WorldWideScience

Sample records for suborbital launch vehicles

  1. 14 CFR Appendix C to Part 417 - Flight Safety Analysis Methodologies and Products for an Unguided Suborbital Launch Vehicle Flown...

    Science.gov (United States)

    2010-01-01

    ... moment of inertia as a function of time. (x) Pitch damping coefficient as a function of mach number. (xi... nominal trajectory, a circle whose radius represents the range to the farthest downrange impact point that... projected from all such explosions, including non-launch vehicle ejecta and the blast overpressure radius...

  2. The New Commercial Suborbital Vehicles: An Opportunity for Scientific and Microgravity Research

    Science.gov (United States)

    Moro-Aguilar, Rafael

    2014-11-01

    As of 2013, a number of companies had announced their intention to start flying suborbital vehicles, capable of transporting people to high altitudes out of any airport or launch site, on a commercial and regular basis. According to several studies, a market for suborbital "space tourism" exists. Another very promising application of suborbital flight is scientific research. The present paper provides an overview of the potential of commercial suborbital flight for science, including microgravity research. Suborbital flight provides a much-needed intermediate-duration opportunity between research performed in Earth orbit and more affordable but shorter duration alternatives, such as drop towers and zero-g parabolic flights. Moreover, suborbital flight will be less expensive and more frequent than both orbital flight and sounding rockets, and it has the capability to fly into sub-orbit the researcher together with the payload, and thus enable on-site interaction with the experiment. In the United States, both the National Aeronautics and Space Administration (NASA) and a number of private institutions have already shown interest in conducting scientific experiments, particularly microgravity research, aboard these new platforms. Researchers who intend to participate in future suborbital flights as payload specialists will need training, given the physical challenges posed by the flight. Finally, suborbital researchers may also want to have a basic knowledge of the legal status that will apply to them as passengers of such flights.

  3. A Suborbital Spaceship for Short Duration Space and Microsat Launch

    OpenAIRE

    Bahn, Pat

    2005-01-01

    The TGV Rockets corporation is working on a small Vertical Takeoff Vertical Landing Suborbital Rocketship capable of carrying 1000 kg to 100 km for low cost. This provides unique and interesting capabilities for payload test and qualification, development and short duration experimentation. Theoretical possibilities include micro-sat launch. TGV Rockets was founded in 1997 on a desire to commercialize the Delta Clipper-Experimental (DC-X)1,5,8. Subsequently TGV has been working towards th...

  4. The Design and Operation of Suborbital Low Cost and Low Risk Vehicle to the Edge of Space (SOLVES)

    Science.gov (United States)

    Ridzuan Zakaria, Norul; Nasrun, Nasri; Rashidy Zulkifi, Mohd; Izmir Yamin, Mohd; Othman, Jamaludin; Rafidi Zakaria, Norul

    2013-09-01

    and therefore it will be engineered for simple operation by trained passengers. However, for certification by aviation authorities the vehicle may be operational with 3 passengers and a pilot. A specific operation considered for SOLVES is navaloperation where the suborbital vehicle will be operating from a seaborne spaceport, probably a superyacht with spacepad for the vertical launching and landing of the vehicle. Such naval operation enables the vehicle to fly above exotic locations reachable by sea. SOLVES is also planned for further development into reusable rocket booster to carry small suborbiter to 160km from sea level, enables the passengers aboard the suborbiter to experience longer zero gravity time and more effective suborbital flight.

  5. China's Launch Vehicle Operations

    Science.gov (United States)

    Bai, Jingwu

    2002-01-01

    China's Launch Vehicle technologies have been started since 1950s. With the efforts made by several-generation Chinese Space people, the Long March (LM) Launch Vehicles, China's main space transportation tools, have undergone a development road from conventional propellants to cryogenic propellants, from stage-by-stage to strap-on, from dedicated-launch to multiple-launch, from satellite-launching to space capsule-launching. The LM Launch Vehicles are capable of sending various payloads to different orbits with low cost and high reliability. Till now, the LM Launch Vehicles have conducted 67 launch missions, putting 76 spacecraft into the given orbits since the successful mission made by LM-1 in 1970. Especially, they have performed 22 international commercial satellite-launching missions, sending 27 foreign satellites successfully. The footprints of LM Launch Vehicles reflect the development and progress of Chinese Space Industry. At the beginning of the 21st century, with the development of launch vehicle technology and the economic globalization, it is an inexorable trend that Chinese space industry must participate in the international cooperation and competition. Being faced with both opportunities and challenges, Chinese Space Industry should promote actively the commercial launch service market to increase service quality and improve the comprehensive competition capabilities. In order to maintain the sustaining development of China's launch vehicle technology and to meet the increasing needs in the international commercial launch service market, Chinese space industry is now doing research work on developing new-generation Chinese launchers. The new launchers will be large-scale, powerful and non-contamination. The presence of the new-generation Chinese launchers will greatly speed up the development of the whole space-related industries in China, as well as other parts of the world. In the first part, this paper gives an overview on China Aerospace Science

  6. AST Launch Vehicle Acoustics

    Science.gov (United States)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  7. Aerodynamic Problems of Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Kyong Chol Chou

    1984-09-01

    Full Text Available The airflow along the surface of a launch vehicle together with vase flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  8. The Falcon I Launch Vehicle

    OpenAIRE

    Koenigsmann, Hans; Musk, Elon; Shotwell, Gwynne; Chinnery, Anne

    2004-01-01

    Falcon I is the first in a family of launch vehicles designed by Space Exploration Technologies to facilitate low cost access to space. Falcon I is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon I can carry over 1000 lbs to sun-synchronous orbit and 1500 lbs due east to 100 NM. To minimize failure modes, the...

  9. Launch Vehicle Dynamics Demonstrator Model

    Science.gov (United States)

    1963-01-01

    The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control.

  10. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  11. Performance Efficient Launch Vehicle Recovery and Reuse

    Science.gov (United States)

    Reed, John G.; Ragab, Mohamed M.; Cheatwood, F. McNeil; Hughes, Stephen J.; Dinonno, J.; Bodkin, R.; Lowry, Allen; Brierly, Gregory T.; Kelly, John W.

    2016-01-01

    For decades, economic reuse of launch vehicles has been an elusive goal. Recent attempts at demonstrating elements of launch vehicle recovery for reuse have invigorated a debate over the merits of different approaches. The parameter most often used to assess the cost of access to space is dollars-per-kilogram to orbit. When comparing reusable vs. expendable launch vehicles, that ratio has been shown to be most sensitive to the performance lost as a result of enabling the reusability. This paper will briefly review the historical background and results of recent attempts to recover launch vehicle assets for reuse. The business case for reuse will be reviewed, with emphasis on the performance expended to recover those assets, and the practicality of the most ambitious reuse concept, namely propulsive return to the launch site. In 2015, United Launch Alliance (ULA) announced its Sensible, Modular, Autonomous Return Technology (SMART) reuse plan for recovery of the booster module for its new Vulcan launch vehicle. That plan employs a non-propulsive approach where atmospheric entry, descent and landing (EDL) technologies are utilized. Elements of such a system have a wide variety of applications, from recovery of launch vehicle elements in suborbital trajectories all the way to human space exploration. This paper will include an update on ULA's booster module recovery approach, which relies on Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and Mid-Air Retrieval (MAR) technologies, including its concept of operations (ConOps). The HIAD design, as well as parafoil staging and MAR concepts, will be discussed. Recent HIAD development activities and near term plans including scalability, next generation materials for the inflatable structure and heat shield, and gas generator inflation systems will be provided. MAR topics will include the ConOps for recovery, helicopter selection and staging, and the state of the art of parachute recovery systems using large parafoils

  12. The Titan IV launch vehicle

    Science.gov (United States)

    Morrissey, Arthur C.; O'Neill, Stephen T.

    1989-09-01

    Titan launch vehicles have been contributing to the national space accomplishments for more than 20 years. As the U.S. space program has grown, the Titan family has expanded to meet the changing requirements. The dependability and versatility of Titan vehicles have been demonstrated by their selection for various missions, including strategic intercontinental ballistic missile weapon systems, manned Gemini space flights, NASA interplanetary missions, and critical national security programs. This article summarizes the Titan legacy and is an overview of the newest Titan family member - the Titan IV.

  13. Launch vehicle systems design analysis

    Science.gov (United States)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  14. Smart Sensors for Launch Vehicles

    Science.gov (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-10-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  15. Smart Sensors for Launch Vehicles

    Science.gov (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-12-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  16. Macroeconomic Benefits of Low-Cost Reusable Launch Vehicles

    Science.gov (United States)

    Shaw, Eric J.; Greenberg, Joel

    1998-01-01

    The National Aeronautics and Space Administration (NASA) initiated its Reusable Launch Vehicle (RLV) Technology Program to provide information on the technical and commercial feasibility of single-stage to orbit (SSTO), fully-reusable launchers. Because RLVs would not depend on expendable hardware to achieve orbit, they could take better advantage of economies of scale than expendable launch vehicles (ELVs) that discard costly hardware on ascent. The X-33 experimental vehicle, a sub-orbital, 60%-scale prototype of Lockheed Martin's VentureStar SSTO RLV concept, is being built by Skunk Works for a 1999 first flight. If RLVs achieve prices to low-earth orbit of less than $1000 US per pound, they could hold promise for eliciting an elastic response from the launch services market. As opposed to the capture of existing market, this elastic market would represent new space-based industry businesses. These new opportunities would be created from the next tier of business concepts, such as space manufacturing and satellite servicing, that cannot earn a profit at today's launch prices but could when enabled by lower launch costs. New business creation contributes benefits to the US Government (USG) and the US economy through increases in tax revenues and employment. Assumptions about the costs and revenues of these new ventures, based on existing space-based and aeronautics sector businesses, can be used to estimate the macroeconomic benefits provided by new businesses. This paper examines these benefits and the flight prices and rates that may be required to enable these new space industries.

  17. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  18. International Launch Vehicle Selection for Interplanetary Travel

    Science.gov (United States)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  19. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    Science.gov (United States)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  20. Metric Tracking of Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it...

  1. GPS Attitude Determination for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  2. NASA Manned Launch Vehicle Lightning Protection Development

    Science.gov (United States)

    McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.

    2009-01-01

    Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle

  3. Wireless Instrumentation Use on Launch Vehicles

    Science.gov (United States)

    Sherman, Aaron

    2010-01-01

    This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.

  4. Launch Vehicle Production and Operations Cost Metrics

    Science.gov (United States)

    Watson, Michael D.; Neeley, James R.; Blackburn, Ruby F.

    2014-01-01

    Traditionally, launch vehicle cost has been evaluated based on $/Kg to orbit. This metric is calculated based on assumptions not typically met by a specific mission. These assumptions include the specified orbit whether Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO), or both. The metric also assumes the payload utilizes the full lift mass of the launch vehicle, which is rarely true even with secondary payloads.1,2,3 Other approaches for cost metrics have been evaluated including unit cost of the launch vehicle and an approach to consider the full program production and operations costs.4 Unit cost considers the variable cost of the vehicle and the definition of variable costs are discussed. The full program production and operation costs include both the variable costs and the manufacturing base. This metric also distinguishes operations costs from production costs, including pre-flight operational testing. Operations costs also consider the costs of flight operations, including control center operation and maintenance. Each of these 3 cost metrics show different sensitivities to various aspects of launch vehicle cost drivers. The comparison of these metrics provides the strengths and weaknesses of each yielding an assessment useful for cost metric selection for launch vehicle programs.

  5. Cost and Economics for Advanced Launch Vehicles

    Science.gov (United States)

    Whitfield, Jeff

    1998-01-01

    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  6. Strategy of Khrunichev's Launch Vehicles Further Evolution

    Science.gov (United States)

    Medvedev, A. A.; Kuzin, A. I.; Karrask, V. K.

    2002-01-01

    vehicles and it is concerned with a further evolution of its launcher fleet in order to meet arising demands of their services customers. Continuing to provide an operation of current "Proton" heavy launch vehicle and "Rockot" small launch vehicle, Khrunichev is carrying out a permanent improvement of these launchers as well as is developing new advanced launch systems. Thus, the `Proton' just has the improved "Proton-M" version, which was successfully tested in a flight, while an improvement of the "Rockot" is provided by a permanent modernization of its "Breeze-KM" upper stage and a payload fairing. Enhancing of the "Proton/Proton-M's" lift capabilities and flexibility of operation is being provided by introduction of advanced upper stages, the "Breeze- M", which was just put into service, and KVRB being in the development. "Angara-1.1" small launcher is scheduled to a launch in 2003. A creation of this family foresees not only a range of small, medium and heavy launch vehicles based on a modular principle of design but also a construction of high-automated launch site at the Russian Plesetsk spaceport. An operation of the "Angara" family's launchers will allow to inject payloads of actually all classes from Russian national territory into all range of applicable orbits with high technical and economic indices. ecological safety of drop zones, Khrunichev is developing the "Baikal" fly-back reusable booster. This booster would replace expendable first stages of small "Angaras" and strap-ons of medium/heavy launchers, which exert a most influence on the Earth's environment. intercontinental ballistic missiles to current and advanced space launch vehicles of various classes. A succession of the gained experience and found technological solutions are shown.

  7. Atomic hydrogen as a launch vehicle propellant

    Science.gov (United States)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  8. Structural Weight Estimation for Launch Vehicles

    Science.gov (United States)

    Cerro, Jeff; Martinovic, Zoran; Su, Philip; Eldred, Lloyd

    2002-01-01

    This paper describes some of the work in progress to develop automated structural weight estimation procedures within the Vehicle Analysis Branch (VAB) of the NASA Langley Research Center. One task of the VAB is to perform system studies at the conceptual and early preliminary design stages on launch vehicles and in-space transportation systems. Some examples of these studies for Earth to Orbit (ETO) systems are the Future Space Transportation System [1], Orbit On Demand Vehicle [2], Venture Star [3], and the Personnel Rescue Vehicle[4]. Structural weight calculation for launch vehicle studies can exist on several levels of fidelity. Typically historically based weight equations are used in a vehicle sizing program. Many of the studies in the vehicle analysis branch have been enhanced in terms of structural weight fraction prediction by utilizing some level of off-line structural analysis to incorporate material property, load intensity, and configuration effects which may not be captured by the historical weight equations. Modification of Mass Estimating Relationships (MER's) to assess design and technology impacts on vehicle performance are necessary to prioritize design and technology development decisions. Modern CAD/CAE software, ever increasing computational power and platform independent computer programming languages such as JAVA provide new means to create greater depth of analysis tools which can be included into the conceptual design phase of launch vehicle development. Commercial framework computing environments provide easy to program techniques which coordinate and implement the flow of data in a distributed heterogeneous computing environment. It is the intent of this paper to present a process in development at NASA LaRC for enhanced structural weight estimation using this state of the art computational power.

  9. Chapter 7: Materials for Launch Vehicle Structures

    Science.gov (United States)

    Henson, Grant; Jone, Clyde S. III

    2017-01-01

    This chapter concerns materials for expendable and reusable launch vehicle (LV) structures. An emphasis is placed on applications and design requirements, and how these requirements are met by the optimum choice of materials. Structural analysis and qualification strategies, which cannot be separated from the materials selection process, are described.

  10. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems

    Science.gov (United States)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.

    2006-01-01

    The U.S. Vision for Space Exploration (January 2004) serves as the foundation for the National Aeronautics and Space Administration's (NASA) strategic goals and objectives. As the NASA Administrator outlined during his confirmation hearing in April 2005, these include: 1) Flying the Space Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human space flight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. In spring 2005, the Agency commissioned a team of aerospace subject matter experts to perform the Exploration Systems Architecture Study (ESAS). The ESAS team performed in-depth evaluations of a number of space transportation architectures and provided recommendations based on their findings? The ESAS analysis focused on a human-rated Crew Launch Vehicle (CLV) for astronaut transport and a heavy lift Cargo Launch Vehicle (CaLV) to carry equipment, materials, and supplies for lunar missions and, later, the first human journeys to Mars. After several months of intense study utilizing safety and reliability, technical performance, budget, and schedule figures of merit in relation to design reference missions, the ESAS design options were unveiled in summer 2005. As part of NASA's systems engineering approach, these point of departure architectures have been refined through trade studies during the ongoing design phase leading to the development phase that

  11. Launch Vehicle Assessment for Space Solar Power

    Science.gov (United States)

    Olds, John R.

    1998-01-01

    A recently completed study at Georgia Tech examined various launch vehicle options for deploying a future constellation of Space Solar Power satellites of the Suntower configuration. One of the motivations of the study was to determine whether the aggressive $400/kg launch price goal established for SSP package delivery would result in an attractive economic scenario for a future RLV developer. That is, would the potential revenue and traffic to be derived from a large scale SSP project be enough of an economic "carrot" to attract an RLV company into developing a new, low cost launch vehicle to address this market. Preliminary results presented in the attached charts show that there is enough economic reward for RLV developers, specifically in the case of the latest large GEO-based Suntower constellations (over 15,500 MT per year delivery for 30 years). For that SSP model, internal rates of return for the 30 year economic scenario exceed 22%. However, up-front government assistance to the RLV developer in terms of ground facilities, operations technologies, guaranteed low-interest rate loans, and partial offsets of some vehicle development expenses is necessary to achieve these positive results. This white paper is meant to serve as a companion to the data supplied in the accompanying charts. It's purpose is to provide more detail on the vehicles and design processes used, to highlight key decisions and issues, and to emphasize key results from each phase of the Georgia Tech study.

  12. Flight Testing of Wireless Networking for Nanosat Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here addresses the testing and evaluation of wireless networking technologies for small launch vehicles by leveraging existing nanosat launch...

  13. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  14. Modal survey of the Brazilian launch vehicle

    Science.gov (United States)

    Carneiro, S. H. S.; Teixeira, H. S., Jr.; Pirk, R.; Arruda, J. R. F.

