WorldWideScience

Sample records for subsequent aerosol challenge

  1. Virus-Like Particle Vaccination Protects Nonhuman Primates from Lethal Aerosol Exposure with Marburgvirus (VLP Vaccination Protects Macaques against Aerosol Challenges

    Directory of Open Access Journals (Sweden)

    John M. Dye

    2016-04-01

    Full Text Available Marburg virus (MARV was the first filovirus to be identified following an outbreak of viral hemorrhagic fever disease in Marburg, Germany in 1967. Due to several factors inherent to filoviruses, they are considered a potential bioweapon that could be disseminated via an aerosol route. Previous studies demonstrated that MARV virus-like particles (VLPs containing the glycoprotein (GP, matrix protein VP40 and nucleoprotein (NP generated using a baculovirus/insect cell expression system could protect macaques from subcutaneous (SQ challenge with multiple species of marburgviruses. In the current study, the protective efficacy of the MARV VLPs in conjunction with two different adjuvants: QS-21, a saponin derivative, and poly I:C against homologous aerosol challenge was assessed in cynomolgus macaques. Antibody responses against the GP antigen were equivalent in all groups receiving MARV VLPs irrespective of the adjuvant; adjuvant only-vaccinated macaques did not demonstrate appreciable antibody responses. All macaques were subsequently challenged with lethal doses of MARV via aerosol or SQ as a positive control. All MARV VLP-vaccinated macaques survived either aerosol or SQ challenge while animals administered adjuvant only exhibited clinical signs and lesions consistent with MARV disease and were euthanized after meeting the predetermined criteria. Therefore, MARV VLPs induce IgG antibodies recognizing MARV GP and VP40 and protect cynomolgus macaques from an otherwise lethal aerosol exposure with MARV.

  2. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus.

    Science.gov (United States)

    Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M

    2013-05-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.

  3. Tropospheric ozone and aerosols in climate agreements: scientific and political challenges

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Berntsen, Terje; Fuglestvedt, Jan S.; Aunan, Kristin; Torvanger, Asbjorn; Stordal, Frode; Pacyna, Jozef M.; Nygaard, Lynn P.

    2005-01-01

    In addition to the six greenhouse gases included in the Kyoto Protocol, the tropospheric ozone precursors CO, NMVOC and NO x and the aerosols/aerosol precursors black carbon, organic carbon and SO 2 also play significant roles in climate change. The aim of this paper is to review some of the main scientific and political challenges associated with incorporating tropospheric ozone and aerosol precursors into climate agreements, and to discuss how these challenges have a bearing on the design of future climate agreements. We argue that the optimal policy design for a particular substance depends on a combination of scientific and political concerns. We look particularly at regional climate effects, negative forcing, metrics (measuring climate effects against other gases on a common scale), political attractiveness, and verification and compliance. We systematically review the existing knowledge on these issues, explore their impact on policy design, and conclude that, with current scientific knowledge, CO and NMVOC could conceivably be included in a global climate agreement, either in a basket with the long-lived greenhouse gases or in a separate basket, while NO x and aerosols might be regulated more appropriately through regional agreements with links to a global agreement. However, the complexity and fairness implications of including tropospheric ozone precursors and aerosols might negatively affect the political feasibility of a future agreement

  4. Microbial aerosol generation during laboratory accidents and subsequent risk assessment.

    Science.gov (United States)

    Bennett, A; Parks, S

    2006-04-01

    To quantify microbial aerosols generated by a series of laboratory accidents and to use these data in risk assessment. A series of laboratory accident scenarios have been devised and the microbial aerosol generated by them has been measured using a range of microbial air samplers. The accident scenarios generating the highest aerosol concentrations were, dropping a fungal plate, dropping a large bottle, centrifuge rotor leaks and a blocked syringe filter. Many of these accidents generated low particle size aerosols, which would be inhaled into the lungs of any exposed laboratory staff. Spray factors (SFs) have been calculated using the results of these experiments as an indicator of the potential for accidents to generate microbial aerosols. Model risk assessments have been described using the SF data. Quantitative risk assessment of laboratory accidents can provide data that can aid the design of containment laboratories and the response to laboratory accidents. A methodology has been described and supporting data provided to allow microbiological safety officers to carry out quantitative risk assessment of laboratory accidents.

  5. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    Science.gov (United States)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called "direct effect", aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called "indirect effects", whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will

  6. Monoclonal antibodies passively protect BALB/c mice against Burkholderia mallei aerosol challenge.

    Science.gov (United States)

    Treviño, Sylvia R; Permenter, Amy R; England, Marilyn J; Parthasarathy, Narayanan; Gibbs, Paul H; Waag, David M; Chanh, Tran C

    2006-03-01

    Glanders is a debilitating disease with no vaccine available. Murine monoclonal antibodies were produced against Burkholderia mallei, the etiologic agent of glanders, and were shown to be effective in passively protecting mice against a lethal aerosol challenge. The antibodies appeared to target lipopolysaccharide. Humoral antibodies may be important for immune protection against B. mallei infection.

  7. Interactions between biomass-burning aerosols and clouds over Southeast Asia: current status, challenges, and perspectives.

    Science.gov (United States)

    Lin, Neng-Huei; Sayer, Andrew M; Wang, Sheng-Hsiang; Loftus, Adrian M; Hsiao, Ta-Chih; Sheu, Guey-Rong; Hsu, N Christina; Tsay, Si-Chee; Chantara, Somporn

    2014-12-01

    The interactions between aerosols, clouds, and precipitation remain among the largest sources of uncertainty in the Earth's energy budget. Biomass-burning aerosols are a key feature of the global aerosol system, with significant annually-repeating fires in several parts of the world, including Southeast Asia (SEA). SEA in particular provides a "natural laboratory" for these studies, as smoke travels from source regions downwind in which it is coupled to persistent stratocumulus decks. However, SEA has been under-exploited for these studies. This review summarizes previous related field campaigns in SEA, with a focus on the ongoing Seven South East Asian Studies (7-SEAS) and results from the most recent BASELInE deployment. Progress from remote sensing and modeling studies, along with the challenges faced for these studies, are also discussed. We suggest that improvements to our knowledge of these aerosol/cloud effects require the synergistic use of field measurements with remote sensing and modeling tools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Current Issues and Challenges in the Use of Aerosolized Surfactant for Respiratory Distress Syndrome in the Newborns

    Directory of Open Access Journals (Sweden)

    Dion Darius Samsudin

    2013-08-01

    Full Text Available BACKGROUND: Surfactant replacement therapy is a recognized treatment for respiratory distress syndrome (RDS in the newborns. Over the past 30 years, human and animal trials have been performed regarding administration of aerosolized surfactant to the injured lung, however the result has been unsatisfactory when compared with instilled surfactant delivery via endotracheal tube (ETT. This review aims to investigate the current issues, challenges and future recommendation of aerosolized surfactant therapy. CONTENT: Five randomized clinical trials in humans and 13 animal trials met the inclusion criteria and were reviewed. Most animal trials agree that this method of treatment is feasible. However, human trials presented conflicting results, and generally showed it to be ineffective. When compared with surfactant delivery via ETT, aerosolized surfactant is less effective in improving respiratory function. SUMMARY: The current data from human trials does not support the implementation of aerosolized surfactant therapy to treat newborns with RDS. Further research is necessary to improve nebulization, delivery, distribution and deposition in the lung, to investigate aerosolized surfactant delivery via ETT and to determine the appropriate dose. KEYWORDS: surfactant, aerosol, prematurity, respiratory distress syndrome.

  9. Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions

    Science.gov (United States)

    Faber, Peter; Drewnick, Frank; Bierl, Reinhard; Borrmann, Stephan

    2017-10-01

    The aerosol mass spectrometer (AMS) is well established in investigating highly time-resolved dynamics of submicron aerosol chemical composition including organic aerosol (OA). However, interpretation of mass spectra on molecular level is limited due to strong fragmentation of organic substances and potential reactions inside the AMS ion chamber. Results from complementary filter-based FT-IR absorption measurements were used to explain features in high-resolution AMS mass spectra of different types of OA (e.g. cooking OA, cigarette smoking OA, wood burning OA). Using this approach some AMS fragment ions were validated in this study as appropriate and rather specific markers for a certain class of organic compounds for all particle types under investigation. These markers can therefore be used to get deeper insights in the chemical composition of OA based on AMS mass spectra in upcoming studies. However, the specificity of other fragment ions such as C2H4O2+ (m/z 60.02114) remains ambiguous. In such cases, complementary FT-IR measurements allow the interpretation of highly time-resolved AMS mass spectra at the level of molecular functional groups. Furthermore, this study discusses the challenges in reducing inorganic interferences (e.g. from water and ammonium salts) in FT-IR spectra of atmospheric aerosols to decrease spectral uncertainties for better comparisons and, thus, to get more robust results.

  10. Host stress and immune responses during aerosol challenge of Brown Norway rats with Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Susan T Gater

    2012-11-01

    Full Text Available Inhalation exposure models are becoming the preferred method for the comparative study of respiratory infectious diseases due to their resemblance to the natural route of infection. To enable precise delivery of pathogen to the lower respiratory tract in a manner that imposes minimal biosafety risk, nose-only exposure systems have been developed. Early inhalation exposure technology for infectious disease research grew out of technology used in asthma research where predominantly the Collison nebulizer is used to generate an aerosol by beating a liquid sample against glass. Although infectious aerosol droplets of 1-5µm in size can be generated, the Collison often causes loss of viability. In this work, we evaluate a gentler method for aerosolization of living cells and describe the use of the Sparging Liquid Aerosol Generator (SLAG in a rat pneumonic plague model. The SLAG creates aerosols by continuous dripping of liquid sample on a porous metal disc. We show the generation of 0.5 to 1µm Y. pestis aerosol particles using the SLAG with spray factors typically ranging from 10-7 to 10-8 with no detectable loss of bacterial viability. Delivery of these infectious particles via nose-only exposure led to the rapid development of lethal pneumonic plague. Further, we evaluated the effect of restraint-stress imposed by the nose-only exposure chamber on early inflammatory responses and bacterial deposition. Elevated serum corticosterone which peaked at 2 hrs post-procedure indicated the animals experienced stress as a result of restraint in the nose-only chamber. However, we observed no correlation between elevated corticosterone and the amount of bacterial deposition or inflammation in the lungs. Together these data demonstrate the utility of the SLAG and the nose-only chamber for aerosol challenge of rodents by Y. pestis.

  11. Meteorological support for aerosol radiometers: special aerosol sources

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-07-01

    A new method is described for transfer of the measure of unit volume activity of radioactive aerosols from the state special standard to the working instruments in the stage of regular operation. The differences from existing methods are examined. The principal distinction of the new method is the possibility of direct (rather than through the conversion factor) determination and subsequent testing of the fundamental meteorological characteristics of the instrument by means of special aerosol sources, which fosters a significant reduction in individual components of the indicated errors.

  12. Why Is Improvement of Earth System Models so Elusive? Challenges and Strategies from Dust Aerosol Modeling

    Science.gov (United States)

    Miller, Ronald L.; Garcia-Pando, Carlos Perez; Perlwitz, Jan; Ginoux, Paul

    2015-01-01

    Past decades have seen an accelerating increase in computing efficiency, while climate models are representing a rapidly widening set of physical processes. Yet simulations of some fundamental aspects of climate like precipitation or aerosol forcing remain highly uncertain and resistant to progress. Dust aerosol modeling of soil particles lofted by wind erosion has seen a similar conflict between increasing model sophistication and remaining uncertainty. Dust aerosols perturb the energy and water cycles by scattering radiation and acting as ice nuclei, while mediating atmospheric chemistry and marine photosynthesis (and thus the carbon cycle). These effects take place across scales from the dimensions of an ice crystal to the planetary-scale circulation that disperses dust far downwind of its parent soil. Representing this range leads to several modeling challenges. Should we limit complexity in our model, which consumes computer resources and inhibits interpretation? How do we decide if a process involving dust is worthy of inclusion within our model? Can we identify a minimal representation of a complex process that is efficient yet retains the physics relevant to climate? Answering these questions about the appropriate degree of representation is guided by model evaluation, which presents several more challenges. How do we proceed if the available observations do not directly constrain our process of interest? (This could result from competing processes that influence the observed variable and obscure the signature of our process of interest.) Examples will be presented from dust modeling, with lessons that might be more broadly applicable. The end result will either be clinical depression or there assuring promise of continued gainful employment as the community confronts these challenges.

  13. 1,5 iodonaphthyl Azide Inactivated V3526 Protects against Aerosol Challenge with Virulent Venezuelan Equine Encephalitis Virus.

    Science.gov (United States)

    2016-06-02

    Ethics Statement: Animal experiments involving aerosol challenge with infectious VEEV-TrD were carried out in ABSL-3 containment facility at...furin-cleavage mutant of V3000 (full length clone of VEEV-TrD) and induces excellent immunogenicity, but caused adverse reaction in the vaccinees

  14. Why Is Improvement of Earth System Models So Elusive? Challenges and Strategies From Dust Aerosol Modeling

    Science.gov (United States)

    Miller, R. L.; Pérez García-Pando, C.; Perlwitz, J. P.; Ginoux, P. A.

    2015-12-01

    Past decades have seen an accelerating increase in computing efficiency,while climate models are representing a rapidly widening set ofphysical processes. Yet simulations of some fundamental aspects ofclimate like precipitation or aerosol forcing remain highly uncertainand resistent to progress. Dust aerosol modeling of soil particleslofted by wind erosion has seen a similar conflict between increasingmodel sophistication and remaining uncertainty. Dust aerosols perturbthe energy and water cycles by scattering radiation and acting as icenuclei, while mediating atmospheric chemistry and marinephotosynthesis (and thus the carbon cycle). These effects take placeacross scales from the dimensions of an ice crystal to theplanetary-scale circulation that disperses dust far downwind of itsparent soil. Representing this range leads to several modelingchallenges. Should we limit complexity in our model, which consumescomputer resources and inhibits interpretation? How do we decide if aprocess involving dust is worthy of inclusion within our model? Canwe identify a minimal representation of a complex process that isefficient yet retains the physics relevant to climate? Answeringthese questions about the appropriate degree of representation isguided by model evaluation, which presents several more challenges.How do we proceed if the available observations do not directlyconstrain our process of interest? (This could result from competingprocesses that influence the observed variable and obscure thesignature of our process of interest.) Examples will be presentedfrom dust modeling, with lessons that might be more broadlyapplicable. The end result will either be clinical depression or thereassuring promise of continued gainful employment as the communityconfronts these challenges.

  15. Intestinal infection following aerosol challenge of calves with Mycobacterium avium subspecies paratuberculosis

    Directory of Open Access Journals (Sweden)

    Eisenberg Susanne WF

    2011-12-01

    Full Text Available Abstract A challenge experiment was performed to investigate whether administration of Mycobacterium avium subsp. paratuberculosis (MAP via the respiratory route leads to MAP infection in calves. Eighteen calves from test negative dams were randomly allocated to four groups. Six calves were challenged with MAP nasally and six calves were challenged by transtracheal injection; three orally challenged calves served as positive controls, and three non challenged calves as negative controls. The challenge was performed as a nine-fold trickle dose, 107 CFU in total. Blood and faecal samples were collected frequently. Calves were euthanized three months post-challenge and extensively sampled. Blood samples were tested for the presence of antibodies and interferon gamma producing cells by ELISA. Faecal and tissue samples were cultured in a liquid culture system and the presence of MAP was confirmed by IS900 realtime PCR. Fourteen out of fifteen calves had no MAP antibody response. The negative controls remained negative; all positive controls became infected. Two nasally challenged calves showed a Purified Protein Derivative Avian (PPDA specific interferon gamma response. In all nasally challenged calves, MAP positive intestinal samples were detected. In three calves of the nasal group MAP positive retropharyngeal lymph nodes or tonsils were detected. In all calves of the transtracheal group MAP positive intestinal tissues were detected as well and three had a MAP positive tracheobronchial lymph node. These findings indicate that inhalation of MAP aerosols can result in infection. These experimental results may be relevant for transmission under field conditions since viable MAP has been detected in dust on commercial dairy farms.

  16. Microphysical processing of aerosol particles in orographic clouds

    Science.gov (United States)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  17. Microphysical processing of aerosol particles in orographic clouds

    Directory of Open Access Journals (Sweden)

    S. Pousse-Nottelmann

    2015-08-01

    aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener–Bergeron–Findeisen (WBF process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number

  18. DSMC multicomponent aerosol dynamics: Sampling algorithms and aerosol processes

    Science.gov (United States)

    Palaniswaamy, Geethpriya

    The post-accident nuclear reactor primary and containment environments can be characterized by high temperatures and pressures, and fission products and nuclear aerosols. These aerosols evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement and distribution involve the study of various processes such as coagulation, deposition, condensation, etc., and are influenced by factors such as particle shape, charge, radioactivity and spatial inhomogeneity. These many factors make the numerical study of nuclear aerosol evolution computationally very complicated. The focus of this research is on the use of the Direct Simulation Monte Carlo (DSMC) technique to elucidate the role of various phenomena that influence the nuclear aerosol evolution. In this research, several aerosol processes such as coagulation, deposition, condensation, and source reinforcement are explored for a multi-component, aerosol dynamics problem in a spatially homogeneous medium. Among the various sampling algorithms explored the Metropolis sampling algorithm was found to be effective and fast. Several test problems and test cases are simulated using the DSMC technique. The DSMC results obtained are verified against the analytical and sectional results for appropriate test problems. Results show that the assumption of a single mean density is not appropriate due to the complicated effect of component densities on the aerosol processes. The methods developed and the insights gained will also be helpful in future research on the challenges associated with the description of fission product and aerosol releases.

  19. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  20. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  1. A CpG oligonucleotide can protect mice from a low aerosol challenge dose of Burkholderia mallei.

    Science.gov (United States)

    Waag, David M; McCluskie, Michael J; Zhang, Ningli; Krieg, Arthur M

    2006-03-01

    Treatment with an oligodeoxynucleotide (ODN) containing CPG motifs (CpG ODN 7909) was found to protect BALB/c mice from lung infection or death after aerosol challenge with Burkholderia mallei. Protection was associated with enhanced levels of gamma interferon (IFN-gamma)-inducible protein 10, interleukin-12 (IL-12), IFN-gamma, and IL-6. Preexposure therapy with CpG ODNs may protect victims of a biological attack from glanders.

  2. The type IV pilin of Burkholderia mallei is highly immunogenic but fails to protect against lethal aerosol challenge in a murine model.

    Science.gov (United States)

    Fernandes, Paula J; Guo, Qin; Waag, David M; Donnenberg, Michael S

    2007-06-01

    Burkholderia mallei is the cause of glanders and a proven biological weapon. We identified and purified the type IV pilin protein of this organism to study its potential as a subunit vaccine. We found that purified pilin was highly immunogenic. Furthermore, mice infected via sublethal aerosol challenge developed significant increases in titers of antibody against the pilin, suggesting that it is expressed in vivo. Nevertheless, we found no evidence that high-titer antipilin antisera provided passive protection against a sublethal or lethal aerosol challenge and no evidence of protection afforded by active immunization with purified pilin. These results contrast with the utility of type IV pilin subunit vaccines against other infectious diseases and highlight the need for further efforts to identify protective responses against this pathogen.

  3. Experimental aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs.

    Science.gov (United States)

    Twenhafel, N A; Shaia, C I; Bunton, T E; Shamblin, J D; Wollen, S E; Pitt, L M; Sizemore, D R; Ogg, M M; Johnston, S C

    2015-01-01

    Eight guinea pigs were aerosolized with guinea pig-adapted Zaire ebolavirus (variant: Mayinga) and developed lethal interstitial pneumonia that was distinct from lesions described in guinea pigs challenged subcutaneously, nonhuman primates challenged by the aerosol route, and natural infection in humans. Guinea pigs succumbed with significant pathologic changes primarily restricted to the lungs. Intracytoplasmic inclusion bodies were observed in many alveolar macrophages. Perivasculitis was noted within the lungs. These changes are unlike those of documented subcutaneously challenged guinea pigs and aerosolized filoviral infections in nonhuman primates and human cases. Similar to findings in subcutaneously challenged guinea pigs, there were only mild lesions in the liver and spleen. To our knowledge, this is the first report of aerosol challenge of guinea pigs with guinea pig-adapted Zaire ebolavirus (variant: Mayinga). Before choosing this model for use in aerosolized ebolavirus studies, scientists and pathologists should be aware that aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs. © The Author(s) 2014.

  4. Aerosols and fission product transport

    International Nuclear Information System (INIS)

    Megaw, W.J.

    1987-12-01

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  5. Present role of PIXE in atmospheric aerosol research

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, Willy, E-mail: Willy.Maenhaut@UGent.be

    2015-11-15

    In the 1980s and 1990s nearly half of the elemental analyses of atmospheric aerosol samples were performed by PIXE. Since then, other techniques for elemental analysis became available and there has been a steady increase in studies on organic aerosol constituents and other aspects of aerosols, especially in the areas of nucleation (new particle formation), optical properties, and the role of aerosol particles in cloud formation and properties. First, a brief overview and discussion is given of the developments and trends in atmospheric aerosol analysis and research of the past three decades. Subsequently, it is indicated that there is still invaluable work to be done by PIXE in atmospheric aerosol research, especially if one teams up with other aerosol researchers and performs complementary measurements, e.g., on small aerosol samples that are taken with high-time resolution. Fine examples of such research are the work done by the Lund group in the CARIBIC aircraft studies and the analysis of circular streaker samples by the Florence PIXE group. These and other examples are presented and other possibilities of PIXE are indicated.

  6. Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2013-05-01

    Full Text Available We describe the challenges associated with the interpretation of extinction coefficient measurements by the Stratospheric Aerosol and Gas Experiment (SAGE II in the presence of clouds. In particular, we have found that tropospheric aerosol analyses are highly dependent on a robust method for identifying when clouds affect the measured extinction coefficient. Herein, we describe an improved cloud identification method that appears to capture cloud/aerosol events more effectively than early methods. In addition, we summarize additional challenges to observing the Asian Tropopause Aerosol Layer (ATAL using SAGE II observations. Using this new approach, we perform analyses of the upper troposphere, focusing on periods in which the UTLS (upper troposphere/lower stratosphere is relatively free of volcanic material (1989–1990 and after 1996. Of particular interest is the Asian monsoon anticyclone where CALIPSO (Cloud-Aerosol Lidar Pathfinder Satellite Observations has observed an aerosol enhancement. This enhancement, called the ATAL, has a similar morphology to observed enhancements in long-lived trace gas species like CO. Since the CALIPSO record begins in 2006, the question of how long this aerosol feature has been present requires a new look at the long-lived SAGE II data sets despite significant hurdles to its use in the subtropical upper troposphere. We find that there is no evidence of ATAL in the SAGE II data prior to 1998. After 1998, it is clear that aerosol in the upper troposphere in the ATAL region is substantially enhanced relative to the period before that time. In addition, the data generally supports the presence of the ATAL beginning in 1999 and continuing through the end of the mission, though some years (e.g., 2003 are complicated by the presence of episodic enhancements most likely of volcanic origin.

  7. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    photometer observations for the different versions of each algorithm globally (land and coastal and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional, which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust.

  8. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  9. Aerosol challenges to air cleaning systems during severe accidents in nuclear plants

    International Nuclear Information System (INIS)

    Gieseke, J.A.

    1985-01-01

    A variety of air cleaning systems may be operating in nuclear power plants and under severe accident conditions, these systems may be treating airborne concentrations of aerosols which are very high. Predictions of airborne aerosol concentrations in nuclear power plant containments under severe accident conditions are reviewed to provide a basis for evaluating the potential effects on the air cleaning systems. The air cleaning systems include filters, absorber beds, sprays, water pools, ice beds, and condensers. Not all of these were intended to operate as air cleaners but will in fact be good aerosol collectors. Knowledge of expected airborne concentrations will allow better evaluation of system performances

  10. Resolving the Aerosol Piece of the Global Climate Picture

    Science.gov (United States)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  11. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  12. Electrospray ionizer for mass spectrometry of aerosol particles

    Science.gov (United States)

    He, Siqin; Hogan, Chris; Li, Lin; Liu, Benjamin Y. H.; Naqwi, Amir; Romay, Francisco

    2017-09-19

    A device and method are disclosed to apply ESI-based mass spectroscopy to submicrometer and nanometer scale aerosol particles. Unipolar ionization is utilized to charge the particles in order to collect them electrostatically on the tip of a tungsten rod. Subsequently, the species composing the collected particles are dissolved by making a liquid flow over the tungsten rod. This liquid with dissolved aerosol contents is formed into highly charged droplets, which release unfragmented ions for mass spectroscopy, such as time-of-flight mass spectroscopy. The device is configured to operate in a switching mode, wherein aerosol deposition occurs while solvent delivery is turned off and vice versa.

  13. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  14. Aerosol delivery in intubated, mechanically ventilated patients

    International Nuclear Information System (INIS)

    MacIntyre, N.R.; Silver, R.M.; Miller, C.W.; Schuler, F.; Coleman, R.E.

    1985-01-01

    To study the effects of respiratory failure and mechanical ventilation on aerosol delivery to the lungs, nuclear scans were performed after aerosolization of 5 to 9 mCi of Tc-99m diethylenetriamine pentaacetic acid in seven stable, intubated, and mechanically ventilated patients. The radioactivity reaching the lungs was 2.9 +/- .7% (mean +/- SD) of the administered dose, an amount significantly less than that in three healthy nonintubated subjects and also less than what would be expected in nonintubated subjects from other published reports. A subsequent study was performed in 15 additional mechanically ventilated patients who were receiving aerosolized bronchodilators through their endotracheal tube. In these patients, heart rate and lung mechanical function values before and after treatment were not significantly different. It is concluded from these studies that aerosol delivery in mechanically ventilated patients is significantly reduced and that this is probably due to a combination of suboptimal breathing pattern, intrinsic airway disease, and the endotracheal tube functioning as both a site for aerosol deposition through impaction as well as a barrier to gastrointestinal absorption

  15. Ozonolysis and Subsequent Photolysis of unsaturated organic molecules: Model Systems for Photochemical Aging of Organic Aerosol Particles

    Science.gov (United States)

    Park, J.; Gomez, A. L.; Walser, M. L.; Lin, A.; Nizkorodov, S. A.

    2005-12-01

    Chemical and photochemical aging of organic species adsorbed on aerosol particle surfaces is believed to have a significant effect on cloud condensation properties of atmospheric aerosols. Ozone initiated oxidation reactions of thin films of undecylenic acid and alkene-terminated self assembled monolayers (SAMs) on SiO2 surface were investigated using a combination of spectroscopic and mass spectrometric techniques. Photolysis of the oxidized film in the tropospheric actinic region (λ>290 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the enhanced photochemical activity. The presence of peroxides in the oxidized sample was confirmed by mass-spectrometric analysis and by an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is also observed. The reaction mechanism and its implications for photochemical aging of atmospheric aerosol particles will be discussed.

  16. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  17. Experimental Challenges and Successes in Measuring Aerosol Concentrations at Prototypic Spray Conditions Encountered at the Hanford Waste Treatment and Immobilization Plant - 13327

    Energy Technology Data Exchange (ETDEWEB)

    Bontha, J.R.; Gauglitz, P.A.; Kurath, D.E.; Adkins, H.E.; Enderlin, C.W.; Blanchard, J.; Daniel, R.C.; Song, C.; Schonewill, P.P.; Mahoney, L.A.; Buchmiller, W.C.; Boeringa, G.; Jenks, J. [Pacific Northwest National Laboratory, PO Box 999, Richland, Washington 99352 (United States)

    2013-07-01

    To date, majority of the work done on measuring aerosol releases from failure of process piping was done using simple Newtonian fluids and small engineered-nozzles that do not accurately represent the fluids and breaches postulated during accident analysis at the Hanford Waste Treatment and Immobilization Plant (WTP). In addition, the majority of the work conducted in this area relies on in-spray measurements that neglect the effect of splatter and do not yield any information regarding aerosol generation rates from this additional mechanism. In order to estimate aerosol generation rates as well as reduce the uncertainties in estimating the aerosol release fractions over a broad range of breaches, fluid properties and operating conditions encountered at the WTP, the Pacific Northwest National Laboratory (PNNL) has designed, commissioned, and tested two experimental test stands. The first test stand, referred to as the large-scale test stand, was designed specifically to measure aerosol concentrations and release fractions under prototypic conditions of flow and pressure for a range of breaches postulated in the hazard analysis for 0.076 m (3-inch) process pipes. However, the size of the large-scale test stand, anticipated fluid loss during a breach, experimental risks, and costs associated with hazardous chemical simulant testing limited the large-scale test stand utility to water and a few non-hazardous physical simulants that did not fully span the particle size and rheological properties of the fluids encountered at the WTP. Overcoming these limitations and extending the range of simulants used, required designing and building a smaller test stand, which was installed and operated in a fume hood. This paper presents some of the features of both test stands, the experimental challenges encountered, and successes in measuring aerosol concentration in both test stands over a range of test conditions. (authors)

  18. Degraded core accidents: review of aerosol behaviour in the containment of a PWR

    International Nuclear Information System (INIS)

    Nichols, A.L.; Walker, B.C.

    1981-09-01

    Low probability-high consequence accidents have become an important issue in reactor safety studies. Such accidents would involve damage to the core and the subsequent release of radioactive fission products into the environment. Aerosols play a major role in the transport and removal of these fission products in the reactor building containment. The aerosol mechanisms, computer modelling codes and experimental studies used to predict aerosol behaviour in the containment of a PWR are reviewed. There are significant uncertainties in the aerosol source terms and specific recommendations have been made for further studies, particularly with respect to code development and high density aerosol-fission product transport within closed systems. (author)

  19. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    Science.gov (United States)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  20. Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution

    Directory of Open Access Journals (Sweden)

    L. A. Remer

    2012-07-01

    Full Text Available The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions using the standard MODIS aerosol cloud mask applied to MODIS data and supplemented with a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol product availability is not the same as the cloud free fraction and takes into account the techniques used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5×0.5 km for MODIS and 1×1 km for GOES, is systematically degraded to 1×1, 2×2, 1×4, 4×4 and 8×8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8×8 km. The analysis is repeated, separately, for near-nadir pixels and those at larger view angles to investigate the effect of pixel growth at oblique angles on aerosol retrieval availability. The results show that as nominal pixel size increases, availability decreases until at 8×8 km 70% to 85% of the retrievals available at 0.5 km, nadir, have been lost. The effect at oblique angles is to further decrease availability over land but increase availability over ocean, because sun glint is found at near-nadir view angles. Finer resolution sensors (i.e., 1×1, 2×2 or even 1×4 km will retrieve aerosols in partly cloudy scenes significantly more often than sensors with nadir views of 4×4 km or coarser. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and

  1. Seasonality of major aerosol species and their transformations in Cairo mega-city

    International Nuclear Information System (INIS)

    Favez, O.; Cachier, H.; Sciare, J.; Alfaro, S.C.; El-Araby, T.M.; Harhash, M.A.; Abdelwahab, M.M.

    2008-01-01

    Bulk aerosols sampled oil a weekly basis at two Cairo (Egypt) urban sites from January 2003 to May 2006 were analysed for their chemical composition of major aerosol species (elemental carbon, water soluble/insoluble organic carbon, nitrate, sulphate, ammonium, chloride, sodium and calcium). Data subsequently obtained constitute one of the longest and more detailed dataset related to Cairo aerosols, and offer the opportunity to investigate seasonal trends. Dust aerosols (derived from calcium measurements) displayed maximum concentrations in spring and winter, due to frequent dust storms, but also high background concentration levels (∼ 50 μgm -3 ), all year long. Within these particles, about 40% oil average of Ca 2+ was found to be associated SO 4 2- , NO 3 - and/or Cl - , pointing out 'dust anthropization' processes and their subsequent climatic impact oil a regional scale. Seasonal variations of non-dust aerosols, equally distributed between carbonaceous aerosols and ions, were also observed, with concentrations of the order of 100 μgm -3 in autumn and winter, and of 60 μgm -3 in spring and summer. High concentration levels of non-sea-salt chloride (up to 15 μg m -3 on a monthly basis), likely of industrial origin, were observed in autumn and winter. During the autumn 'Black Cloud' event, biomass burning aerosols originating front rice straw burning in the Nile Delta have shown to account for 12%, 35%, and 50% of Cairo EC, WIOC and WSOC mass concentrations, respectively. Finally, relatively low WSOC/OC ratios (similar to 1/3) were obtained all the year long, calling for more investigation oil the water-solubility of organic aerosols originating from the burning of agricultural waste, and oil that of secondary organic aerosols formed in dry urban atmospheres. (authors)

  2. Evaluation of the applicability of the MOUDI impactor for aerosol collections with subsequent multielement analysis by PIXE

    International Nuclear Information System (INIS)

    Maenhaut, W.; Ducastel, G.; Hillamo, R.E.; Pakkanen, T.A.

    1993-01-01

    The micro-orifice uniform deposit impactor (MOUDI) is an 8-stage impactor with cut-sizes down to 0.056 μm and which allegedly provides uniform aerosol deposits for the various stages. In the present study it was examined how uniform the aerosol deposits really are for each impaction plate, and whether the uniformity is sufficient for a straightforward PIXE analysis. This was done by collecting several samples of ambient aerosol with the MOUDI and by determining the deposition pattern of various elements on the foils through a linear PIXE scan across each impaction foil. It was found that the deposits are far from uniform at the millimeter level for the stage numbers up to 6. Despite this, concentration data can easily be obtained by PIXE from such samples, provided that the analyzed area is carefully selected and appropriate correction factors for the nonuniformity are employed. Some size distribution data are presented. A comparison is also made of the size distribution data and detection limits that result from employing the MOUDI in combination with PIXE with those obtainable by PIXE analysis of some other types of cascade impactors. (orig.)

  3. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    Science.gov (United States)

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  4. Aerosol-cloud interactions from urban, regional to global scales

    International Nuclear Information System (INIS)

    Wang, Yuan

    2015-01-01

    The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

  5. Aerosol-cloud interactions from urban, regional to global scales

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan [California Institute of Technology, Pasadena, CA (United States). Seismological Lab.

    2015-10-01

    The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

  6. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  7. Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds

    OpenAIRE

    Norgren, Matthew S.; Boer, Gijs; Shupe, Matthew D.

    2018-01-01

    The interactions that occur between aerosols and a mixed-phase cloud system, and the subsequent alteration of the microphysical state of such clouds, is a problem that has yet to be well constrained. Advancing our understanding of aerosol-ice processes is necessary to determine the impact of natural and anthropogenic emissions on Earth’s climate and to improve our capability to predict future climate states. This paper deals specifically with how aerosols influence ice mass production in low-...

  8. An assessment of a spiral duct centrifuge using standard and high concentration aerosols

    International Nuclear Information System (INIS)

    Smith, A.D.

    1982-12-01

    The Stoeber spiral duct centrifuge has been calibrated by means of polystyrene latex microspheres for the subsequent measurement of aerosol particle size distributions. Intermediate (1 g m -3 ) ad high (100 g m -3 ) sodium chloride aerosol concentrations have been sampled by the centrifuge to determine possible limitations in the equipment. Corrections have to be made for the effect of Coriolis forces, and aerosol concentrations above 1 g m -3 should be diluted before sampling. The spiral duct centrifuge is an extremely versatile instrument for aerosol analysis, and shows a high degree of reliability when operated under well-defined conditions. (author)

  9. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    Science.gov (United States)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.

