasing energy consumption and to reduce the environmental impact of the electricity generation. Although most policy makers and companies are focusing on large applications, the use of cheap small generation units, based on local renewable resources, has become increasingly attractive for the general public, small farms and remote communities. The paper presents several results of a research project aiming to identify the power quality issues and the impact of RES based distributed generation (DG or other non-linear loads on low voltage (LV distribution networks in Romania; the final goal is to develop a Universal Power Quality Conditioner (UPQC able to diminish the existing disturbances. Basically, the work analyses the existing DG technologies and identifies possible solutions for their integration in Romania; taking into account the existent state of the art, the attention was paid on small systems, using wind and solar energy, and on possibility to integrate them into suburban and rural LV distribution networks. The presence of DG units at distribution voltage level means the transition from traditional passive to active distribution networks. In general, the relatively low penetration levels of DG does not produce problems; however, the nowadays massive increase of local power generation have led to new integration challenges in order to ensure the reliability and quality of the power supply. Power quality issues are identified and their assessment is the key element in the design of measures aiming to diminish all existing disturbances.

  11. Fuel cells for distributed power generation

    Science.gov (United States)

    Tarman, Paul B.

    Deregulation has caused a major change in power distribution in the USA. Large central power stations are being and will continue to be replaced by smaller, distributed power generation sources of less than 20 kW. Fuel cells, specifically molten carbonate fuel cells (MCFCs), are best suited to serve this need. Small turbines cannot achieve the efficiency or environmental friendliness of MCFCs in this power range. This paper discusses the goals of M-C Power Corporation and the advantages of its IMHEX® MCFC technology. M-C Power's factory, demonstration testing program, and its market-entry power plant are also described, as are its commercialization strategy and schedule.

  12. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Pappx, L.

    1994-01-01

    After modification of Dukovany NPP steam generator feedwater system, the increased concentration of minerals was measured in the cold leg of modified steam generator. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators, has focused this attention on the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of flow distribution in the secondary side of SG was developed. (Author)

  13. Next generation tools for genomic data generation, distribution, and visualization

    Directory of Open Access Journals (Sweden)

    Nix David A

    2010-09-01

    Full Text Available Abstract Background With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Results Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx; an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub; and a standalone Java Swing application (GWrap that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. Conclusions These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq.

  14. Next generation tools for genomic data generation, distribution, and visualization.

    Science.gov (United States)

    Nix, David A; Di Sera, Tonya L; Dalley, Brian K; Milash, Brett A; Cundick, Robert M; Quinn, Kevin S; Courdy, Samir J

    2010-09-09

    With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx); an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub); and a standalone Java Swing application (GWrap) that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq.

  15. Optimal power flow for distribution networks with distributed generation

    Directory of Open Access Journals (Sweden)

    Radosavljević Jordan

    2015-01-01

    Full Text Available This paper presents a genetic algorithm (GA based approach for the solution of the optimal power flow (OPF in distribution networks with distributed generation (DG units, including fuel cells, micro turbines, diesel generators, photovoltaic systems and wind turbines. The OPF is formulated as a nonlinear multi-objective optimization problem with equality and inequality constraints. Due to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties, a probabilisticalgorithm is introduced in the OPF analysis. The Weibull and normal distributions are employed to model the input random variables, namely the wind speed, solar irradiance and load power. The 2m+1 point estimate method and the Gram Charlier expansion theory are used to obtain the statistical moments and the probability density functions (PDFs of the OPF results. The proposed approach is examined and tested on a modified IEEE 34 node test feeder with integrated five different DG units. The obtained results prove the efficiency of the proposed approach to solve both deterministic and probabilistic OPF problems for different forms of the multi-objective function. As such, it can serve as a useful decision-making supporting tool for distribution network operators. [Projekat Ministarstva nauke Republike Srbije, br. TR33046

  16. Next generation distributed computing for cancer research.

    Science.gov (United States)

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing.

  17. Reliability assessment of distribution system with the integration of renewable distributed generation

    International Nuclear Information System (INIS)

    Adefarati, T.; Bansal, R.C.

    2017-01-01

    Highlights: • Addresses impacts of renewable DG on the reliability of the distribution system. • Multi-objective formulation for maximizing the cost saving with integration of DG. • Uses Markov model to study the stochastic characteristics of the major components. • The investigation is done using modified RBTS bus test distribution system. • Proposed approach is useful for electric utilities to enhance the reliability. - Abstract: Recent studies have shown that renewable energy resources will contribute substantially to future energy generation owing to the rapid depletion of fossil fuels. Wind and solar energy resources are major sources of renewable energy that have the ability to reduce the energy crisis and the greenhouse gases emitted by the conventional power plants. Reliability assessment is one of the key indicators to measure the impact of the renewable distributed generation (DG) units in the distribution networks and to minimize the cost that is associated with power outage. This paper presents a comprehensive reliability assessment of the distribution system that satisfies the consumer load requirements with the penetration of wind turbine generator (WTG), electric storage system (ESS) and photovoltaic (PV). A Markov model is proposed to access the stochastic characteristics of the major components of the renewable DG resources as well as their influence on the reliability of a conventional distribution system. The results obtained from the case studies have demonstrated the effectiveness of using WTG, ESS and PV to enhance the reliability of the conventional distribution system.

  18. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Papp, L.

    1995-01-01

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed

  19. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L. [Inst. of Material Engineering, Ostrava (Switzerland)

    1995-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  20. Distributed Power-Generation Systems and Protection

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Yang, Dongsheng

    2017-01-01

    Continuously expanding deployments of distrib¬uted power-generation systems (DPGSs) are transforming the conventional centralized power grid into a mixed distributed electrical network. The modern power grid requires flexible energy utilization but presents challenges in the case of a high...... penetration degree of renewable energy, among which wind and solar photovoltaics are typical sources. The integration level of the DPGS into the grid plays a critical role in developing sustainable and resilient power systems, especially with highly intermittent renewable energy resources. To address...... for the DPGS to consolidate the integration. In light of the above, this paper reviews the power-conversion and control technologies used for DPGSs. The impacts of the DPGS on the distributed grid are also examined, and more importantly, strategies for enhancing the connection and protection of the DPGS...

  1. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  2. Network integration of distributed power generation

    Science.gov (United States)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  3. Distributed power generation using biogas fuelled microturbines

    International Nuclear Information System (INIS)

    Pointon, K.; Langan, M.

    2002-01-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects

  4. Electromechanical Peak Devices of Distributed Power Generation

    Directory of Open Access Journals (Sweden)

    S. V. Konstantinova

    2011-01-01

    Full Text Available The power world crises (1973, 1979 have demonstrated that mankind entered the expensive energy epoch. More and more attitude is given to power saving problem by including renewable power sources in energy balance of the countries. The paper analyzes a power system inBelarusand a typical chart of the active load is cited in the paper. Equalization of load chart is considered as one of measures directed on provision of higher operational efficiency of power system and power saving.  This purpose can be obtained while including electromechanical peak devices of the distributed generation in the energy balance.

  5. Distributed power generation using biogas fuelled microturbines

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, K.; Langan, M.

    2002-07-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects.

  6. Improved Load Shedding Scheme considering Distributed Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Nitsas, Antonios; Altin, Müfit

    2017-01-01

    . These schemes utilize directional relays, power flow through feeders, wind and PV measurements to optimally select the feeders to be disconnected during load shedding such that DG disconnection is minimized while disconnecting required amount of consumption. These different UFLS schemes are compared in terms......With high penetration of distributed generation (DG), the conventional under-frequency load shedding (UFLS) face many challenges and may not perform as expected. This article proposes new UFLS schemes, which are designed to overcome the shortcomings of traditional load shedding scheme...... of frequency response, amount of consumption and DG disconnected during load shedding....

  7. Distributed Generation with Heat Recovery and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  8. Reliability assessment of distribution power systems including distributed generations

    International Nuclear Information System (INIS)

    Megdiche, M.

    2004-12-01

    Nowadays, power systems have reached a good level of reliability. Nevertheless, considering the modifications induced by the connections of small independent producers to distribution networks, there's a need to assess the reliability of these new systems. Distribution networks present several functional characteristics, highlighted by the qualitative study of the failures, as dispersed loads at several places, variable topology and some electrotechnical phenomena which must be taken into account to model the events that can occur. The adopted reliability calculations method is Monte Carlo simulations, the probabilistic method most powerful and most flexible to model complex operating of the distribution system. We devoted a first part on the case of a 20 kV feeder to which a cogeneration unit is connected. The method was applied to a software of stochastic Petri nets simulations. Then a second part related to the study of a low voltage power system supplied by dispersed generations. Here, the complexity of the events required to code the method in an environment of programming allowing the use of power system calculations (load flow, short-circuit, load shedding, management of units powers) in order to analyse the system state for each new event. (author)

  9. Integrated, Automated Distributed Generation Technologies Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin [Atk Launch Systems Inc., Brigham City, UT (United States)

    2014-09-01

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  10. State Electricity Regulatory Policy and Distributed Resources: Distribution System Cost Methodologies for Distributed Generation; Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, W.; Cowart, R.; Sedano, R.; Weston, F.; Harrington, C.; Moskovitz, D.

    2002-10-01

    Designing and implementing credit-based pilot programs for distributed resources distribution is a low-cost, low-risk opportunity to find out how these resources can help defer or avoid costly electric power system (utility grid) distribution upgrades. This report describes implementation options for deaveraged distribution credits and distributed resource development zones. Developing workable programs implementing these policies can dramatically increase the deployment of distributed resources in ways that benefit distributed resource vendors, users, and distribution utilities. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Accommodating Distributed Resources in Wholesale Markets, NREL/SR-560-32497; (2) Distributed Resources and Electric System Re liability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501.

  11. State Electricity Regulatory Policy and Distributed Resources: Distribution System Cost Methodologies for Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, W.; Cowart, R.; Sedano, R.; Weston, F.; Harrington, C.; Moskovitz, D.

    2002-10-01

    Designing and implementing credit-based pilot programs for distributed resources distribution is a low-cost, low-risk opportunity to find out how these resources can help defer or avoid costly electric power system (utility grid) distribution upgrades. This report describes implementation options for deaveraged distribution credits and distributed resource development zones. Developing workable programs implementing these policies can dramatically increase the deployment of distributed resources in ways that benefit distributed resource vendors, users, and distribution utilities. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Accommodating Distributed Resources in Wholesale Markets, NREL/SR-560-32497; (2) Distributed Resources and Electric System Re liability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501.

  12. Multi-objective optimization of distributed generation with voltage ...

    African Journals Online (AJOL)

    ... and line power capacity limit. In this paper, it is analyzed that voltage step constraint affects the location, size and power factor of DG in distribution network. The studies are carried out for 17-bus, 38-bus and 76-bus distribution systems. Keywords: Distributed generation, distribution system, distributed generation planning, ...

  13. Improvement of power quality using distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Munoz, A.; Lopez-Rodriguez, M.A.; Flores-Arias, J.M.; Bellido-Outerino, F.J. [Universidad de Cordoba, Departamento A.C., Electronica y T.E., Escuela Politecnica Superior, Campus de Rabanales, E-14071 Cordoba (Spain); de-la-Rosa, J.J.G. [Universidad de Cadiz, Area de Electronica, Dpto. ISA, TE y Electronica, Escuela Politecnica Superior Avda, Ramon Puyol, S/N, E-11202-Algeciras-Cadiz (Spain); Ruiz-de-Adana, M. [Universidad de Cordoba, Departamento de Quimica Fisica y Termodinamica Aplicada, Campus de Rabanales, E-14071 Cordoba (Spain)

    2010-12-15

    This paper addresses how Distributed Generation (DG), particularly when configured in Combined Heat and Power (CHP) mode, can become a powerful reliability solution in highlight automated factories, especially when integrated with complimentary Power Quality (PQ) measures. The paper presents results from the PQ audit conducted at a highly automated plant over last year. It was found that the main problems for the equipment installed were voltage sags. Among all categories of electrical disturbances, the voltage sag (dip) and momentary interruption are the nemeses of the automated industrial process. The paper analyzes the capabilities of modern electronic power supplies and the convenience of embedded solution. Finally it is addressed the role of the DG/CHP on the reliability of digital factories. (author)

  14. Distributed Generation with Heat Recovery and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  15. Microscale air quality impacts of distributed power generation facilities.

    Science.gov (United States)

    Olaguer, Eduardo P; Knipping, Eladio; Shaw, Stephanie; Ravindran, Satish

    2016-08-01

    The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on

  16. Planning of different types of distributed generation with seasonal ...

    African Journals Online (AJOL)

    user

    The comparison of different types of distributed generation (DG) may help for appropriate selection of type of DG for distributed generation planning (DGP) in distribution system for various load scenario. The load on each bus of distribution system may be, in practice, the composition of industrial, residential, and commercial ...

  17. The Impact of Distributed Generation on Distribution Networks ...

    African Journals Online (AJOL)

    Their advantages are the ability to reduce or postpone the need for investment in the transmission and distribution infrastructure when optimally located; the ability to reduce technical losses within the transmission and distribution networks as well as general improvement in power quality and system reliability. This paper ...

  18. Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review

    OpenAIRE

    Beck, Osmer DeVon

    2010-01-01

    Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong growth in distributed renewable energy generation installations in the coming years. New distributed renewable energy generation utilities, by definition, will be primarily located in built environments near consumers; these utilities are often planned and designed by landscape architects, yet no ev...

  19. Optimal placement of distributed generation in distribution networks ...

    African Journals Online (AJOL)

    This paper proposes the application of Particle Swarm Optimization (PSO) technique to find the optimal size and optimum location for the placement of DG in the radial distribution networks for active power compensation by reduction in real power losses and enhancement in voltage profile. In the first segment, the optimal ...

  20. optimal location of distributed generation on the nigerian power ...

    African Journals Online (AJOL)

    OPTIMAL LOCATION OF DISTRIBUTED GENERATION ON THE NIGERIAN POWER SYSTEM. ... Nigerian Journal of Technology ... The optimal sizing and location of distributed generators (DG) remain crucial factors in their application for active power loss minimization as well as voltage profile improvement. This paper ...

  1. A Fast Algorithm for Generating Permutation Distribution of Ranks in ...

    African Journals Online (AJOL)

    The algorithm is based on combinatorics in finding the generating function of the distribution of the ranks. This further gives insight into the permutation distribution of a rank statistics. The algorithm is implemented with the aid of the computer algebra system Mathematica. Key words: Combinatorics, generating function, ...

  2. Optimal location of distributed generation for loss minimization in ...

    African Journals Online (AJOL)

    Accurate loss minimization is the critical component for efficient electrical power flow. The introduction of distributed generation (DG) in networks is bound to have significant effect in network losses. Such dispersed generators can reduce distribution system loss by appropriate allocation. With the integration of DG into an ...

  3. Distributed generation in small remote Northern communities

    International Nuclear Information System (INIS)

    Malcolm, D.G.

    2012-01-01

    The presentation discusses the physical and social challenges of reliable and environmentally sound electricity generation in remote northern communities in Canada. There are several hundred remote communities in the boreal region of Canada and throughout the Arctic. Electrical energy requirements are usually a few megawatts. Access to some Arctic remote communities is by air and small water craft only, except when winters are cold enough for winter roads to be constructed for a few weeks each year. These communities, as well as new mining operations and their camp communities, provide a market segment for small reactors. However, there are social acceptance hurdles to be addressed. Trust-building is a must when working with First Nations, Metis, and Inuit communities, and this requires community presence long before proposals for new generation facilities are presented.

  4. Distributed Generation to Support Development-Focused Climate Action

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie; Gagnon, Pieter; Stout, Sherry; Zinaman, Owen; Watson, Andrea; Hotchkiss, Eliza

    2016-09-01

    This paper explores the role of distributed generation, with a high renewable energy contribution, in supporting low emission climate-resilient development. The paper presents potential impacts on development (via energy access), greenhouse gas emission mitigation, and climate resilience directly associated with distributed generation, as well as specific actions that may enhance or increase the likelihood of climate and development benefits. This paper also seeks to provide practical and timely insights to support distributed generation policymaking and planning within the context of common climate and development goals as the distributed generation landscape rapidly evolves globally. Country-specific distributed generation policy and program examples, as well as analytical tools that can inform efforts internationally, are also highlighted throughout the paper.

  5. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions......The movement towards a clean technology for energy production and the constraints in reducing the CO2 emissions are some factors facilitating the growth of distributed power generation systems based on renewable energy resources. Consequently, large penetration of distributed generators has been...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...

  6. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    OpenAIRE

    Timbus, Adrian Vasile

    2007-01-01

    The movement towards a clean technology for energy production and the constraints in reducing the CO2 emissions are some factors facilitating the growth of distributed power generation systems based on renewable energy resources. Consequently, large penetration of distributed generators has been reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power...

  7. Automatic code generation for distributed robotic systems

    International Nuclear Information System (INIS)

    Jones, J.P.

    1993-01-01

    Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system

  8. Multi-objective optimization of distributed generation with voltage ...

    African Journals Online (AJOL)

    DR OKE

    The technical impact on medium-voltage level reliability as well as electrical power quality is assessed and used distribution system impact indices. (Ochoa et al, 2008), present a multi-objective performance index for distribution systems with time-varying distributed generation and load, considering a number of issues such ...

  9. Factorial moment -generating function and the Pascal distribution ...

    African Journals Online (AJOL)

    Given a distribution, the cumulants or factorial moments can be used to obtain the skewness and kurtosis which in turn are used to determine the normal approximation of the given distribution. It is shown in this paper that for the Pascal Distribution, the factorial moment generating function provides a simpler technique.

  10. Allocation of optimal distributed generation using GA for minimum ...

    African Journals Online (AJOL)

    user

    or competition policy, diversification of energy sources, availability of modular generating plant, ease of finding sites for smaller generators, shorter construction ... and capacities of distributed generation (DG) such that a trade-off between loss minimization and DG capacity maximization is achieved. Acharya et al (2006) ...

  11. A Simple Adaptive Overcurrent Protection of Distribution Systems With Distributed Generation

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    A significant increase in the penetration of distributed generation has resulted in a possibility of operating distribution systems with distributed generation in islanded mode. However, over-current protection of an islanded distribution system is still an issue due to the difference in fault...... current when the system is connected to the grid and when it is islanded. This paper proposes the use of adaptive protection, using local information, to overcome the challenges of the overcurrent protection in distribution systems with distributed generation. The trip characteristics of the relays...... and the protection system settings can be updated to clear the fault quicker....

  12. Minimization of transmission loss using distributed generation approach

    Directory of Open Access Journals (Sweden)

    Lamin Chaantrea Miky

    2018-01-01

    Full Text Available The goal of this work is to calculate the total loss in the system and minimize this loss by implementation of distributed generation (DG technology. In this paper, load flow analysis method is followed to calculate the loss in the system in conjunction with the line flows. A simple 5 bus system with the main bus of the substation as the slack bus, three Plant generators at the generator bus and three load buses are taken for analysis. For loss minimization two distributed generators at two load buses are connected. One generator is a synchronous type model and the other is asynchronous type model. We searched for the most economical penetration level and the ratings of the distributed generators are decided by the magnitude of penetration power at each load bus. Using software, power system simulation for electrical (PSSE, the system with and without DG technology is modeled and the output from the PSSE is observed.

  13. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional...

  14. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    National Research Council Canada - National Science Library

    Scott, Sarah

    2003-01-01

    .... While distributed generation (DG) technologies offer many of the benefits of alternative, efficient energy sources, few DG systems can currently be commercially purchased "off the shelf", and complicated codes and standards deter potential users...

  15. Comprehensive assessment of the effective scope of modernization of thermal power plants to substantiate the rational structure of the generating capacities for the future until 2035

    Science.gov (United States)

    Veselov, F. V.; Erokhina, I. V.; Makarova, A. S.; Khorshev, A. A.

    2017-03-01

    The article deals with issues of technical and economic substantiation of priorities and scopes of modernizing the existing thermal power plants (TPPs) in Russia to work out long-term forecasts of the development of the industry. The current situation in the TPP modernization trends is analyzed. The updated initial figures of the capital and operation costs are presented and the obtained estimates of the comparative efficiency of various investment decisions on modernization and equipment replacement at gas-and-oil-burning and coal-fired TPPs with regard to the main zones of the national Unified Power System (UPS) of Russia are cited. The results of optimization of the generating capacity structure underlie a study of alternative TPP modernization strategies that differ in the scope of switching to new technologies, capital intensity, and energy efficiency (decrease in the average heat rate). To provide an integral economic assessment of the above strategies, the authors modified the traditional approach based on determination of the overall discounted costs of power supply (least-cost planning) supplemented with a comparison by the weighted average wholesale price of the electricity. A method for prediction of the wholesale price is proposed reasoning from the direct and dual solutions of the optimization problem. The method can be adapted to various combinations of the mechanisms of payment for the electricity and the capacity on the basis of marginal and average costs. Energy and economic analysis showed that the opposite effects of reduction in the capital investment and fuel saving change in a nonlinear way as the scope of the switch to more advanced power generation technologies at the TPPs increases. As a consequence, a strategy for modernization of the existing power plants rational with respect to total costs of the power supply and wholesale electricity prices has been formulated. The strategy combines decisions on upgrade and replacement of the equipment

  16. Current Control Method for Distributed Generation Power Generation Plants under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  17. Distributed generation: An empirical analysis of primary motivators

    International Nuclear Information System (INIS)

    Carley, Sanya

    2009-01-01

    What was once an industry dominated by centralized fossil-fuel power plants, the electricity industry in the United States is now evolving into a more decentralized and deregulated entity. While the future scope and scale of the industry is not yet apparent, recent trends indicate that distributed generation electricity applications may play an important role in this transformation. This paper examines which types of utilities are more likely to adopt distributed generation systems and, additionally, which factors motivate decisions of adoption and system capacity size. Results of a standard two-part model reveal that private utilities are significantly more inclined to adopt distributed generation than cooperatives and other types of public utilities. We also find evidence that interconnection standards and renewable portfolio standards effectively encourage consumer-owned distributed generation, while market forces associated with greater market competition encourage utility-owned distributed generation. Net metering programs are also found to have a significant marginal effect on distributed generation adoption and deployment.

  18. Local control of reactive power by distributed photovoltaic generators

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  19. Computation of Locational and Hourly Maximum Output of a Distributed Generator Connected to a Distribution Feeder

    Science.gov (United States)

    Hayashi, Yasuhiro; Matsuki, Junya; Hanai, Yuji; Hosokawa, Shinpei; Kobayashi, Naoki

    Recently, the total number of distributed generation such as photovoltaic generation system and wind turbine generation system connected to distribution network is drastically increased. Distributed generation utilizing renewable energy can reduce the distribution loss and emission of CO2. However the distribution network with the distributed generators must be operated keeping reliability of power supply and power quality. In this paper, the authors propose a computation method to determine the maximum output of a distributed generator under the operational constrains ((1) voltage limit, (2) line current capacity, and (3) no reverse flow to bank) at arbitrary connection point and hourly period. In the proposed method, three-phase iterative load flow calculation is applied to evaluate the above operational constraints. Three-phase iterative load flow calculation has two simple procedures: (Procedure1) addition of load currents from terminal node of feeder to root one, and (Procedure2) subtraction of voltage drop from root node of feeder to terminal one. In order to check the validity of the proposed method, numerical simulations are accomplished for a distribution system model. Furthermore, characteristics of locational and hourly maximum output of distributed generator connected to distribution feeder are analyzed by several numerical examples.

  20. Voltage Control in Distributed Generation under Measurement Falsification Attacks

    NARCIS (Netherlands)

    Ma, M.; Herdeiro Teixeira, A.M.; van den Berg, J.; Palensky, P.

    2017-01-01

    Low-voltage distribution grids experience a rising penetration of inverter-based, distributed generation. In order to not only contribute to but also solve voltage problems, these inverters are increasingly asked to participate in intelligent grid controls. Communicating inverters implement

  1. On the representation of distributions with rational moment generating functions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    This paper addresses a question concerning the generality of certain parameterisations of distributions which have a multivariate rational moment generating function. It is shown that the class of bilateral matrix-exponential distributions, as introduced in [2], is strictly larger than...

  2. SPECIFIC ISSUES OF DISTRIBUTED GENERATION IN POWER SYSTEMS

    OpenAIRE

    BUNDA S.

    2016-01-01

    Distributed Generation Systems (DGS) gets lately more and more importance in the context of concepts re-thinking within the electricity distribution networks. Understanding the key issues of DGS such as definition, technology and integration is important for the researchers and for the workers in the field as well. This paper aims to synthesize the DGS specific issues and finally conclusions are presented.

  3. Monte Carlo Generation of the 2BN Bremsstrahlung Distribution

    CERN Document Server

    Peralta, L; Trindade, A

    2003-01-01

    The 2BN bremsstrahlung cross-section is a well-adapted distribution to describe the radiative processes at low electron kinetic energy (Ek<500 keV). In this work a method to implement this distribution in a Monte Carlo generator is developed.

  4. Grid support by power electronic converters of distributed generation units

    NARCIS (Netherlands)

    Morren, J.

    2006-01-01

    An increasing number of small Distributed Generation (DG) units are connected to the grid. The introduction of DG causes several problems, which are mainly related to the differences between DG units and conventional generators. Four problems have been considered in this thesis: damping of

  5. Aggregated Dispatch of Distributed Generation Units: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    This final report describes a project to demonstrate the technical and economic feasibility of aggregating distributed generating resources in New York State. This project demonstrates a system that allows distributed generation (DG) to participate in competitive markets in much the same way as large central-station power plants. This approach involves aggregating the distributed demand-side resources into a single transaction entity consistent with the requirements of the New York Independent System Operator (NYISO). This single entity then buys or sells capacity and energy (i.e., curtailment) in NYISO markets.

  6. Aggregation of Distributed Generation Assets in New York State: Appendix

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    This report appendix describes aspects of a project to demonstrate the technical and economic feasibility of aggregating distributed generating resources in New York State. This project demonstrates a system that allows distributed generation (DG) to participate in competitive markets in much the same way as large central-station power plants. This approach involves aggregating the distributed demand-side resources into a single transaction entity consistent with the requirements of the New York Independent System Operator (NYISO). This single entity then buys or sells capacity and energy (i.e., curtailment) in NYISO markets.

  7. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods...

  8. Embedded generation connection incentives for distribution network operators

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.; Andrews, S.

    2002-07-01

    This is the final report with respect to work commissioned by the Department of Trade and Industry (DTI) as part of the New and Renewable Energy Programme into incentives for distribution network operators (DNOs) for the connection of embedded generation. This report, which incorporates the contents of the interim report submitted in February 2002, considers the implications of changes in the structure and regulation in the UK electricity industry on the successful technical and commercial integrated of embedded generation into distribution networks. The report examines: the obligations of public electricity suppliers (PESs); current DNO practices regarding the connection of embedded generation; the changes introduced by the Utilities Act 2000, including the impact of new obligations placed on DNOs on the connection of embedded generation and the requirements of the new Electricity Distribution Standard Licence conditions; and problems and prospects for DNO incentives.

  9. Flow distribution in the inlet plenum of steam generator

    International Nuclear Information System (INIS)

    Khadamakar, H.P.; Patwardhan, A.W.; Padmakumar, G.; Vaidyanathan, G.

    2011-01-01

    Highlights: → Various flow distribution devices have been studied to make the flow distribution uniform in axial as well as tangential direction. → Experiments were performed using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV). → CFD modeling has been carried out to give more insights. → Various flow distribution devices have been compared. - Abstract: The flow distribution in a 1/5th and 1/8th scale models of inlet plenum of steam generator (SG) has been studied by a combination of experiments and Computational Fluid Dynamics (CFD) simulations. The distribution of liquid sodium in the inlet plenum of the SG strongly affects the thermal as well as mechanical performance of the steam generator. Various flow distribution devices have been used to make the flow distribution uniform in axial as well as tangential direction in the window region. Experiments have been conducted to measure the radial velocity distribution using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV) under a variety of conditions. CFD modeling has been carried out for various configurations to give more insight into the flow distribution phenomena. The various flow distribution devices have been compared on the basis of a non-uniformity index parameter.

  10. Methodology for assessing the impacts of distributed generation interconnection

    Directory of Open Access Journals (Sweden)

    Luis E. Luna

    2011-06-01

    Full Text Available This paper proposes a methodology for identifying and assessing the impact of distributed generation interconnection on distribution systems using Monte Carlo techniques. This methodology consists of two analysis schemes: a technical analysis, which evaluates the reliability conditions of the distribution system; on the other hand, an economic analysis that evaluates the financial impacts on the electric utility and its customers, according to the system reliability level. The proposed methodology was applied to an IEEE test distribution system, considering different operation schemes for the distributed generation interconnection. The application of each one of these schemes provided significant improvements regarding the reliability and important economic benefits for the electric utility. However, such schemes resulted in negative profitability levels for certain customers, therefore, regulatory measures and bilateral contracts were proposed which would provide a solution for this kind of problem.

  11. Underfrequency Load Shedding for an Islanded Distribution System With Distributed Generators

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Significant penetration of distributed generation in many distribution systems has opened an option of operating distribution systems in island mode for economical and technical reasons. However, balancing frequency of the islanded system is still an issue to be solved, especially when the demand...

  12. Distributed generation hosting capacity calculation of MV distribution feeders in Turkey

    DEFF Research Database (Denmark)

    Altin, Müfit; Oguz, Emre Utku; Bizkevelci, Erdal

    2014-01-01

    Integration of distributed generation into distribution networks introduces new challenges to distribution system operators while the penetration level increases. One of the challenges is the voltage rise issue as a part of the steady-state analysis of DGs during planning and operational stages. ...

  13. Distributed voltage control coordination between renewable generation plants in MV distribution grids

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin

    2017-01-01

    This study focuses on distributed voltage control coordination between renewable generation plants in medium-voltage distribution grids (DGs). A distributed offline coordination concept has been defined in a previous publication, leading to satisfactory voltage regulation in the DG. However, here...

  14. Optimal Output of Distributed Generation Based On Complex Power Increment

    Science.gov (United States)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  15. Modeling the economics and market adoption of distributed power generation

    International Nuclear Information System (INIS)

    Maribu, Karl Magnus

    2006-01-01

    After decades of power generating units increasing in size, there is currently a growing focus on distributed generation, power generation close to energy loads. Investments in large-scale units have been driven by economy of scale, but recent technological improvements on small generating plants have made it possible to exploit the benefits of local power generation to a larger extent than previously. Distributed generation can improve power system efficiency because heat can be recovered from thermal units to supply heat and thermally activated cooling, and because small-scale renewables have a promising end-user market. Further benefits of distributed generation include improved reliability, deferral of often controversial and costly grid investments and reduction of grid losses. The new appeal of small-scale power generation means that there is a need for new tools to analyze distributed generation, both from a system perspective and from the perspective of potential developers. In this thesis, the focus is on the value of power generation for end-users. The thesis identifies how an end-user can find optimal distributed generation systems and investment strategies under a variety of economic and regulatory scenarios. The final part of the thesis extends the analysis with a bottom up model of how the economics of distributed generation for a representative set of building types can transfer to technology diffusion in a market. Four separate research papers make up the thesis. In the first paper, Optimal Investment Strategies in Decentralized Renewable Power Generation under Uncertainty, a method for evaluation of investments in renewable power units under price uncertainty is presented. It is assumed the developer has a building with an electricity load and a renewable power resource. The case study compares a set of wind power systems with different capacity and finds that capacity depends on the electricity price and that there under uncertain prices can be a

  16. Planning of distributed generation in distribution network based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng

    2018-02-01

    Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.

  17. Linear Model for Optimal Distributed Generation Size Predication

    Directory of Open Access Journals (Sweden)

    Ahmed Al Ameri

    2017-01-01

    Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.

  18. Incentive Driven Distributed Generation Planning with Renewable Energy Resources

    Directory of Open Access Journals (Sweden)

    KAUR, S.

    2014-11-01

    Full Text Available Renewable DGs may not be economically viable due to the stochastic generation and huge capital investment, but are an inevitable choice for sustainable energy development and future planning. An appropriate incentive scheme for clean Distributed Generation (DG technologies is able to address this issue in an economical manner and is considered in proposed distributed generation planning model. The proposed model minimizes the annualized cost with Emission Offset Incentive (EOI and the penalty for Green-house Gas (GHG emissions. A meta-heuristic approach with dynamic tuning of control parameters is adopted to improve the success and the convergence rate of optimal solutions. The algorithm provides the optimal solution in terms of type, size, and location of DG. The proposed technique is implemented on IEEE 33-bus system. Proposed model helps the Distribution Network Operators (DNOs to decide the proper DG technology from an economic prospective for eco-friendly energy planning.

  19. A brief overview of the distribution test grids with a distributed generation inclusion case study

    Directory of Open Access Journals (Sweden)

    Stanisavljević Aleksandar M.

    2018-01-01

    Full Text Available The paper presents an overview of the electric distribution test grids issued by different technical institutions. They are used for testing different scenarios in operation of a grid for research, benchmarking, comparison and other purposes. Their types, main characteristics, features as well as application possibilities are shown. Recently, these grids are modified with inclusion of distributed generation. An example of modification and application of the IEEE 13-bus for testing effects of faults in cases without and with a distributed generator connection to the grid is presented. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  20. Agent Based Control of Electric Power Systems with Distributed Generation

    DEFF Research Database (Denmark)

    Saleem, Arshad

    . This thesis focuses on making a systematic evaluation of using intelligent software agent technology for control of electric power systems with high penetration of distributed generation. The thesis is based upon a requirement driven approach. It starts with investigating new trends and challenges in Electric......Distributed generation, decentralized and local control, self organization and autonomy are evident trends of today's electric power systems focusing on innovative control architectures such as MicroGrids, Virtual Power Plants, Cell based systems, plug-in electric vehicles and real time markets...... agents. It suggests a multiagent based exible control architecture (subgrid control) suitable for the implementation of the innovative control concepts. This subgrid control architecture is tested on a novel distributed software platform which has been developed to design, test and evaluate distributed...

  1. Estimating probable flaw distributions in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gorman, J.A.; Turner, A.P.L.

    1997-01-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses

  2. Distributed Generation in Power Systems: An Overview and Key Issues

    DEFF Research Database (Denmark)

    Singh, Sri Niwas

    2009-01-01

    quality, etc. However, depending on the system configuration and management, these advantages may not be true. Moreover, due to structural and managerial changes in the electricity supply industry motivated with introduction of completion, the role of small generations distributed in the low....../medium voltage network has gained importance. This paper adopts a systematic approach by focusing on the most important research areas related to the distributed generations. Various DG technologies are described and penetration of DGs in the Indian system has been discussed. This paper also highlights the key...... issues in the DG integration in power systems...

  3. Generation of distributed W-states over long distances

    Science.gov (United States)

    Li, Yi

    2017-08-01

    Ultra-secure quantum communication between distant locations requires distributed entangled states between nodes. Various methodologies have been proposed to tackle this technological challenge, of which the so-called DLCZ protocol is the most promising and widely adopted scheme. This paper aims to extend this well-known protocol to a multi-node setting where the entangled W-state is generated between nodes over long distances. The generation of multipartite W-states is the foundation of quantum networks, paving the way for quantum communication and distributed quantum computation.

  4. Efficient, Robust and Constant-Round Distributed RSA Key Generation

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Mikkelsen, Gert Læssøe

    2010-01-01

    We present the first protocol for distributed RSA key generation which is constant round, secure against malicious adversaries and has a negligibly small bound on the error probability, even using only one iteration of the underlying primality test on each candidate number.......We present the first protocol for distributed RSA key generation which is constant round, secure against malicious adversaries and has a negligibly small bound on the error probability, even using only one iteration of the underlying primality test on each candidate number....

  5. Distributed Generation Using Indirect Matrix Converter in Reverse Power Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Chiang Loh, Poh; Wang, Peng

    2013-01-01

    not appropriate. Like most power converters, the operation of the IMC can surely be reversed to produce a boosted gain, but so far its relevant control principles have not been discussed. These challenges are now addressed in this paper with distributed generation suggested as a potential application. Simulation......Indirect matrix converter (IMC) is an alternative for ac/ac energy conversion, usually operated with a voltage stepped-down gain of only 0.866. For applications like distribution generation where voltage-boost functionality is required, the traditional style of operating the IMC is therefore...

  6. Generation of Kappa Distributions in Solar Wind at 1 au

    Science.gov (United States)

    Livadiotis, G.; Desai, M. I.; Wilson, L. B., III

    2018-02-01

    We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.

  7. Specification, Model Generation, and Verification of Distributed Applications

    OpenAIRE

    Madelaine, Eric

    2011-01-01

    Since 2001, in the Oasis team, I have developed research on the semantics of applications based on distributed objects, applying in the context of a real language, and applications of realistic size, my previous researches in the field of process algebras. The various aspects of this work naturally include behavioral semantics and the definition of procedures for model generation, taking into account the different concepts of distributed applications, but also upstream, static code analysis a...