    This paper describes the Brazilian satellite launch vehicle modal analysis program being currently performed. A full scale mock-up of the solid propellant four-stage launcher will be tested in five different configurations. To simulate free-free boundary conditions, a pneumatic suspension system was developed, and its influence in the mock-up dynamic behavior was investigated. The theoretical FEM models and preliminary results of the modal test are shown, along with theoretical/experimental correlation discussions.

  15. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv, N.; Self, Timothy A.

    2008-01-01

    This viewgraph presentation describes test strategies and lean philisophies and practices that are applied to Ares Launch Vehicles. The topics include: 1) Testing strategy; 2) Lean Practices in Ares I-X; 3) Lean Practices Applied to Ares I-X Schedule; 4) Lean Event Results; 5) Lean, Six Sigma, and Kaizen Practices in the Ares Projects Office; 6) Lean and Kaizen Success Stories; and 7) Ares Six Sigma Practices.

  16. Parametric Testing of Launch Vehicle FDDR Models

    Science.gov (United States)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  17. Aerodynamic Characterization of a Modern Launch Vehicle

    Science.gov (United States)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  18. Infrared measurements of launch vehicle exhaust plumes

    Science.gov (United States)

    Schweitzer, Caroline; Ohmer, Phillip; Wendelstein, Norbert; Stein, Karin

    2017-10-01

    In the fields of early warning, one is depending on reliable analytical models for the prediction of the infrared threat signature: By having this as a basis, the warning sensors can be specified as suitable as possible to give timely threat approach alerts. In this paper, we will present preliminary results of measurement trials that have been carried out in 2015, where the exhaust plume of launch vehicles has been measured under various atmospheric conditions. The gathered data will be used to validate analytical models for the prediction of the plume signature.

  19. Vented Launch Vehicle Adaptor for a Manned Spacecraft with "Pusher" Launch Abort System

    Science.gov (United States)

    Vandervort, Robert E. (Inventor)

    2017-01-01

    A system, method, and apparatus for a vented launch vehicle adaptor (LVA) for a manned spacecraft with a "pusher" launch abort system are disclosed. The disclosed LVA provides a structural interface between a commercial crew vehicle (CCV) crew module/service module (CM/SM) spacecraft and an expendable launch vehicle. The LVA provides structural attachment of the module to the launch vehicle. It also provides a means to control the exhaust plume from a pusher-type launch abort system that is integrated into the module. In case of an on-pad or ascent abort, which requires the module to jettison away from the launch vehicle, the launch abort system exhaust plume must be safely directed away from critical and dangerous portions of the launch vehicle in order to achieve a safe and successful jettison.

  20. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  1. Configuration and Design of Checkout System for Reusable Launch Vehicle

    Science.gov (United States)

    Muraleedharan, A.; Mohanan Chettiar, V.; Shyamkumar, U.; Vivekanand, V.; Sandeep, C. R.; Kishorenath, V.

    2017-11-01

    The structure and concept of the reusable launch vehicle (RLV) is different from conventional satellite launch vehicles including its avionic systems architecture, which introduces new concept for power distribution and closed loop control response timings. This work describes about the systems involved in the testing of this new concept launch vehicle. The work also describes about the new avionic systems powering scheme introduced and new measurement system adopted.

  2. Expandable External Payload Carrier for Existing Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous existing launch vehicles have excess performance that is not being optimized. By taking advantage of excess, unused, performance, additional NASA...

  3. Ascent Trajectory Optimization for Air-Launched Launch Vehicle with Small Sun-Synchronous Orbit Satellite Based on Pseudo-spectral Method

    Directory of Open Access Journals (Sweden)

    L. Wang

    2015-01-01

    Full Text Available Economical space transportation systems to launch small satellites into Earth’s orbits are researched in many countries. Using aerospace systems, included aircraft and air-launched launch vehicle, is one of the low cost technical solutions. The airborne launch vehicle application to launch a small satellite with the purpose of remote sensing requires high precision exit on specified sun-synchronous orbit. So a problem is stated to construct an optimal ascent trajectory and optimal control.In this paper, the mathematical motion model of the air-launched launch vehicle with the external disturbances caused by the Earth’s non-sphericity, drag and wind is put forward based on the three-stage flight program with passive intermediate section. A discrete process based on pseudo-spectral method is used to solve the problem, which allows converting the initial problem into a nonlinear programming problem with dynamic constraints and aims for the criteria of maximization of the final mass released onto the target orbit.Application of the proposed solution procedure is illustrated by calculating the optimal control and the corresponding trajectory for two-stage liquid launch vehicle, which places the small spacecraft on the orbit of sun-synchronous at the height of 512 km. The numerical simulation results have demonstrated the effectiveness of the proposed algorithm and allow us to analyze three-stage trajectory parameters with intermediate passive flight phase. It can be noted that in the resulting ascent trajectory, the intermediate passive flight part is a suborbital trajectory with low energy integral, perigee of which is under the surface of the Earth.

  4. CFD Modeling of Launch Vehicle Aerodynamic Heating

    Science.gov (United States)

    Tashakkor, Scott B.; Canabal, Francisco; Mishtawy, Jason E.

    2011-01-01

    The Loci-CHEM 3.2 Computational Fluid Dynamics (CFD) code is being used to predict Ares-I launch vehicle aerodynamic heating. CFD has been used to predict both ascent and stage reentry environments and has been validated against wind tunnel tests and the Ares I-X developmental flight test. Most of the CFD predictions agreed with measurements. On regions where mismatches occurred, the CFD predictions tended to be higher than measured data. These higher predictions usually occurred in complex regions, where the CFD models (mainly turbulence) contain less accurate approximations. In some instances, the errors causing the over-predictions would cause locations downstream to be affected even though the physics were still being modeled properly by CHEM. This is easily seen when comparing to the 103-AH data. In the areas where predictions were low, higher grid resolution often brought the results closer to the data. Other disagreements are attributed to Ares I-X hardware not being present in the grid, as a result of computational resources limitations. The satisfactory predictions from CHEM provide confidence that future designs and predictions from the CFD code will provide an accurate approximation of the correct values for use in design and other applications

  5. Innovative Manufacturing of Launch Vehicle Structures - Integrally Stiffened Cylinder Process

    Science.gov (United States)

    Wagner, John; Domack, Marcia; Tayon, Wesley; Bird, Richard K.

    2017-01-01

    Reducing launch costs is essential to ensuring the success of NASA's visions for planetary exploration and earth science, economical support of the International Space Station, and competitiveness of the U.S. commercial launch industry. Reducing launch vehicle manufacturing cost supports NASA's budget and technology development priorities.

  6. Technique applied in electrical power distribution for Satellite Launch Vehicle

    OpenAIRE

    João Maurício Rosário; Fábio Duarte Spina; José Walter Parquet Bizarria; Francisco Carlos P. Bizarria

    2010-01-01

    Abstract: The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks i...

  7. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    Science.gov (United States)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  8. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    Science.gov (United States)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-11-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  9. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  10. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    Science.gov (United States)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place

  11. Vehicle Dynamics due to Magnetic Launch Propulsion

    Science.gov (United States)

    Galaboff, Zachary J.; Jacobs, William; West, Mark E.; Montenegro, Justino (Technical Monitor)

    2000-01-01

    The field of Magnetic Levitation Lind Propulsion (MagLev) has been around for over 30 years, primarily in high-speed rail service. In recent years, however, NASA has been looking closely at MagLev as a possible first stage propulsion system for spacecraft. This approach creates a variety of new problems that don't currently exist with the present MagLev trains around the world. NASA requires that a spacecraft of approximately 120,000 lbs be accelerated at two times the acceleration of gravity (2g's). This produces a greater demand on power over the normal MagLev trains that accelerate at around 0.1g. To be able to store and distribute up to 3,000 Mega Joules of energy in less than 10 seconds is a technical challenge. Another problem never addressed by the train industry and, peculiar only to NASA, is the control of a lifting body through the acceleration of and separation from the MagLev track. Very little is understood about how a lifting body will react with external forces, Such as wind gusts and ground effects, while being propelled along on soft springs such as magnetic levitators. Much study needs to be done to determine spacecraft control requirements as well as what control mechanisms and aero-surfaces should be placed on the carrier. Once the spacecraft has been propelled down the track another significant event takes place, the separation of the spacecraft from the carrier. The dynamics involved for both the carrier and the spacecraft are complex and coupled. Analysis of the reaction of the carrier after losing, a majority of its mass must be performed to insure control of the carrier is maintained and a safe separation of the spacecraft is achieved. The spacecraft angle of attack required for lift and how it will affect the carriage just prior to separation, along with the impacts of around effect and aerodynamic forces at ground level must be modeled and analyzed to define requirements on the launch vehicle design. Mechanisms, which can withstand the

  12. Nytrox Oxidizers for NanoSat Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Propulsion Group, Inc. proposes to conduct systems studies to quantify the performance and cost advantages of Nytrox oxidizers for small launch vehicles. This...

  13. Fiber Optic Sensing Systems for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The FOSS project primary test objectives are to demonstrate by flying on an Antares launch vehicle, the ability of FOSS flight hardware to measure strain and...

  14. Platform Independent Launch Vehicle Avionics with GPS Metric Tracking Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this award, Tyvak proposes to develop a complete suite of avionics for a Nano-Launch Vehicle (NLV) based on the architecture determinations performed during...

  15. Risk Considerations of Bird Strikes to Space Launch Vehicles

    Science.gov (United States)

    Hales, Christy; Ring, Robert

    2016-01-01

    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.

  16. Electromagnetic Cavity Effects from Transmitters Inside a Launch Vehicle Fairing

    Science.gov (United States)

    Trout, Dawn H.; Wahid, Parveen F.; Stanley, James E.

    2009-01-01

    This paper provides insight into the difficult analytical issue for launch vehicles and spacecraft that has applicability outside of the launch industry. Radiation from spacecraft or launch vehicle antennas located within enclosures in the launch vehicle generates an electromagnetic environment that is difficult to accurately predict. This paper discusses the test results of power levels produced by a transmitter within a representative scaled vehicle fairing model and provides preliminary modeling results at the low end of the frequency test range using a commercial tool. Initially, the walls of the fairing are aluminum and later, layered with materials to simulate acoustic blanketing structures that are typical in payload fairings. The effects of these blanketing materials on the power levels within the fairing are examined.

  17. Propellant Mass Fraction Calculation Methodology for Launch Vehicles

    Science.gov (United States)

    Holt, James B.; Monk, Timothy S.

    2009-01-01

    Propellant Mass Fraction (pmf) calculation methods vary throughout the aerospace industry. While typically used as a means of comparison between competing launch vehicle designs, the actual pmf calculation method varies slightly from one entity to another. It is the purpose of this paper to present various methods used to calculate the pmf of a generic launch vehicle. This includes fundamental methods of pmf calculation which consider only the loaded propellant and the inert mass of the vehicle, more involved methods which consider the residuals and any other unusable propellant remaining in the vehicle, and other calculations which exclude large mass quantities such as the installed engine mass. Finally, a historic comparison is made between launch vehicles on the basis of the differing calculation methodologies.

  18. Overview Of Suborbital Human Transportation Concept Alpha

    Science.gov (United States)

    Adirim, H.; Pilz, N.; Marini, M.; Hendrick, P.; Schmid, M.; Behr, R.; Barth, T.; Tarfeld, F.; Wiegand, A.; Charbonnier, D.; Haya Ramos, R.; Steeland, J.; Mack, A.

    2011-05-01

    Within the EC co-funded project FAST20XX (Future high-Altitude high-Speed Transport 20XX), the European suborbital passenger transportation system concept ALPHA (Airplane Launched PHoenix Aircraft), which shall be based to a maximum extent on existing technologies and capabilities, is currently being investigated as collaborative project by a European consortium under coordination of ESA. The ALPHA concept incorporates an air-launch from a carrier aircraft, which shall be used as first stage. The ALPHA vehicle shall be capable of transporting up to four passengers plus one pilot to an altitude of at least 100 km. The ALPHA vehicle is a down-scaled version of the suborbital space transportation concept Hopper, which was already deeply investigated within the European FESTIP System Study and the German ASTRA program including the successfully flown experimental landing demonstrator Phoenix. This approach has allowed the use of existing aerodynamic vehicle data and has led to the adaptation of the external Hopper/Phoenix configuration for ALPHA. In FESTIP and ASTRA, the Hopper configuration showed sufficient stability margins. Due to the geometric similarity of the ALPHA and Hopper vehicles, a trimable and flyable configuration could be derived by means of ALPHA flight trajectory calculations. In its current configuration, the ALPHA vehicle has a length of ca. 9 m and a gross take-off mass of ca. 3.5 Mg. The launch, staging and separation of ALPHA shall be performed either as internal air-launch from the cargo bay of the carrier aircraft, as under-wing air-launch or as towed air-launch. After separation from the carrier aircraft, the ALPHA vehicle ignites its onboard rocket propulsion system. Since conventional liquid and solid propulsion did not seem suitable for ALPHA due to Their high cost, limited safety and toxicity, a low-cost, “green” and non-hazardous hybrid propulsion system based on liquid nitrous oxide in combination with a solid polymer fuel was

  19. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    Science.gov (United States)

    Tuma, Margaret L.; Chenevert, Donald J.

    2009-01-01

    NASA has conducted dynamic tests on each major launch vehicle during the past 45 years. Each test provided invaluable data to correlate and correct analytical models. GVTs result in hardware changes to Saturn and Space Shuttle, ensuring crew and vehicle safety. Ares I IVGT will provide test data such as natural frequencies, mode shapes, and damping to support successful Ares I flights. Testing will support controls analysis by providing data to reduce model uncertainty. Value of testing proven by past launch vehicle successes and failures. Performing dynamic testing on Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions.

  20. Engine-Out Capabilities Assessment of Heavy Lift Launch Vehicles

    Science.gov (United States)

    Holladay, Jon; Baggett, Keithe; Thrasher, Chad; Bellamy, K. Scott; Feldman, Stuart

    2012-01-01

    Engine-out (EO) is a condition that might occur during flight due to the failure of one or more engines. Protection against this occurrence can be called engine-out capability (EOC) whereupon significantly improved loss of mission may occur, in addition to reduction in performance and increased cost. A standardized engine-out capability has not been studied exhaustively as it pertains to space launch systems. This work presents results for a specific vehicle design with specific engines, but also uniquely provides an approach to realizing the necessity of EOC for any launch vehicle system design. A derived top-level approach to engine-out philosophy for a heavy lift launch vehicle is given herein, based on an historical assessment of launch vehicle capabilities. The methodology itself is not intended to present a best path forward, but instead provides three parameters for assessment of a particular vehicle. Of the several parameters affected by this EOC, the three parameters of interest in this research are reliability (Loss of Mission (LOM) and Loss of Crew (LOC)), vehicle performance, and cost. The intent of this effort is to provide insight into the impacts of EO capability on these parameters. The effects of EOC on reliability, performance and cost are detailed, including how these important launch vehicle metrics can be combined to assess what could be considered overall launch vehicle affordability. In support of achieving the first critical milestone (Mission Concept Review) in the development of the Space Launch System (SLS), a team assessed two-stage, large-diameter vehicles that utilized liquid oxygen (LOX)-RP propellants in the First Stage and LOX/LH2 propellant in the Upper Stage. With multiple large thrust-class engines employed on the stages, engine-out capability could be a significant driver to mission success. It was determined that LOM results improve by a factor of five when assuming EOC for both Core Stage (CS) (first stage) and Upper Stage (US

  1. Safety and mission capabilities of manned launch vehicles

    Science.gov (United States)

    Utz, H.; Hornik, A.; Sax, H.; Loetzerich, K.

    In this paper we compare and discuss the safety of vertical launched manned spacecraft: capsules as well as winged vehicles. As examples we use HERMES and a manned capsule suitable for ARIANE 5. In the calculations we use ARIANE 5 as launcher for the compared vehicles. The installation of safety and rescue systems like ejection seats or rescue capsules always leads to additional weight and usually causes a reduction of payload capability. Due to relatively low launching rates it is hard to obtain exact safety data of manned space vehicles and launchers. Therefore we discuss the relative safety gains of different rescue systems by investigating their properties, such as mission capabilities, weight and operational aspects. We also consider the advantages of these rescue systems for the safety of manned spacecraft. The main criterion of our comparison is the payload that each type of manned vehicle is able to transport in LEO under nearly equal safety conditions during ascent - i.e., by installing comparable rescue systems. Capsules offer a better payload capability then winged launch vehicles. The advantages of winged launch vehicles must be paid for by essential loss of margins for additional safety equipment. Operational aspects like mision abort during ascent and payload accommodation are also included in this comparison.

  2. Fairing structure for space launch vehicles

    Science.gov (United States)

    1991-04-01

    The feasibility of using composite materials for payload fairing structures is discussed, and focus is placed on a series of studies intended to gather data relative to the materials and processes offering potential application to space-vehicle payload fairing. All trade studies used the baseline geometry consisted of a 4-m-diameter cylinder section with a 15-deg/25-deg biconic nose cone. Materials evaluated include aluminum, titanium, aluminum lithium, and carbon fiber composites. In addition to the trade studies, the effects of various nose-cone shapes on cost, weight, and performance are evaluated. Thermal protection systems, acoustic protection, and a jettison system employing metallic rails or joints to split the fairing are analyzed, and the use of composite structures in many areas is viewed as advantageous.

  3. Fundamentals of the design of launch vehicles for spacecraft

    Science.gov (United States)

    Grabin, Boris V.; Davydov, Oleg I.; Zhikharev, Vladimir I.; Zolotov, A. A.; Ivanov, A. A.; Serdiuk, V. K.