  10. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008

    Directory of Open Access Journals (Sweden)

    B. H. Lee

    2010-12-01

    Full Text Available A variable residence time thermodenuder (TD was combined with an Aerodyne Aerosol Mass Spectrometer (AMS and a Scanning Mobility Particle Sizer (SMPS to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008. A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model.

    Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements.

    The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  11. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    Science.gov (United States)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  12. Aerosol challenge of calves with Haemophilus somnus and Mycoplasma dispar

    DEFF Research Database (Denmark)

    Tegtmeier, C.; Angen, Øystein; Grell, S.N.

    2000-01-01

    The aim of the study was to examine the ability of Haemophilus somnus and Mycoplasma dispar to induce pneumonia in healthy calves under conditions closely resembling the supposed natural way of infection, viz, by inhalation of aerosol droplets containing the microorganisms. The infections were...

  13. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  14. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    Science.gov (United States)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  15. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    Science.gov (United States)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatio-temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses

  16. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    International Nuclear Information System (INIS)

    Lim, H Q; Lau, A M S; Kanniah, K D

    2014-01-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols

  17. Statistical examination of the aerosols loading over Kano-Nigeria: the Satellite observation analysis

    Directory of Open Access Journals (Sweden)

    Moses E. Emetere

    2016-07-01

    Full Text Available The problem of underestimating or overestimating the aerosols loading over Kano is readily becoming a global challenge. Recent health outcomes from an extensive effect of aerosols pollution has started manifesting in Kano. The aim of the research is to estimate the aerosols loading and retention over Kano. Thirteen years aerosol optical depth (AOD data was obtained from the Multi-angle imaging spectroradiometer (MISR. Statistical tools, as well as analytically derived model for aerosols loading were used to obtain the aerosols retention and loading over the area. It was discovered that the average aerosols retention over Kano is 4.9%. The atmospheric constants over Kano were documented. Due to the volume of aerosols over Kano, it is necessary to change the ITU model which relates to signal budgeting.

  18. Recent advances in delivery mechanisms for aerosol therapy during pediatric respiratory diseases.

    Science.gov (United States)

    Wu, Yue'E; Zhang, Chonglin; Zhen, Qing

    2018-04-01

    The treatment of pediatric surgery diseases via utilization of aerosol delivery mechanisms is in progress for the betterment of pediatric care. Over the years, aerosol therapy has come to play an integral role in the treatment of pediatric respiratory diseases. Inhaled aerosol agents such as bronchodilators, corticosteroids, antibiotics, and mucolytics are commonly delivered to spontaneously breathing pediatric patients with a tracheostomy. Administering therapeutic inhaled aerosols to pediatric patients is challenging. The pediatric population ranges in age, which means patients with different airway sizes, breathing patterns, and cooperation levels. These patient-related factors impact the deposition of aerosol drugs in the lungs. The present review article will discuss the recent advancements in the delivery mechanisms for aerosol therapy in pediatric patients with respiratory diseases.

  19. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    Science.gov (United States)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  20. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-02-01

    normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of the aerosol indirect effect using a GCM in connection with A-Train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily employed for application to other GCMs.

  1. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  2. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  3. UCLALES-SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation

    Science.gov (United States)

    Tonttila, Juha; Maalick, Zubair; Raatikainen, Tomi; Kokkola, Harri; Kühn, Thomas; Romakkaniemi, Sami

    2017-01-01

    Challenges in understanding the aerosol-cloud interactions and their impacts on global climate highlight the need for improved knowledge of the underlying physical processes and feedbacks as well as their interactions with cloud and boundary layer dynamics. To pursue this goal, increasingly sophisticated cloud-scale models are needed to complement the limited supply of observations of the interactions between aerosols and clouds. For this purpose, a new large-eddy simulation (LES) model, coupled with an interactive sectional description for aerosols and clouds, is introduced. The new model builds and extends upon the well-characterized UCLA Large-Eddy Simulation Code (UCLALES) and the Sectional Aerosol module for Large-Scale Applications (SALSA), hereafter denoted as UCLALES-SALSA. Novel strategies for the aerosol, cloud and precipitation bin discretisation are presented. These enable tracking the effects of cloud processing and wet scavenging on the aerosol size distribution as accurately as possible, while keeping the computational cost of the model as low as possible. The model is tested with two different simulation set-ups: a marine stratocumulus case in the DYCOMS-II campaign and another case focusing on the formation and evolution of a nocturnal radiation fog. It is shown that, in both cases, the size-resolved interactions between aerosols and clouds have a critical influence on the dynamics of the boundary layer. The results demonstrate the importance of accurately representing the wet scavenging of aerosol in the model. Specifically, in a case with marine stratocumulus, precipitation and the subsequent removal of cloud activating particles lead to thinning of the cloud deck and the formation of a decoupled boundary layer structure. In radiation fog, the growth and sedimentation of droplets strongly affect their radiative properties, which in turn drive new droplet formation. The size-resolved diagnostics provided by the model enable investigations of these

  4. SAGE II Measurements of Stratospheric Aerosol Properties at Non-Volcanic Levels

    Science.gov (United States)

    Thomason, Larry W.; Burton, Sharon P.; Luo, Bei-Ping; Peter, Thomas

    2008-01-01

    Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the observed aerosol levels. On the other hand, during background periods, the SAD operational product has an uncertainty of at least a factor of 2 during due to the lack of sensitivity to particles with radii less than 100 nm.

  5. Science Plan Biogenic Aerosols – Effects on Clouds and Climate (BAECC)

    Energy Technology Data Exchange (ETDEWEB)

    Petäjä, T

    2013-12-01

    Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth’s surface. In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great challenges remain in the analysis of related processes on a global scale. Boreal forests, situated in a circumpolar belt in the northern latitudes throughout the United States, Canada, Russia and Scandinavia, are among the most active areas of atmospheric aerosol formation among all biomes. The formation of aerosol particles and their growth to the sizes of cloud condensation nuclei in these areas are associated with biogenic volatile organic emissions from vegetation and soil.

  6. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2010-09-01

    Full Text Available A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM. Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models.

    The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where

  7. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    Science.gov (United States)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  8. Aerosol Activation Properties within and above Mixing Layer in the North China Plain

    Science.gov (United States)

    Deng, Z.; Ran, L.

    2013-12-01

    Aerosol particles, serving as cloud condensation nuclei (CCN), may modify the properties of clouds and have an impact on climate. The vertical distribution of aerosols and their activation properties is critical to quantify the effect of aerosols on clouds. An intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP 2013), was conducted in the North China Plain during the late July and early August 2013 to measure the vertical profiles of atmospheric components in this polluted region and estimate their effects on atmospheric environment and climate. Aerosols were measured with in-situ instruments and Lidar. Particularly, the aerosols were collected at 1000 m height with a 1 m3 bag sampler attached to a tethered balloon, and subsequently measured with combined scanning mobility particle sizer (SMPS) and CCN counter. Comparisons of size-resolved activation ratios at ground level and 1000 m height showed that aerosols in upper atmosphere were not only less concentrated, but also less CCN-active than those at the surface. The difference in aerosol properties between upper atmosphere and the ground indicates that the analysis of impacts of aerosols on cloud might be misleading in heavily polluted region based on the relationship of cloud properties and surface aerosols or column without considering the vertical distribution of aerosol activation abilities.

  9. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    Science.gov (United States)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  10. Airborne radioactive contamination following aerosol ventilation studies

    International Nuclear Information System (INIS)

    Mackie, A.; Hart, G.C.; Ibbett, D.A.; Whitehead, R.J.S.

    1994-01-01

    Lung aerosol ventilation studies may be accompanied by airborne contamination, with subsequent surface contamination. Airborne contamination has been measured prior to, during and following 59 consecutive 99 Tc m -diethylenetriamine pentaacetate (DTPA) aerosol studies using a personal air sampler. Airborne contamination ranging between 0 and 20 330 kBq m -3 has been measured. Airborne contamination increases with degree of patient breathing difficulty. The effective dose equivalent (EDE) to staff from ingested activity has been calculated to be 0.3 μSv per study. This figure is supported by data from gamma camera images of a contaminated staff member. However, surface contamination measurements reveal that 60% of studies exceed maximum permissible contamination limits for the hands; 16% of studies exceed limits for controlled area surfaces. (author)

  11. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  12. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  13. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S; Schikarski, W; Schoeck, W [Gesellschaft fuer Kernforschung mbH, Karlsruhe (Germany)

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters.

  14. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.; Schoeck, W.

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters

  15. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    Science.gov (United States)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles cloud formation and potential

  16. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    Science.gov (United States)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  17. Aerosols generated by 239PU and 233U droplets burning in air

    International Nuclear Information System (INIS)

    Nelson, L.S.; Raabe, O.G.

    1978-01-01

    The inhalation hazards of radioactive aerosols produced by the explosive disruption and subsequent combustion of metallic plutonium in air are not adequately understood. Results of a study to determine whether uranium can be substituted for plutonium in such a situation in which experiments were performed under identical conditions with laser-ignited, single, freely falling droplets of 239 Pu and 233 U are reported. The total amounts of aerosol produced were studied quantitatively as a function of time during the combustion. Also, particle size distributions of selected aerosols were studied with aerodynamic particle separation techniques. Results showed that the ultimate quantity of aerosols, their final particle size distributions, and depositions as a function of time are not identical mainly because of the different vapor pressures of the metals, and the unlike degrees of violence of the explosions of the droplets

  18. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    Science.gov (United States)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; hide

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  19. Improving Aerosol Simulation over South Asia for Climate and Air Quality Studies

    Science.gov (United States)

    Pan, Xiaohua; Chin, Mian; Bian, Huisheng; Gautam, Ritesh

    2014-01-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, the water cycle, and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions found there. However, it has been proved quite challenging to adequately represent the aerosol spatial distribution and magnitude over this critical region in global models (Pan et al. 2014), with the surface concentrations, aerosol optical depth (AOD), and absorbing AOD (AAOD) significantly underestimated, especially in October-January when the agricultural waste burning and anthropogenic aerosol dominate over dust aerosol. In this study, we aim to investigate the causes for such discrepancy in winter by conducting sets of model experiments with NASA's GEOS-5 in terms of (1) spatial resolution, (2) emission amount, and (3) meteorological fields.

  20. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  1. Whole-body nanoparticle aerosol inhalation exposures.

    Science.gov (United States)

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling

  2. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice.

    Science.gov (United States)

    Ulrich, Ricky L; Amemiya, Kei; Waag, David M; Roy, Chad J; DeShazer, David

    2005-03-14

    Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders. Two live attenuated B. mallei strains, a capsule mutant and a branched-chain amino acid auxotroph, were evaluated for use as vaccines against aerosol-initiated glanders in mice. Animals were aerogenically vaccinated and serum samples were obtained before aerosol challenge with a high-dose (>300 times the LD50) of B. mallei ATCC 23344. Mice vaccinated with the capsule mutant developed a Th2-like Ig subclass antibody response and none survived beyond 5 days. In comparison, the auxotrophic mutant elicited a Th1-like Ig subclass antibody response and 25% of the animals survived for 1 month postchallenge. After a low-dose (5 times the LD50) aerosol challenge, the survival rates of auxotroph-vaccinated and unvaccinated animals were 50 and 0%, respectively. Thus, live attenuated strains that promote a Th1-like Ig response may serve as promising vaccine candidates against aerosol infection with B. mallei.

  3. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  4. Dry season aerosol iron solubility in tropical northern Australia

    Directory of Open Access Journals (Sweden)

    V. H. L. Winton

    2016-10-01

    Full Text Available Marine nitrogen fixation is co-limited by the supply of iron (Fe and phosphorus in large regions of the global ocean. The deposition of soluble aerosol Fe can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from the Savannah Fires in the Early Dry Season (SAFIRED campaign in northern Australia that reflects coincident dust and biomass burning sources of soluble aerosol Fe. The mean soluble and total aerosol Fe concentrations were 40 and 500 ng m−3 respectively. Our results show that while biomass burning species may not be a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust. We observed fractional Fe solubility up to 12 % in mixed aerosols. Thus, Fe in dust may be more soluble in the tropics compared to higher latitudes due to higher concentrations of biomass-burning-derived reactive organic species in the atmosphere. In addition, biomass-burning-derived particles can act as a surface for aerosol Fe to bind during atmospheric transport and subsequently be released to the ocean upon deposition. As the aerosol loading is dominated by biomass burning emissions over the tropical waters in the dry season, additions of biomass-burning-derived soluble Fe could have harmful consequences for initiating nitrogen-fixing toxic algal blooms. Future research is required to quantify biomass-burning-derived particle sources of soluble Fe over tropical waters.

  5. Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-04-01

    Full Text Available Aerosol optical depth (AOD has been widely used in climate research, atmospheric environmental observations, and other applications. However, high AOD retrieval remains challenging over heavily polluted regions, such as the North China Plain (NCP. The Visible Infrared Imaging Radiometer Suite (VIIRS, which was designed as a successor to the Moderate Resolution Imaging Spectroradiometer (MODIS, will undertake the aerosol observations mission in the coming years. Using the VIIRS AOD retrieval algorithm as an example, we analyzed the influence of heavy aerosol loading through the 6SV radiative transfer model (RTM with a focus on three aspects: cloud masking, ephemeral water body tests, and data quality estimation. First, certain pixels were mistakenly screened out as clouds and ephemeral water bodies because of heavy aerosols, resulting in the loss of AOD retrievals. Second, the greenness of the surface could not be accurately identified by the top of atmosphere (TOA index, and the quality of the aggregation data may be artificially high. Thus, the AOD retrieval algorithm did not perform satisfactorily, indicated by the low availability of data coverage (at least 37.97% of all data records were missing according to ground-based observations and overestimation of the data quality (high-quality data increased from 63.42% to 80.97% according to radiative simulations. To resolve these problems, the implementation of a spatial variability cloud mask method and surficial index are suggested in order to improve the algorithm.

  6. A rapid method for determining the relative solubility of plutonium aerosols

    International Nuclear Information System (INIS)

    Miglio, J.J.; Muggenburg, B.A.; Brooks, A.L.

    1977-01-01

    An in vitro system for rapidly determining the relative solubilities of plutonium-containing aerosols produced at various temperatures has been developed. Aerosols were prepared by nebulizing a solution of Pu IV in 1 M HCl and by subsequent heating at 50, 325, 600, 900, 1150 and 1300 degrees C. These aerosols were then evaluated as to relative solubility and the results compared with in vivo data from beagle dogs and Chinese hamsters. Aerosol samples from animal inhalation exposures were collected on filters and a section was sandwiched between 100 nm membranes held in a two-piece, cylindrical polyethylene holder. The holder and filter were placed in a container of solvent and stirred gently, after which the filter and solvent were separately analyzed for Pu. The effects of solvent composition, volume and temperature as well as immersion time were investigated. The results showed that using a solvent of 0.1 N HCl at 23 degrees C and an immersion time of 2 hr dissolved a sufficient amount of plutonium as to be easily assayed with a liquid scintillation counter and will provide a rapid estimate of the solubility rate of the aerosol. The in vivo and in vitro results were in relative agreement; as the production temperature of the aerosol increased, the solubility decreased. (author)

  7. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    Science.gov (United States)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  8. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-07-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy, changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  9. Deriving Aerosol Characteristics Over the Ocean from MODIS: Are We There Yet?

    Science.gov (United States)

    Remer, L. A.; Tanre, D.

    2006-12-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) has been successfully retrieving aerosol characteristics over the ocean since shortly after the launch of the Terra satellite at the end of 1999. With its wide spectral range (0.47 to 2.13 μm) MODIS is able to derive spectral aerosol optical depth and information on the size of the aerosol particles. The products were quickly validated, the validation confirmed, and the products are now in wide use across the scientific community. The MODIS aerosol products over ocean are an outstanding success story, but are we done? As the years progress and we gain experience in using the products, evaluating them and nudging even greater information from them, we discover new challenges. Firstly, we continue to find issues affecting the integrity of the products we now produce. We need to find methods to reduce the uncertainty introduced by clouds that go beyond the classical concept of cloud masking and cloud contamination. Some of these novel cloud effects on aerosol retrieval include 3D scattering of light from cloud sides. Another issue that needs resolution is the uncertainty introduced by nonspherical particle shapes. Secondly, when MODIS was new we were excited to have spectral optical depth and particle size information. Now we find that aerosol characterization is still incomplete. We need more information. Are we there yet? Well, no, but we can see the future. To meet these new challenges we will need information beyond the spectral radiances that MODIS measures. We can see the future of satellite derivation of aerosol characteristics, and it looks more and more like a multi-sensor future.

  10. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Gao, Meng; Gao, Jian; Michalski, Greg; Wang, Yuesi

    2018-04-20

    The sources of aerosol ammonium (NH 4 + ) are of interest because of the potential of NH 4 + to impact the Earth's radiative balance, as well as human health and biological diversity. Isotopic source apportionment of aerosol NH 4 + is challenging in the urban atmosphere, which has excess ammonia (NH 3 ) and where nitrogen isotopic fractionation commonly occurs. Based on year-round isotopic measurements in urban Beijing, we show the source dependence of the isotopic abundance of aerosol NH 4 + , with isotopically light (-33.8‰) and heavy (0 to +12.0‰) NH 4 + associated with strong northerly winds and sustained southerly winds, respectively. On an annual basis, 37-52% of the initial NH 3 concentrations in urban Beijing arises from fossil fuel emissions, which are episodically enhanced by air mass stagnation preceding the passage of cold fronts. These results provide strong evidence for the contribution of non-agricultural sources to NH 3 in urban regions and suggest that priority should be given to controlling these emissions for haze regulation. This study presents a carefully executed application of existing stable nitrogen isotope measurement and mass-balance techniques to a very important problem: understanding source contributions to atmospheric NH 3 in Beijing. This question is crucial to informing environmental policy on reducing particulate matter concentrations, which are some of the highest in the world. However, the isotopic source attribution results presented here still involve a number of uncertain assumptions and they are limited by the incomplete set of chemical and isotopic measurements of gas NH 3 and aerosol NH 4 + . Further field work and lab experiments are required to adequately characterize endmember isotopic signatures and the subsequent isotopic fractionation process under different air pollution and meteorological conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. TEM investigations of microstructures of combustion aerosols

    International Nuclear Information System (INIS)

    Marquardt, A.; Hackfort, H.; Borchardt, J.; Schober, T.; Friedrich, J.

    1992-12-01

    In the incineration of organic material, apart from a series of gaseous pollutants, particulate pollutants or combustion aerosols also arise. The latter frequently consist of particles with a solid core of carbon to which a large number of inorganic and organic compounds are attached. These primarily include the polycyclic aromatic hydrocarbons (PAH) and their nitro-derivatives (NPAH), whose mutagenic or carcinogenic effect is known. The invisible particle sizes in the nanometer range, whose retention in the incineration off-gas is not state of the art, are of increasing significance for man and environment. On the one hand, they are deposited almost completely in the human lung. On the other hand, due to their fine dispersity they have along residence time in the atmosphere where they participate in chemical reactions and climatically significant processes. Important insights about the formation process of combustion aerosols are to be expected from the imaging of their microstructures in the transmission electron microscope (TEM). The present contribution describes the development and application of a representative sampling procedure for aerosols from a partial flow of flue gas from a fluidized-bed furnace. The method developed consists of electrically charging aerosol particles in situ and subsequently selectively precipitating them onto a microscope slide in an electric field. TEM studies of aerosol microstructures on the microscope slides revealed that in the combustion of petrol and heating oil under different combustion conditions in principle the same particle structures result, whereas in the incineration of used lubricating oil quite different particle structures were found. Results from the literature on aerosol microstructures in exhaust gases from petrol and diesel engines demonstrate agreement with the results of this study in the basic structure of the particles. (orig.) [de

  12. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  13. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Teague, S.V.

    1976-01-01

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238 PuO 2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO 2 plus PuO 2 , 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85 Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  14. Evolution of Asian aerosols during transpacific transport in INTEX-B

    Energy Technology Data Exchange (ETDEWEB)

    Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison; Kimmel, Joel; Peltier, R. E.; Weber, R. J.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Yohei; McNaughton, C. S.; Howell, S. G.; Clarke, A. D.; Emmons, L.; Apel, Eric; Pfister, G. G.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Heald, C. L.; Jimenez, J. L.

    2009-10-01

    Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.

  15. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  16. The Aerosol-Monsoon Climate System of Asia

    Science.gov (United States)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    absorbing aerosols (dust and black carbon) may interact with monsoon dynamics to produce feedback effects on the atmospheric water cycle, leading to in accelerated melting of snowpacks over the Himalayas and Tibetan Plateau, and subsequent changes in evolution of the pre-monsoon and peak monsoon rainfall, moisture and wind distributions in South Asia and East Asia.

  17. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    Science.gov (United States)

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  18. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  19. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    Science.gov (United States)

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles. The findings of this study suggest that the efficiency of N95 respirator filters obtained with the NaCl aerosol challenge may not accurately predict (and rather overestimate) the filter efficiency against combustion particles.

  20. Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011

    Directory of Open Access Journals (Sweden)

    J. L. Fry

    2013-09-01

    Full Text Available At the Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS field campaign in the Colorado front range, July–August 2011, measurements of gas- and aerosol-phase organic nitrates enabled a study of the role of NOx (NOx = NO + NO2 in oxidation of forest-emitted volatile organic compounds (VOCs and subsequent aerosol formation. Substantial formation of peroxy- and alkyl-nitrates is observed every morning, with an apparent 2.9% yield of alkyl nitrates from daytime RO2 + NO reactions. Aerosol-phase organic nitrates, however, peak in concentration during the night, with concentrations up to 140 ppt as measured by both optical spectroscopic and mass spectrometric instruments. The diurnal cycle in aerosol fraction of organic nitrates shows an equilibrium-like response to the diurnal temperature cycle, suggesting some reversible absorptive partitioning, but the full dynamic range cannot be reproduced by thermodynamic repartitioning alone. Nighttime aerosol organic nitrate is observed to be positively correlated with [NO2] × [O3] but not with [O3]. These observations support the role of nighttime NO3-initiated oxidation of monoterpenes as a significant source of nighttime aerosol. Nighttime production of organic nitrates is comparable in magnitude to daytime photochemical production at this site, which we postulate to be representative of the Colorado front range forests.

  1. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  2. Using satellites and global models to investigate aerosol-cloud interactions

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  3. Non-ammonium reduced nitrogen species in atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Dod, R.L.; Gundel, L.A.; Benner, W.H.; Novakov, T.

    1983-08-01

    The traditional belief that ambient aerosol particles contain nitrogen predominantly in the form of inorganic ionic species such as NH/sub 4//sup +/ and NO/sub 3//sup -/ was challenged about 10 years ago by results from x-ray photoelectron spectroscopic analysis (ESCA) of California aerosol particles. A significant fraction (approx. 50%) of the reduced nitrogen was observed to have an oxidation state more reduced than ammonium, characteristic of organic nitrogen species. We have used a recently developed thermal evolved gas analysis method (NO/sub x/) in conjunction with ESCA to confirm the existence of these species in aerosol particles collected in both the United States and Europe. The agreement of EGA and ESCA analyses indicates that these species are found not only on the surface but also throughout the particles. 9 references, 6 figures.

  4. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  5. Aerosol-cloud interactions in a multi-scale modeling framework

    Science.gov (United States)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  6. Ascaris suum infection negatively affects the response to a Mycoplasma hyopneumoniae vaccination and subsequent challenge infection in pigs

    DEFF Research Database (Denmark)

    Steenhard, Nina R.; Jungersen, Gregers; Kokotovic, Branko

    2009-01-01

    Since their first introduction more than a century ago, vaccines have become one of the most cost-effective tools to prevent and manage infectious diseases in human and animal populations. It is vital to understand the possible mechanisms that may impair optimal vaccine efficacy. The hypothesis...... posed in this study was that a concurrent Ascaris suum infection of pigs vaccinated with a Mycoplasma hyopneumoniae (Mh)vaccine would modulate the protectiveimmuneresponse to a subsequent challenge infection. Four groups of pigs were either (1) untreated (group C), (2) vaccinated againstMh 3 weeks after...... the start of the study (group V), (3) given a trickle infection with A. suum throughout the study (group A), or (4) given a trickle infection with A. suum and vaccinated against Mh (group AV). All pigs were subsequently inoculated with live Mh bacteria 4 weeks after the Mh vaccination and necropsied after...

  7. The formation of aerosol particles during combustion of biomass and waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjerrild Zeuthen, J

    2007-05-15

    This thesis describes the formation of aerosol particles during combustion of biomass and waste. The formation of aerosol particles is investigated by studying condensation of alkali salts from synthetic flue gasses in a laboratory tubular furnace. In this so-called laminar flow aerosol condenser-furnace gaseous alkali chlorides are mixed with sulphur dioxide, water vapour and oxygen. At high temperatures the alkali chloride reacts with sulphur dioxide to form alkali sulphate. During subsequent cooling of the synthetic flue gas the chlorides and sulphates condense either as deposits on walls or on other particles or directly from the gas phase by homogenous nucleation. A previously developed computer code for simulation of one-component nucleation of particles in a cylindrical laminar flow is extended to include a homogeneous gas phase reaction to produce gaseous alkali sulphate. The formation of aerosol particles during full-scale combustion of wheat straw is investigated in a 100 MW grate-fired boiler. Finally, aerosols from incineration of waste are investigated during full-scale combustion of municipal waste in a 22 MW grate-fired unit. (BA)

  8. Statistical examination of the aerosols loading over Mubi-Nigeria: The satellite oobservation analysis

    Directory of Open Access Journals (Sweden)

    Emetere Moses Eterigho

    2016-01-01

    Full Text Available The problem of underestimating or overestimating the aerosols loading over Mubi is inevitable because of the absence of ground stations over the region. Aerosols pollution is a global challenge to life forms as it affects human health, agricultural produce, thermal comfort and weather. The modulation between high and low thermal comforts over Mubi is quite disturbing. The aim of the research is to seek a more reliable approach to estimate the aerosols loading and retention over Mubi. Thirteen years aerosol optical depth (AOD data was obtained from the Multi-angle imaging spectroradiometer (MISR. Mubi is located on latitude 10.27oN and longitude 13.27oE. Statistical tools, as well as analytically derived model for aerosols loading were used to obtain the aerosols retention and loading over the area. It was discovered that the highest aerosols retention over Mubi is 12.7%. The atmospheric constants and tuning constants over Mubi were documented as 0.67 and 0.71 respectively. Due to the volume of aerosols over Mubi, it is necessary to change the International Telecommunication Union (ITU model which relates to signal budgeting.

  9. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  10. Applying super-droplets as a compact representation of warm-rain microphysics for aerosol-cloud-aerosol interactions

    Science.gov (United States)

    Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.

    2012-12-01

    Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).

  11. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  12. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    Science.gov (United States)

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  13. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  14. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  15. A short review on the effects of aerosols on visibility impairment

    Science.gov (United States)

    Emetere Moses, E.; Akinyemi, ML

    2017-05-01

    Ozone in the lower planetary boundary layer of the earth atmosphere is dangerous to people and vegetation, since it oxidizes natural tissue. The diminished in visibility is because of dispersing of sun based radiation by high convergences of anthropogenic aerosols. Visibility impairment is most prominent at high relative mugginess when the aerosols swell by the take-up of water to expand the cross sectional area for dispersing; this is the wonder known as haze. Haze has become a major air pollution challenge the aviation industry has to cope with in recent time. In this review, two major problems were spotted to be responsible for air disaster in any region of the world. While some developed countries had almost resolved the challenge of visibility impairment by seeking relevant solutions, most developing countries do not have a recovery plan. Therefore, the resolution of this major challenge may be the leverage for most developing nations to draw out a recovery plan.

  16. Estimation of Uncertainty in Aerosol Concentration Measured by Aerosol Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Song, Yong Jae; Jung, Woo Young; Lee, Hyun Chul; Kim, Gyu Tae; Lee, Doo Yong [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    FNC Technology Co., Ltd has been developed test facilities for the aerosol generation, mixing, sampling and measurement under high pressure and high temperature conditions. The aerosol generation system is connected to the aerosol mixing system which injects SiO{sub 2}/ethanol mixture. In the sampling system, glass fiber membrane filter has been used to measure average mass concentration. Based on the experimental results using main carrier gas of steam and air mixture, the uncertainty estimation of the sampled aerosol concentration was performed by applying Gaussian error propagation law. FNC Technology Co., Ltd. has been developed the experimental facilities for the aerosol measurement under high pressure and high temperature. The purpose of the tests is to develop commercial test module for aerosol generation, mixing and sampling system applicable to environmental industry and safety related system in nuclear power plant. For the uncertainty calculation of aerosol concentration, the value of the sampled aerosol concentration is not measured directly, but must be calculated from other quantities. The uncertainty of the sampled aerosol concentration is a function of flow rates of air and steam, sampled mass, sampling time, condensed steam mass and its absolute errors. These variables propagate to the combination of variables in the function. Using operating parameters and its single errors from the aerosol test cases performed at FNC, the uncertainty of aerosol concentration evaluated by Gaussian error propagation law is less than 1%. The results of uncertainty estimation in the aerosol sampling system will be utilized for the system performance data.

  17. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  18. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    Science.gov (United States)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  19. Effect of exercise on deposition and subsequent retention of inhaled particles

    International Nuclear Information System (INIS)

    Bennett, W.D.; Messina, M.S.; Smaldone, G.C.

    1985-01-01

    To investigate the effect of exercise and its associated increase in ventilation on the deposition and subsequent retention of inhaled particles, we measured the fractional and regional lung deposition of a radioactively tagged (/sup 99m/Tc) monodisperse aerosol (2.6 microns mass median aerodynamic diam) in normal human subjects at rest and while exercising on a bicycle ergometer. Breath-by-breath deposition fraction (DF) was measured throughout the aerosol exposures by Tyndallometry. Following each exposure gamma camera analysis was used to 1) determine the regional distribution of deposited particles and 2) monitor lung retention for 2.5 h and again at 24 h. We found that DF was unchanged between ventilation at rest (6-10 l/min) and exercise (32-46 l/min). Even though mouth deposition was enhanced with exercise, it was not large enough to produce a significant difference in the deposition fraction of the lung (DFL) between resting and exercise exposures. The central-to-peripheral distribution of deposited aerosol was larger for the exercise vs. resting exposure, reflecting a shift of particle deposition to more central bronchial airways. Apical-to-basal distribution was not different for the two exposures. Retention at 2.5 h and 24 h (R24) was reduced following the exercise vs. the resting exposure, consistent with greater bronchial deposition during exercise. The product of DFL and R24 gave a measure of fractional burden at 24 h (B24), i.e., the fraction of inhaled aerosol residing in the lungs 24 h after exposure. B24 was not significantly different between rest and exercise exposures

  20. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun

    2014-06-25

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  1. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun; Attili, Antonio; Alshaarawi, Amjad; Bisetti, Fabrizio

    2014-01-01

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  2. The aerosols and the greenhouse effect; Aerosoler og klimaeffekten

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Trond; Kirkevaag, Alf; Seland, Oeyvind; Debernard, Jens Boldingh; Kristjansson, Jon Egill; Storelvmo, Trude

    2008-07-01

    The article discussed the aerosol effects on the climatic changes and points out that the climate models do not incorporate these components satisfactorily mostly due to insufficient knowledge of the aerosol pollution sources. The direct and indirect effects of aerosols are mentioned as well as the climate response (tk)

  3. On the dynamics of fine aerosols artificially produced. Application to the atmosphere

    International Nuclear Information System (INIS)

    Perrin, Marie-Line

    1980-01-01

    We take advantage of the developments of a new method of measurement, using a diffusion battery, to analyse the evolution of ultra-fine particles generated as a result of gas-phase reactions (radiolysis and photolysis). The evolution of aerosols instantaneously produced by radiolysis of gaseous impurities is studied and a theoretical model from the coagulation equation's resolution is shown to well describe the phenomena. Experiments with aerosols continuously produced by photo-oxidation of SO 2 show the effect of the condensable molecules production rate and the preexisting aerosol, on the subsequent growth of the primary embryos. Different theoretical models are qualitatively and quantitatively verified. Our experiments are then extended to 'in situ' measurements in urban and marine atmospheres, and in every case, we quantitatively determine the importance of each intervening process, namely nucleation, coagulation and condensation. (author) [fr

  4. Aerosol Extinction Profile Mapping with Lognormal Distribution Based on MPL Data

    Science.gov (United States)

    Lin, T. H.; Lee, T. T.; Chang, K. E.; Lien, W. H.; Liu, G. R.; Liu, C. Y.

    2017-12-01

    This study intends to challenge the profile mapping of aerosol vertical distribution by mathematical function. With the similarity in distribution pattern, lognormal distribution is examined for mapping the aerosol extinction profile based on MPL (Micro Pulse LiDAR) in situ measurements. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. On the base of 10 years MPL data with single peak, the mapping results showed that the mean error of Mode and σ retrievals are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study. Keyword: Aerosol extinction profile, Lognormal distribution, MPL, Planetary boundary layer height (PBLH), Aerosol optical depth (AOD), Mode

  5. Field and Laboratory Studies of Atmospheric Organic Aerosol

    Science.gov (United States)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed

  6. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  7. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  8. Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry

    Science.gov (United States)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2013-05-01

    Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

  9. Characterization of urban aerosol in Cork city (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2013-05-01

    Full Text Available Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC, sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS and was also found to comprise organic aerosol as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and chloride (5%. Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA comprised 18%, "biomass burning" organic aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA comprised 21%, and finally a species type characterized by primary extit{m/z}~peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA, but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively.

  10. Estimating marine aerosol particle volume and number from Maritime Aerosol Network data

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2012-09-01

    Full Text Available As well as spectral aerosol optical depth (AOD, aerosol composition and concentration (number, volume, or mass are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The "average solution" MODIS dataset agrees more closely with MAN than the "best solution" dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data. However, without accurate AOD data and prior knowledge of

  11. EDITORIAL: Aerosol cloud interactions—a challenge for measurements and modeling at the cutting edge of cloud climate interactions

    Science.gov (United States)

    Spichtinger, Peter; Cziczo, Daniel J.

    2008-04-01

    Research in aerosol properties and cloud characteristics have historically been considered two separate disciplines within the field of atmospheric science. As such, it has been uncommon for a single researcher, or even research group, to have considerable expertise in both subject areas. The recent attention paid to global climate change has shown that clouds can have a considerable effect on the Earth's climate and that one of the most uncertain aspects in their formation, persistence, and ultimate dissipation is the role played by aerosols. This highlights the need for researchers in both disciplines to interact more closely than they have in the past. This is the vision behind this focus issue of Environmental Research Letters. Certain interactions between aerosols and clouds are relatively well studied and understood. For example, it is known that an increase in the aerosol concentration will increase the number of droplets in warm clouds, decrease their average size, reduce the rate of precipitation, and extend the lifetime. Other effects are not as well known. For example, persistent ice super-saturated conditions are observed in the upper troposphere that appear to exceed our understanding of the conditions required for cirrus cloud formation. Further, the interplay of dynamics versus effects purely attributed to aerosols remains highly uncertain. The purpose of this focus issue is to consider the current state of knowledge of aerosol/cloud interactions, to define the contemporary uncertainties, and to outline research foci as we strive to better understand the Earth's climate system. This focus issue brings together laboratory experiments, field data, and model studies. The authors address issues associated with warm liquid water, cold ice, and intermediate temperature mixed-phase clouds. The topics include the uncertainty associated with the effect of black carbon and organics, aerosol types of anthropogenic interest, on droplet and ice formation. Phases

  12. Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments.