  8. Model-Driven Test Generation of Distributed Systems

    Science.gov (United States)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  9. Reliability Evaluation of Distribution System Considering Sequential Characteristics of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Sheng Wanxing

    2016-01-01

    Full Text Available In allusion to the randomness of output power of distributed generation (DG, a reliability evaluation model based on sequential Monte Carlo simulation (SMCS for distribution system with DG is proposed. Operating states of the distribution system can be sampled by SMCS in chronological order thus the corresponding output power of DG can be generated. The proposed method has been tested on feeder F4 of IEEE-RBTS Bus 6. The results show that reliability evaluation of distribution system considering the uncertainty of output power of DG can be effectively implemented by SMCS.

  10. Progress on Protection Strategies to Mitigate the Impact of Renewable Distributed Generation on Distribution Systems

    Directory of Open Access Journals (Sweden)

    Mohamad Norshahrani

    2017-11-01

    Full Text Available The benefits of distributed generation (DG based on renewable energy sources leads to its high integration in the distribution network (DN. Despite its well-known benefits, mainly in improving the distribution system reliability and security, there are challenges encountered from a protection system perspective. Traditionally, the design and operation of the protection system are based on a unidirectional power flow in the distribution network. However, the integration of distributed generation causes multidirectional power flows in the system. Therefore, the existing protection systems require some improvement or modification to address this new feature. Various protection strategies for distribution system have been proposed so that the benefits of distributed generation can be fully utilized. This paper reviews the current progress in protection strategies to mitigate the impact of distributed generation in the distribution network. In general, the reviewed strategies in this paper are divided into: (1 conventional protection systems and (2 modifications of the protection systems. A comparative study is presented in terms of the respective benefits, shortcomings and implementation cost. Future directions for research in this area are also presented.

  11. Business models for distributed generation in a liberalized market environment

    International Nuclear Information System (INIS)

    Gordijn, Jaap; Akkermans, Hans

    2007-01-01

    The analysis of the potential of emerging innovative technologies calls for a systems-theoretic approach that takes into account technical as well as socio-economic factors. This paper reports the main findings of several business case studies of different future applications in various countries of distributed power generation technologies, all based on a common methodology for networked business modeling and analysis. (author)

  12. optimal location of distributed generation on the nigerian power ...

    African Journals Online (AJOL)

    user

    The optimal sizing and location of distributed generators (DG) remain crucial factors in their application for active power loss minimization as well as voltage profile improvement. This paper describes an analytical method for the optimal sizing and placement of DG in the Nigerian power network for active power loss ...

  13. Allocation of optimal distributed generation using GA for minimum ...

    African Journals Online (AJOL)

    The distributed generation (DG) is one of the viable options for mitigation of problems of load growth, overloading of lines, quality of supply and reliability in tern extending equipment maintenance intervals and to reduce line losses. However, the line loss reduction is the obvious parameter easily expressible in terms of ...

  14. Distribution of primary and secondary currents in sine-generated ...

    African Journals Online (AJOL)

    44 No. 1 January 2018. Published under a Creative Commons Attribution Licence. 118. Distribution of primary and secondary currents in sine-generated bends li He1*. 1Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research,. Chinese ...

  15. The frequency-independent control method for distributed generation systems

    DEFF Research Database (Denmark)

    Naderi, Siamak; Pouresmaeil, Edris; Gao, Wenzhong David

    2012-01-01

    In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG...

  16. optimal location of distributed generation on the nigerian power ...

    African Journals Online (AJOL)

    user

    *Corresponding author Tel: +234-806-742-0582. OPTIMAL LOCATION OF DISTRIBUTED GENERATION ON THE NIGERIAN. POWER SYSTEM. J. N. Nweke1,*,A. O. Ekwue2 and E. C. Ejiogu3. 1 DEPT. OF ELECTRICAL ENGINEERING TECHNOLOGY, FEDERAL POLYTECHNIC, KAURA NAMODA, ZAMFARA STATE.

  17. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.

    2007-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  18. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.; Cerna, I.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  19. Distributed photovoltaic generation in residential distribution systems: Impacts on power quality and anti-islanding

    Science.gov (United States)

    Mitra, Parag

    The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated.

  20. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  1. Distributed generation and its implications for the utility industry

    CERN Document Server

    Sioshansi, Fereidoon P

    2014-01-01

    Distributed Generation and its Implications for the Utility Industry examines the current state of the electric supply industry; the upstream and downstream of the meter; the various technological, business, and regulatory strategies; and case studies that look at a number of projects that put new models into practice. A number of powerful trends are beginning to affect the fundamentals of the electric utility business as we know it. Recent developments have led to a fundamental re-thinking of the electric supply industry and its traditional method of measuring consumption on a volumetric basis. These developments include decreasing electricity demand growth; the rising cost of fossil fuels and its impact on electricity costs; investment in energy efficiency; increasing numbers of prosumers who generate for some or all of their own needs; and market reforms. This book examines the implications of these trends in chapters focusing on distributed and decentralized generation, transactive energy, the role of ele...

  2. Analysis of distribution systems with a high penetration of distributed generation

    DEFF Research Database (Denmark)

    Lund, Torsten

    Since the mid eighties, a large number of wind turbines and distributed combined heat and power plants (CHPs) have been connected to the Danish power system. Especially in the Western part, comprising Jutland and Funen, the penetration is high compared to the load demand. In some periods the wind...... power alone can cover the entire load demand. The objective of the work is to investigate the influence of wind power and distributed combined heat and power production on the operation of the distribution systems. Where other projects have focused on the modeling and control of the generators and prime...... movers, the focus of this project is on the operation of an entire distribution system with several wind farms and CHPs. Firstly, the subject of allocation of power system losses in a distribution system with distributed generation is treated. A new approach to loss allocation based on current injections...

  3. Fast Reliability Assessing Method for Distribution Network with Distributed Renewable Energy Generation

    Science.gov (United States)

    Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming

    2018-01-01

    This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.

  4. Definition of Distribution Network Tariffs Considering Distribution Generation and Demand Response

    DEFF Research Database (Denmark)

    Soares, Tiago; Faria, Pedro; Vale, Zita

    2014-01-01

    The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the wh......The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits...... the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity...

  5. Definition of Distribution Network Tariffs Considering Distribution Generation and Demand Response

    DEFF Research Database (Denmark)

    Soares, Tiago; Faria, Pedro; Vale, Zita

    2014-01-01

    The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits...

  6. Combustion intensity and distribution relation to noise generation

    Science.gov (United States)

    Plett, E. G.; Leshner, M. D.; Summerfield, M.

    1975-01-01

    Experiments with several different flame holder geometries were conducted to investigate the degree to which combustion roughness can be altered by altering the flame intensity and flame distribution in a ducted combustion system. The effect of admitting primary air through a plane-slotted or a slotted-swirl vane flame holder was compared and the combustion roughness and noise was contrasted with that obtained with a closed front-end perforated can. The slotted front-end burners produced much smoother burning and less noise than the closed front-end can. No advantage was apparent with swirl vs nonswirl when approximately the same inlet flow distribution was maintained. Preheated inlet air provided somewhat smoother combustion as compared with ambient temperature air. The combustion roughness with methyl alcohol was briefly compared with that of isooctane; indications are that it burns more smoothly, but more detailed studies are needed to substantiate these indications.

  7. DISTRIBUTED GENERATION OF COMPUTER MUSIC IN THE INTERNET OF THINGS

    Directory of Open Access Journals (Sweden)

    G. G. Rogozinsky

    2015-07-01

    Full Text Available Problem Statement. The paper deals with distributed intelligent multi-agent system for computer music generation. A mathematical model for data extraction from the environment and their application in the music generation process is proposed. Methods. We use Resource Description Framework for representation of timbre data. A special musical programming language Csound is used for subsystem of synthesis and sound processing. Sound generation occurs according to the parameters of compositional model, getting data from the outworld. Results. We propose architecture of a potential distributed system for computer music generation. An example of core sound synthesis is presented. We also propose a method for mapping real world parameters to the plane of compositional model, in an attempt to imitate elements and aspects of creative inspiration. Music generation system has been represented as an artifact in the Central Museum of Communication n.a. A.S. Popov in the framework of «Night of Museums» action. In the course of public experiment it was stated that, in the whole, the system tends to a quick settling of neutral state with no musical events generation. This proves the necessity of algorithms design for active condition support of agents’ network, in the whole. Practical Relevance. Realization of the proposed system will give the possibility for creation of a technological platform for a whole new class of applications, including augmented acoustic reality and algorithmic composition.

  8. Real-time Distributed Economic Dispatch forDistributed Generation Based on Multi-Agent System

    DEFF Research Database (Denmark)

    Luo, Kui; Wu, Qiuwei; Nielsen, Arne Hejde

    2015-01-01

    The distributed economic dispatch for distributed generation is formulated as a optimization problem with equality and inequality constraints. An effective distributed approach based on multi-agent system is proposed for solving the economic dispatch problem in this paper. The proposed approach...... consists of two stages. In the first stage, an adjacency average allocation algorithm is proposed to ensure the generation-demand equality. In the second stage, a local replicator dynamics algorithm is applied to achieve nash equilibrium for the power dispatch game. The approach is implemented in a fully...

  9. Distribution system constraints and their impact on distributed generation: final report

    Energy Technology Data Exchange (ETDEWEB)

    Thornycroft, J.; Caisley, A.; Russell, T.; Willis, S.; Youssef, R.; Bawden, R.; Holden, G.; Williams, J.

    2004-05-01

    This report examines constraints due to the connection of distributed generators to the distribution network focusing on small generators with the aim of developing technical and economic models to examine the relationship between the initial investment and the ensuing cost of the constraints under different scenarios. Constraints are defined as limitations to operation of connected generators, and the types of constraints, and the allocation of reinforcement and constraint costs are considered. Details are given of the modeling of sections of urban, rural and semi-rural network at Faversham, and the current constraints on this network are described.

  10. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  11. Effects of distributing wind energy generation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM) from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more appealing to utilities, since the stability requirement of the network are easier to fulfil. The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits, the NGM is used to evaluate the match of electricity demand and generation as well as the possibel savings of fossil fuel in an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the presence of different penetrations of wind energy. (au) EU-JOULE-3. 11 refs.

  12. Distributed Generation Investment by a Microgrid under Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  13. Distributed generation investment by a microgrid under uncertainty

    International Nuclear Information System (INIS)

    Siddiqui, Afzal S.; Marnay, Chris

    2008-01-01

    This paper examines a California-based microgrid's decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist. (author)

  14. Assessment of energy supply and continuity of service in distribution network with renewable distributed generation

    International Nuclear Information System (INIS)

    Abdullah, M.A.; Agalgaonkar, A.P.; Muttaqi, K.M.

    2014-01-01

    Highlights: • Difficulties in assessing distribution network adequacy with DG are addressed. • Indices are proposed to assess adequacy of energy supply and service continuity. • Analytical methodology is developed to assess the proposed indices. • Concept of joint probability distribution of demand and generation is applied. - Abstract: Continuity of electricity supply with renewable distributed generation (DG) is a topical issue for distribution system planning and operation, especially due to the stochastic nature of power generation and time varying load demand. The conventional adequacy and reliability analysis methods related to bulk generation systems cannot be applied directly for the evaluation of adequacy criteria such as ‘energy supply’ and ‘continuity of service’ for distribution networks embedded with renewable DG. In this paper, new indices highlighting ‘available supply capacity’ and ‘continuity of service’ are proposed for ‘energy supply’ and ‘continuation of service’ evaluation of generation-rich distribution networks, and analytical techniques are developed for their quantification. A probability based analytical method has been developed using the joint probability of the demand and generation, and probability distributions of the proposed indices have been used to evaluate the network adequacy in energy supply and service continuation. A data clustering technique has been used to evaluate the joint probability between coincidental demand and renewable generation. Time sequential Monte Carlo simulation has been used to compare the results obtained using the proposed analytical method. A standard distribution network derived from Roy Billinton test system and a practical radial distribution network have been used to test the proposed method and demonstrate the estimation of the well-being of a system for hosting renewable DG units. It is found that renewable DG systems improve the ‘energy supply’ and

  15. Optimum distributed generation placement with voltage sag effect minimization

    International Nuclear Information System (INIS)

    Biswas, Soma; Goswami, Swapan Kumar; Chatterjee, Amitava

    2012-01-01

    Highlights: ► A new optimal distributed generation placement algorithm is proposed. ► Optimal number, sizes and locations of the DGs are determined. ► Technical factors like loss, voltage sag problem are minimized. ► The percentage savings are optimized. - Abstract: The present paper proposes a new formulation for the optimum distributed generator (DG) placement problem which considers a hybrid combination of technical factors, like minimization of the line loss, reduction in the voltage sag problem, etc., and economical factors, like installation and maintenance cost of the DGs. The new formulation proposed is inspired by the idea that the optimum placement of the DGs can help in reducing and mitigating voltage dips in low voltage distribution networks. The problem is configured as a multi-objective, constrained optimization problem, where the optimal number of DGs, along with their sizes and bus locations, are simultaneously obtained. This problem has been solved using genetic algorithm, a traditionally popular stochastic optimization algorithm. A few benchmark systems radial and networked (like 34-bus radial distribution system, 30 bus loop distribution system and IEEE 14 bus system) are considered as the case study where the effectiveness of the proposed algorithm is aptly demonstrated.

  16. A Heuristic Approach to Distributed Generation Source Allocation for Electrical Power Distribution Systems

    Directory of Open Access Journals (Sweden)

    M. Sharma

    2010-12-01

    Full Text Available The recent trends in electrical power distribution system operation and management are aimed at improving system conditions in order to render good service to the customer. The reforms in distribution sector have given major scope for employment of distributed generation (DG resources which will boost the system performance. This paper proposes a heuristic technique for allocation of distribution generation source in a distribution system. The allocation is determined based on overall improvement in network performance parameters like reduction in system losses, improvement in voltage stability, improvement in voltage profile. The proposed Network Performance Enhancement Index (NPEI along with the heuristic rules facilitate determination of feasible location and corresponding capacity of DG source. The developed approach is tested with different test systems to ascertain its effectiveness.

  17. Review of islanding detection methods for distributed generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Mahat, Pukar; Bak-Jensen, Birgitte

    2008-01-01

    This paper presents an overview of power system islanding and islanding detection techniques. Islanding detection techniques, for a distribution system with distributed generation (DG), can broadly be divided into remote and local techniques. A remote islanding detection technique is associated...... with islanding detection on the utility side, whereas a local technique is associated with islanding detection on the DG side. Local techniques can further be divided into passive techniques, active techniques and hybrid techniques. These islanding detection techniques for DG are described and analyzed....

  18. Multi-Functional Distributed Generation Unit for Power Quality Enhancement

    DEFF Research Database (Denmark)

    Zeng, Zheng; Yang, Huan; Guerrero, Josep M.

    2015-01-01

    A multi-functional distributed generation unit (MFDGU) and its control strategy are proposed in this paper for the purpose of enhancing power quality in low-voltage networks. By using the 3H-bridge converter structure, an MFDGU can be applied in 3-phase 4-wire low-voltage distribution networks...... reference of the MFDGU, which can be easily implemented in three-phase networks. A 15kVA prototype consisting of three full bridge converters has been built and tested. Experimental results show the feasibility of the proposed topology and control strategy....

  19. Grid-Connected Inverter for Distributed Generation in Microgrid

    DEFF Research Database (Denmark)

    Naderipour, Amirreza; Miveh, Mohammad Reza; Guerrero, Josep M.

    The need to increase access to electricity has played a significant role in economic and technical growth within international development. In this respect, Distributed Generation Sources (DGSs) have become more important in recent years for supplementing traditional fossil energy resources...... for power generation. DGS units can operate in parallel to the main grid or in a Microgrid (MG) mode. An MG is a discrete energy system consisting of DGSs and loads capable of operating in parallel with, or independently from, the main grid. Meanwhile, Grid-Connected Inverters (GCIs) are typically used...

  20. Microgrids and distributed generation: concepts, application and considerations

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, F.T.; Rodrigues, C.R.B.S. [Federal University of Juiz de Fora (UFJF), MG (Brazil); Rodrigues, C.R.B.S. [Universidade de Juiz de Fora (UFJF), MG (Brazil); Ribeiro, P.F. [Federal University of Juiz de Fora (UFJF), MG (Brazil); Calvin College, Grand Rapids, MI (United States)

    2009-07-01

    Due to economic, environmental and technological incentives small and decentralized generators are becoming popular, which is changing the aspect of the electric power system. This new configuration brings up many issues related to the power quality, security and continuity of distribution. This paper proposes an overview and an analysis of some aspects of distributed generation and microgrids. The operation in interconnected and in islanding modes will be discussed, in particular alternation between the operation modes. Simulation results of a small system with three busses, modeled in MATLAB Simulink will be shown to point out some issues. The connection of the power sources to the grid as well as its control will be systematically reported. (author)

  1. Optimal Placement and Sizing of Renewable Distributed Generations and Capacitor Banks into Radial Distribution Systems

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar

    2017-06-01

    Full Text Available In recent years, renewable types of distributed generation in the distribution system have been much appreciated due to their enormous technical and environmental advantages. This paper proposes a methodology for optimal placement and sizing of renewable distributed generation(s (i.e., wind, solar and biomass and capacitor banks into a radial distribution system. The intermittency of wind speed and solar irradiance are handled with multi-state modeling using suitable probability distribution functions. The three objective functions, i.e., power loss reduction, voltage stability improvement, and voltage deviation minimization are optimized using advanced Pareto-front non-dominated sorting multi-objective particle swarm optimization method. First a set of non-dominated Pareto-front data are called from the algorithm. Later, a fuzzy decision technique is applied to extract the trade-off solution set. The effectiveness of the proposed methodology is tested on the standard IEEE 33 test system. The overall results reveal that combination of renewable distributed generations and capacitor banks are dominant in power loss reduction, voltage stability and voltage profile improvement.

  2. Service Restoration Method Considering Simultaneous Disconnection of Distributed Generators by One Bank Fault of Distribution System

    Science.gov (United States)

    Takano, Hirotaka; Hayashi, Yasuhiro; Matsuki, Junya; Kobayashi, Naoki

    Distributed generators (DGs) such as fuel cells and solar cells etc. are going to be installed in demand side of distribution systems. The distributed generators can reduce distribution loss by appropriate allocation. However, there are several problems to install DGs such as service restoration of distribution system with DGs and so on. When one bank fault of distribution substation occurs in distribution system, since DGs are simultaneously disconnected from the system, it is not easy to restore isolated load by one bank switching in distribution substation. Therefore, a service restoration method to determine restoration configuration and restoration procedures (switching procedure from normal configuration to restoration configuration) taking into account simultaneous disconnection of DGs is needed. In this paper, the authors propose a computation method to determine the optimal restoration configuration and the restoration procedure considering simultaneous disconnection of DGs by one bank fault of distribution system. In the proposed algorithm, after all of restoration configuration candidates are effectively enumerated under the operational constraints, the optimal configuration to restore the isolated load is selected among enumerated configuration candidates. After determining the optimal restoration configuration, the optimal restoration procedures are obtained by greedy algorithm. Numerical simulations are carried out for a real scale system model with 237 sectionalizing switches (configuration candidates are 2237) and 21DGs (total output is 5250kW which is 3% of total load) in order to examine the validity of the proposed algorithm.

  3. Wind Power, Distributed Generation: New Challenges, New Solutions

    OpenAIRE

    MIRANDA, Vladimiro

    2014-01-01

    This paper discusses some issues related with the growing importance of wind power and in modern power systems and some challenges raised by the emergence of distributed generation, and how computational intelligence and other modern techniques have been able to provide valuable results in solving the new problems. It presents some solutions obtained with a number of computational intelligence techniques and their application to real cases.

  4. Flexible Transmission Network Planning Considering the Impacts of Distributed Generation

    OpenAIRE

    Junhua Zhao; John Foster

    2010-01-01

    The restructuring of global power industries has introduced a number of challenges, such as conflicting planning objectives and increasing uncertainties,to transmission network planners. During the recent past, a number of distributed generation technologies also reached a stage allowing large scale implementation, which will profoundly influence the power industry, as well as the practice of transmission network expansion. In the new market environment, new approaches are needed to meet the ...

  5. Grid-Connected Distributed Generation: Compensation Mechanism Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Alexandra Y [National Renewable Energy Laboratory (NREL), Golden, CO (United States); ; ; ; Zinaman, Owen R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-02

    This short report defines compensation mechanisms for grid-connected, behind-the-meter distributed generation (DG) systems as instruments that comprise three core elements: (1) metering and billing arrangements, (2) sell rate design, and (3) retail rate design. This report describes metering and billing arrangements, with some limited discussion of sell rate design. We detail the three possible arrangements for metering and billing of DG: net energy metering (NEM); buy all, sell all; and net billing.

  6. A Bio-Based Fuel Cell for Distributed Energy Generation

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  7. Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems

    OpenAIRE

    Jakub Ehrenberger; Jan Švec

    2017-01-01

    This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordinat...

  8. Distributed Generation Market Demand Model (dGen): Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sigrin, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Preus, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-01

    The Distributed Generation Market Demand model (dGen) is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The National Renewable Energy Laboratory (NREL) developed dGen to analyze the key factors that will affect future market demand for distributed solar, wind, storage, and other DER technologies in the United States. The new model builds off, extends, and replaces NREL's SolarDS model (Denholm et al. 2009a), which simulates the market penetration of distributed PV only. Unlike the SolarDS model, dGen can model various DER technologies under one platform--it currently can simulate the adoption of distributed solar (the dSolar module) and distributed wind (the dWind module) and link with the ReEDS capacity expansion model (Appendix C). The underlying algorithms and datasets in dGen, which improve the representation of customer decision making as well as the spatial resolution of analyses (Figure ES-1), also are improvements over SolarDS.

  9. Regulatory Improvements for Effective Integration of Distributed Generation into Electricity Distribution Networks

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.; Jansen, J.C.; De Joode, J.; Bauknecht, D.; Gomez, T.; Pudjianto, D.; Strbac, G.; Ropenus, S.

    2007-11-01

    The growth of distributed electricity supply of renewable energy sources (RES-E) and combined heat and power (CHP) - so called distributed generation (DG) - can cause technical problems for electricity distribution networks. These integration problems can be overcome by reinforcing the network. Many European Member States apply network regulation that does not account for the impact of DG growth on the network costs. Passing on network integration costs to the DG-operator who is responsible for these extra costs may result in discrimination between different DG plants and between DG and large power generation. Therefore, in many regulatory systems distribution system operators (DSOs) are not being compensated for the DG integration costs. The DG-GRID project analysed technical and economical barriers for integration of distributed generation into electricity distribution networks. The project looked into the impact of a high DG deployment on the electricity distribution system costs and the impact on the financial position of the DSO. Several ways for improving network regulation in order to compensate DSOs for the increasing DG penetration were identified and tested. The DG-GRID project looked also into stimulating network innovations through economic regulation. The project was co-financed by the European Commission and carried out by nine European universities and research institutes. This report summarises the project results and is based on a number of DG-GRID reports that describe the conducted analyses and their results

  10. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  11. Optimal Solar PV Arrays Integration for Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  12. Regulation of distributed generation. A European Policy Paper on the Integration of Distributed Generation in the Internal Electricity Market

    International Nuclear Information System (INIS)

    Van Sambeek, E.J.W.; Scheepers, M.J.J.

    2004-06-01

    In the SUSTELNET project criteria and guidelines have been developed that can create a level playing field in electricity markets between distributed generation (DG) and large scale power generation and will improve the network and market access of DG and electricity supply from renewable energy resources (RES). This report focuses on the European dimensions of DG regulation. The key findings of the SUSTELNET project are compared with the EU legislation, i.e. the current Electricity, Renewables and CHP Directives. Additional EU policy, regulation and initiatives are identified that can help Member States in developing future economically efficient and sustainable electricity supply systems

  13. Application of flower pollination algorithm for optimal placement and sizing of distributed generation in Distribution systems

    Directory of Open Access Journals (Sweden)

    P. Dinakara Prasad Reddy

    2016-05-01

    Full Text Available Distributed generator (DG resources are small, self contained electric generating plants that can provide power to homes, businesses or industrial facilities in distribution feeders. By optimal placement of DG we can reduce power loss and improve the voltage profile. However, the values of DGs are largely dependent on their types, sizes and locations as they were installed in distribution feeders. The main contribution of the paper is to find the optimal locations of DG units and sizes. Index vector method is used for optimal DG locations. In this paper new optimization algorithm i.e. flower pollination algorithm is proposed to determine the optimal DG size. This paper uses three different types of DG units for compensation. The proposed methods have been tested on 15-bus, 34-bus, and 69-bus radial distribution systems. MATLAB, version 8.3 software is used for simulation.

  14. Optimal placement and sizing of multiple distributed generating units in distribution

    Directory of Open Access Journals (Sweden)

    D. Rama Prabha

    2016-06-01

    Full Text Available Distributed generation (DG is becoming more important due to the increase in the demands for electrical energy. DG plays a vital role in reducing real power losses, operating cost and enhancing the voltage stability which is the objective function in this problem. This paper proposes a multi-objective technique for optimally determining the location and sizing of multiple distributed generation (DG units in the distribution network with different load models. The loss sensitivity factor (LSF determines the optimal placement of DGs. Invasive weed optimization (IWO is a population based meta-heuristic algorithm based on the behavior of weeds. This algorithm is used to find optimal sizing of the DGs. The proposed method has been tested for different load models on IEEE-33 bus and 69 bus radial distribution systems. This method has been compared with other nature inspired optimization methods. The simulated results illustrate the good applicability and performance of the proposed method.

  15. Island Partition of Distribution System with Distributed Generators Considering Protection of Vulnerable Nodes

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2017-10-01

    Full Text Available To improve the reliability of power supply in the case of the fault of distribution system with multiple distributed generators (DGs and reduce the influence of node voltage fluctuation on the stability of distribution system operation in power restoration, this paper proposes an island partition strategy of the distribution system considering the protection of vulnerable nodes. First of all, the electrical coupling coefficient of neighboring nodes is put forward according to distribution system topology and equivalent electrical impedance, and the power-dependence relationship between neighboring nodes is calculated based on the direction and level of the power flow between nodes. Then, the bidirectional transmission of the coupling features of neighboring nodes is realized through the modified PageRank algorithm, thus identifying the vulnerable nodes that have a large influence on the stability of distribution system operation. Next, combining the index of node vulnerability, an island partition model is constructed with the restoration of important loads as the primary goal. In addition, the mutually exclusive firefly algorithm (MEFA is also proposed to realize the interaction of learning and competition among fireflies, thus enhancing the globally optimal solution search ability of the algorithm proposed. The proposed island partition method is verified with a Pacific Gas and Electric Company (PG and E 60-node test system. Comparison with other methods demonstrates that the new method is feasible for the distribution system with multiple types of distributed generations and valid to enhance the stability and safety of the grid with a relatively power restoration ratio.

  16. A Fuzzy-Multiagent Service Restoration Scheme for Distribution System With Distributed Generation

    DEFF Research Database (Denmark)

    Elmitwally, Akram; Elsaid, Mohammed; Elgamal, Mohammed

    2015-01-01

    This paper proposes a new multiagent control system (MACS) for service restoration in distribution systems with integrated distributed generation (DG) units. First, the MACS detects and locates faults, then decides the optimal reconfiguration of the network for restoring de-energized loads...... reduces the possibilities of control system failures for a moderate communication network infrastructure. Full dynamic simulation model for evaluating the MACS is implemented....

  17. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    Clark, Woodrow; Isherwood, William

    2004-01-01

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  18. Volt/VAr Optimization of Distribution System with Integrated Distributed Generation

    Directory of Open Access Journals (Sweden)

    MARIAM MUGHEES

    2017-01-01

    Full Text Available This paper addresses the issues of VVO (Volt/VAr Optimization such as loss minimization, acceptable voltage profiles and optimized number of switching operations. Basic function of the DMS (Distribution Management System is to upgrade system intelligence so that it can make dynamic decisions and control the network in realtime. Distributed generators can cause the system to operate above and below the desired limits due to their variable nature. Therefore, devices like SC (Shunt Capacitors and OLTC (On Load Tap Changers are used in distribution system as control devices. Main focus of this paper is to inspect effects of DG (Distributed Generation on switching states of control devices while considering Volt/VAr standards. An optimization search algorithm is employed to search the optimal solution considering the system constraints. The GA (Genetic Algorithm is used for the optimization process of the system and the simulation is done in MATLAB using IEEE-30 bus system with DG under 24 hour changing load profiles. By setting up constraints of distribution system?s voltage limits, capacitor bank and OLTC, losses are minimized up to 50%. Merits of the proposed optimized method are demonstrated through simulation results .The result achieved from the proposed technique has proven to be beneficial for switching optimization of control devices under variant conditions of loads and distributed generation

  19. Overcoming barriers to scheduling embedded generation to support distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.J.; Formby, J.R.

    2000-07-01

    Current scheduling of embedded generation for distribution in the UK is limited and patchy. Some DNOs actively schedule while others do none. The literature on the subject is mainly about accommodating volatile wind output, and optimising island systems, for both cost of supply and network stability. The forthcoming NETA will lower prices, expose unpredictable generation to imbalance markets and could introduce punitive constraint payments on DNOs, but at the same time create a dynamic market for both power and ancillary services from embedded generators. Most renewable generators either run as base load (e.g. waste ) or according to the vagaries of the weather (e.g. wind, hydro), so offer little scope for scheduling other than 'off'. CHP plant is normally heat- led for industrial processes or building needs, but supplementary firing or thermal storage often allow considerable scope for scheduling. Micro-CHP with thermal storage could provide short-term scheduling, but tends to be running anyway during the evening peak. Standby generation appears to be ideal for scheduling, but in practice operators may be unwilling to run parallel with the network, and noise and pollution problems may preclude frequent operation. Statistical analysis can be applied to calculate the reliability of several generators compared to one; with a large number of generators such as micro-CHP reliability of a proportion of load is close to unity. The type of communication for generation used will depend on requirements for bandwidth, cost, reliability and whether it is bundled with other services. With high levels of deeply embedded, small-scale generation using induction machines, voltage control and black start capability will become important concerns on 11 kV and LV networks. This will require increased generation monitoring and remote control of switchgear. Examples of cost benefits from scheduling are given, including deferred reinforcement, increased exports on non

  20. Random generation of RNA secondary structures according to native distributions

    Directory of Open Access Journals (Sweden)

    Nebel Markus E

    2011-10-01

    Full Text Available Abstract Background Random biological sequences are a topic of great interest in genome analysis since, according to a powerful paradigm, they represent the background noise from which the actual biological information must differentiate. Accordingly, the generation of random sequences has been investigated for a long time. Similarly, random object of a more complicated structure like RNA molecules or proteins are of interest. Results In this article, we present a new general framework for deriving algorithms for the non-uniform random generation of combinatorial objects according to the encoding and probability distribution implied by a stochastic context-free grammar. Briefly, the framework extends on the well-known recursive method for (uniform random generation and uses the popular framework of admissible specifications of combinatorial classes, introducing weighted combinatorial classes to allow for the non-uniform generation by means of unranking. This framework is used to derive an algorithm for the generation of RNA secondary structures of a given fixed size. We address the random generation of these structures according to a realistic distribution obtained from real-life data by using a very detailed context-free grammar (that models the class of RNA secondary structures by distinguishing between all known motifs in RNA structure. Compared to well-known sampling approaches used in several structure prediction tools (such as SFold ours has two major advantages: Firstly, after a preprocessing step in time O(n2 for the computation of all weighted class sizes needed, with our approach a set of m random secondary structures of a given structure size n can be computed in worst-case time complexity Om⋅n⋅ log(n while other algorithms typically have a runtime in O(m⋅n2. Secondly, our approach works with integer arithmetic only which is faster and saves us from all the discomforting details of using floating point arithmetic with

  1. Simple method of generating and distributing frequency-entangled qudits

    Science.gov (United States)

    Jin, Rui-Bo; Shimizu, Ryosuke; Fujiwara, Mikio; Takeoka, Masahiro; Wakabayashi, Ryota; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Gerrits, Thomas; Sasaki, Masahide

    2016-11-01

    High-dimensional, frequency-entangled photonic quantum bits (qudits for d-dimension) are promising resources for quantum information processing in an optical fiber network and can also be used to improve channel capacity and security for quantum communication. However, up to now, it is still challenging to prepare high-dimensional frequency-entangled qudits in experiments, due to technical limitations. Here we propose and experimentally implement a novel method for a simple generation of frequency-entangled qudts with d\\gt 10 without the use of any spectral filters or cavities. The generated state is distributed over 15 km in total length. This scheme combines the technique of spectral engineering of biphotons generated by spontaneous parametric down-conversion and the technique of spectrally resolved Hong-Ou-Mandel interference. Our frequency-entangled qudits will enable quantum cryptographic experiments with enhanced performances. This distribution of distinct entangled frequency modes may also be useful for improved metrology, quantum remote synchronization, as well as for fundamental test of stronger violation of local realism.

  2. Real-time Trading Strategies for Proactive Distribution Company with Distributed Generation and Demand Response

    DEFF Research Database (Denmark)

    Wang, Qi

    Distributed energy resources (DERs), such as distributed generation (DG) and demand response (DR), have been recognized worldwide as valuable resources. High integration of DG and DR in the distribution network inspires a potential deregulated environment for the distribution company (DISCO......) directly procuring capacities from local DG and DR. In this situation, a hierarchical market structure is achieved comprising the transmission-level (TL) and distribution-level (DL) markets. Focusing on the real-time process, as the interface actor, the DISCO's behavior covers downwardly procuring DL DG...... and DR resources, and upwardly trading in the TL real-time market, resulting in a proactive manner. The DL aggregator (DA) is dened to manage these small-scale and dispersed DGs and DRs. A methodology is proposed in this thesis for a proactive DISCO (PDISCO) to strategically trade with DAs...

  3. Comprehensive evaluation of impacts of distributed generation integration in distribution network

    Science.gov (United States)

    Peng, Sujiang; Zhou, Erbiao; Ji, Fengkun; Cao, Xinhui; Liu, Lingshuang; Liu, Zifa; Wang, Xuyang; Cai, Xiaoyu

    2018-04-01

    All Distributed generation (DG) as the supplement to renewable energy centralized utilization, is becoming the focus of development direction of renewable energy utilization. With the increasing proportion of DG in distribution network, the network power structure, power flow distribution, operation plans and protection are affected to some extent. According to the main impacts of DG, a comprehensive evaluation model of distributed network with DG is proposed in this paper. A comprehensive evaluation index system including 7 aspects, along with their corresponding index calculation method is established for quantitative analysis. The indices under different access capacity of DG in distribution network are calculated based on the IEEE RBTS-Bus 6 system and the evaluation result is calculated by analytic hierarchy process (AHP). The proposed model and method are verified effective and validity through case study.

  4. Transition to distributed energy generation in Finland: Prospects and barriers

    International Nuclear Information System (INIS)

    Ruggiero, Salvatore; Varho, Vilja; Rikkonen, Pasi

    2015-01-01

    Small-scale distributed energy generation is expected to play an important role in helping Finland increase its energy self-sufficiency. However, the overall strategy to date for promoting distributed energy remains unclear. It is not yet well understood which factors promote the growth of the distributed energy sector and what barriers need to be removed. In this article we present the results of a questionnaire directed at a panel of 26 experts from the distributed energy value chain and 15 semi-structured interviews with industry and non-industry representatives. We investigated, from a sociotechnical transition perspective, the possibilities and challenges of the transition to distributed energy in Finland through 2025. The results show that a shift to a prosperous future for distributed energy is possible if permit procedures, ease of grid connection, and taxation laws are improved in the electricity sector and new business concepts are introduced in the heat sector. In contrast to other European countries, the transition in Finland is expected to take place through a market-based approach favoring investment-focused measures. We conclude that incentive-based schemes alone, whatever they may be, will be insufficient to create significant growth in Finland without institutional change, removal of barriers, and the engagement of key actors. - Highlights: • We examine the possibilities and challenges of the transition to DE in Finland. • Technological niches are emerging both in the heat and electricity sector. • Business model innovation is evident only in the electricity sector. • Removing barriers and developing new business models will accelerate the transition.

  5. An Innovative Reconfigurable Integrated Converter Topology Suitable for Distributed Generation

    Directory of Open Access Journals (Sweden)

    Renato Rizzo

    2012-09-01

    Full Text Available The electricity market and environmental concerns, with wide utilization of renewable sources, have improved the diffusion of distributed generation units changing the operations of distribution grids from passive networks to microgrids. A microgrid includes a cluster of electrical loads, energy storage devices and microsources, which provide both power and heat to their local area. A microgrid has usually one connection point to the utility grid through power electronic converters placed at customers’ sites. This paper analyses a Reconfigurable Integrated Converter (RIC used for a domestic microgrid with inputs from the AC mains and photovoltaic arrays, and two DC outputs at different voltage levels. A RIC as a dual-boost DC-DC converter is proposed, modelled and analysed in the paper. The advantages of such a topology in comparison with traditional boost converters are outlined. Reported simulations results give evidence on the controllability of this converter and the capability of achieving the desired voltage outputs with reduced ripple.

  6. Impact of Air Quality Regulations on Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bluestein, J.; Horgan, S.; Eldridge, M. M.