    1991-07-01

    The main principles of the design of expendable launch vehicles for spacecraft based on liquid-propellant rockets are discussed. Methodological principles of the design of rocket compartments, on-board equipment, and powerplant elements are examined. Algorithms are presented for design calculations typically used in the design of launch vehicles, with allowance made for thermal loads and the use of cryogenic fuel components. The discussion also covers the effect of technological factors of the design configuration, design testing of various compartments, and methods of design automation.

  4. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  5. Analysis and Design of Launch Vehicle Flight Control Systems

    Science.gov (United States)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  6. Transfer Alignment for Space Vehicles Launched from a Moving Base

    OpenAIRE

    S. K. Chaudhuri; P. K. Nandi

    2005-01-01

    Alignment of the inertial measurement unit (IMU) is a prerequisite for any space vehicle with self-contained navigation and guidance for any mission-critical application. Normally, inertialmeasurement unit is aligned through gyro-compassing using the stored data for heading. In case of launch from a moving base, it is essential to align the inertial measurement unit in the vehicle (slave unit) with that mounted on the moving platform (master unit). The master inertial navigation system is mor...

  7. Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    Science.gov (United States)

    Motiwala, Samira A.; Mathias, Donovan L.; Mattenberger, Christopher J.

    2014-01-01

    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating

  8. Illustration of Ares I and Ares V Launch Vehicles

    Science.gov (United States)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  9. Building and Leading the Next Generation of Exploration Launch Vehicles

    Science.gov (United States)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.

  10. Integrated Vehicle Ground Vibration Testing in Support of NASA Launch Vehicle Loads and Controls Analysis

    Science.gov (United States)

    Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was

  11. Upper stage options for reusable launch vehicle ``pop-up'' missions

    Science.gov (United States)

    Eckmann, James B.; Cotta, Roy B.; Matuszak, Leo W.; Perkins, David R.

    1997-01-01

    Suborbital separation of an expendable upper stage from a small, single-stage Reusable Launch Vehicle (RLV) to transfer spacecraft into Geosynchronous Equatorial Orbit (GEO) was investigated and found to significantly increase spacecraft mass into GEO (over 400%) although operational issues exist. An assessment of propulsion system options for this ``Pop-Up'' Mission was performed to determine the propellant combinations, stage configurations, and propulsion technologies that maximize spacecraft mass and minimize size. Propellants included earth and space storable combinations, cryogenic LH2/LO2, and Class 1.3 solids. Stage configurations employing cylindrical metal and overwrapped tanks, isogrid tanks, and toroidal tanks were considered. Non-toxic earth storable propellants provided comparable performance (5-10%) to existing storables while the use of pressure-fed engines gave about 15% lower performance than pump-fed. Solid stage performance was within 5% of existing storable propellants. Stages employing toroidal tanks packaged more efficiently in length constrained RLV payload bays than 4-cylindrical tank configurations, giving up to 30% greater mass into GEO. The use of Extendable Exit Cones (EEC) for length constrained cases resulted in about 5-10% higher stage performance.

  12. Suborbital Platforms as a Tool for a Symbiotic Relationship Between Scientists, Engineers, and Students

    Science.gov (United States)

    Chamberlin, Phillip C.

    2011-01-01

    Sounding rockets started in-situ space experimentation over 60 years ago with scientific experiments replacing warheads on captured V- 2 German rockets. Prior to this, and still today, suborbital platforms such as airplanes and high-altitude balloons have provided advantageous remote sensing observations advancing many areas of Earth and Space science. There is still a place for first-rate science in both stand-alone missions as well as providing complimentary measurements to the larger orbital missions. Along with the aforementioned science, the cost effectiveness and development times provided by sub-orbital platforms allows for perfect hands-on and first rate educational opportunities for undergraduate and graduate students. This talk will give examples and discuss the mutually beneficial opportunities that scientists and students obtain in development of suborbital missions. Also discussed will be how the next generation of space vehicles should help eliminate the number one obstacle to these programs - launch opportunities.

  13. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  14. Future Launch Vehicle Structures - Expendable and Reusable Elements

    Science.gov (United States)

    Obersteiner, M. H.; Borriello, G.

    2002-01-01

    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the

  15. Maximizing Launch Vehicle and Payload Design Via Early Communications

    Science.gov (United States)

    Morris, Bruce

    2010-01-01

    The United States? current fleet of launch vehicles is largely derived from decades-old designs originally made for payloads that no longer exist. They were built primarily for national security or human exploration missions. Today that fleet can be divided roughly into small-, medium-, and large-payload classes based on mass and volume capability. But no vehicle in the U.S. fleet is designed to accommodate modern payloads. It is usually the payloads that must accommodate the capabilities of the launch vehicles. This is perhaps most true of science payloads. It was this paradigm that the organizers of two weekend workshops in 2008 at NASA's Ames Research Center sought to alter. The workshops brought together designers of NASA's Ares V cargo launch vehicle (CLV) with scientists and payload designers in the astronomy and planetary sciences communities. Ares V was still in a pre-concept development phase as part of NASA?s Constellation Program for exploration beyond low Earth orbit (LEO). The space science community was early in a Decadal Survey that would determine future priorities for research areas, observations, and notional missions to make those observations. The primary purpose of the meetings in April and August of 2008, including the novel format, was to bring vehicle designers together with space scientists to discuss the feasibility of using a heavy lift capability to launch large observatories and explore the Solar System. A key question put to the science community was whether this heavy lift capability enabled or enhanced breakthrough science. The meetings also raised the question of whether some trade-off between mass/volume and technical complexity existed that could reduce technical and programmatic risk. By engaging the scientific community early in the vehicle design process, vehicle engineers sought to better understand potential limitations and requirements that could be added to the Ares V from the mission planning community. From the vehicle

  16. Propellant Mass Fraction Calculation Methodology for Launch Vehicles and Application to Ares Vehicles

    Science.gov (United States)

    Holt, James B.; Monk, Timothy S.

    2009-01-01

    Propellant Mass Fraction (pmf) calculation methods vary throughout the aerospace industry. While typically used as a means of comparison between candidate launch vehicle designs, the actual pmf calculation method varies slightly from one entity to another. It is the purpose of this paper to present various methods used to calculate the pmf of launch vehicles. This includes fundamental methods of pmf calculation that consider only the total propellant mass and the dry mass of the vehicle; more involved methods that consider the residuals, reserves and any other unusable propellant remaining in the vehicle; and calculations excluding large mass quantities such as the installed engine mass. Finally, a historical comparison is made between launch vehicles on the basis of the differing calculation methodologies, while the unique mission and design requirements of the Ares V Earth Departure Stage (EDS) are examined in terms of impact to pmf.

  17. Hyper-X: Foundation for future hypersonic launch vehicles

    Science.gov (United States)

    McClinton, Charles R.; Rausch, Vincent L.; Shaw, Robert J.; Metha, Unmeel; Naftel, Chris

    2005-07-01

    The successful Mach-7 flight test of the Hyper-X/X-43A research vehicle has provided a major, essential demonstration of the capability of the airframe-integrated scramjet engine and hypersonic airbreathing vehicle design tools and vision vehicles. This flight was a crucial step toward establishing air-breathing hypersonic propulsion for application to space-launch vehicles and other hypersonic systems. This paper examines the significance of the flight test in advancing the state-of-the science and provides a strategic vision for achieving the dream for safe, efficient and reliable space access with air-breathing propulsion in the near future, through use of more near term approaches.

  18. Design Considerations for a Launch Vehicle Development Flight Instrumentation System

    Science.gov (United States)

    Johnson, Martin L.; Crawford, Kevin

    2011-01-01

    When embarking into the design of a new launch vehicle, engineering models of expected vehicle performance are always generated. While many models are well established and understood, some models contain design features that are only marginally known. Unfortunately, these analytical models produce uncertainties in design margins. The best way to answer these analytical issues is with vehicle level testing. The National Aeronautics and Space Administration respond to these uncertainties by using a vehicle level system called the Development Flight Instrumentation, or DFI. This DFI system can be simple to implement, with only a few measurements, or it may be a sophisticated system with hundreds of measurement and video, without a recording capability. From experience with DFI systems, DFI never goes away. The system is renamed and allowed to continue, in most cases. Proper system design can aid the transition to future data requirements. This paper will discuss design features that need to be considered when developing a DFI system for a launch vehicle. It will briefly review the data acquisition units, sensors, multiplexers and recorders, telemetry components and harnessing. It will present a reasonable set of requirements which should be implemented in the beginning of the program in order to start the design. It will discuss a simplistic DFI architecture that could be the basis for the next NASA launch vehicle. This will be followed by a discussion of the "experiences gained" from a past DFI system implementation, such as the very successful Ares I-X test flight. Application of these design considerations may not work for every situation, but they may direct a path toward success or at least make one pause and ask the right questions.

  19. Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned

    Science.gov (United States)

    Hamilton, J. T.

    1983-01-01

    The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.

  20. Proceedings of the heavy lift launch vehicle tropospheric effects workshop

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    A workshop, sponsored by the Argonne National Laboratory, on Heavy Lift Launch Vehicle (HLLV) troposheric effects was held in Chicago, Illinois, on September 12, 13, and 14, 1978. Briefings were conducted on the latest HLLV congigurations, launch schedules, and proposed fuels. The geographical, environmental, and ecological background of three proposed launch sites were presented in brief. The sites discussed were launch pads near the Kennedy Space Center (KSC), a site in the southwestern United States near Animus, New Mexico, and an ocean site just north of the equator off the coast of Ecuador. A review of past efforts in atmospheric dynamics modeling, source term prediction, atmospheric effects, cloud rise modeling, and rainout/washout effects for the Space Shuttle tropospheric effects indicated that much of the progress made in these areas has direct applicability to the HLLV. The potential pollutants from the HLLV are different and their chymical interactions with the atmosphere are more complex, but the analytical techniques developed for the Space Shuttle can be applied, with the appropriate modification, to the HLLV. Reviews were presented of the ecological baseline monitoring being performed at KSC and the plant toxicology studies being conducted at North Carolina State. Based on the proposed launch sites, the latest HLLV configuration fuel, and launch schedule, the attendees developed a lit of possible environmental issues associated with the HLLV. In addition, a list of specific recommendations for short- and long-term research to investigate, understand, and possibly mitigate the HLLV environmental impacts was developed.

  1. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    Science.gov (United States)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  2. A hybrid approach to near-optimal launch vehicle guidance

    Science.gov (United States)

    Leung, Martin S. K.; Calise, Anthony J.

    1992-01-01

    This paper evaluates a proposed hybrid analytical/numerical approach to launch-vehicle guidance for ascent to orbit injection. The feedback-guidance approach is based on a piecewise nearly analytic zero-order solution evaluated using a collocation method. The zero-order solution is then improved through a regular perturbation analysis, wherein the neglected dynamics are corrected in the first-order term. For real-time implementation, the guidance approach requires solving a set of small dimension nonlinear algebraic equations and performing quadrature. Assessment of performance and reliability are carried out through closed-loop simulation for a vertically launched 2-stage heavy-lift capacity vehicle to a low earth orbit. The solutions are compared with optimal solutions generated from a multiple shooting code. In the example the guidance approach delivers over 99.9 percent of optimal performance and terminal constraint accuracy.

  3. Design for Safety - The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  4. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview

    Science.gov (United States)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne

    1999-01-01

    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  5. Orion Launch Abort Vehicle Separation Analysis Using OVERFLOW

    Science.gov (United States)

    Booth, Tom

    2010-01-01

    This slide presentation reviews the use of OVERFLOW, a flow solver, to analyze the effect of separation for a launch abort vehicle (i.e., Orion capsule) if required. Included in the presentation are views of the geometry, and the Overset grids, listing of the assumptions, the general run strategy, inputs into the Overflow solver, the required computational resources, the results of the convergence study. Charts and graphics are presented to show the results.

  6. Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design

    Science.gov (United States)

    Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.

    1997-01-01

    Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.

  7. Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles

    Science.gov (United States)

    Ivanco, Thomas G.

    2016-01-01

    Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.

  8. Sensitivity Analysis of Launch Vehicle Debris Risk Model

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott L.

    2010-01-01

    As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.

  9. Launch vehicle design and GNC sizing with ASTOS

    Science.gov (United States)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2017-06-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  10. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  11. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Science.gov (United States)

    2010-01-01

    ... trajectory analyses covering launch or ascent of the vehicle through orbital insertion and reentry or descent... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...

  12. Orbital transfer vehicle launch operations study. Volume 1: Executive summary

    Science.gov (United States)

    1986-01-01

    The purpose was to use the operational experience at the launch site to identify, describe and quantify the operational impacts of the various configurations on the Kennedy Space Center (KSC) and/or space station launch sites. Orbital Transfer Vehicle (OTV) configurations are being developed/defined by contractor teams. Lacking an approved configuration, the KSC Study Team defined a Reference Configuration to be used for this study. This configuration then become the baseline for the identification of the facilities, personnel and crew skills required for processing the OTV in a realistic manner that would help NASA achieve the lowest possible OTV life cycle costs. As the study progressed, researchers' initial apraisal that the vehicle, when delivered, would be a sophisticated, state-of-the-art vehicle was reinforced. It would be recovered and reused many times so the primary savings to be gained would be in the recurring-cycle of the vehicle operations--even to the point where it would be beneficial to break from tradition and make a significant expenditure in the development of processing facilities at the beginning of the program.

  13. Real-Time Simulation of Ares I Launch Vehicle

    Science.gov (United States)

    Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the

  14. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    Science.gov (United States)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  15. Illustration of Ares I Launch Vehicle With Call Outs

    Science.gov (United States)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  16. Gain Scheduling for the Orion Launch Abort Vehicle Controller

    Science.gov (United States)

    McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.

    2011-01-01

    One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.

  17. Vibration Challenges in the Design of NASA's Ares Launch Vehicles

    Science.gov (United States)

    Ryan, Stephen G.

    2009-01-01

    This paper focuses on the vibration challenges inherent in the design of NASA s Ares launch vehicles. A brief overview of the launch system architecture is provided to establish the context for the discussion. Following this is a general discussion of the design considerations and analytical disciplines that are affected by vibration. The first challenge discussed is that of coupling between the vehicle flight control system and fundamental vibrational modes of the vehicle. The potential destabilizing influence of the vibrational dynamics is described along with discussion of the typical methods employed to overcome this issue. Next is a general discussion of the process for developing the design loads for the primary structure. This includes quasi-steady loads and dynamic loads induced by the structural dynamic response. The two principal parts of this response are the gust induced responses of the lower frequency modes and the buffet induced responses of the higher frequency modes. Structural dynamic model validation will also be addressed. Following this, discussions of three somewhat unique topics of Pogo Instability, Solid Booster Thrust Oscillation, and Liquid Rocket Engine Turbopump Rotordynamic Stability and Response are presented.

  18. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    Science.gov (United States)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  19. Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle

    Science.gov (United States)

    Springer, A. M.; Pokora, D. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.

  20. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  1. Systems design analysis applied to launch vehicle configuration

    Science.gov (United States)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  2. Sustained small oscillations in nonlinear control systems. [launch vehicle dynamics

    Science.gov (United States)

    George, J. H.; Gunderson, R. W.; Hahn, H.

    1975-01-01

    Some results of bifurcation theory were used to study the existence of small-amplitude periodic behavior in launch vehicle dynamics, assuming that nonlinearity exists as a cubic term in the rudder response. The analysis follows closely Sattinger's (1973) approach to the theory of periodic bifurcations. The conditions under which a bifurcating branch of orbitally stable periodic solutions will exist are determined. It is shown that in more complicated cases, the conditions under which the system matrix has a pair of simple purely imaginary eigenvalues can be determined with the aid of linear stability techniques.

  3. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  4. NASA's Space Launch System: One Vehicle, Many Destinations

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global

  5. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  6. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    Science.gov (United States)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  7. Illustration of Ares V Launch Vehicle With Call Outs

    Science.gov (United States)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  8. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    Science.gov (United States)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  9. On-Board Entry Trajectory Planning Expanded to Sub-orbital Flight

    Science.gov (United States)

    Lu, Ping; Shen, Zuojun

    2003-01-01

    A methodology for on-board planning of sub-orbital entry trajectories is developed. The algorithm is able to generate in a time frame consistent with on-board environment a three-degree-of-freedom (3DOF) feasible entry trajectory, given the boundary conditions and vehicle modeling. This trajectory is then tracked by feedback guidance laws which issue guidance commands. The current trajectory planning algorithm complements the recently developed method for on-board 3DOF entry trajectory generation for orbital missions, and provides full-envelope autonomous adaptive entry guidance capability. The algorithm is validated and verified by extensive high fidelity simulations using a sub-orbital reusable launch vehicle model and difficult mission scenarios including failures and aborts.

  10. Risk Analysis Methodology for Kistler's K-1 Reusable Launch Vehicle

    Science.gov (United States)

    Birkeland, Paul W.