    Science.gov (United States)

    Vance, Marina E; Pegues, Valerie; Van Montfrans, Schuyler; Leng, Weinan; Marr, Linsey C

    2017-09-05

    Three-dimensional (3D) printers are known to emit aerosols, but questions remain about their composition and the fundamental processes driving emissions. The objective of this work was to characterize the aerosol emissions from the operation of a fuse-deposition modeling 3D printer. We modeled the time- and size-resolved emissions of submicrometer aerosols from the printer in a chamber study, gained insight into the chemical composition of emitted aerosols using Raman spectroscopy, and measured the potential for exposure to the aerosols generated by 3D printers under real-use conditions in a variety of indoor environments. The average aerosol emission rates ranged from ∼10 8 to ∼10 11 particles min -1 , and the rates varied over the course of a print job. Acrylonitrile butadiene styrene (ABS) filaments generated the largest number of aerosols, and wood-infused polylactic acid (PLA) filaments generated the smallest amount. The emission factors ranged from 6 × 10 8 to 6 × 10 11 per gram of printed part, depending on the type of filament used. For ABS, the Raman spectra of the filament and the printed part were indistinguishable, while the aerosol spectra lacked important peaks corresponding to styrene and acrylonitrile, which are both present in ABS. This observation suggests that aerosols are not a result of volatilization and subsequent nucleation of ABS or direct release of ABS aerosols.

  13. Aerosol size characteristics in selected working areas

    International Nuclear Information System (INIS)

    Ahmed, K.

    1984-05-01

    This report presents the work done to study the aerosol activity size distributions and their respirable fractions in some selected areas of the Juelich Nuclear Research Center. Anderson cascade impactors were used to find the aerodynamic size ranges of the airborne particles for subsequent analysis of activity associated with each size group. The aerosols were found to follow in general log-normal distributions in the hot cells with values of AMAD between 5 and 10 μm. Measurements in the AVR containment and decontamination laboratory in Uranit GmbH showed deviations from log-normal distribution. In the waste press area the distribution is sometimes log-normal and sometimes not, depending upon the origin of waste. The values of AMAD are in the range of 2 to 4 μm in these areas. The respirable fractions were calculated using ACGIH definition for respirable dust to be < 25% in hot cells and < 60% in other areas. Pulmonary depositions according to ICRP model were < 10% and < 15% respectively. (orig./HP)

  14. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-11-01

    . Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.

  15. Aerosol Meteorology of Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study - Part 2: Philippine Receptor Observations of Fine-Scale Aerosol Behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; hide

    2016-01-01

    . Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.

  16. Volatile organic compounds and secondary organic aerosol in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Galbally, Ian

    2007-01-01

    Full text: Recent research, when considered as a whole, suggests that a substantial fraction of both gas-phase and aerosol atmospheric organics have not been, or have very rarely been, directly measured. A review of the global budget for organic gases shows that we cannot account for the loss of approximately half the non-methane organic carbon entering the atmosphere. We suggest that this unaccounted-for loss most likely occurs through formation of secondary organic aerosols (SOAs), indicating that the source for these aerosols is an order of magnitude larger than current estimates. There is evidence that aged secondary organic aerosol can participate in both direct and indirect (cloud modifying) radiative forcing and that this influence may change with other global climate change. Even though our knowledge of the organic composition of the atmosphere is limited, these compounds clearly influence the reactive chemistry of the atmosphere and the formation, composition, and climate impact of aerosols A major challenge in the coming decade of atmospheric chemistry research will be to elucidate the sources, structure, chemistry, fate and influences of these clearly ubiquitous yet poorly constrained organic atmospheric constituents

  17. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  18. CpG oligodeoxyribonucleotides protect mice from Burkholderia pseudomallei but not Francisella tularensis Schu S4 aerosols.

    Science.gov (United States)

    Rozak, David A; Gelhaus, Herbert C; Smith, Mark; Zadeh, Mojgan; Huzella, Louis; Waag, David; Adamovicz, Jeffrey J

    2010-02-05

    Studies have shown that CpG oligodeoxyribonucleotides (ODN) protect mice from various bacterial pathogens, including Burkholderia pseudomallei and Francisella tularensis live vaccine strain (LVS), when administered before parenteral challenge. Given the potential to develop CpG ODN as a pre-treatment for multiple bacterial biological warfare agents, we examined survival, histopathology, and cytokine data from CpG ODN-treated C57BL/6 mice to determine whether previously-reported protection extended to aerosolized B. pseudomallei 1026b and highly virulent F. tularensis Schu S4 infections. We found that, although CpG ODN protected mice from aerosolized B. pseudomallei challenges, the immunostimulant failed to benefit the animals exposed to F. tularensis Schu S4 aerosols. Our results, which contrast with earlier F. tularensis LVS studies, highlight potential differences in Francisella species pathogenesis and underscore the need to evaluate immunotherapies against human pathogenic species.

  19. Origins of atmospheric aerosols. Basic concepts on aerosol main physical properties; L`aerosol atmospherique: ses origines quelques notions sur les principales proprietes physiques des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A. [Paris-12 Univ., 94 - Creteil (France). Laboratoire de Physique des aerosols et de transferts des contaminations

    1996-12-31

    Natural and anthropogenic sources of atmospheric aerosols are reviewed and indications of their concentrations and granulometry are given. Calculation of the lifetime of an atmospheric aerosol of a certain size is presented and the various modes of aerosol granulometry and their relations with photochemical and physico-chemical processes in the atmosphere are discussed. The main physical, electrical and optical properties of aerosols are also presented: diffusion coefficient, dynamic mobility and relaxation time, Stokes number, limit rate of fall, electrical mobility, optical diffraction

  20. Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns

    Science.gov (United States)

    Fast, J. D.; Allan, J.; Bahreini, R.; Craven, J.; Emmons, L.; Ferrare, R.; Hayes, P. L.; Hodzic, A.; Holloway, J.; Hostetler, C.; Jimenez, J. L.; Jonsson, H.; Liu, S.; Liu, Y.; Metcalf, A.; Middlebrook, A.; Nowak, J.; Pekour, M.; Perring, A.; Russell, L.; Sedlacek, A.; Seinfeld, J.; Setyan, A.; Shilling, J.; Shrivastava, M.; Springston, S.; Song, C.; Subramanian, R.; Taylor, J. W.; Vinoj, V.; Yang, Q.; Zaveri, R. A.; Zhang, Q.

    2014-09-01

    that long-range transport of aerosols from the global model was likely too high in the free troposphere even though their concentrations were relatively low. This bias led to an over-prediction in aerosol optical depth by as much as a factor of 2 that offset the under-predictions of boundary-layer extinction resulting primarily from local emissions. Lowering the boundary conditions of aerosol concentrations by 50% greatly reduced the bias in simulated aerosol optical depth for all regions of California. This study shows that quantifying regional-scale variations in aerosol radiative forcing and determining the relative role of emissions from local and distant sources is challenging during `clean' conditions and that a wide array of measurements are needed to ensure model predictions are correct for the right reasons. In this regard, the combined CalNex and CARES data sets are an ideal test bed that can be used to evaluate aerosol models in great detail and develop improved treatments for aerosol processes.

  1. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  2. Aerosol studies

    International Nuclear Information System (INIS)

    Cristy, G.A.; Fish, M.E.

    1978-01-01

    As part of the continuing studies of the effects of very severe reactor accidents, an effort was made to develop, test, and improve simple, effective, and inexpensive methods by which the average citizen, using only materials readily available, could protect his residence, himself, and his family from injury by toxic aerosols. The methods for protection against radioactive aerosols should be equally effective against a clandestine biological attack by terrorists. The results of the tests to date are limited to showing that spores of the harmless bacterium, bacillus globegii (BG), can be used as a simulant for the radioactive aerosols. An aerosol generator of Lauterbach type was developed which will produce an essentially monodisperse aerosol at the rate of 10 9 spores/min. Analytical techniques have been established which give reproducible results. Preliminary field tests have been conducted to check out the components of the system. Preliminary tests of protective devices, such as ordinary vacuum sweepers, have given protection factors of over 1000

  3. Aerosol Climate Time Series in ESA Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  4. Evolution of aerosol downwind of a major highway

    Science.gov (United States)

    Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.

    2010-12-01

    Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of

  5. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    Science.gov (United States)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  6. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    Science.gov (United States)

    Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang

    2018-01-01

    Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  7. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    Directory of Open Access Journals (Sweden)

    B. N. Holben

    2018-01-01

    Full Text Available Over the past 24 years, the AErosol RObotic NETwork (AERONET program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  8. Clinical assessment of a commercial aerosol delivery system for ventilation scanning by comparison with KR-81m

    International Nuclear Information System (INIS)

    Wollmer, P.; Eriksson, L.; Andersson, A.C.

    1984-01-01

    Radioactive aerosols offer a means for steady state ventilation scanning in multiple views. The clinical use of radioaerosol techniques has been hampered by the lack of delivery systems producing sufficiently small particles. If the aerosol contains large particles, heavy deposition occurs in major airways, especially in patients with airways disease. The authors have assessed a new, commercial aerosol delivery system (Syntevent) by comparison with Kr-81m ventilation scanning in 23 patients with airways obstruction. An indirect comparison was also made with a settling bad technique. Ventilation scans in four projections were obtained during continuous inhalation of Kr-81m. Subsequently, the patient inhaled an aerosol labelled with In-113m from the Syntevent system, and aerosol ventilation scans were obtained in the same projections. Spirometry was performed to establish the degree of airways obstruction. The aerosol delineated the ventilated regions of the lungs adequately in all the patients. Deposition of aerosol in larger airways was seen in a few patients only, and this did not impede the interpretation of the scintigram. A quantitative analysis of the penetration of the aerosol to the periphery of the lung failed to demonstrate any significant correlation between particle penetration and airways obstruction. Aerosol penetration was significantly greater (p<0.001) with the Syntevent system than with a settling bag technique

  9. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    Science.gov (United States)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  10. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  11. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  12. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2016-11-01

    very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.

  13. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-01-01

    and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.

  14. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    Science.gov (United States)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  15. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone

    Science.gov (United States)

    Yu, Pengfei; Rosenlof, Karen H.; Liu, Shang; Telg, Hagen; Thornberry, Troy D.; Rollins, Andrew W.; Portmann, Robert W.; Bai, Zhixuan; Ray, Eric A.; Duan, Yunjun; Pan, Laura L.; Toon, Owen B.; Bian, Jianchun; Gao, Ru-Shan

    2017-07-01

    An enhanced aerosol layer near the tropopause over Asia during the June-September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance. The in situ measurements revealed a robust enhancement in aerosol concentration that extended up to 2 km above the tropopause. A climate model simulation demonstrates that the abundant anthropogenic aerosol precursor emissions from Asia coupled with rapid vertical transport associated with monsoon convection leads to significant particle formation in the upper troposphere within the ASM anticyclone. These particles subsequently spread throughout the entire Northern Hemispheric (NH) lower stratosphere and contribute significantly (˜15%) to the NH stratospheric column aerosol surface area on an annual basis. This contribution is comparable to that from the sum of small volcanic eruptions in the period between 2000 and 2015. Although the ASM contribution is smaller than that from tropical upwelling (˜35%), we find that this region is about three times as efficient per unit area and time in populating the NH stratosphere with aerosol. With a substantial amount of organic and sulfur emissions in Asia, the ASM anticyclone serves as an efficient smokestack venting aerosols to the upper troposphere and lower stratosphere. As economic growth continues in Asia, the relative importance of Asian emissions to stratospheric aerosol is likely to increase.

  16. Drop of canistered spent fuel segments into a deep borehole and subsequent aerosol release

    International Nuclear Information System (INIS)

    Bantle, S.; Herbe, H.; Miu, J.

    1991-09-01

    The source term of the released aerosols is estimated. First, the number of failing canisters is calculated for the case of an axial symmetric canister (POLLUX) pile, and then, for the case of a 'zig-zag' pile, as found in reality. The weight-specific energy acting on the fuel - a measure for the degree of fuel fractioning - is determined from the acceleration acting on the pin segments. In the borehole prevails a steady-state flow pattern which is stimulated by the heat of the disposed waste canister, and is also influenced by the ventilation of the drift above the borehole. Based on this stationary flow pattern flow velocities are calculated by means of fluid mechanical methods. Further investigations deal with the unsteady case which occurs during and immediately after the canister drop as well as with the wake behind the canister. The most relevant result is that under the considered boundary conditions no release form the borehole into the repository is to be expected. (orig./HP) [de

  17. Tobacco-Specific Nitrosamines in Electronic Cigarettes: Comparison between Liquid and Aerosol Levels

    Directory of Open Access Journals (Sweden)

    Konstantinos E. Farsalinos

    2015-07-01

    Full Text Available Introduction: Although electronic cigarette (EC liquids contain low levels of tobacco-specific nitrosamines (TSNAs, studies evaluating the levels emitted to the aerosol are scarce. The purpose of this study was to compare the levels of TSNAs between liquids and generated aerosol. Methods: Three EC liquids were obtained from the market. An additional (spiked sample was prepared by adding known amounts of standard TSNAs solutions to one of the obtained liquids. N-nitrosonornicotine (NNN, N-nitrosoanatabine (NAT, N-nitrosoanabasine (NAB and 4-(methylnitrosamino1-(3-pyridyl-1-butanone (NNK were measured. Three 100-puff sets from each liquid were trapped in filter pads and were subsequently analyzed for the presence of TSNAs. The expected levels of TSNAs (calculated based on the liquid consumption were compared with the measured levels in the aerosol. Results: Only NAB was found at trace levels in two commercial liquids (1.2 and 2.3 ng/g, while the third contained 1.5 ng/g NAB and 7.7 ng/g NNN. The 100-puff sets resulted in 336–515 mg liquid consumption, with no TSNAs being detected in the aerosol. The spiked sample contained 42.0–53.9 ng/g of each of the TSNAs. All TSNAs were detected in the aerosol with the measured levels being statistically similar to the expected amounts. A significant correlation between expected and measured levels of TSNAs in the aerosol was found (r = 0.83, p < 0.001. Conclusion: The findings of this study show that exposure of EC users to TSNAs can be accurately assessed based on the levels present in the liquid, without the need to analyze the aerosol.

  18. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2014-01-01

    Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges.

  19. The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0

    Science.gov (United States)

    de Bruine, Marco; Krol, Maarten; van Noije, Twan; Le Sager, Philippe; Röckmann, Thomas

    2018-04-01

    The representation of aerosol-cloud interaction in global climate models (GCMs) remains a large source of uncertainty in climate projections. Due to its complexity, precipitation evaporation is either ignored or taken into account in a simplified manner in GCMs. This research explores various ways to treat aerosol resuspension and determines the possible impact of precipitation evaporation and subsequent aerosol resuspension on global aerosol burdens and distribution. The representation of aerosol wet deposition by large-scale precipitation in the EC-Earth model has been improved by utilising additional precipitation-related 3-D fields from the dynamical core, the Integrated Forecasting System (IFS) general circulation model, in the chemistry and aerosol module Tracer Model, version 5 (TM5). A simple approach of scaling aerosol release with evaporated precipitation fraction leads to an increase in the global aerosol burden (+7.8 to +15 % for different aerosol species). However, when taking into account the different sizes and evaporation rate of raindrops following Gong et al. (2006), the release of aerosols is strongly reduced, and the total aerosol burden decreases by -3.0 to -8.5 %. Moreover, inclusion of cloud processing based on observations by Mitra et al. (1992) transforms scavenged small aerosol to coarse particles, which enhances removal by sedimentation and hence leads to a -10 to -11 % lower aerosol burden. Finally, when these two effects are combined, the global aerosol burden decreases by -11 to -19 %. Compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, aerosol optical depth (AOD) is generally underestimated in most parts of the world in all configurations of the TM5 model and although the representation is now physically more realistic, global AOD shows no large improvements in spatial patterns. Similarly, the agreement of the vertical profile with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP

  20. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  1. Atmo-metabolomics: a new measurement approach for investigating aerosol composition and ecosystem functioning.

    Science.gov (United States)

    Rivas-Ubach, A.; Liu, Y.; Sardans, J.; Tfaily, M. M.; Kim, Y. M.; Bourrianne, E.; Paša-Tolić, L.; Penuelas, J.; Guenther, A. B.

    2016-12-01

    Aerosols play crucial roles in the processes controlling the composition of the atmosphere and the functioning of ecosystems. Gaining a deeper understanding of the chemical composition of aerosols is one of the major challenges for atmospheric and climate scientists and is beginning to be recognized as important for ecological research. Better comprehension of aerosol chemistry can potentially provide valuable information on atmospheric processes such as oxidation of organics and the production of cloud condensation nuclei as well as provide an approximation of the general status of an ecosystem through the measurement of certain stress biomarkers. In this study, we describe an efficient aerosol sampling method, the metabolite extraction and the analytical procedures for the chemical characterization of aerosols, namely, the atmo-metabolome. We used mass spectrometry (MS) coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and Fourier transform ion cyclotron resonance (FT-ICR-MS) to characterize the atmo-metabolome of two marked seasons; spring and summer. Our sampling and extraction methods demonstrated to be suitable for aerosol chemical characterization with any of the analytical platforms used in this study. The atmo-metabolome between spring and summer showed overall statistically differences. We identified several metabolites that can be attributed to pollen and other plant-related aerosols. Spring aerosols exhibit higher concentrations of metabolites linked to higher plant activity while summer samples had higher concentrations of metabolites that may reflect certain oxidative stresses in primary producers. Moreover, the elemental composition of aerosols showed clear different between seasons. Summer aerosols were generally higher in molecular weight and with higher O/C ratios, indicating higher oxidation levels and condensation of compounds relative to spring. Our method represents an advanced approach for characterizing the composition of

  2. Aerosol Measurements with the FRAM Telescope

    Directory of Open Access Journals (Sweden)

    Ebr Jan

    2017-01-01

    Full Text Available Precision stellar photometry using a telescope equipped with a CCD camera is an obvious way to measure the total aerosol content of the atmosphere as the apparent brightness of every star is affected by scattering. Achieving high precision in the vertical aerosol optical depth (at the level of 0.01 presents a series of interesting challenges. Using 3.5 years of data taken by the FRAM instrument at the Pierre Auger Observatory, we have developed a set of methods and tools to overcome most of these challenges. We use a wide-field camera and measure stars over a large span in airmass to eliminate the need for absolute calibration of the instrument. The main issues for data processing include camera calibration, source identification in curved field, catalog deficiencies, automated aperture photometry in rich fields with lens distortion and corrections for star color. In the next step, we model the airmass-dependence of the extinction and subtract the Rayleigh component of scattering, using laboratory measurements of spectral sensitivity of the device. In this contribution, we focus on the caveats and solutions found during the development of the methods, as well as several issues yet to be solved. Finally, future outlooks, such as the possibility for precision measurements of wavelength dependence of the extinction are discussed.

  3. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; hide

    2015-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  4. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, John; Hostetler, Chris A.; Hubbe, John M.; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, K.; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail S.; Rogers, Ray; Russell, P.; Redemann, Jens; Sedlacek, Art; Segal Rozenhaimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline; Volkamer, Rainer M.; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.

  5. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  6. Special aerosol sources for certification and test of aerosol radiometers

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E.

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author)

  7. Special aerosol sources for certification and test of aerosol radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E. (Union Research Institute of Instrumentation, Moscow (USSR))

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author).

  8. Aerosols and the lungs

    International Nuclear Information System (INIS)

    1987-01-01

    The lectures of the colloquium are discussed in summary form. There were 5 lectures on aerosol deposition, 5 on aerosol elimination, 7 on toxicology, and 7 on the uses of aerosols in medical therapy. In some cases aerosols with radioactive labels were used. Several lectures reviewed the kinetics and toxicology of airborne environmental pollutants. (MG) [de

  9. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.

    Science.gov (United States)

    Bian, Xiaojun; Lan, Ying; Wang, Bing; Zhang, Yu Shrike; Liu, Baohong; Yang, Pengyuan; Zhang, Weijia; Qiao, Liang

    2016-12-06

    The early warning capability of the presence of biological aerosol threats is an urgent demand in ensuing civilian and military safety. Efficient and rapid air sample collection in relevant indoor or outdoor environment is a key step for subsequent analysis of airborne microorganisms. Herein, we report a portable battery-powered sampler that is capable of highly efficient bioaerosol collection. The essential module of the sampler is a polydimethylsiloxane (PDMS) microfluidic chip, which consisted of a 3-loop double-spiral microchannel featuring embedded herringbone and sawtooth wave-shaped structures. Vibrio parahemolyticus (V. parahemolyticus) as a model microorganism, was initially employed to validate the bioaerosol collection performance of the device. Results showed that the sampling efficacy reached as high as >99.9%. The microfluidic sampler showed greatly improved capturing efficiency compared with traditional plate sedimentation methods. The high performance of our device was attributed to the horizontal inertial centrifugal force and the vertical turbulence applied to airflow during sampling. The centrifugation field and turbulence were generated by the specially designed herringbone structures when air circulated in the double-spiral microchannel. The sawtooth wave-shaped microstructure created larger specific surface area for accommodating more aerosols. Furthermore, a mixture of bacterial aerosols formed by V. parahemolyticus, Listeria monocytogenes, and Escherichia coli was extracted by the microfluidic sampler. Subsequent integration with mass spectrometry conveniently identified the multiple bacterial species captured by the sampler. Our developed stand-alone and cable-free sampler shows clear advantages comparing with conventional strategies, including portability, easy-to-use, and low cost, indicating great potential in future field applications.

  10. Aerosols and Climate

    Indian Academy of Sciences (India)

    Large warming by elevated aerosols · AERONET – Global network (NASA) · Slide 25 · Slide 26 · Slide 27 · Slide 28 · Slide 29 · Slide 30 · Slide 31 · Long-term trends - Trivandrum · Enhanced warming over Himalayan-Gangetic region · Aerosol Radiative Forcing Over India _ Regional Aerosol Warming Experiment ...

  11. Impact of cloud-borne aerosol representation on aerosol direct and indirect effects

    Directory of Open Access Journals (Sweden)

    S. J. Ghan

    2006-01-01

    Full Text Available Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing. Aerosol number, aerosol optical depth and droplet number are significantly underestimated in regions and seasons where and when wet removal is primarily by stratiform rather than convective clouds (polar regions during winter, but direct and indirect effects are less biased because of the limited sunlight there and then. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment. The errors are much smaller than current estimates of uncertainty in direct and indirect effects of aerosols, which suggests that the treatment of cloud-borne aerosol is not a significant source of uncertainty in estimates of direct and indirect effects.

  12. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing derived from the GlobAEROSOL-AATSR satellite aerosol product

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2013-01-01

    Full Text Available Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (−6.7 ± 3.9 W m−2 at the top of atmosphere (TOA and (−12 ± 6 W m−2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  13. Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period

    OpenAIRE

    Vlachou, Athanasia; Daellenbach, Kaspar R.; Bozzetti, Carlo; Chazeau, Benjamin; Salazar Quintero, Gary Abdiel; Szidat, Sönke; Jaffrezo, Jean-Luc; Hueglin, Christoph; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H.

    2018-01-01

    Carbonaceous aerosols are related to adverse human health effects. Therefore, identification of their sources and analysis of their chemical composition is important. The offline AMS (aerosol mass spectrometer) technique offers quantitative separation of organic aerosol (OA) factors which can be related to major OA sources, either primary or secondary. While primary OA can be more clearly separated into sources, secondary (SOA) source apportionment is more challenging because different source...

  14. Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period

    OpenAIRE

    A. Vlachou; K. R. Daellenbach; C. Bozzetti; B. Chazeau; G. A. Salazar; S. Szidat; J.-L. Jaffrezo; C. Hueglin; U. Baltensperger; I. E. Haddad; A. S. H. Prévôt

    2018-01-01

    Carbonaceous aerosols are related to adverse human health effects. Therefore, identification of their sources and analysis of their chemical composition is important. The offline AMS (aerosol mass spectrometer) technique offers quantitative separation of organic aerosol (OA) factors which can be related to major OA sources, either primary or secondary. While primary OA can be more clearly separated into sources, secondary (SOA) source apportionment is more challenging because d...

  15. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  16. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  17. Substantial convection and precipitation enhancements by ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.

    2018-01-25

    Aerosol-cloud interaction remains the largest uncertainty in climate projections. Ultrafine aerosol particles (UAP; size <50nm) are considered too small to serve as cloud condensation nuclei conventionally. However, this study provides observational evidence to accompany insights from numerical simulations to support that deep convective clouds (DCCs) over Amazon have strong capability of nucleating UAP from an urban source and forming greater numbers of droplets, because fast drop coalescence in these DCCs reduces drop surface area available for condensation, leading to high vapor supersaturation. The additional droplets subsequently decrease supersaturation and release more condensational latent heating, a dominant contributor to convection intensification, whereas enhanced latent heat from ice-related processes plays a secondary role. Therefore, the addition of anthropogenic UAP may play a much greater role in modulating clouds than previously believed over the Amazon region and possibly in other relatively pristine regions such as maritime and forest locations.

  18. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  19. Secondary organic aerosol formation through cloud processing of aromatic VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.; Ervens, B.

    2010-12-01

    Field observations have shown substantial concentrations (20-5,500 ng L-1) of aromatic volatile organic compounds (VOC) in cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric laboratory conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction rates decreased with increasing organic carbon content. Kinetic data derived from these experiments were used as input to a multiphase box model in order to evaluate the secondary organic aerosol (SOA) mass formation potential of cloud processing of BTEX. Model results will be presented that quantify the SOA amounts from these aqueous phase pathways. The efficiency of this multiphase SOA source will be compared to SOA yields from the same aromatics as treated in traditional SOA models that are restricted to gas phase oxidation and subsequent condensation on particles.

  20. Antarctic aerosols - A review

    Science.gov (United States)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  1. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  2. Diagnosing causes of extreme aerosol optical depth events

    Science.gov (United States)

    Bernstein, D. N.; Sullivan, R.; Crippa, P.; Thota, A.; Pryor, S. C.

    2017-12-01

    Aerosol burdens and optical properties exhibit substantial spatiotemporal variability, and simulation of current and possible future aerosol burdens and characteristics exhibits relatively high uncertainty due to uncertainties in emission estimates and in chemical and physical processes associated with aerosol formation, dynamics and removal. We report research designed to improve understanding of the causes and characteristics of extreme aerosol optical depth (AOD) at the regional scale, and diagnose and attribute model skill in simulating these events. Extreme AOD events over the US Midwest are selected by identifying all dates on which AOD in a MERRA-2 reanalysis grid cell exceeds the local seasonally computed 90th percentile (p90) value during 2004-2016 and then finding the dates on which the highest number of grid cells exceed their local p90. MODIS AOD data are subsequently used to exclude events dominated by wildfires. MERRA-2 data are also analyzed within a synoptic classification to determine in what ways the extreme AOD events are atypical and to identify possible meteorological `finger-prints' that can be detected in regional climate model simulations of future climate states to project possible changes in the occurrence of extreme AOD. Then WRF-Chem v3.6 is applied at 12-km resolution and regridded to the MERRA-2 resolution over eastern North America to quantify model performance, and also evaluated using in situ measurements of columnar AOD (AERONET) and near-surface PM2.5 (US EPA). Finally the sensitivity to (i) spin-up time (including procedure used to spin-up the chemistry), (ii) modal versus sectional aerosol schemes, (iii) meteorological nudging, (iv) chemistry initial and boundary conditions, and (v) anthropogenic emissions is quantified. Despite recent declines in mean AOD, supraregional (> 1000 km) extreme AOD events continue to occur. During these events AOD exceeds 0.6 in many Midwestern grid cells for multiple consecutive days. In all

  3. MAPPIX: A software package for off-line micro-pixe single particle aerosol analysis

    International Nuclear Information System (INIS)

    Ceccato, D.

    2009-01-01

    In the framework of a multiannual experiment performed at Baia Terra Nova, Antarctica, size-segregated aerosol samples were collected by using a 12-stage SDI impactor (Hillamo design). Approximately 2800 particles, belonging to the first four supermicrometric SDI stages - 8.39, 4.08, 2.68, 1.66 μm dynamic aerosol diameter cuts - were analyzed at the INFN-LNL micro-PIXE facility, a three lens Oxford Microprobe (OM) product, installed in the early nineties. Four regions on each of the 12 sub-samples were measured; 60 aerosol particles were detected on average in each of the analyzed regions. The off-line single aerosol particle (SAP) analysis of such big amount of data required software that is able to rapidly handle the acquired data, with a simple and fast area selection procedure; the subsequent automated PIXE spectra analysis with a specialized code was also needed. The MAPPIX 2.0 software was designed to make easier and faster the user jobs during the SAP analysis. The package is composed of two separate routines: the first one is devoted to data format conversion (OM-LMF file format to MAPPIX format), while the second one is devoted to micro-PIXE maps graphical presentation and aerosol particle selection procedure. The MAPPIX data format and software features will be discussed; a short report of the speed performances will be presented.

  4. Enhancements to the CALIOP Aerosol Subtyping and Lidar Ratio Selection Algorithms for Level II Version 4

    Science.gov (United States)

    Omar, A. H.; Tackett, J. L.; Vaughan, M. A.; Kar, J.; Trepte, C. R.; Winker, D. M.

    2016-12-01

    fringes are detected at coarse resolution due to overlying attenuation and subsequent aerosol subtyping may not be as reliable as that of the adjacent higher-resolution layers overhead. SCAARF re-classifies the aerosol subtype of these lower fringes to the dominant subtype of the adjacent overlying layers.

  5. Satellite assisted aerosol correlation in a sequestered CO2 leakage controlled site

    Science.gov (United States)

    Landulfo, Eduardo; da Silva Lopes, Fábio J.; Nakaema, Walter M.; de Medeiros, José A. G.; Moreira, Andrea

    2014-10-01

    Currently one of the main challenges in CO2 storage research is to grant the development, testing and validation of accurate and efficient Measuring, Monitoring and Verification (MMV) techniques to be deployed at the final storage site, targeting maximum storage efficiency at the minimal leakage risk levels. For such task a mimetic sequestration site has been deployed in Florianopolis, Brazil, in order to verify the performance of monitoring plataforms to detect and quantify leakages of ground injected CO2, namely a Cavity Ring Down System (CRDS) - Los Gatos Research - an Eddy Covariance System (Campbell Scientific and Irgason) and meteorological tower for wind, humidity, precipitation and temperature monitoring onsite. The measurement strategy for detecting CO2 leakages can be very challenging since environmental and phytogenic influence can be very severe and play a role on determining if the values measured are unambiguous or not. One external factor to be considered is the amount of incoming solar radiation which will be the driving force for the whole experimental setup and following this reasoning the amount of aerosols in the atmospheric column can be a determinant factor influencing the experimental results. Thus the investigation of measured fluxes CO2 and its concentration with the aforementioned experimental instruments and their correlation with the aerosol data should be taken into account by means of satellite borne systems dedicated to measure aerosol vertical distribution and its optical properties, in this study we have selected CALIPSO and MODIS instrumentation to help on deriving the aerosol properties and CO2 measurements.

  6. Improved MODIS aerosol retrieval in urban areas using a land classification approach and empirical orthogonal functions

    Science.gov (United States)

    Levitan, Nathaniel; Gross, Barry

    2016-10-01

    New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.

  7. Aerosol light absorption and its measurement: A review

    International Nuclear Information System (INIS)

    Moosmueller, H.; Chakrabarty, R.K.; Arnott, W.P.

    2009-01-01

    Light absorption by aerosols contributes to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer. Besides the direct radiative effect, the heating can evaporate clouds and change the atmospheric dynamics. Aerosol light absorption in the atmosphere is dominated by black carbon (BC) with additional, significant contributions from the still poorly understood brown carbon and from mineral dust. Sources of these absorbing aerosols include biomass burning and other combustion processes and dust entrainment. For particles much smaller than the wavelength of incident light, absorption is proportional to the particle volume and mass. Absorption can be calculated with Mie theory for spherical particles and with more complicated numerical methods for other particle shapes. The quantitative measurement of aerosol light absorption is still a challenge. Simple, commonly used filter measurements are prone to measurement artifacts due to particle concentration and modification of particle and filter morphology upon particle deposition, optical interaction of deposited particles and filter medium, and poor angular integration of light scattered by deposited particles. In situ methods measure particle absorption with the particles in their natural suspended state and therefore are not prone to effects related to particle deposition and concentration on filters. Photoacoustic and refractive index-based measurements rely on the heating of particles during light absorption, which, for power-modulated light sources, causes an acoustic signal and modulation of the refractive index in the air surrounding the particles that can be quantified with a microphone and an interferometer, respectively. These methods may suffer from some interference due to light-induced particle evaporation. Laser-induced incandescence also monitors particle heating upon absorption, but heats absorbing particles to much higher temperatures to quantify BC mass

  8. In Vitro Evaluation of a Device for Intra-Pulmonary Aerosol Generation and Delivery

    Science.gov (United States)

    Syedain, Zeeshan H.; Naqwi, Amir A.; Dolovich, Myrna; Somani, Arif

    2015-01-01

    For infants born with respiratory distress syndrome (RDS), liquid bolus delivery of surfactant administered through an endotracheal tube is common practice. While this method is generally effective, complications such as transient hypoxia, hypercapnia, and altered cerebral blood flow may occur. Aerosolized surfactant therapy has been explored as an alternative. Unfortunately, past efforts have led to disappointing results as aerosols were generated outside the lungs with significant pharyngeal deposition and minimal intrapulmonary instillation. A novel aerosol generator (Microjet™) is evaluated herein for intrapulmonary aerosol generation within an endotracheal tube and tested with Curosurf and Infasurf surfactants. Compared with other aerosol delivery devices, this process utilizes low air flow (range 0.01-0.2 L/min) that is ideal for limiting potential barotrauma to the premature newborn lung. The mass mean diameter (MMD) of the particles for both tested surfactants was less than 4 μm, which is ideal for both uniform and distal lung delivery. As an indicator of phospholipid function, surfactant surface tension was measured before and after aerosol formation; with no significant difference. Moreover, this device has an outside diameter of <1mm, which permits insertion into an endotracheal tube (of even 2.0 mm). In the premature infant where intravenous access is either technically challenging or difficult, aerosol drug delivery may provide an alternative route in patient resuscitation, stabilization and care. Other potential applications of this type of device include the delivery of nutrients, antibiotics, and analgesics via the pulmonary route. PMID:26884641

  9. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    region compared with the Rainforest environment. This was reflected in the single scattering albedo of the regional smoke haze, with values of 0.9 observed in the Rainforest environments compared with a value of 0.8 in the Cerrado region. This contrast results in a net cooling and warming respectively in terms of the aerosol direct radiative effect. BC-containing particles were found to be rapidly coated in the near-field, with little evidence for additional coating upon advection and dilution. This is consistent with organic aerosol mass being approximately constant when accounting for dilution both close to source and on the regional scale. However, the bulk organic aerosol composition became increasingly oxidised with distance from source. Such properties have important implications for the life cycle and formation of particulate material, which governs its subsequent impacts. Biomass burning layers were observed aloft in the free troposphere, which has potential implications for atmospheric stability profiles and cloud formation. The results presented enhance our knowledge of biomass burning aerosol in a sensitive region of the globe, where relatively few measurement campaigns have taken place previously.