    2002-10-01

    Relatively small projects for generating electrical power at or near the point of use--distributed generation (DG)--offer unique opportunities for enhancing the U.S. electric system. This report finds that current air quality regulatory practices are inappropriately inhibiting the development of DG through a failure to recognize the environmental benefits offered by DG or by imposing requirements designed for larger systems that are not appropriate to DG systems. The report recommends that air quality regulation be made more efficient and appropriate for DG by establishing national standards for DG equipment. This report also recommends that DG projects be evaluated on a''net'' emissions basis by being given credit for any emission sources that they displace. Air quality regulation should also recognize the benefits of combined heat and power (CHP).

  7. Probabilistic analysis in normal operation of distribution system with distributed generation

    DEFF Research Database (Denmark)

    Villafafila-Robles, R.; Sumper, A.; Bak-Jensen, B.

    2011-01-01

    Nowadays, the incorporation of high levels of small-scale non-dispatchable distributed generation is leading to the transition from the traditional 'vertical' power system structure to a 'horizontally-operated' power system, where the distribution networks contain both stochastic generation...... and load. This fact increases the number of stochastic inputs and dependence structures between them need to be considered. The deterministic analysis is not enough to cope with these issues and a new approach is needed. Probabilistic analysis provides a better approach. Moreover, as distribution systems...... consist of a small areas, the dependence between stochastic inputs should be considered. In this paper, probabilistic analysis based on Monte Carlo simulation is described and applied to a real system....

  8. An Ethernet LAN based distributed generation system load shedding strategy

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2011-01-01

    This paper firstly analyzes and compares various communication technologies, and proposes a communication system for a distributed generation system (DGS) with wind turbines. Then the paper presents a novel simulation method of considering the interactions between the communication system and power...... system, by using two software platforms: OPNET and EMTDC/PSCAD. A control method based on the communication technique has been designed to stabilize the DG system during power system disturbances. A case study is presented to demonstrate the effectiveness of the proposed communication system, simulation...

  9. Renewable energy resources for distributed generation systems in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Szewczuk, Stefan

    2010-09-15

    The South African Government has objective to provide universal access of electricity for its citizens and its electrification programme has been successful but focus has moved from numbers of connections to one of achieving sustainable socio-economic benefits. First-hand understanding was obtained of the complexity of socio-economic development where CSIR undertook a project in the rural areas of South Africa to identify electrification opportunities using renewable energy linked to economic activities. Lessons formed basis of a government funding implementation of pilot hybrid mini-grids to inform a future rollout. Results informed the development of distributed generation concepts and an integrated methodology.

  10. Distributed Generation using Indirect Matrix Converter in Boost Operating Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2011-01-01

    , reverse power flow operation of IMC can be implemented to meet voltage boost requirement, where the input ac source is connected to the converter's voltage source side and the output utility grid or load is connected to the current source side. This paper proposes control schemes of IMC under reverse...... power flow operation for both grid-connected and isolated modes with distributed generation suggested as a potential application. In grid-connected mode, the commanded power must be extracted from the input ac source to the grid, in addition to guarantee sinusoidal input/output waveforms, unity input...

  11. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  12. Time series power flow analysis for distribution connected PV generation.

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  13. Methodology for calculating the impact of distributed generation on energy losses in a distribution network

    Directory of Open Access Journals (Sweden)

    Perić Jelena

    2013-01-01

    Full Text Available This paper is the result of the Master's final project 'Methodology for calculating the impact of distributed generation on energy losses in distribution network'. The question is whether, for estimation of the impact of the power plant on energy losses in the distribution network, it is necessary to analyze each hour value of small power plant engagement and its effect, or it is sufficient to analyze a small number of states, and the extent to which it is possible to reduce the number of states that will be analyzed in order to review adequately the impact of the power plant on the change of energy losses in the network. To answer this question, an algorithm consisting of two steps is performed, annual production diagrams are obtained and, on the basis of calculated specific discrete values, the impact of the small power plant on energy losses in the distribution network to which it is connected is evaluated.

  14. Environmental benefits of distributed generation with and without emissions trading

    International Nuclear Information System (INIS)

    Tsikalakis, A.G.; Hatziargyriou, N.D.

    2007-01-01

    The need for improving energy efficiency and reducing CO 2 emissions and other pollutants, as well as the restructuring of energy markets has favoured the increase of distributed energy resources (DER). The co-ordinated control of these sources comprising renewable energy sources (RES) and distributed generators (DG) characterised by higher efficiencies and lower emissions compared to central thermal generation, when based on coal or oil provide several environmental benefits. These benefits can be quantified based on DER participation in the CO 2 emission trading market. This paper provides a method to calculate emissions savings achieved by the marginal operation of DER in liberalised market conditions using available emissions data. The participation of DER in emissions trading markets is also studied, with respect to profits, pollutants decrease and change in operating schedules. It is shown that the operation of DER can significantly reduce pollutants, provided sufficient remuneration from CO 2 emission trading market participation is provided. Moreover, it is shown that using average emissions values to calculate the environmental benefits of DER might provide misleading results. (author)

  15. UK scenario of islanded operation of active distribution networks with renewable distributed generators

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, S.P.; Chowdhury, S.; Gaunt, C.T. [Electrical Engineering Department, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, Western Cape (South Africa); Crossley, P.A. [Joule Centre for Energy Research, The University of Manchester, M60 1QD (United Kingdom)

    2009-12-15

    This paper reports on the current UK scenario of islanded operation of active distribution networks with renewable distributed generators (RDGs). Different surveys indicate that the present scenario does not economically justify islanding operation of active distribution networks with RDGs. Anti-islanding protection schemes currently enforce the renewable distributed generators (RDGs) to disconnect immediately and stop generation for grid faults through loss of grid (LOG) protection system. This greatly reduces the benefits of RDG deployment. With rising RDG penetration, much benefit would be lost if the RDGs are not allowed to island only due to conventional operational requirement of utilities. For preventing disconnection of RDGs during LOG, several islanding operation, control and protection schemes are being developed. Technical studies clearly indicate the need to review parts of the ESQCR (Electricity Safety, Quality and Continuity Regulations) for successful islanded operations. Commercial viability of islanding operation must be assessed in relation to enhancement of power quality, system reliability and supply of potential ancillary services through network support. Demonstration projects under Registered Power Zone and Technical Architecture Projects should be initiated to investigate the usefulness of DG islanding. However these efforts should be compounded with a realistic judgement of the associated technical and economic issues for the development of future power networks. (author)

  16. Modeling of customer adoption of distributed generation in Japan

    International Nuclear Information System (INIS)

    Asano, Hiroshi; Nishio, Ken-ichiro; Imanaka, Takeo; Imamura, Ei-ichi

    2005-01-01

    This paper presents the modeling of customer adoption of distributed generation (DG) in industrial and residential sectors in Japan. We classified the DG market into an existing industrial DG market that is based on conventional prime movers (steam turbines, diesel engines, gas turbines, and gas engines) and a new residential DG market that is based on micro gas engines and fuel cell technology. Customers adopt self-generation considering the different prime movers and thermally activated equipment, fuel choice, growth of industrial output, and energy demand. The trend of the installed capacity of each prime mover shows different diffusion patterns. We conducted regression analysis of time-series data of self-generating facilities for the period from 1983 to 2001. We also modeled residential customer adoption of polymer electrolyte fuel cells and micro engine cogeneration systems (CGSs) until 2020. The feature of this model is the dynamic choice of multiple technologies such as gas CGSs and heat-pump water heaters. Sensitivity analysis of energy efficiency and the initial cost of energy systems for technology diffusion reveal alternative penetration paths and impacts on energy consumption and CO2 emission. (Author)

  17. Experimental comparison of PV-smoothing controllers using distributed generators

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  18. Analytical Approach for Loss Minimization in Distribution Systems by Optimum Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Bakshi Surbhi

    2016-01-01

    Full Text Available Distributed Generation has drawn the attention of industrialists and researchers for quite a time now due to the advantages it brings loads. In addition to cost-effective and environmentally friendly, but also brings higher reliability coefficient power system. The DG unit is placed close to the load, rather than increasing the capacity of main generator. This methodology brings many benefits, but has to address some of the challenges. The main is to find the optimal location and size of DG units between them. The purpose of this paper is distributed generation by adding an additional means to reduce losses on the line. This paper attempts to optimize the technology to solve the problem of optimal location and size through the development of multi-objective particle swarm. The problem has been reduced to a mathematical optimization problem by developing a fitness function considering losses and voltage distribution line. Fitness function by using the optimal value of the size and location of this algorithm was found to be minimized. IEEE-14 bus system is being considered, in order to test the proposed algorithm and the results show improved performance in terms of accuracy and convergence rate.

  19. BOARD PANEL - TOOL USED IN THE SUBSTANTIATION OF DECISIONS TAKEN BY THE MANAGEMENT OF COMPANIES CONDUCTING THEIR BUSINESS IN THE TRANSPORTATION AND THERMAL ENERGY DISTRIBUTION FIELD

    Directory of Open Access Journals (Sweden)

    Nicoleta Cristina MATEI

    2009-12-01

    Full Text Available The present paper focuses on the concept of board panel, its importance in decision making by managers of apatrimony unit, issues to be considered when preparing it. It shall also specify the documents and reports which can bedrafted using the data summarized and provided by board panels and their behavior within a company. It shows usersof the information contained in the board panel, but the activities and the departments whose data can be processed forthe preparation thereof.The second part of the paper presents the particularities of the board panel system made by a company whichoperates in the field of transportation and distribution of thermal energy, the components of the respective reports, theadvantages of their use and limits triggered by the complexity of the information thereon.

  20. Distributed Generation Management in Distribution Networks; Gestion de la production decentralisee dans les reseaux de distribution

    Energy Technology Data Exchange (ETDEWEB)

    Caire, R.

    2004-04-15

    Deregulations of the energy market, followed by many privatizations, and vertical disintegrations brought a complete reorganization of the electric sector. The opening of the energy markets as well as the technological developments of the means of production of small and average power strongly encourage this evolution. A systematic methodology to study the transmission of impacts between the Low and Medium Voltage is initially proposed, after a quick state of the art of the various possible impacts. The voltage deviation is then identified as the most critical impact. This criticality is supported by quantitative studies on French typical networks, and is confirmed by the related literature. In order to solve this impact, a research of the means of action within tension of the distribution network and their modeling is carried out. As the manipulated variables of the means of adjustment available are discrete or continuous, specific tools are then developed to coordinate them. This coordination is pressed on optimization algorithms developed by holding account of inherent specificity with the manipulated variables. A methodology for the choice or optimal location of the adjustment means associated with a management of the voltage deviation is presented. Lastly, 'decentralized' strategies of coordination for the means of adjustment and a proposal for an experimental validation are presented, thanks to a real time simulator, making it possible to test the strategies of coordination and the necessary means of communication. (author)

  1. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    must be thorough and careful when identifying any imbalances between electricity demand and production from CHP plants (Combined Heat and Power) and fluctuating renewable energy sources. This chapter introduces the energy system analysis model EnergyPLAN, which is one example of a freeware tool, which...... on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... can be used for such analyses. Moreover, the chapter presents the results of evaluating the overall system fuel savings achieved by introducing different FC applications into different energy systems. Natural gas-based and hydrogen-based micro FC-CHP, natural gas local FC-CHP plants for district...

  2. Resonance analysis in parallel voltage-controlled Distributed Generation inverters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2013-01-01

    Thanks to the fast responses of the inner voltage and current control loops, the dynamic behaviors of parallel voltage-controlled Distributed Generation (DG) inverters not only relies on the stability of load sharing among them, but subjects to the interactions between the voltage control loops...... of the inverters and the remaining system dynamics. This paper addresses the later interactions and the consequent resonances through the frequency-domain analysis of the inverters output impedances and the remaining equivalent network impedance. Furthermore, impacts of the virtual output impedance loop...... and the voltage feedforward loop in the current controller are evaluated based on such an impedance interactions analysis. Simulation results are presented to confirm the validity of the theoretical analysis....

  3. Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems

    Directory of Open Access Journals (Sweden)

    Jakub Ehrenberger

    2017-09-01

    Full Text Available This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordination is designed, in which not only some, but all the required types of short-circuit contributions are taken into account. In radial systems, if the pickup currents are correctly chosen, protection coordination for maximum contributions is enough to ensure selectivity times for all the required short-circuit types. In distributed generation systems, due to different contributions flowing through the primary and selective protections, coordination for maximum contributions is not enough, but all the short-circuit types must be taken into account, and the protection coordination becomes a complex problem. A possible solution to the problem, based on an appropriately designed optimization, has been proposed in the paper. By repeating a simple optimization considering only one short-circuit type, the protection coordination considering all the required short-circuit types has been achieved. To show the importance of considering all the types of short-circuit contributions, setting optimizations with one (the highest and all the types of short-circuit contributions have been performed. Finally, selectivity time values are explored throughout the entire protected section, and both the settings are compared.

  4. Agent-based reactive power management of power distribution networks with distributed energy generation

    International Nuclear Information System (INIS)

    Rahman, M.S.; Mahmud, M.A.; Oo, A.M.T.; Pota, H.R.; Hossain, M.J.

    2016-01-01

    Highlights: • A coordinated multi-agent system is proposed for reactive power management. • A linear quadratic regulator with a proportional integral controller is designed. • Proposed multi-agent scheme provides accurate estimation and control of the system. • Voltage stability is improved with proper power management for different scenarios. • Results obtained from the proposed scheme is compared to the traditional approach. - Abstract: In this paper, a new agent-based distributed reactive power management scheme is proposed to improve the voltage stability of energy distribution systems with distributed generation units. Three types of agents – distribution system agent, estimator agent, and control agent are developed within the multi-agent framework. The agents simultaneously coordinated their activities through the online information and energy flow. The overall achievement of the proposed scheme depends on the coordination between two tasks – (i) estimation of reactive power using voltage variation formula and (ii) necessary control actions to provide the estimated reactive power to the distribution networks through the distributed static synchronous compensators. A linear quadratic regulator with a proportional integrator is designed for the control agent in order to control the reactive component of the current and the DC voltage of the compensators. The performance of the proposed scheme is tested on a 10-bus power distribution network under various scenarios. The effectiveness is validated by comparing the proposed approach to the conventional proportional integral control approach. It is found that, the agent-based scheme provides excellent robust performance under various operating conditions of the power distribution network.

  5. Distributed Generators Allocation in Radial Distribution Systems with Load Growth using Loss Sensitivity Approach

    Science.gov (United States)

    Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.

    2017-06-01

    Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.

  6. Positional information generated by spatially distributed signaling cascades.

    Directory of Open Access Journals (Sweden)

    Javier Muñoz-García

    2009-03-01

    Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.

  7. Investment and Upgrade in Distributed Generation under Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal; Maribu, Karl

    2008-08-18

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

  8. Investment and upgrade in distributed generation under uncertainty

    International Nuclear Information System (INIS)

    Siddiqui, Afzal S.; Maribu, Karl

    2009-01-01

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility. (author)

  9. Overvoltages related to distributed generation-power system interconnection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Zamanillo, G.R.; Gomez, J.C.; Florena, E.F. [Rio Cuarto National University (IPSEP/UNRC), Cordoba (Argentina). Electric Power Systems Protection Institute], Email: jcgomez@ing.unrc.edu.ar

    2009-07-01

    The energy crisis that experiences the world drives to carry to an extreme, the use of all energy sources which are available. The sources need to be connected to the electric network in their next point, requiring of electric-electronic interfaces. The traditional electric power systems are changing their characteristics, in what concerns to structure, operation and on overvoltage generation. This change is not taking place in coordinated form among the involved sectors. The interconnection of a Distributed Generator (DG) directly with the power system is objectionable and risky. It is required of an interconnection transformer which performs several functions. Rigid specifications do not exist in this respect, for the variety of systems in use in the world, nevertheless there are utilities recommendations. Overvoltages caused by the DG, which arise due to the change of structure of the electric system, are explained. The transformer connection selection, presents positive and negative aspects that impact the utility and the user in a different or many times in an antagonistic way. The phenomenon of balanced and unbalanced ferroresonance overvoltage is studied. This phenomenon can takes place when using DG, either with synchronous or asynchronous generator, and for any type of connection of the transformer. The necessary conditions so that the phenomenon appears are presented. Eight interconnection transformer connection ways were studied. It is concluded that the solutions to reach by means of the employment of the DG, offer technical-economic advantages so much to the utility as to the user. It is also concluded in this work that the more advisable interconnection type is function of the system connection type. (author)

  10. The influence of distributed generation penetration levels on energy markets

    International Nuclear Information System (INIS)

    Vahl, Fabrício Peter; Rüther, Ricardo; Casarotto Filho, Nelson

    2013-01-01

    Planning of national energy policies brings new dilemmas with the introduction of distributed generators (DG). Economic theory suggests that a perfectly competitive market would lead to efficient pricing. In the absence of competition, regulators play a fundamental role in attracting reasonably priced finance in order to maintain, refurbish and increase the infrastructure and provide services at a reasonable cost. Energy market price equilibrium is mainly dependent on suppliers, generators, energy sources and demand, represented by conventional utility grid users. Its behavior is similar to that of other commodities. As generation becomes less centralized with the increasing economic viability of renewable energy sources, new suppliers are being connected to the grid. Such evolution means the transition from a monopolistic market to a broader and more open environment, with an increasing number of competitors. We make use of variational inequalities to model a hypothetical DG market in different scenarios, from monopoly, to oligopoly, to open market. Such an approach enables different equilibrium outcomes due to different DG penetration levels. Based on these findings, we argue that energy policies for such markets must be developed according to each specific stage of the grid's lifecycle. We show how energy policies and market regulations may affect such a transition, which may be catastrophic if not managed properly, and which is dependent on the energy mix. -- Highlights: •DG affects energy markets depending on technologies, penetration and infrastructure. •Energy prices vary when the market moves from centralized to several suppliers. •Variational inequalities are presented to simulate a market under such transitions. •The increase of DG penetration level may present different energy prices variation. •If technical and political issues of smart grids are not improved, markets may crash

  11. Exploring the potential uptake of distributed energy generation

    International Nuclear Information System (INIS)

    Gardner, John; Ashworth, Peta; Carr-Cornish, Simone

    2007-01-01

    Full text: Global warming has been identified as an energy problem (Klare 2007). With a predicted increase in fossil fuel use for many years to come (IEA 2004) there is a need to find a future energy path that will meet our basic requirements for energy but also help to mitigate climate change (CSIRO 2006). Currently there are a range of technological solutions available, with each representing a different value proposition. Distributed Energy (DE) is one such technological solution, which involves the widespread use of small local power generators, located close to the end user. Such generators can be powered by a range of low emission and/or renewable sources. Until now, cheap electricity, existing infrastructure and reluctance for change both at a political and individual level has meant there has been little prospect for DE to be considered in Australia, except in some remote communities. However, with the majority of Australians now rating climate change as an issue of strategic importance to Australia (Ashworth, Pisarski and Littleboy 2006), it can be inferred that Australia's tolerance for generating greenhouse gas emissions has reduced, and that potential support for DE is increasing. It is therefore important to understand what factors might influence the potential adoption of DE. As part of a research project called the Intelligent Grid, CSIRO's Energy Transformed Flagship is aiming to identify the conditions under which Distributed Energy might be effectively implemented in Australia. One component of this project involves social research, which aims to understand the drivers and barriers to the uptake of DE technology by the community. This paper presents findings from two large-scale surveys (one of householders and one of businesses), designed to assess beliefs and knowledge about environmental issues, and about traditional and renewable energy sources. The surveys also assess current energy use, and identify preferences regarding DE technology. The

  12. Microgrids and distributed generation systems: Control, operation, coordination and planning

    Science.gov (United States)

    Che, Liang

    Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids

  13. A planning and analysis framework for evaluating distributed generation and utility strategies

    International Nuclear Information System (INIS)

    Ault, Graham W.

    2000-01-01

    The numbers of smaller scale distributed power generation units connected to the distribution networks of electricity utilities in the UK and elsewhere have grown significantly in recent years. Numerous economic and political drivers have stimulated this growth and continue to provide the environment for future growth in distributed generation. The simple fact that distributed generation is independent from the distribution utility complicates planning and operational tasks for the distribution network. The uncertainty relating to the number, location and type of distributed generating units to connect to the distribution network in the future makes distribution planning a particularly difficult activity. This thesis concerns the problem of distribution network and business planning in the era of distributed generation. A distributed generation strategic analysis framework is proposed to provide the required analytical capability and planning and decision making framework to enable distribution utilities to deal effectively with the challenges and opportunities presented to them by distributed generation. The distributed generation strategic analysis framework is based on the best features of modern planning and decision making methodologies and facilitates scenario based analysis across many utility strategic options and uncertainties. Case studies are presented and assessed to clearly illustrate the potential benefits of such an approach to distributed generation planning in the UK electricity supply industry. (author)

  14. Establishing Substantial Equivalence: Proteomics

    Science.gov (United States)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  15. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Generation and distribution system grounding. 111.05-17 Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Generation and distribution system grounding. The neutral of each grounded generation and distribution system...

  16. Distributed generation system using wind/photovoltaic/fuel cell

    Science.gov (United States)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  17. Distributed Generation potential of the U.S. commercial sector

    International Nuclear Information System (INIS)

    Hamachi LaCommare, Kristina; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

    2005-01-01

    Small-scale (100 kW - 5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25% of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Dept. of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored

  18. Control Architecture for Intentional Island Operation in Distribution Network with High Penetration of Distributed Generation

    DEFF Research Database (Denmark)

    Chen, Yu

    Currently, a high penetration level of Distributed Generations (DGs), such as Wind Turbines (WTs) and Combined Heat and Power plants (CHPs), has been observed in the Danish distribution systems, and even more DGs are foreseen to be present in the coming years. With adequate DGs available, how...... amount of DGs. As part of the NextGen project, this project focuses on the system modeling and simulation regarding the control architecture and recommends the development of a communication and information exchange system based on IEC 61850. This thesis starts with the background of this PhD project......, the feasibility of the application of Artificial Neural Network (ANN) to ICA is studied, in order to improve the computation efficiency for ISR calculation. Finally, the integration of ICA into Dynamic Security Assessment (DSA), the ICA implementation, and the development of ICA are discussed....

  19. Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Tolba

    2018-01-01

    Full Text Available Integration of Renewable Distributed Generations (RDGs such as photovoltaic (PV systems and wind turbines (WTs in distribution networks can be considered a brilliant and efficient solution to the growing demand for energy. This article introduces new robust and effective techniques like hybrid Particle Swarm Optimization in addition to a Gravitational Search Algorithm (PSOGSA and Moth-Flame Optimization (MFO that are proposed to deduce the optimum location with convenient capacity of RDGs units for minimizing system power losses and operating cost while improving voltage profile and voltage stability. This paper describes two stages. First, the Loss Sensitivity Factors (LSFs are employed to select the most candidate buses for RDGs location. In the second stage, the PSOGSA and MFO are implemented to deduce the optimal location and capacity of RDGs from the elected buses. The proposed schemes have been applied on 33-bus and 69-bus IEEE standard radial distribution systems. To insure the suggested approaches validity, the numerical results have been compared with other techniques like Backtracking Search Optimization Algorithm (BSOA, Genetic Algorithm (GA, Particle Swarm Algorithm (PSO, Novel combined Genetic Algorithm and Particle Swarm Optimization (GA/PSO, Simulation Annealing Algorithm (SA, and Bacterial Foraging Optimization Algorithm (BFOA. The evaluated results have been confirmed the superiority with high performance of the proposed MFO technique to find the optimal solutions of RDGs units’ allocation. In this regard, the MFO is chosen to solve the problems of Egyptian Middle East distribution network as a practical case study with the optimal integration of RDGs.

  20. Business opportunities and dynamic competition through distributed generation in primary electricity distribution networks

    International Nuclear Information System (INIS)

    Raineri, R.; Rios, S.; Vasquez, R.

    2005-01-01

    In this paper, for a real electricity distribution network, an assessment of business opportunities to invest in distributed generation (DG) is performed through a simulation based on a full representation of three medium voltage (12 kV) feeders. The three feeders representation includes 1062 sections of conductors with 13 different sizes. The economic assessment focuses on both, the incentives of the incumbent distribution company and those of a new entrant. The technical and economic impact on losses, reliability and voltage regulation in the network area are verified. The DG solution analyzed determines a business opportunity for new investors where end users are also benefited. This work calls in the debate on the need to reformulate the current regulation model on electricity distribution, by defining clear rules to incorporate DG to the existing network, and to enable any agent to develop the proposed business. DG success depends on the location of adequate sites to strategically establish few DG units being a substitute to network expansion

  1. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

    Directory of Open Access Journals (Sweden)

    Tingsong Du

    2015-01-01

    Full Text Available An improved quantum artificial fish swarm algorithm (IQAFSA for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA, the basic artificial fish swarm algorithm (BAFSA, and the global edition artificial fish swarm algorithm (GAFSA to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

  2. User-friendly Tool for Power Flow Analysis and Distributed Generation Optimisation in Radial Distribution Networks

    Directory of Open Access Journals (Sweden)

    M. F. Akorede

    2017-06-01

    Full Text Available The intent of power distribution companies (DISCOs is to deliver electric power to their customers in an efficient and reliable manner – with minimal energy loss cost. One major way to minimise power loss on a given power system is to install distributed generation (DG units on the distribution networks. However, to maximise benefits, it is highly crucial for a DISCO to ensure that these DG units are of optimal size and sited in the best locations on the network. This paper gives an overview of a software package developed in this study, called Power System Analysis and DG Optimisation Tool (PFADOT. The main purpose of the graphical user interface-based package is to guide a DISCO in finding the optimal size and location for DG placement in radial distribution networks. The package, which is also suitable for load flow analysis, employs the GUI feature of MATLAB. Three objective functions are formulated into a single optimisation problem and solved with fuzzy genetic algorithm to simultaneously obtain DG optimal size and location. The accuracy and reliability of the developed tool was validated using several radial test systems, and the results obtained are evaluated against the existing similar package cited in the literature, which are impressive and computationally efficient.

  3. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

    Science.gov (United States)

    This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

  4. Integration of distributed generation in the power system

    CERN Document Server

    Bollen, Math H J

    2011-01-01

    "The integration of new sources of energy like wind power, solar-power, small-scale generation, or combined heat and power in the power grid is something that impacts a lot of stakeholders: network companies (both distribution and transmission), the owners and operators of the DG units, other end-users of the power grid (including normal consumers like you and me) and not in the least policy makers and regulators. There is a lot of misunderstanding about the impact of DG on the power grid, with one side (including mainly some but certainly not all, network companies) claiming that the lights will go out soon, whereas the other side (including some DG operators and large parks of the general public) claiming that there is nothing to worry about and that it's all a conspiracy of the large production companies that want to protect their own interests and keep the electricity price high. The authors are of the strong opinion that this is NOT the way one should approach such an important subject as the integration...

  5. Operation optimization of distributed generation using artificial intelligent techniques

    Directory of Open Access Journals (Sweden)

    Mahmoud H. Elkazaz

    2016-06-01

    Full Text Available Future smart grids will require an observable, controllable and flexible network architecture for reliable and efficient energy delivery. The use of artificial intelligence and advanced communication technologies is essential in building a fully automated system. This paper introduces a new technique for online optimal operation of distributed generation (DG resources, i.e. a hybrid fuel cell (FC and photovoltaic (PV system for residential applications. The proposed technique aims to minimize the total daily operating cost of a group of residential homes by managing the operation of embedded DG units remotely from a control centre. The target is formed as an objective function that is solved using genetic algorithm (GA optimization technique. The optimal settings of the DG units obtained from the optimization process are sent to each DG unit through a fully automated system. The results show that the proposed technique succeeded in defining the optimal operating points of the DGs that affect directly the total operating cost of the entire system.

  6. Crisscross Optimization Algorithm and Monte Carlo Simulation for Solving Optimal Distributed Generation Allocation Problem

    Directory of Open Access Journals (Sweden)

    Xiangang Peng

    2015-12-01

    Full Text Available Distributed generation (DG systems are integral parts in future distribution networks. In this paper, a novel approach integrating crisscross optimization algorithm and Monte Carlo simulation (CSO-MCS is implemented to solve the optimal DG allocation (ODGA problem. The feature of applying CSO to address the ODGA problem lies in three interacting operators, namely horizontal crossover, vertical crossover and competitive operator. The horizontal crossover can search new solutions in a hypercube space with a larger probability while in the periphery of each hypercube with a decreasing probability. The vertical crossover can effectively facilitate those stagnant dimensions of a population to escape from premature convergence. The competitive operator allows the crisscross search to always maintain in a historical best position to quicken the converge rate. It is the combination of the double search strategies and competitive mechanism that enables CSO significant advantage in convergence speed and accuracy. Moreover, to deal with system uncertainties such as the output power of wind turbine and photovoltaic generators, an MCS-based method is adopted to solve the probabilistic power flow. The effectiveness of the CSO-MCS method is validated on the typical 33-bus and 69-bus test system, and results substantiate the suitability of CSO-MCS for multi-objective ODGA problem.

  7. Optimal planning of multiple distributed generation sources in distribution networks: A new approach

    International Nuclear Information System (INIS)

    AlRashidi, M.R.; AlHajri, M.F.

    2011-01-01

    Highlights: → A new hybrid PSO for optimal DGs placement and sizing. → Statistical analysis to fine tune PSO parameters. → Novel constraint handling mechanism to handle different constraints types. - Abstract: An improved particle swarm optimization algorithm (PSO) is presented for optimal planning of multiple distributed generation sources (DG). This problem can be divided into two sub-problems: the DG optimal size (continuous optimization) and location (discrete optimization) to minimize real power losses. The proposed approach addresses the two sub-problems simultaneously using an enhanced PSO algorithm capable of handling multiple DG planning in a single run. A design of experiment is used to fine tune the proposed approach via proper analysis of PSO parameters interaction. The proposed algorithm treats the problem constraints differently by adopting a radial power flow algorithm to satisfy the equality constraints, i.e. power flows in distribution networks, while the inequality constraints are handled by making use of some of the PSO features. The proposed algorithm was tested on the practical 69-bus power distribution system. Different test cases were considered to validate the proposed approach consistency in detecting optimal or near optimal solution. Results are compared with those of Sequential Quadratic Programming.

  8. Optimal planning of multiple distributed generation sources in distribution networks: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    AlRashidi, M.R., E-mail: malrash2002@yahoo.com [Department of Electrical Engineering, College of Technological Studies, Public Authority for Applied Education and Training (PAAET) (Kuwait); AlHajri, M.F., E-mail: mfalhajri@yahoo.com [Department of Electrical Engineering, College of Technological Studies, Public Authority for Applied Education and Training (PAAET) (Kuwait)

    2011-10-15

    Highlights: {yields} A new hybrid PSO for optimal DGs placement and sizing. {yields} Statistical analysis to fine tune PSO parameters. {yields} Novel constraint handling mechanism to handle different constraints types. - Abstract: An improved particle swarm optimization algorithm (PSO) is presented for optimal planning of multiple distributed generation sources (DG). This problem can be divided into two sub-problems: the DG optimal size (continuous optimization) and location (discrete optimization) to minimize real power losses. The proposed approach addresses the two sub-problems simultaneously using an enhanced PSO algorithm capable of handling multiple DG planning in a single run. A design of experiment is used to fine tune the proposed approach via proper analysis of PSO parameters interaction. The proposed algorithm treats the problem constraints differently by adopting a radial power flow algorithm to satisfy the equality constraints, i.e. power flows in distribution networks, while the inequality constraints are handled by making use of some of the PSO features. The proposed algorithm was tested on the practical 69-bus power distribution system. Different test cases were considered to validate the proposed approach consistency in detecting optimal or near optimal solution. Results are compared with those of Sequential Quadratic Programming.

  9. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-01-01

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  10. Distributed generation and centralized power system in Thailand

    DEFF Research Database (Denmark)

    Sukkumnoed, Decharut

    2004-01-01

    The paper examines and discusses conflicts between the development of distributed power and centralized power system.......The paper examines and discusses conflicts between the development of distributed power and centralized power system....

  11. Advanced feed water distributing system for WWER 440 steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Grazl, K.; Tischler, J.; Mihalik, M.

    1995-01-01

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.)

  12. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  13. Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation

    International Nuclear Information System (INIS)

    Ju, HyungKuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S.; Mulder, Roger J.

    2016-01-01

    Highlights: • Ethanol assisted water electrolysis reduces electric energy input by more than 50%. • Partial oxidation of ethanol leads to formation of undesired chemicals. • Degradation occurs due to formation of by-products and poisoning of catalyst. • Better catalyst has the potential to increase ethanol to H 2 conversion efficiency. • A plausible ethanol electro-oxidation mechanism has been proposed - Abstract: The global interest in hydrogen/fuel cell systems for distributed power generation and transport applications is rapidly increasing. Many automotive companies are now bringing their pre-commercial fuel cell vehicles in the market, which will need extensive hydrogen generation, distribution and storage infrastructure for fueling of these vehicles. Electrolytic water splitting coupled to renewable sources offers clean on-site hydrogen generation option. However, the process is energy intensive requiring electric energy >4.2 kWh for the electrolysis stack and >6 kWh for the complete system per m 3 of hydrogen produced. This paper investigates using ethanol as a renewable fuel to assist with water electrolysis process to substantially reduce the energy input. A zero-gap cell consisting of polymer electrolyte membrane electrolytic cells with Pt/C and PtSn/C as anode catalysts were employed. Current densities up to 200 mA cm −2 at 70 °C were achieved at less than 0.75 V corresponding to an energy consumption of about 1.62 kWh m −3 compared with >4.2 kWh m −3 required for conventional water electrolysis. Thus, this approach for hydrogen generation has the potential to substantially reduce the electric energy input to less than 40% with the remaining energy provided by ethanol. However, due to performance degradation over time, the energy consumption increased and partial oxidation of ethanol led to lower conversion efficiency. A plausible ethanol electro-oxidation mechanism has been proposed based on the Faradaic conversion of ethanol and mass

  14. Coordinated Control Scheme of Battery Energy Storage System (BESS) and Distributed Generations (DGs) for Electric Distribution Grid Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Zhao, Haoran; Wu, Qiuwei

    2012-01-01

    This paper describes a coordinated control scheme of battery energy storage system (BESS) and distributed generations (DGs) for electric distribution grid operation. The BESS is designed to stabilize frequency and voltages as a primary control after the electric distribution system enters...

  15. Simultaneous Optimal Placement of Distributed Generation and Electric Vehicle Parking Lots Based on Probabilistic EV Model

    OpenAIRE

    M.H. Amini; M. Parsa Moghaddam

    2013-01-01

    High penetration of distributed generations and the increasing demand for using electric vehicles provide a lot of issues for the utilities. If these two effective elements of the future power system are used in an unscheduled manner, it may lead to the loss increment in distribution networks, dramatically. In this paper, the simultaneous allocation of distributed generations (DGs) and electric vehicles (EVs) parking lots has been studied in a radial distribution network. A distribution netwo...

  16. Method and apparatus for anti-islanding protection of distributed generations

    Science.gov (United States)

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  17. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  18. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  19. Optimization based on benefit of regional energy suppliers of distributed generation in active distribution network

    Science.gov (United States)

    Huo, Xianxu; Li, Guodong; Jiang, Ling; Wang, Xudong

    2017-08-01

    With the development of electricity market, distributed generation (DG) technology and related policies, regional energy suppliers are encouraged to build DG. Under this background, the concept of active distribution network (ADN) is put forward. In this paper, a bi-level model of intermittent DG considering benefit of regional energy suppliers is proposed. The objective of the upper level is the maximization of benefit of regional energy suppliers. On this basis, the lower level is optimized for each scene. The uncertainties of DG output and load of users, as well as four active management measures, which include demand-side management, curtailing the output power of DG, regulating reactive power compensation capacity and regulating the on-load tap changer, are considered. Harmony search algorithm and particle swarm optimization are combined as a hybrid strategy to solve the model. This model and strategy are tested with IEEE-33 node system, and results of case study indicate that the model and strategy successfully increase the capacity of DG and benefit of regional energy suppliers.

  20. ACORN—A new method for generating sequences of uniformly distributed Pseudo-random Numbers

    Science.gov (United States)

    Wikramaratna, R. S.

    1989-07-01

    A new family of pseudo-random number generators, the ACORN ( additive congruential random number) generators, is proposed. The resulting numbers are distributed uniformly in the interval [0, 1). The ACORN generators are defined recursively, and the ( k + 1)th order generator is easily derived from the kth order generator. Some theorems concerning the period length are presented and compared with existing results for linear congruential generators. A range of statistical tests are applied to the ACORN generators, and their performance is compared with that of the linear congruential generators and the Chebyshev generators. The tests show the ACORN generators to be statistically superior to the Chebyshev generators, while being statistically similar to the linear congruential generators. However, the ACORN generators execute faster than linear congruential generators for the same statistical faithfulness. The main advantages of the ACORN generator are speed of execution, long period length, and simplicity of coding.