    2002-01-01

    Missile risk analysis methodologies were originally developed in the 1940s as the military experimented with intercontinental ballistic missile (ICBM) technology. As the range of these missiles increased, it became apparent that some means of assessing the risk posed to neighboring populations was necessary to gauge the relative safety of a given test. There were many unknowns at the time, and technology was unpredictable at best. Risk analysis itself was in its infancy. Uncertainties in technology and methodology led to an ongoing bias toward conservative assumptions to adequately bound the problem. This methodology ultimately became the Casualty Expectation Analysis that is used to license Expendable Launch Vehicles (ELVs). A different risk analysis approach was adopted by the commercial aviation industry in the 1950s. At the time, commercial aviation technology was more firmly in hand than ICBM technology. Consequently commercial aviation risk analysis focused more closely on the hardware characteristics. Over the years, this approach has enabled the advantages of technological and safety advances in commercial aviation hardware to manifest themselves in greater capabilities and opportunities. The Boeing 777, for example, received approval for trans-oceanic operations "out of the box," where all previous aircraft were required, at the very least, to demonstrate operations over thousands of hours before being granted such approval. This "out of the box" approval is likely to become standard for all subsequent designs. In short, the commercial aircraft approach to risk analysis created a more flexible environment for industry evolution and growth. In contrast, the continued use of the Casualty Expectation Analysis by the launch industry is likely to hinder industry maturation. It likely will cause any safety and reliability gains incorporated into RLV design to be masked by the conservative assumptions made to "bound the problem." Consequently, for the launch

  11. Solar thermal OTV - applications to reusable and expendable launch vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Thomas L. [Boeing Co., Phantom Works (United States); Frye, Patrick [Boeing Co., Rocketdyne Propulsion and Power (United States); Partch, Russ [Air Force Research Lab. (United States)

    2000-11-01

    The Solar Orbit Transfer Vehicle (SOTV) program being sponsored by the U.S. Air Force Research Laboratory (AFRL) is developing technology that will engender revolutionary benefits to satellites and orbit-to-orbit transfer systems. Solar thermal propulsion offers significant advantages for near-term expendable launch vehicles (ELVs) such as Delta IV, mid- to far-term reusable launch vehicles (RLVs) and ultimately to manned exploration of the Moon and Mars. Solar thermal propulsion uses a relatively large mirrored concentrator to focus solar energy onto a compact absorber, which is in turn heated to >2200 K. This heat can then be used in two major ways. By flowing hydrogen or another working fluid through the absorber, high efficiency thrust can be generated with 800 sec or more specific impulse (Isp), almost twice that of conventional cryogenic stages and comparable with typical solid-core nuclear thermal stages. Within a decade, advances in materials and fabrication processes hold the promise of the Isp ranging up to 1,100 sec. In addition, attached thermionic or alkali metal thermoelectric converter (AMTEC) power converters can be used to generate 20 to 100 kilowatts (kW) of electricity. The SOTV Space Experiment (SOTV-SE), planned to be flown in 2003, will demonstrate both hydrogen propulsion and thermionic power generation, including advanced lightweight deployable concentrators suitable for large-scale applications. Evolutionary geosynchronous-transfer orbit/geosynchronous-Earth orbit (GTO/GEO) payload lift capability improvements of 50% or more to the Delta IV launch vehicles could be implemented as part of the Delta IV P4I plan shortly thereafter. Beyond that, SOTV technology should allow long-term storage of stages in orbits up to GEO with tremendous manoeuvring capability, potentially 4 to 5 km/sec or more. Servicing of low-Earth orbit (LEO) and GEO assets and reusable (ROTVs) are other possible applications. Offering a combination of high Isp and high

  12. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  13. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    Science.gov (United States)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  14. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different

  15. Space weather biological and systems effects for suborbital flights

    Science.gov (United States)

    2008-10-31

    The Aerospace Corporation was tasked to assess the impacts of space weather on both RLVs and ELVs operating at suborbital altitudes from launch sites located in the low (equatorial regions), middle, and high latitudes. The present report presents a b...

  16. The space shuttle launch vehicle aerodynamic verification challenges

    Science.gov (United States)

    Wallace, R. O.; Austin, L. D.; Hondros, J. G.; Surber, T. E.; Gaines, L. M.; Hamilton, J. T.

    1985-01-01

    The Space Shuttle aerodynamics and performance communities were challenged to verify the Space Shuttle vehicle (SSV) aerodynamics and system performance by flight measurements. Historically, launch vehicle flight test programs which faced these same challenges were unmanned instrumented flights of simple aerodynamically shaped vehicles. However, the manned SSV flight test program made these challenges more complex because of the unique aerodynamic configuration powered by the first man-rated solid rocket boosters (SRB). The analyses of flight data did not verify the aerodynamics or performance preflight predictions of the first flight of the Space Transportation System (STS-1). However, these analyses have defined the SSV aerodynamics and verified system performance. The aerodynamics community also was challenged to understand the discrepancy between the wind tunnel and flight defined aerodynamics. The preflight analysis challenges, the aerodynamic extraction challenges, and the postflight analyses challenges which led to the SSV system performance verification and which will lead to the verification of the operational ascent aerodynamics data base are presented.

  17. Orion Launch Abort Vehicle Attitude Control Motor Testing

    Science.gov (United States)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  18. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment

    Science.gov (United States)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.

    2009-01-01

    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  19. 14 CFR Appendix D to Part 420 - Impact Dispersion Areas and Casualty Expectancy Estimate for an Unguided Suborbital Launch Vehicle

    Science.gov (United States)

    2010-01-01

    ... with the values of x. ER19Oc00.117 (v) An applicant shall calculate the probability of impact (Pi) for...)-(vii). (A) Assume that Px and Py have a value of 1.0 for all populated areas. (B) Combine populated... areas equal to the most densely populated area. (C) For any given populated area, assume Px has a value...

  20. Propellant Densification for Launch Vehicles: Simulation and Testing 1999

    Science.gov (United States)

    Knowles, Timothy E.; Tomisk, Thomas M.; Greene, William D.

    1999-01-01

    One of the many key technologies required to make single-stage to orbit an actuality, the technology of sub-cooling cryogenic propellants below their normal saturation temperatures and thereby making them more dense, is unquestionably on its way towards full and practical realization. The technology of Propellant Densification has been the subject of an extensive research and development program overseen by Lockheed Martin Michoud Space Systems and NASA Glenn Research Center over the past several years. This paper presents a status report of this research and development. Specifically examined within this paper is the status of the current and continuing efforts on the mathematical simulation of the in-tank propellant densification process currently baselined for the Lockheed Martin VentureStar Reusable Launch Vehicle (RLV). Keys to this modeling effort are an understanding and quantification of the effects of thermal stratification and the ability to capture the complex and unique multiple section tank geometries being proposed for future launch vehicles. A simulation that properly captures these phenomena has been developed by Lockheed Martin. Also discussed is the significant test program that has been undertaken in coordination with NASA Glenn Research Center. In this testing, the liquid hydrogen recirculation and densification process was simulated and the thermal stratification of the densified propellant was recorded throughout the tank. This testing marks the first time that such a process has been carried out within a multiple-lobe, flight-similar tank. The results from this testing have gone a long way towards grounding the mathematical models and towards demonstrating the readiness of the technology for near-term use. A further and even more ambitious test program examining the production and utilization of densified propellants is being planned for late-autumn 1999. An overview of these plans is presented.

  1. High-Fidelity Prediction of Launch Vehicle Liftoff Acoustic Fields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-intensity level acoustic load generated by large launch vehicle lift-off propulsion is of major concern for the integrity of the launch complex and the...

  2. POF hydrogen detection sensor systems for launch vehicles applications

    Science.gov (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    2011-06-01

    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  3. Grid Fin Stabilization of the Orion Launch Abort Vehicle

    Science.gov (United States)

    Pruzan, Daniel A.; Mendenhall, Michael R.; Rose, William C.; Schuster, David M.

    2011-01-01

    Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide

  4. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  5. Considerations in Launch Vehicle Abort Capability and Failure Tolerance

    Science.gov (United States)

    Hale, N. W., Jr.; Conte, B. A.

    2002-01-01

    operations, the Space Shuttle was designed to incur loss of thrust from one engine at liftoff and return safely to a runway. This is a very unusual capability in space launch vehicles and, if desired, must be designed into the system initially. For some extremely high value payloads on future expendable launch vehicles, this capability may be cost effective as well as for human space flights. Current designers may be inclined to design a "simple" emergency escape pod to resolve this issue. That may neither be the most effective nor the safest way to provide ascent failure tolerance. This paper discusses some real-world issues associated with this capability that the designers of the Space Shuttle did take into account that have become serious issues in real operations. paper discusses the affect of payload mass on abort capability. Issues related to abort modes can also be influence by other aspects of payload mass including center of gravity concerns. In a similar mode, consumables such as on-orbit attitude control propellant is a major factor in abort mode design. multiple engine failures during the powered ascent trajectory and have a happy outcome: landing on a runway. This paper discusses options and post-design fixes to the Space Shuttle to enhance multiple engine out capability. scenarios. include propellant underload on STS-61C, off nominal performance of engine clusters on STS-78 and STS-93, and other flights. Designers of these future human rated vehicles should consider the Space Shuttle experience in designing their systems. About the Authors: N. Wayne Hale, Jr. is currently the Deputy Chief for Shuttle of the NASA/JSC Flight Director Office. In 23 years with NASA at Houston's Johnson Space Center, he has served in the Mission Control Center for 41 Space Shuttle flights including 25 as Entry Flight Director. Mr. Hale received his Bachelor of Science Degree in Mechanical Engineering from Rice University in 1976 and his Master of Science Degree in

  6. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  7. Evaluation of abort capabilities of rocket-powered single-stage-to-orbit launch vehicles

    Science.gov (United States)

    Stanley, Douglas O.; Powell, Richard W.

    1990-01-01

    Application of advanced technologies to future launch vehicle designs would allow the introduction of a rocket-powered, single-stage-to-orbit (SSTO) launch system early in the next century. A fully reusable SSTO vehicle would be quite desirable from an operational standpoint; however, such a vehicle cannot be designed without accompanying technological advances in structure, propulsion, and subsystems. The conceptual design of such a vehicle has recently been completed. This paper examines the abort capabilities of an advanced SSTO launch vehicle which has five main engines. In the event of a single or dual main engine shutdown it was determined when the vehicle could execute return-to-launch-site, abort-to-orbit, or down-range abort maneuvers. Throughout each abort maneuver, vehicle loads are kept within nominal ascent and entry design values.

  8. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-02-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  9. Hybrid propulsion for launch vehicle boosters: A program status update

    Science.gov (United States)

    Carpenter, R. L.; Boardman, T. A.; Claflin, S. E.; Harwell, R. J.

    1995-01-01

    Results obtained in studying the origin and suppression of large-amplitude pressure oscillations in a 24 in. diameter hybrid motor using a liquid oxygen/hydroxylterminated polybutadiene/polycyclopentadiene propellant system are discussed. Tests conducted with liquid oxygen flow rates varying from 10 to 40 lbm/sec were designed to gauge the effectiveness of various vaporization chamber flow fields, injector designs, and levels of heat addition in suppressing high-frequency longitudinal mode oscillations. Longitudinal acoustic modes did not arise in any tests. However, initial testing revealed the presence of high-amplitude, sinusoidal, nonacoustic oscillations persisting throughout the burn durations. Analysis showed this to be analogous to chug mode instability in liquid rocket engines brought about by a coupling of motor combustion processes and the liquid oxygen feed system. Analytical models were developed and verified by test data to predict the amplitude and frequency of feed-system-coupled combustion pressure oscillations. Subsequent testing showed that increasing the feed system impedance eliminated the bulk mode instability. This paper documents the work completed to date in performance of the Hybrid Propulsion Technology for Launch Vehicle Boosters Program (NAS8-39942) sponsored by NASA's George C. Marshall Space Flight Center.

  10. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    Science.gov (United States)

    Ustinov, Eugene A.

    2012-01-01

    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  11. 78 FR 73794 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to U.S. Air Force Launches...

    Science.gov (United States)

    2013-12-09

    ... testing and evaluating intercontinental ballistic missiles (ICBM) and sub-orbital target and interceptor... trajectory of the vehicle. A sonic boom greater than 1 psf was predicted for the initial Atlas V launch; thus... meteorological conditions, which can vary by day and season, and with the trajectory of the vehicle. A sonic boom...

  12. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems

    Science.gov (United States)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher

    1994-01-01

    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  13. Modular Approach to Launch Vehicle Design Based on a Common Core Element

    Science.gov (United States)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike

    2010-01-01

    With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.

  14. Single-Point Attachment Wind Damper for Launch Vehicle On-Pad Motion

    Science.gov (United States)

    Hrinda, Glenn A.

    2009-01-01

    A single-point-attachment wind-damper device is proposed to reduce on-pad motion of a cylindrical launch vehicle. The device is uniquely designed to attach at only one location along the vehicle and capable of damping out wind gusts from any lateral direction. The only source of damping is from two viscous dampers in the device. The effectiveness of the damper design in reducing vehicle displacements is determined from transient analysis results using an Ares I-X launch vehicle. Combinations of different spring stiffnesses and damping are used to show how the vehicle's displacement response is significantly reduced during a wind gust.

  15. TPS Materials and Costs for Future Reusable Launch Vehicles

    Science.gov (United States)

    Rasky, Dan J.; Milos, Frank S.; Squire, Tom H.; Arnold, James O. (Technical Monitor)

    2000-01-01

    There is considerable interest in developing new reusable launch vehicles (RLVs) for reducing the cost of transporting payload to and from orbit. This work reviews thirteen candidate thermal protection system (TPS) options currently available for RLVs. It is useful to begin with the current Shuttle TPS layout as a reference. The nose cap and wing leading edge , which reach the highest temperatures, are made of reinforced carbon-carbon (RCC) that is protected from oxidation by an external coating (about 0.020" thick) of silicon-carbide. Most of the windward surface is 9 lb/cubic ft ceramic tiles (LI-900) with a thin (about 0.012") coating of Reaction Cured Glass (RCG). The leeward side of the vehicle is covered largely by AFRSI, a quilted ceramic blanket, and FRSI, a polyamide felt. These four materials can be considered first generation reusable TPS. Since the time of the Shuttle design, considerable progress has been made advancing TPS technologies in terms of thermal performance, robustness, and cost. For each of the major systems, a second generation ceramic TPS has been developed, tested, and characterized. Metallic-based systems have also been developed. For applications requiring RCC in the past, advanced carbon-carbon (ACC) is now available. This material has better mechanical properties, somewhat higher temperature capability to 2900F and greatly increased oxidation resistance. New carbon fiber reinforced silicon-carbide matrix composites (C/SiCs) have shown additional improvement in properties over ACC with use temperatures to 3000F and above. For rigid tiles, NASA Ames has made two significant advancements. The first is a tile substrate called Alumina Enhanced Thermal Barrier, or AETB, that incorporates alumina fibers for improved dimensional stability at high temperatures, to 2600F and above. This material can be made to densities as low as 8 lb/cubic ft. The second is a coating preparation called Toughened Uni-piece Fibrous Insulation, or TUFT, that

  16. Development of a methodical approach to the cost-risks assessment of launch vehicles

    Science.gov (United States)

    Protsch, Rainer W.

    1988-08-01

    A method for the assessment and documentation of cost risks in the development and operation of launch vehicles is presented. Special attention is paid to the complex logistics of modern launch vehicles, the possible reusability of launcher components, and the annual launch demand. The fundamentals of cost risk assessment for launch vehicles are summarized. The implementation of a developed stochastic simulation model on a personal computer using the FORTRAN 77 standard and the Monte Carlo technique facilitates the assessment as well as the graphical output. The possibilities of the method are demonstrated by the Space Transportation System. It turns out that the consideration of logistic relationships is of particular importance for the cost risk assessment of reusable launch vehicles.

  17. 76 FR 52694 - National Environmental Policy Act: Launch of NASA Routine Payloads on Expendable Launch Vehicles

    Science.gov (United States)

    2011-08-23

    ... associated with NASA routine payloads could not be accomplished without launching orbital and interplanetary... range of payload masses, would provide the needed trajectory capabilities, and would provide highly...

  18. Comparative Analysis of Two-Stage-to-Orbit Rocket and Airbreathing Reusable Launch Vehicles for Military Applications

    National Research Council Canada - National Science Library

    Hank, Joseph M

    2006-01-01

    .... Reusable Launch Vehicles (RLVs) will allow the U.S. to keep a technological advantage over our adversaries, and advances in airbreathing propulsion technology have made it feasible for use in space launch vehicles...

  19. Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle

    Science.gov (United States)

    Stambolian, Damon B.; Dippolito, Gregory M.; Nyugen, Bao; Dischinger, Charles; Tran, Donald; Henderson, Gena; Barth, Tim

    2011-01-01

    This slide presentation reviews the use of Human Factors analysis in improving the ground processing procedures for the Ares-1 launch vehicle. The light vehicle engineering designers for Ares-l launch vehicle had to design the flight vehicle for effective, efficient and safe ground operations in the cramped dimensions in a rocket design. The use of a mockup of the area where the technician would be required to work proved to be a very effective method to promote the collaboration between the Ares-1 designers and the ground operations personnel.

  20. Discrete Event Simulation Model of the Ground Maintenance Operations Cycle of a Reusable Launch Vehicle

    National Research Council Canada - National Science Library

    Pope III, John T

    2006-01-01

    .... The objective of this research was first to develop a conceptual model of maintenance operations needed to regenerate a launch vehicle between flights, and then to translate this conceptual model...

  1. LV-IMLI: Integrated MLI/Aeroshell for Cryogenic Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants have the highest energy density of any rocket fuel, and are used in most NASA and commercial launch vehicles to power their ascent. Cryogenic...

  2. Regeneratively-Cooled, Pump-Fed Propulsion Technology for Nano / Micro Satellite Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on demand placement of cube and nano-satellites into LEO. The proposed...

  3. A High-Payload Fraction, Pump-Fed, 2-Stage Nano Launch Vehicle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on-demand placement of cube and nano-satellites into LEO. The proposed...

  4. Weight Analysis of Two-Stage-To-Orbit Reusable Launch Vehicles for Military Applications

    National Research Council Canada - National Science Library

    Caldwell, Richard A

    2005-01-01

    In response to Department of Defense (DoD) requirements for responsive and low-cost space access, this design study provides an objective empty weight analysis of potential reusable launch vehicle (RLV) configurations...

  5. High-Fidelity Prediction of Launch Vehicle Lift-off Acoustic Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground...