  10. Aerosol Indices Derived from MODIS Data for Indicating Aerosol-Induced Air Pollution

    Directory of Open Access Journals (Sweden)

    Junliang He

    2014-02-01

    Full Text Available Aerosol optical depth (AOD is a critical variable in estimating aerosol concentration in the atmosphere, evaluating severity of atmospheric pollution, and studying their impact on climate. With the assistance of the 6S radiative transfer model, we simulated apparent reflectancein relation to AOD in each Moderate Resolution Imaging Spectroradiometer (MODIS waveband in this study. The closeness of the relationship was used to identify the most and least sensitive MODIS wavebands. These two bands were then used to construct three aerosol indices (difference, ratio, and normalized difference for estimating AOD quickly and effectively. The three indices were correlated, respectively, with in situ measured AOD at the Aerosol Robotic NETwork (AERONET Lake Taihu, Beijing, and Xianghe stations. It is found that apparent reflectance of the blue waveband (band 3 is the most sensitive to AOD while the mid-infrared wavelength (band 7 is the least sensitive. The difference aerosol index is the most accurate in indicating aerosol-induced atmospheric pollution with a correlation coefficient of 0.585, 0.860, 0.685, and 0.333 at the Lake Taihu station, 0.721, 0.839, 0.795, and 0.629 at the Beijing station, and 0.778, 0.782, 0.837, and 0.643 at the Xianghe station in spring, summer, autumn and winter, respectively. It is concluded that the newly proposed difference aerosol index can be used effectively to study the level of aerosol-induced air pollution from MODIS satellite imagery with relative ease.

  11. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    Science.gov (United States)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  12. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    Science.gov (United States)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  13. How important is organic aerosol hygroscopicity to aerosol indirect forcing?

    International Nuclear Information System (INIS)

    Liu Xiaohong; Wang Jian

    2010-01-01

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR community atmospheric model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (represented by a single parameter 'κ' ) of POA and SOA. Our model simulation indicates that in the present-day (PD) condition changing the 'κ' value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S = 0.1% by 40-80% over the POA source regions, while changing the 'κ' value of SOA by ± 50% (from 0.14 to 0.07 and 0.21) changes the CCN concentration within 40%. There are disproportionally larger changes in CCN concentration in the pre-industrial (PI) condition. Due to the stronger impact of organics hygroscopicity on CCN and cloud droplet number concentration at PI condition, global annual mean anthropogenic aerosol indirect forcing (AIF) between PD and PI conditions reduces with the increase of the hygroscopicity of organics. Global annual mean AIF varies by 0.4 W m -2 in the sensitivity runs with the control run of - 1.3 W m -2 , highlighting the need for improved understanding of organics hygroscopicity and its representation in global models.

  14. Geochemistry of natural and anthropogenic fall-out (aerosol and precipitation) collected from the NW Mediterranean: two different multivariate statistical approaches

    International Nuclear Information System (INIS)

    Molinaroli, E.; Pistolato, M.; Rampazzo, G.; Guerzoni, S.

    1999-01-01

    The chemical characteristics of the mineral fractions of aerosol and precipitation collected in Sardinia (NW Mediterranean) are highlighted by means of two multivariate statistical approaches. Two different combinations of classification and statistical methods for geochemical data are presented. It is shown that the application of cluster analysis subsequent to Q-Factor analysis better distinguishes among Saharan dust, background pollution (Europe-Mediterranean) and local aerosol from various source regions (Sardinia). Conversely, the application of simple cluster analysis was able to distinguish only between aerosols and precipitation particles, without assigning the sources (local or distant) to the aerosol. This method also highlighted the fact that crust-enriched precipitation is similar to desert-derived aerosol. Major elements (Al, Na) and trace metal (Pb) turn out to be the most discriminating elements of the analysed data set. Independent use of mineralogical, granulometric and meteorological data confirmed the results derived from the statistical methods employed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Containment aerosol behaviour simulation studies in the BARC nuclear aerosol test facility

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sapra, B.K.; Khan, Arshad; Sunny, Faby; Nair, R.N.; Raghunath, Radha; Tripathi, R.M.; Markandeya, S.G.; Puranik, V.D.; Ghosh, A.K.; Kushwaha, H.S.; Shreekumar, K.P.; Padmanabhan, P.V.A.; Murthy, P.S.S.; Venlataramani, N.

    2005-02-01

    A Nuclear Aerosol Test Facility (NATF) has been built and commissioned at Bhabha Atomic Research Centre to carry out simulation studies on the behaviour of aerosols released into the reactor containment under accident conditions. This report also discusses some new experimental techniques for estimation of density of metallic aggregates. The experimental studies have shown that the dynamic densities of aerosol aggregates are far lower than their material densities as expected by the well-known fractal theory of aggregates. In the context of codes, this has significant bearing in providing a mechanistic basis for the input density parameter used in estimating the aerosol evolution characteristics. The data generated under the quiescent and turbulent conditions and the information on aggregate densities are now being subjected to the validation of the aerosol behaviour codes. (author)

  16. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Nishi, Yoshihisa

    2016-01-01

    Highlights: • Aerosol DF of each diameter is evaluable by using optical scattering method. • Outlet aerosol concentration shows exponential decay by the submergence. • This decay constant depends on the aerosol diameter. • Aerosol DF at water scrubber is described by simple equation. - Abstract: During a severe nuclear power plant accident, the release of fission products into containment and an increase in containment pressure are assumed to be possible. When the containment is damaged by excess pressure or temperature, radioactive materials are released. Pressure suppression pools, containment spray systems and a filtered containment venting system (FCVS) reduce containment pressure and reduce the radioactive release into the environment. These devices remove radioactive materials via various mechanisms. Pressure suppression pools remove radioactive materials by pool scrubbing. Spray systems remove radioactive materials by droplet−aerosol interaction. FCVS, which is installed in the exhaust system, comprises multi-scrubbers (venturi-scrubber, pool scrubbing, static mixer, metal−fiber filter and molecular sieve). For the particulate radioactive materials, its size affects the removal performance and a number of studies have been performed on the removal effect of radioactive materials. This study has developed a new means of evaluating aerosol removal efficiency. The aerosol number density of each effective diameter (light scattering equivalent diameter) is measured using an optical method, while the decontamination factor (DF) of each effective diameter is evaluated by the inlet outlet number density ratio. While the applicable scope is limited to several conditions (geometry of test section: inner diameter 500 mm × height 8.0 m, nozzle shape and air-water ambient pressure conditions), this study has developed a numerical model which defines aerosol DF as a function of aerosol diameter (d) and submergences (x).

  17. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Taizo, E-mail: t-kanai@criepi.denken.or.jp; Furuya, Masahiro, E-mail: furuya@criepi.denken.or.jp; Arai, Takahiro, E-mail: t-arai@criepi.denken.or.jp; Nishi, Yoshihisa, E-mail: y-nishi@criepi.denken.or.jp

    2016-07-15

    Highlights: • Aerosol DF of each diameter is evaluable by using optical scattering method. • Outlet aerosol concentration shows exponential decay by the submergence. • This decay constant depends on the aerosol diameter. • Aerosol DF at water scrubber is described by simple equation. - Abstract: During a severe nuclear power plant accident, the release of fission products into containment and an increase in containment pressure are assumed to be possible. When the containment is damaged by excess pressure or temperature, radioactive materials are released. Pressure suppression pools, containment spray systems and a filtered containment venting system (FCVS) reduce containment pressure and reduce the radioactive release into the environment. These devices remove radioactive materials via various mechanisms. Pressure suppression pools remove radioactive materials by pool scrubbing. Spray systems remove radioactive materials by droplet−aerosol interaction. FCVS, which is installed in the exhaust system, comprises multi-scrubbers (venturi-scrubber, pool scrubbing, static mixer, metal−fiber filter and molecular sieve). For the particulate radioactive materials, its size affects the removal performance and a number of studies have been performed on the removal effect of radioactive materials. This study has developed a new means of evaluating aerosol removal efficiency. The aerosol number density of each effective diameter (light scattering equivalent diameter) is measured using an optical method, while the decontamination factor (DF) of each effective diameter is evaluated by the inlet outlet number density ratio. While the applicable scope is limited to several conditions (geometry of test section: inner diameter 500 mm × height 8.0 m, nozzle shape and air-water ambient pressure conditions), this study has developed a numerical model which defines aerosol DF as a function of aerosol diameter (d) and submergences (x).

  18. DARE : Dedicated Aerosols Retrieval Experiment

    NARCIS (Netherlands)

    Smorenburg, K.; Courrèges-Lacoste, G.B.; Decae, R.; Court, A.J.; Leeuw, G. de; Visser, H.

    2004-01-01

    At present there is an increasing interest in remote sensing of aerosols from space because of the large impact of aerosols on climate, earth observation and health. TNO has performed a study aimed at improving aerosol characterisation using a space based instrument and state-of-the-art aerosol

  19. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  20. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    Science.gov (United States)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  1. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    Science.gov (United States)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  2. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    Science.gov (United States)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  3. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  4. Aerosol effects on UV radiation

    International Nuclear Information System (INIS)

    Koepke, P.; Reuder, J.; Schwander, H.

    2000-01-01

    The reduction of erythemally weighted UV-irradiance (given as UV index, UVI) due to aerosols is analyzed by variation of the tropospheric particles in a wide, but realistic range. Varied are amount and composition of the particles and relative humidity and thickness of the mixing layer. The reduction of UVI increases with aerosol optical depth and the UV change is around 10% for a change aerosol optical depth from 0.25 to 0.1 and 0.4 respectively. Since both aerosol absorption and scattering are of relevance, the aerosol effect depends besides total aerosol amount on relative amount of soot and on relative humidity

  5. Aerosol sampler for analysis of fine and ultrafine aerosols

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Čapka, Lukáš; Večeřa, Zbyněk

    2018-01-01

    Roč. 1020 (2018), s. 123-133 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA14-25558S Institutional support: RVO:68081715 Keywords : atmospheric aerosols * aerosol collection * chemical composition Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  6. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    International Nuclear Information System (INIS)

    Wahab, A M; Sarker, M L R

    2014-01-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation

  7. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  8. The DRAGON aerosol research facility to study aerosol behaviour for reactor safety applications

    International Nuclear Information System (INIS)

    Suckow, Detlef; Guentay, Salih

    2008-01-01

    During a severe accident in a nuclear power plant fission products are expected to be released in form of aerosol particles and droplets. To study the behaviour of safety relevant reactor components under aerosol loads and prototypical severe accident conditions the multi-purpose aerosol generation facility DRAGON is used since 1994 for several projects. DRAGON can generate aerosol particles by the evaporation-condensation technique using a plasma torch system, fluidized bed and atomization of particles suspended in a liquid. Soluble, hygroscopic aerosol (i.e. CsOH) and insoluble aerosol particles (i.e. SnO 2 , TiO 2 ) or mixtures of them can be used. DRAGON uses state-of-the-art thermal-hydraulic, data acquisition and aerosol measurement techniques and is mainly composed of a mixing chamber, the plasma torch system, a steam generator, nitrogen gas and compressed air delivery systems, several aerosol delivery piping, gas heaters and several auxiliary systems to provide vacuum, coolant and off-gas treatment. The facility can be operated at system pressure of 5 bars, temperatures of 300 deg. C, flow rates of non-condensable gas of 900 kg/h and steam of 270 kg/h, respectively. A test section under investigation is attached to DRAGON. The paper summarizes and demonstrates with the help of two project examples the capabilities of DRAGON for reactor safety studies. (authors)

  9. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  10. Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia

    Science.gov (United States)

    Liu, Zhiquan; Liu, Quanhua; Lin, Hui-Chuan; Schwartz, Craig S.; Lee, Yen-Huei; Wang, Tijian

    2011-12-01

    Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate matter with diameters less than 10 μm) observations. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.

  11. Production of monodisperse respirable aerosols of 241AmO2 and evaluation of in vitro dissolution

    International Nuclear Information System (INIS)

    Boyd, H.A.; Raabe, O.G.; Peterson, P.K.

    1974-01-01

    A method is described for production of monodisperse (sigma//sub g/ less than 1.2) particles of 241 AmO 2 for use in inhalation experiments with dogs and rodents. The effects of physical and chemical factors on the production of polydisperse aerosols of 241 AmO 2 were studied and evaluated. The best aerosol was achieved when a suspension of americium hydroxide with 2.5 mg Am/ml at pH = 7.3 was aerosolized and passed through two heating columns in succession, the first at 300 0 C and the second at 1050 0 C. The particles were roughly spherical and had densities near 8 gm/cm 3 ; the aerosol AMAD and sigma/sub g/ were about 1.5 μm and 1.7, respectively. Monodisperse particles were separated and collected with the Lovelace Aerosol Particle Separator (LAPS) and subsequently suspended in deionized water with pH adjusted to 10.2 with NH 3 for nebulization to produce monodisperse aerosols for inhalation exposures. Particles collected on filters during inhalation experiments were used for evaluation of in vitro dissolution rates with two systems and various forms of a lung fluid simulant. The important role of phosphate ions in such dissolution systems was demonstrated, suggesting the potential for the equally important role of free phosphate in retarding dissolution of AmO 2 particles in the lung. (U.S.)

  12. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  13. Model studies of the effect of aerosol wastewater emissions on terrestrial mollusks Achatina fulica

    Directory of Open Access Journals (Sweden)

    Kamardin Nikolaj Nikolaevich

    2016-12-01

    Full Text Available The laboratory experiments were carried on using the juvenile mollusk Achatina fulica as a bioindicator of soil contamination and air pollution. It is shown that when experimental animals breathed and had dermal contact with the aerosols prepared from the wastewater and those prepared from two solutions of Ni in distilled water at two concentrations they weighed significantly less than controls . According to the results of AAS, heavy metals (HM, in particular Cd, Cu, Ni of sewage accumulated in the digestive gland of the shell. In model experiments mollusks were contained in the chamber periodically (2 hours of input and 2 hours of pause filled with aerosol containing Ni at concentrations of 30 and 50 mg / dm3 nickel for two weeks It resulted in accumulation of Ni in the digestive gland of mollusks with concentrations 6 to 10 times exceeding controls, respectively. At that the experimental animals gained weight reliably slower than the controls contained in aquatic aerosol without Ni. The subsequent one week exposure of shells in aerosol, prepared from the distilled water without Ni reduced the concentration of nickel in the tissue of the digestive gland. Thus, bioavailability of HM and nickel solutions prepared from untreated wastewaters in breathing aerosol and possibly by skin contact was demonstrated. The toxicant delivery seems to occur apart from food intake.

  14. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    Science.gov (United States)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-11-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE.The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster‟s spatial domain and used to estimate climatological values of key optical and microphysical parameters.The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  15. Aerosols CFA 97

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    During the thirteen congress on aerosols several papers were presented about the behaviour of radioactive aerosols and their impact on environment, or the exposure to radon and to its daughters, the measurement of the size of the particulates of the short-lived radon daughters and two papers about the behaviour of aerosols in containment during a fission products release in the primary circuit and susceptible to be released in atmosphere in the case of containment failure. (N.C.)

  16. Long-term measurements of aerosol optical parameters in Athens, Greece

    Science.gov (United States)

    Paraskevopoulou, Despoina; Liakakou, Eleni; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2015-04-01

    Aerosol chemical composition was studied in conjunction with its optical properties in the area of Athens Greece. For this purpose, sampling of fine aerosol fraction (PM2,5) took place on a daily basis from August 2010 to April 2013 at an urban background location. The samples are subsequently analyzed for their content in organic (OC) and elemental carbon (EC), major ions and trace metals, resulting in the exercise of chemical mass closure. In parallel, the optical properties of aerosols are recorded using a nephelometer and a particle soot absorption photometer (PSAP), leading to the calculation of scattering (σscat) and absorption (σabs) coefficients, respectively; while single scattering albedo (SSA) and mass scattering and absorption efficiencies are thereinafter calculated. Daily σscat values provide an average of 30.1±3.9 Μm-1 while, the average of σabs is 5.2±1.4 Μm-1. The seasonal cycle of σscat presents maximum during summer and in November, due to long-range transport of aerosol from continental Europe and dust transfer from Africa, respectively. The estimated mass absorption efficiency of EC is estimated to be 8.3±0.2 m2 g-1 for the whole studied period, while the corresponding estimated mass scattering efficiency of PM2.5 is 1.7±0.1 m2 g-1 and does not affected by the presence of dust. The average SSA equals to 0.87±0.11 for the three-year period. On a seasonal basis, SSA presents maximum values during summer that is consistent with the reduction of EC - the main absorbing specie. Finally, the reconstruction of scattering coefficients was performed taking into consideration the measured chemistry of fine aerosol.

  17. The ion–aerosol interactions from the ion mobility and aerosol ...

    Indian Academy of Sciences (India)

    2005-02-18

    aerosol interactions from the ion mobility and aerosol particle size distribution measurements on January 17 and February 18, 2005 at Maitri, Antarctica – A case study. Devendraa Siingh Vimlesh Pant A K Kamra. Volume 120 Issue 4 August ...

  18. Estimation of Optical Properties for HULIS Aerosols at Anmyeon Island, Korea

    Directory of Open Access Journals (Sweden)

    Ji Yi Lee

    2017-07-01

    Full Text Available In this study, the sensitivity of the optical properties of carbonaceous aerosols, especially humic-like substances (HULIS, are investigated based on a one-year measurement of ambient fine atmospheric particulate matter (PM2.5 at a Global Atmospheric Watch (GAW station in South Korea. The extinction, absorption coefficient, and radiative forcing (RF are calculated from the analysis data of water soluble (WSOC and insoluble (WISOC organic aerosols, elemental carbon (EC, and HULIS. The sensitivity of the optical properties on the variations of refractive index, hygroscopicity, and light absorption properties of HULIS as well as the polydispersity of organic aerosols are studied. The results showed that the seasonal absorption coefficient of HULIS varied from 0.09 to 11.64 Mm−1 and EC varied from 0.11 to 3.04 Mm−1 if the geometric mean diameter varied from 0.1 to 1.0 µm and the geometric standard deviation varied from 1.1 to 2.0, with the imaginary refractive index (IRI of HULIS varying from 0.006 to 0.3. Subsequently, this study shows that the RF of HULIS was larger than other constituents, which suggested that HULIS contributed significantly to radiative forcing.

  19. Single-particle characterization of the high-Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition

  20. Single-particle characterization of the High Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition

  1. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  2. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

    Science.gov (United States)

    Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Amorim Holanda, Bruna; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut

    2018-01-01

    species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.

  3. Aerosol-foam interaction experiments

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Luscombe, C.DeM.; Mitchell, J.P.

    1990-03-01

    Foam treatment offers the potential to clean gas streams containing radioactive particles. A large decontamination factor has been claimed for the removal of airborne plutonium dust when spraying a commercially available foam on the walls and horizontal surfaces of an alpha-active room. Experiments have been designed and undertaken to reproduce these conditions with a non-radioactive simulant aerosol. Careful measurements of aerosol concentrations with and without foam treatment failed to provide convincing evidence to support the earlier observation. The foam may not have been as well mixed with the aerosol in the present studies. Further work is required to explore more efficient mixing methods, including systems in which the aerosol steam is passed through the foam, rather than merely spraying foam into the path of the aerosol. (author)

  4. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  5. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    Science.gov (United States)

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  6. Primary aerosol and secondary inorganic aerosol budget over the Mediterranean Basin during 2012 and 2013

    Science.gov (United States)

    Guth, Jonathan; Marécal, Virginie; Josse, Béatrice; Arteta, Joaquim; Hamer, Paul

    2018-04-01

    In the frame of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), we analyse the budget of primary aerosols and secondary inorganic aerosols over the Mediterranean Basin during the years 2012 and 2013. To do this, we use two year-long numerical simulations with the chemistry-transport model MOCAGE validated against satellite- and ground-based measurements. The budget is presented on an annual and a monthly basis on a domain covering 29 to 47° N latitude and 10° W to 38° E longitude. The years 2012 and 2013 show similar seasonal variations. The desert dust is the main contributor to the annual aerosol burden in the Mediterranean region with a peak in spring, and sea salt being the second most important contributor. The secondary inorganic aerosols, taken as a whole, contribute a similar level to sea salt. The results show that all of the considered aerosol types, except for sea salt aerosols, experience net export out of our Mediterranean Basin model domain, and thus this area should be considered as a source region for aerosols globally. Our study showed that 11 % of the desert dust, 22.8 to 39.5 % of the carbonaceous aerosols, 35 % of the sulfate and 9 % of the ammonium emitted or produced into the study domain are exported. The main sources of variability for aerosols between 2012 and 2013 are weather-related variations, acting on emissions processes, and the episodic import of aerosols from North American fires. In order to assess the importance of the anthropogenic emissions of the marine and the coastal areas which are central for the economy of the Mediterranean Basin, we made a sensitivity test simulation. This simulation is similar to the reference simulation but with the removal of the international shipping emissions and the anthropogenic emissions over a 50 km wide band inland along the coast. We showed that around 30 % of the emissions of carbonaceous aerosols and 35 to 60 % of the exported carbonaceous aerosols originates from the marine and

  7. Stable generator of polydisperse aerosol

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel

    2001-01-01

    Roč. 32, Suppl. 1 (2001), s. S823-S824 ISSN 0021-8502. [European Aerosol Conference 2001. Leipzig, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR IAA4031105 Institutional research plan: CEZ:AV0Z4031919 Keywords : aerosol generator * fine aerosol * polydisperse aerosol Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.605, year: 2001

  8. Aerosol counterflow two-jets unit for continuous measurement of the soluble fraction of atmospheric aerosols.

    Science.gov (United States)

    Mikuska, Pavel; Vecera, Zbynek

    2005-09-01

    A new type of aerosol collector employing a liquid at laboratory temperature for continuous sampling of atmospheric particles is described. The collector operates on the principle of a Venturi scrubber. Sampled air flows at high linear velocity through two Venturi nozzles "atomizing" the liquid to form two jets of a polydisperse aerosol of fine droplets situated against each other. Counterflow jets of droplets collide, and within this process, the aerosol particles are captured into dispersed liquid. Under optimum conditions (air flow rate of 5 L/min and water flow rate of 2 mL/min), aerosol particles down to 0.3 microm in diameter are quantitatively collected in the collector into deionized water while the collection efficiency of smaller particles decreases. There is very little loss of fine aerosol within the aerosol counterflow two-jets unit (ACTJU). Coupling of the aerosol collector with an annular diffusion denuder located upstream of the collector ensures an artifact-free sampling of atmospheric aerosols. Operation of the ACTJU in combination with on-line detection devices allows in situ automated analysis of water-soluble aerosol species (e.g., NO2-, NO3-)with high time resolution (as high as 1 s). Under the optimum conditions, the limit of detection for particulate nitrite and nitrate is 28 and 77 ng/m(3), respectively. The instrument is sufficiently rugged for its application at routine monitoring of aerosol composition in the real time.

  9. American Association for Aerosol Research (AAAR) `95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  10. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Directory of Open Access Journals (Sweden)

    S. Lolli

    2018-03-01

    Full Text Available In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m−2 at surface and 0.007 W m−2 at top of the atmosphere and dust aerosol layers (0.7 W m−2 at surface and 0.85 W m−2 at top of the atmosphere. Data processing is further responsible for discrepancies in both thin (0.55 W m−2 at surface and 2.7 W m−2 at top of the atmosphere and opaque (7.7 W m−2 at surface and 11.8 W m−2 at top of the atmosphere cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20–150 sr than for clouds (20–35 sr. For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  11. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Science.gov (United States)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Campbell, James R.; Welton, Ellsworth J.; Lewis, Jasper R.; Gu, Yu; Pappalardo, Gelsomina

    2018-03-01

    In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m-2 at surface and 0.007 W m-2 at top of the atmosphere) and dust aerosol layers (0.7 W m-2 at surface and 0.85 W m-2 at top of the atmosphere). Data processing is further responsible for discrepancies in both thin (0.55 W m-2 at surface and 2.7 W m-2 at top of the atmosphere) and opaque (7.7 W m-2 at surface and 11.8 W m-2 at top of the atmosphere) cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20-150 sr) than for clouds (20-35 sr). For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  12. Multistatic Aerosol Cloud Lidar in Space: A Theoretical Perspective

    Science.gov (United States)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-01-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170deg can dramatically increase the information content of the

  13. Size distributions of aerosols produced from substitute materials by the Laskin cold DOP aerosol generator

    International Nuclear Information System (INIS)

    Hinds, W.; Macher, J.; First, M.W.

    1981-01-01

    Test aerosols of di(2-ethylhexyl)phthalate (DOP) produced by Laskin nozzle aerosol generators are widely used for in-place filter testing and respirator fit testing. Concern for the health effects of this material has led to a search for substitute materials for test aerosols. Aerosols were generated with a Laskin generator and diluted 6000-fold with clean air. Size distributions were measured for DOP, di(2-ethylhexyl)sebecate, polyethylene glycol, mineral oil, and corn oil aerosols with a PMS ASAS-X optical particle counter. Distributions were slightly bimodal with count median diameters from 0.22 to 0.30 μm. Size distributions varied little with aerosol material, operating pressure, or liquid level. Mineral oil and corn oil gave the best agreement with the DOP size distribution

  14. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  15. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2010-05-01

    Full Text Available Aged organic aerosol (OA was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008, which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1, and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm−3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  16. The Inhalation Toxicity of VX Aerosols Assessed in the McNamara Glove Box Facility

    National Research Council Canada - National Science Library

    Carpin, John C; McCaskey, David A; Cameron, Kenneth P

    2005-01-01

    ... in this facility and to serve as a benchmark for ranking the toxicity of other agents. Neat VX challenge aerosols were generated by feeding micro-liter quantities of agent from a loaded syringe to a custom-made air assist atomizer...

  17. Fast time-resolved aerosol collector: proof of concept

    Science.gov (United States)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  18. Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions

    Science.gov (United States)

    Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.

    2017-12-01

    Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified

  19. Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment. Final report

    DEFF Research Database (Denmark)

    Fogh, C.L.; Byrne, M.A.; Andersson, Kasper Grann

    1999-01-01

    the deposition and subsequent fate of contaminant aerosol on skin, hair and clothing. The main technique applied involves the release and subsequent deposition on volunteers in test rooms of particles of differentsizes labelled with neutron activatable rare earth tracers. Experiments indicate that the deposition...... of magnitudeas the gamma doses received over the first year from contamination on outdoor surfaces. According to the calculations, beta doses from skin deposition to individuals in areas of Russia, where dry deposition of Chernobyl fallout led to very high levels ofcontamination, may have amounted to several...

  20. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-09-01

    Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Variables of interest included combinations of model drug (albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1-5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1% w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs.

  1. Influence of 3D effects on 1D aerosol retrievals in synthetic, partially clouded scenes

    International Nuclear Information System (INIS)

    Stap, F.A.; Hasekamp, O.P.; Emde, C.; Röckmann, T.

    2016-01-01

    An important challenge in aerosol remote sensing is to retrieve aerosol properties in the vicinity of clouds and in cloud contaminated scenes. Satellite based multi-wavelength, multi-angular, photo-polarimetric instruments are particularly suited for this task as they have the ability to separate scattering by aerosol and cloud particles. Simultaneous aerosol/cloud retrievals using 1D radiative transfer codes cannot account for 3D effects such as shadows, cloud induced enhancements and darkening of cloud edges. In this study we investigate what errors are introduced on the retrieved optical and micro-physical aerosol properties, when these 3D effects are neglected in retrievals where the partial cloud cover is modeled using the Independent Pixel Approximation. To this end a generic, synthetic data set of PARASOL like observations for 3D scenes with partial, liquid water cloud cover is created. It is found that in scenes with random cloud distributions (i.e. broken cloud fields) and either low cloud optical thickness or low cloud fraction, the inversion algorithm can fit the observations and retrieve optical and micro-physical aerosol properties with sufficient accuracy. In scenes with non-random cloud distributions (e.g. at the edge of a cloud field) the inversion algorithm can fit the observations, however, here the retrieved real part of the refractive indices of both modes is biased. - Highlights: • An algorithm for retrieval of both aerosol and cloud properties is presented. • Radiative transfer models of 3D, partially clouded scenes are simulated. • Errors introduced in the retrieved aerosol properties are discussed.

  2. Radiative Importance of Aerosol-Cloud Interaction

    Science.gov (United States)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  3. Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogh, C.L.; Byrne, M.A.; Andersson, K.G.; Bell, K.F.; Roed, J.; Goddard, A.J.H.; Vollmair, D.V.; Hotchkiss, S.A.M

    1999-06-01

    In the past, very little thought has been given to the processes and implications of deposition of potentially hazardous aerosol directly onto humans. This state of unpreparedness is unsatisfactory and suitable protocols have been developed and validated for tracer experiments to investigate the deposition and subsequent fate of contaminant aerosol on skin, hair and clothing. The main technique applied involves the release and subsequent deposition on volunteers in test rooms of particles of different sizes labelled with neutron activatable rare earth tracers. Experiments indicate that the deposition velocity to skin increases linearly with the particle size. A wind tunnel experiment simulating outdoor conditions showed a dependence on skin deposition velocity of wind speed, indicating that outdoor deposition velocities may be great. Both in vivo and in vitro experiments were conducted, and the influence of various factors, such as surface type, air flow, heating and electrostatics were examined. The dynamics of particle removal from human skin were studied by fluorescence scanning. This technique was also applied to estimate the fraction of aerosol dust transferred to skin by contact with a contaminated surface. The various parameters determined were applied to establish a model for calculation of radiation doses received from deposition of airborne radioactive aerosol on human body surfaces. It was found that the gamma doses from deposition on skin may be expected to be of the same order of magnitude as the gamma doses received over the first year from contamination on outdoor surfaces. According to the calculations, beta doses from skin deposition to individuals in areas of Russia, where dry deposition of Chernobyl fallout led to very high levels of contamination, may have amounted to several Sievert and may thus be responsible for a significant cancer risk. (au)

  4. CHARACTERIZATION OF AMBIENT PM2.5 AEROSOL AT A SOUTHEASTERN US SITE: FOURIER TRANSFORM INFRARED ANALYSIS OR PARTICLE PHASE

    Science.gov (United States)

    During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....

  5. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio

    2016-03-03

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can be precisely controlled. The stagnation interface can be generated, for example, by the opposed flow of the hot stream and the cold stream. The aerosol generator and the aerosol generation methods are capable of producing aerosols with precise particle sizes and a narrow size distribution. The properties of the aerosol can be controlled by controlling one or more of the stream temperatures, the saturation level of the hot stream, and the flow times of the streams.

  6. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  7. Aerosol in the containment

    International Nuclear Information System (INIS)

    Lanza, S.; Mariotti, P.

    1986-01-01

    The US program LACE (LWR Aerosol Containment Experiments), in which Italy participates together with several European countries, Canada and Japan, aims at evaluating by means of a large scale experimental activity at HEDL the retention in the pipings and primary container of the radioactive aerosol released following severe accidents in light water reactors. At the same time these experiences will make available data through which the codes used to analyse the behaviour of the aerosol in the containment and to verify whether by means of the codes of thermohydraulic computation it is possible to evaluate with sufficient accuracy variable influencing the aerosol behaviour, can be validated. This report shows and compares the results obtained by the participants in the LACE program with the aerosol containment codes NAVA 5 and CONTAIN for the pre-test computations of the test LA 1, in which an accident called containment by pass is simulated

  8. CATS Aerosol Typing and Future Directions

    Science.gov (United States)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; hide

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  9. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2010-09-01

    Full Text Available This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a oligomers, (b nitrogen-containing products, (c photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud chemistry for the same conditions (liquid water content, particle size.

    The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated process is the major SOA formation pathway forming ∼5 μg m−3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt. During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7.

    Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend

  10. Radioactive aerosols. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Natanson, G L

    1956-01-01

    Tabulations are given presenting various published data on safe atmospheric concentrations of various radioactive and non-radioactive aerosols. Methods of determination of active aerosol concentrations and dispersion as well as the technical applications of labeled aerosols are discussed. The effect of atomic explosions are analyzed considering the nominal atomic bomb based on /sup 235/U and /sup 232/Pu equivalent to 20,000 tons of TNT.

  11. Investigating the relationship between Aerosol Optical Depth and Precipitation over Southeast Asia with Relative Humidity as an influencing factor.

    Science.gov (United States)

    Ng, Daniel Hui Loong; Li, Ruimin; Raghavan, Srivatsan V; Liong, Shie-Yui

    2017-10-17

    Atmospheric aerosols influence precipitation by changing the earth's energy budget and cloud properties. A number of studies have reported correlations between aerosol properties and precipitation data. Despite previous research, it is still hard to quantify the overall effects that aerosols have on precipitation as multiple influencing factors such as relative humidity (RH) can distort the observed relationship between aerosols and precipitation. Thus, in this study, both satellite-retrieved and reanalysis data were used to investigate the relationship between aerosols and precipitation in the Southeast Asia region from 2001 to 2015, with RH considered as a possible influencing factor. Different analyses in the study indicate that a positive correlation was present between Aerosol Optical Depth (AOD) and precipitation over northern Southeast Asia region during the autumn and the winter seasons, while a negative correlation was identified over the Maritime Continent during the autumn season. Subsequently, a partial correlation analysis revealed that while RH influences the long-term negative correlations between AOD and precipitation, it did not significantly affect the positive correlations seen in the winter season. The result of this study provides additional evidence with respect to the critical role of RH as an influencing factor in AOD-precipitation relationship over Southeast Asia.

  12. Retrieval of aerosol properties and water leaving radiance from multi-angle spectro-polarimetric measurement over coastal waters

    Science.gov (United States)

    Gao, M.; Zhai, P.; Franz, B. A.; Hu, Y.; Knobelspiesse, K. D.; Xu, F.; Ibrahim, A.

    2017-12-01

    Ocean color remote sensing in coastal waters remains a challenging task due to the complex optical properties of aerosols and ocean water properties. It is highly desirable to develop an advanced ocean color and aerosol retrieval algorithm for coastal waters, to advance our capabilities in monitoring water quality, improve our understanding of coastal carbon cycle dynamics, and allow for the development of more accurate circulation models. However, distinguishing the dissolved and suspended material from absorbing aerosols over coastal waters is challenging as they share similar absorption spectrum within the deep blue to UV range. In this paper we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters. The main features of our algorithm include: 1) combining co-located measurements from a hyperspectral ocean color instrument (OCI) and a multi-angle polarimeter (MAP); 2) using the radiative transfer model for coupled atmosphere and ocean system (CAOS), which is based on the highly accurate and efficient successive order of scattering method; and 3) incorporating a generalized bio-optical model with direct accounting of the total absorption of phytoplankton, CDOM and non-algal particles(NAP), and the total scattering of phytoplankton and NAP for improved description of ocean light scattering. The non-linear least square fitting algorithm is used to optimize the bio-optical model parameters and the aerosol optical and microphysical properties including refractive indices and size distributions for both fine and coarse modes. The retrieved aerosol information is used to calculate the atmospheric path radiance, which is then subtracted from the OCI observations to obtain the water leaving radiance contribution. Our work aims to maximize the use of available information from the co-located dataset and conduct the atmospheric correction with minimal assumptions. The algorithm will contribute to the success of current MAP

  13. Performance of multiple HEPA filters against plutonium aerosols

    International Nuclear Information System (INIS)

    Gonzales, M.; Elder, J.C.; Tillery, M.I.; Ettinger, H.J.