  1. Overview of PLL methods for distributed generation units

    OpenAIRE

    Meersman, Bart; De Kooning, Jeroen; Vandoorn, Tine; Degroote, Lieven; Renders, Bert; Vandevelde, Lieven

    2010-01-01

    Distributed energy resources are increasingly being connected to the utility grid by means of an inverter. The basic information necessary for these inverter-connected distribution units are the frequency and phase angle of the utility grid. The phase angle can be estimated using phase-locked loops (PLLs). Voltage unbalance, harmonics and other kinds of undesirable pertubations are common conditions in the electric utility which are detrimental for the operation of the PLL. In this paper, thr...

  2. Methods for Dynamic Analysis of Distribution Feeders with High Penetration of PV Generators

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Adarsh; Ayyanar, Raja

    2016-11-21

    An increase in the number of inverter-interfaced photovoltaic (PV) generators on existing distribution feeders affects the design, operation, and control of the distribution systems. Existing distribution system analysis tools are capable of supporting only snapshot and quasi-static analyses. Capturing the dynamic effects of PV generators during the variation in distribution system states is necessary when studying the effects of controller bandwidths, multiple voltage correction devices, and anti-islanding. This work explores the use of dynamic phasors and differential algebraic equations (DAE) for impact analysis of PV generators on the existing distribution feeders.

  3. Generation of pseudo-random numbers from given probabilistic distribution with the use of chaotic maps

    Science.gov (United States)

    Lawnik, Marcin

    2018-01-01

    The scope of the paper is the presentation of a new method of generating numbers from a given distribution. The method uses the inverse cumulative distribution function and a method of flattening of probabilistic distributions. On the grounds of these methods, a new construction of chaotic maps was derived, which generates values from a given distribution. The analysis of the new method was conducted on the example of a newly constructed chaotic recurrences, based on the Box-Muller transformation and the quantile function of the exponential distribution. The obtained results certify that the proposed method may be successively applicable for the construction of generators of pseudo-random numbers.

  4. Network Regulation and Support Schemes - How Policy Interactions Affect the Integration of Distributed Generation

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Jacobsen, Henrik; Schröder, Sascha Thorsten

    2011-01-01

    This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect distributed generation. Firstly, the incentives of distributed generators and distribution system operators are examined. Frequently there exists a trade......-off between the incentives for these two market agents to facilitate the integration of distributed generation. Secondly, the interaction of these policy dimensions is analyzed, including case studies based on five EU Member States. Aspects of operational nature and investments in grid and distributed...

  5. Application of signal processing techniques for islanding detection of distributed generation in distribution network: A review

    International Nuclear Information System (INIS)

    Raza, Safdar; Mokhlis, Hazlie; Arof, Hamzah; Laghari, J.A.; Wang, Li

    2015-01-01

    Highlights: • Pros & cons of conventional islanding detection techniques (IDTs) are discussed. • Signal processing techniques (SPTs) ability in detecting islanding is discussed. • SPTs ability in improving performance of passive techniques are discussed. • Fourier, s-transform, wavelet, HHT & tt-transform based IDTs are reviewed. • Intelligent classifiers (ANN, ANFIS, Fuzzy, SVM) application in SPT are discussed. - Abstract: High penetration of distributed generation resources (DGR) in distribution network provides many benefits in terms of high power quality, efficiency, and low carbon emissions in power system. However, efficient islanding detection and immediate disconnection of DGR is critical in order to avoid equipment damage, grid protection interference, and personnel safety hazards. Islanding detection techniques are mainly classified into remote, passive, active, and hybrid techniques. From these, passive techniques are more advantageous due to lower power quality degradation, lower cost, and widespread usage by power utilities. However, the main limitations of these techniques are that they possess a large non detection zones and require threshold setting. Various signal processing techniques and intelligent classifiers have been used to overcome the limitations of passive islanding. Signal processing techniques, in particular, are adopted due to their versatility, stability, cost effectiveness, and ease of modification. This paper presents a comprehensive overview of signal processing techniques used to improve common passive islanding detection techniques. A performance comparison between the signal processing based islanding detection techniques with existing techniques are also provided. Finally, this paper outlines the relative advantages and limitations of the signal processing techniques in order to provide basic guidelines for researchers and field engineers in determining the best method for their system

  6. Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Su, Chi

    2015-01-01

    A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... algorithm is implemented in VC++ 6.0 program language and the corresponding numerical experiments are finished on the modified version of the IEEE 33-node distribution system with two newly installed distributed generators and eight newly installed capacitors banks. The numerical results prove...... that the proposed method can search a more promising control schedule of all transformers, all capacitors and all distributed generators with less time consumption, compared with other listed artificial intelligent methods....

  7. Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

    Science.gov (United States)

    Wyse Jackson, T.; Kashyap, V.; McKillop, S.

    2015-12-01

    We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region's evolution. We fit power-laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results. This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO

  8. Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error

    International Nuclear Information System (INIS)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Senjyu, Tomonobu

    2015-01-01

    Highlights: • Optimal operation of the thermal generation for the smart grid system. • Different distributed generations are considered as the power generation sources. • Forecast error of the renewable energy systems is considered. • Controllable loads of the smart houses are considered to achieve the optimal operation. • Economical benefits can be achieved for the smart grid system. - Abstract: This paper concentrates on the optimal operation of the conventional thermal generators with distributed generations for a smart grid considering forecast error. The distributed generations are considered as wind generators, photovoltaic generators, battery energy storage systems in the supply side and a large number of smart houses in the demand side. A smart house consists of the electric vehicle, heat pump, photovoltaic generator and solar collector. The electric vehicle and heat pump are considered as the controllable loads which can compensate the power for the forecast error of renewable energy sources. As a result, power generation cost of the smart grid can reduce through coordinated with distributed generations and thermal units scheduling process. The electric vehicles of the smart house are considered as the spinning reserve in the scheduling process which lead to lessen the additional operation of thermal units. Finally, obtained results of the proposed system have been compared with the conventional method. The conventional method does not consider the electric vehicle in the smart houses. The acquired results demonstrate that total power generation cost of the smart grid has been reduced by the proposed method considering forecast error. Effectiveness of the proposed method has been verified by the extensive simulation results using MATLAB® software

  9. Integration of renewable generation and elastic loads into distribution grids

    CERN Document Server

    Ardakanian, Omid; Rosenberg, Catherine

    2016-01-01

    This brief examines the challenges of integrating distributed energy resources and high-power elastic loads into low-voltage distribution grids, as well as the potential for pervasive measurement. It explores the control needed to address these challenges and achieve various system-level and user-level objectives. A mathematical framework is presented for the joint control of active end-nodes at scale, and extensive numerical simulations demonstrate that proper control of active end-nodes can significantly enhance reliable and economical operation of the power grid.

  10. Impacts of the Load Models on Optimal Planning of Distributed Generation in Distribution System

    Directory of Open Access Journals (Sweden)

    Aashish Kumar Bohre

    2015-01-01

    Full Text Available The optimal planning (sizing and siting of the distributed generations (DGs by using butterfly-PSO/BF-PSO technique to investigate the impacts of load models is presented in this work. The validity of the evaluated results is confirmed by comparing with well-known Genetic Algorithm (GA and standard or conventional particle swarm optimization (PSO. To exhibit its compatibility in terms of load management, an impact of different load models on the size and location of DG has also been presented in this work. The fitness evolution function explored is the multiobjective function (FMO, which is based on the three significant indexes such as active power loss, reactive power loss, and voltage deviation index. The optimal solution is obtained by minimizing the multiobjective fitness function using BF-PSO, GA, and PSO technique. The comparison of the different optimization techniques is given for the different types of load models such as constant, industrial, residential, and commercial load models. The results clearly show that the BF-PSO technique presents the superior solution in terms of compatibility as well as computation time and efforts both. The algorithm has been carried out with 15-bus radial and 30-bus mesh system.

  11. Three-phase Unbalanced Interval Power Flow Calculation of Low-voltage Distribution Network with Distributed PV Power Generation

    Science.gov (United States)

    Yuan, Yan; Shunjiang, Lin; Yuan, Lu

    2017-05-01

    Low-voltage distribution network is a three-phase unbalanced system due to the integration of single-phase loads and single-phase distributed PV arrays. In this paper, three-phase unbalanced interval power flow calculation model of three-phase four-wire low voltage distribution network with distributed PV power generation is established. In the model, intensity of illumination and battery temperature which influence the power output of distributed PV power generation is described as intervals. Then, through the affine interval algorithm, the interval power flow problem is transformed into a deterministic power flow problem and two linear optimization problems. By solving the above problems, the interval power flow solution can be obtained. Finally, the proposed algorithm is applied to an actual 22-bus low-voltage distribution network, and the solution of the affine interval algorithm is compared to the solution of the Monte Carlo sampling method, which verifies the correctness and effectiveness of the proposed algorithm.

  12. Parallel grid generation algorithm for distributed memory computers

    Science.gov (United States)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  13. A Concurrent Distributed System for Aircraft Tactical Decision Generation

    Science.gov (United States)

    McManus, John W.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of a concurrent version of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS) program, a second generation TDG, is presented. Concurrent computing environments and programming approaches are discussed and the design and performance of a prototype concurrent TDG system are presented.

  14. Generation of sub-Poissonian photon number distribution

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Ramanujam, P. S.

    1990-01-01

    An optimization of a nonlinear Mach-Zehnder interferometer to produce sub-Poissonian photon number distribution is proposed. We treat the system quantum mechanically and estimate the mirror parameters, the nonlinearity of the medium in the interferometer, and the input power to obtain minimal...... output uncertainty in the photon number. The power efficiency of the system is shown to be high....

  15. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  16. Improved side information generation for distributed video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2008-01-01

    consists of a variable block size based Y, U and V component motion estimation and an adaptive weighted overlapped block motion compensation (OBMC). The proposal is tested and compared with the results of an executable DVC codec released by DISCOVER group (DIStributed COding for Video sERvices). RD...

  17. Assessing the impacts of distributed generation on the protection ...

    African Journals Online (AJOL)

    There is the refore, a need for a protection scheme to be adopted whose devices can “coordinate” as well as offer a reliable protection to the network. This paper proposes a protection scheme design using coordinated behaviours of relay - operated reclosers and sectionalizers, as well as manages the effect distributed ...

  18. Analyze the economic and environmental viability in distributed generation of electric power from renewable sources

    International Nuclear Information System (INIS)

    Jantim Neto, Humberto

    2010-01-01

    This paper brings a brief of economical and social environmental analysis about distributed electric's energy generation, based on a comparison to centralized generation. The motivation of the proposed analysis has its origin on a reflection about politics and scheming directed to Brazilian's energy sector. This study has renewable energy resources as setting, represented for Belo Monte generation's plant and undertaking registered on the Reservation's Energy Auction 2010. The study took into account economics and technical aspects, whereas the viability analysis was formed from benefits got from different forms of electric's generation. The conclusions of this shows that distributed electric's energy generation may have economics and socio environment benefits over centralized generation. (author)

  19. Grid-Connected Inverter for Distributed Generation in Microgrid

    DEFF Research Database (Denmark)

    Naderipour, Amirreza; Miveh, Mohammad Reza; Guerrero, Josep M.

    for power generation. DGS units can operate in parallel to the main grid or in a Microgrid (MG) mode. An MG is a discrete energy system consisting of DGSs and loads capable of operating in parallel with, or independently from, the main grid. Meanwhile, Grid-Connected Inverters (GCIs) are typically used...

  20. Distribution of primary and secondary currents in sine-generated ...

    African Journals Online (AJOL)

    The influences of curvaturedriven and topography-driven secondary currents on the redistribution of primary flow in sine-generated meandering channels were examined by CCHE2D. The model is calibrated using data measured in two sets of laboratory experiments including flat-bed flow and mobile-bed flow. Analysis ...

  1. Banking on Families: How Families Generate and Distribute Social Capital

    Science.gov (United States)

    Furstenberg, Frank F.

    2005-01-01

    Before we can determine the relevance of social capital to the sociology of family and kinship, we must fill the gaps in our theoretical knowledge. For example, we still do not know how couples, parents, children, and groups generate, accumulate, manage, and deploy social capital. Neither do we know the consequences of social capital for the…

  2. Distributed network generation based on preferential attachment in ABS

    NARCIS (Netherlands)

    K. Azadbakht (Keyvan); N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank)

    2017-01-01

    textabstractGeneration of social networks using Preferential Attachment (PA) mechanism is proposed in the Barabasi-Albert model. In this mechanism, new nodes are introduced to the network sequentially and they attach to the existing nodes preferentially where the preference can be based on the

  3. Distributed generation for South Africa based on renewable energy resources

    CSIR Research Space (South Africa)

    Szewczuk, S

    2009-10-01

    Full Text Available -grid energy systems. These two mini-grids made use of local solar and wind resources to generate electricity. This paper describes the technical lessons that the CSIR learnt in its experiences with the design and implementation of these hybrid mini...

  4. A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators

    International Nuclear Information System (INIS)

    Niknam, Taher

    2011-01-01

    In recent years, Distributed Generators (DGs) connected to the distribution network have received increasing attention. The connection of enormous DGs into existing distribution network changes the operation of distribution systems. Because of the small X/R ratio and radial structure of distribution systems, DGs affect the daily Volt/Var control. This paper presents a new algorithm for multiobjective daily Volt/Var control in distribution systems including Distributed Generators (DGs). The objectives are costs of energy generation by DGs and distribution companies, electrical energy losses and the voltage deviations for the next day. A new optimization algorithm based on a Chaotic Improved Honey Bee Mating Optimization (CIHBMO) is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. Since objectives are not the same, a fuzzy system is used to calculate the best solution. The plausibility of the proposed algorithm is demonstrated and its performance is compared with other methods on a 69-bus distribution feeder. Simulation results illustrate that the proposed algorithm has better outperforms the other algorithms.

  5. A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher [Electrical and Electronics Engineering Department, Shiraz University of Technology, Modars Blvd. P.O. 71555-313, Shiraz (Iran, Islamic Republic of)

    2011-03-15

    In recent years, Distributed Generators (DGs) connected to the distribution network have received increasing attention. The connection of enormous DGs into existing distribution network changes the operation of distribution systems. Because of the small X/R ratio and radial structure of distribution systems, DGs affect the daily Volt/Var control. This paper presents a new algorithm for multiobjective daily Volt/Var control in distribution systems including Distributed Generators (DGs). The objectives are costs of energy generation by DGs and distribution companies, electrical energy losses and the voltage deviations for the next day. A new optimization algorithm based on a Chaotic Improved Honey Bee Mating Optimization (CIHBMO) is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. Since objectives are not the same, a fuzzy system is used to calculate the best solution. The plausibility of the proposed algorithm is demonstrated and its performance is compared with other methods on a 69-bus distribution feeder. Simulation results illustrate that the proposed algorithm has better outperforms the other algorithms. (author)

  6. The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species.

    Directory of Open Access Journals (Sweden)

    Keith B Aubry

    Full Text Available The availability of spatially referenced environmental data and species occurrence records in online databases enable practitioners to easily generate species distribution models (SDMs for a broad array of taxa. Such databases often include occurrence records of unknown reliability, yet little information is available on the influence of data quality on SDMs generated for rare, elusive, and cryptic species that are prone to misidentification in the field. We investigated this question for the fisher (Pekania pennanti, a forest carnivore of conservation concern in the Pacific States that is often confused with the more common Pacific marten (Martes caurina. Fisher occurrence records supported by physical evidence (verifiable records were available from a limited area, whereas occurrence records of unknown quality (unscreened records were available from throughout the fisher's historical range. We reserved 20% of the verifiable records to use as a test sample for both models and generated SDMs with each dataset using Maxent. The verifiable model performed substantially better than the unscreened model based on multiple metrics including AUCtest values (0.78 and 0.62, respectively, evaluation of training and test gains, and statistical tests of how well each model predicted test localities. In addition, the verifiable model was consistent with our knowledge of the fisher's habitat relations and potential distribution, whereas the unscreened model indicated a much broader area of high-quality habitat (indices > 0.5 that included large expanses of high-elevation habitat that fishers do not occupy. Because Pacific martens remain relatively common in upper elevation habitats in the Cascade Range and Sierra Nevada, the SDM based on unscreened records likely reflects primarily a conflation of marten and fisher habitat. Consequently, accurate identifications are far more important than the spatial extent of occurrence records for generating reliable SDMs

  7. A multi-state model for the reliability assessment of a distributed generation system via universal generating function

    International Nuclear Information System (INIS)

    Li, Yan-Fu; Zio, Enrico

    2012-01-01

    The current and future developments of electric power systems are pushing the boundaries of reliability assessment to consider distribution networks with renewable generators. Given the stochastic features of these elements, most modeling approaches rely on Monte Carlo simulation. The computational costs associated to the simulation approach force to treating mostly small-sized systems, i.e. with a limited number of lumped components of a given renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working or failed. In this paper, we propose an analytical multi-state modeling approach for the reliability assessment of distributed generation (DG). The approach allows looking to a number of diverse energy generation technologies distributed on the system. Multiple states are used to describe the randomness in the generation units, due to the stochastic nature of the generation sources and of the mechanical degradation/failure behavior of the generation systems. The universal generating function (UGF) technique is used for the individual component multi-state modeling. A multiplication-type composition operator is introduced to combine the UGFs for the mechanical degradation and renewable generation source states into the UGF of the renewable generator power output. The overall multi-state DG system UGF is then constructed and classical reliability indices (e.g. loss of load expectation (LOLE), expected energy not supplied (EENS)) are computed from the DG system generation and load UGFs. An application of the model is shown on a DG system adapted from the IEEE 34 nodes distribution test feeder.

  8. Control of power converters in distributed generation applications under grid fault conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Munoz-Aguilar, Raul

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  9. Reliable, Low Cost Distributed Generator/Utility System Interconnect: 2001 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2003-08-01

    This report details a research program to develop requirements that support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept that allows distributed generation to be interconnected to the electric power system in a manner that provides value to end users without compromising reliability and performance.

  10. Getting to Gender Equality in Energy Infrastructure : Lessons from Electricity Generation, Transmission, and Distribution Projects

    OpenAIRE

    Orlando, Maria Beatriz; Janik, Vanessa Lopes; Vaidya, Pranav; Angelou, Nicolina; Zumbyte, Ieva; Adams, Norma

    2018-01-01

    Getting to Gender Equality in Electricity Infrastructure: Lessons from Electricity Generation, Transmission, and Distribution Projects examines the social and gender footprint of large-scale electricity generation, transmission, and distribution projects to establish a foundation on which further research and replication of good practices can be built. The main impact pathways analyzed are...

  11. Development of ozone generator by modification of the field distribution

    Science.gov (United States)

    Jenei, I.; Kiss, P.; Kiss, E.

    2008-12-01

    New methods have been established to enhance the ozone production of the surface discharge arrangement. One method sets the discharge electrode a short distance away from the surface of the dielectric material, whilst another uses a special power supply system resulting in a superimposed discharge. According to the experiments, significant differences have been found in the ozone production capacity of the different arrangements. The characteristics of the electric field distribution of the designs have been calculated using the finite element method for the potential; and the Donor-Cell method for the space charge calculation, and the results have been analysed. A method of analysis has been established for the calculated field characteristics, which provides two index numbers. The reasons are highlighted for the differences in ozone production in relation to the index numbers obtained from the fields' distributions of the different arrangements.

  12. Control of dispatch dynamics for lowering the cost of distributed generation in the built environment

    Science.gov (United States)

    Flores, Robert Joseph

    Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load

  13. Multi-Objective Distribution Network Operation Based on Distributed Generation Optimal Placement Using New Antlion Optimizer Considering Reliability

    Directory of Open Access Journals (Sweden)

    KHANBABAZADEH Javad

    2016-10-01

    Full Text Available Distribution network designers and operators are trying to deliver electrical energy with high reliability and quality to their subscribers. Due to high losses in the distribution systems, using distributed generation can improves reliability, reduces losses and improves voltage profile of distribution network. Therefore, the choice of the location of these resources and also determining the amount of their generated power to maximize the benefits of this type of resource is an important issue which is discussed from different points of view today. In this paper, a new multi-objective optimal location and sizing of distributed generation resources is performed to maximize its benefits on the 33 bus distribution test network considering reliability and using a new Antlion Optimizer (ALO. The benefits for DG are considered as system losses reduction, system reliability improvement and benefits from the sale electricity and voltage profile improvement. For each of the mentioned benefits, the ALO algorithm is used to optimize the location and sizing of distributed generation resources. In order to verify the proposed approach, the obtained results have been analyzed and compared with the results of particle swarm optimization (PSO algorithm. The results show that the ALO has shown better performance in optimization problem solution versus PSO.

  14. Perspectives of Stirling engines use for distributed generation in Brazil

    International Nuclear Information System (INIS)

    Corria, Maria Eugenia; Cobas, Vladimir Melian; Silva Lora, Electo

    2006-01-01

    This work presents an evaluation of the development of Stirling engines and the advantages and the main obstacles against their widespread introduction in energy-generation practices. It also shows how the economic, technical and environmental characteristics presented by these engines support their insertion in the energy sector. An economic and environmental evaluation of this technology aiming at introducing it in the Brazilian energy scenario is also presented. Changes in legislation, financing and technology within the next few years must encourage the implementation of alternative generation technologies that present lower environmental impacts. Also, tendencies and economical studies are presented, trying to find the optimal condition for this technology to be feasible. The option regarding the trading of carbon credits when biomass is used as fuel is analyzed as well

  15. Comprehensive Cost Minimization in Distribution Networks Using Segmented-time Feeder Reconfiguration and Reactive Power Control of Distributed Generators

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Chen, Zhe

    2016-01-01

    In this paper, an efficient methodology is proposed to deal with segmented-time reconfiguration problem of distribution networks coupled with segmented-time reactive power control of distributed generators. The target is to find the optimal dispatching schedule of all controllable switches...... (FAHPSO) is implemented in VC++ 6.0 program language. A modified version of the typical 70-node distribution network and several real distribution networks are used to test the performance of the proposed method. Numerical results show that the proposed methodology is an efficient method for comprehensive...

  16. User-friendly tool for power flow analysis and distributed generation ...

    African Journals Online (AJOL)

    The intent of power distribution companies (DISCOs) is to deliver electric power to their customers in an efficient and reliable manner – with minimal energy loss cost. One major way to minimise power loss on a given power system is to install distributed generation (DG) units on the distribution networks. However, to ...

  17. On k-Gamma and k-Beta Distributions and Moment Generating Functions

    Directory of Open Access Journals (Sweden)

    Gauhar Rahman

    2014-01-01

    Full Text Available The main objective of the present paper is to define k-gamma and k-beta distributions and moments generating function for the said distributions in terms of a new parameter k>0. Also, the authors prove some properties of these newly defined distributions.

  18. Bimodal distribution of damage morphology generated by ion implantation

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A nucleation and evolution model of damage based on amorphous pockets (APs) has recently been developed and implemented in an atomistic kinetic Monte Carlo simulator. In the model, APs are disordered structures (I n V m ), which are agglomerates of interstitials (I) and vacancies (V). This model has been used to study the composition and size distribution of APs during different ion implantations. Depending strongly on the dose rate, ion mass and implant temperature, the APs can evolve to a defect population where the agglomerates have a similar number of I and V (n ∼ m), or to a defect population with pure I (m ∼ 0) and pure V (n ∼ 0) clusters, or a mixture of APs and clusters. This behaviour corresponds to a bimodal (APs/clusters) distribution of damage. As the AP have different thermal stability compared to the I and V clusters, the same damage concentration obtained through different implant conditions has a different damage morphology and, consequently, exhibit a different resistance to subsequent thermal treatments

  19. Stability analysis of transmission system with high penetration of distributed generation

    NARCIS (Netherlands)

    Reza, M.

    2006-01-01

    Nowadays, interest in generating electricity using decentralized generators of relatively small scale ('distributed generation', DG) is increasing. This work deals with the impact of implementing DG on the transmission system transient stability, with the emphasis on a potential transition from a

  20. Pit Distribution Design for Computer-Generated Waveguide Holography

    Science.gov (United States)

    Yagi, Shogo; Imai, Tadayuki; Ueno, Masahiro; Ohtani, Yoshimitsu; Endo, Masahiro; Kurokawa, Yoshiaki; Yoshikawa, Hiroshi; Watanabe, Toshifumi; Fukuda, Makoto

    2008-02-01

    Multilayered waveguide holography (MWH) is one of a number of page-oriented data multiplexing holographies that will be applied to optical data storage and three-dimensional (3D) moving images. While conventional volumetric holography using photopolymer or photorefractive materials requires page-by-page light exposure for recording, MWH media can be made by employing stamping and laminating technologies that are suitable for mass production. This makes devising an economical mastering technique for replicating holograms a key issue. In this paper, we discuss an approach to pit distribution design that enables us to replace expensive electron beam mastering with economical laser beam mastering. We propose an algorithm that avoids the overlapping of even comparatively large adjacent pits when we employ laser beam mastering. We also compensate for the angular dependence of the diffraction power, which strongly depends on pit shape, by introducing an enhancement profile so that a diffracted image has uniform intensity.

  1. Active local distribution network management for embedded generation

    Energy Technology Data Exchange (ETDEWEB)

    White, S.

    2005-07-01

    With the newer electric power transmission networks, there is a requirement for power to flow in two different directions and this calls for more intelligent forms of management. To satisfy these demands, GENEVAC has produced a controller that aims to increase the energy that power plants can feed to the distribution networks. The software and hardware have undergone trials at two 33/11 kV substations in England. The hardware was designed to monitor voltage, current and phase angle at various points in the network. The software estimates the value of the voltages at every node in the network. The results showed good correlation between estimated and measured voltages: other findings are reported. Recommendations for further work are made including development of a full commercial system. The study was conducted by Econnect Ltd under contract to the DTI.

  2. A new family of skewed slash distributions generated by the normal kernel

    Directory of Open Access Journals (Sweden)

    Bindu Punathumparambath

    2013-05-01

    Full Text Available The present paper is a generalization of the recent paper by Nadaraja and Kotz (2003 (Skewed distributions generated by the normal kernel, “Statistics & Probability Letters’’, 65, pp. 269-277. The new family of univariate skewed slash distributions generated by the normal kernel arises as the ratio of skewed distributions generated by the normal kernel and independent uniform power function distribution. The properties of the resulting distributions are studied. Normal, skew normal, slash (slash normal and skew slash distributions are special cases of this new family. The normal distribution belongs to this family, since when the skewness parameter is zero and tail parameter tends to infinity the skew slash distributions generated by normal kernel reduces to the normal distribution. The slash normal family is also belongs to this family when the skewness parameter is zero. These distributions provide us alternative choices in simulation study and in particular, in fitting skewed data sets with heavy tails. We believe that the new class will be useful for analyzing data sets having skewness and heavy tails. Heavy-tailed distributions are commonly found in complex multi-component systems like ecological systems, microarray, biometry, economics, sociology, internet traffic, finance, business etc. We are working on maximum likelihood estimation of the parameters using EM algorithm and to apply our models for analysing the genetic data sets.

  3. Identifying options for regulating the coordination of network investments with investments in distributed electricity generation

    International Nuclear Information System (INIS)

    Nisten, E.

    2010-02-01

    The increase in the distributed generation of electricity, with wind turbines and solar panels, necessitates investments in the distribution network. The current tariff regulation in the Dutch electricity industry, with its ex post evaluation of the efficiency of investments and the frontier shift in the x-factor, delays these investments. In the unbundled electricity industry, the investments in the network need to be coordinated with those in the distributed generation of electricity to enable the DSOs to build enough network capacity. The current Dutch regulations do not provide for a sufficient information exchange between the generators and the system operators to coordinate the investments. This paper analyses these two effects of the Dutch regulation, and suggests improvements to the regulation of the network connection and transportation tariffs to allow for sufficient network capacity and coordination between the investments in the network and in the generation of electricity. These improvements include locally differentiated tariffs that increase with an increasing concentration of distributed generators.

  4. Robust Power Supply Restoration for Self-Healing Active Distribution Networks Considering the Availability of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2018-01-01

    Full Text Available The increasing penetration of distributed generations (DGs with intermittent and stochastic characteristics into current power distribution networks can lead to increased fault levels and degradation in network protection. As one of the key requirements of active network management (ANM, efficient power supply restoration solution to guarantee network self-healing capability with full consideration of DG uncertainties is demanded. This paper presents a joint power supply restoration through combining the DG local restoration and switcher operation-based restoration to enhance the self-healing capability in active distribution networks considering the availability of distributed generation. The restoration algorithmic solution is designed to be able to carry out power restoration in parallel upon multiple simultaneous faults to maximize the load restoration while additionally minimizing power loss, topology variation and power flow changes due to switcher operations. The performance of the proposed solution is validated based on a 53-bus distribution network with wind power generators through extensive simulation experiments for a range of fault cases and DG scenarios generated based on Heuristic Moment Matching (HMM method to fully consider the DG randomness. The numerical result in comparison with the existing solutions demonstrates the effectiveness of the proposed power supply restoration solution.

  5. A new model for describing remission times: the generalized beta-generated Lindley distribution

    Directory of Open Access Journals (Sweden)

    MARIA DO CARMO S. LIMA

    Full Text Available New generators are required to define wider distributions for modeling real data in survival analysis. To that end we introduce the four-parameter generalized beta-generated Lindley distribution. It has explicit expressions for the ordinary and incomplete moments, mean deviations, generating and quantile functions. We propose a maximum likelihood procedure to estimate the model parameters, which is assessed through a Monte Carlo simulation study. We also derive an additional estimation scheme by means of least square between percentiles. The usefulness of the proposed distribution to describe remission times of cancer patients is illustrated by means of an application to real data.

  6. Coordinated Volt/Var Control in Distribution Systems with Distributed Generations Based on Joint Active and Reactive Powers Dispatch

    Directory of Open Access Journals (Sweden)

    Abouzar Samimi

    2016-01-01

    Full Text Available One of the most significant control schemes in optimal operation of distribution networks is Volt/Var control (VVC. Owing to the radial structure of distribution systems and distribution lines with a small X/R ratio, the active power scheduling affects the VVC issue. A Distribution System Operator (DSO procures its active and reactive power requirements from Distributed Generations (DGs along with the wholesale electricity market. This paper proposes a new operational scheduling method based on a joint day-ahead active/reactive power market at the distribution level. To this end, based on the capability curve, a generic reactive power cost model for DGs is developed. The joint active/reactive power dispatch model presented in this paper motivates DGs to actively participate not only in the energy markets, but also in the VVC scheme through a competitive market. The proposed method which will be performed in an offline manner aims to optimally determine (i the scheduled active and reactive power values of generation units; (ii reactive power values of switched capacitor banks; and (iii tap positions of transformers for the next day. The joint active/reactive power dispatch model for daily VVC is modeled in GAMS and solved with the DICOPT solver. Finally, the plausibility of the proposed scheduling framework is examined on a typical 22-bus distribution test network over a 24-h period.

  7. Location and Size Planning of Distributed Photovoltaic Generation in Distribution network System Based on K-means Clustering Analysis

    Science.gov (United States)

    Lu, Siqi; Wang, Xiaorong; Wu, Junyong

    2018-01-01

    The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.

  8. The Role of Distributed Generation and Combined Heat and Power (CHP) Systems in Data Centers

    Science.gov (United States)

    This report reviews how distributed generation (DG) resources such as fuel cells, reciprocating engines, and gas turbines can offer powerful energy efficiency savings in data centers, particularly when configured in combined heat and power (CHP) mode.

  9. Direct Current Smart Micro-grids for Distributed Generation with Renewable Sources

    Directory of Open Access Journals (Sweden)

    Renato RIZZO

    2013-06-01

    Full Text Available The wide diffusion of renewable energy sources encourage the distribution of electrical energy by the so called Distributed Generation, where large power plants are substituted by small-scale environmentally friendly technologies. Moreover micro-grids are considered which concept assumes a cluster of loads and micro-sources operating as a single controllable system that provides both power and heat to its local area. This influences the operation of distributed generation. This research paper deals with the distributed generation evolution, considering the technologies for generation from renewable sources, up to the smart micro-grids, i.e. in domestic applications where direct current micro-grids are considered and smart micro-grid concept is introduced.

  10. Grid voltage synchronization for distributed generation systems under grid fault conditions

    OpenAIRE

    Luna Alloza, Álvaro; Rocabert Delgado, Joan; Candela García, José Ignacio; Hermoso Costa, Juan Ramón; Teodorescu, Remus; Blaabjerg, Frede; Rodríguez Cortés, Pedro

    2015-01-01

    The actual grid code requirements for the grid connection of distributed generation systems, mainly wind and photovoltaic (PV) systems, are becoming very demanding. The transmission system operators (TSOs) are especially concerned about the low-voltage-ride-through requirements. Solutions based on the installation of STATCOMs and dynamic voltage regulators (DVRs), as well as on advanced control functionalities for the existing power converters of distributed generation plants, have contribute...

  11. Core Abilities Evaluation Index System Exploration and Empirical Study on Distributed PV-Generation Projects

    Directory of Open Access Journals (Sweden)

    Lin He

    2017-12-01

    Full Text Available In line with the constraints of environmental problems and economic development, large-scale renewable-generation projects have been planned and constructed in recent years. In order to achieve sustainable power development and improve the power supply structure, China’s government has focused on distributed photovoltaic (PV generation projects due to their advantages of clean emission and local consumption. However, their unstable output power still brings a series of problems concerning reliability, investment income, and available substitution proportion to traditional power, and so on. Therefore, it is imperative to understand the competitive development abilities of distributed PV generation projects and measure them effectively. First, through various investigation methods such as literature reviews, feasibility report analysis and expert interviews, the factors that influence the core abilities of distributed PV-generation projects were explored based on the micro-grid structure. Then, with the indexed exploration results, the factors were classified into 6 dimensions, i.e., investment and earning ability, production and operation ability, power-grid coordination ability, energy-conservation and emission-reduction ability, sustainable development ability, and society-serving ability. Meanwhile, an evaluation index system for core abilities of distributed PV-generation project was constructed using all quantitative indicators. Third, for examining the availability of the evaluation index system, combination weighting and techniques for order preference by similarity to an ideal solution (TOPSIS methods were adopted to assess the practical distributed PV-generation projects. The case study results showed that installed capacity, local economy development, and grid-connected power quantity will influence the core abilities of distributed PV-generation project, obviously. The conclusions of the evaluation analysis on core abilities can

  12. A Fuzzy-Multiagent Self-Healing Scheme for a Distribution System with Distributed Generations

    DEFF Research Database (Denmark)

    Elmitwally, Akram; Elsaid, Mohammed; Elgamal, Mohammed

    2015-01-01

    In this paper, a new multi-agent control system (MACS) is proposed for smart distribution networks. It can: 1) eliminate the feeders' congestion, 2) globally correct voltage violations, and 3) coordinate the operation of reactive power control devices. In performing its functions, the MACS must...... in the distribution system. The MACS overcomes the severe voltage violation problems via distribution network reconfiguration. It is applied to the IEEE 33-bus test feeder. A full dynamic model is constructed using a parallel MATLAB-JADE simulation arrangement. Comparative performance evaluations of the MACS...... prevent overstress on the substation voltage regulator tap changer under all operating conditions, and avoid selective active power curtailment from DG units. This can help to improve reliability, economic revenue, and power quality. A fuzzy rule-based system is employed for decision-making support...

  13. A Survey on Control of Electric Power Distributed Generation Systems for Microgrid Applications

    DEFF Research Database (Denmark)

    Bouzid, Allal; Guerrero, Josep M.; Cheriti, Ahmed

    2015-01-01

    The introduction of microgrids in distribution networks based on power electronics facilitates the use of renewable energy resources, distributed generation (DG) and storage systems while improving the quality of electric power and reducing losses thus increasing the performance and reliability o...

  14. Modeling the video distribution link in the Next Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Amaya, F.; Cárdenas, A.; Tafur Monroy, Idelfonso

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we...

  15. Historical and Current U.S. Strategies for Boosting Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  16. The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species

    Science.gov (United States)

    Keith B. Aubry; Catherine M. Raley; Kevin S. McKelvey

    2017-01-01

    The availability of spatially referenced environmental data and species occurrence records in online databases enable practitioners to easily generate species distribution models (SDMs) for a broad array of taxa. Such databases often include occurrence records of unknown reliability, yet little information is available on the influence of data quality on SDMs generated...

  17. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Science.gov (United States)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  18. A method for generating permutation distribution of ranks in a k ...

    African Journals Online (AJOL)

    ... in a combinatorial sense the distribution of the ranks is obtained via its generating function. The formulas are defined recursively to speed up computations using the computer algebra system Mathematica. Key words: Partitions, generating functions, combinatorics, permutation test, exact tests, computer algebra, k-sample, ...

  19. Fault Tolerant and Optimal Control of Wind Turbines with Distributed High-Speed Generators

    Directory of Open Access Journals (Sweden)

    Urs Giger

    2017-01-01

    Full Text Available In this paper, the control scheme of a distributed high-speed generator system with a total amount of 12 generators and nominal generator speed of 7000 min − 1 is studied. Specifically, a fault tolerant control (FTC scheme is proposed to keep the turbine in operation in the presence of up to four simultaneous generator faults. The proposed controller structure consists of two layers: The upper layer is the baseline controller, which is separated into a partial load region with the generator torque as an actuating signal and the full-load operation region with the collective pitch angle as the other actuating signal. In addition, the lower layer is responsible for the fault diagnosis and FTC characteristics of the distributed generator drive train. The fault reconstruction and fault tolerant control strategy are tested in simulations with several actuator faults of different types.