  6. Development and Optimization of a Tridyne Pressurization System for Pressure Fed Launch Vehicles

    National Research Council Canada - National Science Library

    Chakroborty, Shyama; Wollen, Mark; Malany, Lee

    2006-01-01

    Over the recent years, Microcosm has been pursuing the development of a Tridyne-based pressurization system and its implementation in the Scorpius family of launch vehicles to obtain substantial gain in payload to orbit...

  7. Flexible Low Cost Avionics for NanoSatellite Launch Vehicle Control and GPS Metric Tracking Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, Tyvak Nano-Satellite Systems LLC (Tyvak) will develop nano-launch vehicle avionics solutions based on the latest commercial electronics products...

  8. Feasibility of SCRAMJET Technology for an Intermediate Propulsive Stage of an Expendable Launch Vehicle

    National Research Council Canada - National Science Library

    Schäfer, Michael

    2002-01-01

    .... In order to improve the performance of the current families of launch vehicles, it is necessary to increase the performance of the rocket motors, and conversely the amount of propellant/oxidizer carried...

  9. Comparison of vibrations of a combination of solid-rocket launch vehicle and payload during a ground firing and launching

    Science.gov (United States)

    Schoenster, J. A.; Pierce, H. B.

    1975-01-01

    The results of a study into the environmental vibrations of a payload mounted on the Nike rocket launch vehicle were presented. Data were obtained during the flight acceptance test of the payload, the firing of the total vehicle in a special test stand, and the powered and unpowered flights of the vehicle. The vibrational response of the structure was measured. Data were also obtained on the fluctuating pressure on the outside surface of the vehicle and inside the forward and after ends of the rocket chamber. A comparison of the data from the three test conditions indicated that external pressure fluctuations were the major source of vibrations in the payload area, and pressure fluctuations within the rocket motor were the major source of vibrations contiguous to the payload area.

  10. Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites

    Science.gov (United States)

    Blume, Jennifer L.

    2010-01-01

    Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.

  11. Design and Analysis of an Airborne, solid Propelled, Nanosatellite Launch Vehicle using Multidisciplinary Design Optimization

    NARCIS (Netherlands)

    Van Kesteren, M.W.; Zandbergen, B.T.C.; Naeije, M.C.; Van Kleef, A.J.P.

    2015-01-01

    The work focusses on the use of multidisciplinary optimization to design a cost optimized airborne nanosatellite launch vehicle capable of bringing a 10 kg payload into low earth orbit (LEO). Piggyback or shared launch options currently available for nanosatellites are relatively low cost (~45,000

  12. Computational Prediction of Pressure and Thermal Environments in the Flame Trench With Launch Vehicles

    Science.gov (United States)

    Brehm, Christoph; Sozer, Emre; Barad, Michael F.; Housman, Jeffrey A.; Kiris, Cetin C.; Moini-Yekta, Shayan; Vu, Bruce T.; Parlier, Christopher R.

    2014-01-01

    One of the key objectives for the development of the 21st Century Space Launch Com- plex is to provide the exibility needed to support evolving launch vehicles and spacecrafts with enhanced range capacity. The launch complex needs to support various proprietary and commercial vehicles with widely di erent needs. The design of a multi-purpose main ame de ector supporting many di erent launch vehicles becomes a very challenging task when considering that even small geometric changes may have a strong impact on the pressure and thermal environment. The physical and geometric complexity encountered at the launch site require the use of state-of-the-art Computational Fluid Dynamics (CFD) tools to predict the pressure and thermal environments. Due to harsh conditions encountered in the launch environment, currently available CFD methods which are frequently employed for aerodynamic and ther- mal load predictions in aerospace applications, reach their limits of validity. This paper provides an in-depth discussion on the computational and physical challenges encountered when attempting to provide a detailed description of the ow eld in the launch environ- ment. Several modeling aspects, such as viscous versus inviscid calculations, single-species versus multiple-species ow models, and calorically perfect gas versus thermally perfect gas, are discussed. The Space Shuttle and the Falcon Heavy launch vehicles are used to study di erent engine and geometric con gurations. Finally, we provide a discussion on traditional analytical tools which have been used to provide estimates on the expected pressure and thermal loads.

  13. RLV Flight Operations Demonstration with a Prototype Nanosat Launch Vehicle (PREPRINT)

    Science.gov (United States)

    2006-06-01

    Applications will include the pathfinding of operationally responsive spacelift activities at alternative launch sites, while still manifesting academic...Garvey, J. and E. Besnard, "Nanosat Launch Vehicle - Development Status Update," 2005 Small Payload Rideshare Conference, Littleton, CO, 07 June 2005

  14. The Falcon Launch Vehicle - An Attempt at Making Access to Space More Affordable, Reliable and Pleasant

    OpenAIRE

    Musk, Elon; Koenigsmann, Hans; Gurevich, Gwynne

    2003-01-01

    Falcon is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle being built by Space Exploration Technologies (SpaceX) from the ground up. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon can carry over 470 kg to a 700 km sun-synchronous orbit and a heavy Falcon can deliver 1450 kg to the same orbit. To minimize failure modes, the vehicle has the minimum pragmatic...

  15. Considerations Affecting Satellite and Space Probe Research with Emphasis on the "Scout" as a Launch Vehicle

    Science.gov (United States)

    Posner, Jack (Editor)

    1961-01-01

    This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.

  16. Transonic aerodynamic characteristics of a proposed wing-body reusable launch vehicle concept

    Science.gov (United States)

    Springer, A. M.

    1995-01-01

    A proposed wing-body reusable launch vehicle was tested in the NASA Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel during the winter of 1994. This test resulted in the vehicle's subsonic and transonic, Mach 0.3 to 1.96, longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle's aerodynamics, including a body flap, elevons, ailerons, and tip fins, are presented.

  17. Refinements in the Design of the Ares V Cargo Launch Vehicle for NASA's, Exploration Strategy

    Science.gov (United States)

    Creech, Steve

    2008-01-01

    NASA is developing a new launch vehicle fleet to fulfill the national goals of replacing the shuttle fleet, completing the International Space Station (ISS), and exploring the Moon on the way to eventual exploration of Mars and beyond. Programmatic and technical decisions during early architecture studies and subsequent design activities were focused on safe, reliable operationally efficient vehicles that could support a sustainable exploration program. A pair of launch vehicles was selected to support those goals the Ares I crew launch vehicle and the Ares V cargo launch vehicle. They will be the first new human-rated launch vehicles developed by NASA in more than 30 years (Figure 1). Ares I will be the first to fly, beginning space station ferry operations no later than 2015. It will be able to carry up to six astronauts to ISS or support up to four astronauts for expeditions to the moon. Ares V is scheduled to be operational in the 2020 timeframe and will provide the propulsion systems and payload to truly extend human exploration beyond low-Earth orbit. (LEO).

  18. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  19. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  20. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  1. RLV Flight Operations Demonstration with a Prototype Nanosat Launch Vehicle

    Science.gov (United States)

    2006-07-12

    the P-7 are to continue flying it during a Phase II follow-on to the SBIR project documented here. Applications will include the pathfinding of...Vehicle - Development Status Update," 2005 Small Payload Rideshare Conference, Littleton, CO, 07 June 2005. 5 Test Report - Prospector 5, Flight Test

  2. 76 FR 33139 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles

    Science.gov (United States)

    2011-06-08

    ... satellites to orbit. ELVs carry large amounts of fuel and, due to the explosive nature of the fuel, may not... and is an inverted circular cone centered on the radar antenna. A cone of silence consists of all... vehicle's planned flight trajectory, including the trajectory's vertical and horizontal uncertainties...

  3. Launch vehicle aerodynamic data base development comparison with flight data

    Science.gov (United States)

    Hamilton, J. T.; Wallace, R. O.; Dill, C. C.

    1983-01-01

    The aerodynamic development plan for the Space Shuttle integrated vehicle had three major objectives. The first objective was to support the evolution of the basic configuration by establishing aerodynamic impacts to various candidate configurations. The second objective was to provide continuing evaluation of the basic aerodynamic characteristics in order to bring about a mature data base. The third task was development of the element and component aerodynamic characteristics and distributed air loads data to support structural loads analyses. The complexity of the configurations rendered conventional analytic methods of little use and therefore required extensive wind tunnel testing of detailed complex models. However, the ground testing and analyses did not predict the aerodynamic characteristics that were extracted from the Space Shuttle flight test program. Future programs that involve the use of vehicles similar to the Space Shuttle should be concerned with the complex flow fields characteristics of these types of complex configurations.

  4. Small Launch Vehicle Design Approaches: Clustered Cores Compared with Multi-Stage Inline Concepts

    Science.gov (United States)

    Waters, Eric D.; Beers, Benjamin; Esther, Elizabeth; Philips, Alan; Threet, Grady E., Jr.

    2013-01-01

    In an effort to better define small launch vehicle design options two approaches were investigated from the small launch vehicle trade space. The primary focus was to evaluate a clustered common core design against a purpose built inline vehicle. Both designs focused on liquid oxygen (LOX) and rocket propellant grade kerosene (RP-1) stages with the terminal stage later evaluated as a LOX/methane (CH4) stage. A series of performance optimization runs were done in order to minimize gross liftoff weight (GLOW) including alternative thrust levels, delivery altitude for payload, vehicle length to diameter ratio, alternative engine feed systems, re-evaluation of mass growth allowances, passive versus active guidance systems, and rail and tower launch methods. Additionally manufacturability, cost, and operations also play a large role in the benefits and detriments for each design. Presented here is the Advanced Concepts Office's Earth to Orbit Launch Team methodology and high level discussion of the performance trades and trends of both small launch vehicle solutions along with design philosophies that shaped both concepts. Without putting forth a decree stating one approach is better than the other; this discussion is meant to educate the community at large and let the reader determine which architecture is truly the most economical; since each path has such a unique set of limitations and potential payoffs.

  5. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2015-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  6. Impact of mission requirements and constraints on conceptual launch vehicle design

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, M. [MAN Technology AG, Aerospace Div., Karlsfeld (Germany); Schottle, U.M.; Messerschmid, E. [Stuttgart Univ. (Germany). Inst. Space Systems

    1999-09-01

    The objective of this paper is to analyse the impact of mission requirements and constraints on both the optimum vehicle design and the effects on flight path selection for two types of reusable two-stage-to-orbit launch vehicles. The first vehicle type considered provides horizontal take-off and landing capabilities and is intended to be propelled by an air-breathing propulsion system during stage 1 flight. The second vehicle type assumes a vertical launch and is accelerated by a rocket propulsion system during the booster stage ascent flight. The analysis employs a design tool for simultaneous system and mission optimization. It consists of a CAD-based preliminary vehicle design tool, aerodynamic and aero-thermodynamic calculation software, flight simulation programs, and a two-level decomposition optimization algorithm enabling simultaneous system an flight optimization. The results to be presented show that the cruise flight requirement for an European launched mission of the air-breathing vehicle results in a loss of 60 % payload mass as compared to a mere accelerated ascent for a near equatorial mission into the same target orbit assuming constant take off mass. The strong dependencies of mission requirements on both the optimal vehicle design and the ascent performance are determined for the rocket-powered vehicle type by varying the inclination and altitude of the target orbit. (authors)

  7. Launch Vehicle Abort Analysis for Failures Leading to Loss of Control

    Science.gov (United States)

    Hanson, John M.; Hill, Ashley D.; Beard, Bernard B.

    2013-01-01

    Launch vehicle ascent is a time of high risk for an onboard crew. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based on data already available from the Guidance, Navigation, and Control system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. The two primary areas of focus are the derivation of abort triggers to ensure that abort occurs as quickly as possible when needed, but that false aborts are avoided, and evaluation of success in aborting off the failing launch vehicle.

  8. Impact to Space Shuttle Vehicle Trajectory on Day of Launch from change in Low Frequency Winds

    Science.gov (United States)

    Decker, Ryan K.; Puperi, Daniel; Leach, Richard

    2007-01-01

    The National Aeronautics and Space Administration's (NASA) Space Shuttle utilizes atmospheric winds on day of launch to develop throttle and steering commands to best optimize vehicle performance while keeping structural loading on the vehicle within limits. The steering commands and resultant trajectory are influenced by both the high and low frequency component of the wind. However, the low frequency component has a greater effect on the ascent design. Change in the low frequency wind content from the time of trajectory design until launch can induce excessive loading on the vehicle. Wind change limits have been derived to protect from launching in an environment where these temporal changes occur. Process of developing wind change limits are discussed followed by an observational study of temporal wind change in low frequency wind profiles at the NASA's Kennedy Space Center area are presented.

  9. Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles

    Science.gov (United States)

    Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)

    2002-01-01

    The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.

  10. Launch Vehicle Propulsion Design with Multiple Selection Criteria

    Science.gov (United States)

    Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.

    2005-01-01

    The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.

  11. Multi-functional annular fairing for coupling launch abort motor to space vehicle

    Science.gov (United States)

    Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)

    2011-01-01

    An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.

  12. Next Generation Heavy-Lift Launch Vehicle: Large Diameter, Hydrocarbon-Fueled Concepts

    Science.gov (United States)

    Holliday, Jon; Monk, Timothy; Adams, Charles; Campbell, Ricky

    2012-01-01

    With the passage of the 2010 NASA Authorization Act, NASA was directed to begin the development of the Space Launch System (SLS) as a follow-on to the Space Shuttle Program. The SLS is envisioned as a heavy lift launch vehicle that will provide the foundation for future large-scale, beyond low Earth orbit (LEO) missions. Supporting the Mission Concept Review (MCR) milestone, several teams were formed to conduct an initial Requirements Analysis Cycle (RAC). These teams identified several vehicle concept candidates capable of meeting the preliminary system requirements. One such team, dubbed RAC Team 2, was tasked with identifying launch vehicles that are based on large stage diameters (up to the Saturn V S-IC and S-II stage diameters of 33 ft) and utilize high-thrust liquid oxygen (LOX)/RP engines as a First Stage propulsion system. While the trade space for this class of LOX/RP vehicles is relatively large, recent NASA activities (namely the Heavy Lift Launch Vehicle Study in late 2009 and the Heavy Lift Propulsion Technology Study of 2010) examined specific families within this trade space. Although the findings from these studies were incorporated in the Team 2 activity, additional branches of the trade space were examined and alternative approaches to vehicle development were considered. Furthermore, Team 2 set out to define a highly functional, flexible, and cost-effective launch vehicle concept. Utilizing this approach, a versatile two-stage launch vehicle concept was chosen as a preferred option. The preferred vehicle option has the capability to fly in several different configurations (e.g. engine arrangements) that gives this concept an inherent operational flexibility which allows the vehicle to meet a wide range of performance requirements without the need for costly block upgrades. Even still, this concept preserves the option for evolvability should the need arise in future mission scenarios. The foundation of this conceptual design is a focus on low

  13. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  14. A Vibroacoustic Database Management Center for Shuttle and expendable launch vehicle payloads

    Science.gov (United States)

    Thomas, Valerie C.

    1987-01-01

    A Vibroacoustic Database Management Center has recently been established at the Jet Propulsion Laboratory (JPL). The center uses the Vibroacoustic Payload Environment Prediction System (VAPEPS) computer program to maintain a database of flight and ground-test data and structural parameters for both Shuttle and expendable launch-vehicle payloads. Given the launch-vehicle environment, the VAPEPS prediction software, which employs Statistical Energy Analysis (SEA) methods, can be used with or without the database to establish the vibroacoustic environment for new payload components. This paper summarizes the VAPEPS program and describes the functions of the Database Management Center at JPL.

  15. Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    Science.gov (United States)

    1974-01-01

    An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.

  16. Dynamical Modeling and Control Simulation of a Large Flexible Launch Vehicle

    Science.gov (United States)

    Du, Wei; Wie, Bong; Whorton, Mark

    2008-01-01

    This paper presents dynamical models of a large flexible launch vehicle. A complete set of coupled dynamical models of propulsion, aerodynamics, guidance and control, structural dynamics, fuel sloshing, and thrust vector control dynamics are described. Such dynamical models are used to validate NASA s SAVANT Simulink-based program which is being used for the preliminary flight control systems analysis and design of NASA s Ares-1 Crew Launch Vehicle. SAVANT simulation results for validating the performance and stability of an ascent phase autopilot system of Ares-1 are also presented.

  17. Initial Assessment of the Ares I-X Launch Vehicle Upper Stage to Vibroacoustic Flight Environments

    Science.gov (United States)

    Larko, Jeffrey M.; Hughes, William O.

    2008-01-01

    The Ares I launch vehicle will be NASA s first new launch vehicle since 1981. Currently in design, it will replace the Space Shuttle in taking astronauts to the International Space Station, and will eventually play a major role in humankind s return to the Moon and eventually to Mars. Prior to any manned flight of this vehicle, unmanned test readiness flights will be flown. The first of these readiness flights, named Ares I-X, is scheduled to be launched in April 2009. The NASA Glenn Research Center is responsible for the design, manufacture, test and analysis of the Ares I-X upper stage simulator (USS) element. As part of the design effort, the structural dynamic response of the Ares I-X launch vehicle to its vibroacoustic flight environments must be analyzed. The launch vehicle will be exposed to extremely high acoustic pressures during its lift-off and aerodynamic stages of flight. This in turn will cause high levels of random vibration on the vehicle's outer surface that will be transmitted to its interior. Critical flight equipment, such as its avionics and flight guidance components are susceptible to damage from this excitation. This study addresses the modelling, analysis and predictions from examining the structural dynamic response of the Ares I-X upper stage to its vibroacoustic excitations. A statistical energy analysis (SEA) model was used to predict the high frequency response of the vehicle at locations of interest. Key to this study was the definition of the excitation fields corresponding to lift off acoustics and the unsteady aerodynamic pressure fluctuations during flight. The predicted results will be used by the Ares I-X Project to verify the flight qualification status of the Ares I-X upper stage components.