    1976-11-01

    Performance of multiple stages of high-efficiency particulate air (HEPA) filters has been verified against plutonium aerosols similar in size characteristics to those challenging the air-cleaning systems of plutonium-processing facilities. An experimental program was conducted to test each filter in systems of three HEPA filters operated in series against 238 PuO 2 aerosols as high as 3.3 x 10 10 dis/s . m 3 in activity concentration and ranging from 0.22 μm to 1.6 μm in activity median aerodynamic diameter (amad). Mean penetration (ratio of downstream to upstream concentration) of each of the three filters in series was below 0.0002, but it apparently increased at each successive filter. Penetration vs size measurements showed that maximum penetration of 238 PuO 2 occurred for sizes between 0.4- and 0.7-μm aerodynamic diameter (D/sub ae/). HEPA filter penetration at half of rated flow differed little from full-flow penetration

  14. Sources and Transport of Aerosol above the Boundary Layer over the Mediterranean Basin

    Science.gov (United States)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Veronique; Claeys, Marine; Sciare, Jean; Mallet, Marc; Dulac, François; Mihalopoulos, Nikos

    2015-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  15. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio; Scribano, Gianfranco

    2016-01-01

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can

  16. An aerosole generator for production of radioactive aerosoles by evaporating uranium dioxide

    International Nuclear Information System (INIS)

    Pusch, W.M.

    1975-01-01

    In the Institut for Biology of the Austrian Research Center at Seibersdorf an experiment is running to study the behaviour of radioactive aerosoles in the organism of miniature swines after inhalation. In the work under discussion the aerosole generator of the equipment used for this inhalation experiments is described by means of which the aerosole-air mixtures are produced. The main part of this generator is a gas burner for evaporating irradiated UO 2 -pellets. (orig.) [de

  17. A study of the attachment of thoron decay products to aerosols using an aerosol centrifuge

    International Nuclear Information System (INIS)

    Menon, V.B.; Kotrappa, P.; Bhanti, D.P.

    1980-01-01

    An aerosol centrifuge is used for the study of the attachment of thoron decay products to aerosol particles under dynamic flow conditions. The number concentration of aerosols was kept high (10 5 to 10 6 particles cm -3 ) as compared to the number of decay product atoms (10 2 to 10 3 cm -3 ) as is usually the case in a mine atmosphere. The polydispersed aerosols flow in and out of a chamber containing a steady source of thoron and the aerosols tagged with the decay products were separated into different size groups by an aerosol centrifuge (Lovelace Aerosol Particle Separator). The average activity per particle was fitted as a power function of the radius in the form of Asub(p) = aRsup(b). The average value of b was found to be 1.08 +- 0.054 for particles in the radii range 0.25 to 1.35 μm and 1.34 +- 0.12 for particles in the radii range 0.1 to 0.33 μm. (author)

  18. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  19. Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol

    Directory of Open Access Journals (Sweden)

    Iwona S. Stachlewska

    2018-03-01

    Full Text Available During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Ångström exponent, lidar ratio, depolarization ratio were analysed in terms of air mass transport (HYSPLIT model, aerosol load (CAMS data and type (NAAPS model and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks and aboard satellites (SEVIRI, MODIS, CATS sensors. Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Ångström exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.

  20. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  1. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D E; Hopkins, A R; Paladino, J D; Whitefield, P D [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H V [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1998-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  2. The effects of aerosols on climate

    International Nuclear Information System (INIS)

    Boucher, O.

    1997-01-01

    Atmospheric aerosols (fine particles suspended in the atmosphere) can play two roles in the Earth’s radiation budget. In cloud-free air, aerosols scatter sunlight, some of which is reflected back to space (direct effect). Aerosols also determine the microphysical and optical properties of clouds (indirect effect). Whereas changes in natural aerosols are probably small during the last 100 years, there has been a large increase in the concentration of anthropogenic aerosols. The magnitude of their radiative effects is still very uncertain but seems to be sufficient to mask part of the global warming expected to stem from anthropogenic greenhouse gases. This paper presents the physical mechanisms of aerosol influence on climate. We then estimate the anthropogenic aerosol radiative effects and assess the climate response to these perturbations. (author) [fr

  3. The formation, properties and impact of secondary organic aerosol: current and emerging issues

    Directory of Open Access Journals (Sweden)

    J. Wildt

    2009-07-01

    Full Text Available Secondary organic aerosol (SOA accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

  4. Water content of aged aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2011-02-01

    Full Text Available The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008. A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH as low as 20%. The aerosol was acidic during most of the measurement campaign, which likely contributed to the water uptake at low RH. The water content observations were compared to the thermodynamic model E-AIM, neglecting any contribution of the organics to aerosol water content. There was good agreement between the water measurements and the model predictions. Adding the small amount of water associated with the organic aerosol based on monoterpene water absorption did not change the quality of the agreement. These results strongly suggest that the water uptake by aged organic aerosol is relatively small (a few percent of the total water for the conditions during FAME-08 and generally consistent with what has been observed in laboratory experiments. The water concentration measured by a Q-AMS was well correlated with the DAASS measurements and in good agreement with the predicted values for the RH of the Q-AMS inlet. This suggests that, at least for the conditions of the study, the Q-AMS can provide valuable information about the aerosol water concentrations if the sample is not dried.

  5. Aerosol radiative effects on mesoscale cloud-precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign

    Science.gov (United States)

    Park, Shin-Young; Lee, Hyo-Jung; Kang, Jeong-Eon; Lee, Taehyoung; Kim, Cheol-Hee

    2018-01-01

    The online model, Weather Research and Forecasting Model with Chemistry (WRF-Chem) is employed to interpret the effects of aerosol-cloud-precipitation interaction on mesoscale meteorological fields over Northeast Asia during the Megacity Air Pollution Study-Seoul (MAPS-Seoul) 2015 campaign. The MAPS-Seoul campaign is a pre-campaign of the Korea-United States Air Quality (KORUS-AQ) campaign conducted over the Korean Peninsula. We validated the WRF-Chem simulations during the campaign period, and analyzed aerosol-warm cloud interactions by diagnosing both aerosol direct, indirect, and total effects. The results demonstrated that aerosol directly decreased downward shortwave radiation up to -44% (-282 W m-2) for this period and subsequently increased downward longwave radiation up to +15% (∼52 W m-2) in the presence of low-level clouds along the thematic area. Aerosol increased cloud fraction indirectly up to ∼24% with the increases of both liquid water path and the droplet number mixing ratio. Precipitation properties were altered both directly and indirectly. Direct effects simply changed cloud-precipitation quantities via simple updraft process associated with perturbed radiation and temperature, while indirect effects mainly suppressed precipitation, but sometimes increased precipitation in the higher relative humidity atmosphere or near vapor-saturated condition. The total aerosol effects caused a time lag of the precipitation rate with the delayed onset time of up to 9 h. This implies the importance of aerosol effects in improving mesoscale precipitation rate prediction in the online approach in the presence of non-linear warm cloud.

  6. AEROSOL VARIABILITY OBSERVED WITH RPAS

    Directory of Open Access Journals (Sweden)

    B. Altstädter

    2013-08-01

    Full Text Available To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter. Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  7. Sodium aerosol recovering device

    International Nuclear Information System (INIS)

    Fujimori, Koji; Ueda, Mitsuo; Tanaka, Kazuhisa.

    1997-01-01

    A main body of a recovering device is disposed in a sodium cooled reactor or a sodium cooled test device. Air containing sodium aerosol is sucked into the main body of the recovering device by a recycling fan and introduced to a multi-staged metal mesh filter portion. The air about against each of the metal mesh filters, and the sodium aerosol in the air is collected. The air having a reduced sodium aerosol concentration circulates passing through a recycling fan and pipelines to form a circulation air streams. Sodium aerosol deposited on each of the metal mesh filters is scraped off periodically by a scraper driving device to prevent clogging of each of the metal filters. (I.N.)

  8. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    Science.gov (United States)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can

  9. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-12-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  10. The background aerosol in the lower stratosphere and the tropospheric aerosol in the Alps. Final report; Das Hintergrundaerosol der unteren Stratosphaere und das troposphaerische Aerosol der Alpen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H.; Trickl, T.

    2001-06-04

    As a contribution to the German Aerosol-Lidar Network lidar backscatter measurements have been carried out at Garmisch-Partenkirchen in a wide range of the atmosphere from next to the ground to altitudes beyond 30 km. The investigations, on one hand, were devoted to establishing a climatology of the aerosol extinction coefficient for the northern Alps and to prolonging the long-term measurement series of the stratospheric aerosol. On the other hand, aerosol was used as a tracer of polluted air masses in atmospheric transport studies (orographically induced vertical transport, advection of Saharan dust, as well as aerosol advection from the North american boundary layer and from large-scale wild fire in the United States and Canada). These transport processes given the seasonal cycle of the aerosol throughout the troposphere. In the free troposphere a pronounced spring-time aerosol maximum was found. The stratospheric aerosol concentration had decayed to a background-type level during the reporting period. As a consequence, the influence of smaller aerosol contributions could be distinguished such as the eruption of the volcano Shishaldin (Alaska) and aircraft emissions. (orig.) [German] Im Rahmen des deutschen Aerosollidarnetzes wurden in Garmisch-Partenkirchen Lidar-Rueckstreumessungen in einem weiten Bereich der Atmosphaere von Bodennaehe bis in ueber 30 km Hoehe durchgefuehrt. Die Arbeiten dienten zum einen der Erstellung einer Klimatologie des Aerosol-Extinktionskoeffizienten fuer die Nordalpen sowie der Verlaengerung der seit 1976 erstellten Langzeitmessreihe des stratosphaerischen Aerosols. Zum anderen fanden atmosphaerische Transportstudien statt, bei denen das Aerosol als 'Tracer' fuer Luftverschmutzung verwendet wurde (orographisch induzierter Vertikaltransport, Advektion von Saharastaub und Aerosoladvektion aus der nordamerikanischen Genzschicht und von grossflaechigen Waldbraenden in den U.S.A. und Kanada). Diese Transportprozesse bestimmen den

  11. Development of an automated method for determination of thorium in soil samples and aerosols

    International Nuclear Information System (INIS)

    Stuart, J.E.; Robertson, R.

    1986-09-01

    Methodology for determining trace thorium levels in a variety of sample types was further developed. Thorium in filtered water samples is concentrated by ferric hydroxide precipitation followed by dissolution and co-precipitation with lanthanum fluoride. Aerosols on glass fibre, cellulose ester, or teflon filters and solid soil and sediment samples are acid digested. Subsequently thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement is then done on a Technicon AA11-C autoanalyzer, using solvent extraction into thenoyltrifuoroacetone in kerosene followed by back extraction into 2 N H NO 3 , and colourometric measurement of the thorium arsenazo III complex. Chemical yields are determined by the addition of thorium-234 tracer using gamma-ray spectrometry. The sensitivities of the methods for water, aerosol and solid samples are approximately 1.0 μg/L, 0.5 μg/g and 1.0 μg/g respectively. At thorium levels about ten times the detection limit, accuracy is estimated to be ± 10% for liquids and aerosols and ± 15% for solid samples, and precision ± 5% for all samples

  12. North Atlantic Aerosol Properties for Radiative Impact Assessments. Derived from Column Closure Analyses in TARFOX and ACE-2

    Science.gov (United States)

    Russell, Philip A.; Bergstrom, Robert A.; Schmid, Beat; Livingston, John M.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. Both experiments used remote and in situ measurements from aircraft and the surface, coordinated with overpasses by a variety of satellite radiometers. TARFOX focused on the urban-industrial haze plume flowing from the United States over the western Atlantic, whereas ACE-2 studied aerosols over the eastern Atlantic from both Europe and Africa. These aerosols often have a marked impact on satellite-measured radiances. However, accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved aerosol optical depths (AODs) remains a difficult challenge. Here we summarize key initial results from TARFOX and ACE-2, with a focus on closure analyses that yield aerosol microphysical models for use in improved assessments of flux changes. We show how one such model gives computed radiative flux sensitivities (dF/dAOD) that agree with values measured in TARFOX and preliminary values computed for the polluted marine boundary layer in ACE-2. A companion paper uses the model to compute aerosol-induced flux changes over the North Atlantic from AVHRR-derived AOD fields.

  13. Development and experimental evaluation of an optical sensor for aerosol particle characterization

    Energy Technology Data Exchange (ETDEWEB)

    Somesfalean, G.

    1998-03-01

    A sensor for individual aerosol particle characterization, based on a single-mode semiconductor laser coupled to an external cavity is presented. The light emitting semiconductor laser acts as a sensitive optical detector itself, and the whole system has the advantage of using conventional optical components and providing a compact set-up. Aerosol particles moving through the sensing volume, which is located in the external cavity of a semiconductor laser, scatter and absorb light. Thereby they act as small disturbances on the electromagnetic field inside the dynamic multi-cavity laser system. From the temporal variation of the output light intensity, information about the number, velocity, size, and refractive index of the aerosol particles can be derived. The diffracted light in the near-forward scattering direction is collected and Fourier-transformed by a lens, and subsequently imaged on a CCD camera. The recorded Fraunhofer diffraction pattern provides information about the projected area of the scattering particle, and can thus be used to determine the size and the shape of aerosol particles. The sensor has been tested on fibers which are of interest in the field of working environment monitoring. The recorded output intensity variation has been analysed, and the relationship between the shape and the size of each fibre, and the resulting scattering profiles has been investigated. A simple one-dimensional model for the optical feedback variation due to the light-particle interaction in the external cavity is also discussed 34 refs, 26 figs, 6 tabs

  14. A51F-0123: Model Analysis of Tropospheric Aerosol Variability and Sources over the North Atlantic During NAAMES 2015-2016

    Science.gov (United States)

    Liu, Hongyu; Moore, Richard; Hostetler, Chris A.; Ferrare, Richard Anthony; Fairlie, Thomas Duncan; Hu, Youngxiang; Chen, Gao; Hair, Johnathan W.; Johnson, Matthew S.

    2016-01-01

    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five-year Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic. While marine-sourced aerosols have been shown to make important contributions to surface aerosol loading, cloud condensation nuclei and ice nuclei concentrations over remote marine and coastal regions, it is still a challenge to differentiate the marine biogenic aerosol signal from the strong influence of continental pollution outflow. We examine here the spatiotemporal variability and quantify the sources of tropospheric aerosols over the North Atlantic during the first two phases (November 2015 and May-June 2016) of NAAMES using a state-of-the-art chemical transport model (GEOS-Chem). The model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from the NASA Global Modeling and Assimilation Office (GMAO). It includes sulfate-nitrate-ammonium aerosol thermodynamics coupled to ozone-NOx-hydrocarbon-aerosol chemistry, mineral dust, sea salt, elemental and organic carbon aerosols, and especially a recently implemented parameterization for the marine primary organic aerosol emission. The simulated aerosols over the North Atlantic are evaluated with available satellite (e.g., MODIS) observations of aerosol optical depths (AOD), and aircraft and ship aerosol measurements. We diagnose transport pathways for continental pollution outflow over the North Atlantic using carbon monoxide, an excellent tracer for anthropogenic pollution transport. We also conduct model perturbation experiments to quantify the relative contributions of terrestrial and oceanic sources to the aerosol loading, AOD, and their variability over the North Atlantic.

  15. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    Science.gov (United States)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  16. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  17. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-10-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE are described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations.

    A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment

  18. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    Science.gov (United States)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  19. Development and first application of an Aerosol Collection Module (ACM) for quasi online compound specific aerosol measurements

    Science.gov (United States)

    Hohaus, Thorsten; Kiendler-Scharr, Astrid; Trimborn, Dagmar; Jayne, John; Wahner, Andreas; Worsnop, Doug

    2010-05-01

    Atmospheric aerosols influence climate and human health on regional and global scales (IPCC, 2007). In many environments organics are a major fraction of the aerosol influencing its properties. Due to the huge variety of organic compounds present in atmospheric aerosol current measurement techniques are far from providing a full speciation of organic aerosol (Hallquist et al., 2009). The development of new techniques for compound specific measurements with high time resolution is a timely issue in organic aerosol research. Here we present first laboratory characterisations of an aerosol collection module (ACM) which was developed to allow for the sampling and transfer of atmospheric PM1 aerosol. The system consists of an aerodynamic lens system focussing particles on a beam. This beam is directed to a 3.4 mm in diameter surface which is cooled to -30 °C with liquid nitrogen. After collection the aerosol sample can be evaporated from the surface by heating it to up to 270 °C. The sample is transferred through a 60cm long line with a carrier gas. In order to test the ACM for linearity and sensitivity we combined it with a GC-MS system. The tests were performed with octadecane aerosol. The octadecane mass as measured with the ACM-GC-MS was compared versus the mass as calculated from SMPS derived total volume. The data correlate well (R2 0.99, slope of linear fit 1.1) indicating 100 % collection efficiency. From 150 °C to 270 °C no effect of desorption temperature on transfer efficiency could be observed. The ACM-GC-MS system was proven to be linear over the mass range 2-100 ng and has a detection limit of ~ 2 ng. First experiments applying the ACM-GC-MS system were conducted at the Jülich Aerosol Chamber. Secondary organic aerosol (SOA) was formed from ozonolysis of 600 ppbv of b-pinene. The major oxidation product nopinone was detected in the aerosol and could be shown to decrease from 2 % of the total aerosol to 0.5 % of the aerosol over the 48 hours of

  20. Assessing the impact of aerosol-atmosphere interactions in convection-permitting regional climate simulations: the Rolf medicane in 2011

    Science.gov (United States)

    José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2017-04-01

    A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the

  1. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  2. Aerosol science: theory and practice

    International Nuclear Information System (INIS)

    Williams, M.M.R.; Loyalka, S.K.

    1991-01-01

    The purpose of this book is twofold. First, it is intended to give a thorough treatment of the fundamentals of aerosol behavior with rigorous proofs and detailed derivations of the basic equations and removal mechanisms. Second, it is intended to provide practical examples with special attention to radioactive particles and their distribution in size following a radioactive release arising from an accident with a nuclear system. We start with a brief introduction to the applications of aerosol science and the characteristics of aerosols in Chapter 1. In Chapter 2, we devote considerable attention to single and two particle motion with respect to both translation and rotation. Chapter 3 contains extensive discussion of the aerosol general dynamical equation and the dependences of aerosol distributions on size, shape, space, composition, radioactivity, and charge. Important particle rate processes of coagulation, condensation, and deposition/resuspension are discussed in the chapters 4, 6 and 7, respectively. In Chapter 5, we provide a thorough treatment of the analytical and numerical methods used in solving the various forms of the aerosol dynamical equation. We discuss the importance and applications of aerosol science to nuclear technology and, in particular, the nuclear source term in Chapter 8. Our focus in this chapter is on discussions of nuclear accidents that can potentially release large amount of radioactivity to environment. We also discuss the progress that has been made in understanding the natural and engineered aerosol processes that limit or affect such releases. (author)

  3. Potential climatic effects of anthropogenic aerosols

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1993-01-01

    Aerosols act as part of the climate system through their influence on solar and terrestrial radiation. The effect of anthropogenic aerosols on the reduction of visibility is explored in this chapter. Elemental carbon has been identified as the most effective visibility-reducing species. Most of the visibility reduction is due to particles with diameter smaller than 2.5 μm. Studies indicate that sulfate is also a very important aerosol species that results in low visibility and high turbidity. Radiative properties such as aerosol single-scattering albedo values and absorption-to-backscatter ratios purported to produce warming or cooling effects of aerosols are discussed. It is concluded that aerosol clouds have a tendency to cool when they are over a low-albedo surface and have a tendency to warm when they are over high-albedo surfaces such as snow. Anthropogenic aerosols have a tendency to warm the earth's atmospheric system, based on calculations and assumed aerosol optical properties. However, this effect is somewhat offset by the absorption and re-emission into space of infrared terrestrial radiation. The net effect depends on the ratio of the absorption coefficients in the visible and infrared and also on the surface albedo. The effects on infrared radiation are documented for two anthropogenic aerosol sources in the United States, the Denver metropolitan area and power plant plumes in New Mexico, through calculations and measurements. Measured cooling rates within an aerosol plume are not sufficient to offset the warming rate due to absorption of short-wave radiation. Research indicates that anthropogenic aerosols can possibly cause local-scale warming of the atmosphere, but global-scale climatic effects remain an open question

  4. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    A. K. Georgoulias

    2016-11-01

    Full Text Available This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer Terra (March 2000–December 2012 and Aqua (July 2002–December 2012 satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET. The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550 for the entire region is ∼ 0.22 ± 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for ∼ 51, ∼ 34 and ∼ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ∼ 40, ∼ 34

  5. Topics in current aerosol research

    CERN Document Server

    Hidy, G M

    1971-01-01

    Topics in Current Aerosol Research deals with the fundamental aspects of aerosol science, with emphasis on experiment and theory describing highly dispersed aerosols (HDAs) as well as the dynamics of charged suspensions. Topics covered range from the basic properties of HDAs to their formation and methods of generation; sources of electric charges; interactions between fluid and aerosol particles; and one-dimensional motion of charged cloud of particles. This volume is comprised of 13 chapters and begins with an introduction to the basic properties of HDAs, followed by a discussion on the form

  6. Source term experiments project (STEP): aerosol characterization system

    International Nuclear Information System (INIS)

    Schlenger, B.J.; Dunn, P.F.

    1985-01-01

    A series of four experiments is being conducted at Argonne National Laboratory's TREAT Reactor. They have been designed to provide some of the necessary data regarding magnitude and release rates of fission products from degraded fuel pins, physical and chemical characteristics of released fission products, and aerosol formation and transport phenomena. These are in-pile experiments, whereby the test fuel is heated by neutron induced fission and subsequent clad oxidation in steam environments that simulate as closely as practical predicted reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Ag/In/Cd control rod material

  7. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  8. Aerosol generation and delivery in medical applications

    International Nuclear Information System (INIS)

    Soni, P.S.; Raghunath, B.

    1998-01-01

    It is well established that radioaerosol lung technique by inhalation is a very versatile technique in the evaluation of health effects and medical diagnostic applications, especially to detect chronic obstructive pulmonary diseases, their defence mechanism permeability and many others. Most important part of aerosol technology is to generate reproducibly stable diagnostic radioaerosols of known characteristics. Many compressed air atomisers are commercially available for generating aerosols but they have limited utility in aerosol inhalation, either because of large droplet size, low aerosol output or high airflow rates. There is clearly a need for a versatile and economical aerosol generation/inhalation system that can produce dry labelled aerosol particles with high deep lung delivery efficiency suitable for clinical studies. BARC (Bhabha Atomic Research Centre) has developed a dry aerosol generation/delivery system which operates on compressed air and generates dry polydisperse aerosols. This system is described along with an assessment of the aerosol characteristics and efficiency for diagnosis of various respiratory disorders

  9. Long-range Transport of Aerosol at a Mountain Site in the Western Mediterranean Basin

    Science.gov (United States)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Véronique; Claeys, Marine; Sciare, Jean; Dulac, François

    2016-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  10. A versatile generator of nanoparticle aerosols. A novel tool in environmental and occupational exposure assessment.

    Science.gov (United States)

    Clemente, Alberto; Lobera, M Pilar; Balas, Francisco; Santamaria, Jesus

    2018-06-01

    The increasing presence of nanotechnology on the market entails a growing probability of finding ENMs in the environment. Nanoparticles aerosols are a yet unknown risk for human and environmental exposure that may normally occur at any point during the nanomaterial lifecycle. There is a research gap in standardized methods to assess the exposure to airborne nanoparticles in different environments. The controllable generation of nanoparticle aerosols has long been a challenging objective for researchers and industries dealing with airborne nanoparticles. In this work, a versatile system to generate nanoparticulate aerosols has been designed. The system allows the production of both i) instantaneous nanoparticle clouds and ii) continuous nanoparticle streams with quasi-stable values of particle concentration and size distribution. This novel device uses a compressed-air pressure pulse to disperse the target material into either the testing environment (instantaneous cloud formation) or a secondary chamber, from which a continuous aerosol stream can be drawn, with a tunable nanoparticle concentration. The system is robust, highly versatile and easy to operate, enabling reproducible generation of aerosols from a variety of sources. The system has been verified with four dry nanomaterials: TiO 2 , ZnO, CuO and CNT bundles. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of non-ideality on condensation to aerosol

    Directory of Open Access Journals (Sweden)

    S. Compernolle

    2009-02-01

    Full Text Available Secondary organic aerosol (SOA is a complex mixture of water and organic molecules. Its composition is determined by the presence of semi-volatile or non-volatile compounds, their saturation vapor pressure and activity coefficient. The activity coefficient is a non-ideality effect and is a complex function of SOA composition. In a previous publication, the detailed chemical mechanism (DCM for α-pinene oxidation and subsequent aerosol formation BOREAM was presented. In this work, we investigate with this DCM the impact of non-ideality by simulating smog chamber experiments for α-pinene degradation and aerosol formation and taking the activity coefficient into account of all molecules in the aerosol phase. Several versions of the UNIFAC method are tested for this purpose, and missing parameters for e.g. hydroperoxides and nitrates are inferred from fittings to activity coefficient data generated using the SPARC model. Alternative approaches to deal with these missing parameters are also tested, as well as an activity coefficient calculation method based on Hansen solubility parameters (HSP. It turns out that for most experiments, non-ideality has only a limited impact on the interaction between the organic molecules, and therefore on SOA yields and composition, when water uptake is ignored. The reason is that often, the activity coefficient is on average close to 1 and, specifically for high-VOC experiments, partitioning is not very sensitive on the activity coefficient because the equilibrium is shifted strongly towards condensation. Still, for ozonolysis experiments with low amounts of volatile organic carbon (low-VOC, the UNIFAC parameterization of Raatikainen et al. leads to significantly higher SOA yields (by up to a factor 1.6 compared to the ideal case and to other parameterizations. Water uptake is model dependent, in the order: ideal > UNIFAC-Raatikainen > UNIFAC-Peng > UNIFAC-Hansen ≈ UNIFAC-Magnussen ≈ UNIFAC-Ming. In the absence

  12. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  13. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  14. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    Science.gov (United States)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  15. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  16. The European aerosol budget in 2006

    Directory of Open Access Journals (Sweden)

    J. M. J. Aan de Brugh

    2011-02-01

    Full Text Available This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension. We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95% and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%. We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match, while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional aerosol budgets, as presented in the current study.

  17. Aerosol metrology: aerodynamic and electrostatic techniques

    International Nuclear Information System (INIS)

    Prodi, V.

    1988-01-01

    Aerosols play an ever increasing role in science, engineering and especially in industrial and environmental hygiene. They are being studied since a long time, but only recently the progress in aerosol instrumentation has made it possible to pose of aerosol metrology, especially the problem of absolute measurements, as based directly on measurements of fundamental quantities. On the basis of absolute measurements, the hierarchy of standards can be prepared and adequately disseminated. In the aerosol field, the quantities to be measured are mainly size, charge, density, and shape. In this paper a possible standardisation framework for aerosols is proposed, for the main physical quantities

  18. Landscape fires dominate terrestrial natural aerosol - climate feedbacks

    Science.gov (United States)

    Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2017-12-01

    The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to

  19. Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2006-01-01

    Full Text Available In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT, Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm and visible wavelengths (500 nm, together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety

  20. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  1. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  2. Raman microscopy of size-segregated aerosol particles, collected at the Sonnblick Observatory in Austria

    Science.gov (United States)

    Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at

  3. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  4. Ambient Observations of Aerosols, Novel Aerosol Structures, And Their Engineering Applications

    Science.gov (United States)

    Beres, Nicholas D.

    The role of atmospheric aerosols remains a crucial issue in understanding and mitigating climate change in our world today. These particles influence the Earth by altering the Earth's delicate radiation balance, human health, and visibility. In particular, black carbon particulate matter remains the key driver in positive radiative forcing (i.e., warming) due to aerosols. Produced from the incomplete combustion of hydrocarbons, these compounds can be found in many different forms around the globe. This thesis provides an overview of three research topics: (1) the ambient characterization of aerosols in the Northern Indian Ocean, measurement techniques used, and how these aerosols influence local, regional, and global climate; (2) the exploration of novel soot superaggregate particles collected in the Northern Indian Ocean and around the globe and how the properties of these particles relate to human health and climate forcing; and (3) how aerogelated soot can be produced in a novel, one-step method utilizing an inverted flame reactor and how this material could be used in industrial settings.

  5. Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    B. Croft

    2010-02-01

    Full Text Available A diagnostic cloud nucleation scavenging scheme, which determines stratiform cloud scavenging ratios for both aerosol mass and number distributions, based on cloud droplet, and ice crystal number concentrations, is introduced into the ECHAM5-HAM global climate model. This scheme is coupled with a size-dependent in-cloud impaction scavenging parameterization for both cloud droplet-aerosol, and ice crystal-aerosol collisions. The aerosol mass scavenged in stratiform clouds is found to be primarily (>90% scavenged by cloud nucleation processes for all aerosol species, except for dust (50%. The aerosol number scavenged is primarily (>90% attributed to impaction. 99% of this impaction scavenging occurs in clouds with temperatures less than 273 K. Sensitivity studies are presented, which compare aerosol concentrations, burdens, and deposition for a variety of in-cloud scavenging approaches: prescribed fractions, a more computationally expensive prognostic aerosol cloud processing treatment, and the new diagnostic scheme, also with modified assumptions about in-cloud impaction and nucleation scavenging. Our results show that while uncertainties in the representation of in-cloud scavenging processes can lead to differences in the range of 20–30% for the predicted annual, global mean aerosol mass burdens, and near to 50% for accumulation mode aerosol number burden, the differences in predicted aerosol mass concentrations can be up to one order of magnitude, particularly for regions of the middle troposphere with temperatures below 273 K where mixed and ice phase clouds exist. Different parameterizations for impaction scavenging changed the predicted global, annual mean number removal attributed to ice clouds by seven-fold, and the global, annual dust mass removal attributed to impaction by two orders of magnitude. Closer agreement with observations of black carbon profiles from aircraft (increases near to one order of magnitude for mixed phase clouds

  6. A study of the attachment of thoron decay products to aerosols using an aerosol centrifuge

    International Nuclear Information System (INIS)

    Balakrishnan, V.

    1979-01-01

    The physical attachment of radioactive decay products (particulate, not gas) to polydisperse fluorescein aerosal particles in two size ranges 0.1 μM-0.33 μM radius and 0.25 μM-1.35 μM radius has been studied under dynamic conditions with a view to find the fraction of thoron decay products attached to the aerosals and the particle size distribution of the host aerosols in the atmosphere of uranium mines. The experimental set-up and procedure are described. An aerosol cloud of fluorescein was introduced into a reaction chamber containing a steady source of thoron and decay products were allowed to interact and attach to the aerosols in the chamber. To simulate conditions normally encountered in uranium mining and milling operations, the concentration of aerosol particles was kept high as compared to the number of decay products. The Lovelace Aerosol Particle Separator, which is an advanced, continuous centrifugal aerosol separator, was used to sample and separate the tagged aerosols into various size groups. The radioactivity associated with each group was determined. The results show the same dependence of attachment of decay products on the size of aerosol particles as predicted by the diffusion theory proposed by Lassen and Rau (1960), even though the experimental conditions of the present study do not conform to those required to satisfy the above mentioned diffusion theory. The method employed in this work to study attachment is reproducible and simple and can be adopted in uranium and thorium mines and associated processing industries. (M.G.B.)

  7. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Directory of Open Access Journals (Sweden)

    R. S. Stone

    2014-06-01

    Full Text Available Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC, in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011 and Equivalent BC (EBC (1989–2011 from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.

  8. Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals

    International Nuclear Information System (INIS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Liu Li; Remer, Lorraine

    2004-01-01

    We present an update on the status of the global climatology of the aerosol column optical thickness and Angstrom exponent derived from channel-1 and -2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) in the framework of the Global Aerosol Climatology Project (GACP). The latest version of the climatology covers the period from July 1983 to September 2001 and is based on an adjusted value of the diffuse component of the ocean reflectance as derived from extensive comparisons with ship sun-photometer data. We use the updated GACP climatology and Stratospheric Aerosol and Gas Experiment (SAGE) data to analyze how stratospheric aerosols from major volcanic eruptions can affect the GACP aerosol product. One possible retrieval strategy based on the AVHRR channel-1 and -2 data alone is to infer both the stratospheric and the tropospheric aerosol optical thickness while assuming fixed microphysical models for both aerosol components. The second approach is to use the SAGE stratospheric aerosol data in order to constrain the AVHRR retrieval algorithm. We demonstrate that the second approach yields a consistent long-term record of the tropospheric aerosol optical thickness and Angstrom exponent. Preliminary comparisons of the GACP aerosol product with MODerate resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer aerosol retrievals show reasonable agreement, the GACP global monthly optical thickness being lower than the MODIS one by approximately 0.03. Larger differences are observed on a regional scale. Comparisons of the GACP and MODIS Angstrom exponent records are less conclusive and require further analysis

  9. AEROSOL AND GAS MEASUREMENT

    Science.gov (United States)

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  10. Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies

    Science.gov (United States)

    Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong

    2017-04-01

    The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.

  11. Importance of aerosol non-sphericity in estimating aerosol radiative forcing in Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul Kumar; Singh, Sachchidanand; Mishra, S K; Tiwari, Suresh

    2017-12-01

    Aerosols are usually presumed spherical in shape while estimating the direct radiative forcing (DRF) using observations or in the models. In the Indo-Gangetic Basin (IGB), a regional aerosol hotspot where dust is a major aerosol species and has been observed to be non-spherical in shape, it is important to test the validity of this assumption. We address this issue using measured chemical composition at megacity Delhi, a representative site of the western IGB. Based on the observation, we choose three non-spherical shapes - spheroid, cylinder and chebyshev, and compute their optical properties. Non-spherical dust enhances aerosol extinction coefficient (β ext ) and single scattering albedo (SSA) at visible wavelengths by >0.05km -1 and >0.04 respectively, while it decreases asymmetry parameter (g) by ~0.1. Accounting non-sphericity leads top-of-the-atmosphere (TOA) dust DRF to more cooling due to enhanced backscattering and increases surface dimming due to enhanced β ext . Outgoing shortwave flux at TOA increases by up to 3.3% for composite aerosols with non-spherical dust externally mixed with other spherical species. Our results show that while non-sphericity needs to be accounted for, choice of shape may not be important in estimating aerosol DRF in the IGB. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Direct measurement of aerosol shape factors

    International Nuclear Information System (INIS)

    Zeller, W.

    1983-12-01

    The dynamic shape factor whereas the coagulation shape factor is an average over the total examined size range. The experiments have shown that the results of experiments with a certain aerosol system cannot be transferred to other aerosol systems without further consideration. The outer shape of particles of a certain size depends on the specific properties of the material as well as on the experimental conditions during the aerosol generation. For both aerosol systems examined the mean dynamic shape factor, averaged over the total examined size range, agrees roughly with the coagulation shape factor. (Description of aerosol centrifuge and of differential mobility analyzer). (orig./HP) [de

  13. Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline.

    LENUS (Irish Health Repository)

    Shields, C J

    2012-02-03

    BACKGROUND: The immunomodulatory effects of hypertonic saline (HTS) provide potential strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that administration of intratracheal aerosolized HTS modulates the development of lung injury in pancreatitis. METHODS: Pancreatitis was induced in 24 male Sprague-Dawley rats by intraperitoneal injection of 20% L-arginine (500 mg\\/100 g body weight). At 24 and 48 h, intratracheal aerosolized HTS (7.5% NaCl, 0.5 mL) was administered to 8 rats, while a further 8 received 0.5 mL of aerosolized normal saline (NS). At 72 hours, pulmonary neutrophil infiltration (myeloperoxidase activity) and endothelial permeability (bronchoalveolar lavage and wet:dry weight ratios) were assessed. In addition, histological assessment of representative lung tissue was performed by a blinded assessor. In a separate experiment, polymorphonucleocytes (PMN) were isolated from human donors, and exposed to increments of HTS. Neutrophil transmigration across an endothelial cell layer, VEGF release, and apoptosis at 1, 6, 12, 18, and 24 h were assessed. RESULTS: Histopathological lung injury scores were significantly reduced in the HTS group (4.78 +\\/- 1.43 vs. 8.64 +\\/- 0.86); p < 0.001). Pulmonary neutrophil sequestration (1.40 +\\/- 0.2) and increased endothelial permeability (6.77 +\\/- 1.14) were evident in the animals resuscitated with normal saline when compared with HTS (0.70 +\\/- 0.1 and 3.57 +\\/- 1.32), respectively; p < 0.04). HTS significantly reduced PMN transmigration (by 97.1, p = 0.002, and induced PMN apoptosis (p < 0.03). HTS did not impact significantly upon neutrophil VEGF release (p > 0.05). CONCLUSIONS: Intratracheal aerosolized HTS attenuates the neutrophil-mediated pulmonary insult subsequent to pancreatitis. This may represent a novel therapeutic strategy.