  20. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  1. Technology survey of electrical power generation and distribution for MIUS application

    Science.gov (United States)

    Gill, W. L.; Redding, T. E.

    1975-01-01

    Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.

  2. Determination of optimum allocation and pricing of distributed generation using genetic algorithm methodology

    Science.gov (United States)

    Mwakabuta, Ndaga Stanslaus

    Electric power distribution systems play a significant role in providing continuous and "quality" electrical energy to different classes of customers. In the context of the present restrictions on transmission system expansions and the new paradigm of "open and shared" infrastructure, new approaches to distribution system analyses, economic and operational decision-making need investigation. This dissertation includes three layers of distribution system investigations. In the basic level, improved linear models are shown to offer significant advantages over previous models for advanced analysis. In the intermediate level, the improved model is applied to solve the traditional problem of operating cost minimization using capacitors and voltage regulators. In the advanced level, an artificial intelligence technique is applied to minimize cost under Distributed Generation injection from private vendors. Soft computing techniques are finding increasing applications in solving optimization problems in large and complex practical systems. The dissertation focuses on Genetic Algorithm for investigating the economic aspects of distributed generation penetration without compromising the operational security of the distribution system. The work presents a methodology for determining the optimal pricing of distributed generation that would help utilities make a decision on how to operate their system economically. This would enable modular and flexible investments that have real benefits to the electric distribution system. Improved reliability for both customers and the distribution system in general, reduced environmental impacts, increased efficiency of energy use, and reduced costs of energy services are some advantages.

  3. The microturbines and the distributed generation; As microturbinas e a geracao distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Felipe Samuel de; Ruppert Filho, Ernesto [Universidade Estadual de Campinas (UNICAMP). Campinas, SP (Brazil). Fac. de Engenharia Eletrica e de Computacao

    2004-07-01

    The deregulation of the electrical power system, the new emerging generation technologies and the difficulty of getting the high investments required by the power system changed the way to produce and transmit electricity worldwide. The centralized generation, with big power plants and long transmission lines will share the power electricity market with smaller generation units, placed near the customer. It's the Distributed Generation, which comprises a significant number of new generation technologies: micro turbines, fuel cells, photovoltaic systems, combustion engines, wind generation, etc. In Brazil, the micro turbine is one of the favorites technologies to do this kind of generation due to its many benefits and the interest of the Brazilian government in using the great quantity of natural gas available in the country for power generation. (author)

  4. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    Science.gov (United States)

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  5. Problem of uniqueness in the renewal process generated by the uniform distribution

    Directory of Open Access Journals (Sweden)

    D. Ugrin-Šparac

    1992-01-01

    Full Text Available The renewal process generated by the uniform distribution, when interpreted as a transformation of the uniform distribution into a discrete distribution, gives rise to the question of uniqueness of the inverse image. The paper deals with a particular problem from the described domain, that arose in the construction of a complex stochastic test intended to evaluate pseudo-random number generators. The connection of the treated problem with the question of a unique integral representation of Gamma-function is also mentioned.

  6. Reliability study: steam generation and distribution system, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Baker, F.E.; Davis, E.L.; Dent, J.T.; Walters, D.E.; West, R.M.

    1982-10-01

    A reliability study for determining the ability of the Steam Generation and Distribution System to provide reliable and adequate service through the year 2000 has been completed. This study includes an evaluation of the X-600 Steam Plant and the steam distribution system. The Steam Generation and Distribution System is in good overall condition, but to maintain this condition, the reliability study team made twelve recommendations. Eight of the recommendations are for repair or replacement of existing equipment and have a total estimated cost of $540,000. The other four recommendations are for additional testing, new procedure implementation, or continued investigations

  7. Research on determine the absolute neutron output of distributed pulse generators

    International Nuclear Information System (INIS)

    Li Bojun; Tang Zhangkui; Wang Dong; Yang Gaozhao; Peng Taiping

    2009-01-01

    In order to determine the absolute neutron output of distributed pulse generators, we deduced equivalent length to deal with experimental data, according to the different layout and weighting of multiple pulse generators. The deposited energy in scintillation crystal and the integral flux which drilling through crystal interface was simulated by MCNP code. The result shows the simulated proportion of different distributed pulse generators is approximately agreed with experimental data. The validity of the equivalent length model was proved by the consistent results between calculation and experimental data. (authors)

  8. A Review of Distributed Generation for Rural and Remote Area Electrification

    OpenAIRE

    John Foster; Liam Wagner; Liam Byrnes

    2014-01-01

    Distributed Generation (DG), which is electricity generation located close to the load/demand. While the definition of DG is far from “settled” [1], for the purpose of this project, DG will refer to electricity generation that is produced and consumed within the catchment area of the local Distribution Network Service Provider (DSNP). Many in the energy economics and policy literature also use the term “embedded generation”, which tends to reflect DG that has been incorporated into a larger e...

  9. Adaptive protection coordination scheme for distribution network with distributed generation using ABC

    Directory of Open Access Journals (Sweden)

    A.M. Ibrahim

    2016-09-01

    Full Text Available This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC. The scheme adapts to system changes; new relays settings are obtained as generation-level or system-topology changes. The developed adaptive scheme is applied on the IEEE 30-bus test system for both single- and multi-DG existence where results are shown and discussed.

  10. Distributed generation and demand response dispatch for a virtual power player energy and reserve provision

    DEFF Research Database (Denmark)

    Faria, Pedro; Soares, Tiago; Vale, Zita

    2014-01-01

    Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets’ environment, with deep concerns at the efficiency level. In this context, grid operators, market...... operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper...... proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources’ participation can be performed in both energy and reserve contexts. This methodology contemplates...

  11. A Multiagent System-Based Protection and Control Scheme for Distribution System With Distributed-Generation Integration

    DEFF Research Database (Denmark)

    Liu, Z.; Su, Chi; Hoidalen, Hans

    2017-01-01

    In this paper, a multi agent system (MAS) based protection and control scheme is proposed to deal with diverse operation conditions in distribution system due to distributed generation (DG) integration. Based on cooperation between DG controller and relays, an adaptive protection and control...... algorithm is designed on converter based wind turbine DG to limit the influence of infeed fault current. With the consideration of DG control modes, an adaptive relay setting strategy is developed to help protective relays adapt suitable settings to different operation conditions caused by the variations...

  12. A Multiagent-based Consensus Algorithm for Distributed Coordinated Control of Distributed Generators in the Energy Internet

    DEFF Research Database (Denmark)

    Sun, Qiuye; Han, Renke; Zhang, Huaguang

    2015-01-01

    With the bidirectional power flow provided by the Energy Internet, various methods are promoted to improve and increase the energy utilization between Energy Internet and Main-Grid. This paper proposes a novel distributed coordinated controller combined with a multi-agent-based consensus algorithm...... which is applied to distributed generators in the Energy Internet. Then, the decomposed tasks, models, and information flow of the proposed method are analyzed. The proposed coordinated controller installed between the Energy Internet and the Main-Grid keeps voltage angles and amplitudes consensus while...... controller in an Energy Internet....

  13. The PWM strategies of grid-connected distributed generation active NPC inverters

    DEFF Research Database (Denmark)

    Ma, Lin; Xinmin, Jin; Kerekes, Tamas

    2009-01-01

    The Neutral Point Clamped topology due to high efficiency, low leakage current and EMI, its integration is widely used in the distributed generation (DG) systems. However the main disadvantage of the NPC inverter is given by an unequal distribution of the losses in the semiconductor devices, which...... leads to an unequal distribution of temperature. By using the Active NPC topology, the power losses distribution problem is alleviated. The modulation strategy is a key issue for losses distribution in this topology. In this paper two known strategies are discussed and a new proposed PWM strategy......, namely the Adjustable Losses Distribution (ALD) PWM strategy is proposed for better losses distribution in the Active NPC (ANPC) topology. Simulations using Simulink and the PLECS toolbox have been done for evaluating efficiency of different NPC topologies and some experimental results are presented...

  14. On the generation of log-Levy distributions and extreme randomness

    International Nuclear Information System (INIS)

    Eliazar, Iddo; Klafter, Joseph

    2011-01-01

    The log-normal distribution is prevalent across the sciences, as it emerges from the combination of multiplicative processes and the central limit theorem (CLT). The CLT, beyond yielding the normal distribution, also yields the class of Levy distributions. The log-Levy distributions are the Levy counterparts of the log-normal distribution, they appear in the context of ultraslow diffusion processes, and they are categorized by Mandelbrot as belonging to the class of extreme randomness. In this paper, we present a natural stochastic growth model from which both the log-normal distribution and the log-Levy distributions emerge universally-the former in the case of deterministic underlying setting, and the latter in the case of stochastic underlying setting. In particular, we establish a stochastic growth model which universally generates Mandelbrot's extreme randomness. (paper)

  15. Increasing penetration of renewable and distributed electricity generation and the need for different network regulation

    International Nuclear Information System (INIS)

    Joode, J. de; Jansen, J.C.; Welle, A.J. van der; Scheepers, M.J.J.

    2009-01-01

    The amount of decentralised electricity generation (DG) connected to distribution networks increases across EU member states. This increasing penetration of DG units poses potential costs and benefits for distribution system operators (DSOs). These DSOs are regulated since the business of electricity distribution is considered to be a natural monopoly. This paper identifies the impact of increasing DG penetration on the DSO business under varying parameters (network characteristics, DG technologies, network management type) and argues that current distribution network regulation needs to be improved in order for DSOs to continue to facilitate the integration of DG in the network. Several possible adaptations are analysed.

  16. Characterization of the loss allocation techniques for radial systems with distributed generation

    International Nuclear Information System (INIS)

    Carpaneto, Enrico; Chicco, Gianfranco; Sumaili Akilimali, Jean

    2008-01-01

    In the restructured electricity industry, meaningful loss allocation methods are required in order to send correct signals to the market taking into account the location and characteristics of loads and generations, including the local sources forming the distributed generation (DG). This paper addresses the issues related to loss allocation in radial distribution systems with DG, with a three-fold focus. First, the key differences in the formulation of the loss allocation problem for radial distribution systems with respect to transmission systems are discussed, specifying the modeling and computational issues concerning the treatment of the slack node in radial distribution systems. Then, the characteristics of derivative-based and circuit-based loss allocation techniques are presented and compared, illustrating the arrangements used for adapting the various techniques to be applied to radial distribution systems with DG. Finally, the effects of introducing voltage-controllable local generation on the calculation of the loss allocation coefficients are discussed, proposing the adoption of a ''reduced'' representation of the system capable of taking into proper account the characteristics of the nodes containing voltage-controllable DG units. Numerical results are provided to show the time evolution of the loss allocation coefficients for distribution systems with variable load and local generation patterns. (author)

  17. Battery Storage Systems as Grid-Balancing Measure in Low-Voltage Distribution Grids with Distributed Generation

    Directory of Open Access Journals (Sweden)

    Bernhard Faessler

    2017-12-01

    Full Text Available Due to the promoted integration of renewable sources, a further growth of strongly transient, distributed generation is expected. Thus, the existing electrical grid may reach its physical limits. To counteract this, and to fully exploit the viable potential of renewables, grid-balancing measures are crucial. In this work, battery storage systems are embedded in a grid simulation to evaluate their potential for grid balancing. The overall setup is based on a real, low-voltage distribution grid topology, real smart meter household load profiles, and real photovoltaics load data. An autonomous optimization routine, driven by a one-way communicated incentive, determines the prospective battery operation mode. Different battery positions and incentives are compared to evaluate their impact. The configurations incorporate a baseline simulation without storage, a single, central battery storage or multiple, distributed battery storages which together have the same power and capacity. The incentives address either market conditions, grid balancing, optimal photovoltaic utilization, load shifting, or self-consumption. Simulations show that grid-balancing incentives result in lowest peak-to-average power ratios, while maintaining negligible voltage changes in comparison to a reference case. Incentives reflecting market conditions for electricity generation, such as real-time pricing, negatively influence the power quality, especially with respect to the peak-to-average power ratio. A central, feed-in-tied storage performs better in terms of minimizing the voltage drop/rise and shows lower distribution losses, while distributed storages attached at nodes with electricity generation by photovoltaics achieve lower peak-to-average power ratios.

  18. Transverse momentum dependent (TMD) parton distribution functions generated in the modified DGLAP formalism based on the valence-like distributions

    Science.gov (United States)

    Hosseinkhani, H.; Modarres, M.; Olanj, N.

    2017-07-01

    Transverse momentum dependent (TMD) parton distributions, also referred to as unintegrated parton distribution functions (UPDFs), are produced via the Kimber-Martin-Ryskin (KMR) prescription. The GJR08 set of parton distribution functions (PDFs) which are based on the valence-like distributions is used, at the leading order (LO) and the next-to-leading order (NLO) approximations, as inputs of the KMR formalism. The general and the relative behaviors of the generated TMD PDFs at LO and NLO and their ratios in a wide range of the transverse momentum values, i.e. kt2 = 10, 102, 104 and 108GeV2 are investigated. It is shown that the properties of the parent valence-like PDFs are imprinted on the daughter TMD PDFs. Imposing the angular ordering constraint (AOC) leads to the dynamical variable limits on the integrals which in turn increase the contributions from the lower scales at lower kt2. The results are compared with our previous studies based on the MSTW2008 input PDFs and it is shown that the present calculation gives flatter TMD PDFs. Finally, a comparison of longitudinal structure function (FL) is made by using the produced TMD PDFs and those that were generated through the MSTW2008-LO PDF from our previous work and the corresponding data from H1 and ZEUS collaborations and a reasonable agreement is found.

  19. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...... of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter...

  20. Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wise, A. L.

    2008-05-01

    The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

  1. Large-scale integration of renewable and distributed generation of electricity in Spain: Current situation and future needs

    International Nuclear Information System (INIS)

    Cossent, Rafael; Gómez, Tomás; Olmos, Luis

    2011-01-01

    Similar to other European countries, mechanisms for the promotion of electricity generation from renewable energy sources (RESs) and combined heat and power (CHP) production have caused a significant growth in distributed generation (DG) in Spain. Low DG/RES penetration levels do not have a major impact on electricity systems. However, several problems arise as DG shares increase. Smarter distribution grids are deemed necessary to facilitate DG/RES integration. This involves modifying the way distribution networks are currently planned and operated. Furthermore, DG and demand should also adopt a more active role. This paper reviews the current situation of DG/RES in Spain including penetration rates, support payments for DG/RES, level of market integration, economic regulation of Distribution System Operators (DSOs), smart metering implementation, grid operation and planning, and incentives for DSO innovation. This paper identifies several improvements that could be made to the treatment of DG/RES. Key aspects of an efficient DG/RES integration are identified and several regulatory changes specific to the Spanish situation are recommended. - Highlights: ► Substantial DG/RES penetration levels are foreseen for the coming years in Spain. ► Integrating such amount of DG/RES in electricity markets and networks is challenging. ► We review key regulatory aspects that may affect DG/RES integration in Spain. ► Several recommendations aimed at easing DG/RES integration in Spain are provided. ► Market integration and the transition towards smarter grids are deemed key issues.

  2. Regulatory review and barriers for the electricity supply system for distributed generation in EU-15

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Skytte, Klaus

    2005-01-01

    When distributed electricity supply surpasses a particular level, it can no longer be ignored in planning and operation of the electricity networks. Therefore, improvements of the regulatory framework of the electricity networks are required along with the growth of the electricity supply from di...... distributed generation. This paper reviews the current regulation of the grids with respect to distributed generation in EU-15 Member States and compares the different systems. Several barriers are identified.......When distributed electricity supply surpasses a particular level, it can no longer be ignored in planning and operation of the electricity networks. Therefore, improvements of the regulatory framework of the electricity networks are required along with the growth of the electricity supply from...

  3. Agent Services for Situation Aware Control of Power Systems With Distributed Generation

    DEFF Research Database (Denmark)

    Saleem, Arshad; Heussen, Kai; Lind, Morten

    2009-01-01

    Electric Power system of Denmark exhibits some unique characteristics. An increasing part of the electricity is produced by distributed generators (DGs). Most of these DGs are connected to the network at the distribution level. At the same time the concept of vehicle to grid (V2G) is already...... in the process of realization. This situation has created an incentive in electric power industry to utilize modern information and communication technologies (ICT) for improving the distribution system automation. This paper describes our work on how significantly increased amount of distributed generation...... could be exploited for the robust control of electric power systems. In particular, we present our work on the implementation of a dynamic service oriented system, in which autonomous agents represent different components of low voltage grid. These agents could offer and utilize electric power control...

  4. Multi Agent System Based Adaptive Protection for Dispersed Generation Integrated Distribution Systems

    DEFF Research Database (Denmark)

    Liu, Leo; Rather, Zakir Hussain; Bak, Claus Leth

    2013-01-01

    of allowing islanded operation of distribution systems necessitates the adoption of adaptive protection methods for distribution systems. In order to improve the reliability and selectivity of protection for such kind of distribution systems, a coordinative adaptive protection based on multi agent system (MAS......The increasing penetration of dispersed generation (DG) brings challenges to conventional protection approaches of distribution system, mainly due to bi-directional power flow and variable fault current contribution from different generation technology-based DG units. Moreover, the trend......) is proposed. The adaptive protection intelligently adopts suitable settings for the variation of fault current from diversified DG units. Furthermore, the structure of mobile MAS with additional flexibility is capable of adapting the changes of system topology in a short period, e.g. radial/meshed, grid...

  5. Future Impacts of Distributed Power Generation on Ambient Ozone and Particulate Matter Concentrations in the San Joaquin Valley of California.

    Science.gov (United States)

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].

  6. Wind-generator influence to the power quality in the coupling point to the distribution network

    Directory of Open Access Journals (Sweden)

    Kostić Branka B.

    2011-01-01

    Full Text Available The paper presents the results of analysis of wind-generator and their influence to the power quality parameters in the coupling point to the distribution network. The specified results should be used as a starting point for distribution system operators (DSO for issuing permit for connecting renewable sources, mainly for wind-generators. As the case study, the results of measurements at the only one wind generator installed in Serbia, near town of Tutin, are used. The cases of wind-generator start and stop during low wind and consequently smaller value of the energy delivered to the network are particularly analyzed. Taking into consideration that law regulations in this field are not yet defined, EU standards and guidelines are used along with the newly adopted Technical recommendation No. 16 of Public Enterprise Electric Power Industry of Serbia.

  7. Industrial Use of Distributed Generation in Real-Time Energy and Ancillary Service Markets

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.

    2001-10-24

    Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sections in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects.

  8. Visual Inspection of the Flow Distribution Plate Bolts of a Nuclear Steam Generator

    International Nuclear Information System (INIS)

    Jeong, Woo Tae; Kim, Suk Tae; Sohn, Wook; Kang, Duk Won; Kang, Seok Chul

    2007-01-01

    To develop a system for visually inspecting the flow distribution plate (FDP) bolts of a nuclear steam generator, we reviewed several types of similar inspection equipment. The equipment which are currently available are mostly for inspecting lower part of a steam generator such as tube sheets and annulus except ELVS (Eggcrate Visual Inspection System). However, the design concept of ELVS could not be used for developing a device which enables the visual inspection of flow distribution plate bolts. Therefore, based on the current state of the art technology on the similar equipment, we conceptually designed a new inspection system for checking the FDP bolts

  9. Options for electric power generation and distribution in developing countries: proceedings of the GTDC symposium'95

    International Nuclear Information System (INIS)

    1995-01-01

    This book contains the proceedings of the symposium on options for electric power generation and distribution in developing countries organised by Global Technology Development Centre (GTDC), Vienna in cooperation with Agency for Non-Conventional Energy and Rural Technology (ANERT), Thiruvananthapuram. The focus of the symposium was on problems of electricity generation and distribution mainly in the developing countries of the world and the issues addressed included : 1) an overview of existing electric power services; 2) options on fuel and technology; 3) options on operation of electricity utilities; 4) options on financing investments and planning of capacity extension or replacement. Papers relevant to INIS are indexed separately

  10. An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution

    Science.gov (United States)

    Campbell, C. W.

    1983-01-01

    An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.

  11. Constant Power Generation of Photovoltaic Systems Considering the Distributed Grid Capacity

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Wang, Huai

    2014-01-01

    With an imperative demand of clean and reliable electricity generation in some countries, the increasing adoption of new photovoltaic (PV) systems pushes the Distribution System Operators (DSOs) to expand the transmission/distributed lines. However, the potential cost brought by such extensions...... contribute to a weakened requirement of grid expansion and at the same time an increased penetration level. Therefore, to meet the need of this emerging ancillary service provided by future PV systems, a Constant Power Generation (CPG) control concept of PV inverters is proposed in this paper. Accordingly...

  12. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation

    International Nuclear Information System (INIS)

    Jones, Christopher; Gilbert, Paul; Raugei, Marco; Mander, Sarah; Leccisi, Enrica

    2017-01-01

    Increasing distributed renewable electricity generation is one of a number of technology pathways available to policy makers to meet environmental and other sustainability goals. Determining the efficacy of such a pathway for a national electricity system implies evaluating whole system change in future scenarios. Life cycle assessment (LCA) and net energy analysis (NEA) are two methodologies suitable for prospective and consequential analysis of energy performance and associated impacts. This paper discusses the benefits and limitations of prospective and consequential LCA and NEA analysis of distributed generation. It concludes that a combined LCA and NEA approach is a valuable tool for decision makers if a number of recommendations are addressed. Static and dynamic temporal allocation are both needed for a fair comparison of distributed renewables with thermal power stations to account for their different impact profiles over time. The trade-offs between comprehensiveness and uncertainty in consequential analysis should be acknowledged, with system boundary expansion and system simulation models limited to those clearly justified by the research goal. The results of this approach are explorative, rather than for accounting purposes; this interpretive remit, and the assumptions in scenarios and system models on which results are contingent, must be clear to end users. - Highlights: • A common LCA and NEA framework for prospective, consequential analysis is discussed. • Approach to combined LCA and NEA of distributed generation scenarios is proposed. • Static and dynamic temporal allocation needed to assess distributed generation uptake.

  13. Historical and Current U.S. Strategies for Boosting Distributed Generation (Chinese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-08-01

    This is the Chinese translation of NREL/TP-6A20-64843. This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  14. Distributed Generation Planning using Peer Enhanced Multi-objective Teaching-Learning based Optimization in Distribution Networks

    Science.gov (United States)

    Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth

    2017-04-01

    In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.

  15. Core Abilities Evaluation Index System Exploration and Empirical Study on Distributed PV-Generation Projects

    OpenAIRE

    Lin He; Chang-Ling Li; Qing-Yun Nie; Yan Men; Hai Shao; Jiang Zhu

    2017-01-01

    In line with the constraints of environmental problems and economic development, large-scale renewable-generation projects have been planned and constructed in recent years. In order to achieve sustainable power development and improve the power supply structure, China’s government has focused on distributed photovoltaic (PV) generation projects due to their advantages of clean emission and local consumption. However, their unstable output power still brings a series of problems concerning re...

  16. Device for the generation of homogeneous dose distributions in irradiated materials

    International Nuclear Information System (INIS)

    Leonhardt, J.; Schulze, H.; Boes, J.; Decker, U.; Schmidt, J.

    1985-01-01

    The invention has been directed at a device for the generation of homogeneous dose distributions in materials irradiated by charged particles. This device can be applied to the initiation of radiation-chemical reactions in solids, of cross-linking and vulcanizing reactors, of crystal defect annealings, etc. A movable absorber (e.g. a wedge or a solid of revolution) which periodically changes the energy of particles striking the specimen has been installed in the beam hole of the beam generating system

  17. Synchronization of Droop-Controlled Microgrids with Distributed Rotational and Electronic Generation

    OpenAIRE

    Schiffer, JF; Goldin, D; Raisch, J; Sezi, T

    2013-01-01

    We consider the problem of frequency synchronization and power sharing in a lossy droop-controlled autonomous microgrid with distributed rotational and electronic generation (MDREG). At first, we establish equivalence of the dynamics of a regulated synchronous generator and a droop-controlled inverter with low pass filter. We then give a necessary and sufficient condition for local synchronization of the microgrid by using ideas from graph theory and second order consensus algorithms. In addi...

  18. Impacts of dispersing storage and generation in electric distribution systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ma, F. S.; Isaksen, L.; Patton, R.

    1979-07-01

    Small-scale Dispersed Storage and Generation (DSG) connected to the electric-distribution systems provide one alternative to large-scale additions to utility supply and delivery systems. In addition to being generating sources, DSG may also provide benefits to the distribution system by reducing capacity requirements, improving reliability, and lowering losses. This study offers a consistent, unifying methodology for evaluating the dispersion effect of DSG in distribution systems. The evaluation method and models developed compare the distribution systems expanded with and without DSG, using a consistent set of planning and operating criteria. The effects of DSG outages probabilities, diseconomies of scale, and loss savings are explicitly treated. The method also takes into account the effect on the bulk-supply system when DSG is planned and operated for distribution-system needs. To obtain the overall DSG impact on a utility system, the results derived from this methodology can readily be combined with the impact of the technologies assessed from a bulk-supply perspective undertaken in other studies. This assessment methodology would be suitable for use by most utilities since it is based on extant utility planning procedures and data bases, and practical assessment calculating. Application of this methodology for two utilities showed that the distribution capacity and reliability benefits are highly site-dependent, and that potentially higher production cost and DSG capital cost may be incurred. The study points to the importance of caution and comprehensive assessment before implementing DSG in the distribution system on a large scale.

  19. Liberalisation of the electricity sector and development of distributed generation: Germany, United Kingdom and France

    International Nuclear Information System (INIS)

    Menanteau, Ph.

    2003-01-01

    Historically, electricity systems have been made up of small local networks gradually becoming incorporated to benefit from the diversity of demand and the economies of scale in electricity generation that are possible with large interconnected systems. Today, this logic would seem to have certain limits, now that the benefits related to the size of production units appear to have been exhausted and in view of the growing difficulties in developing new transmission infrastructures. At the same time, there have been considerable improvements in the technical and economic performance of modular generating techniques, which are now enjoying significant development under the effect of electricity sector liberalization and policies to reduce greenhouse gas emissions. The aim of the present paper is to analyse the effect of electricity sector liberalization on the development of distributed generation, and more specifically to examine the conditions in which these new electricity generating technologies can be diffused in a liberalized framework. The paper looks first at how competition has affected the electricity market. This analysis is followed by an examination of the problems of integrating distributed generation into electricity systems. In the third part of the paper, three brief case studies highlight the principal differences between Germany, the United Kingdom and France in the field of distributed generation. This brief analysis reveals that the institutional framework in which distributed generation must operate and the price signals given to electricity sector actors play as big a part as traditional incentives, certificates, bidding systems or guaranteed feed-in tariffs in driving the deployment process. (author)

  20. Establishment of a Standard Analytical Model of Distribution Network with Distributed Generators and Development of Multi Evaluation Method for Network Configuration Candidates

    Science.gov (United States)

    Hayashi, Yasuhiro; Kawasaki, Shoji; Matsuki, Junya; Matsuda, Hiroaki; Sakai, Shigekazu; Miyazaki, Teru; Kobayashi, Naoki

    Since a distribution network has many sectionalizing switches, there are huge radial network configuration candidates by states (opened or closed) of sectionalizing switches. Recently, the total number of distributed generation such as photovoltaic generation system and wind turbine generation system connected to the distribution network is drastically increased. The distribution network with the distributed generators must be operated keeping reliability of power supply and power quality. Therefore, the many configurations of the distribution network with the distributed generators must be evaluated multiply from various viewpoints such as distribution loss, total harmonic distortion, voltage imbalance and so on. In this paper, the authors propose a multi evaluation method to evaluate the distribution network configuration candidates satisfied with constraints of voltage and line current limit from three viewpoints ((1) distribution loss, (2) total harmonic distortion and (3) voltage imbalance). After establishing a standard analytical model of three sectionalized and three connected distribution network configuration with distributed generators based on the practical data, the multi evaluation for the established model is carried out by using the proposed method based on EMTP (Electro-Magnetic Transients Programs).

  1. Scenario analysis to account for photovoltaic generation uncertainty in distribution grid reconfiguration

    DEFF Research Database (Denmark)

    Chittur Ramaswamy, Parvathy; Deconinck, Geert; Pillai, Jayakrishnan Radhakrishna

    2013-01-01

    This paper considers hourly reconfiguration of a low voltage distribution network with the objectives of minimizing power loss and voltage deviation. The uncertainty in photovoltaic (PV) generation which in turn will affect the optimum configuration is tackled with the help of scenario analysis. ......-dominated solutions, demonstrating their trade-offs. Finally, the best compromise solution can be selected depending on the decision maker's requirement....

  2. A control architecture to coordinate distributed generators and active power filters coexisting in a microgrid

    DEFF Research Database (Denmark)

    Hashempour, Mohammad M.; Savaghebi, Mehdi; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper proposes a control architecture of distributed generators (DGs) inverters and shunt active power filters (APFs) in microgrids to compensate voltage harmonics in a coordinated way. For this, a hierarchical control structure is proposed that includes two control levels. The primary (local...

  3. Storage Operation for Peak Shaving of Distributed PV and Wind Generation

    NARCIS (Netherlands)

    Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2013-01-01

    The integration of fluctuating power generation based on renewable energy systems (RES-E) in distribution grids require grid reinforcement resulting from high feed-in peaks. Introducing storage assets can decrease these peaks. For this, storage technologies need to be chosen and dimensioned

  4. Online Detection and Estimation of Grid Impedance Variation for Distributed Power Generation

    DEFF Research Database (Denmark)

    Jebali-Ben Ghorbal, Manel; Ghzaiel, Walid; Slama-Belkhodja, Ilhem

    2012-01-01

    A better knowledge of the grid impedance is essential in order to improve power quality and control of the Distributed Power Generation Systems (DPGS) and also for a safe connection or reconnection to the utility grid. An LCL-filter associated to a Voltage Source Inverter (VSI) is usually used...

  5. Grid Voltage Synchronization for Distributed Generation Systems under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Luna, Alvaro; Rocabert, J.; Candela, I.

    2015-01-01

    The actual grid code requirements for the grid connection of distributed generation systems, mainly wind and PV systems, are becoming very demanding. The Transmission System Operators (TSOs) are especially concerned about the Low Voltage Ride Through requirements. Solutions based on the installat...

  6. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.

    2012-01-01

    The Transmission System Operators are specially concerned about the Low Voltage Ride Through requirements of distributed generation power plants. Solutions based on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters have contrib...

  7. Voltage Control Support and Coordination between Renewable Generation Plants in MV Distribution Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Hansen, Anca Daniela

    2016-01-01

    This paper focusses on voltage control support and coordination between renewable generation plants in medium voltage distribution systems. An exemplary benchmark grid in Denmark, including a number of flexible ReGen plants providing voltage control functionality, is used as a base case. First...

  8. Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids

    Directory of Open Access Journals (Sweden)

    Raji Atia

    2016-03-01

    Full Text Available This paper considers the contribution of independent owners (IOs operating within microgrids (MGs toward green power generation in deregulated energy markets. An optimization scheme is introduced for sizing distributed renewable generation (DRG and a distributed energy storage system (DESS based on a novel energy management system (EMS that accounts for demand response (DR, DESS dispatch and performance degradation, dynamic pricing environments, power distribution loss and irregular renewable generation. The proposed EMS utilizes an iterative Newton-Raphson linear programming algorithm that schedules resources in order to minimize the objective function, to deal with the complicated nonlinear nature of the problem and to enable efficient long-term assessments. The EMS is used to evaluate candidate solutions that are generated by a genetic algorithm (GA to determine the optimal combination of DRG and DESS. A case study for IEEE 34-bus distribution MG in Okinawa, Japan, is used for testing the algorithm and analyzing the potential for IO/MG investments and their strategies.

  9. Photonic Generation of Microwave Signals Using Dual-Wavelength Distributed-Feedback Waveguide Lasers

    NARCIS (Netherlands)

    Bernhardi, Edward; Khan, M.R.H.; Roeloffzen, C.G.H.; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    2012-01-01

    The fabrication and characterization of dual-wavelength distributed-feedback channel waveguide lasers in Al2O3:Yb3+ are described. These integrated lasers are used to generate narrowband microwave signals, with frequencies ranging between 12.43 GHz and 23.2 GHz, via the heterodyne photodetection of

  10. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  11. Hybrid mini-grid systems - distributed generation systems for communities based on renewable energy resources

    CSIR Research Space (South Africa)

    Szewczuk, S

    2009-06-01

    Full Text Available energy/economic framework and describes the CSIR's role in the formulation of South Africa's first hybrid mini-grids and the lessons learnt. The hybrid mini-grid systems can also be classified as distributed generation systems....

  12. A flexible low-voltage ride-through operation for the distributed generation converters

    DEFF Research Database (Denmark)

    Chen, Hsin-Chih; Lee, Chia-Tse; Cheng, Po-Tai

    2013-01-01

    With more and more distributed energy resources (DERs) are installed in the utility grid, the utility requires the DER generation system to remain grid-connected and injects reactive and active power to support grid voltage during voltage sags. In this paper, a positive- and negative-sequence cur...

  13. Y-Source Boost DC/DC Converter for Distributed Generation

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper introduces a versatile Y-source boost dc/dc converter intended for distributed power generation, where high gain is often demanded. The proposed converter uses a Y-source impedance network realized with a tightly coupled three-winding inductor for high voltage boosting that is presently...

  14. Innovation as a distributed, collaborative process of knowledge generation: open, networked innovation

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    Sloep, P. B. (2009). Innovation as a distributed, collaborative process of knowledge generation: open, networked innovation. In V. Hornung-Prähauser & M. Luckmann (Eds.), Kreativität und Innovationskompetenz im digitalen Netz - Creativity and Innovation Competencies in the Web, Sammlung von

  15. Redesign Electricity Market for the Next Generation Power System of Renewable Energy and Distributed Storage Technologies

    DEFF Research Database (Denmark)

    Feng, Donghan; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    This paper proposes a stochastic time-series based method to simulate the volatility of intermittent renewable generation and distributed storage devices along timeline. The proposed method can calculate the optimal timeline for different electricity markets and power systems. In practice...

  16. Distributed state-space generation of discrete-state stochastic models

    Science.gov (United States)

    Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David

    1995-01-01

    High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.

  17. Eddy current density asymmetric distribution of damper bars in bulb tubular turbine generator

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-09-01

    Full Text Available The major reasons that cause the damage of damper bars in the leeward side are found in this paper. It provides a route for the structure optimization design of a hydro generator. Firstly, capacity of a 24 MW bulb tubular turbine generator is taken as an example in this paper. The transient electromagnetic field model is established, and the correctness of the model is verified by the comparison of experimental results and simulation data. Secondly, when the generator is operated at rated condition, the eddy current density distributions of damper bars are studied. And the asymmetric phenomenon of the eddy current density on damper bars is discovered. The change laws of the eddy currents in damper bars are determined through further analysis. Thirdly, through the study of eddy current distributions under different conditions, it is confirmed that the stator slots and armature reaction are the main factors to affect the asymmetric distribution of the eddy current in damper bars. Finally, the studies of the magnetic density distribution and theoretical analysis revealed the asymmetric distribution mechanism of eddy current density.

  18. The generation and distribution of central bank seigniorage in the Czech Republic, Hungary and Poland

    Directory of Open Access Journals (Sweden)

    Eduard Hochreiter

    2002-12-01

    Full Text Available We measure the amount of central bank seigniorage generated in three economies in transition and inquire to what extent seigniorage ultimately accrues to the government. We relate our findings to the institutional environment of the three countries. We find that, in parallel to the process of disinflation, seigniorage has declined substantially in the 1990s in all three countries under consideration pointing to more monetary discipline and a strengthening of central bank independence. Only in Hungary seigniorage benefited the government to a significant amount. We interpret this as being the consequence of past policies, rather than an obstacle to further disinflation.