  18. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    Science.gov (United States)

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  19. Deep Impact Delta II Launch Vehicle Cracked Thick Film Coating on Electronic Packages Technical Consultation Report

    Science.gov (United States)

    Cameron, Kenneth D.; Kichak, Robert A.; Piascik, Robert S.; Leidecker, Henning W.; Wilson, Timmy R.

    2009-01-01

    The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.

  20. The Ares Launch Vehicles: Critical for America's Continued Leadership in Space

    Science.gov (United States)

    Cook, Stephen A.

    2009-01-01

    This video is designed to accompany the presentation of the paper delivered at the Joint Army, Navy, NASA, Airforce (JANNAF) Propulsion Meeting held in 2009. It shows various scenes: from the construction of the A-3 test stand, construction of portions of the vehicles, through various tests of the components of the Ares Launch Vehicles, including wind tunnel testing of the Ares V, shell buckling tests, and thermal tests of the avionics, to the construction of the TPS thermal spray booth.

  1. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    Science.gov (United States)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  2. A Method of Integrating Aeroheating into Conceptual Reusable Launch Vehicle Design: Evaluation of Advanced Thermal Protection Techniques for Future Reusable Launch Vehicles

    Science.gov (United States)

    Olds, John R.; Cowart, Kris

    2001-01-01

    A method for integrating Aeroheating analysis into conceptual reusable launch vehicle (RLV) design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT, and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth 1-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system (TPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization. In some vehicles, the TPS accounts for a high percentage of the overall vehicle dry weight. Optimizing the weight of the TPS will thereby lower the percentage of the dry weight accounted for by

  3. NASA's Integrated Space Transportation Plan — 3 rd generation reusable launch vehicle technology update

    Science.gov (United States)

    Cook, Stephen; Hueter, Uwe

    2003-08-01

    NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  4. Numerical study for flame deflector design of a space launch vehicle

    Science.gov (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil

    2017-04-01

    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  5. The design of a kerosene turbopump for a South African commercial launch vehicle

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2012-08-01

    Full Text Available -1 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Altlanta, Georgia, USA, 30 July - 1 August 2012 The Design of a Kerosene Turbopump for a South African Commercial Launch Vehicle Jonathan Smyth*, Jeffery Bindon ?, Michael Brooks...

  6. Shuttle derived vehicle analysis solid booster unmanned launch vehicle concept definition study, volume 2

    Science.gov (United States)

    1983-01-01

    The technical effort associated with the selection and definition of the recommended SRB-X concept is documented. Included are discussions concerning the trades leading to the selected concept, the analysis that established the concept's basic subsystem characteristics, selected configuration description and performance capabilities, launch site operations and facility needs, development schedule, cost characteristics, risk assessment, and a cursory comparison with other launch systems.

  7. ADDJUST - An automated system for steering Centaur launch vehicles in measured winds

    Science.gov (United States)

    Swanson, D. C.

    1977-01-01

    ADDJUST (Automatic Determination and Dissemination of Just-Updated Steering Terms) is an automated computer and communication system designed to provide Atlas/Centaur and Titan/Centaur launch vehicles with booster-phase steering data on launch day. Wind soundings are first obtained, from which a smoothed wind velocity vs altitude relationship is established. Design for conditions at the end of the boost phase with initial pitch and yaw maneuvers, followed by zero total angle of attack through the filtered wind establishes the required vehicle attitude as a function of altitude. Polynomial coefficients for pitch and yaw attitude vs altitude are determined and are transmitted for validation and loading into the Centaur airborne computer. The system has enabled 14 consecutive launches without a flight wind delay.

  8. An Overview of the Characterization of the Space Launch Vehicle Aerodynamic Environments

    Science.gov (United States)

    Blevins, John A.; Campbell, John R., Jr.; Bennett, David W.; Rausch, Russ D.; Gomez, Reynaldo J.; Kiris, Cetin C.

    2014-01-01

    Aerodynamic environments are some of the rst engineering data products that are needed to design a space launch vehicle. These products are used in performance predic- tions, vehicle control algorithm design, as well as determing loads on primary and secondary structures in multiple discipline areas. When the National Aeronautics and Space Admin- istration (NASA) Space Launch System (SLS) Program was established with the goal of designing a new, heavy-lift launch vehicle rst capable of lifting the Orion Program Multi- Purpose Crew Vehicle (MPCV) to low-earth orbit and preserving the potential to evolve the design to a 200 metric ton cargo launcher, the data needs were no di erent. Upon commencement of the new program, a characterization of aerodynamic environments were immediately initiated. In the time since, the SLS Aerodynamics Team has produced data describing the majority of the aerodynamic environment de nitions needed for structural design and vehicle control under nominal ight conditions. This paper provides an overview of select SLS aerodynamic environments completed to date.

  9. Comparison of Two Multidisciplinary Optimization Strategies for Launch-Vehicle Design

    Science.gov (United States)

    Braun, R. D.; Powell, R. W.; Lepsch, R. A.; Stanley, D. O.; Kroo, I. M.

    1995-01-01

    The investigation focuses on development of a rapid multidisciplinary analysis and optimization capability for launch-vehicle design. Two multidisciplinary optimization strategies in which the analyses are integrated in different manners are implemented and evaluated for solution of a single-stage-to-orbit launch-vehicle design problem. Weights and sizing, propulsion, and trajectory issues are directly addressed in each optimization process. Additionally, the need to maintain a consistent vehicle model across the disciplines is discussed. Both solution strategies were shown to obtain similar solutions from two different starting points. These solutions suggests that a dual-fuel, single-stage-to-orbit vehicle with a dry weight of approximately 1.927 x 10(exp 5)lb, gross liftoff weight of 2.165 x 10(exp 6)lb, and length of 181 ft is attainable. A comparison of the two approaches demonstrates that treatment or disciplinary coupling has a direct effect on optimization convergence and the required computational effort. In comparison with the first solution strategy, which is of the general form typically used within the launch vehicle design community at present, the second optimization approach is shown to he 3-4 times more computationally efficient.

  10. Modeling the Launch Abort Vehicle's Subsonic Aerodynamics from Free Flight Testing

    Science.gov (United States)

    Hartman, Christopher L.

    2010-01-01

    An investigation into the aerodynamics of the Launch Abort Vehicle for NASA's Constellation Crew Launch Vehicle in the subsonic, incompressible flow regime was conducted in the NASA Langley 20-ft Vertical Spin Tunnel. Time histories of center of mass position and Euler Angles are captured using photogrammetry. Time histories of the wind tunnel's airspeed and dynamic pressure are recorded as well. The primary objective of the investigation is to determine models for the aerodynamic yaw and pitch moments that provide insight into the static and dynamic stability of the vehicle. System IDentification Programs for AirCraft (SIDPAC) is used to determine the aerodynamic model structure and estimate model parameters. Aerodynamic models for the aerodynamic body Y and Z force coefficients, and the pitching and yawing moment coefficients were identified.

  11. Effects of the Orion Launch Abort Vehicle Plumes on Aerodynamics and Controllability

    Science.gov (United States)

    Vicker, Darby; Childs, Robert; Rogers,Stuart E.; McMullen, Matthew; Garcia, Joseph; Greathouse, James

    2013-01-01

    Characterization of the launch abort system of the Multi-purpose Crew Vehicle (MPCV) for control design and accurate simulation has provided a significant challenge to aerodynamicists and design engineers. The design space of the launch abort vehicle (LAV) includes operational altitudes from ground level to approximately 300,000 feet, Mach numbers from 0-9, and peak dynamic pressure near 1300psf during transonic flight. Further complicating the characterization of the aerodynamics and the resultant vehicle controllability is the interaction of the vehicle flowfield with the plumes of the two solid propellant motors that provide attitude control and the main propulsive impulse for the LAV. These interactions are a function of flight parameters such as Mach number, altitude, dynamic pressure, vehicle attitude, as well as parameters relating to the operation of the motors themselves - either as a function of time for the AM, or as a result of the flight control system requests for control torque from the ACM. This paper discusses the computational aerodynamic modeling of the aerodynamic interaction caused by main abort motor and the attitude control motor of the MPCV LAV, showing the effects of these interactions on vehicle controllability.

  12. A Near-Term, High-Confidence Heavy Lift Launch Vehicle

    Science.gov (United States)

    Rothschild, William J.; Talay, Theodore A.

    2009-01-01

    The use of well understood, legacy elements of the Space Shuttle system could yield a near-term, high-confidence Heavy Lift Launch Vehicle that offers significant performance, reliability, schedule, risk, cost, and work force transition benefits. A side-mount Shuttle-Derived Vehicle (SDV) concept has been defined that has major improvements over previous Shuttle-C concepts. This SDV is shown to carry crew plus large logistics payloads to the ISS, support an operationally efficient and cost effective program of lunar exploration, and offer the potential to support commercial launch operations. This paper provides the latest data and estimates on the configurations, performance, concept of operations, reliability and safety, development schedule, risks, costs, and work force transition opportunities for this optimized side-mount SDV concept. The results presented in this paper have been based on established models and fully validated analysis tools used by the Space Shuttle Program, and are consistent with similar analysis tools commonly used throughout the aerospace industry. While these results serve as a factual basis for comparisons with other launch system architectures, no such comparisons are presented in this paper. The authors welcome comparisons between this optimized SDV and other Heavy Lift Launch Vehicle concepts.

  13. Launch costs to GEO using solar-powered orbit transfer vehicles

    Science.gov (United States)

    Meserole, J. S.

    1993-06-01

    An assessment of the payload capabilities and costs of orbit transfer vehicles using solar electric and solar thermal propulsion systems was conducted to compare these systems under consistent assumptions and to estimate potential reductions in the costs of launching satellites to geosynchronous orbit. The types of propulsion evaluated were hydrogen arcjet, xenon ion, xenon stationary plasma, hydrogen resistojet, carbon-60 ion, and hydrogen solar thermal. Trip time was set at a maximum of 180 d. Planar and concentrator solar arrays ranging in specific power from 50 to 200 W/kg were considered. Except for the resistojet, each of the propulsion types potentially enables launching Atlas-IIAS-class payloads on a Delta II at a net reduction in launch cost. Solar thermal propulsion offers the largest cost reduction. Using a high-voltage concentrator array, advanced ion propulsion was found to have a power requirement and cost lower than arcjet propulsion, because it yields a lighter vehicle that can be put in a high initial orbit. Ion propulsion also could enable the Delta II to launch as much GEO payload mass as the Titan-IV/IUS, at 50 percent lower cost, and could enable the Atlas IIAS to launch nearly as much as the Titan-IV/Centaur, at 20 percent lower cost. Achieving these results depends on having solar arrays providing a mission-average specific power of 60-100 W/kg at a cost of $1M/kW or less.

  14. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis

    Science.gov (United States)

    Hanson, J. M.; Beard, B. B.

    2010-01-01

    This Technical Publication (TP) is meant to address a number of topics related to the application of Monte Carlo simulation to launch vehicle design and requirements analysis. Although the focus is on a launch vehicle application, the methods may be applied to other complex systems as well. The TP is organized so that all the important topics are covered in the main text, and detailed derivations are in the appendices. The TP first introduces Monte Carlo simulation and the major topics to be discussed, including discussion of the input distributions for Monte Carlo runs, testing the simulation, how many runs are necessary for verification of requirements, what to do if results are desired for events that happen only rarely, and postprocessing, including analyzing any failed runs, examples of useful output products, and statistical information for generating desired results from the output data. Topics in the appendices include some tables for requirements verification, derivation of the number of runs required and generation of output probabilistic data with consumer risk included, derivation of launch vehicle models to include possible variations of assembled vehicles, minimization of a consumable to achieve a two-dimensional statistical result, recontact probability during staging, ensuring duplicated Monte Carlo random variations, and importance sampling.

  15. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    Science.gov (United States)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  16. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of Abort Triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of Abort Triggers.

  17. The Advantages, Potentials and Safety of VTOL Suborbital Space Tourism Operations

    Science.gov (United States)

    Ridzuan Zakaria, N.; Nasrun, N.; Abu, J.; Jusoh, A.; Azim, L.; Said, A.; Ishak, S.; Rafidi Zakaria, N.

    2012-01-01

    Suborbital space tourism offers short-time zero gravity and Earth view from space to its customers, and a package that can offer the longest duration of zero- gravity and the most exciting Earth view from space to its customer can be considered a better one than the others. To increase the duration of zero gravity time involves the design and engineering of the suborbital vehicles, but to improve the view of Earth from space aboard a suborbital vehicle, involves more than just the design and engineering of the vehicle, but more on the location of where the vehicle operates. So far, most of the proposed operations of suborbital space tourism vehicles involve a flight to above 80km and less than 120km and taking-off and landing at the same location. Therefore, the operational location of the suborbital vehicle clearly determines the view of earth from space that will be available to its passengers. The proposed operational locations or spaceports usually are existing airports such as the airport at Curacao Island in the Caribbean or spaceport specially built at locations with economic interests such as Spaceport America in New Mexico or an airport that is going to be built, such as SpaceportSEA in Selangor, Malaysia. Suborbital vehicles operating from these spaceports can only offer limited views of Earth from space which is only few thousand kilometers of land or sea around their spaceports, and a clear view of only few hundred kilometers of land or sea directly below them, even though the views can be enhanced by the application of optical devices. Therefore, the view of some exotic locations such as a colorful coral reef, and phenomena such as a smoking volcano on Earth which may be very exciting when viewed from space will not be available on these suborbital tourism packages. The only possible way for the passengers of a suborbital vehicle to view such exotic locations and phenomena is by flying above or near them, and since it will not be economic and will be

  18. Vibro-Acoustic Response Analysis Of LAUNCH VEHICLE INTER-STAGE

    Directory of Open Access Journals (Sweden)

    Anjana Mariam Alex

    2015-08-01

    Full Text Available Right from lift-off launch vehicles are subjected to extreme dynamic pressure aero and structure borne excitations. Inter-stage is fundamental to the vehicle as it houses the different control equipments actuators sensors motors and avionic packages. This paper involves the creation of two different models so as to study the correlation using two approaches Finite Element method and Hybrid Method involving Statistical Energy Analysis and Finite Element Analysis. The correlation of the response obtained on the Inter-stage from an acoustic ground test to that from the analytical test results carried out with VA One is also addressed in this paper.

  19. Improving Conceptual Design for Launch Vehicles. The Bimese Concept: A Study of Mission and Economic Options

    Science.gov (United States)

    Olds, John R.; Tooley, Jeffrey

    1999-01-01

    This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.

  20. Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models

    Science.gov (United States)

    Al Hassan Mohammad; Novack, Steven

    2015-01-01

    Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.

  1. Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems

    Science.gov (United States)

    Decker, Ryan; Barbre, Robert E., Jr.

    2011-01-01

    Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.

  2. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design

    Science.gov (United States)

    Dumbacher, Daniel L.; Davis, Stephan R.

    2007-01-01

    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.

  3. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    Science.gov (United States)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on

  4. Optimal trajectory designs and systems engineering analyses of reusable launch vehicles

    Science.gov (United States)

    Tsai, Hung-I. Bruce

    Realizing a reusable launch vehicle (RLU) that is low cost with highly effective launch capability has become the "Holy Grail" within the aerospace community world-wide. Clear understanding of the vehicle's operational limitations and flight characteristics in all phases of the flight are preponderant components in developing such a launch system. This dissertation focuses on characterizing and designing the RLU optimal trajectories in order to aid in strategic decision making during mission planning in four areas: (1) nominal ascent phase, (2) abort scenarios and trajectories during ascent phase including abort-to-orbit (ATO), transoceanic-abort-landing (TAL) and return-to-launch-site (RTLS), (3) entry phase (including footprint), and (4) systems engineering aspects of such flight trajectory design. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body design that lifts off vertically with two linear aerospike rocket engines and lands horizontally. An in-depth investigation of the optimal endo-atmospheric ascent guidance parameters such as earliest abort time, engine throttle setting, number of flight phases, flight characteristics and structural design limitations will be performed and analyzed to establish a set of benchmarks for making better trade-off decisions. Parametric analysis of the entry guidance will also be investigated to allow the trajectory designer to pinpoint relevant parameters and to generate optimal constrained trajectories. Optimal ascent and entry trajectories will be generated using a direct transcription method to cast the optimal control problem as a nonlinear programming problem. The solution to the sparse nonlinear programming problem is then solved using sequential quadratic programming. Finally, guidance system hierarchy studies such as work breakdown structure, functional analysis, fault-tree analysis, and configuration management will be developed to ensure that the guidance system meets the definition of

  5. The Soyuz launch vehicle the two lives of an engineering triumph

    CERN Document Server

    Lardier, Christian

    2013-01-01

    The Soyuz launch vehicle has had a long and illustrious history. Built as the world's first intercontinental missile, it took the first man into space in April 1961, before becoming the workhorse of Russian spaceflight, launching satellites, interplanetary probes, every cosmonaut from Gagarin onwards, and, now, the multinational crews of the International Space Station. This remarkable book gives a complete and accurate description of the two lives of Soyuz, chronicling the cooperative space endeavor of Europe and Russia. First, it takes us back to the early days of astronautics, when technology served politics. From archives found in the Soviet Union the authors describe the difficulty of designing a rocket in the immediate post-war period. Then, in Soyuz's golden age, it launched numerous scientific missions and manned flights which were publicized worldwide while the many more numerous military missions were kept highly confidential! The second part of the book tells the contemporary story of the second li...

  6. NASA's Suborbital Center of Excellence - reaching young minds and crafting the future

    Science.gov (United States)

    Cathey, H.; Hottman, S.; Hansen, K.