  14. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  15. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  16. Papers of the 15. french congress on the aerosols CFA 99; Actes du 15. congres francais sur les aerosols CFA 99

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This french congress on the aerosols took place in Paris the 8 and 9 december 1999. It was presented in four main themes: bio-aerosols and filtering; the aerosols metrology; the aerosols in the environment; aerosols physic and applications. Seven papers have been analyzed in INIS data base for their specific interest in the nuclear industry. They concern the aerosol capture simulation, the aerosols sampling in workplace environment, a ring-effect ion generator development for the charge and the neutralization of an aerosol cloud, the radon 222 characterization in a house, a particle re-entrainment, the electrical charge process of beta emitter radioactive aerosols, the simulation of air flows in many filters. The other ones are analyzed in the ETDE data base. (A.L.B.)

  17. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan

    Science.gov (United States)

    Chang, Shih-Yu; Lee, Chung-Te; Chou, Charles C.-K.; Liu, Shaw-Chen; Wen, Tian-Xue

    The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas-aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl -, NO 2-, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m -3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.

  18. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Science.gov (United States)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-09-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon-like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  19. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  20. Aerosols produced by evaporation of a uranium wire; Aerosols produits par evaporation d'un fil d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Morel, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-03-01

    This work is devoted to the study of the aerosols formed when an uranium wire is evaporated in a normal or rarefied atmosphere, either with or without a drying agent. The heating of the wire can be either fast or slow. The first part is a study of aerosol production apparatus and of methods of measuring the aerosol. The second part presents the results obtained with various aerosols: the particles produced by the wire are less than one micron; during rapid heating, the granulometric distribution of the aerosol obeys a log-normal law; during slow heating, the distribution has two modes: one near 0.05 micron, the other close to 0.01 micron. (author) [French] Ce travail est consacre a l'etude des aerosols formes lors de l'evaporation d un fil d'uranium en atmosphere normale ou rarefiee en presence ou non de dessechant. Le chauffage du fil peut etre rapide ou lent. La premiere partie est une etude des appareils de production et des methodes de mesures de l'aerosol. La seconde partie consigne les resultats obtenus sur les differents aerosols: les particules emises par le fil sont inferieures au micron; lors d'un chauffage rapide, la repartition granulometrique de l'aerosol suit une loi log-normale; lors d un chauffage lent, la repartition presente deux modes: l'un voisin de 0.05 micron, l'autre voisin de 0.01 micron. (auteur)

  1. Beschrijving van een verdampings-condensatie aerosol generator voor de produktie van submicron aerosol

    NARCIS (Netherlands)

    Feijt; A.*; Meulen; A.van der

    1985-01-01

    Dit rapport is een handleiding voor een bedrijfszeker, routinematig gebruik van een zgn. Evaporation-Condensation aerosol Conditioner. Met deze aerosol generatie apparatuur kunnen op stabiele, reproduceerbare manier zeer hoge concentraties (tot 1 miljoen deeltjes per cc) monodispers submicron

  2. Aerosols from fires: an examination of the effects on ozone photochemistry in the Western United States.

    Science.gov (United States)

    Jiang, Xiaoyan; Wiedinmyer, Christine; Carlton, Annmarie G

    2012-11-06

    This study presents a first attempt to investigate the roles of fire aerosols in ozone (O(3)) photochemistry using an online coupled meteorology-chemistry model, the Weather Research and Foresting model with Chemistry (WRF-Chem). Four 1-month WRF-Chem simulations for August 2007, with and without fire emissions, were carried out to assess the sensitivity of O(3) predictions to the emissions and subsequent radiative feedbacks associated with large-scale fires in the Western United States (U.S.). Results show that decreases in planetary boundary layer height (PBLH) resulting from the radiative effects of fire aerosols and increases in emissions of nitrogen oxides (NO(x)) and volatile organic compounds (VOCs) from the fires tend to increase modeled O(3) concentrations near the source. Reductions in downward shortwave radiation reaching the surface and surface temperature due to fire aerosols cause decreases in biogenic isoprene emissions and J(NO(2)) photolysis rates, resulting in reductions in O(3) concentrations by as much as 15%. Thus, the results presented in this study imply that considering the radiative effects of fire aerosols may reduce O(3) overestimation by traditional photochemical models that do not consider fire-induced changes in meteorology; implementation of coupled meteorology-chemistry models are required to simulate the atmospheric chemistry impacted by large-scale fires.

  3. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  4. Glyoxal contribution to aerosols over Los Angeles

    Science.gov (United States)

    Balcerak, Ernie

    2012-01-01

    Laboratory and field studies have indicated that glyoxal (chemical formula OCHCHO), an atmospheric oxidation product of isoprene and aromatic compounds, may contribute to secondary organic aerosols in the atmosphere, which can block sunlight and affect atmospheric chemistry. Some aerosols are primary aerosols, emitted directly into the atmosphere, while others are secondary, formed through chemical reactions in the atmosphere. Washenfelder et al. describe in situ glyoxal measurements from Pasadena, Calif., near Los Angeles, made during summer 2010. They used three different methods to calculate the contribution of glyoxal to secondary atmospheric aerosol and found that it is responsible for 0-0.2 microgram per cubic meter, or 0-4%, of the secondary organic aerosol mass. The researchers also compared their results to those of a previous study that calculated the glyoxal contribution to aerosol for Mexico City. Mexico City had higher levels of organic aerosol mass from glyoxal. They suggest that the lower contribution of glyoxal to aerosol concentrations for Los Angeles may be due to differences in the composition or water content of the aerosols above the two cities. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016314, 2011)

  5. Aerosol processes relevant for the Netherlands

    NARCIS (Netherlands)

    Brugh, Aan de J.M.J.

    2013-01-01

    Particulate matter (or aerosols) are particles suspended in the atmosphere. Aerosols are believed to be the most important pollutant associated with increased human mortality and morbidity. Therefore, it is important to investigate the relationship between sources of aerosols (such as industry)

  6. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    International Nuclear Information System (INIS)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m 2 between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m 2 depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  7. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data

    Directory of Open Access Journals (Sweden)

    A. P. Grieshop

    2009-03-01

    Full Text Available Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit-mass-resolution quadrupole Aerosol Mass Spectrometer (AMS. The results highlight how photochemical processing can lead to considerable evolution of the mass, volatility and level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the OA mass after a few hours of aging under typical summertime conditions. Aging also decreased the volatility of the OA and made it progressively more oxygenated. The results also illustrate strengths of, and challenges with, using AMS data for source apportionment analysis. For example, the mass spectra of fresh and aged BBOA are distinct from fresh motor-vehicle emissions. The mass spectra of the secondary OA produced from aging wood smoke are very similar to those of the oxygenated OA (OOA that dominates ambient AMS datasets, further reinforcing the connection between OOA and OA formed from photo-chemistry. In addition, aged wood smoke spectra are similar to those from OA created by photo-oxidizing dilute diesel exhaust. This demonstrates that the OOA observed in the atmosphere can be produced by photochemical aging of dilute emissions from different types of combustion systems operating on fuels with modern or fossil carbon. Since OOA is frequently the dominant component of ambient OA, the similarity of spectra of aged emissions from different sources represents an important challenge for AMS-based source apportionment studies.

  8. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  9. Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles

    Directory of Open Access Journals (Sweden)

    A. Virtanen

    2011-08-01

    Full Text Available The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI. We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The comparison measurements by ammonium sulphate and investigation of the particle impaction velocities strongly suggest that the decreasing bounce is caused by the differences in composition and phase of large (diameters greater than 30 nm and smaller (diameters between 17 and 30 nm particles.

  10. Constraining the instantaneous aerosol influence on cloud albedo.

    Science.gov (United States)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-05-09

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol-cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration ( N d ), previous studies have used the sensitivity of the N d to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the N d to anthropogenic aerosol perturbations. Using an ensemble of global aerosol-climate models, this study demonstrates how joint histograms between N d and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol-cloud interactions in satellite data.

  11. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    Directory of Open Access Journals (Sweden)

    Han Zaw

    2016-01-01

    Full Text Available Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff, we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  12. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  13. Removal of nitrogen oxides, 106RuO4 vapors and radioactive aerosols from the gas originating in radioactive wastes solidification

    International Nuclear Information System (INIS)

    Kepak, F.; Pecak, V.; Uher, E.; Kanka, J.; Koutova, S.; Matous, V.

    1985-01-01

    Procedures and equipment for the disposal of nitrogen oxides, RuO 4 vapors and radioactive aerosols of 90 Sr, 137 Cs, 60 Co and 125 Sb contained in the gas generated in the solidification of high- and intermediate-level radioactive wastes were tested on models. Nitrogen oxides were disposed of by absorption and chemical decomposition in various solutions of which the best results gave solutions of ammonium salts. Absorption in solutions, physical and chemical sorption on inorganic sorbents were tested for the disposal of RuO 4 . Aerosols were disposed of by absorption in absorption media with subsequent filtration. Of fibrous filter materials, Czechoslovak AEROS-2 and RA-2 filter papers were proven in the tests. Attention was also devoted to granular filter materials of which silica gel was chosen. On the basis of laboratory tests a multi-step treatment system was designed which consists of a condenser, a nitrogen oxide absorber, a liquid aerosol separator, absorption columns and aerosol filters. The whole system has been manufactured on pilot plant scale and the different parts are being produced. (Z.M.)

  14. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    Science.gov (United States)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  15. Aerosol filtration with metallic fibrous filters

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.

    1983-01-01

    The filtration efficiency of stainless steel fibrous filters (BEKIPOR porous mats and sintered webs) is determined using submicronic monodisperse polystyrene aerosols. Lasers spectrometers are used for the aerosol measurements. The parameters varied are the fiber diameter, the number of layers, the aerosol diameter and the superficial velocity. Two selected types of filters are tested with polydisperse methylene blue aerosols to determine the effect of bed loading on the filter performance and to test washing techniques for the regeneration of the filter

  16. Humidity influence on gas-particle phase partitioning of α-pinene + O3 secondary organic aerosol

    Science.gov (United States)

    Prisle, N. L.; Engelhart, G. J.; Bilde, M.; Donahue, N. M.

    2010-01-01

    Water vapor uptake to particles could potentially affect organic-aerosol mass in three ways: first, water in the organic phase could reduce organic (equilibrium) partial pressures according to Raoult's law; second, an aqueous phase could attract water soluble organics according to Henry's law; finally, deliquescence of inorganic particle cores could mix the organic and inorganic particle phases, significantly diluting the organics and again reducing organic partial pressures according to Raoult's law. We present experiments using initially dry α-pinene + ozone secondary organic aerosol (SOA) on ammonium sulfate (AS) seeds at atmospheric concentrations in a smog chamber. After SOA formation, the chamber relative humidity is increased steadily by addition of steam to near 100%. Little subsequent SOA mass growth is observed, suggesting that none of these potential effects play a strong role in this system.

  17. Infrared remote sensing of atmospheric aerosols; Apports du sondage infrarouge a l'etude des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Pierangelo, C

    2005-09-15

    The 2001 report from the Intergovernmental Panel on Climate Change emphasized the very low level of understanding of atmospheric aerosol effects on climate. These particles originate either from natural sources (dust, volcanic aerosols...) or from anthropogenic sources (sulfates, soot...). They are one of the main sources of uncertainty on climate change, partly because they show a very high spatio-temporal variability. Observation from space, being global and quasi-continuous, is therefore a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain a better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the infrared domain still remains marginal. Yet, not only the knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing, but also infrared remote sensing provides a way to retrieve other aerosol characteristics (observations are possible at night and day, over land and sea). In this PhD dissertation, we show that aerosol optical depth, altitude and size can be retrieved from infrared sounder observations. We first study the sensitivity of aerosol optical properties to their micro-physical properties, we then develop a radiative transfer code for scattering medium adapted to the very high spectral resolution of the new generation sounder NASA-Aqua/AIRS, and we finally focus on the inverse problem. The applications shown here deal with Pinatubo stratospheric volcanic aerosol, observed with NOAA/HIRS, and with the building of an 8 year climatology of dust over sea and land from this sounder. Finally, from AIRS observations, we retrieve the optical depth at 10 {mu}m, the average altitude and the coarse mode effective radius of mineral dust over sea. (author)

  18. DARE: a dedicated aerosols retrieval instrument

    NARCIS (Netherlands)

    Court, A.J.; Smorenburg, K.; Courrèges-Lacoste, G.B.; Visser, H.; Leeuw, G. de; Decae, R.

    2004-01-01

    Satellite remote sensing of aerosols is a largely unresolved problem. A dedicated instrument aimed at aerosols would be able to reduce the large uncertainties connected to this kind of remote sensing. TNO is performing a study of a space based instrument for aerosol measurements, together with the

  19. Data assimilation of CALIPSO aerosol observations

    Directory of Open Access Journals (Sweden)

    T. T. Sekiyama

    2010-01-01

    Full Text Available We have developed an advanced data assimilation system for a global aerosol model with a four-dimensional ensemble Kalman filter in which the Level 1B data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO were successfully assimilated for the first time, to the best of the authors' knowledge. A one-month data assimilation cycle experiment for dust, sulfate, and sea-salt aerosols was performed in May 2007. The results were validated via two independent observations: 1 the ground-based lidar network in East Asia, managed by the National Institute for Environmental Studies of Japan, and 2 weather reports of aeolian dust events in Japan. Detailed four-dimensional structures of aerosol outflows from source regions over oceans and continents for various particle types and sizes were well reproduced. The intensity of dust emission at each grid point was also corrected by this data assimilation system. These results are valuable for the comprehensive analysis of aerosol behavior as well as aerosol forecasting.

  20. Operational aerosol and dust storm forecasting

    International Nuclear Information System (INIS)

    Westphal, D L; Curtis, C A; Liu, M; Walker, A L

    2009-01-01

    The U. S. Navy now conducts operational forecasting of aerosols and dust storms on global and regional scales. The Navy Aerosol Analysis and Prediction System (NAAPS) is run four times per day and produces 6-day forecasts of sulfate, smoke, dust and sea salt aerosol concentrations and visibility for the entire globe. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS (registered) ) is run twice daily for Southwest Asia and produces 3-day forecasts of dust, smoke, and visibility. The graphical output from these models is available on the Internet (www.nrlmry.navy.mil/aerosol/). The aerosol optical properties are calculated for each specie for each forecast output time and used for sea surface temperature (SST) retrieval corrections, regional electro-optical (EO) propagation assessments, and the development of satellite algorithms. NAAPS daily aerosol optical depth (AOD) values are compared with the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD values. Visibility forecasts are compared quantitatively with surface synoptic reports.

  1. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  2. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  3. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  4. The electrical charging of inactive aerosols in high ionised atmosphere, the electrical charging of artificial beta radioactive aerosols; Le processus de charge electrique: des aerosols non radioactifs en milieu fortement ionise, des aerosols radioactifs artificiels emetteurs beta

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F

    2000-07-01

    The electrical properties of aerosols greatly influence their transport and deposition in a containment. In a bipolar ionic atmosphere, a neutral electric charge on aerosols is commonly assumed. However, many studies report a different charge distribution in some situations, like highly ionised atmosphere or in the case of radioactive aerosols. Such situations could arise from a hypothetical accident in a nuclear power plant. Within the framework of safety studies which are carried out at IPSN, our aims were the study of electrical properties of aerosols in highly ionised atmosphere, and the study of artificial radioactive aerosols, in order to suggest experimental validation of available theories. For this purpose, we designed an experimental device that allows us to measure non-radioactive aerosol charge distribution under high gamma irradiation, up to 10{sup 4} Gy/h. With our experimental device we also studied the properties of small ions in the medium. Our results show a variation of the charge distribution in highly ionised atmosphere. The charge increases with the dose of gamma ray. We have related this variation with the one of the small ions in the gases, according to theoretical prediction. However, the model overestimates slightly our experimental results. In the case of the radioactive aerosols, we have designed an original experimental device, which allows us to study the charge distribution of a {sup 137}Cs aerosol. Our results show that the electric charging of such aerosols is strongly dependent on evolution parameters in a containment. So, our results underline a great enhancement of self-charging of particles which are sampled in a confined medium. Our results are qualitatively in agreement with the theoretical model; nevertheless the latter underestimates appreciably the self-charging, owing to the fact that wall effects are not taken into account. (author)

  5. Comparison of sodium aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.; Fermandjian, J.; Bunz, H.; L'homme, A.; Lhiaubet, G.; Himeno, Y.; Kirby, C.R.; Mitsutsuka, N.

    1984-01-01

    Although hypothetical fast reactor accidents leading to severe core damage are very low probability events, their consequences are to be assessed. During such accidents, one can envisage the ejection of sodium, mixed with fuel and fission products, from the primary circuit into the secondary containment. Aerosols can be formed either by mechanical dispersion of the molten material or as a result of combustion of the sodium in the mixture. Therefore considerable effort has been devoted to study the different sodium aerosol phenomena. To ensure that the problems of describing the physical behaviour of sodium aerosols were adequately understood, a comparison of the codes being developed to describe their behaviour was undertaken. The comparison consists of two parts. The first is a comparative study of the computer codes used to predict aerosol behaviour during a hypothetical accident. It is a critical review of documentation available. The second part is an exercise in which code users have run their own codes with a pre-arranged input. For the critical comparative review of the computer models, documentation has been made available on the following codes: AEROSIM (UK), MAEROS (USA), HAARM-3 (USA), AEROSOLS/A2 (France), AEROSOLS/B1 (France), and PARDISEKO-IIIb (FRG)

  6. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    Gaffney, Jeffrey

    2012-01-01

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  7. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  8. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  9. Dissolution of LMFBR fuel-sodium aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.

    1979-01-01

    Plutonium dioxide, normally insoluble in biological fluids, becomes much more soluble when mixed with sodium as the aerosol is formed. Sodium-fuel aerosols are approximately 20 times less soluble in simulated lung fluid than in distilled water. Solubility of sodium-fuel aerosols increases when Na 2 CO 3 are added to the distilled-water dissolution fluid. Mixed-oxide fuel aerosols without sodium present are relatively insoluble in distilled water, simulated lung fluid, and distilled water with Na 2 CO 3 and NaHCO 3 added

  10. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  11. Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P

    2018-01-16

    The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be

  12. Seasonal dependence of aerosol processing in urban Philadelphia

    Science.gov (United States)

    Avery, A. M.; Waring, M. S.; DeCarlo, P. F.

    2017-12-01

    Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower

  13. Future aerosols of the southwest - Implications for fundamental aerosol research

    International Nuclear Information System (INIS)

    Friedlander, S.K.

    1980-01-01

    It is shown that substantial increases in the use of coal in the U.S. will lead to substantial increases in emissions of particulate matter, SO/sub x/, and NO/sub x/ in the part of the U.S. west of the Mississippi. A shift in the primary particulate emissions from coarse to submicron particles is predicted. Attention is given to the nature of the submicron aerosol in the southwest, the distribution of sulfur with respect to particle size, the formation of new particles in the atmosphere, and the ammonium nitrate equilibrium. It is concluded that increased coal use will result in a 50% increase in SO/sub x/ emissions and a doubling of NO/sub x/ emissions in the western U.S. by the year 2000, that ambient levels of aerosol sulfates and nitrates will increase, and that a large increase in submicron aerosol mass is likely

  14. Improving the Lung Delivery of Nasally Administered Aerosols During Noninvasive Ventilation—An Application of Enhanced Condensational Growth (ECG)

    Science.gov (United States)

    Tian, Geng; Hindle, Michael

    2011-01-01

    Abstract Background Aerosol drug delivery during noninvasive ventilation (NIV) is known to be inefficient due to high depositional losses. To improve drug delivery efficiency, the concept of enhanced condensational growth (ECG) was recently proposed in which a submicrometer or nanoaerosol reduces extrathoracic deposition and subsequent droplet size increase promotes lung retention. The objective of this study was to provide proof-of-concept that the ECG approach could improve lung delivery of nasally administered aerosols under conditions consistent with NIV. Methods Aerosol deposition and size increase were evaluated in an adult nose–mouth–throat (NMT) replica geometry using both in vitro experiments and CFD simulations. For the ECG delivery approach, separate streams of a submicrometer aerosol and warm (39°C) saturated air were generated and delivered to the right and left nostril inlets, respectively. A control case was also considered in which an aerosol with a mass median aerodynamic diameter (MMAD) of 4.67 μm was delivered to the model. Results In vitro experiments showed that the ECG approach significantly reduced the drug deposition fraction in the NMT geometry compared with the control case [14.8 (1.83)%—ECG vs. 72.6 (3.7)%—control]. Aerosol size increased from an initial MMAD of 900 nm to a size of approximately 2 μm at the exit of the NMT geometry. Results of the CFD model were generally in good agreement with the experimental findings. Based on CFD predictions, increasing the delivery temperature of the aerosol stream from 21 to 35°C under ECG conditions further reduced the total NMT drug deposition to 5% and maintained aerosol growth by ECG to approximately 2 μm. Conclusions Application of the ECG approach may significantly improve the delivery of pharmaceutical aerosols during NIV and may open the door for using the nasal route to routinely deliver pulmonary medications. PMID:21410327

  15. Papers of the 14. french congress on aerosols CFA 98; Actes du 14. congres francais sur les aerosols CFA 98

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This french congress on the aerosols took place in Paris the 8 and 9 december 1998. It was presented in four main themes: the aerosols in the environment; the bio-aerosols, filtering and purifying; the aerosols metrology; the aerosols physic and application. Seven papers have been analyzed in INIS data base for their specific interest in nuclear industry. Eight other ones are analyzed in ETDE data base. (A.L.B.)

  16. Aerosol Retrievals from Proposed Satellite Bistatic Lidar Observations: Algorithm and Information Content

    Science.gov (United States)

    Alexandrov, M. D.; Mishchenko, M. I.

    2017-12-01

    Accurate aerosol retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. We suggested to address this ill-posedness by flying a bistatic lidar system. Such a system would consist of formation flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and an additional platform hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar. Thus, bistatic lidar observations will be free of deficiencies affecting both monostatic lidar measurements (caused by the highly limited information content) and passive photopolarimetric measurements (caused by vertical integration and surface reflection).We present a preliminary aerosol retrieval algorithm for a bistatic lidar system consisting of a high spectral resolution lidar (HSRL) and an additional receiver flown in formation with it at a scattering angle of 165 degrees. This algorithm was applied to synthetic data generated using Mie-theory computations. The model/retrieval parameters in our tests were the effective radius and variance of the aerosol size distribution, complex refractive index of the particles, and their number concentration. Both mono- and bimodal aerosol mixtures were considered. Our algorithm allowed for definitive evaluation of error propagation from measurements to retrievals using a Monte Carlo technique, which involves random distortion of the observations and statistical characterization of the resulting retrieval errors. Our tests demonstrated that supplementing a conventional monostatic HSRL with an additional receiver dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols.

  17. Behavior of aerosols in a steam-air environment

    International Nuclear Information System (INIS)

    Adams, R.E.; Tobias, M.L.; Longest, A.W.

    1985-01-01

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor (LWR) accident sequences and released into containment is being studied in the Nuclear Safety Pilot Plant (NSPP) which is located at the Oak Ridge National Laboratory (ORNL). The program plan for the NSPP aerosol project provides for the study of the behavior, within containment, of simulated LWR accident aerosols emanating from fuel, reactor core structural materials, and from concrete-molten core materials interactions. The aerodynamic behavior of each of these aerosols was studied individually to establish its characteristics; current experiments involve mixtures of these aerosols to establish their interaction and collective behavior within containment. Tests have been conducted with U 3 O 8 aerosols, Fe 2 O 3 aerosols, and concrete aerosols in an environment of either dry air [relative humidity (RH) less than 20%] or steam-air [relative humidity (RH) approximately 100%] with aerosol mass concentration being the primary experimental variable

  18. Regional Climate Effects of Aerosols Over South Asia: a Synthesis of Hybrid-Synergistic Analysis

    Science.gov (United States)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Bhuyan, P. K.

    2017-12-01

    The south-Asian region faces formidable challenges in the accurate estimation of the aerosol-climate forcing due to the increasing demographic pressure and the rapid socio-economic growth which intensify the anthropogenic emissions causing degradation of regional air quality and climate. In this context, the present study employs a hybrid-method synergizing the aerosol data from ground-based measurements, satellite retrievals and radiative transfer simulations over the south-Asian region. The ground based aerosol and solar radiation data (2010-2015) are considered for nine selected locations of India as well as the adjoining Bay of Bengal representing distinct aerosol environment. The land use land cover (LULC) data from Indian remote sensing satellite (IRS-P6) is used to understand the association of aerosol environment with the change in the land surface pattern.The results indicate that the northern part, pre-dominantly the Indo-Gangetic plains (IGP) experiences the highest aerosol optical depth throughout the year. While the presence of dust plays a significant role in modifying the radiation balance over the west Asian region, extending to IGP; the highest Fire Radiative Power is observed over Eastern India ( 30 MW), the hotspot of biomass burning sources, followed by Central, South/West and Northern India. Considering the distinct source processes, incoming ground reaching fluxes are simulated using radiative transfer model, which showed a good correlation with the measured values (R2 0.97) with the mean bias errors between -40 to +7 Wm-2 (an overestimation of 2-4%). Estimated aerosol direct radiative forcing efficiency (DRFE) is highest over the eastern IGP due to heavy loading of long range transported aerosols from the arid region in the west, followed by the Himalayan foothills and west-Asian regions which are mostly dominated by agro-industrial and dust activities. However, a pristine high altitude location in the Western Ghats showed lower DRFE compared

  19. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  20. Retrieving Smoke Aerosol Height from DSCOVR/EPIC

    Science.gov (United States)

    Xu, X.; Wang, J.; Wang, Y.

    2017-12-01

    Unlike industrial pollutant particles that are often confined within the planetary boundary layer, smoke from forest and agriculture fires can inject massive carbonaceous aerosols into the upper troposphere due to the intense pyro-convection. Sensitivity of weather and climate to absorbing carbonaceous aerosols is regulated by the altitude of those aerosol layers. However, aerosol height information remains limited from passive satellite sensors. Here we present an algorithm to estimate smoke aerosol height from radiances in the oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) from the Deep Space Climate Observatory (DSCOVR). With a suit of case studies and validation efforts, we demonstrate that smoke aerosol height can be well retrieved over both ocean and land surfaces multiple times daily.

  1. Papers of the 14. french congress on the aerosols CFA 98; Actes du 14. congres francais sur les aerosols CFA 98

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This french congress on the aerosols took place in Paris the 8 and 9 december 1998. It was presented in four main themes: the aerosols in the environment; the bio-aerosols, filtering and purifying; the aerosols metrology; the aerosols physic and application. Eight papers have been analyzed in ETDE data base showing the importance of the aerosols physic knowledge in the air quality and seven other in the INIS data base for their specific interest in the nuclear industry. (A.L.B.)

  2. The boiling point of stratospheric aerosols.

    Science.gov (United States)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  3. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  4. Attachment of radon progeny to cigarette-smoke aerosols

    International Nuclear Information System (INIS)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, ∼10 -6 cm 3 /s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols

  5. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  6. Analyses of CsI aerosol deposition in aerosol behavior tests in WIND project

    International Nuclear Information System (INIS)

    Kudo, Tamotsu; Shibazaki, Hiroaki; Hidaka, Akihide

    1999-01-01

    The aerosol deposition tests have been performed in WIND project at JAERI to characterize the aerosol behavior. The aerosol deposition tests named WAV1-D and WAV2-D were analyzed by aerosol behavior analysis codes, JAERI's ART and SNL's VICTORIA. The comparison calculation was performed for the confirmation of the analytical capabilities of the both codes and improvement of the models in ART. The deposition mass calculated by ART was larger than that by VICTORIA. This discrepancy is caused by differences in model for FP vapor condensation onto the wall surface. In the WAV2-D test, in which boric acid was placed on the floor area of the test section prior to the deposition phase to simulate the PWR primary coolant, there was a discrepancy in deposition mass between analytical results in both codes and experimental results. The discrepancy may be caused by existence of boric acid which is not considered in the codes. (author)

  7. Congenital Toxoplasmosis in Chronically Infected and Subsequently Challenged Ewes.

    Science.gov (United States)

    Dos Santos, Thaís Rabelo; Faria, Gabriela da Silva Magalhães; Guerreiro, Bruna Martins; Dal Pietro, Nathalia Helena Pereira da Silva; Lopes, Welber Daniel Zanetti; da Silva, Helenara Machado; Garcia, João Luis; Luvizotto, Maria Cecília Rui; Bresciani, Katia Denise Saraiva; da Costa, Alvimar José

    2016-01-01

    This experiment studied congenital transmission in sheep experimentally infected with oocysts of Toxoplasma gondii and reinfected at one of three stages of pregnancy. Twenty ewes were experimentally infected with T. gondii strain ME49 (day 0). After the T. gondii infection became chronic (IFAT≤512), the ewes were allocated with rams for coverage. After the diagnosis of pregnancy, these ewes were allocated into four experimental groups (n = 5): I-reinfected with T. gondii on the 40th day of gestation (DG); II-reinfected on DG 80; III-reinfected on DG 120; and IV-saline solution on DG 120 (not reinfected). Five ewes (IFATewes produced lambs serologically positive for T. gondii. The results of the mouse bioassay, immunohistochemistry and PCR assays revealed the presence of T. gondii in all 20 sheep and their lambs. The congenital transmission of T. gondii was associated with fetal loss and abnormalities in persistently infected sheep and in ewes infected and subsequently reinfected by this protozoan. Therefore, congenital T. gondii infection was common when ewes were chronically infected prior to pregnancy, with or without reinfection during at various stages of gestation.

  8. Aerosol vertical distribution characteristics over the Tibetan Plateau

    International Nuclear Information System (INIS)

    Deng, Z Q; Han, Y X; Zhao, Q; Li, J

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment II (SAGE II) aerosol products are widely used in climatic characteristic studies and stratospheric aerosol pattern research. Some SAGE II products, e.g., temperature, aerosol surface area density, 1020 nm aerosol extinction coefficient and dust storm frequency, from ground-based observations were analysed from 1984 to 2005. This analysis explored the time and spatial variations of tropospheric and stratospheric aerosols on the Tibet Plateau. The stratospheric aerosol extinction coefficient increased more than two orders of magnitude because of a large volcanic eruption. However, the tropospheric aerosol extinction coefficient decreased over the same period. Removing the volcanic eruption effect, the correlation coefficient for stratospheric AOD (Aerosol Optical Depth) and tropospheric AOD was 0.197. Moreover, the correlation coefficient for stratospheric AOD and dust storm frequency was 0.315. The maximum stratospheric AOD was attained in January, the same month as the tropospheric AOD, when the Qaidam Basin was the centre of low tropospheric AOD and the large mountains coincided with high stratospheric AOD. The vertical structure generated by westerly jet adjustment and the high altitude of the underlying surface of the Tibetan Plateau were important factors affecting winter stratospheric aerosols

  9. Pollutants identification of ambient aerosols by two types of aerosol mass spectrometers over southeast coastal area, China.

    Science.gov (United States)

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Li, Lei

    2018-02-01

    Two different aerosol mass spectrometers, Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Aerosol Mass Spectrometer (SPAMS) were deployed to identify the aerosol pollutants over Xiamen, representing the coastal urban area. Five obvious processes were classified during the whole observation period. Organics and sulfate were the dominant components in ambient aerosols over Xiamen. Most of the particles were in the size range of 0.2-1.0μm, accounting for over 97% of the total particles measured by both instruments. Organics, as well as sulfate, measured by AMS were in good correlation with measured by SPAMS. However, high concentration of NH 4 + was obtained by AMS, while extremely low value of NH 4 + was detected by SPAMS. Contrarily, high particle number counts of NO 3 - and Cl - were given by SPAMS while low concentrations of NO 3 - and Cl - were measured by AMS. The variations of POA and SOA obtained from SPAMS during event 1 and event 2 were in accordance with the analysis of HOA and OOA given by AMS, suggesting that both of AMS and SPAMS can well identify the organic clusters of aerosol particles. Overestimate or underestimate of the aerosol sources and acidity would be present in some circumstances when the measurement results were used to analyze the aerosol properties, because of the detection loss of some species for both instruments. Copyright © 2017. Published by Elsevier B.V.

  10. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands

    Directory of Open Access Journals (Sweden)

    P. Schlag

    2016-07-01

    Full Text Available Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM at the Cabauw Experimental Site for Atmospheric Research (CESAR in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network. Including equivalent black carbon an average particulate mass concentration of 9.50 µg m−3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %, organic aerosol (OA, 29 %, and ammonium sulfate (19 %. There were 12 exceedances of the World Health Organization (WHO PM2.5 daily mean limit (25 µg m−3 observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF using the multilinear engine 2 (ME-2 controlled via the source finder (SoFi. Primary organic aerosols were attributed mainly to traffic (8–16 % contribution to total OA, averaged season-wise and biomass burning (0–23 %. Secondary organic aerosols (SOAs, 61–84 % dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  11. Optical characterization of metallic aerosols

    International Nuclear Information System (INIS)

    Sun Wenbo; Lin Bing

    2006-01-01

    Airborne metallic particulates from industry and urban sources are highly conducting aerosols. The characterization of these pollutant particles is important for environment monitoring and protection. Because these metallic particulates are highly reflective, their effect on local weather or regional radiation budget may also need to be studied. In this work, light scattering characteristics of these metallic aerosols are studied using exact solutions on perfectly conducting spherical and cylindrical particles. It is found that for perfectly conducting spheres and cylinders, when scattering angle is larger than ∼90 o the linear polarization degree of the scattered light is very close to zero. This light scattering characteristics of perfectly conducting particles is significantly different from that of other aerosols. When these perfectly conducting particles are immersed in an absorbing medium, this light scattering characteristics does not show significant change. Therefore, measuring the linear polarization of scattered lights at backward scattering angles can detect and distinguish metallic particulates from other aerosols. This result provides a great potential of metallic aerosol detection and monitoring for environmental protection

  12. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.

  13. Intercomparison test of various aerosol measurement techniques

    International Nuclear Information System (INIS)

    Cherdron, W.; Hassa, C.; Jordan, S.