  19. Dynamic heat transfer performance study of steam generator based on distributed parameter method

    International Nuclear Information System (INIS)

    Zhang, Guolei; Zhang, Yu; Yang, Yuanlong; Li, Yanjun; Sun, Baozhi

    2014-01-01

    Highlights: • One-dimensional mathematical model is built based on the distributed parameter method. • Dynamic simulation program is applied based on MATLAB using Runge–Kutta method. • The variations of primary and secondary parameters with power and space is discussed. • The highest temperature positions for the u-tube inner and outer wall are obtained. - Abstract: Using the steam generator of Daya Bay nuclear power plant as prototype, a one-dimensional dynamic mathematical model of nuclear-powered steam generator is built addressing the primary side fluid, the secondary side fluid and the inner and outer walls of the u-tubes based on distributed parameter method and reasonable assumptions. A dynamic simulation program is developed based on MATLAB using Runge–Kutta method and dynamic heat transfer performance simulation of steam generator is conducted under varying power. The calculation results show that the outlet temperature of primary side, the vapor saturation temperature and the mass fraction of secondary side agree with actual operating data of Daya Bay Nuclear Power Plant. Outer wall temperature at interface between parallel flow preheating-section and boiling-section is the highest. It provides a theoretical basis for the analysis of steam generator actual operating condition to build a one-dimensional mathematical model of steam generator based on the distributed parameter method and apply in simulation successfully

  20. Renewable Distributed Generation Models in Three-Phase Load Flow Analysis for Smart Grid

    Directory of Open Access Journals (Sweden)

    K. M. Nor

    2013-11-01

    Full Text Available The paper presents renewable distributed generation  (RDG models as three-phase resource in load flow computation and analyzes their effect when they are connected in composite networks. The RDG models that have been considered comprise of photovoltaic (PV and wind turbine generation (WTG. The voltage-controlled node and complex power injection node are used in the models. These improvement models are suitable for smart grid power system analysis. The combination of IEEE transmission and distribution data used to test and analyze the algorithm in solving balanced/unbalanced active systems. The combination of IEEE transmission data and IEEE test feeder are used to test the the algorithm for balanced and unbalanced multi-phase distribution system problem. The simulation results show that by increased number and size of RDG units have improved voltage profile and reduced system losses.

  1. Independent power producer parallel operation modeling in transient network simulations for interconnected distributed generation studies

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Fabricio A.M.; Camacho, Jose R. [Universidade Federal de Uberlandia, School of Electrical Engineering, Rural Electricity and Alternative Sources Lab, PO Box 593, 38400.902 Uberlandia, MG (Brazil); Chaves, Marcelo L.R.; Guimaraes, Geraldo C. [Universidade Federal de Uberlandia, School of Electrical Engineering, Power Systems Dynamics Group, PO Box: 593, 38400.902 Uberlandia, MG (Brazil)

    2010-02-15

    The main task in this paper is to present a performance analysis of a distribution network in the presence of an independent power producer (IP) synchronous generator with its speed governor and voltage regulator modeled using TACS -Transient Analysis of Control Systems, for distributed generation studies. Regulators were implemented through their transfer functions in the S domain. However, since ATP-EMTP (Electromagnetic Transient Program) works in the time domain, a discretization is necessary to return the TACS output to time domain. It must be highlighted that this generator is driven by a steam turbine, and the whole system with regulators and the equivalent of the power authority system at the common coupling point (CCP) are modeled in the ''ATP-EMTP -Alternative Transients Program''. (author)

  2. A life cycle multi-objective economic and environmental assessment of distributed generation in buildings

    International Nuclear Information System (INIS)

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-01-01

    Highlights: • A lifecycle optimization model for distributed energy systems is developed. • Model estimates costs and environmental impacts of meeting the building energy demand. • Design and operating strategies to reduce costs and environmental impacts are discussed. • Pareto frontiers of costs vis-à-vis environmental impacts are presented. • Distributed generation can reduce the environmental impacts of the building sector. - Abstract: Distributed generation, namely cogeneration and solar technologies, is expected to play an important role in the future energy supply mix in buildings. This calls for a methodological framework to assess the economic and environmental performance of the building sector when such technologies are employed. A life-cycle model has been developed, combining distributed generation and conventional sources to calculate the cost and environmental impacts of meeting the building energy demand over a defined planning period. Three type of cogeneration technologies, solar photovoltaic and thermal, as well as conventional boilers along with the Portuguese electricity generation mix comprise the energy systems modeled. Pareto optimal frontiers are derived, showing the trade-offs between different types of impacts (non-renewable cumulative energy demand, greenhouse gas emissions, acidification, eutrophication) and cost to meet the energy demand of a commercial building. Our analysis shows that according to the objective to employ distributed generation (reducing cost or environmental impacts), a specific design and operational strategy for the energy systems shall be adopted. The strategies to minimize each type of impact and the associated cost trade-offs by exploring the solutions located on the Pareto optimal frontiers are discussed

  3. Impact of distributed and independent power generation on greenhouse gas emissions: Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Wijayatunga, P.D.C. [University of Moratuwa (Sri Lanka). Centre for Energy Studies; Fernando, W.J.L.S. [Sri Lanka Energy Managers Association, Colombo (Sri Lanka); Shrestha, R.M. [Asian Institute of Technology, Pathumthani (Thailand). Energy Program

    2004-12-01

    Sri Lanka has a hydropower dominated power system with approximately two thirds of its generation capacity based on large hydro plants. The remaining one third are based on oil fired thermal generation with varying technologies, such as oil steam, Diesel, gas turbines and combined cycle plants. A significant portion of this capacity is in operation as independent power plants (IPPs). In addition to these, Sri Lanka presently has about 40 MWs of mini-hydro plants, which are distributed in the highlands and their surrounding districts, mainly connected to the primary distribution system. Further, there are a few attempts to build fuel wood fired power plants of small capacities and connect them to the grid in various parts of the country. The study presented in this paper investigates the impact of these new developments in the power sector on the overall emissions and the greenhouse gas (GHG) emissions in particular. It examines the resulting changes to the emissions and costs in the event of developing the proposed coal power plant as an IPP under different investment and operational conditions. The paper also examines the impact on emissions with 80 MWs of distributed power in different capacities of wind, mini-hydro and wood fired power plants. It is concluded that grid connected, distributed power generation (DPG) reduces emissions, with only a marginal increase in overall costs, due to the reduction in transmission and distribution network losses that result from the distributed nature of generation. These reductions can be enhanced by opting for renewable energy based DPGS, as the case presented in the paper, and coupling them with demand side management measures. It is also concluded that there is no impact on overall emissions by the base load IPPs unless they are allowed to change over to different fuel types and technologies. (author)

  4. Effect of distributed generation installation on power loss using genetic algorithm method

    Science.gov (United States)

    Hasibuan, A.; Masri, S.; Othman, W. A. F. W. B.

    2018-02-01

    Injection of the generator distributed in the distribution network can affect the power system significantly. The effect that occurs depends on the allocation of DG on each part of the distribution network. Implementation of this approach has been made to the IEEE 30 bus standard and shows the optimum location and size of the DG which shows a decrease in power losses in the system. This paper aims to show the impact of distributed generation on the distribution system losses. The main purpose of installing DG on a distribution system is to reduce power losses on the power system.Some problems in power systems that can be solved with the installation of DG, one of which will be explored in the use of DG in this study is to reduce the power loss in the transmission line. Simulation results from case studies on the IEEE 30 bus standard system show that the system power loss decreased from 5.7781 MW to 1,5757 MW or just 27,27%. The simulated DG is injected to the bus with the lowest voltage drop on the bus number 8.

  5. Developing the P2/6 methodology [to assess the security capability of modern distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Ron; Strbac, Goran; Djapic, Predrag; Jarrett, Keith [Manchester Univ. Inst. of Science and Technology, Manchester (United Kingdom)

    2004-04-29

    The main objective of the project was to use the methodology developed in the previous Methodology project (ETSU/FES Project K/EL/00287) to assess the security capability of modern distributed generation in order to review Table 2 and related text of Engineering Recommendation P2/5, and to propose information and results that could be used to create a new P2/6 that takes into account modern types of generating units; unit numbers; unit availabilities; and capacities. Technical issues raised in the previous study but held over until this project include: Treatment of single unit generation systems; Effect of shape of load duration curves; Persistence of intermittent generation, T{sub m}; Time resolution of intermittent generation output profiles; Ride-through capability; Risk to loss of supply. Three main ways of implementing the methodology were recommended: Look-up table(s), Graphical, and Computer program. The specification for the computer program was to produce a simple spreadsheet application package that an engineer with a reasonably knowledge of the approach could use. This prototype package has been developed in conjunction with Workstream 3. Its objective is to calculate the capability contribution to security of supply from distributed generation connected to a particular demand group. The application has been developed using Microsoft Excel and Visual Basic for Applications. New Tables for inclusion in P2/6 are included. (UK)

  6. Droplet Size Distribution in Sprays Based on Maximization of Entropy Generation

    Directory of Open Access Journals (Sweden)

    Meishen Li

    2003-12-01

    Full Text Available Abstract: The maximum entropy principle (MEP, which has been popular in the modeling of droplet size and velocity distribution in sprays, is, strictly speaking, only applicable for isolated systems in thermodynamic equilibrium; whereas the spray formation processes are irreversible and non-isolated with interaction between the atomizing liquid and its surrounding gas medium. In this study, a new model for the droplet size distribution has been developed based on the thermodynamically consistent concept - the maximization of entropy generation during the liquid atomization process. The model prediction compares favorably with the experimentally measured size distribution for droplets, near the liquid bulk breakup region, produced by an air-blast annular nozzle and a practical gas turbine nozzle. Therefore, the present model can be used to predict the initial droplet size distribution in sprays.

  7. Anti-islanding Protection of Distributed Generation Using Rate of Change of Impedance

    Science.gov (United States)

    Shah, Pragnesh; Bhalja, Bhavesh

    2013-08-01

    Distributed Generation (DG), which is interlinked with distribution system, has inevitable effect on distribution system. Integrating DG with the utility network demands an anti-islanding scheme to protect the system. Failure to trip islanded generators can lead to problems such as threats to personnel safety, out-of-phase reclosing, and degradation of power quality. In this article, a new method for anti-islanding protection based on impedance monitoring of distribution network is carried out in presence of DG. The impedance measured between two phases is used to derive the rate of change of impedance (dz/dt), and its peak values are used for final trip decision. Test data are generated using PSCAD/EMTDC software package and the performance of the proposed method is evaluated in MatLab software. The simulation results show the effectiveness of the proposed scheme as it is capable to detect islanding condition accurately. Subsequently, it is also observed that the proposed scheme does not mal-operate during other disturbances such as short circuit and switching event.

  8. A Flexible Experimental Laboratory for Distributed Generation Networks Based on Power Inverters

    Directory of Open Access Journals (Sweden)

    Jaume Miret

    2017-10-01

    Full Text Available In the recently deregulated electricity market, distributed generation based on renewable sources is becoming more and more relevant. In this area, two main distributed scenarios are focusing the attention of recent research: grid-connected mode, where the generation sources are connected to a grid mainly supplied by big power plants, and islanded mode, where the distributed sources, energy storage devices, and loads compose an autonomous entity that in its general form can be named a microgrid. To conduct a successful research in these two scenarios, it is essential to have a flexible experimental setup. This work deals with the description of a real laboratory setup composed of four nodes that can emulate both scenarios of a distributed generation network. A comprehensive description of the hardware and software setup will be done, focusing especially in the dual-core DSP used for control purposes, which is next to the industry standards and able to emulate real complexities. A complete experimental section will show the main features of the system.

  9. New model of Brazilian electric sector: implications of sugarcane bagasse on the distributed generation process

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Celso E.L. de; Rabi, Jose A. [Universidade de Sao Paulo (GREEN/FZEA/USP), Pirassununga, SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos. Grupo de Pesquisa em Reciclagem, Eficiencia Energetica e Simulacao Numerica], Emails: celsooli@usp.br, jrabi@usp.br; Halmeman, Maria Cristina [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas

    2008-07-01

    Distributed generation has become an alternative for the lack of resources to large energy projects and for recent facts that have changed the geopolitical panorama. The later have increased oil prices so that unconventional sources have become more and more feasible, which is an issue usually discussed in Europe and in USA. Brazil has followed such world trend by restructuring the electrical sector as well as major related institutions, from generation to commercialization and sector regulation while local legislation has enabled the increase of distributed generation. It regulates the role of the independent energy producer so as to provide direct business between the later and a great consumer, which is an essential step to enlarge energy market. Sugarcane bagasse has been used to produce both electric energy and steam and this paper analyzes and discusses the major implications of a new model for Brazilian electric sector based on sugarcane bagasse use as means to increase distributed generation process, particularly concerned with the commercialization of energy excess. (author)

  10. An investigation into the development of consolidation of distributed generation within the wholesale electricity trading arrangements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    In this report the problems faced by distributed generators is explored under the New Electricity Trading Arrangements (NETA) in relation to the low price received for generation above contract requirement and the high price charged for under generation, and the lack of an alternative to the bilateral contract. The background to the study is traced, and the economics and history of consolidation, the NETA environment, development of imbalance prices, and the market for consolidation are outlined. An overview of consolidation in practice is presented, covering the generators and suppliers views, and specialist consolidators. The main options for development, and consolidation models are considered as well as net benefits, regulatory and commercial impediments to consolidation, and the potential impact of BETA.

  11. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....

  12. Analysis of the efficiency and effectiveness of distributed generation in the power station (fuel) Sancti Spiritus

    International Nuclear Information System (INIS)

    Castro Álvarez, Alfredo; Pérez Pérez, Osvaldo; Bravo Amarante, Edelvy

    2015-01-01

    The severe crisis in the National Electric System (SEN) suffered by Cuba in the late 90's and early 2000 forced to change the design to keep the generation matrix supported in large plants towards where distributed generation small plants throughout the country, the state assumed demand and residential sector. From tools frequently used to evaluate the quality of processes (Scatter diagram, Pareto diagram, Ishikawa diagram and function quality loss Taguchi) was evaluated from indicators index fuel consumption and availability, efficiency and effectiveness of the generation process identifying areas within the plant that the greatest impact on the deviation of both indicators and the impact generated in the services, the economy and the environment. To develop this evaluation the operating data of the years 2012, 2013 and 2014 of the power plant were taken Sancti Spiritus. (full text)

  13. Study of the relation between evaluation of strain distribution on superconducting coil and mechanical heat generation

    Science.gov (United States)

    Seino, Hiroshi; Kurihara, Minoru; Herai, Toshiki; Suzuki, Eiji

    2002-10-01

    In the superconducting Maglev system, on-board superconducting magnets (SCMs) are vibrated at various frequencies according to the train speed by the electromagnetic disturbance which is caused when the train passes over ground coils. Then a mechanical loss is generated inside the inner vessel in the SCM. This phenomenon increases the heat load on the cryogenic equipment in the SCM. It has been surmised that the mechanical heat inside the inner vessel is generated by the frictional heat caused by the relative microscopic slips between fasteners and superconducting coil (SC coil). Nevertheless, heat generation mechanisms inside the inner vessel have not been studied sufficiently. In this study, we suggest a hypothesis that the frictional heat generated by the relative microscopic slips between fasteners and a SC coil will be indicated if the calculated strain distribution on the SC coil is evaluated. The results of this study supported this hypothesis.

  14. An investigation into the development of consolidation of distributed generation within the wholesale electricity trading arrangements

    International Nuclear Information System (INIS)

    2005-01-01

    In this report the problems faced by distributed generators is explored under the New Electricity Trading Arrangements (NETA) in relation to the low price received for generation above contract requirement and the high price charged for under generation, and the lack of an alternative to the bilateral contract. The background to the study is traced, and the economics and history of consolidation, the NETA environment, development of imbalance prices, and the market for consolidation are outlined. An overview of consolidation in practice is presented, covering the generators and suppliers views, and specialist consolidators. The main options for development, and consolidation models are considered as well as net benefits, regulatory and commercial impediments to consolidation, and the potential impact of BETA

  15. GA-based multi-objective optimization for distributed generations planning with DLMs in distribution power systems

    Directory of Open Access Journals (Sweden)

    Bindeshwar Singh

    2017-05-01

    Full Text Available In the present scenario of all over world, the planning of distributed generations (DGs in distribution power systems are very important issues from power system performances viewpoints. The broad categories of different types of DGs on the basis of their power delivering characteristics are considered T1, T2, T3 and T4 with different load models (DLMs for the analysis in this paper. This paper presents the impact assessment of optimally placed different types of DGs (such as T1, T2, T3 and T4 with DLMs by employing genetic algorithm (GA in the distribution power systems (DPSs form total minimum real power loss of the system viewpoint. Different DPS performance parameters such as minimization of real power loss, minimization of reactive power loss, improvement of voltage profile, reduction of the short circuit current or MVA line capacity and reduction of the environmental green house gases like carbon dioxide (CO2, sulphur dioxide (SO2, nitrogen oxide (NOx and particulate matters in emergency e.g. under fault, sudden change in field excitation of alternators or load increase in the distribution power system are considered. The contribution of the present work is to investigate the comparisons of different DGs with DLMs by excercizing GA in the distribution systems form minimum total real power loss of the system viewpoint. The effectiveness of the proposed methodology is tested on IEEE-37 bus distribution test system. The different types of DGs (such as T1, T2, T3 and T4 with DLMs have shown different behaviours for power system performance indices such as PLI, QLI, VDI, SCCI and EIRI viewpoints. The sequence of overall power system performance indices such as PLI, QLI, VDI, SCCI and EIRI are as follows: T2>T1>T4>T3. This paper presents that the overall performance of T2 type DG is better as compared to T1, T3 and T4 types DGs in the distribution system form minimum real power loss of the system viewpoint.

  16. Optimal distributed generation placement in distribution system to improve reliability and critical loads pick up after natural disasters

    Directory of Open Access Journals (Sweden)

    Galiveeti Hemakumar Reddy

    2017-06-01

    Full Text Available The increase in frequency of natural disasters has necessitated the need of resilient distribution systems. Natural disasters lead to severe damage of power system infrastructure and the main grid may not be available to serve the loads. The integration of distributed generation (DG into distribution system partially restores the loads after natural disasters and improves the reliability during normal operating conditions. After a natural disaster, objective of the system operators is to restore the critical loads as a priority. This enables the need of considering critical load pick up as an objective function while placing the DGs. A location based constraint is, thus, required to make sure the DGs are available to pick up the loads after natural disasters. Fuzzy multi criteria decision making (FMCDM approach is used in this work to rank the load points and locations/feeder sections. This paper uses particle swarm optimization (PSO to evaluate the optimal size and location of DGs using the proposed objective function. The obtained results are compared with the results of reliability as an objective function.

  17. A Determination Method of the Restoration Configuration Considering Many Connections of Distributed Generators

    Science.gov (United States)

    Takano, Hirotaka; Hayashi, Yasuhiro; Matsuki, Junya; Sugaya, Shuhei

    In the field of electrical power system, various approaches, such as utilization of renewable energy, loss reduction, and so on, have been taken to reduce CO2 emission. So as to work toward this goal, the total number of distributed generators (DGs) using renewable energy connected into 6.6kV distribution system has been increasing rapidly. However, when a fault occurs such as distribution line faults and bank faults, DGs connecting outage sections are disconnected simultaneously. Since the output of DGs influences feeder current and node voltage of distribution system, it is necessary to determine the optimal system configuration considering simultaneous disconnection and reconnection of DGs. In this paper, the authors propose a computation method to determine the optimal restoration configuration considering many connections of DGs. The feature of determined restoration configurations is prevention of the violation of operational constraints by disconnection and reconnection of DGs. Numerical simulations are carried out for a real scale distribution system model with 4 distribution substations, 72 distribution feeders, 252 sectionalizing switches (configuration candidates are 2252) and 23.2MW DGs (which is 14% of total load) in order to examine the validity of the proposed algorithm.

  18. Generative Adversarial Networks Based Heterogeneous Data Integration and Its Application for Intelligent Power Distribution and Utilization

    Directory of Open Access Journals (Sweden)

    Yuanpeng Tan

    2018-01-01

    Full Text Available Heterogeneous characteristics of a big data system for intelligent power distribution and utilization have already become more and more prominent, which brings new challenges for the traditional data analysis technologies and restricts the comprehensive management of distribution network assets. In order to solve the problem that heterogeneous data resources of power distribution systems are difficult to be effectively utilized, a novel generative adversarial networks (GANs based heterogeneous data integration method for intelligent power distribution and utilization is proposed. In the proposed method, GANs theory is introduced to expand the distribution of completed data samples. Then, a so-called peak clustering algorithm is proposed to realize the finite open coverage of the expanded sample space, and repair those incomplete samples to eliminate the heterogeneous characteristics. Finally, in order to realize the integration of the heterogeneous data for intelligent power distribution and utilization, the well-trained discriminator model of GANs is employed to check the restored data samples. The simulation experiments verified the validity and stability of the proposed heterogeneous data integration method, which provides a novel perspective for the further data quality management of power distribution systems.

  19. Thermodynamic method for generating random stress distributions on an earthquake fault

    Science.gov (United States)

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  20. Impacts of the expansion of distributed generation in distribution systems of electrical power; Impactos da expansao da geracao distribuida nos sistemas de distribuicao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Frederico A.S.; Moran, Jesus A.; Abreu, Lisias; Silva, Luiz C.P. da; Freitas, Walmir [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Eletrica e Computacao

    2004-07-01

    Due to the recent Brazilian electricity crisis, the advantages of the centralized rain dependent generation were put under discussion. The co-generation is an option for the consumer that does not want to be harmed by eventual interruptions in the energy supply and nor to pay higher tariffs during pick load. Besides, the excess of co-generation can be sold for the distribution companies, making possible that the independent producer has profits participating of the electricity power market. The distributed generation provides several benefits, for the fact of being a generation that is located close to the load. Besides, it allows the supply of the growing demand in a fast way, since the construction of big hydroelectric plants, that is the generation model more used in Brazil, is a slow process. With that, the insertion of distributed generation in the Brazilian system tends to become every more common year to year, as it has been happening in other countries. It is noticed, however, that few technical studies on the impacts of the distributed generation in the distribution systems were accomplished to the moment. Problems as over-voltages during light load, impacts on the protection system, and dynamic stability problems, very common in large centralized synchronous machines, can also start to happen in the distribution systems. This article presents a preliminary study on the influence of distributed synchronous generators in the operation of a distribution system. The analyzed technical aspects are: voltage profile, voltage stability, active and reactive power losses, and also critical clearing times for eliminating faults considering different sceneries. The simulations results show which are the main operative restrictions for maximizing the penetration level of distributed generation related with the dynamic and steady-state performance of the electricity distribution system. (author)

  1. Optimizing Operation Indices Considering Different Types of Distributed Generation in Microgrid Applications

    Directory of Open Access Journals (Sweden)

    Niloofar Ghanbari

    2018-04-01

    Full Text Available The need for independent power generation has increased in recent years, especially with the growing demand in microgrid systems. In a microgrid with several generations of different types and with all kinds of loads of variable nature, an optimal power balance in the system has to be achieved. This optimal objective, which results in minimal energy losses over a specific period of time, requires an optimal location and sizing of the distributed generations (DGs in a microgrid. This paper proposes a new optimization method in which both optimal location of the DGs and their generation profile according to the load demand profile as well as the type of DG are determined during the life time of the DGs. The types of DGs that are considered in this paper are diesel generators and wind turbine. The method is based on simultaneously minimizing the cost of the investment and operation of the DGs, the cost of power delivered by the the external grid as well as the cost of power losses in the network. The proposed method is tested on the IEEE standard radial distribution network considering time-varying loads and the wind speed every hour of a day.

  2. Optimization of perforated distribution plate in steam generator PGV-1000MKO using CFD

    International Nuclear Information System (INIS)

    Volkov, V.Yu.; Golibrodo, L.A.; Krutikov, A.A.; Kudryavtsev, O.V.; Lakhov, D.A.; Nadinskij, Yu.N.; Nikolaeva, A.V.; Skibin, A.P.; Sotskov, V.V.

    2015-01-01

    Design of steam distribution perforated sheet SDPS for PGV-1000MKO was optimized using CFD methods, and guidelines for choosing the design of SDPS perforation were provided. Computational studies for optimized design of SDPS were performed for several characteristic variants of the mass water level in the steam generator and the distribution of the steam load. Recommendations for commissioning tests procedure for the SG were given on the basis of the research results. Processes in the PGV-1000MKO version with the collector equipped with ten steam nozzles were modeled. A comparison of technical parameters of the design with a single steam nozzle and with ten steam nozzles was performed [ru

  3. Coalition of distributed generation units to virtual power players - a game theory approach

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago M; Santos, Gabriel

    2015-01-01

    and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis...... strategies, size and goals, each parameter has different importance. VPP can also manage other type of energy resources, like storage units, electric vehicles, demand response programs or even parts of the MV and LV distribution network. A case study with twelve VPPs with different characteristics and one...

  4. Improved Multiobjective Harmony Search Algorithm with Application to Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2014-01-01

    Full Text Available To solve the comprehensive multiobjective optimization problem, this study proposes an improved metaheuristic searching algorithm with combination of harmony search and the fast nondominated sorting approach. This is a kind of the novel intelligent optimization algorithm for multiobjective harmony search (MOHS. The detailed description and the algorithm formulating are discussed. Taking the optimal placement and sizing issue of distributed generation (DG in distributed power system as one example, the solving procedure of the proposed method is given. Simulation result on modified IEEE 33-bus test system and comparison with NSGA-II algorithm has proved that the proposed MOHS can get promising results for engineering application.

  5. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter...... of the system where the power electronic converter is connected....

  6. Research on the control strategy of distributed energy resources inverter based on improved virtual synchronous generator.

    Science.gov (United States)

    Gao, Changwei; Liu, Xiaoming; Chen, Hai

    2017-08-22

    This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.

  7. How to protect the distribution net with the increase of the distributed generation; Como proteger as redes de distribuicao com o crescimento da geracao distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Rintamaki, Olli [ABB Oy, Zurich (Switzerland); Kauhaniemi, Kimmo [Vaasa University (Finland)

    2010-11-15

    The growth of the distributed generation impose new challenges to the protection of the distribution nets. The main critical point has been the net drop, which needs the separation between the generator unit and the net. A possible solution is the use of the line differential relay. Using appropriate communication channel, it guarantees selective protection for the feeder. This solution makes possible the correct operation of the feeder and the generator unit.

  8. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  9. Texture side information generation for distributed coding of video-plus-depth

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Raket, Lars Lau; Zamarin, Marco

    2013-01-01

    components) is strongly correlated, so the additional depth information may be used to generate more accurate SI for the texture stream, increasing the efficiency of the system. In this paper we propose various methods for accurate texture SI generation, comparing them with other state-of-the-art solutions......We consider distributed video coding in a monoview video-plus-depth scenario, aiming at coding textures jointly with their corresponding depth stream. Distributed Video Coding (DVC) is a video coding paradigm in which the complexity is shifted from the encoder to the decoder. The Side Information....... The proposed system achieves gains on the reference decoder up to 1.49 dB....

  10. Power sector reform and distributed generation in sub-Saharan Africa

    DEFF Research Database (Denmark)

    Turkson, J.K.; Wohlgemuth, N.

    2001-01-01

    As part of the current liberalisation process sweeping sub-Saharan Africa, power sectors across the region are being scrutinised and restructured. A critical aspect of the reform is improving access to electricity by large segments of the population. Many in the continent are, therefore......,looking at the issue of distributed generation as opposed to grid extension and the role of renewable energy in this process. The purpose of this paper is to inform this discussion by two means. First, after examining the concept of distributed - or decentralised - generation in a region where urban population is......, on average, 30-40 per cent of the region's population, the authors discuss the issues involved, drawing on the experiences of other countries whether there are any apparent 'preconditions' for success. Second, the role renewable energy can play in this process and the extent to which lessons from other parts...

  11. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  12. Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology

    DEFF Research Database (Denmark)

    Mutule, Anna; Obushevs, Artjoms; Lvov, Aleksandr

    2013-01-01

    The paper presents the main goals and achievements of the Smart Grids ERA-NET project named “Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology (SmartGen)” during the second stage of project implementation. A description of Smart Grid Technology (S......) models developed within the framework of the project is given. The performed study cases where the SGT-models were implemented to analyze the impact of the electrical grid are discussed....

  13. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2013-01-01

    The unbalanced temperature distribution influences the power output of thermoelectric generator (TEG) system, which leads to mismatch power among TEG modules. This mismatch power degrades the energy efficiency of TEG systems based on the series-connected TEG modules. A hybrid centralized...... the proposed system, which benefits for implementing high MPPT efficiency and high conversion efficiency simultaneously. A hybrid MPPT control strategy is proposed for this HCD power conditioning system. The characteristics, circuit implementation and operation principles of the proposed system are presented...

  14. Distributed Pseudo-Random Number Generation and Its Application to Cloud Database

    OpenAIRE

    Chen, Jiageng; Miyaji, Atsuko; Su, Chunhua

    2014-01-01

    Cloud database is now a rapidly growing trend in cloud computing market recently. It enables the clients run their computation on out-sourcing databases or access to some distributed database service on the cloud. At the same time, the security and privacy concerns is major challenge for cloud database to continue growing. To enhance the security and privacy of the cloud database technology, the pseudo-random number generation (PRNG) plays an important roles in data encryptions and privacy-pr...

  15. Direct steam reforming of diesel and diesel–biodiesel blends for distributed hydrogen generation

    OpenAIRE

    Martin, Stefan; Kraaij, Gerard; Ascher, Torsten; Baltzopoulou, Penelope; Karagiannakis, George; Wails, David; Wörner, Antje

    2015-01-01

    Distributed hydrogen generation from liquid fuels has attracted increasing attention in the past years. Petroleum-derived fuels with already existing infrastructure benefit from high volumetric and gravimetric energy densities, making them an interesting option for cost competitive decentralized hydrogen production. In the present study, direct steam reforming of diesel and diesel blends (7 vol.% biodiesel) is investigated at various operating conditions using a proprietary precious metal ...

  16. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  17. The political economy of grid-connected distributed power generation systems in California

    Science.gov (United States)

    Tongsopit, Sopitsuda

    For nearly two decades, distributed generation (DG) has been touted as a disruptive technology that could revolutionize the way electricity is produced and delivered. Whether this vision will be realized depends upon how this new technology, the existing technological system, i.e., the electric power grid, and the regulatory structure governing these systems co-evolve. My dissertation examines the interface between distributed generation and the electric power grid in California. Drawing upon published materials and interviews with members of the electric utility industry, I analyze technical, economic, and property rights conflicts between the two technological systems that together constitute what I hereby call the problem of interconnection. In attempting to understand the problem of interconnection, I seek answers to the following questions: (1) How and why are key decisions regarding interconnections made in California? (2) How do existing institutions adapt to the changing environment of more DG utilization? (3) To what extent are the DG-grid interactions shaped by technical, economic, and political factors? It is found that the California approach toward DG-grid interconnection is only one among many possible approaches and not necessarily the most technically or economically efficient. DG is integrated such that it becomes a passive extension to the centralized, hierarchical grid. This technical approach has been standardized while excluding possibilities that had historically seemed possible. The dissertation then poses the problem of interconnection in the context of evolving property rights to the U.S. power grid. California's distribution sector has been exposed to the same kinds of pressures that have diluted and diffused utilities' rights to generation and transmission control. But unlike the latter two sectors, the institutional recognition of distribution monopolies is still dominant. As a result, local distribution monopolies have been able to

  18. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Science.gov (United States)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  19. Application of solar panels in vehicle parking under the concept of distributed generation

    International Nuclear Information System (INIS)

    Calderon Vega, Jefferson

    2013-01-01

    An analysis of solar panels technologies is realized to implement an application of distributed generation in vehicle parking. The different technologies available in the market about solar panels are investigated. The climatological and geographical conditions are studied for the use of solar energy. The electrical requirements are determined for the implementation of solar panels as a distributed generation system. The benefit/cost is analyzed in establishments of vehicle parking for the implementation of solar panels. A photovoltaic system was developed in a vehicle parking attached at the Colegio Federado de Ingenieros y Arquitectos, and also the technical feasibility has been determined. The photovoltaic systems about roofs of buildings every day have been more viable, due that the cost of the systems has been lower and more efficient. Crystalline silicon ''mono'' or ''poly'' has been the most reliable option in the development of new technologies in solar cells. Costa Rica is found in a zone where the photovoltaic solar energy is harnessed and should to be fostered by the engineering sector. The installation of photovoltaic systems has contributed to reduce the carbon footprint in the distributed generation [es

  20. Recommendations for institutional policy and network regulatory frameworks towards distributed generation in EU Member States

    Energy Technology Data Exchange (ETDEWEB)

    Ten Donkelaar, M.; Van Oostvoorn, F. [ECN Policy Studies, Petten (Netherlands)

    2005-01-01

    Recommendations regarding the development of regulatory frameworks and institutional policies towards an optimal integration of distributed generation (DG) into electricity networks are presented. These recommendations are based on findings from a benchmarking study conducted in the framework of the ENIRDG-net project. The aim of the benchmarking exercise was to identify examples of well-defined pro-DG policies, with clear targets and adequate implementation mechanisms. In this study an adequate pro-DG policy is defined on the basis of a level playing field, a situation where distributed and centralised generation receive equal incentives and have equal access to the liberalised markets for electricity. The benchmark study includes the results of a similar study conducted in the framework of the SUSTELNET project. When comparing the results a certain discrepancy can be noticed between the actual regulation and policy in a number of countries, the medium to long-term targets and the ideal situation described by the level playing field objective. To overcome this discrepancy, a number of recommendations have been drafted for future policy and regulation towards distributed generation.

  1. Plant management tools tested with a small-scale distributed generation laboratory

    International Nuclear Information System (INIS)

    Ferrari, Mario L.; Traverso, Alberto; Pascenti, Matteo; Massardo, Aristide F.

    2014-01-01

    Highlights: • Thermal grid innovative layouts. • Experimental rig for distributed generation. • Real-time management tool. • Experimental results for plant management. • Comparison with results from an optimization complete software. - Abstract: Optimization of power generation with smart grids is an important issue for extensive sustainable development of distributed generation. Since an experimental approach is essential for implementing validated optimization software, the TPG research team of the University of Genoa has installed a laboratory facility for carrying out studies on polygeneration grids. The facility consists of two co-generation prime movers based on conventional technology: a 100 kWe gas turbine (mGT) and a 20 kWe internal combustion engine (ICE). The rig high flexibility allows the possibility of integration with renewable-source based devices, such as biomass-fed boilers and solar panels. Special attention was devoted to thermal distribution grid design. To ensure the possibility of application in medium-large districts, composed of several buildings including energy users, generators or both, an innovative layout based on two ring pipes was examined. Thermal storage devices were also included in order to have a complete hardware platform suitable for assessing the performance of different management tools. The test presented in this paper was carried out with both the mGT and the ICE connected to this innovative thermal grid, while users were emulated by means of fan coolers controlled by inverters. During this test the plant is controlled by a real-time model capable of calculating a machine performance ranking, which is necessary in order to split power demands between the prime movers (marginal cost decrease objective). A complete optimization tool devised by TPG (ECoMP program) was also used in order to obtain theoretical results considering the same machines and load values. The data obtained with ECoMP were compared with the

  2. A visual basic program to generate sediment grain-size statistics and to extrapolate particle distributions

    Science.gov (United States)

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2004-01-01

    Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft

  3. Distributed generation of shared RSA keys in mobile ad hoc networks

    Science.gov (United States)

    Liu, Yi-Liang; Huang, Qin; Shen, Ying

    2005-12-01

    Mobile Ad Hoc Networks is a totally new concept in which mobile nodes are able to communicate together over wireless links in an independent manner, independent of fixed physical infrastructure and centralized administrative infrastructure. However, the nature of Ad Hoc Networks makes them very vulnerable to security threats. Generation and distribution of shared keys for CA (Certification Authority) is challenging for security solution based on distributed PKI(Public-Key Infrastructure)/CA. The solutions that have been proposed in the literature and some related issues are discussed in this paper. The solution of a distributed generation of shared threshold RSA keys for CA is proposed in the present paper. During the process of creating an RSA private key share, every CA node only has its own private security. Distributed arithmetic is used to create the CA's private share locally, and that the requirement of centralized management institution is eliminated. Based on fully considering the Mobile Ad Hoc network's characteristic of self-organization, it avoids the security hidden trouble that comes by holding an all private security share of CA, with which the security and robustness of system is enhanced.

  4. Identification of Synchronous Generator Electric Parameters Connected to the Distribution Grid

    Directory of Open Access Journals (Sweden)

    Frolov M. Yu.

    2017-04-01

    Full Text Available According to modern trends, the power grids with distributed generation will have an open system architecture. It means that active consumers, owners of distributed power units, including mobile units, must have free access to the grid, like when using internet, so it is necessary to have plug and play technologies. Thanks to them, the system will be able to identify the unit type and the unit parameters. Therefore, the main aim of research, described in the paper, was to develop and research a new method of electric parameters identification of synchronous generator. The main feature of the proposed method is that parameter identification is performed while the generator to the grid, so it fits in the technological process of operation of the machine and does not influence on the connection time of the machine. For the implementation of the method, it is not necessary to create dangerous operation modes for the machine or to have additional expensive equipment and it can be used for salient pole machines and round rotor machines. The parameter identification accuracy can be achieved by more accurate account of electromechanical transient process, and making of overdetermined system with many more numbers of equations. Parameter identification will be made with each generator connection to the grid. Comparing data obtained from each connection, the middle values can be find by numerical method, and thus, each subsequent identification will accurate the machine parameters.