    The NASA Suborbital Center of Excellence is charting new territory. From an idea to promote science and engineering education and outreach, the Suborbital Center of Excellence is working toward the objective of increasing numbers of college graduates choosing a career in suborbital programs. Approaches to excite university students to want to pursue these careers through relevant and useful work experiences will be highlighted. Suborbital platforms include balloons, sounding rockets, research aircraft (manned and remotely piloted vehicles) and small satellites. Key components of this are the Suborbital Center of Excellence co-op program and the support of Engineering ``Capstone'' projects. A number of these projects and programs have been supported during the past year. Highlights of these student hands-on learning experiences will be presented. The projects have included diverse projects ranging from work on a power beaming demonstration and autonomous aircraft control logic to the development of light weight pressure vessels for balloon flights based on ULDB spin-off technology, and balloon drop sonde development. Preparing these future Scientists and Engineers involves the investment of time, energy, and resources. The Suborbital Center of Excellence is uniquely positioned to do this. Future programs and initiatives will be presented. The Suborbital Center of Excellence is evolving, meeting the needs to promote science and engineering education and outreach. Educational outreach initiatives for young children to university students will also be presented. These include hands-on experiments, demonstrations, and suborbital educational materials.

  7. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    Science.gov (United States)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  8. High-Glass-Transition-Temperature Polyimides Developed for Reusable Launch Vehicle Applications

    Science.gov (United States)

    Chuang, Kathy; Ardent, Cory P.

    2002-01-01

    Polyimide composites have been traditionally used for high-temperature applications in aircraft engines at temperatures up to 550 F (288 C) for thousands of hours. However, as NASA shifts its focus toward the development of advanced reusable launch vehicles, there is an urgent need for lightweight polymer composites that can sustain 600 to 800 F (315 to 427 C) for short excursions (hundreds of hours). To meet critical vehicle weight targets, it is essential that one use lightweight, high-temperature polymer matrix composites in propulsion components such as turbopump housings, ducts, engine supports, and struts. Composite materials in reusable launch vehicle components will heat quickly during launch and reentry. Conventional composites, consisting of layers of fabric or fiber-reinforced lamina, would either blister or encounter catastrophic delamination under high heating rates above 300 C. This blistering and delamination are the result of a sudden volume expansion within the composite due to the release of absorbed moisture and gases generated by the degradation of the polymer matrix. Researchers at the NASA Glenn Research Center and the Boeing Company (Long Beach, CA) recently demonstrated a successful approach for preventing this delamination--the use of three-dimensional stitched composites fabricated by resin infusion.

  9. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  10. Experimental and Computational Modal Analyses for Launch Vehicle Models considering Liquid Propellant and Flange Joints

    Directory of Open Access Journals (Sweden)

    Chang-Hoon Sim

    2018-01-01

    Full Text Available In this research, modal tests and analyses are performed for a simplified and scaled first-stage model of a space launch vehicle using liquid propellant. This study aims to establish finite element modeling techniques for computational modal analyses by considering the liquid propellant and flange joints of launch vehicles. The modal tests measure the natural frequencies and mode shapes in the first and second lateral bending modes. As the liquid filling ratio increases, the measured frequencies decrease. In addition, as the number of flange joints increases, the measured natural frequencies increase. Computational modal analyses using the finite element method are conducted. The liquid is modeled by the virtual mass method, and the flange joints are modeled using one-dimensional spring elements along with the node-to-node connection. Comparison of the modal test results and predicted natural frequencies shows good or moderate agreement. The correlation between the modal tests and analyses establishes finite element modeling techniques for modeling the liquid propellant and flange joints of space launch vehicles.

  11. Evolved Expendable Launch Vehicle: The Air Force Needs to Adopt an Incremental Approach to Future Acquisition Planning to Enable Incorporation of Lessons Learned

    Science.gov (United States)

    2015-08-01

    EELV Evolved Expendable Launch Vehicle ELC EELV Launch Capability ELS EELV Launch Services EVM Earned Value Management EVMS Earned- value ...expressed interest in competing for national security launches, including ULA, Space Exploration Technologies, Inc. ( SpaceX ), and Orbital Sciences...launch offices, and launch service providers including ULA, SpaceX , and Orbital Sciences Corporation. We also reviewed past GAO reports on EELV

  12. Injection of a microsatellite in circular orbits using a three-stage launch vehicle

    Science.gov (United States)

    Marchi, L. O.; Murcia, J. O.; Prado, A. F. B. A.; Solórzano, C. R. H.

    2017-10-01

    The injection of a satellite into orbit is usually done by a multi-stage launch vehicle. Nowadays, the space market demonstrates a strong tendency towards the use of smaller satellites, because the miniaturization of the systems improve the cost/benefit of a mission. A study to evaluate the capacity of the Brazilian Microsatellite Launch Vehicle (VLM) to inject payloads into Low Earth Orbits is presented in this paper. All launches are selected to be made to the east side of the Alcântara Launch Center (CLA). The dynamical model to calculate the trajectory consists of the three degrees of freedom (3DOF) associated with the translational movement of the rocket. Several simulations are performed according to a set of restrictions imposed to the flight. The altitude reached in the separation of the second stage, the altitude and velocity of injection, the flight path angle at the moment of the activation of the third stage and the duration of the ballistic flight are presented as a function of the payload carried.

  13. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    Science.gov (United States)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile

  14. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    The theory of System Health Management (SHM) and of its operational subset Fault Management (FM) states that FM is implemented as a "meta" control loop, known as an FM Control Loop (FMCL). The FMCL detects that all or part of a system is now failed, or in the future will fail (that is, cannot be controlled within acceptable limits to achieve its objectives), and takes a control action (a response) to return the system to a controllable state. In terms of control theory, the effectiveness of each FMCL is estimated based on its ability to correctly estimate the system state, and on the speed of its response to the current or impending failure effects. This paper describes how this theory has been successfully applied on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program to quantitatively estimate the effectiveness of proposed abort triggers so as to select the most effective suite to protect the astronauts from catastrophic failure of the SLS. The premise behind this process is to be able to quantitatively provide the value versus risk trade-off for any given abort trigger, allowing decision makers to make more informed decisions. All current and planned crewed launch vehicles have some form of vehicle health management system integrated with an emergency launch abort system to ensure crew safety. While the design can vary, the underlying principle is the same: detect imminent catastrophic vehicle failure, initiate launch abort, and extract the crew to safety. Abort triggers are the detection mechanisms that identify that a catastrophic launch vehicle failure is occurring or is imminent and cause the initiation of a notification to the crew vehicle that the escape system must be activated. While ensuring that the abort triggers provide this function, designers must also ensure that the abort triggers do not signal that a catastrophic failure is imminent when in fact the launch vehicle can successfully achieve orbit. That is

  15. Ares I-X Launch Vehicle Modal Test Measurements and Data Quality Assessments

    Science.gov (United States)

    Templeton, Justin D.; Buehrle, Ralph D.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The Ares I-X modal test program consisted of three modal tests conducted at the Vehicle Assembly Building at NASA s Kennedy Space Center. The first test was performed on the 71-foot 53,000-pound top segment of the Ares I-X launch vehicle known as Super Stack 5 and the second test was performed on the 66-foot 146,000- pound middle segment known as Super Stack 1. For these tests, two 250 lb-peak electro-dynamic shakers were used to excite bending and shell modes with the test articles resting on the floor. The third modal test was performed on the 327-foot 1,800,000-pound Ares I-X launch vehicle mounted to the Mobile Launcher Platform. The excitation for this test consisted of four 1000+ lb-peak hydraulic shakers arranged to excite the vehicle s cantilevered bending modes. Because the frequencies of interest for these modal tests ranged from 0.02 to 30 Hz, high sensitivity capacitive accelerometers were used. Excitation techniques included impact, burst random, pure random, and force controlled sine sweep. This paper provides the test details for the companion papers covering the Ares I-X finite element model calibration process. Topics to be discussed include test setups, procedures, measurements, data quality assessments, and consistency of modal parameter estimates.

  16. Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

    Science.gov (United States)

    Bartels, Robert E.

    2012-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

  17. Probabilistic Sensitivity Analysis for Launch Vehicles with Varying Payloads and Adapters for Structural Dynamics and Loads

    Science.gov (United States)

    McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.

    2012-01-01

    This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.

  18. Suborbital Research and Development Opportunities

    Science.gov (United States)

    Davis, Jeffrey R.

    2011-01-01

    This slide presentation reviews the new strategies for problem solving in the life sciences in the suborbital realm. Topics covered are: an overview of the space life sciences, the strategic initiatives that the Space Life Sciences organization engaged in, and the new business model that these initiatives were developed. Several opportunities for research are also reviewed.

  19. Probability of Failure Analysis Standards and Guidelines for Expendable Launch Vehicles

    Science.gov (United States)

    Wilde, Paul D.; Morse, Elisabeth L.; Rosati, Paul; Cather, Corey

    2013-09-01

    Recognizing the central importance of probability of failure estimates to ensuring public safety for launches, the Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST), the National Aeronautics and Space Administration (NASA), and U.S. Air Force (USAF), through the Common Standards Working Group (CSWG), developed a guide for conducting valid probability of failure (POF) analyses for expendable launch vehicles (ELV), with an emphasis on POF analysis for new ELVs. A probability of failure analysis for an ELV produces estimates of the likelihood of occurrence of potentially hazardous events, which are critical inputs to launch risk analysis of debris, toxic, or explosive hazards. This guide is intended to document a framework for POF analyses commonly accepted in the US, and should be useful to anyone who performs or evaluates launch risk analyses for new ELVs. The CSWG guidelines provide performance standards and definitions of key terms, and are being revised to address allocation to flight times and vehicle response modes. The POF performance standard allows a launch operator to employ alternative, potentially innovative methodologies so long as the results satisfy the performance standard. Current POF analysis practice at US ranges includes multiple methodologies described in the guidelines as accepted methods, but not necessarily the only methods available to demonstrate compliance with the performance standard. The guidelines include illustrative examples for each POF analysis method, which are intended to illustrate an acceptable level of fidelity for ELV POF analyses used to ensure public safety. The focus is on providing guiding principles rather than "recipe lists." Independent reviews of these guidelines were performed to assess their logic, completeness, accuracy, self- consistency, consistency with risk analysis practices, use of available information, and ease of applicability. The independent reviews confirmed the

  20. Closed-loop nominal and abort atmospheric ascent guidance for rocket-powered launch vehicles

    Science.gov (United States)

    Dukeman, Greg A.

    2005-07-01

    An advanced ascent guidance algorithm for rocket-powered launch vehicles is developed. The ascent guidance function is responsible for commanding attitude, throttle and setting during the powered ascent phase of flight so that the vehicle attains target cutoff conditions in a near optimal manner while satisfying path constraints such as maximum allowed bending moment and maximum allowed axial acceleration. This algorithm cyclically solves the calculus-of-variations two-point boundary-value problem starting at vertical rise completion through orbit insertion. This is different from traditional ascent guidance algorithms which operate in an open-loop mode until the high dynamic pressure portion of the trajectory is over, at which time there is a switch to a closed loop guidance mode that operates under the assumption of negligible aerodynamic forces. The main contribution of this research is an algorithm of the predictor-corrector type wherein the state/costate system is propagated with known (navigated) initial state and guessed initial costate to predict the state/costate at engine cutoff. The initial costate guess is corrected, using a multi-dimensional Newton's method, based on errors in the terminal state constraints and the transversality conditions. Path constraints are enforced within the propagation process. A modified multiple shooting method is shown to be a very effective numerical technique for this application. Results for a single stage to orbit launch vehicle are given. In addition, the formulation for the free final time multi-arc trajectory optimization problem is given. Results for a two-stage launch vehicle burn-coast-burn ascent to orbit in a closed-loop guidance mode are shown. An abort to landing site formulation of the algorithm and numerical results are presented. A technique for numerically treating the transversality conditions is discussed that eliminates part of the analytical and coding burden associated with optimal control theory.

  1. Design of a Flush Airdata System (FADS) for the Hypersonic Air Launched Option (HALO) Vehicle

    Science.gov (United States)

    Whitmore, Stephen A.; Moes, Timothy R.; Deets, Dwain A. (Technical Monitor)

    1994-01-01

    This paper presents a design study for a pressure based Flush airdata system (FADS) on the Hypersonic Air Launched Option (HALO) Vehicle. The analysis will demonstrate the feasibility of using a pressure based airdata system for the HALO and provide measurement uncertainty estimates along a candidate trajectory. The HALO is a conceived as a man-rated vehicle to be air launched from an SR-71 platform and is proposed as a testbed for an airbreathing hydrogen scramjet. A feasibility study has been performed and indicates that the proposed trajectory is possible with minimal modifications to the existing SR71 vehicle. The mission consists of launching the HALO off the top of an SR-71 at Mach 3 and 80,000 ft. A rocket motor is then used to accelerate the vehicle to the test condition. After the scramjet test is completed the vehicle will glide to a lakebed runway landing. This option provides reusability of the vehicle and scramjet engine. The HALO design will also allow for various scramjet engine and flowpath designs to be flight tested. For the HALO flights, measurements of freestream airdata are considered to be a mission critical to perform gain scheduling and trajectory optimization. One approach taken to obtaining airdata involves measurement of certain parameters such as external atmospheric winds, temperature, etc to estimate the airdata quantities. This study takes an alternate approach. Here the feasibility of obtaining airdata using a pressure-based flush airdata system (FADS) methods is assessed. The analysis, although it is performed using the HALO configuration and trajectory, is generally applicable to other hypersonic vehicles. The method to be presented offers the distinct advantage of inferring total pressure, Mach number, and flow incidence angles, without stagnating the freestream flow. This approach allows for airdata measurements to be made using blunt surfaces and significantly diminishes the heating load at the sensor. In the FADS concept a

  2. Optimal return-to-launchsite abort trajectories for an HL-20 Personnel Launch System vehicle

    Science.gov (United States)

    Dutton, Kevin E.

    The Personnel Launch System (PLS) being studied by NASA is a system to complement the Space Shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return-to-launchsite (RTLS) abort. This paper describes an investigation of the RTLS abort scenario using optimal control theory. The objective of the abort trajectory is to maximize final altitude at a point near the runway. The assumption is then made that there exists a control history to steer the vehicle to any final altitude lower than the final optimal altitude. With this selection of cost function, and with this assumption, the feasibility of an RTLS abort at different times along the ascent trajectory can be determined. The method of differential inclusions, which allows the determination of optimal states and eliminates the need for determining the optimal controls, is used to determine the optimal trajectories.

  3. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    Science.gov (United States)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  4. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    Science.gov (United States)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  5. Designing for Reliability and Safety: The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal; Maggio, Gaspare

    2010-09-01

    In the past, S&MA performed an assurance function with little or no in-line engineering role. Lessons learned from S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. This paper discusses the S&MA Ares I paradigm change and the early involvement of S&MA in the conceptual phase of the Ares V. Specifically, this paper discusses the top-down functional performance-based analysis that has been developed by S&MA and its support contractor, Information Systems Laboratories(ISL), to evaluate the safety and reliability of Ares V as part of the performance(vehicle sizing and trajectory) analysis process. The techniques employ parametric methods that utilize the products of the performance analysis process to rapidly provide relative comparisons of safety and reliability estimates across the various design options considered in conceptual phase. The paper also addresses safety and reliability analyses needed to support NASA launch vehicles design beyond the conceptual design.

  6. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    Science.gov (United States)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  7. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    Science.gov (United States)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.

    2012-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  8. Artificial intelligent decision support for low-cost launch vehicle integrated mission operations

    Science.gov (United States)

    Szatkowski, Gerard P.; Schultz, Roger

    1988-01-01

    The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.

  9. Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.

  10. Parametric fault estimation based on H∞ optimization in a satellite launch vehicle

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Stoustrup, Jakob

    2008-01-01

    Correct diagnosis under harsh environmental conditions is crucial for space vehiclespsila health management systems to avoid possible hazardous situations. Consequently, the diagnosis methods are required to be robust toward these conditions. Design of a parametric fault detector, where the fault...... estimation is formulated in the so-called standard set-up for Hinfin control design problem, is addressed in this paper. In particular, we investigate the tunability of the design through the dedicated choice of the fault model. The method is applied to the model of turbopump as a subsystem of the jet engine...... for the satellite launch vehicle and the results are discussed....

  11. Launch Vehicle Ascent Trajectory Simulation Using the Program to Optimize Simulated Trajectories II (POST2)

    Science.gov (United States)

    Lugo, Rafael A.; Shidner, Jeremy D.; Powell, Richard W.; Marsh, Steven M.; Hoffman, James A.; Litton, Daniel K.; Schmitt, Terri L.

    2017-01-01

    The Program to Optimize Simulated Trajectories II (POST2) has been continuously developed for over 40 years and has been used in many flight and research projects. Recently, there has been an effort to improve the POST2 architecture by promoting modularity, flexibility, and ability to support multiple simultaneous projects. The purpose of this paper is to provide insight into the development of trajectory simulation in POST2 by describing methods and examples of various improved models for a launch vehicle liftoff and ascent.

  12. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    Science.gov (United States)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  13. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime

    Science.gov (United States)

    Ruf, Joseph; Rojahn, Josh

    2011-01-01

    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  14. Thermographic Testing Using on the X-33 Space Launch Vehicle Program by BFGoodrich Aerospace

    Science.gov (United States)

    Burleigh, Douglas

    1999-01-01

    The X-33 program is a team effort sponsored by NASA, under Cooperative Agreement NCC8-115, and led by the Lockheed Martin Corporation. Team member BFGoodrich Aerospace Aerostructures Group (formerly Rohr) is responsible for design, manufacture, and integration of the Thermal Protection System (TPS) of the X-33 launch vehicle. The X-33 is a half-scale, experimental prototype of a vehicle called RLV (Reusable Launch Vehicle) or VentureStar(Trademark), an SSTO (single stage to orbit) vehicle, which is a proposed successor to the aging Space Shuttle. Thermographic testing has been employed by BFGoodrich Aerospace Aerostructures Group for a wide variety of uses in the testing of components of the X-33. Thermographic NDT (TNDT) has been used for inspecting large graphite-epoxy/aluminum honeycomb sandwich panels used on the Leeward Aeroshell structure of the X-33. And TNDT is being evaluated for use in inspecting carbon-carbon composite parts such as the nosecap and wing leading edge components. Pulsed Infrared Testing (PIRT), a special form of TNDT, is used for the routine inspection of sandwich panels made of brazed inconel honeycomb and facesheets. In the developmental and qualification testing of sub-elements of the X-33, thermography has been used to monitor 1) Arc Jet tests at NASA Ames Research Center in Mountainview, CA and NASA Johnson Space Center in Houston, TX, 2) High Temperature (wind) Tunnel Tests (HTT) at NASA Langley Research Center in Langley, VA, and 3) Hot Gas Tests at NASA Marshall Space Flight Center in Huntsville, AL.