    1984-01-01

    At the suggestion of the CONT group (Containment Loading and Response), which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee, a group of experts undertook a comparison of the techniques of sodium aerosol measurement used in various laboratories in the EC. The following laboratories took part in the exercise: CEN-Mol (Belgium), CEA-Cadarache (France), CEA-Fontenay-aux-Roses (France), KfK-Karlsruhe (Federal Republic of Germany), ENEA-Bologna (Italy), and UKAEA-Winfrith (United Kingdom). The objective of the aerosol measurement workshop was to assess the applicability and reliability of specific aerosol measuring instruments. Measurements performed with equipment from the participating laboratories were evaluated using a standard procedure. This enabled an estimate of the accuracy of the experimental data to be provided for the verification of aerosol codes. Thus these results can be used as input for the physical modelling of aerosol behaviour, and the work reported here is a contribution to the definition of the radioactive source term for severe accidents in LMFBRs. The aerosol experts participating in the exercise agreed to concentrate on the techniques of measuring aerosol particle size distributions. The tests were performed at the FAUNA test facility using the aerosol loop. A sodium spray fire, which provides a continuous aerosol source of variable concentration, was produced under open-loop conditions in this facility. Although the primary objective of the workshop was to determine the particle size distributions of the aerosols, measurements of the sodium mass concentration were also made

  14. Characterization of aerosols produced by surgical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States); Turner, R.S. [Lovelace Health Systems, Albuquerque, NM (United States)

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  15. MISR Aerosol Typing

    Science.gov (United States)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  16. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    Science.gov (United States)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  17. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra

    Science.gov (United States)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.

    2017-05-01

    This paper describes the second part of a series of investigation to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for 5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the sequential forward selection method, the common bands for different aerosol mixture types and surface types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90% of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance. However, the information content in these common bands from each TEMPO individual observation is insufficient for the simultaneous retrieval of surface's PC weight coefficients and multiple aerosol parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO in multiple consecutive days, 1-3 additional aerosol parameters could be retrieved. Consequently, a self-adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-consecutive observations is recommended to derive

  18. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    Science.gov (United States)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  19. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  20. A reference aerosol for a radon reference chamber

    Science.gov (United States)

    Paul, Annette; Keyser, Uwe

    1996-02-01

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.

  1. A reference aerosol for a radon reference chamber

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keyser, U. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1996-01-11

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 {mu}m aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration are described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a {sup 252}Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry. (orig.).

  2. Influence of moisture on the behavior of aerosols

    International Nuclear Information System (INIS)

    Adams, R.E.; Longest, A.W.; Tobias, M.L.

    1987-01-01

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor accident sequences and released into containment has been studied in the Nuclear Safety Pilot Plant located at the Oak Ridge National Laboratory. It has been observed that in a saturated steam-air environment a change occurs in the shape of aerosol agglomerates of U 3 O 8 aerosol, Fe 2 O 3 aerosol, and mixed U 3 O 8 -Fe 2 O 3 aerosol from branched-chain to spherical, and that the rate of reduction in the airborne aerosol mass concentration is increased relative to the rate observed in a dry atmosphere. The effect of a steam-air environment on the behavior of concrete aerosol is different. The shape of the agglomerated concrete aerosol is intermediate between branched-chain and spherical and the effect on the rate of reduction in airborne mass concentration appears to be slight. In a related project the shape of an agglomerated Fe 2 O 3 aerosol was observed to change from branched-chain to spherical at, or near, 100% relative humidity

  3. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  4. Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China.

    Science.gov (United States)

    Kang, Na; Kumar, K Raghavendra; Yu, Xingna; Yin, Yan

    2016-09-01

    Aerosol optical properties were measured and analyzed through the ground-based remote sensing Aerosol Robotic Network (AERONET) over an urban-industrial site, Nanjing (32.21° N, 118.72° E, and 62 m above sea level), in the Yangtze River Delta, China, during September 2007-August 2008. The annual averaged values of aerosol optical depth (AOD500) and the Ångström exponent (AE440-870) were measured to be 0.94 ± 0.52 and 1.10 ± 0.21, respectively. The seasonal averaged values of AOD500 (AE440-870) were noticed to be high in summer (autumn) and low in autumn (spring). The characterization of aerosol types showed the dominance of mixed type followed by the biomass burning and urban-industrial type of aerosol at Nanjing. Subsequently, the curvature (a 2) obtained from the second-order polynomial fit and the second derivative of AE (α') were also analyzed to understand the dominant aerosol type. The single scattering albedo at 440 nm (SSA440) varied from 0.88 to 0.93 with relatively lower (higher) values during the summer (spring), suggesting an increase in black carbon and mineral dust (desert dust) aerosols of absorbing (scattering) nature. The averaged monthly and seasonal evolutions of shortwave (0.3-4.0 μm) direct aerosol radiative forcing (DARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and bottom of atmosphere (SUR) during the study period. Further, the aerosol forcing efficiency (AFE) and the corresponding atmospheric heating rates (AHR) were also estimated from the forcing within the atmosphere (ATM). The derived DARF values, therefore, produced a warming effect within the atmosphere due to strong absorption of solar radiation.

  5. The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study

    Science.gov (United States)

    Yin, Yan; Chen, Qian; Jin, Lianji; Chen, Baojun; Zhu, Shichao; Zhang, Xiaopei

    2012-11-01

    A cloud resolving model coupled with a spectral bin microphysical scheme was used to investigate the effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere. A deep convective storm that occurred on 1 December, 2005 in Darwin, Australia was simulated, and was compared with available radar observations. The results showed that the radar echo of the storm in the developing stage was well reproduced by the model. Sensitivity tests for aerosol layers at different altitudes were conducted in order to understand how the concentration and size distribution of aerosol particles within the upper troposphere can be influenced by the vertical transport of aerosols as a result of deep convection. The results indicated that aerosols originating from the boundary layer can be more efficiently transported upward, as compared to those from the mid-troposphere, due to significantly increased vertical velocity through the reinforced homogeneous freezing of droplets. Precipitation increased when aerosol layers were lofted at different altitudes, except for the case where an aerosol layer appeared at 5.4-8.0 km, in which relatively more efficient heterogeneous ice nucleation and subsequent Wegener-Bergeron-Findeisen process resulted in more pronounced production of ice crystals, and prohibited the formation of graupel particles via accretion. Sensitivity tests revealed, at least for the cases considered, that the concentration of aerosol particles within the upper troposphere increased by a factor of 7.71, 5.36, and 5.16, respectively, when enhanced aerosol layers existed at 0-2.2 km, 2.2-5.4 km, and 5.4-8.0 km, with Aitken mode and a portion of accumulation mode (0.1-0.2μm) particles being the most susceptible to upward transport.

  6. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  7. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  8. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z; Young, S E; Becker, C H; Coggiola, M J [SRI International, Menlo Park, CA (United States); Wollnik, H [Giessen Univ. (Germany)

    1998-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  9. Particle-Resolved Modeling of Aerosol Mixing State in an Evolving Ship Plume

    Science.gov (United States)

    Riemer, N. S.; Tian, J.; Pfaffenberger, L.; Schlager, H.; Petzold, A.

    2011-12-01

    The aerosol mixing state is important since it impacts the particles' optical and CCN properties and thereby their climate impact. It evolves continuously during the particles' residence time in the atmosphere as a result of coagulation with other particles and condensation of secondary aerosol species. This evolution is challenging to represent in traditional aerosol models since they require the representation of a multi-dimensional particle distribution. While modal or sectional aerosol representations cannot practically resolve the aerosol mixing state for more than a few species, particle-resolved models store the composition of many individual aerosol particles directly. They thus sample the high-dimensional composition state space very efficiently and so can deal with tens of species, fully resolving the mixing state. Here we use the capabilities of the particle-resolved model PartMC-MOSAIC to simulate the evolution of particulate matter emitted from marine diesel engines and compare the results to aircraft measurements made in the English Channel in 2007 as part of the European campaign QUANTIFY. The model was initialized with values of gas concentrations and particle size distributions and compositions representing fresh ship emissions. These values were obtained from a test rig study in the European project HERCULES in 2006 using a serial four-stroke marine diesel engine operating on high-sulfur heavy fuel oil. The freshly emitted particles consisted of sulfate, black carbon, organic carbon and ash. We then tracked the particle population for several hours as it evolved undergoing coagulation, dilution with the background air, and chemical transformations in the aerosol and gas phase. This simulation was used to compute the evolution of CCN properties and optical properties of the plume on a per-particle basis. We compared our results to size-resolved data of aged ship plumes from the QUANTIFY Study in 2007 and showed that the model was able to reproduce

  10. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  11. Infrared remote sensing of atmospheric aerosols; Apports du sondage infrarouge a l'etude des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Pierangelo, C.

    2005-09-15

    The 2001 report from the Intergovernmental Panel on Climate Change emphasized the very low level of understanding of atmospheric aerosol effects on climate. These particles originate either from natural sources (dust, volcanic aerosols...) or from anthropogenic sources (sulfates, soot...). They are one of the main sources of uncertainty on climate change, partly because they show a very high spatio-temporal variability. Observation from space, being global and quasi-continuous, is therefore a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain a better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the infrared domain still remains marginal. Yet, not only the knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing, but also infrared remote sensing provides a way to retrieve other aerosol characteristics (observations are possible at night and day, over land and sea). In this PhD dissertation, we show that aerosol optical depth, altitude and size can be retrieved from infrared sounder observations. We first study the sensitivity of aerosol optical properties to their micro-physical properties, we then develop a radiative transfer code for scattering medium adapted to the very high spectral resolution of the new generation sounder NASA-Aqua/AIRS, and we finally focus on the inverse problem. The applications shown here deal with Pinatubo stratospheric volcanic aerosol, observed with NOAA/HIRS, and with the building of an 8 year climatology of dust over sea and land from this sounder. Finally, from AIRS observations, we retrieve the optical depth at 10 {mu}m, the average altitude and the coarse mode effective radius of mineral dust over sea. (author)

  12. Organic aerosol formation during the atmospheric degradation of toluene.

    Science.gov (United States)

    Hurley, M D; Sokolov, O; Wallington, T J; Takekawa, H; Karasawa, M; Klotz, B; Barnes, I; Becker, K H

    2001-04-01

    Organic aerosol formation during the atmospheric oxidation of toluene was investigated using smog chamber systems. Toluene oxidation was initiated by the UV irradiation of either toluene/air/NOx or toluene/air/CH3ONO/NO mixtures. Aerosol formation was monitored using scanning mobility particle sizers and toluene loss was monitored by in-situ FTIR spectroscopy or GC-FID techniques. The experimental results show that the reaction of OH radicals, NO3 radicals and/or ozone with the first generation products of toluene oxidation are sources of organic aerosol during the atmospheric oxidation of toluene. The aerosol results fall into two groups, aerosol formed in the absence and presence of ozone. An analytical expression for aerosol formation is developed and values are obtained for the yield of the aerosol species. In the absence of ozone the aerosol yield, defined as aerosol formed per unit toluene consumed once a threshold for aerosol formation has been exceeded, is 0.075 +/- 0.004. In the presence of ozone the aerosol yield is 0.108 +/- 0.004. This work provides experimental evidence and a simple theory confirming the formation of aerosol from secondary reactions.

  13. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  14. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    Science.gov (United States)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of

  15. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    Science.gov (United States)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  16. Nuclear aerosol behavior during reactor accidents

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1990-01-01

    Some early reactor accidents are recalled together with their associated environmental consequences. One such consequence is the generation of radioactive aerosol. We described the various physical processes that such an aerosol cloud undergoes within the secondary containment building. These physical processes are then brought together quantitatively in a balance equation for the aerosol size spectrum as a function of position and time. Methods for solving this equation are discussed and illustrated by the method of moments based upon log-normal and modified gamma distributions. Current problems are outlined and directions for future work into aerosol behavior are suggested. (author)

  17. Eddy Covariance Measurements of the Sea-Spray Aerosol Flu

    Science.gov (United States)

    Brooks, I. M.; Norris, S. J.; Yelland, M. J.; Pascal, R. W.; Prytherch, J.

    2015-12-01

    Historically, almost all estimates of the sea-spray aerosol source flux have been inferred through various indirect methods. Direct estimates via eddy covariance have been attempted by only a handful of studies, most of which measured only the total number flux, or achieved rather coarse size segregation. Applying eddy covariance to the measurement of sea-spray fluxes is challenging: most instrumentation must be located in a laboratory space requiring long sample lines to an inlet collocated with a sonic anemometer; however, larger particles are easily lost to the walls of the sample line. Marine particle concentrations are generally low, requiring a high sample volume to achieve adequate statistics. The highly hygroscopic nature of sea salt means particles change size rapidly with fluctuations in relative humidity; this introduces an apparent bias in flux measurements if particles are sized at ambient humidity. The Compact Lightweight Aerosol Spectrometer Probe (CLASP) was developed specifically to make high rate measurements of aerosol size distributions for use in eddy covariance measurements, and the instrument and data processing and analysis techniques have been refined over the course of several projects. Here we will review some of the issues and limitations related to making eddy covariance measurements of the sea spray source flux over the open ocean, summarise some key results from the last decade, and present new results from a 3-year long ship-based measurement campaign as part of the WAGES project. Finally we will consider requirements for future progress.

  18. Micro-physics of aircraft-generated aerosols and their potential impact on heterogeneous plume chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B; Luo, B P [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1998-12-31

    Answers are attempted to give to open questions concerning physico-chemical processes in near-field aircraft plumes, with emphasis on their potential impact on subsequent heterogeneous chemistry. Research issues concerning the nucleation of aerosols and their interactions among themselves and with exhaust gases are summarized. Microphysical properties of contrail ice particles, formation of liquid ternary mixtures, and nucleation of nitric acid trihydrate particles in contrails are examined and possible implications for heterogeneous plume chemistry are discussed. (author) 19 refs.

  19. Micro-physics of aircraft-generated aerosols and their potential impact on heterogeneous plume chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Luo, B.P. [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1997-12-31

    Answers are attempted to give to open questions concerning physico-chemical processes in near-field aircraft plumes, with emphasis on their potential impact on subsequent heterogeneous chemistry. Research issues concerning the nucleation of aerosols and their interactions among themselves and with exhaust gases are summarized. Microphysical properties of contrail ice particles, formation of liquid ternary mixtures, and nucleation of nitric acid trihydrate particles in contrails are examined and possible implications for heterogeneous plume chemistry are discussed. (author) 19 refs.

  20. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-01-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging

  1. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B. [Radiation Impact Assessment Section, Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  2. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    Science.gov (United States)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  3. Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2

    International Nuclear Information System (INIS)

    Wright, A.L.; Wilson, J.H.; Arwood, P.C.

    1986-01-01

    The Light-Water-Reactor (LWR) Aerosol Containment Experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory (HEDL) under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities are being coordinated at the Oak Ridge National Laboratory. For each of the six LACE tests, ''pretest'' calculations (for code-to-code comparisons) and ''posttest'' calculations (for code-to-test data comparisons) are being performed. The overall goals of the comparison effort are (1) to provide code users with experience in applying their codes to LWR accident-sequence conditions and (2) to evaluate and improve the code models

  4. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  5. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic

    Science.gov (United States)

    Kirpes, Rachel M.; Bondy, Amy L.; Bonanno, Daniel; Moffet, Ryan C.; Wang, Bingbing; Laskin, Alexander; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Few measurements of aerosol chemical composition have been made during the winter-spring transition (following polar sunrise) to constrain Arctic aerosol-cloud-climate feedbacks. Herein, we report the first measurements of individual particle chemical composition near Utqiaġvik (Barrow), Alaska, in winter (seven sample days in January and February 2014). Individual particles were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX, 24 847 particles), Raman microspectroscopy (300 particles), and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS, 290 particles). Sea spray aerosol (SSA) was observed in all samples, with fresh and aged SSA comprising 99 %, by number, of 2.5-7.5 µm diameter particles, 65-95 % from 0.5-2.5 µm, and 50-60 % from 0.1-0.5 µm, indicating SSA is the dominant contributor to accumulation and coarse-mode aerosol during the winter. The aged SSA particles were characterized by reduced chlorine content with 94 %, by number, internally mixed with secondary sulfate (39 %, by number, internally mixed with both nitrate and sulfate), indicative of multiphase aging reactions during transport. There was a large number fraction (40 % of 1.0-4.0 µm diameter particles) of aged SSA during periods when particles were transported from near Prudhoe Bay, consistent with pollutant emissions from the oil fields participating in atmospheric processing of aerosol particles. Organic carbon and sulfate particles were observed in all samples and comprised 40-50 %, by number, of 0.1-0.4 µm diameter particles, indicative of Arctic haze influence. Soot was internally mixed with organic and sulfate components. All sulfate was mixed with organic carbon or SSA particles. Therefore, aerosol sources in the Alaskan Arctic and resulting aerosol chemical mixing states need to be considered when predicting aerosol climate effects, particularly cloud

  6. Simulated nutrient dissolution of Asian aerosols in various atmospheric waters: Potential links to marine primary productivity

    Science.gov (United States)

    Wang, Lingyan; Bi, Yanfeng; Zhang, Guosen; Liu, Sumei; Zhang, Jing; Xu, Zhaomeng; Ren, Jingling; Zhang, Guiling

    2017-09-01

    To probe the bioavailability and environmental mobility of aerosol nutrient elements (N, P, Si) in atmospheric water (rainwater, cloud and fog droplets), ten total suspended particulate (TSP) samples were collected at Fulong Mountain, Qingdao from prevailing air mass trajectory sources during four seasons. Then, a high time-resolution leaching experiment with simulated non-acidic atmospheric water (non-AAW, Milli-Q water, pH 5.5) and subsequently acidic atmospheric water (AAW, hydrochloric acid solution, pH 2) was performed. We found that regardless of the season or source, a monotonous decreasing pattern was observed in the dissolution of N, P and Si compounds in aerosols reacted with non-AAW, and the accumulated dissolved curves of P and Si fit a first-order kinetic model. No additional NO3- + NO2- dissolved out, while a small amount of NH4+ in Asian dust (AD) samples was released in AAW. The similar dissolution behaviour of P and Si from non-AAW to AAW can be explained by the Transition State Theory. The sources of aerosols related to various minerals were the natural reasons that affected the amounts of bioavailable phosphorus and silicon in aerosols (i.e., solubility), which can be explained by the dissolution rate constant of P and Si in non-AAW with lower values in mineral aerosols. The acid/particle ratio and particle/liquid ratio also have a large effect on the solubility of P and Si, which was implied by Pearson correlation analysis. Acid processing of aerosols may have great significance for marine areas with limited P and Si and post-acidification release increases of 1.1-10-fold for phosphorus and 1.2-29-fold for silicon. The decreasing mole ratio of P and Si in AAW indicates the possibility of shifting from a Si-limit to a P-limit in aerosols in the ocean, which promotes the growth of diatoms prior to other algal species.

  7. Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling

    Directory of Open Access Journals (Sweden)

    Yukari Hara

    2018-06-01

    Full Text Available We verified an algorithm using multi-wavelength Mie-Raman lidar (MMRL observations to retrieve four aerosol components (black carbon (BC, sea salt (SS, air pollution (AP, and mineral dust (DS with in-situ aerosol measurements, and determined the seasonal variation of aerosol components in Fukuoka, in the western region of Japan. PM2.5, PM10, and mass concentrations of BC and SS components are derived from in-situ measurements. MMRL provides the aerosol extinction coefficient (α, particle linear depolarization ratio (δ, backscatter coefficient (β, and lidar ratio (S at 355 and 532 nm, and the attenuated backscatter coefficient (βatt at 1064 nm. We retrieved vertical distributions of extinction coefficients at 532 nm for four aerosol components (BC, SS, AP, and DS using 1α532 + 1β532 + 1βatt,1064 + 1δ532 data of MMRL. The retrieved extinction coefficients of the four aerosol components at 532 nm were converted to mass concentrations using the theoretical computed conversion factor assuming the prescribed size distribution, particle shape, and refractive index for each aerosol component. MMRL and in-situ measurements confirmed that seasonal variation of aerosol optical properties was affected by internal/external mixing of various aerosol components, in addition to hygroscopic growth of water-soluble aerosols. MMRL overestimates BC mass concentration compared to in-situ observation using the pure BC model. This overestimation was reduced drastically by introducing the internal mixture model of BC and water-soluble substances (Core-Gray Shell (CGS model. This result suggests that considering the internal mixture of BC and water-soluble substances is essential for evaluating BC mass concentration in this area. Systematic overestimation of BC mass concentration was found during summer, even when we applied the CGS model. The observational facts based on in-situ and MMRL measurements suggested that misclassification of AP as CGS particles was

  8. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    Science.gov (United States)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  9. Development of α and/or β activity aerosol instrumentation

    International Nuclear Information System (INIS)

    Lu Zhengyong; Li Aiwu; Gou Quanlu

    1996-01-01

    A radioactive aerosol instrumentation is developed recently for measuring the α and/or β activity of artificial radioactivity aerosols which are produced in nuclear facilities. The instrumentation has the function discriminating natural radioactivity aerosols resulted from radon and thoron daughters, and it is enabled in time and without delay to measure α and β artificial activity collected with a filter by pumping aerosols through this filter. The energy discrimination and compensation method is used for eliminating the influence of natural αradioactivity aerosols. To minimize the influence of natural β-radioactivity aerosols, the method measuring the ratio α/β of natural aerosols is also used in the instrument. The improved methods eliminating the influence of natural background α and β aerosols are used so that both α and β artificial activities in aerosol filter samples can be monitored simultaneously. The instrumentation is appropriate for monitoring α and/or β artificial radioactive aerosols

  10. Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2016-04-01

    Full Text Available Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US. Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015. We use these 0–4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH. For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry–climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of  ∼  25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1–0.5 µm diameter dominates

  11. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    Science.gov (United States)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  12. Impact of Aerosol Processing on Orographic Clouds

    Science.gov (United States)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  13. Development and validation of a dispersion model for aerosols and studies on their coagulation as potential influence source; Entwicklung und Validierung eines Ausbereitungsmodells fuer Aerosole und Untersuchungen zu deren Koagulation als potentieller Einflussquelle

    Energy Technology Data Exchange (ETDEWEB)

    Lodomez, Philipp

    2010-09-15

    In the context of dispersion modelling of aerosols in the vicinity of agricultural sites the adoption of dynamical models is more and more usual. Such a model, STAR3D (Simulated Transmission of Aerosols 3D) was newly developed. It is based on the numerical evaluation of the Navier-Stokes-Equations and the subsequent calculation of the particle trajectories using the Langevin-Equation. In the course of the transmission different effects like the sedimentation, diffusion and coagulation of the particles must be considered. For the estimation of the influence of the coagulation a test chamber was build. It could be shown, that the effect of the particle coagulation can be neglected for dispersion modelling in outdoor areas. Finally a field survey was arranged to evaluate STAR3D. At twelve measurement points the mean deviation between the measured and simulated values was 24 percent. (orig.)

  14. GRIP LANGLEY AEROSOL RESEARCH GROUP EXPERIMENT (LARGE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Langley Aerosol Research Group Experiment (LARGE) measures ultrafine aerosol number density, total and non-volatile aerosol number density, dry aerosol size...

  15. Influence of moisture on the behavior of aerosols

    International Nuclear Information System (INIS)

    Adams, R.E.; Longest, A.W.; Tobias, M.L.

    1986-01-01

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor (LWR) accident sequences and released into containment has been studied in the Nuclear Safety Pilot Plant (NSPP) located at the Oak Ridge National Laboratory (ORNL). It has been observed that in a saturated steam-air environment a change occurs in the shape of aerosol agglomerates of U 3 O 8 aerosol, Fe 2 O 3 aerosol, and mixed U 3 O 8 -Fe 2 O 3 aerosol from branched-chain to spherical, and that the rate of reduction in the airborne aerosol mass concentration is increased relative to the rate observed in a dry atmosphere. The effect of a steam-air environment on the behavior of concrete aerosol is different. The shape of the agglomerated concrete aerosol is intermediate between branched-chain and spherical and the effect on the rate of reduction in airborne mass concentration appears to be slight. In a related project the shape of an agglomerated Fe 2 O 3 aerosol was observed to change from branched-chain to spherical at, or near, 100% relative humidity

  16. Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones

    Science.gov (United States)

    Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.

    2011-12-01

    Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between

  17. The continuous monitoring of the artificial beta aerosol activity by measuring the alpha and beta activity in aerosol simultaneously

    International Nuclear Information System (INIS)

    Hayakawa, Hironobu; Oonishi, Masaki; Matsuura, Hiroyuki

    1990-01-01

    We have constructed the system to monitor the artificial beta aerosol activity around the nuclear power plants continuously in real time. The smaller releases of artificial radionuclides from the nuclear power plants can be lost in the fluctuations of the natural background of the beta aerosol activity, when only the beta activity of the aerosol is measured. This method to discriminate the artificial and the natural beta activity of the aerosol is based on the fact that the ratio of the natural alpha and beta activities of the aerosol is almost constant. The detection limit of this system is below 3 Bq/m 3 . (author)

  18. Nonurban aerosol composition near Beijing, China

    International Nuclear Information System (INIS)

    Winchester, J.W.; Darzi, M.; Leslie, A.C.D.; Wang, M.; Ren, L.; Lue, W.; Hansson, H.C.; Lannefors, H.

    1981-01-01

    The urban aerosol plume of Beijing has been sampled as a function of particle size and time at a site 110 km NE of the city, 9-16 March 1980, during the season for space heating by coal combustion. A fine particle mode, contained mostly in the 0.5-2 μm aerodynamic diameter range, could be distinguished from a coarse mode of dust having terrestrial composition by reference to the size distribution of Ca. Elemental composition determined by PIXE analysis for 17 elements, including S and heavy metals, indicates fine mode concentrations higher than background aerosol but with a similarity to cleaner air with respect to both relative elemental abundances and elemental particle size distributions. The results indicate that elements contained in aged coal combustion aerosol occur mainly in 0.5-2 μMAD particles, not smaller, and the aerosol is not substantially different from background aerosol except in overall concentrations. This result may simplify the prediction of the impact of coal combustion on air quality. The results also hint that the background aerosol in more remote continental areas may also be combustion derived. (orig.)

  19. Study of uranium mine aerosols

    International Nuclear Information System (INIS)

    Barzic, J.-Y.

    1976-05-01

    With a view to radiation protection of uranium-miners a study was made of the behaviour of radioactive and non-radioactive aerosols in the atmosphere of an experimental mine where temperature, pressure, relative himidity and ventilation are kept constant and in the air of a working area where the nature of the aerosol is dependent on the stage of work. Measurements of radon and daughter products carried out in various points of working areas showed that the gas was quickly diluted, equilibrium between radon and its daughter products (RaA, RaB, RaC) was never reached and the radon-aerosol contact was of short duration (a few minutes). Using a seven-stage Andersen impactor particle size distribution of the mine aerosol (particle diameter >0.3μm) was studied. The characteristic diameters were determined for each stage of the Andersen impactor and statistical analysis verified that aerosol distributions on the lower stages of the impactor were log-normal in most cases. Finally, determination of size distribution of α-radioactivity showed it was retained on fine particles. The percentage of free α-activity was evaluated using a diffusion battery [fr

  20. Aerosol climate time series from ESA Aerosol_cci (Invited)

    Science.gov (United States)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  1. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    NARCIS (Netherlands)

    Schaap, M.; Otjes, R.P.; Weijers, E.P.

    2010-01-01

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially,

  2. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    NARCIS (Netherlands)

    Schaap, M.; Otjes, R.P.; Weijers, E.P.

    2011-01-01

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially,

  3. Global indirect aerosol effects: a review

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2005-01-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei, they may inhibit freezing and they could have an influence on the hydrological cycle. While the cloud albedo enhancement (Twomey effect of warm clouds received most attention so far and traditionally is the only indirect aerosol forcing considered in transient climate simulations, here we discuss the multitude of effects. Different approaches how the climatic implications of these aerosol effects can be estimated globally as well as improvements that are needed in global climate models in order to better represent indirect aerosol effects are discussed in this paper.

  4. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    OpenAIRE

    Bauer , S. E.; Wright , D.; Koch , D.; Lewis , E. R.; Mcgraw , R.; Chang , L.-S.; Schwartz , S. E.; Ruedy , R.

    2008-01-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mod...

  5. Aerosol trapping in steam generator (artist): an investigation of aerosol and iodine behaviour in the secondary side of a steam generator

    International Nuclear Information System (INIS)

    Guentay, S.; Birchley, J.; Suckow, D.; Dehbi, A.

    2000-01-01

    Incidents such as a steam generator tube rupture (SGTR) with stuck-open relief valve are important accident sequences for analysis by virtue of the open path for release of radioactivity which ensues. The release may be mitigated by deposition of fission products on the steam generator (SG) tubes and other structures, or by scrubbing in the secondary coolant. The absence of empirical data, the complexity of the geometry and controlling processes, however, make the retention difficult to quantify and its full import is typically not taken into account in risk assessment studies. The ARTIST experimental programme at PSI will simulate the flow and retention of aerosol-borne fission products in the SG secondary, and thus provide a unique database to support safety assessments and analytical models. Scaling of the break flow represents a particular challenge since the aerosol retention processes operate at contrasting length scales. Preliminary calculations have identified a baseline set of conditions, and confirmed the feasibility of the rig design and scaling principles. Flexibility of the rig layout enables simulations to be performed for a range of SG designs, accident situations and accident management philosophies. (authors)

  6. Inside versus Outside: Ion Redistribution in Nitric Acid Reacted Sea Spray Aerosol Particles as Determined by Single Particle Analysis (Invited)

    Science.gov (United States)

    Ault, A. P.; Guasco, T.; Ryder, O. S.; Baltrusaitis, J.; Cuadra-Rodriguez, L. A.; Collins, D. B.; Ruppel, M. J.; Bertram, T. H.; Prather, K. A.; Grassian, V. H.

    2013-12-01

    Sea spray aerosol (SSA) particles were generated under real-world conditions using natural seawater and a unique ocean-atmosphere facility equipped with actual breaking waves or a marine aerosol reference tank (MART) that replicates those conditions. The SSA particles were exposed to nitric acid in situ in a flow tube and the well-known chloride displacement and nitrate formation reaction was observed. However, as discussed here, little is known about how this anion displacement reaction affects the distribution of cations and other chemical constituents within and phase state of individual SSA particles. Single particle analysis of individual SSA particles shows that cations (Na+, K+, Mg2+ and Ca2+) within individual particles undergo a spatial redistribution after heterogeneous reaction with nitric acid, along with a more concentrated layer of organic matter at the surface of the particle. These data suggest that specific ion and aerosol pH effects play an important role in aerosol particle structure in ways that have not been previously recognized. The ordering of organic coatings can impact trace gas uptake, and subsequently impact trace gas budgets of O3 and NOx.

  7. Retrieval of aerosol properties and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters.

    Science.gov (United States)

    Gao, Meng; Zhai, Peng-Wang; Franz, Bryan; Hu, Yongxiang; Knobelspiesse, Kirk; Werdell, P Jeremy; Ibrahim, Amir; Xu, Feng; Cairns, Brian

    2018-04-02

    Ocean color remote sensing is an important tool to monitor water quality and biogeochemical conditions of ocean. Atmospheric correction, which obtains water-leaving radiance from the total radiance measured by satellite-borne or airborne sensors, remains a challenging task for coastal waters due to the complex optical properties of aerosols and ocean waters. In this paper, we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters, which uses coupled atmosphere and ocean radiative transfer model to fit polarized radiance measurements at multiple viewing angles and multiple wavelengths. Ocean optical properties are characterized by a generalized bio-optical model with direct accounting for the absorption and scattering of phytoplankton, colored dissolved organic matter (CDOM) and non-algal particles (NAP). Our retrieval algorithm can accurately determine the water-leaving radiance and aerosol properties for coastal waters, and may be used to improve the atmospheric correction when apply to a hyperspectral ocean color instrument.

  8. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... in conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  9. Recent activities in the Aerosol Generation and Transport Program

    International Nuclear Information System (INIS)

    Adams, R.E.

    1984-01-01

    General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U 3 O 8 , Fe 2 O 3 , and U 3 O 8 + Fe 2 O 3 aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U 3 O 8 , Fe 2 O 3 , and U 3 O 8 + Fe 2 O 3 aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U 3 O 8 , the Fe 2 O 3 , and the mixed U 3 O 8 + Fe 2 O 3 aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam

  10. Impact of aerosols on ice crystal size

    Science.gov (United States)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  11. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    International Nuclear Information System (INIS)

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs

  12. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry.

    Science.gov (United States)

    Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C

    2014-08-05

    The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.

  13. Quantifying enhancement in aerosol radiative forcing during ‘extreme aerosol days’ in summer at Delhi National Capital Region, India

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumant [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Dey, Sagnik [Centre for Atmospheric Sciences, IIT Delhi, New Delhi 110016 (India); Srivastava, Arun [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-04-15

    Changes in aerosol characteristics (spectral aerosol optical depth, AOD and composition) are examined during the transition from ‘relatively clean’ to ‘extreme’ aerosol days in the summer of 2012 at Delhi National Capital Region (NCR), India. AOD smaller than 0.54 (i.e. 12-year mean AOD − 1σ) represents ‘relatively clean’ days in Delhi during the summer. ‘Extreme’ days are defined by the condition when AOD{sub 0.5} exceeds 12-year mean AOD + 1 standard deviation (σ). Mean (± 1σ) AOD increases to 1.2 ± 0.12 along with a decrease of Angstrom Exponent from 0.54 ± 0.09 to 0.22 ± 0.12 during the ‘extreme’ days. Aerosol composition is inferred by fixing the number concentrations of various individual species through iterative tweaking when simulated (following Mie theory) AOD spectrum matches with the measured one. Contribution of coarse mode dust to aerosol mass increased from 76.8% (relatively clean) to 96.8% (extreme events), while the corresponding contributions to AOD{sub 0.5} increased from 35.0% to 70.8%. Spectrally increasing single scattering albedo (SSA) and CALIPSO aerosol sub-type information support the dominant presence of dust during the ‘extreme’ aerosol days. Aerosol direct radiative forcing (ADRF) at the top-of-the-atmosphere increases from 21.2 W m{sup −2} (relatively clean) to 56.6 W m{sup −2} (extreme), while the corresponding change in surface ADRF is from − 99.5 W m{sup −2} to − 153.5 W m{sup −2}. Coarse mode dust contributes 60.3% of the observed surface ADRF during the ‘extreme’ days. On the contrary, 0.4% mass fraction of black carbon (BC) translates into 13.1% contribution to AOD{sub 0.5} and 33.5% to surface ADRF during the ‘extreme’ days. The atmospheric heating rate increased by 75.1% from 1.7 K/day to 2.96 K/day during the ‘extreme’ days. - Graphical abstract: Deviation (in %) of aerosol properties from ‘relatively clean’ days to ‘extreme’ aerosol days. - Highlights:

  14. A new method for in-situ filter testing using pulses of aerosol and photometric detection with computer control

    International Nuclear Information System (INIS)

    Marshall, P.R.C.; Bosley, R.B.