  5. Research on Distributed PV Storage Virtual Synchronous Generator System and Its Static Frequency Characteristic Analysis

    Directory of Open Access Journals (Sweden)

    Xiangwu Yan

    2018-03-01

    Full Text Available The increasing penetration rate of grid connected renewable energy power generation reduces the primary frequency regulation capability of the system and poses a challenge to the security and stability of the power grid. In this paper, a distributed photovoltaic (PV storage virtual synchronous generator system is constructed, which realizes the external characteristics of synchronous generator/motor. For this kind of input/output bidirectional devices (e.g., renewable power generation/storage combined systems, pumped storage power stations, battery energy storage systems, and vehicle-to-grid electric vehicles, a synthesis analysis method for system power-frequency considering source-load static frequency characteristics (S-L analysis method is proposed in order to depict the system’s power balance dynamic adjustment process visually. Simultaneously, an inertia matching method is proposed to solve the problem of inertia matching in the power grid. Through the simulation experiment in MATLAB, the feasibility of the distributed PV storage synchronous virtual machine system is verified as well as the effectiveness of S-L analysis method and inertia matching method.

  6. State of the art of the virtual utility: the smart distributed generation network

    International Nuclear Information System (INIS)

    Coll-Mayor, D.; Picos, R.; Garcia-Moreno, E.

    2004-01-01

    The world of energy has lately experienced a revolution, and new rules are being defined. The climate change produced by the greenhouse gases, the inefficiency of the energy system or the lack of power supply infrastructure in most of the poor countries, the liberalization of the energy market and the development of new technologies in the field of distributed generation (DG) are the key factors of this revolution. It seems clear that the solution at the moment is the DG. The advantage of DG is the energy generation close to the demand point. It means that DG can lower costs, reduce emissions, or expand the energy options of the consumers. DG may add redundancy that increases grid security even while powering emergency lighting or other critical systems and reduces power losses in the electricity distribution. After the development of the different DG and high efficiency technologies such as co-generation and tri-generation, the next step in the DG world is the interconnection of different small distributed generation facilities which act together in a DG network as a large power plant controlled by a centralized energy management system (EMS). The main aim of the EMS is to reach the targets of low emissions and high efficiency. The EMS gives priority to renewable energy sources instead of the use of fossil fuels. This new concept of energy infrastructure is referred to as virtual utility (VU). The VU can be defined as a new model of energy infrastructure which consists of integrating different kind of distributed generation utilities in an energy (electricity and heat) generation network controlled by a central energy management system (EMS). The electricity production in the network is subordinated to the heat necessity of every user. The thermal energy is consumed on site; the electricity is generated and distributed in the entire network. The network is composed of one centralized control with the EMS and different clusters of distributed generation utilities

  7. A Study of Distributed Generation System Characteristics and Protective Load Control Strategy

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2011-01-01

    Due to the smaller inertia feature of a Wind Turbine (WT) involved Distributed Generation System (DGS), the WT’s induction generator are more vulnerable to frequency and voltage disturbances. Therefore the study investigates the DGS characteristics respectively from power plants, i.e. WTs and load....... Two kinds of wind turbines: Doubly-fed Induction Generator (DFIG) and Fixed-speed Wind Turbine (FSWT) are compared in this study. A conventional power system protective scheme may not response promptly, which could lead an undesired disconnection of WTs for the turbine protection purpose. Consequently...... of load characteristics are analyzed and utilized in the fast control strategy. Subsequently a case study is presented to demonstrate the theoretical investigations and analyses....

  8. The emergence of distributed generation in a liberalizing european electricity market

    International Nuclear Information System (INIS)

    Habay, P.; Pariente David, S.

    1999-01-01

    The liberalization, of the European electricity market accelerates the market entry of innovative small scale power generation and communication technologies applicable for a competitive power supply offering. The pressure of competition will push incumbent utilities as well as new entrants to tap any source of economic efficiencies in order to secure a competitive advantage and sufficient margins. The integration of a power generation unit on site or close to end-user premises without additional constraint for end-user is a potential source of economic efficiency. These systems enable to meet the needs of end-users at an attractive price and, beyond this, to free capacities for power exchange through the grid. These new practices lay the basis for distributed generation business which should experience significant growth in Europe over the next decade assuming that technologies meet efficiencies as announced. (authors)

  9. A method for generating skewed random numbers using two overlapping uniform distributions

    International Nuclear Information System (INIS)

    Ermak, D.L.; Nasstrom, J.S.

    1995-02-01

    The objective of this work was to implement and evaluate a method for generating skewed random numbers using a combination of uniform random numbers. The method provides a simple and accurate way of generating skewed random numbers from the specified first three moments without an a priori specification of the probability density function. We describe the procedure for generating skewed random numbers from unifon-n random numbers, and show that it accurately produces random numbers with the desired first three moments over a range of skewness values. We also show that in the limit of zero skewness, the distribution of random numbers is an accurate approximation to the Gaussian probability density function. Future work win use this method to provide skewed random numbers for a Langevin equation model for diffusion in skewed turbulence

  10. Determination Method for Loss Minimum Configuration Considering Reconnection of Distributed Generators

    Science.gov (United States)

    Takano, Hirotaka; Tomida, Takafumi; Hayashi, Yasuhiro; Matsuki, Junya

    In the field of electrical power system, various approaches, such as utilization of renewable energy, loss reduction, and so on, have been taken to reduce CO2 emission. So as to work toward this goal, the total number of distributed generators (DGs) using renewable energy connected into 6.6kV distribution system has been increasing rapidly. The DGs can reduce distribution loss by appropriate allocation. However, when a fault occurs such as distribution line fault and bank fault, DGs connecting outage sections are disconnected simultaneously. Since the simultaneous disconnection of DGs influences restoration configuration and normal configuration after the restoration, it is necessary to determine the system configuration in normal state considering simultaneous disconnection of DGs. In this paper, the authors propose a computation method to determine the loss minimum configuration in normal state considering reconnection of DGs after simultaneous disconnection by fault occurrence. The feature of determined loss minimum configuration is satisfying with operational constraints even if all DGs are disconnected from the system. Numerical simulations are carried out for a real scale distribution system model with 252 sectionalizing switches (configuration candidates are 2252) and 120 DGs (total output is 38.46MW which is 23% of total load) in order to examine the validity of the proposed algorithm.

  11. Log-cubic method for generation of soil particle size distribution curve.

    Science.gov (United States)

    Shang, Songhao

    2013-01-01

    Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor.

  12. A distributed big data storage and data mining framework for solar-generated electricity quantity forecasting

    Science.gov (United States)

    Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia

    2012-02-01

    Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.

  13. Semi-empirical model for the generation of dose distributions produced by a scanning electron beam

    International Nuclear Information System (INIS)

    Nath, R.; Gignac, C.E.; Agostinelli, A.G.; Rothberg, S.; Schulz, R.J.

    1980-01-01

    There are linear accelerators (Sagittaire and Saturne accelerators produced by Compagnie Generale de Radiologie (CGR/MeV) Corporation) which produce broad, flat electron fields by magnetically scanning the relatively narrow electron beam as it emerges from the accelerator vacuum system. A semi-empirical model, which mimics the scanning action of this type of accelerator, was developed for the generation of dose distributions in homogeneous media. The model employs the dose distributions of the scanning electron beams. These were measured with photographic film in a polystyrene phantom by turning off the magnetic scanning system. The mean deviation calculated from measured dose distributions is about 0.2%; a few points have deviations as large as 2 to 4% inside of the 50% isodose curve, but less than 8% outside of the 50% isodose curve. The model has been used to generate the electron beam library required by a modified version of a commercially-available computerized treatment-planning system. (The RAD-8 treatment planning system was purchased from the Digital Equipment Corporation. It is currently available from Electronic Music Industries

  14. Policy and network regulation for the integration of distribution generation and renewables for electricity supply

    International Nuclear Information System (INIS)

    Ten Donkelaar, M.; Van Oostvoorn, F.

    2005-08-01

    This study has analysed the existing policy and regulation aimed at the integration of an increased share of Distributed Generation (DG) in electricity supply systems in the European Union. It illustrates the state of the art and progress in the development of support mechanisms and network regulation for large-scale integration of DG. Through a benchmark study a systematic comparison has been made of different DG support schemes and distribution network regulation in EU Member States to a predefined standard, the level playing field. This level playing field has been defined as the situation where energy markets, policy and regulation provide neutral incentives to central versus distributed generation, which results in an economically more efficient electricity supply to the consumer. In current regulation and policy a certain discrepancy can be noticed between the actual regulation and policy support systems in a number of countries, the medium to long term targets and the ideal situation described according to the level playing field objective. Policies towards DG and RES are now mainly aimed at removing short-term barriers, increasing the production share of DG/RES, but often ignoring the more complex barriers of integrating DG/RES that is created by the economic network regulation in current electricity markets

  15. Study on distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database

    Science.gov (United States)

    WANG, Qingrong; ZHU, Changfeng

    2017-06-01

    Integration of distributed heterogeneous data sources is the key issues under the big data applications. In this paper the strategy of variable precision is introduced to the concept lattice, and the one-to-one mapping mode of variable precision concept lattice and ontology concept lattice is constructed to produce the local ontology by constructing the variable precision concept lattice for each subsystem, and the distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database is proposed to draw support from the special relationship between concept lattice and ontology construction. Finally, based on the standard of main concept lattice of the existing heterogeneous database generated, a case study has been carried out in order to testify the feasibility and validity of this algorithm, and the differences between the main concept lattice and the standard concept lattice are compared. Analysis results show that this algorithm above-mentioned can automatically process the construction process of distributed concept lattice under the heterogeneous data sources.

  16. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  17. Hardware random number generator base on monostable multivibrators dedicated for distributed measurement and control systems

    Science.gov (United States)

    Czernik, Pawel

    2013-10-01

    The hardware random number generator based on the 74121 monostable multivibrators for applications in cryptographically secure distributed measurement and control systems with asymmetric resources was presented. This device was implemented on the basis of the physical electronic vibration generator in which the circuit is composed of two "loop" 74121 monostable multivibrators, D flip-flop and external clock signal source. The clock signal, witch control D flip-flop was generated by a computer on one of the parallel port pins. There was presented programmed the author's acquisition process of random data from the measuring system to a computer. The presented system was designed, builded and thoroughly tested in the term of cryptographic security in our laboratory, what there is the most important part of this publication. Real cryptographic security was tested based on the author's software and the software environment called RDieHarder. The obtained results was here presented and analyzed in detail with particular reference to the specificity of distributed measurement and control systems with asymmetric resources.

  18. Accelerated Electromechanical Modeling of a Distributed Internal Combustion Engine Generator Unit

    Directory of Open Access Journals (Sweden)

    Serhiy V. Bozhko

    2012-07-01

    Full Text Available Distributed generation with a combustion engine prime mover is still widely used to supply electric power in a variety of applications. These applications range from backup power supply systems and combined wind-diesel generation to providing power in places where grid connection is either technically impractical or financially uneconomic. Modelling of such systems as a whole is extremely difficult due to the long-time load profiles needed and the computational difficulty of including small time-constant electrical dynamics with large time-constant mechanical dynamics. This paper presents the development of accelerated, reduced-order models of a distributed internal combustions engine generator unit. Overall these models are shown to achieve a massive improvement in the computational time required for long-time simulations while also achieving an extremely high level of dynamic accuracy. It is demonstrated how these models are derived, used and verified against benchmark models created using established techniques. Throughout the paper the modelling set as a whole, including multi level detail, is presented, detailed and finally summarised into a crucial tool for general system investigation and multiple target optimisation.

  19. Evolving Distributed Generation Support Mechanisms: Case Studies from United States, Germany, United Kingdom, and Australia

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-14

    This report expands on a previous National Renewable Energy Laboratory (NREL) technical report (Lowder et al. 2015) that focused on the United States' unique approach to distributed generation photovoltaics (DGPV) support policies and business models. While the focus of that report was largely historical (i.e., detailing the policies and market developments that led to the growth of DGPV in the United States), this report looks forward, narrating recent changes to laws and regulations as well as the ongoing dialogues over how to incorporate distributed generation (DG) resources onto the electric grid. This report also broadens the scope of Lowder et al. (2015) to include additional countries and technologies. DGPV and storage are the principal technologies under consideration (owing to market readiness and deployment volumes), but the report also contemplates any generation resource that is (1) on the customer side of the meter, (2) used to, at least partly, offset a host's energy consumption, and/or (3) potentially available to provide grid support (e.g., through peak shaving and load shifting, ancillary services, and other means).

  20. Artificial Bee Colony Algorithm for Transient Performance Augmentation of Grid Connected Distributed Generation

    Science.gov (United States)

    Chatterjee, A.; Ghoshal, S. P.; Mukherjee, V.

    In this paper, a conventional thermal power system equipped with automatic voltage regulator, IEEE type dual input power system stabilizer (PSS) PSS3B and integral controlled automatic generation control loop is considered. A distributed generation (DG) system consisting of aqua electrolyzer, photovoltaic cells, diesel engine generator, and some other energy storage devices like flywheel energy storage system and battery energy storage system is modeled. This hybrid distributed system is connected to the grid. While integrating this DG with the onventional thermal power system, improved transient performance is noticed. Further improvement in the transient performance of this grid connected DG is observed with the usage of superconducting magnetic energy storage device. The different tunable parameters of the proposed hybrid power system model are optimized by artificial bee colony (ABC) algorithm. The optimal solutions offered by the ABC algorithm are compared with those offered by genetic algorithm (GA). It is also revealed that the optimizing performance of the ABC is better than the GA for this specific application.

  1. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  2. Generate networks with power-law and exponential-law distributed degrees: with applications in link prediction of tumor pathways

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-03-01

    Full Text Available In present study I proposed a method for generating biological networks based on power-law (p(x=x^(-a and exponential-law (p(x=e^(-ax distribution functions. Given the parameter of power-law or exponential-law distribution function, a, the algorithm generates an expected frequency distribution according to the given parameter, thereafter creates an adjacency matrix in which (practical frequency distribution of node degrees matches the expected frequency distribution. The results showed that power-law distribution function performs much better than exponential-law distribution function in generating networks. Using the revised algorithm, tumor related networks (pathways are simulated and predicted. The results prove that the algorithm is overall effective in predicting network links (14.6%-21.2%of correctly predicted links against 0.1%-3.4% of that for random assignments. Matlab codes of the algorithms are given also.

  3. Unscheduled load flow effect due to large variation in the distributed generation in a subtransmission network

    Science.gov (United States)

    Islam, Mujahidul

    A sustainable energy delivery infrastructure implies the safe and reliable accommodation of large scale penetration of renewable sources in the power grid. In this dissertation it is assumed there will be no significant change in the power transmission and distribution structure currently in place; except in the operating strategy and regulatory policy. That is to say, with the same old structure, the path towards unveiling a high penetration of switching power converters in the power system will be challenging. Some of the dimensions of this challenge are power quality degradation, frequent false trips due to power system imbalance, and losses due to a large neutral current. The ultimate result is the reduced life of many power distribution components - transformers, switches and sophisticated loads. Numerous ancillary services are being developed and offered by the utility operators to mitigate these problems. These services will likely raise the system's operational cost, not only from the utility operators' end, but also reflected on the Independent System Operators and by the Regional Transmission Operators (RTO) due to an unforeseen backlash of frequent variation in the load-side generation or distributed generation. The North American transmission grid is an interconnected system similar to a large electrical circuit. This circuit was not planned but designed over 100 years. The natural laws of physics govern the power flow among loads and generators except where control mechanisms are installed. The control mechanism has not matured enough to withstand the high penetration of variable generators at uncontrolled distribution ends. Unlike a radial distribution system, mesh or loop networks can alleviate complex channels for real and reactive power flow. Significant variation in real power injection and absorption on the distribution side can emerge as a bias signal on the routing reactive power in some physical links or channels that are not distinguishable

  4. Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The recent growing diffusion of dispersed generation in low voltage (LV distribution networks is entailing new rules to make local generators participate in network stability. Consequently, national and international grid codes, which define the connection rules for stability and safety of electrical power systems, have been updated requiring distributed generators and electrical storage systems to supply stabilizing contributions. In this scenario, specific attention to the uncontrolled islanding issue has to be addressed since currently required anti-islanding protection systems, based on relays locally measuring voltage and frequency, could no longer be suitable. In this paper, the effects on the interface protection performance of different LV generators’ stabilizing functions are analysed. The study takes into account existing requirements, such as the generators’ active power regulation (according to the measured frequency and reactive power regulation (depending on the local measured voltage. In addition, the paper focuses on other stabilizing features under discussion, derived from the medium voltage (MV distribution network grid codes or proposed in the literature, such as fast voltage support (FVS and inertia emulation. Stabilizing functions have been reproduced in the DIgSILENT PowerFactory 2016 software environment, making use of its native programming language. Later, they are tested both alone and together, aiming to obtain a comprehensive analysis on their impact on the anti-islanding protection effectiveness. Through dynamic simulations in several network scenarios the paper demonstrates the detrimental impact that such stabilizing regulations may have on loss-of-main protection effectiveness, leading to an increased risk of unintentional islanding.

  5. Substantiating the Incurred but not Reported Reserve

    Directory of Open Access Journals (Sweden)

    Georgeta Vintilã

    2009-12-01

    Full Text Available In order to handle past and future liability taken by insurance contracts concluded, any insurance company must constitute and maintain technical reserves. Substantiating technical reserves is done through actuarial methods and its over-evaluation or under-evaluation influence solvency and financial performance of the insurance companies, in the sense of reducing solvency through over-evaluating reserves and, respectively, influencing profit (hence of outstanding tax through under-evaluating reserves. An important reserve for insurance companies is represented by the incurred but not reported reserve, as it allows the estimation of the liability the company may confront in the future, generated by events occurred in the past, which are not currently known in the present but will be reported in the future.

  6. A new algorithm for allocating multiple distributed generation units based on load centroid concept

    Directory of Open Access Journals (Sweden)

    A. Elmitwally

    2013-12-01

    Full Text Available Allocation of distributed generation (DG units is commonly formulated as a constrained nonlinear optimization problem solved by complex iterative mathematical or heuristic techniques. Heavy computational burden, very long solution time, probable divergence and possibility of getting only a sub-optimal solution are some serious drawbacks. In this paper, a systematic simple approach to allocate multiple DG units in radial/meshed distribution network is proposed. The concept of equivalent load is introduced and extended to identify the load centroid precisely with two methods. A performance index that combines the power system real power loss and average node voltage is defined. Based on load centroid and performance index, a straightforward algorithm for sizing and locating multiple DG units is developed. The proposed technique is applied to radial and meshed test systems. Results confirm stability, integrity and efficacy of the proposed approach.

  7. A distributed process monitoring system for nuclear powered electrical generating facilities

    International Nuclear Information System (INIS)

    Sweney, A.D.

    1991-01-01

    Duke Power Company is one of the largest investor owned utilities in the United States, with a service area of 20,000 square miles extending across North and South Carolina. Oconee Nuclear Station, one of Duke Power's three nuclear generating facilities, is a three unit pressurized water reactor site and has, over the course of its 15-year operating lifetime, effectively run out of plant processing capability. From a severely overcrowded cable spread room to an aging overtaxed Operator Aid Computer, the problems with trying to add additional process variables to the present centralized Operator Aid Computer are almost insurmountable obstacles. This paper reports that for this reason, and to realize the inherent benefits of a distributed process monitoring and control system, Oconee has embarked on a project to demonstrate the ability of a distributed system to perform in the nuclear power plant environment

  8. Integration of distributed plant process computer systems to nuclear power generation facilities

    International Nuclear Information System (INIS)

    Bogard, T.; Finlay, K.

    1996-01-01

    Many operating nuclear power generation facilities are replacing their plant process computer. Such replacement projects are driven by equipment obsolescence issues and associated objectives to improve plant operability, increase plant information access, improve man machine interface characteristics, and reduce operation and maintenance costs. This paper describes a few recently completed and on-going replacement projects with emphasis upon the application integrated distributed plant process computer systems. By presenting a few recent projects, the variations of distributed systems design show how various configurations can address needs for flexibility, open architecture, and integration of technological advancements in instrumentation and control technology. Architectural considerations for optimal integration of the plant process computer and plant process instrumentation ampersand control are evident from variations of design features

  9. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    Science.gov (United States)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; hide

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  10. CDFTBL: A statistical program for generating cumulative distribution functions from data

    International Nuclear Information System (INIS)

    Eslinger, P.W.

    1991-06-01

    This document describes the theory underlying the CDFTBL code and gives details for using the code. The CDFTBL code provides an automated tool for generating a statistical cumulative distribution function that describes a set of field data. The cumulative distribution function is written in the form of a table of probabilities, which can be used in a Monte Carlo computer code. A a specific application, CDFTBL can be used to analyze field data collected for parameters required by the PORMC computer code. Section 2.0 discusses the mathematical basis of the code. Section 3.0 discusses the code structure. Section 4.0 describes the free-format input command language, while Section 5.0 describes in detail the commands to run the program. Section 6.0 provides example program runs, and Section 7.0 provides references. The Appendix provides a program source listing. 11 refs., 2 figs., 19 tabs

  11. Multi-Objective Planning of Multi-Type Distributed Generation Considering Timing Characteristics and Environmental Benefits

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2014-09-01

    Full Text Available This paper presents a novel approach to multi-type distributed generation (DG planning based on the analysis of investment and income brought by grid-connected DG. Firstly, the timing characteristics of loads and DG outputs, as well as the environmental benefits of DG are analyzed. Then, on the basis of the classification of daily load sequences, the typical daily load sequence and the typical daily output sequence of DG per unit capacity can be computed. The proposed planning model takes the location, capacity and types of DG into account as optimization variables. An improved adaptive genetic algorithm is proposed to solve the model. Case studies have been carried out on the IEEE 14-node distribution system to verify the feasibility and effectiveness of the proposed method and model.

  12. Generation of Length Distribution, Length Diagram, Fibrogram, and Statistical Characteristics by Weight of Cotton Blends

    Directory of Open Access Journals (Sweden)

    B. Azzouz

    2007-01-01

    Full Text Available The textile fibre mixture as a multicomponent blend of variable fibres imposes regarding the proper method to predict the characteristics of the final blend. The length diagram and the fibrogram of cotton are generated. Then the length distribution, the length diagram, and the fibrogram of a blend of different categories of cotton are determined. The length distributions by weight of five different categories of cotton (Egyptian, USA (Pima, Brazilian, USA (Upland, and Uzbekistani are measured by AFIS. From these distributions, the length distribution, the length diagram, and the fibrogram by weight of four binary blends are expressed. The length parameters of these cotton blends are calculated and their variations are plotted against the mass fraction x of one component in the blend .These calculated parameters are compared to those of real blends. Finally, the selection of the optimal blends using the linear programming method, based on the hypothesis that the cotton blend parameters vary linearly in function of the components rations, is proved insufficient.

  13. The challenges of connecting generation to distribution systems: a utility perspective

    International Nuclear Information System (INIS)

    Kropp, F.

    2004-01-01

    'Full text:' This presentation discusses the technical, financial and regulatory barriers to connecting generation to Distribution Systems in Ontario. Case studies will be used to provide examples of the operational and technical challenges that impact the utility as well as a discussion on the site-specific advantages and disadvantages (to the utility) of the generation connections. These studies will include discussions on the problems and lessons learned with respect to the overall project implementation and the contractual agreements. The case studies will be complemented by an explanation of the financial constraints (both short term and long term) associated with the connections, and the regulatory issues that impact the financial recovery models including net and gross load billing. (author)

  14. Layer 1 VPN services in distributed next-generation SONET/SDH networks with inverse multiplexing

    Science.gov (United States)

    Ghani, N.; Muthalaly, M. V.; Benhaddou, D.; Alanqar, W.

    2006-05-01

    Advances in next-generation SONET/SDH along with GMPLS control architectures have enabled many new service provisioning capabilities. In particular, a key services paradigm is the emergent Layer 1 virtual private network (L1 VPN) framework, which allows multiple clients to utilize a common physical infrastructure and provision their own 'virtualized' circuit-switched networks. This precludes expensive infrastructure builds and increases resource utilization for carriers. Along these lines, a novel L1 VPN services resource management scheme for next-generation SONET/SDH networks is proposed that fully leverages advanced virtual concatenation and inverse multiplexing features. Additionally, both centralized and distributed GMPLS-based implementations are also tabled to support the proposed L1 VPN services model. Detailed performance analysis results are presented along with avenues for future research.

  15. Provision of operating reserves with distributed generation; Fornecimento de reservas operativas com geracao distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Francisco David Moya; Jannuzzi, Gilberto de Martino [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica; Silva, Luiz Carlos Pereira da [Universidade Estadual de Campinas (FEEC/UNICAMP), SP (Brazil). Fac. de Engenharia Eletrica e de Computacao

    2008-07-01

    Among the ancillary services, the operating reserves are important researching aspects, which deal with supplying ways and selling-buying prices. Currently, distributed generation (DG) rises as a new participant in providing ancillary services, therefore, it is of great importance in operating reserves subject. This work shows some advantages and technical drawbacks by using DG when operating reserves are supplied. Different sceneries were computed where the electric generation was performed in a centralized and non-centralized way respectively. A methodology for identifying the maximum DG, which can be allocated, is proposed; this maximum level can be assessed without carrying out a negative impact in the network. Diverse DG technologies, which present better performance in supplying such reserves, are also presented. (author)

  16. New method of analyzing wave processes in pulse generators based on lines with distributed parameters

    CERN Document Server

    Gordeev, V S

    2001-01-01

    A new method of theoretical analysis of wave processes in high-current pulse generators through the relations between integral values reflecting regularities of energy transfer in ideal lines with distributed parameters is described. The use of the method developed considerably simplifies the procedure of searching for an optimal - from the point of view of getting maximal efficiency - relation of impedances for pulse facilities on stepped lines including those with arbitrary number of cascades. High efficiency of the method is demonstrated by several examples.

  17. A novel harmonic control approach of distributed generation converters in a weak microgrid

    DEFF Research Database (Denmark)

    Ding, Guangqian; Gao, Feng; Tang, Yi

    2014-01-01

    This paper proposes a novel approach to compensate the voltage at the point of common coupling (PCC) and the grid line current harmonics through a distributed generation (DG) interfacing converter in a weak microgrid. In the proposed approach, the PCC voltage is indirectly derived from the measured...... be connected to the same PCC in parallel with the same compensation function. Furthermore, the proposed control approach can be extended to a multi-bus microgrid, where the line impedance cannot be ignored. Matlab simulations and experimental results are presented to show the effectiveness of the proposed...

  18. Mathematical Model and Stability Analysis of Inverter-Based Distributed Generator

    Directory of Open Access Journals (Sweden)

    Alireza Khadem Abbasi

    2013-01-01

    Full Text Available This paper presents a mathematical (small-signal model of an electronically interfaced distributed generator (DG by considering the effect of voltage and frequency variations of the prime source. Dynamic equations are found by linearization about an operating point. In this study, the dynamic of DC part of the interface is included in the model. The stability analysis shows with proper selection of system parameters; the system is stable during steady-state and dynamic situations, and oscillatory modes are well damped. The proposed model is useful to study stability analysis of a standalone DG or a Microgrid.

  19. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  20. Ion energy distributions from laser-generated plasmas at two different intensities

    Science.gov (United States)

    Ceccio, Giovanni; Torrisi, Lorenzo; Okamura, Masahiro; Kanesue, Takeshi; Ikeda, Shunsuke

    2018-01-01

    Laser-generated non-equilibrium plasmas were analyzed at Brookhaven National Laboratory (NY, USA) and MIFT Messina University (Italy). Two laser intensities of 1012 W/cm2 and 109 W/cm2, have been employed to irradiate Al and Al with Au coating targets in high vacuum conditions. Ion energy distributions were obtained using electrostatic analyzers coupled with ion collectors. Time of flight measurements were performed by changing the laser irradiation conditions. The study was carried out to provide optimum keV ions injection into post acceleration systems. Possible applications will be presented.

  1. Influence of Resolution of the Input Data on Distributed Generation Integration Studies

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Sera, Dezso; Iov, Florin

    2014-01-01

    One of the main issues concerning large penetration of the renewable energy based generators on the distribution network is related to the voltage variations due to intermittent character of the solar irradiance and wind. The actual power quality standards provide only general information regarding...... the evaluation procedure of the voltage fluctuations and no directions regarding the sampling frequency of the data used. As a consequence, most of the studies neglect effect of the solar irradiance and wind speed in fast changing conditions on the utility grid. This work proposes a methodology to evaluate...

  2. Multi-port isolated LLC resonant converter for distributed energy generation with energy storage

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Zhang, Zhe; Ouyang, Ziwei

    2017-01-01

    Distributed energy generation systems with energy storage and microgrids have attracted increasing research interest in recent years. Therefore, multi-ports dc-dc converters have gained more interest. However, when integrating into multiple port converters, the power flow control and ports...... regulation increase in complexity. In this paper, an isolated multi-port bidirectional converter based on an LLC converter is presented. The converter operates as a dc transformer at a fixed switching frequency and duty cycle without any control loop. The resonant tanks are designed to ensure soft...

  3. Fuzzy Logic based Coordinated Control of Battery Energy Storage System and Dispatchable Distributed Generation for Microgrid

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Chengshan

    2015-01-01

    Microgrid is an efficient solution to integraterenewable energy sources (RES) into power systems. Inorder to deal with the intermittent characteristics of therenewable energy based distributed generation (DG) units,a fuzzy-logic based coordinated control strategy of thebattery energy storage system...... (BESS) and dispatchableDG units is proposed in this paper for the microgridmanagement system (MMS). In the proposed coordinatedcontrol strategy, the BESS is used to mitigate the activepower exchange at the point of common coupling of themicrogrid for the grid-connected operation, and is used forthe...... frequency control for the island operation. Theeffectiveness of the proposed control strategy was verifiedby case studies using DIgSILENT/PowerFactroy....

  4. Geographically determined Interactions of Distributed Generation, Consumption and the Transmission Network in the Case of Denmark

    DEFF Research Database (Denmark)

    Möller, Bernd

    2002-01-01

    . At some times electricity has to be exported to neighbouring countries at market prices pro-bably lower than the costs of generation. To match production and consumption in the future, and at the same time maintain a good economy, alternative regulation instruments have to be found. These could consist...... with the geographical distribution of electricity and district heat con-sumption. This paper presents a methodology for modelling the geographically determined interac-tions between local producers and consumption. The country has been divided into about 100 zones, for which hourly balances have been calculated...... electricity markets....

  5. A data based random number generator for a multivariate distribution (using stochastic interpolation)

    Science.gov (United States)

    Thompson, J. R.; Taylor, M. S.

    1982-01-01

    Let X be a K-dimensional random variable serving as input for a system with output Y (not necessarily of dimension k). given X, an outcome Y or a distribution of outcomes G(Y/X) may be obtained either explicitly or implicity. The situation is considered in which there is a real world data set X sub j sub = 1 (n) and a means of simulating an outcome Y. A method for empirical random number generation based on the sample of observations of the random variable X without estimating the underlying density is discussed.

  6. A Cost to Benefit Analysis of a Next Generation Electric Power Distribution System

    Science.gov (United States)

    Raman, Apurva

    This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast protection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs. Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this reflects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a

  7. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off

  8. The research agenda on social acceptance of distributed generation in smart grids: renewable as common pool resources

    NARCIS (Netherlands)

    Wolsink, M.

    2012-01-01

    The rapid developing literature on ‘smart grids’ suggests that these will facilitate ‘distributed generation’ (DG) preferably from renewable sources. However, the current development of smart (micro)grids with substantial amount of DG ("DisGenMiGrids") suffers from a focus on mere ‘technology’.

  9. A UML profile for code generation of component based distributed systems

    International Nuclear Information System (INIS)

    Chiozzi, G.; Karban, R.; Andolfato, L.; Tejeda, A.

    2012-01-01

    A consistent and unambiguous implementation of code generation (model to text transformation) from UML (must rely on a well defined UML (Unified Modelling Language) profile, customizing UML for a particular application domain. Such a profile must have a solid foundation in a formally correct ontology, formalizing the concepts and their relations in the specific domain, in order to avoid a maze or set of wildly created stereotypes. The paper describes a generic profile for the code generation of component based distributed systems for control applications, the process to distill the ontology and define the profile, and the strategy followed to implement the code generator. The main steps that take place iteratively include: defining the terms and relations with an ontology, mapping the ontology to the appropriate UML meta-classes, testing the profile by creating modelling examples, and generating the code. This has allowed us to work on the modelling of E-ELT (European Extremely Large Telescope) control system and instrumentation without knowing what infrastructure will be finally used

  10. Air quality impacts of projections of natural gas-fired distributed generation

    Science.gov (United States)

    Horne, Jeremy R.; Carreras-Sospedra, Marc; Dabdub, Donald; Lemar, Paul; Nopmongcol, Uarporn; Shah, Tejas; Yarwood, Greg; Young, David; Shaw, Stephanie L.; Knipping, Eladio M.

    2017-11-01

    This study assesses the potential impacts on emissions and air quality from the increased adoption of natural gas-fired distributed generation of electricity (DG), including displacement of power from central power generation, in the contiguous United States. The study includes four major tasks: (1) modeling of distributed generation market penetration; (2) modeling of central power generation systems; (3) modeling of spatially and temporally resolved emissions; and (4) photochemical grid modeling to evaluate the potential air quality impacts of increased DG penetration, which includes both power-only DG and combined heat and power (CHP) units, for 2030. Low and high DG penetration scenarios estimate the largest penetration of future DG units in three regions - New England, New York, and California. Projections of DG penetration in the contiguous United States estimate 6.3 GW and 24 GW of market adoption in 2030 for the low DG penetration and high DG penetration scenarios, respectively. High DG penetration (all of which is natural gas-fired) serves to offset 8 GW of new natural gas combined cycle (NGCC) units, and 19 GW of solar photovoltaic (PV) installations by 2030. In all scenarios, air quality in the central United States and the northwest remains unaffected as there is little to no DG penetration in those states. California and several states in the northeast are the most impacted by emissions from DG units. Peak increases in maximum daily 8-h average ozone concentrations exceed 5 ppb, which may impede attainment of ambient air quality standards. Overall, air quality impacts from DG vary greatly based on meteorological conditions, proximity to emissions sources, the number and type of DG installations, and the emissions factors used for DG units.

  11. Size distribution of chromate paint aerosol generated in a bench-scale spray booth.

    Science.gov (United States)

    Sabty-Daily, Rania A; Hinds, William C; Froines, John R

    2005-01-01

    Spray painters are potentially exposed to aerosols containing hexavalent chromium [Cr(VI)] via inhalation of chromate-based paint sprays. Evaluating the particle size distribution of a paint spray aerosol, and the variables that may affect this distribution, is necessary to determine the site and degree of respiratory deposition and the damage that may result from inhaled Cr(VI)-containing paint particles. This study examined the effect of spray gun atomization pressure, aerosol generation source and aerosol aging on the size distribution of chromate-based paint overspray aerosols generated in a bench-scale paint spray booth. The study also determined the effect of particle bounce inside a Marple personal cascade impactor on measured size distributions of paint spray aerosols. Marple personal cascade impactors with a modified inlet were used for sample collection. The data indicated that paint particle bounce did not occur inside the cascade impactors sufficiently to affect size distribution when using uncoated stainless steel or PVC substrate sampling media. A decrease in paint aerosol mass median aerodynamic diameter (MMAD) from 8.2 to 7.0 mum was observed as gun atomization pressure increased from 6 to 10 psi. Overspray aerosols were sampled at two locations in the spray booth. A downstream sampling position simulated the exposure of a worker standing between the painted surface and exhaust, a situation encountered in booths with multiple workers. The measured mean MMAD was 7.2 mum. The distance between the painted surface and sampler was varied to sample oversprays of varying ages between 2.8 and 7.7 s. Age was not a significant factor for determining MMAD. Overspray was sampled at a 90 degrees position to simulate a worker standing in front of the surface being painted with air flowing to the worker's side, a common situation in field applications. The resulting overspray MMAD averaged 5.9 mum. Direct-spray aerosols were sampled at ages from 5.3 to 11.7 s

  12. Application Status and Problem Investigation of Distributed Generation in China: The Case of Natural Gas, Solar and Wind Resources

    Directory of Open Access Journals (Sweden)

    Tian-tian Feng

    2017-06-01

    Full Text Available The development of distributed energy systems in China is one of the important measures to promote the revolution for energy production and its utilization patterns. First of all, we analyze the present application status of China’s distributed generation from three major types: natural gas, photovoltaic, and distributed wind. Secondly, based on the analysis of the project overview, project scale, and project effect in three patterns of distributed generation, we summarize the policy deficiencies and development obstacles. Finally, aiming to promote the development of distributed energy in China, we propose some relevant policies corresponding to countermeasures on the problems existing in the development process of China’s distributed generation of natural gas, photovoltaic, and wind power.

  13. Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks

    Science.gov (United States)

    Li, C.; Miller, J.; Wang, J.; Koley, S. S.; Katz, J.

    2017-10-01

    This laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2-10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2-4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about -2.1, and for larger droplets, the power decreases well below -3. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from ˜1 mm to 46 and 14 µm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.

  14. A Decentralized Framework for Real-Time Energy Trading in Distribution Networks with Load and Generation Uncertainty

    OpenAIRE

    Bahrami, Shahab; Amini, M. Hadi

    2017-01-01

    The proliferation of small-scale renewable generators and price-responsive loads makes it a challenge for distribution network operators (DNOs) to schedule the controllable loads of the load aggregators and the generation of the generators in real-time. Additionally, the high computational burden and violation of the entities' (i.e., load aggregators' and generators') privacy make a centralized framework impractical. In this paper, we propose a decentralized energy trading algorithm that can ...