    1993-01-01

    This paper describes a new technique, developed at the Harwell Laboratory, for the in-situ testing of High Efficiency Particulate Air (HEPA) filters using multiple pulses of test aerosol. The pulse test apparatus consists of a modified forward light scattering photometer coupled to a portable micro-computer fitted with an external data acquisition and control card. The micro-computer switches an aerosol generator on and off via an external relay driver unit. Using this apparatus the filter bank is challenged by a small number of equal length, constant concentration, pulses of aerosol at timed intervals. The aerosol concentration data upstream of the filter bank is logged, to disk, by the computer. The process is then repeated for the downstream concentration with the photometer gain increased to give maximum sensitivity. The collected data is analysed using a computer spread-sheet package; the recorded aerosol pulses are combined, integrated and the background data subtracted; the downstream data is then divided by the upstream pulse data to give the filter penetration. Using this technique the sensitivity of the in-situ filter test has been greatly improved, penetrations approaching 10 -5 % can now be measured, allowing HEPA filters mounted in series to be successfully tested. In addition, filter loading is reduced considerably

  15. Steam condensation modelling in aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1986-01-01

    The principal subject of this study is the modelling of the condensation of steam into and evaporation of water from aerosol particles. These processes introduce a new type of term into the equation for the development of the aerosol particle size distribution. This new term faces the code developer with three major problems: the physical modelling of the condensation/evaporation process, the discretisation of the new term and the separate accounting for the masses of the water and of the other components. This study has considered four codes which model the condensation of steam into and its evaporation from aerosol particles: AEROSYM-M (UK), AEROSOLS/B1 (France), NAUA (Federal Republic of Germany) and CONTAIN (USA). The modelling in the codes has been addressed under three headings. These are the physical modelling of condensation, the mathematics of the discretisation of the equations, and the methods for modelling the separate behaviour of different chemical components of the aerosol. The codes are least advanced in area of solute effect modelling. At present only AEROSOLS/B1 includes the effect. The effect is greater for more concentrated solutions. Codes without the effect will be more in error (underestimating the total airborne mass) the less condensation they predict. Data are needed on the water vapour pressure above concentrated solutions of the substances of interest (especially CsOH and CsI) if the extent to which aerosols retain water under superheated conditions is to be modelled. 15 refs

  16. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    Science.gov (United States)

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  17. International standard problem ISP37: VANAM M3 - A Multi compartment aerosol depletion test with hygroscopic aerosol material: comparison report

    International Nuclear Information System (INIS)

    Firnhaber, M.; Kanzleiter, T.F.; Schwarz, S.; Weber, G.

    1996-12-01

    This paper presents the results and assessment of the 'open' ISP37, which deals with the containment thermal-hydraulics and aerosol behavior during an unmitigated severe LWR accident with core melt-down and steam and aerosol release into the containment. Representatives of 22 organizations participated to the ISP37 using the codes CONTAIN, FIPLOC, MELCOR, RALOC, FUMO, MACRES, REMOVAL etc. The containment and aerosol behavior experiment VANAM M3 was selected as experimental comparison basis. The main phenomena investigated are the thermal behavior of a multi-compartment containment, e.g. pressure, temperature and the distribution and depletion of a soluble aerosol. The ISP37 has demonstrated that the codes used could calculate the thermal-hydraulic containment behavior in general with sufficient accuracy. But with respect to the needs of aerosol behavior analysis the accuracies, both analytical and experimental as well, for specific thermal-hydraulic variables should be improved. Although large progress has been made in the simulation of aerosol behavior in multi-compartment geometries the calculated local aerosol concentrations scatter widely. However, the aerosol source term to the environment is overestimated in general. The largest uncertainty concerning the aerosol results is caused by a limited number of thermal hydraulic variables like relative humidity, volume condensation rate and atmospheric flow rate. In some codes also a solubility model is missing

  18. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  19. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody protects mice from morbidity without interfering with the development of protective immunity to subsequent homologous challenge.

    Science.gov (United States)

    Wilson, Jason R; Belser, Jessica A; DaSilva, Juliana; Guo, Zhu; Sun, Xiangjie; Gansebom, Shane; Bai, Yaohui; Stark, Thomas J; Chang, Jessie; Carney, Paul; Levine, Min Z; Barnes, John; Stevens, James; Maines, Taronna R; Tumpey, Terrence M; York, Ian A

    2017-11-01

    The emergence of A(H7N9) virus strains with resistance to neuraminidase (NA) inhibitors highlights a critical need to discover new countermeasures for treatment of A(H7N9) virus-infected patients. We previously described an anti-NA mAb (3c10-3) that has prophylactic and therapeutic efficacy in mice lethally challenged with A(H7N9) virus when delivered intraperitoneally (i.p.). Here we show that intrananasal (i.n.) administration of 3c10-3 protects 100% of mice from mortality when treated 24h post-challenge and further characterize the protective efficacy of 3c10-3 using a nonlethal A(H7N9) challenge model. Administration of 3c10-3 i.p. 24h prior to challenge resulted in a significant decrease in viral lung titers and deep sequencing analysis indicated that treatment did not consistently select for viral variants in NA. Furthermore, prophylactic administration of 3c10-3 did not inhibit the development of protective immunity to subsequent homologous virus re-challenge. Taken together, 3c10-3 highlights the potential use of anti-NA mAb to mitigate influenza virus infection. Published by Elsevier Inc.

  20. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2010-07-01

    Full Text Available One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV of trace gases and aerosols within a typical global climate model grid cell, i.e. 75×75 km2.

    Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases

  1. Solubility of plutonium dioxide aerosols, in vitro

    International Nuclear Information System (INIS)

    Newton, G.J.; Kanapilly, G.M.

    1976-01-01

    Solubility of plutonium aerosols is an important parameter in establishing risk estimates for industrial workers who might accidentally inhale these materials and in evaluating environmental health impacts associated with Pu. In vitro solubility of industrial plutonium aerosols in a simulated lung fluid is compared to similar studies with ultrafine aerosols from laser ignition of delta phase plutonium metal and laboratory-produced spherical particles of 238 PuO 2 and 239 PuO 2 . Although relatively insoluble, industrial plutonium-mixed oxide aerosols were much more soluble than laboratory-produced plutonium dioxide particles. Chain agglomerate aerosols from laser ignition of metallic Pu indicated in vitro dissolution half-times of 10 and 50 days for activity median aerodynamic diameter (AMAD) of 0.7 and 2.3 μm, respectively. Plutonium-containing mixed oxide aerosols indicated dissolution half-times of 40 to 500 days for particles formed by industrial powder comminution and blending. Centerless grinding of fuel pellets yielded plutonium-containing aerosols with dissolution half-times of 1200 to 8000 days. All mixed oxide particles were in the size range 1.0 μm to 2.5 μm AMAD

  2. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Petroleo (IMP) and CENICA.

  3. MELCOR aerosol transport module modification for NSSR-1

    International Nuclear Information System (INIS)

    Merrill, B.J.; Hagrman, D.L.

    1996-03-01

    This report describes modifications of the MELCOR computer code aerosol transport module that will increase the accuracy of calculations for safety analysis of the International Thermonuclear Experimental Reactor (ITER). The modifications generalize aerosol deposition models to consider gases other than air, add specialized models for aerosol deposition during high speed gas flows in ducts, and add models for resuspension of aerosols that are entrained in coolants when these coolants flash. Particular attention has been paid to the adhesion of aerosol particles once they are transported to duct walls. The results of calculations with the modified models have been successfully compared to data from Light Water Reactor Aerosol Containment Experiments (LACE) conducted by an international consortium at Hanford, Washington

  4. Lidar investigations of atmospheric aerosols over Sofia

    International Nuclear Information System (INIS)

    Dreischuh, T.; Deleva, A.; Peshev, Z.; Grigorov, I.; Kolarov, G.; Stoyanov, D.

    2016-01-01

    An overview is given of the laser remote sensing of atmospheric aerosols and related processes over the Sofia area performed in the Institute of Electronics, Bulgarian Academy of Sciences, during the last three years. Results from lidar investigations of the optical characteristics of atmospheric aerosols obtained in the frame of the European Aerosol Research Lidar Network, as well as from the lidar mapping of near-surface aerosol fields for remote monitoring of atmospheric pollutants are presented and discussed in this paper.

  5. Aerosolized avian influenza virus by laboratory manipulations.

    Science.gov (United States)

    Li, Zhiping; Li, Jinsong; Zhang, Yandong; Li, Lin; Ma, Limin; Li, Dan; Gao, Feng; Xia, Zhiping

    2012-08-06

    Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  6. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  7. Radioactive content in aerosols and rainwater; Contenido radiactivo en aerosoles y agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Perestelo, N.; Lopez Perez, M.; Rodriguez, S.; Duarte, X.; Catalan, A.; Fernandez de Aldecoa, J. C.; Hernandez, J.

    2013-07-01

    The environmental radiological characterization of a place requires knowledge of the radioactive contents of its components, such as air (aerosol), rain, soil, etc ... Inhalation of radioactive aerosols in the air remains the main component of the total dose to the world population. This work focuses on its determination. (Author)

  8. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    Science.gov (United States)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  9. Constraining the instantaneous aerosol influence on cloud albedo

    Energy Technology Data Exchange (ETDEWEB)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-04-26

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol–cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd), previous studies have used the sensitivity of the Nd to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the Nd to anthropogenic aerosol perturbations. Using an ensemble of global aerosol–climate models, this study demonstrates how joint histograms between Nd and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol–cloud interactions in satellite data.

  10. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    Science.gov (United States)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  11. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations

    Science.gov (United States)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong

    2018-06-01

    Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation

  12. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    Directory of Open Access Journals (Sweden)

    L. González Palacios

    2016-09-01

    Full Text Available The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA, including its light-absorbing product imidazole-2-carboxaldehyde (IC. IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT experiments using films of IC and citric acid (CA, an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2 was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1 the [IC]  ×  [CA] concentration product and (2 the photon actinic flux. Additionally, (3 a more complex function of relative humidity (25 %  <  RH  <  63 % and of (4 the O2 ∕ N2 ratio (15 %  <  O2 ∕ N2  <  56 % was observed, most likely indicating competing effects of dilution, HO2 mobility and losses in the film. The maximum PHO2 was observed at 25–55 % RH and at ambient O2 ∕ N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  13. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    Science.gov (United States)

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  14. Filtration of sodium-fire aerosols

    International Nuclear Information System (INIS)

    Alexas, A.; Jordan, S.; Lindner, W.

    1979-01-01

    Different filter devices have been developed and tested with respect to their use in the off-gas system of liquid-metal fast breeder reactors to prevent the escape of sodium-fire aerosols that might be formed in case of an accident. The testing results have shown that the use of a multilayer sand bed filter is still the best method to filter limited amounts of sodium-fire aerosols over a long operating time. Efficiencies on the order of 99.98 and 98.8% were reached for loading capacities of 500 and 1000 g/m 2 , respectively. Unlimited amounts of sodium-fire aerosols can be filtered by wet scrubbers with an efficiency of 70% per scrubber stage. Fiberglas filters connot be used for the filtration of sodium-fire aerosols over a long operating time because the filter material can be destroyed after several days of operating

  15. Aerosol microphysical and radiative effects on continental cloud ensembles

    Science.gov (United States)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  16. The economics and ethics of aerosol geoengineering strategies

    Science.gov (United States)

    Goes, Marlos; Keller, Klaus; Tuana, Nancy

    2010-05-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: geoengineering climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) a potential failure to sustain the aerosol forcing and (ii) due to potential negative impacts associated with aerosol forcings. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcings. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes considerable caveats. For example, the analysis is based on a globally aggregated model and is hence silent on intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of future learning and is based on a simple representation of climate change impacts. We use this integrated assessment model to show three main points. First, substituting aerosol geoengineering for the reduction of greenhouse gas emissions can fail the test of economic efficiency. One key to this finding is that a failure to sustain the aerosol forcing can lead to sizeable and abrupt climatic changes. The monetary damages due to such a discontinuous aerosol geoengineering can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with

  17. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  18. The fifth Finnish national aerosol symposium

    International Nuclear Information System (INIS)

    Mikkanen, P.; Haemeri, K.; Kauppinen, E.

    1993-01-01

    The Fifth Finnish Aerosol Symposium was held June 1-3, 1993. Symposium is jointly organized by FAAR, Aerosol Technology Group of Technical Research Centre of Finland and Helsinki University, Department of Physics. Aerosols, the suspensions of solid and liquid particles and gases, are receiving increasing importance in many areas of science and technology. These include industrial hygiene, ambient and indoor air pollution, pollution control technologies, cloud physics, nuclear safety engineering, combustion science and engineering, clean manufacturing technologies and material processing. The importance of aerosol issues during the development of advanced fuel conversion and material processing technologies can be realized when looking at the numerous papers presented on these topics at the Symposium

  19. Aerosol transport in severe reactor accidents

    International Nuclear Information System (INIS)

    Fynbo, P.; Haeggblom, H.; Jokiniemi, J.

    1990-01-01

    Aerosol behaviour in the reactor containment was studied in the case of severe reactor accidents. The study was performed in a Nordic group during the years 1985 to 1988. Computer codes with different aerosol models were used for calculation of fission product transport and the results are compared. Experimental results from LACE, DEMONA and Marviken-V are compared with the calculations. The theory of aerosol nucleation and its influence on the fission product transport is discussed. The behaviour of hygroscopic aerosols is studied. The pool scrubbing models in the codes SPARC and SUPRA are reviewed and some knowledge in this field is assessed on the background of an international rewiew. (author) 60 refs

  20. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  1. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    Science.gov (United States)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  2. Remote sensing for studying atmospheric aerosols in Malaysia

    Science.gov (United States)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  3. Review of recent research on the climatic effect of aerosols

    International Nuclear Information System (INIS)

    Charlock, T.P.; Kondratyev, K.; Prokofyev, M.

    1993-01-01

    A review of relatively recent research on the climatic effects of aerosols is presented. Most of the inferences of the climatic effects of aerosols have been obtained through assuming a certain aerosol model in conjunction with a particular climate model. The following radiative effects of aerosols are identified: The planetary albedo is generally increased due to the backscatter of solar radiation by aerosols, with the exception of aerosols situated above a highly reflecting surface. Solar radiation absorption by some aerosols can offset the cooling due to aerosol backscatter. Although aerosol effects dominate for short-wave radiation, absorption and emission of terrestrial radiation by aerosols produces a warming effect. Various climate models are used to assess the impact of aerosols on climate. A two-stream approximation to the radiation transfer equation is adequate for optically thin layers where single scattering is applicable. Improved models to include aerosol terrestrial radiation effects, important feedback mechanisms, and the prediction of globally and seasonally averaged surface and atmospheric temperatures are provided by the so-called radiative-convective models (RCM's). The basic structure of the RCM's, which is regarded as adequate for many aerosol climate applications, is described. The general circulation model (GCM) is also described briefly. A full-scale GCM incorporating realistic aerosol inputs is yet to be formulated to include regional variability of the aerosol. Moreover, detailed computer modeling associated with GCM climate models can often confuse the basic physics. Because volcanic aerosols injected into the stratosphere have long residence times, they provide a good case study of the climate response to a change in the atmospheric aerosol. The chapter gives a critique of modeling work done to establish climatic effects of stratospheric aerosols

  4. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    Science.gov (United States)

    Stevens, R. G.; Pierce, J. R.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.

    2012-01-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM). The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.

  5. Characterisation of a uranium fire aerosol

    International Nuclear Information System (INIS)

    Leuscher, A.H.

    1976-01-01

    Uranium swarf, which can burn spontaneously in air, creates an aerosol which is chemically toxic and radiotoxic. The uptake of uranium oxide in the respiratory system is determined to a large extent by the characteristics of the aerosol. A study has been made of the methods by which aerosols can be characterised. The different measured and defined characteristics of particles are given. The normal and lognormal particle size distributions are discussed. Shape factors interrelating characteristics are explained. Experimental techniques for the characterisation of an aerosol are discussed, as well as the instruments that have been used in this study; namely the Andersen impactor, point-to-plane electrostatic precipitator and the Pollak counter. Uranium swarf was made to burn with a heated filament, and the resulting aerosol was measured. Optical and electron microscopy have been used for the determination of the projected area diameters, and the aerodynamic diameters have been determined with the impactor. The uranium fire aerosol can be represented by a bimodal, or monomodal, lognormal particle size distribution depending on the way in which the swarf burns. The determined activity median aerodynamic diameter of the two peaks were 0,49μm and 6,0μm respectively [af

  6. Time-resolved molecular characterization of organic aerosols by PILS + UPLC/ESI-Q-TOFMS

    Science.gov (United States)

    Zhang, X.; Dalleska, N. F.; Huang, D. D.; Bates, K. H.; Sorooshian, A.; Flagan, R. C.; Seinfeld, J. H.

    2016-04-01

    Real-time and quantitative measurement of particulate matter chemical composition represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, we integrate the Particle-into-Liquid Sampler (PILS) with Ultra Performance Liquid Chromatography/Electrospray ionization Quadrupole Time-of-Flight High-Resolution/Mass Spectrometry (UPLC/ESI-Q-TOFMS) for the time-resolved molecular speciation of chamber-derived secondary organic aerosol (SOA). The unique aspect of the combination of these two well-proven techniques is to provide quantifiable molecular-level information of particle-phase organic compounds on timescales of minutes. We demonstrate that the application of the PILS + UPLC/ESI-Q-TOFMS method is not limited to water-soluble inorganic ions and organic carbon, but is extended to slightly water-soluble species through collection efficiency calibration together with sensitivity and linearity tests. By correlating the water solubility of individual species with their O:C ratio, a parameter that is available for aerosol ensembles as well, we define an average aerosol O:C ratio threshold of 0.3, above which the PILS overall particulate mass collection efficiency approaches ∼0.7. The PILS + UPLC/ESI-Q-TOFMS method can be potentially applied to probe the formation and evolution mechanism of a variety of biogenic and anthropogenic SOA systems in laboratory chamber experiments. We illustrate the application of this method to the reactive uptake of isoprene epoxydiols (IEPOX) on hydrated and acidic ammonium sulfate aerosols.

  7. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  8. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  9. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    Directory of Open Access Journals (Sweden)

    G.-J. Roelofs

    2010-08-01

    Full Text Available In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately −30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.

  10. Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products

    Science.gov (United States)

    Lee, Huikyo; Jeong, Su-Jong; Kalashnikova, Olga; Tosca, Mika; Kim, Sang-Woo; Kug, Jong-Seong

    2018-03-01

    Aerosol plumes from wildfires affect the Earth's climate system through regulation of the radiative budget and clouds. However, optical properties of aerosols from individual wildfire smoke plumes and their resultant impact on regional climate are highly variable. Therefore, there is a critical need for observations that can constrain the partitioning between different types of aerosols. Here we present the apparent influence of regional ecosystem types on optical properties of wildfire-induced aerosols based on remote sensing observations from two satellite instruments and three ground stations. The independent observations commonly show that the ratio of the absorbing aerosols is significantly lower in smoke plumes from the Maritime Continent than those from Central Africa, so that their impacts on regional climate are different. The observed light-absorbing properties of wildfire-induced aerosols are explained by dominant ecosystem types such as wet peatlands for the Maritime Continent and dry savannah for Central Africa, respectively. These results suggest that the wildfire-aerosol-climate feedback processes largely depend on the terrestrial environments from which the fires originate. These feedbacks also interact with climate under greenhouse warming. Our analysis shows that aerosol optical properties retrieved based on satellite observations are critical in assessing wildfire-induced aerosols forcing in climate models. The optical properties of carbonaceous aerosol mixtures used by state-of-the-art chemistry climate models may overestimate emissions for absorbing aerosols from wildfires over the Maritime Continent.

  11. Difference in inhaled aerosol deposition patterns in the lungs due to three different sized aerosols

    International Nuclear Information System (INIS)

    Miki, M.; Isawa, T.; Teshima, T.; Anazawa, Y.; Motomiya, M.

    1992-01-01

    Deposition patterns of inhaled aerosol in the lungs were studied in five normal subjects and 20 patients with lung disease by inhaling radioaerosols with three different particle size distributions. Particle size distributions were 0.84, 1.04 and 1.93 μm in activity median aerodynamic diameter (AMAD) with its geometric standard deviation (σg) of 1.73, 1.71 and 1.52, respectively. Deposition patterns of inhaled aerosols were compared qualitatively and quantitatively by studying six different parameters: alveolar deposition ratio (ALDR), X max , X mean , standard deviation (S.D.), skewness and kurtosis of the radioactive distribution in the lungs following inhalation. It has been found that aerosol deposition patterns varied with particle size. The unevenness of aerosol deposition, X max , X mean and the number of 'hot spots' became more prominent with increase in particle size, whereas values of ALDR and S.D. decreased as particle size increased. (author)

  12. How thermodynamic environments control stratocumulus microphysics and interactions with aerosols

    International Nuclear Information System (INIS)

    Andersen, Hendrik; Cermak, Jan

    2015-01-01

    Aerosol–cloud interactions are central to climate system changes and depend on meteorological conditions. This study identifies distinct thermodynamic regimes and proposes a conceptual framework for interpreting aerosol effects. In the analysis, ten years (2003–2012) of daily satellite-derived aerosol and cloud products are combined with reanalysis data to identify factors controlling Southeast Atlantic stratocumulus microphysics. Considering the seasonal influence of aerosol input from biomass burning, thermodynamic environments that feature contrasting microphysical cloud properties and aerosol–cloud relations are classified. While aerosol impact is stronger in unstable environments, it is mostly confined to situations with low aerosol loading (aerosol index AI ≲ 0.15), implying a saturation of aerosol effects. Situations with high aerosol loading are associated with weaker, seasonally contrasting aerosol-droplet size relationships, likely caused by thermodynamically induced processes and aerosol swelling. (letter)

  13. Summary of aerosol code-comparison results for LWR aerosol containment tests LA1, LA2, and LA3

    International Nuclear Information System (INIS)

    Wright, A.L.; Wilson, J.H.; Arwood, P.C.

    1987-01-01

    The light-water reactor (LWR) aerosol containment experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities for the LACE tests are being coordinated at the Oak Ridge National Laboratory. For each of the six experiments, pretest calculations (for code-to-code comparisons) and blind post-test calculations (for code-to-test data comparisons) are being performed. This paper presents a summary of the pretest aerosol-code results for tests LA1, LA2, and LA3

  14. PIXE analysis of atmospheric aerosol and hydrometeor particles

    International Nuclear Information System (INIS)

    Groeneveld, K.O.; Hofmann, D.; Georgii, H.W.

    1993-01-01

    Atmospheric aerosol and hydrometeor particles act decisively on our weather, climate and thereby on all living conditions on Earth. Particle induced X-ray emission (PIXE) analysis has been demonstrated to be an extremely valuable tool for quantitative and qualitative elemental analysis of aerosol particles and hydrometeors. Reliability and detection limits of PIXE are determined, including comparison with other techniques. Aerosol particles are collected on a global scale in ground stations, or by ships and by planes. Correlation between wind direction and elemental composition of atmospheric aerosols, elemental particle size distributions of the tropospheric aerosol, aerosol elemental composition in particle size fractions in the case of long range transport, transport pathways of pollution aerosol, and trace element content precipitation are discussed. Hydrometeors were studied in the form of rain, snow, fog, dew and frost. The time dependence of the melting process of snow was studied in detail, in particular the washout phenomena of impurity ions. (orig.)

  15. Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study

    Science.gov (United States)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-12-01

    The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidation properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosol (SIA: sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosol (OA) indicated that highly oxidized secondary organic aerosol (SOA) showed decreases similar to those of SIA during APEC. However, primary organic aerosol (POA) from cooking, traffic, and biomass-burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation

  16. Topics in current aerosol research (part2)

    CERN Document Server

    Hidy, G M

    1972-01-01

    Topics in Current Aerosol Research, Part 2 contains some selected articles in the field of aerosol study. The chosen topics deal extensively with the theory of diffusiophoresis and thermophoresis. Also covered in the book is the mathematical treatment of integrodifferential equations originating from the theory of aerosol coagulation. The book is the third volume of the series entitled International Reviews in Aerosol Physics and Chemistry. The text offers significant understanding of the methods employed to develop a theory for thermophoretic and diffusiophoretic forces acting on spheres in t

  17. Mount St. Helens aerosol evolution

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  18. Mount St. Helens aerosol evolution

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  19. Measurements of Aerosol Characteristics in Skocjan Caves

    International Nuclear Information System (INIS)

    Jovanovic, P.

    2013-01-01

    Measurements of radon concentration and radon progeny concentration (attached and unattached) have been performed in Skocjan caves. In the same time also aerosol concentration (PM 10 ), aerosol size distribution with ten stage Hauke impactor and Scanning Mobility Particle Sizer - SMPS have been performed. The idea was to find impact of outer air and visitors to the aerosol characteristics of cave air. Measurements with impactor have been implemented in summer and winter period, with SMPS only in summer period. Radon concentrations ranged in winter period in region from 500 to 1000 Bq/m 3 , equilibrium factor was about 55 %. In summer period radon concentration increased up to 10 kBq/m 3 , equilibrium factor was about 45 %, and unattached fraction went up to 20 %. Measurements of aerosol size distribution show lower aerosol sizes in winter season (around 1 μm) and bigger aerosol sizes in summer season (around 3 - 6 μm). We could not find good correlation between unattached fraction and aerosol size distribution. Also we could not find clear impact of visitors to the air characteristics in cave. Probably our measuring location was too close to the entrance and the impact of outer air was too high. We will repeat measurements deeper in cave to find better results.(author)

  20. Where and What Is Pristine Marine Aerosol?

    Science.gov (United States)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter

  1. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2012-01-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak

  2. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  3. Long-term Aerosol Lidar Measurements At CNR-IMAA

    Science.gov (United States)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pandolfi, M.; Pappalardo, G.

    2006-12-01

    Actual estimations of the aerosol effect on the radiation budget are affected by a large uncertainties mainly due to the high inhomogeneity and variability of atmospheric aerosol, in terms of concentration, shape, size distribution, refractive index and vertical distribution. Long-term measurements of vertical profiles of aerosol optical properties are needed to reduce these uncertainties. At CNR-IMAA (40° 36'N, 15° 44' E, 760 m above sea level), a lidar system for aerosol study is operative since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network). Until August 2005, it provided independent measurements of aerosol extinction and backscatter at 355 nm and aerosol backscatter profiles at 532 nm. After an upgrade of the system, it provides independent measurements of aerosol extinction and backscatter profiles at 355 and 532 nm, and of aerosol backscatter profiles at 1064 nm and depolarization ratio at 532 nm. For these measurements, lidar ratio at 355 and 532 nm and Angstrom exponent profiles at 355/532 nm are also obtained. Starting on May 2000, systematic measurements are performed three times per week according to the EARLINET schedule and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. A climatological study has been carried out in terms of the seasonal behavior of the PBL height and of the aerosol optical properties calculated inside the PBL itself. In the free troposphere, an high occurrences of Saharan dust intrusions (about 1 day of Saharan dust intrusion every 10 days) has been observed at CNR-IMAA because of the short distance from the Sahara region. During 6 years of observations, very peculiar cases of volcanic aerosol emitted by Etna volcano and aerosol released by large forest fires burning occurred in Alaska and Canada have been observed in the free troposphere at our site. Particular attention is devoted to lidar ratio both for the

  4. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  5. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  6. Two-Column Aerosol Project (TCAP) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-01

    This study included the deployment of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facility (AMF), ARM Mobile Aerosol Observing System (MAOS) and the ARM Aerial Facility (AAF). The study was a collaborative effort involving scientists from DOE national laboratories, NOAA, NASA, and universities. The AAF and MAOS were deployed for two approximately month-long Intensive Operational Periods (IOPs) conducted in June 2012 and February 2013. Seasonal differences in the aerosol chemical and optical properties observed using the AMF, AAF, and MAOS are presented in this report. The total mass loading of aerosol is found to be much greater in the summer than in the winter, with the difference associated with greater amounts of organic aerosol. The mass fraction of organic aerosol is much reduced in the winter, when sulfate is the dominant aerosol type. Surprisingly, very little sea-salt aerosol was observed in the summer. In contrast, much more sea salt aerosol was observed in the winter. The mass loading of black carbon is nearly the same in both seasons. These differences lead to a relative increase in the aerosol light absorption in the winter and an associated decrease in observed single-scattering albedo. Measurements of aerosol mixing state were made using a single-particle mass spectrometer, which showed that the majority of the summertime aerosol consisted of organic compounds mixed with various amounts of sulfate. A number of other findings are also summarized in the report, including: impact of aerosol layers aloft on the column aerosol optical depth; documentation of the aerosol properties at the AMF; differences in the aerosol properties associated with both columns, which are not systematic but reflect the complicated meteorological and chemical processes that impact aerosol as it is advected away from North America; and new instruments and data-processing techniques for measuring both aerosol and

  7. A method for sampling microbial aerosols using high altitude balloons.

    Science.gov (United States)

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The response of a simulated Mesoscale Convective System to increased aerosol pollution

    Science.gov (United States)

    Clavner, Michal

    derecho winds though the amount of melting and evaporation of hydrometeors. Earlier in the storm, changes in melting and evaporation altered the intensity of the storm-produced cold pool. This, in turn, modified the balance between the horizontal relative vertical vorticity generated by the cold pool and that of the low-level environmental shear. The smaller hail and rain hydrometeors in the cleaner simulation exhibited higher melting and evaporation rates due to the larger surface area, which contributed to the formation of a stronger cold pool and led to the tilting of the convective updraft upshear. This, in turn, shifted the flow associated with the derecho event to be predominantly from a Rear-Inflow Jet (RIJ). An increase in aerosol concentration led to a weaker cold pool and therefore an upright convective updraft which promoted the formation of a stronger mesovortex, and subsequently shifting the flow to be predominantly from strong downdrafts following an up-down downdraft (UDD) trajectory. The shift from a RIJ flow to a UDD led to stronger surface winds over a smaller area. As the storm matured, the derecho winds were found to be associated with the formation of a mesovortex at the gust front. At this time, a non-linear trend between aerosol concentrations to derecho intensity was apparent and was attributed to the non-linear trend in mesovortex strength. (Abstract shortened by UMI.).

  9. Direct radiative forcing due to aerosols in Asia during March 2002.

    Science.gov (United States)

    Park, Soon-Ung; Jeong, Jaein I

    2008-12-15

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust+BC+OC+SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m(-2), of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (-6.8 W m(-2)), about 31% at the top of atmosphere (-2.9 W m(-2)) and about 13% in the atmosphere (3.8 W m(-2)), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest radiative

  10. Direct radiative forcing due to aerosols in Asia during March 2002

    International Nuclear Information System (INIS)

    Park, Soon-Ung; Jeong, Jaein I.

    2008-01-01

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km 2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust + BC + OC + SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R 2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m -2 , of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (- 6.8 W m -2 ), about 31% at the top of atmosphere (- 2.9 W m -2 ) and about 13% in the atmosphere (3.8 W m -2 ), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest

  11. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    Directory of Open Access Journals (Sweden)

    R. G. Stevens

    2012-01-01

    Full Text Available New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM, a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM. The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.

  12. First surface-based estimation of the aerosol indirect effect over a site in southeastern China

    Science.gov (United States)

    Liu, Jianjun; Li, Zhanqing

    2018-02-01

    The deployment of the U.S. Atmospheric Radiation Measurement mobile facility in Shouxian from May to December 2008 amassed the most comprehensive set of measurements of atmospheric, surface, aerosol, and cloud variables in China. This deployment provided a unique opportunity to investigate the aerosol-cloud interactions, which are most challenging and, to date, have not been examined to any great degree in China. The relationship between cloud droplet effective radius (CER) and aerosol index (AI) is very weak in summer because the cloud droplet growth is least affected by the competition for water vapor. Mean cloud liquid water path (LWP) and cloud optical depth (COD) significantly increase with increasing AI in fall. The sensitivities of CER and LWP to aerosol loading increases are not significantly different under different air mass conditions. There is a significant correlation between the changes in hourly mean AI and the changes in hourly mean CER, LWP, and COD. The aerosol first indirect effect (FIE) is estimated in terms of relative changes in both CER (FIECER) and COD (FIECOD) with changes in AI for different seasons and air masses. FIECOD and FIECER are similar in magnitude and close to the typical FIE value of ˜ 0.23, and do not change much between summer and fall or between the two different air mass conditions. Similar analyses were done using spaceborne Moderate Resolution Imaging Spectroradiometer data. The satellite-derived FIE is contrary to the FIE estimated from surface retrievals and may have large uncertainties due to some inherent limitations.

  13. Organic Aerosol Component (OACOMP) Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J [Pacific Northwest National Laboratory; Zhang, Q; tilp, A [Brookhaven National Laboratory; Shippert, T [Pacific Northwest National Laboratory; Parworth, C; Mei, F [Pacific Northwest National Laboratory

    2013-08-23

    Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10–90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties accurately. This deficiency represents a large source of uncertainty in quantification of aerosol effects and prediction of future climate change. Evaluation and development of aerosol models require data products generated from field observations. Real-time, quantitative data acquired with aerosol mass spectrometers (AMS) (Canagaratna et al. 2007) are critical to this need. The AMS determines size-resolved concentrations of non-refractory (NR) species in submicrometer particles (PM1) with fast time resolution suitable for both ground-based and aircraft deployments. The high-resolution AMS (HR-AMS), which is equipped with a high mass resolution time-of-flight mass spectrometer, can be used to determine the elemental composition and oxidation degrees of OA (DeCarlo et al. 2006).

  14. Can Aerosol Offset Urban Heat Island Effect?

    Science.gov (United States)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  15. Lithium vapor/aerosol studies. Interim summary report

    International Nuclear Information System (INIS)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.; Wilson, W.L.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538 0 C (1000 0 F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases in lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation

  16. Emergency Protection from Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  17. Emergency protection from aerosols

    International Nuclear Information System (INIS)

    Cristy, G.A.; Chester, C.V.

    1981-07-01

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved

  18. Intercomparison of aerosol instruments: number concentration

    International Nuclear Information System (INIS)

    Knutson, E.O.; Sinclair, D.; Tu, K.W.; Hinchliffe, L.; Franklin, H.

    1982-05-01

    An intercomparison of aerosol instruments conducted February 23-27, 1981, at the Environmental Measurements Laboratory (EML) focused on five instruments: the Pollak and TSI condensation nucleus counters; the Active Scattering Aerosol Spectrometer (ASAS-X); and two aerosol electrometers. Test aerosols of sodium chloride and ammonium fluorescein generated by nebulization/electrostatic classification were used to obtain 195 lines of comparison data. Concentrations measured by the ASAS-X and the TSI aerosol electrometer averaged respectively 1.388 and 1.581 times that measured by the Pollak. These ratios were very stable during the week and there was little effect of particle size or material. Most other comparisons were equally stable. However, a review of past work at EML and elsewhere led to the disturbing conclusion that these ratios may change from year to year, or from season to season. A filter sample was taken from microscopy, concurrent with readings from the ASAS-X and the TSI condensation nucleus counters. In this sample, the two instruments differed by 20%. Within its 20% uncertainty, the filter result matched both the TSI and ASAS-X readings

  19. Aerosols radioactivity in the Bratislava atmosphere

    International Nuclear Information System (INIS)

    Sykora, I.; Chudy, M.; Durana, L.; Holy, K.; Meresova, J.

    2001-01-01

    In our laboratory we measured temporal variation of 7 Be concentration in the atmosphere in period 1977 -1994 years. The aerosols were collected through every month at Hydrometeorological Institute in Bratislava-Koliba, latitude 48 grad 10' and altitude 286 m above sea level. Since end of year 2000 we have started to continue monitoring radioactivity of atmosphere aerosols in new locality in Bratislava-Mlynska dolina. Beside 7 Be we measured also 210 Pb radionuclide aerosols concentration. For measured values 7 Be concentrations are considered corrections for decay radionuclide during the time of filters collection, time between end of collection and measurement and decay during the time of measurement. Obtained results for 7 Be concentrations in aerosols shows seasonal summer maximum, but for 210 Pb concentration in aerosols the seasonal variations are not evident. The temporal variations of this radionuclide which is originated in ground-level atmosphere are more sensitive on meteorological factors and can be also influenced by the industrial activity. For better understanding is needed long term monitoring. (authors)

  20. Proceedings of the 1998 Scientific Conference on Obscuration and Aerosol Research

    National Research Council Canada - National Science Library

    Coverstone, Amy

    1999-01-01

    ...: Aerosol Particle Generation and Dynamics, Aerosol Characterization Methods-Aerosol Samplers and Collectors, Preparing, Aerosolizing and Characterizing Erwinia Herbicola, and Optical Properties of Aerosols...