  15. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    Science.gov (United States)

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  16. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    Directory of Open Access Journals (Sweden)

    Warid Warid

    Full Text Available This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF formulation was converted into a crisp OPF in a successive linear programming (SLP framework and solved using an efficient interior point method (IPM. To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  17. Paradigm shift in urban energy systems through distributed generation: Methods and models

    Energy Technology Data Exchange (ETDEWEB)

    Manfren, Massimiliano; Caputo, Paola; Costa, Gaia [Building Environment Science and Technology Department, Politecnico di Milano, Via Bonardi 3, 20133 Milano (Italy)

    2011-04-15

    The path towards energy sustainability is commonly referred to the incremental adoption of available technologies, practices and policies that may help to decrease the environmental impact of energy sector, while providing an adequate standard of energy services. The evaluation of trade-offs among technologies, practices and policies for the mitigation of environmental problems related to energy resources depletion requires a deep knowledge of the local and global effects of the proposed solutions. While attempting to calculate such effects for a large complex system like a city, an advanced multidisciplinary approach is needed to overcome difficulties in modeling correctly real phenomena while maintaining computational transparency, reliability, interoperability and efficiency across different levels of analysis. Further, a methodology that rationally integrates different computational models and techniques is necessary to enable collaborative research in the field of optimization of energy efficiency strategies and integration of renewable energy systems in urban areas. For these reasons, a selection of currently available models for distributed generation planning and design is presented and analyzed in the perspective of gathering their capabilities in an optimization framework to support a paradigm shift in urban energy systems. This framework embodies the main concepts of a local energy management system and adopts a multicriteria perspective to determine optimal solutions for providing energy services through distributed generation. (author)

  18. A Study on Applicability of Distributed Energy Generation, Storage and Consumption within Small Scale Facilities

    Directory of Open Access Journals (Sweden)

    Jesús Rodríguez-Molina

    2016-09-01

    Full Text Available Distributed generation and storage of energy, conceived as one of the prominent applications of the Smart Grid, has become one of the most popular ways for generation and usage of electricity. Not only does it offer environmental advantages and a more decentralized way to produce energy, but it also enables former consumers to become producers (thus turning them into prosumers. Alternatively, regular power production and consumption is still widely used in most of the world. Unfortunately, accurate business models representations and descriptive use cases for small scale facilitates, either involved in distributed energy or not, have not been provided in a descriptive enough manner. What is more, the possibilities that electricity trade and its storage and consumption activities offer for small users to obtain profits are yet to be addressed and offered to the research community in a thorough manner, so that small consumers will use them to their advantage. This paper puts forward a study on four different business models for small scale facilities and offers an economical study on how they can be deployed as a way to offer profitability for end users and new companies, while at the same time showing the required technological background to have them implemented.

  19. Wolf pack hunting strategy for automatic generation control of an islanding smart distribution network

    International Nuclear Information System (INIS)

    Xi, Lei; Zhang, Zeyu; Yang, Bo; Huang, Linni; Yu, Tao

    2016-01-01

    Highlights: • A mixed homogeneous and heterogeneous multi-agent based wolf pack hunting (WPH) method is proposed. • WPH can effectively handle the ever-increasing penetration of renewable energy in smart grid. • An AGC power dispatch, coordinated control, and electric power autonomy of an ISDN is achieved. - Abstract: As the conventional centralized automatic generation control (AGC) is inadequate to handle the ever-increasing penetration of renewable energy and the requirement of plug-and-play of smart grid, this paper proposes a mixed homogeneous and heterogeneous multi-agent based wolf pack hunting (WPH) strategy to achieve a fast AGC power dispatch, optimal coordinated control, and electric power autonomy of an islanding smart distribution network (ISDN). A virtual consensus variable is employed to deal with the topology variation resulted from the excess of power limits and to achieve the plug-and-play of AGC units. Then an integrated objective of frequency deviation and short-term economic dispatch is developed, such that all units can maintain an optimal operation in the presence of load disturbances. Four case studies are undertaken to an ISDN with various distributed generations and microgrids. Simulation results demonstrate that WPH has a greater robustness and a faster dynamic optimization than that of conventional approaches, which can increase the utilization rate of the renewable energy and effectively resolve the coordination and electric power autonomy of ISDN.

  20. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques

    Directory of Open Access Journals (Sweden)

    Luis Fernando Grisales-Noreña

    2018-04-01

    Full Text Available The optimal location and sizing of distributed generation is a suitable option for improving the operation of electric systems. This paper proposes a parallel implementation of the Population-Based Incremental Learning (PBIL algorithm to locate distributed generators (DGs, and the use of Particle Swarm Optimization (PSO to define the size those devices. The resulting method is a master-slave hybrid approach based on both the parallel PBIL (PPBIL algorithm and the PSO, which reduces the computation time in comparison with other techniques commonly used to address this problem. Moreover, the new hybrid method also reduces the active power losses and improves the nodal voltage profiles. In order to verify the performance of the new method, test systems with 33 and 69 buses are implemented in Matlab, using Matpower, for evaluating multiple cases. Finally, the proposed method is contrasted with the Loss Sensitivity Factor (LSF, a Genetic Algorithm (GA and a Parallel Monte-Carlo algorithm. The results demonstrate that the proposed PPBIL-PSO method provides the best balance between processing time, voltage profiles and reduction of power losses.

  1. Effect of recovery time of fault current limiter on over current from distributed generator in micro grid after voltage sag

    Directory of Open Access Journals (Sweden)

    Daisuke Iioka

    2016-01-01

    Full Text Available This paper describes an effect of recovery time of fault current limiter on over current from a micro grid system which is interconnected to a power distribution system. We have assumed that the semi-conductor type fault current limiter is installed between the micro grid system with the synchronous generator and the power distribution system, measured the over current after a voltage sag occurrence in the power distribution system and a recovery of fault current limiter by experiments in our laboratory. Finally, it was found that the introduction of recovery time for fault current limiter after voltage sag is useful for suppressing the over current from the distributed generator.

  2. Distributed Modelling of Stormflow Generation: Assessing the Effect of Ground Cover

    Science.gov (United States)

    Jarihani, B.; Sidle, R. C.; Roth, C. H.; Bartley, R.; Wilkinson, S. N.

    2017-12-01

    Understanding the effects of grazing management and land cover changes on surface hydrology is important for water resources and land management. A distributed hydrological modelling platform, wflow, (that was developed as part of Deltares's OpenStreams project) is used to assess the effect of land management practices on runoff generation processes. The model was applied to Weany Creek, a small catchment (13.6 km2) of the Burdekin Basin, North Australia, which is being studied to understand sources of sediment and nutrients to the Great Barrier Reef. Satellite and drone-based ground cover data, high resolution topography from LiDAR, soil properties, and distributed rainfall data were used to parameterise the model. Wflow was used to predict total runoff, peak runoff, time of rise, and lag time for several events of varying magnitudes and antecedent moisture conditions. A nested approach was employed to calibrate the model by using recorded flow hydrographs at three scales: (1) a hillslope sub-catchment: (2) a gullied sub-catchment; and the 13.6 km2 catchment outlet. Model performance was evaluated by comparing observed and predicted stormflow hydrograph attributes using the Nash Sutcliffe efficiency metric. By using a nested approach, spatiotemporal patterns of overland flow occurrence across the catchment can also be evaluated. The results show that a process-based distributed model can be calibrated to simulate spatial and temporal patterns of runoff generation processes, to help identify dominant processes which may be addressed by land management to improve rainfall retention. The model will be used to assess the effects of ground cover changes due to management practices in grazed lands on storm runoff.

  3. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.; Nathanson, D. [Ztek Corp., Waltham, MA (United States); Bradshaw, D.T. [Tennessee Valley Authority, Chattanooga, TN (United States)] [and others

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  4. A Three-Phase Microgrid Restoration Model Considering Unbalanced Operation of Distributed Generation

    International Nuclear Information System (INIS)

    Wang, Zeyu; Wang, Jianhui; Chen, Chen

    2016-01-01

    Recent severe outages highlight the urgency of improving grid resiliency in the U.S. Microgrid formation schemes are proposed to restore critical loads after outages occur. Most distribution networks have unbalanced configurations that are not represented in sufficient detail by single-phase models. This study provides a microgrid formation plan that adopts a three-phase network model to represent unbalanced distribution networks. The problem formulation has a quadratic objective function with mixed-integer linear constraints. The three-phase network model enables us to examine the three-phase power outputs of distributed generators (DGs), preventing unbalanced operation that might trip DGs. Because the DG unbalanced operation constraint is non-convex, an iterative process is presented that checks whether the unbalanced operation limits for DGs are satisfied after each iteration of optimization. We also develop a relatively conservative linear approximation on the unbalanced operation constraint to handle larger networks. Compared with the iterative solution process, the conservative linear approximation is able to accelerate the solution process at the cost of sacrificing optimality to a limited extent. Simulation in the IEEE 34 node and IEEE 123 test feeders indicate that the proposed method yields more practical microgrid formations results. In addition, this paper explores the coordinated operation of DGs and energy storage (ES) installations. The unbalanced three-phase outputs of ESs combined with the relatively balanced outputs of DGs could supply unbalanced loads. In conclusion, the case study also validates the DG-ES coordination.

  5. Instabilities and Turbulence Generation by Pick-Up Ion Distributions in the Outer Heliosheath

    Science.gov (United States)

    Weichman, K.; Roytershteyn, V.; Delzanno, G. L.; Pogorelov, N.

    2017-12-01

    Pick-up ions (PUIs) play a significant role in the dynamics of the heliosphere. One problem that has attracted significant attention is the stability of ring-like distributions of PUIs and the electromagnetic fluctuations that could be generated by PUI distributions. For example, PUI stability is relevant to theories attempting to identify the origins of the IBEX ribbon. PUIs have previously been investigated by linear stability analysis of model (e.g. Gaussian) rings and corresponding computer simulations. The majority of these simulations utilized particle-in-cell methods which suffer from accuracy limitations imposed by the statistical noise associated with representing the plasma by a relatively small number of computational particles. In this work, we utilize highly accurate spectral Vlasov simulations conducted using the fully kinetic implicit code SPS (Spectral Plasma Solver) to investigate the PUI distributions inferred from a global heliospheric model (Heerikhuisen et al., 2016). Results are compared with those obtained by hybrid and fully kinetic particle-in-cell methods.

  6. Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks.

    Science.gov (United States)

    Zhao, Youxuan; Li, Feilong; Cao, Peng; Liu, Yaolu; Zhang, Jianyu; Fu, Shaoyun; Zhang, Jun; Hu, Ning

    2017-08-01

    Since the identification of micro-cracks in engineering materials is very valuable in understanding the initial and slight changes in mechanical properties of materials under complex working environments, numerical simulations on the propagation of the low frequency S 0 Lamb wave in thin plates with randomly distributed micro-cracks were performed to study the behavior of nonlinear Lamb waves. The results showed that while the influence of the randomly distributed micro-cracks on the phase velocity of the low frequency S 0 fundamental waves could be neglected, significant ultrasonic nonlinear effects caused by the randomly distributed micro-cracks was discovered, which mainly presented as a second harmonic generation. By using a Monte Carlo simulation method, we found that the acoustic nonlinear parameter increased linearly with the micro-crack density and the size of micro-crack zone, and it was also related to the excitation frequency and friction coefficient of the micro-crack surfaces. In addition, it was found that the nonlinear effect of waves reflected by the micro-cracks was more noticeable than that of the transmitted waves. This study theoretically reveals that the low frequency S 0 mode of Lamb waves can be used as the fundamental waves to quantitatively identify micro-cracks in thin plates. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Environmental Scenario Generator (ESG: a distributed environmental data archive analysis tool

    Directory of Open Access Journals (Sweden)

    E A Kihn

    2006-01-01

    Full Text Available The Environmental Scenario Generator (ESG is a network distributed software system designed to allow a user to interact with archives of environmental data for the purpose of scenario extraction, data analysis and integration with existing models that require environmental input. The ESG uses fuzzy-logic based search tools to allow a user to look for specific environmental scenarios in vast archives by specifying the search in human linguistic terms. For example, the user can specify a scenario such as a "cloud free week" or "high winds and low pressure" and then search relevant archives available across the network to get a list of matching events. The ESG hooks to existing archives of data by providing a simple communication framework and an efficient data model for exchanging data. Once data has been delivered by the distributed archives in the ESG data model, it can easily be accessed by the visualization, integration and analysis components to meet specific user requests. The ESG implementation provides a framework which can be taken as a pattern applicable to other distributed archive systems.

  8. Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers.

    Science.gov (United States)

    Honjo, Toshimori; Uchida, Atsushi; Amano, Kazuya; Hirano, Kunihito; Someya, Hiroyuki; Okumura, Haruka; Yoshimura, Kazuyuki; Davis, Peter; Tokura, Yasuhiro

    2009-05-25

    A high speed physical random bit generator is applied for the first time to a gigahertz clocked quantum key distribution system. Random phase-modulation in a differential-phase-shift quantum key distribution (DPS-QKD) system is performed using a 1-Gbps random bit signal which is generated by a physical random bit generator with chaotic semiconductor lasers. Stable operation is demonstrated for over one hour, and sifted keys are successfully generated at a rate of 9.0 kbps with a quantum bit error rate of 3.2% after 25-km fiber transmission.

  9. Improved Side Information Generation for Distributed Video Coding by Exploiting Spatial and Temporal Correlations

    Directory of Open Access Journals (Sweden)

    Ye Shuiming

    2009-01-01

    Full Text Available Distributed video coding (DVC is a video coding paradigm allowing low complexity encoding for emerging applications such as wireless video surveillance. Side information (SI generation is a key function in the DVC decoder, and plays a key-role in determining the performance of the codec. This paper proposes an improved SI generation for DVC, which exploits both spatial and temporal correlations in the sequences. Partially decoded Wyner-Ziv (WZ frames, based on initial SI by motion compensated temporal interpolation, are exploited to improve the performance of the whole SI generation. More specifically, an enhanced temporal frame interpolation is proposed, including motion vector refinement and smoothing, optimal compensation mode selection, and a new matching criterion for motion estimation. The improved SI technique is also applied to a new hybrid spatial and temporal error concealment scheme to conceal errors in WZ frames. Simulation results show that the proposed scheme can achieve up to 1.0 dB improvement in rate distortion performance in WZ frames for video with high motion, when compared to state-of-the-art DVC. In addition, both the objective and perceptual qualities of the corrupted sequences are significantly improved by the proposed hybrid error concealment scheme, outperforming both spatial and temporal concealments alone.

  10. CRAB3: Establishing a new generation of services for distributed analysis at CMS

    Science.gov (United States)

    Cinquilli, M.; Spiga, D.; Grandi, C.; Hernàndez, J. M.; Konstantinov, P.; Mascheroni, M.; Riahi, H.; Vaandering, E.

    2012-12-01

    In CMS Computing the highest priorities for analysis tools are the improvement of the end users’ ability to produce and publish reliable samples and analysis results as well as a transition to a sustainable development and operations model. To achieve these goals CMS decided to incorporate analysis processing into the same framework as data and simulation processing. This strategy foresees that all workload tools (TierO, Tier1, production, analysis) share a common core with long term maintainability as well as the standardization of the operator interfaces. The re-engineered analysis workload manager, called CRAB3, makes use of newer technologies, such as RESTFul based web services and NoSQL Databases, aiming to increase the scalability and reliability of the system. As opposed to CRAB2, in CRAB3 all work is centrally injected and managed in a global queue. A pool of agents, which can be geographically distributed, consumes work from the central services serving the user tasks. The new architecture of CRAB substantially changes the deployment model and operations activities. In this paper we present the implementation of CRAB3, emphasizing how the new architecture improves the workflow automation and simplifies maintainability. In particular, we will highlight the impact of the new design on daily operations.

  11. CRAB3: Establishing a new generation of services for distributed analysis at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Cinquilli, M. [CERN; Spiga, D. [CERN; Grandi, C. [INFN, Bologna; Hernandez, J. M. [Madrid, CIEMAT; Konstantinov, P. [CERN; Mascheroni, M. [CERN; Riahi, H. [INFN, Perugia; Vaandering, E. [Fermilab

    2012-01-01

    In CMS Computing the highest priorities for analysis tools are the improvement of the end users ability to produce and publish reliable samples and analysis results as well as a transition to a sustainable development and operations model. To achieve these goals CMS decided to incorporate analysis processing into the same framework as data and simulation processing. This strategy foresees that all workload tools (TierO, Tier1, production, analysis) share a common core with long term maintainability as well as the standardization of the operator interfaces. The re-engineered analysis workload manager, called CRAB3, makes use of newer technologies, such as RESTFul based web services and NoSQL Databases, aiming to increase the scalability and reliability of the system. As opposed to CRAB2, in CRAB3 all work is centrally injected and managed in a global queue. A pool of agents, which can be geographically distributed, consumes work from the central services serving the user tasks. The new architecture of CRAB substantially changes the deployment model and operations activities. In this paper we present the implementation of CRAB3, emphasizing how the new architecture improves the workflow automation and simplifies maintainability. In particular, we will highlight the impact of the new design on daily operations.

  12. CRAB3: Establishing a new generation of services for distributed analysis at CMS

    International Nuclear Information System (INIS)

    Cinquilli, M; Spiga, D; Konstantinov, P; Mascheroni, M; Grandi, C; Hernàndez, J M; Riahi, H; Vaandering, E

    2012-01-01

    In CMS Computing the highest priorities for analysis tools are the improvement of the end users’ ability to produce and publish reliable samples and analysis results as well as a transition to a sustainable development and operations model. To achieve these goals CMS decided to incorporate analysis processing into the same framework as data and simulation processing. This strategy foresees that all workload tools (TierO, Tier1, production, analysis) share a common core with long term maintainability as well as the standardization of the operator interfaces. The re-engineered analysis workload manager, called CRAB3, makes use of newer technologies, such as RESTFul based web services and NoSQL Databases, aiming to increase the scalability and reliability of the system. As opposed to CRAB2, in CRAB3 all work is centrally injected and managed in a global queue. A pool of agents, which can be geographically distributed, consumes work from the central services serving the user tasks. The new architecture of CRAB substantially changes the deployment model and operations activities. In this paper we present the implementation of CRAB3, emphasizing how the new architecture improves the workflow automation and simplifies maintainability. In particular, we will highlight the impact of the new design on daily operations.

  13. 77 FR 39452 - Substantial Business Activities; Correction

    Science.gov (United States)

    2012-07-03

    ... Regulations Branch, Legal Processing Division, Associate Chief Counsel (Procedure and Administration). [FR Doc... Substantial Business Activities; Correction AGENCY: Internal Revenue Service (IRS), Treasury. ACTION... whether a foreign corporation has substantial business activities in a foreign country. FOR FURTHER...

  14. Siting and sizing of distributed generators based on improved simulated annealing particle swarm optimization.

    Science.gov (United States)

    Su, Hongsheng

    2017-12-18

    Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.

  15. Impact evaluation of distributed generation on distribution networks due to reclosing operations; Avaliacao do impacto de geracao distribuida em sistemas de distribuicao devido a operacoes de religamento

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Carlos Frederico Meschini; Kagan, Nelson [Universidade de Sao Paulo (ENERQ/USP), SP (Brazil). Centro de Estudos em Regulacao e Qualidade de Energia], Emails: cfmalmeida@usp.br, nelsonk@pea.usp.br; Arefifar, Seyed Ali; Xu, Wilsun [University of Alberta (Canada)], Emails: aefifar@ualberta.ca, wxu@ualberta.ca

    2010-10-15

    This paper investigates the impact of Distributed Generators (DG) re-closing inrush current on the power distribution system. The current is compared with the fault current of the supply system to determine if an asynchronous reclosing of DG will affect the power distribution system. For this purpose, a model of a power distribution feeder has been developed using PSCAD/EMTP and several simulations were carried out varying the size of the DG. Finally an analytical formula is developed to determine the maximum DG size that can be connected to the system without leading to excessive synchronization current for the utility. (author)

  16. Optimization of the Laser Hardening Process by Adapting the Intensity Distribution to Generate a Top-hat Temperature Distribution Using Freeform Optics

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2017-06-01

    Full Text Available Laser hardening is a surface hardening process which enables high quality results due to the controllability of the energy input. The hardened area is determined by the heat distribution caused by the intensity profile of the laser beam. However, commonly used top-hat laser beams do not provide an ideal temperature profile. Therefore, in this paper the beam profile, and thus the temperature profile, is optimized using freeform optics. The intensity distribution is modified to generate a top-hat temperature profile on the surface. The results of laser hardening with the optimized distribution are thereupon compared with results using a top-hat intensity distribution.

  17. Impact of protection settings of the distributed generation frequency under 1MW in the national electric system

    International Nuclear Information System (INIS)

    Alpizar Chavarria, Oscar

    2013-01-01

    A literature review is conducted to understand the distributed generation, the reason for the introduction into modern power systems and other distributed generation technologies based on renewable energies that have been installed around the country. The frequency protections of distributed generation equipment under 1MW are studied according to international standards like IEEE-1547 and specifications of equipment manufacturers. The influence of the recommended international standards settings are investigated for systems of distributed generation, the performance in frequency that have presented under some frequency perturbation, as well as the influence that can have on the national and regional electrical system, with different amounts of technologies included in the national system. The recommended settings are evaluated through simulations in PSSE program in the context of the behavior of the frequency in the national electric system [es

  18. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  19. Agent-based Decision Support System for the Third Generation Distributed Dynamic Decision-making (DDD-III) Simulator

    National Research Council Canada - National Science Library

    Meirina, Candra; Ruan, Sui; Yu, Feili; Zhu, Liang; Pattipati, Krishna R; Kleinman, David L

    2004-01-01

    ...) based on the third-generation distributed dynamic decision-making (DDD-III) simulator and contingency theory to increase the organizational cognitive capacity and to facilitate the processes of adaptation...

  20. On Stability of Sustainable Power Systems : Network Fault Response of Transmission Systems with Very High Penetration of Distributed Generation

    NARCIS (Netherlands)

    Boemer, J.

    2016-01-01

    Power systems are undergoing a historic structural and technological transformation. The increase of distributed generation (DG), recently mostly wind power park modules (WPPMs) and photovoltaic power park modules (PVPPMs), is already changing the way power systems are structured and operated.

  1. Stability analysis of transmission system with high penetration of distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Reza, M.

    2006-12-21

    Nowadays, interest in generating electricity using decentralized generators of relatively small scale ('distributed generation', DG) is increasing. This work deals with the impact of implementing DG on the transmission system transient stability, with the emphasis on a potential transition from a 'vertical power system' to a 'horizontal power system. A problem in power systems is maintaining synchronous operation of all (centralized) synchronous machines. This stability problem associated is called rotor angle stability. In this work, the impact of the DG implementation on this is investigated. The impact of DG levels on the system transient stability when the increasing DG level is followed by a reduction of centralized generators in service resulting in a 'vertical to horizontal' transformation of the power system is also investigated. Furthermore, a stochastic analysis is used to study the transient stability of the power systems. The results show that including the stochastic behavior of DG leads to a more complete and detailed view of the system performance. Finally, the situation when the power system is pushed towards a scenario, where DG penetration reaches a level that covers the total load of the original power system (100% DG level) is investigated. The research performed in this work indicates that from the transmission system stability point of view, if higher DG penetration levels are coming up, sufficient inertia and voltage support must be installed. Furthermore, one should be aware of the fact that the system behaves stochastically, especially with DG. To a certain extent regional balancing of power can be performed by local voltage control.

  2. 77 FR 34887 - Substantial Business Activities

    Science.gov (United States)

    2012-06-12

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BK85 Substantial Business Activities AGENCY: Internal... substantial business activities in a foreign country. These regulations affect certain domestic corporations... whether a foreign corporation has substantial business activities in a foreign country for purposes of...

  3. 24 CFR 902.79 - Substantial default.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Substantial default. 902.79 Section... PUBLIC HOUSING ASSESSMENT SYSTEM PHAS Incentives and Remedies § 902.79 Substantial default. (a) Events or conditions that constitute substantial default. The following events or conditions shall constitute...

  4. Spectral distribution of the efficiency of terahertz difference frequency generation upon collinear propagation of interacting waves in semiconductor crystals

    International Nuclear Information System (INIS)

    Orlov, Sergei N; Polivanov, Yurii N

    2007-01-01

    Dispersion phase matching curves and spectral distributions of the efficiency of difference frequency generation in the terahertz range are calculated for collinear propagation of interacting waves in zinc blende semiconductor crystals (ZnTe, CdTe, GaP, GaAs). The effect of the pump wavelength, the nonlinear crystal length and absorption in the terahertz range on the spectral distribution of the efficiency of difference frequency generation is analysed. (nonlinear optical phenomena)

  5. Intake-to-delivered-energy ratios for central station and distributed electricity generation in California

    International Nuclear Information System (INIS)

    Heath, Garvin A.; Nazaroff, William W.

    2007-01-01

    In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants - PM 2.5 , NO x and formaldehyde - directly emitted by five DG technologies - natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric

  6. Intake-to-delivered-energy ratios for central station and distributed electricity generation in California

    Science.gov (United States)

    Heath, Garvin A.; Nazaroff, William W.

    In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants—PM 2.5, NO x and formaldehyde—directly emitted by five DG technologies—natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric

  7. A Parallel Restoration for Black Start of Microgrids Considering Characteristics of Distributed Generations

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2017-12-01

    Full Text Available The black start capability is vital for microgrids, which can potentially improve the reliability of the power grid. This paper proposes a black start strategy for microgrids based on a parallel restoration strategy. Considering the characteristics of distributed generations (DGs, an evaluation model, which is used to assess the black start capability of DGs, is established by adopting the variation coefficient method. Thus, the DGs with good black start capability, which are selected by a diversity sequence method, are restored first in parallel under the constraints of DGs and network. During the selection process of recovery paths, line weight and node importance degree are proposed under the consideration of the node topological importance and the load importance as well as the backbone network restoration time. Therefore, the whole optimization of the reconstructed network is realized. Finally, the simulation results verify the feasibility and effectiveness of the strategy.

  8. Optimum siting and sizing of a large distributed generator in a mesh connected system

    Energy Technology Data Exchange (ETDEWEB)

    Elnashar, Mohab M.; El Shatshat, Ramadan; Salama, Magdy M.A. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario (Canada)

    2010-06-15

    This paper proposes a new approach to optimally determine the appropriate size and location of the distributed generator (DG) in a large mesh connected system. This paper presents a visual optimization approach in which the planner plays an important role in determining the optimal siting and sizing of the DG through the choice of the appropriate weight factors of the parameters included in the optimization technique according to the system deficiencies. Losses, voltage profile and short circuit level are used in the algorithm to determine the optimum sizes and locations of the DG. The short circuit level parameter is introduced to represent the protective device requirements in the selection of the size and location of the DG. The proposed technique has been tested on the IEEE 24 - bus mesh connected test system. The obtained results showed clearly that the optimal size and location can be simply determined through the proposed approach. (author)

  9. Rucio - The next generation large scale distributed system for ATLAS Data Management

    CERN Document Server

    Beermann, T; The ATLAS collaboration; Lassnig, M; Barisits, M; Vigne, R; Serfon, C; Stewart, G A; Goossens, L; Nairz, A; Molfetas, A

    2014-01-01

    Rucio is the next-generation Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address the ATLAS experiment scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 150 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio will deal with these issues by relying on new technologies to ensure system scalability, address new user requirements and employ a new automation framework to reduce operational overheads.

  10. A Control Architecture to Coordinate Distributed Generators and Active Power Filters Coexisting in a Microgrid

    DEFF Research Database (Denmark)

    Hashempour, Mohammad M.; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper proposes a control architecture of distributed generators (DGs) inverters and shunt active power filters (APFs) in microgrids to compensate voltage harmonics in a coordinated way. For this, a hierarchical control structure is proposed that includes two control levels. The primary (local......) control consists of power controllers, selective virtual impedance loops and proportional-resonant (PR) voltage/current controllers. The secondary (central) control manages the compensation level of voltage harmonic distortion of sensitive load bus (SLB). Compensation of SLB harmonics by control of DGs...... may cause excessive voltage harmonics at the terminal of one or more of DGs interface inverters and/or overloading of the inverters. After occurrence of each case, active power filter (APF) participates in harmonic compensation and consequently the compensation efforts of DGs decrease to avoid...

  11. The value of solar: Prices and output from distributed photovoltaic generation in South Australia

    International Nuclear Information System (INIS)

    Maine, Tony; Chapman, Paul

    2007-01-01

    The Australian government's Solar Cities Program sees great value in so-called 'cost-reflective pricing', code for valuing solar at pool prices. We test that proposition in South Australia where pool prices and insolation are often high and we show that there were few days in 2004 when the pool price gives better outcomes than if the solar is valued at the regulated and fixed, so-called standing contract price. We also find that the illustrative day used in the Solar Cities Program literature to promote the notion of cost-reflective pricing is highly atypical. Finally, we consider ways in which the incentive to install distributed photovoltaic generation might be improved

  12. Hierarchical Coordinated Control of Distributed Generators and Active Power Filters to Enhance Power Quality of Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Hashempour, Mohammad M.; Guerrero, Josep M.

    2014-01-01

    This paper addresses the coordinated control of distributed generators (DGs) inverters and active power filters (APFs) to compensate voltage harmonics in microgrids. For this, a hierarchical control system is proposed to mitigate voltage harmonic distortion. The hierarchical control structure...... includes two control levels: primary control and secondary control. Primary control consists of power controllers, selective virtual impedance loops and proportional-resonant (PR) voltage/current controllers. Secondary control manages the compensation of voltage harmonic distortion of sensitive load bus...... (SLB). Compensation of SLB harmonics by control of DGs may cause excessive voltage harmonics at the terminal of one or more of DGs interface inverters and/or overloading of the inverters. After occurrence of each of these cases, active power filter (APF) participates in harmonic compensation...

  13. Flexible voltage support control for three-phase distributed generation inverters under grid fault

    DEFF Research Database (Denmark)

    Camacho, Antonio; Castilla, Miguel; Miret, Jaume

    2013-01-01

    connected inverters is proposed. In three phase balanced voltage sags, the inverter should inject reactive power in order to raise the voltage in all phases. In one or two phase faults, the main concern of the distributed generation inverter is to equalize voltages by reducing the negative symmetric...... Operators describe the behavior of the energy source, regulating voltage limits and reactive power injection to remain connected and support the grid under fault. On the basis that different kinds of voltage sags require different voltage support strategies, a flexible control scheme for three phase grid...... sequence and clear the phase jump. Due to system limitations, a balance between these two extreme policies is mandatory. Thus, over-voltage and undervoltage can be avoided, and the proposed control scheme prevents disconnection while achieving the desired voltage support service. The main contribution...

  14. Effects of Distributed Generation on Overcurrent Relay Coordination and an Adaptive Protection Scheme

    Science.gov (United States)

    Ilik, Semih C.; Arsoy, Aysen B.

    2017-07-01

    Integration of distributed generation (DG) such as renewable energy sources to electrical network becomes more prevalent in recent years. Grid connection of DG has effects on load flow directions, voltage profile, short circuit power and especially protection selectivity. Applying traditional overcurrent protection scheme is inconvenient when system reliability and sustainability are considered. If a fault happens in DG connected network, short circuit contribution of DG, creates additional branch element feeding the fault current; compels to consider directional overcurrent (OC) protection scheme. Protection coordination might get lost for changing working conditions when DG sources are connected. Directional overcurrent relay parameters are determined for downstream and upstream relays when different combinations of DG connected singular or plural, on radial test system. With the help of proposed flow chart, relay parameters are updated and coordination between relays kept sustained for different working conditions in DigSILENT PowerFactory program.

  15. Control technique for enhancing the stable operation of distributed generation units within a microgrid

    International Nuclear Information System (INIS)

    Mehrasa, Majid; Pouresmaeil, Edris; Mehrjerdi, Hasan; Jørgensen, Bo Nørregaard; Catalão, João P.S.

    2015-01-01

    Highlights: • A control technique for enhancing the stable operation of distributed generation units is proposed. • Passivity-based control technique is considered to analyze the dynamic and steady-state behaviors. • The compensation of instantaneous variations in the reference current components is considered. • Simulation results confirm the performance of the control scheme within the microgrid. - Abstract: This paper describes a control technique for enhancing the stable operation of distributed generation (DG) units based on renewable energy sources, during islanding and grid-connected modes. The Passivity-based control technique is considered to analyze the dynamic and steady-state behaviors of DG units during integration and power sharing with loads and/or power grid, which is an appropriate tool to analyze and define a stable operating condition for DG units in microgrid technology. The compensation of instantaneous variations in the reference current components of DG units in ac-side, and dc-link voltage variations in dc-side of interfaced converters, are considered properly in the control loop of DG units, which is the main contribution and novelty of this control technique over other control strategies. By using the proposed control technique, DG units can provide the continuous injection of active power from DG sources to the local loads and/or utility grid. Moreover, by setting appropriate reference current components in the control loop of DG units, reactive power and harmonic current components of loads can be supplied during the islanding and grid-connected modes with a fast dynamic response. Simulation results confirm the performance of the control scheme within the microgrid during dynamic and steady-state operating conditions

  16. An Ensemble Generator for Quantitative Precipitation Estimation Based on Censored Shifted Gamma Distributions

    Science.gov (United States)

    Wright, D.; Kirschbaum, D.; Yatheendradas, S.

    2016-12-01

    The considerable uncertainties associated with quantitative precipitation estimates (QPE), whether from satellite platforms, ground-based weather radar, or numerical weather models, suggest that such QPE should be expressed as distributions or ensembles of possible values, rather than as single values. In this research, we borrow a framework from the weather forecast verification community, to "correct" satellite precipitation and generate ensemble QPE. This approach is based on the censored shifted gamma distribution (CSGD). The probability of precipitation, central tendency (i.e. mean), and the uncertainty can be captured by the three parameters of the CSGD. The CSGD can then be applied for simulation of rainfall ensembles using a flexible nonlinear regression framework, whereby the CSGD parameters can be conditioned on one or more reference rainfall datasets and on other time-varying covariates such as modeled or measured estimates of precipitable water and relative humidity. We present the framework and initial results by generating precipitation ensembles based on the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) dataset, using both NLDAS and PERSIANN-CDR precipitation datasets as references. We also incorporate a number of covariates from MERRA2 reanalysis including model-estimated precipitation, precipitable water, relative humidity, and lifting condensation level. We explore the prospects for applying the framework and other ensemble error models globally, including in regions where high-quality "ground truth" rainfall estimates are lacking. We compare the ensemble outputs against those of an independent rain gage-based ensemble rainfall dataset. "Pooling" of regional rainfall observations is explored as one option for improving ensemble estimates of rainfall extremes. The approach has potential applications in near-realtime, retrospective, and scenario modeling of rainfall-driven hazards such as floods and landslides

  17. Load Concentration Factor Based Analytical Method for Optimal Placement of Multiple Distribution Generators for Loss Minimization and Voltage Profile Improvement

    NARCIS (Netherlands)

    Shahzad, Mohsin; Ahmad, Ishtiaq; Gawlik, Wolfgang; Palensky, P.

    2016-01-01

    This paper presents novel separate methods for finding optimal locations, sizes of multiple distributed generators (DGs) simultaneously and operational power factor in order to minimize power loss and improve the voltage profile in the distribution system. A load concentration factor (LCF) is

  18. Fast control strategy for stabilising fixed-speed induction-generator-based wind turbines in an islanded distributed system

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2013-01-01

    Distributed generation systems (DGS) with fixed-speed induction-generator-based wind turbines (FSWT) are sensitive and vulnerable to voltage disturbances and reactive power deficiency. Consequently, the control and protection strategies for such a DGS should be prompt and precise to avoid undesired...

  19. Systematic procedure for generating operational policies to achieve target crystal size distribution (CSD) in batch cooling crystallization

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    2011-01-01

    A systematic procedure to achieve a target crystal size distribution (CSD) under generated operational policies in batch cooling crystallization is presented. An analytical CSD estimator has been employed in the systematic procedure to generate the necessary operational policies to achieve the ta...

  20. Voltage Control Method Using Distributed Generators Based on a Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Hyun-Koo Kang

    2015-12-01

    Full Text Available This paper presents a voltage control method using multiple distributed generators (DGs based on a multi-agent system framework. The output controller of each DG is represented as a DG agent, and each voltage-monitoring device is represented as a monitoring agent. These agents cooperate to accomplish voltage regulation through a coordinating agent or moderator. The moderator uses the reactive power sensitivities and margins to determine the voltage control contributions of each DG. A fuzzy inference system (FIS is employed by the moderator to manage the decision-making process. An FIS scheme is developed and optimized to enhance the efficiency of the proposed voltage control process using particle swarm optimization. A simple distribution system with four voltage-controllable DGs is modeled, and an FIS moderator is implemented to control the system. Simulated data show that the proposed voltage control process is able to maintain the system within the operating voltage limits. Furthermore, the results were similar to those obtained using optimal power flow calculations, even though little information on the power system was required and no power flow calculations were implemented.