  15. Stability Assessment and Tuning of an Adaptively Augmented Classical Controller for Launch Vehicle Flight Control

    Science.gov (United States)

    VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.

    2014-01-01

    Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a

  16. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    Science.gov (United States)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    instruments or user-provided instruments. Rapid turnaround will depend only on flight frequency. Data are stored on-board for retrieval when the spacecraft lands. We provide robust instrumentation that can survive suborbital spaceflight, assessment of the feasibility of the requested observations, rigorous scripting of the telescope operation, integration of the telescope plus instrument in a provider spacecraft, and periodic preventive maintenance for the telescope and instrument suite. XCOR Aerospace's Lynx III spacecraft is the best candidate vehicle to host a suborbital astronomical observatory. Unlike other similar vehicles, the Lynx will operate with only 1 or 2 people onboard (the pilot and an operator), allowing for each mission to be totally dedicated to the observation (no tourists will be bumping about; no other experiments will affect spacecraft pointing). A stable platform, the Lynx can point to an accuracy of ± 0.5o. Fine pointing is done by the telescope system. Best of all, the Lynx has a dorsal pod that opens directly to space. For astronomical observations, the best window is NO window. Currently, we plan to deploy a 20" diameter telescope in the Lynx III dorsal pod. XCOR Aerospace has the goal of eventually maintaining a Lynx flight frequency capability of 4 times/day. As with any observatory, Atsa will be available for observations by the community at large.

  17. Analytical Approach for Estimating Preliminary Mass of ARES I Crew Launch Vehicle Upper Stage Structural Components

    Science.gov (United States)

    Aggarwal, Pravin

    2007-01-01

    In January 2004, President Bush gave the National Aeronautics and Space Administration (NASA) a vision for Space Exploration by setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. In response to this vision, NASA started the Constellation Program, which is a new exploration launch vehicle program. The primary mission for the Constellation Program is to carry out a series of human expeditions ranging from Low Earth Orbit to the surface of Mars and beyond for the purposes of conducting human exploration of space, as specified by the Vision for Space Exploration (VSE). The intent is that the information and technology developed by this program will provide the foundation for broader exploration activities as our operational experience grows. The ARES I Crew Launch Vehicle (CLV) has been designated as the launch vehicle that will be developed as a "first step" to facilitate the aforementioned human expeditions. The CLV Project is broken into four major elements: First Stage, Upper Stage Engine, Upper Stage (US), and the Crew Exploration Vehicle (CEV). NASA's Marshall Space Flight Center (MSFC) is responsible for the design of the CLV and has the prime responsibility to design the upper stage of the vehicle. The US is the second propulsive stage of the CLV and provides CEV insertion into low Earth orbit (LEO) after separation from the First Stage of the Crew Launch Vehicle. The fully integrated Upper Stage is a mix of modified existing heritage hardware (J-2X Engine) and new development (primary structure, subsystems, and avionics). The Upper Stage assembly is a structurally stabilized cylindrical structure, which is powered by a single J-2X engine which is developed as a separate Element of the CLV. The primary structure includes the load bearing liquid hydrogen (LH2) and liquid oxygen (LOX) propellant tanks, a Forward Skirt, the Intertank structure, the Aft Skirt and the Thrust Structure. A Systems Tunnel, which carries fluid and

  18. Mission Success of U.S. Launch Vehicle Flights from a Propulsion Stage-Based Perspective: 1980-2015

    Science.gov (United States)

    Go, Susie; Lawrence, Scott L.; Mathias, Donovan L.; Powell, Ryann

    2017-01-01

    This report documents a study of the historical safety and reliability trends of U.S. space launch vehicles from 1980 to 2015. The launch data history is examined to determine whether propulsion technology choices drove launch system risk and is used to understand how different propulsion system failures manifested into different failure scenarios. The historical data is processed by launch vehicle stage, where a stage is limited by definition to a single propulsion technology, either liquid or solid. Results are aggregated in terms of failure trends and manifestations as a functions of different propulsion stages. Failure manifestations are analyzed in order to understand the types and frequencies of accident environments in which an abort system for a crewed vehicle would be required to operate.

  19. Suborbital industry at the edge of space

    CERN Document Server

    Seedhouse, Erik

    2014-01-01

    Until recently, spaceflight has been the providence of a select corps of astronauts whose missions, in common with all remarkable exploits, were experienced vicariously by the rest of the world via television reports and Internet feeds. These spacefarers risked their lives in the name of science, exploration and adventure, thanks to government-funded manned spaceflight programs. All that is about to change The nascent commercial suborbital spaceflight industry will soon open the space frontier to commercial astronauts, payload specialists and, of course, spaceflight participants. Suborbital explains the tantalizing science opportunities offered when suborbital trips become routine and describes the difference in training and qualification necessary to become either a spaceflight participant or a fully fledged commercial suborbital astronaut. Suborbital also explains how the commercial suborbital spaceflight industry is planning and preparing for the challenges of marketing the hiring of astronauts. It examine...

  20. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-10-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  1. Overview of Orion Crew Module and Launch Abort Vehicle Dynamic Stability

    Science.gov (United States)

    Owens, Donald B.; Aibicjpm. Vamessa V.

    2011-01-01

    With the retirement of the Space Shuttle, NASA is designing a new spacecraft, called Orion, to fly astronauts to low earth orbit and beyond. Characterization of the dynamic stability of the Orion spacecraft is important for the design of the spacecraft and trajectory construction. Dynamic stability affects the stability and control of the Orion Crew Module during re-entry, especially below Mach = 2.0 and including flight under the drogues. The Launch Abort Vehicle is affected by dynamic stability as well, especially during the re-orientation and heatshield forward segments of the flight. The dynamic stability was assessed using the forced oscillation technique, free-to-oscillate, ballistic range, and sub-scale free-flight tests. All of the test techniques demonstrated that in heatshield-forward flight the Crew Module and Launch Abort Vehicle are dynamically unstable in a significant portion of their flight trajectory. This paper will provide a brief overview of the Orion dynamic aero program and a high-level summary of the dynamic stability characteristics of the Orion spacecraft.

  2. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  3. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  4. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    Science.gov (United States)

    Rose, Michael Benjamin

    A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical

  5. Solar thermal OTV—Applications to reusable and expendable launch vehicles

    Science.gov (United States)

    Kassler, Thomas L.; Frye, Patrick; Partch, Russ

    2000-07-01

    The Solar Orbit Transfer Vehicle (SOTV) program being sponsored by the U.S. Air Force Research Laboratory (AFRL) is developing technology that will engender revolutionary benefits to satellites and orbitto-orbit transfer systems. Solar thermal propulsion offers significant advantages for near-term expendable launch vehicles (ELVs) such as Delta IV, mid- to farterm reusable launch vehicles (RLVs) and ultimately to manned exploration of the Moon and Mars. Solar thermal propulsion uses a relatively large mirrored concentrator to focus solar energy onto a compact absorber, which is in turn heated to > 2200 K. This heat can then be used in two major ways. By flowing hydrogen or another working fluid through the absorber, high efficiency thrust can be generated with 800 sec or more specific impulse (Isp), almost twice that of conventional cryogenic stages and comparable with typical solid-core nuclear thermal stages. Within a decade, advances in materials and fabrication processes hold the promise of the Isp ranging up to 1,100 sec. In addition, attached thermionic or alkali metal thermoelectric converter (AMTEC) power converters can be used to generate 20 to 100 kilowatts (kW) of electricity. The SOTV Space Experiment (SOTV-SE), planned to be flown in 2003, will demonstrate both hydrogen propulsion and thermionic power generation, including advanced lightweight deployable concentrators suitable for large-scale applications. Evolutionary geosynchronous-transfer orbit/ geosynchronous-Earth orbit (GTO/GEO) payload lift capability improvements of 50% or more to the Delta IV launch vehicles could be implemented as part of the Delta IV P4I plan shortly thereafter. Beyond that, SOTV technology should allow long-term storage of stages in orbits up to GEO with tremendous maneuvering capability, potentially 4 to 5 km/sec or more. Servicing of low-Earth orbit (LEO) and GEO assets and reusable (ROTVs) are other possible applications. Offering a combination of high Isp and high

  6. A Characterization of the Terrestrial Environment of Kodiak Island, Alaska for the Design, Development and Operation of Launch Vehicles

    Science.gov (United States)

    Rawlins, Michael A.; Johnson, Dale L.; Batts, Glen W.

    2000-01-01

    A quantitative characterization of the terrestrial environment is an important component in the success of a launch vehicle program. Environmental factors such as winds, atmospheric thermodynamics, precipitation, fog, and cloud characteristics are among many parameters that must be accurately defined for flight success. The National Aeronautics and Space Administration (NASA) is currently coordinating weather support and performing analysis for the launch of a NASA payload from a new facility located at Kodiak Island, Alaska in late 2001 (NASA, 1999). Following the first launch from the Kodiak Launch Complex, an Air Force intercontinental ballistic missile on November 5, 1999, the site's developer, the Alaska Aerospace Development Corporation (AADC), is hoping to acquire a sizable share of the many launches that will occur over the next decade. One such customer is NASA, which is planning to launch the Vegetation Canopy Lidar satellite aboard an Athena I rocket, the first planned mission to low earth orbit from the new facility. To support this launch, a statistical model of the atmospheric and surface environment for Kodiak Island, AK has been produced from rawinsonde and surface-based meteorological observations for use as an input to future launch vehicle design and/or operations. In this study, the creation of a "reference atmosphere" from rawinsonde observations is described along with comparisons between the reference atmosphere and existing model representations for Kodiak. Meteorological conditions that might result in a delay on launch day (cloud cover, visibility, precipitation, etc.) are also explored and described through probabilities of launch by month and hour of day. This atmospheric "mission analysis" is also useful during the early stages of a vehicle program, when consideration of the climatic characteristics of a location can be factored into vehicle designs. To be most beneficial, terrestrial environment definitions should a) be available at

  7. Ares I Crew Launch Vehicle Project: Forward Plan to Preliminary Design Review

    Science.gov (United States)

    Dumbacher, Daniel L.; Reuter, James L.

    2007-01-01

    The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, conducted the Ares I Crew Launch Vehicle System Requirements Review (SRR) at the end of 2006, a mere year after the project team was assembled. In Ares' first year, extensive trade studies and evaluations were conducted to refine the design initially recommended by the Exploration Systems Architecture Study, conceptual designs were analyzed for fitness, and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. Now, the project turns its focus to the Preliminary Design Review (PDR), scheduled for 2008. Taking into consideration the findings of the SRR, the design of the Ares I is being tightened and refined to meet the operability, reliability, and affordability goals outlined by the Constellation Program. As directed in NASA Procedure and Regulation (NPR) 7123, NASA Systems Engineering Procedural Requirements, the Ares I SRR examined "the functional and performance requirements defined for the system and the preliminary program or project plan and ensures that the requirements and the selected concept will satisfy the mission." The SRR was conducted to ensure the system- and element-level design and interface requirements are defined prior to proceeding into the project's design phase. The Exploration Launch Projects Control Board convened on December 19,2006, and accepted the findings of the SRR and the go-forward plan proceeding to PDR. Based upon these findings, the Ares project believes that operability must drive the vehicle's design, and that a number of design challenges, including system mass and reliability, must be addressed as part of the progress to PDR.

  8. Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance

    Science.gov (United States)

    Ngo, Christina L.; Powell, Jessica M.; Ross, James C.

    2017-01-01

    A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.

  9. Performance analysis of IMU-augmented GNSS tracking systems for space launch vehicles

    Science.gov (United States)

    Braun, Benjamin; Markgraf, Markus; Montenbruck, Oliver

    2016-06-01

    European space launch operators consider the potential of GNSS (global navigation satellite system) as a promising novel means of localization for the purpose of range safety of launch vehicles like Ariane and Vega, since it is expected that recurring costs are lower and accuracy is higher than currently existing systems like radar tracking. Range safety requires continuous information about the position and velocity of the launch vehicle to quickly detect the occurrence of catastrophic events. However, GNSS outages due, for example, to high jerks at fairing and stage jettisons or other external interferences like (un-)intentional jamming cannot be precluded. The OCAM-G experiment on Ariane 5 flight VA219 has provided evidence that GNSS is capable of providing a highly accurate position and velocity solution during most of the flight, but that outages of several seconds do occur. To increase the continuity of a GNSS-based localization system, it is proposed that the GNSS receiver is augmented by an inertial measurement unit (IMU), which is able to output a position and velocity solution even during GNSS outages. Since these outages are expected to be short, a tactical- or even consumer-grade IMU is expected to be sufficient. In this paper, the minimum IMU performance that is required to bridge outages of up to 10 s, and thereby meeting the accuracy requirements of range safety, is determined by means of a thorough simulation study. The focus of the analysis is on current generation microelectromechanical system (MEMS)-based IMU, which is lightweight, low-cost, available commercially and has reached acceptable maturity in the last decade.

  10. A Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles

    Science.gov (United States)

    Alexander, Reginald A.; Stanley, Thomas Troy

    1999-01-01

    reduce the TPS mass. The problem described is an example of the need for collaborative design and analysis. Analysis tools are being developed to facilitate these collaborative efforts. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. The analysis tools mentioned earlier are commonly run on different platforms and are usually run by different people. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, heat rate data, and TPS masses so that the output from each tool is easily transferred to the model input files that need it. This methodology is being applied to solve launch vehicle thermal design problems to shorten the design cycle, and enable the project team to evaluate design options. Results will be presented indicating the effectiveness of this as a collaborative design tool.

  11. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    Science.gov (United States)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  12. Evaluation of Advanced Thermal Protection Techniques for Future Reusable Launch Vehicles

    Science.gov (United States)

    Olds, John R.; Cowart, Kris

    2001-01-01

    A method for integrating Aeroheating analysis into conceptual reusable launch vehicle RLV design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth I-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system JPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization.

  13. Solar power satellite system definition study. Part 2, volume 8: SPS launch vehicle ascent and entry sonic overpressure and noise effects

    Science.gov (United States)

    1977-01-01

    Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.

  14. Analysis of a Hypergolic Propellant Explosion During Processing of Launch Vehicles in the VAB

    Science.gov (United States)

    Chrostowski, Jon D.; Gan Wenshui; Campbell, Michael D.

    2010-01-01

    NASA is developing launch vehicles to support missions to Low Earth Orbit (LEO), the moon and deep space. Whether manned or unmanned, the vehicle components will likely be integrated in the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC) and typically include a fueled spacecraft (SC) that sits on top of one or more stages. The processing of a fueled SC involves hazardous operations when it is brought into the VAB Transfer Aisle and lifted a significant height for mating with lower stages. Accidents resulting from these hazardous operations could impact unrelated personnel working in buildings adjacent to the VAB. Safe separation distances based on the DOD Explosives Standards Quantity-Distance (Q-D) approach result in large IBD arcs. This paper presents site-specific air blast and fragmentation hazard analyses for comparison with the Q-D arcs as well as consequence and risk analyses to provide added information for the decision maker. A new physics-based fragmentation model is presented that includes: a) the development of a primary fragment list (which defines the fragment characteristics) associated with a hypergolic propellant explosion, b) a description of a 3D fragment bounce model, c) the results of probabilistic Monte-Carlo simulations (that include uncertainties in the fragment characteristics) to determine: i) the hazardous fragment density distance, ii) the expected number of wall/roof impacts and penetrations to over 40 buildings adjacent to the VAB, and iii) the risk to building occupants.

  15. Buckling Design and Imperfection Sensitivity of Sandwich Composite Launch-Vehicle Shell Structures

    Science.gov (United States)

    Schultz, Marc R.; Sleight, David W.; Myers, David E.; Waters, W. Allen, Jr.; Chunchu, Prasad B.; Lovejoy, Andrew W.; Hilburger, Mark W.

    2016-01-01

    Composite materials are increasingly being considered and used for launch-vehicle structures. For shell structures, such as interstages, skirts, and shrouds, honeycomb-core sandwich composites are often selected for their structural efficiency. Therefore, it is becoming increasingly important to understand the structural response, including buckling, of sandwich composite shell structures. Additionally, small geometric imperfections can significantly influence the buckling response, including considerably reducing the buckling load, of shell structures. Thus, both the response of the theoretically perfect structure and the buckling imperfection sensitivity must be considered during the design of such structures. To address the latter, empirically derived design factors, called buckling knockdown factors (KDFs), were developed by NASA in the 1960s to account for this buckling imperfection sensitivity during design. However, most of the test-article designs used in the development of these recommendations are not relevant to modern launch-vehicle constructions and material systems, and in particular, no composite test articles were considered. Herein, a two-part study on composite sandwich shells to (1) examine the relationship between the buckling knockdown factor and the areal mass of optimized designs, and (2) to interrogate the imperfection sensitivity of those optimized designs is presented. Four structures from recent NASA launch-vehicle development activities are considered. First, designs optimized for both strength and stability were generated for each of these structures using design optimization software and a range of buckling knockdown factors; it was found that the designed areal masses varied by between 6.1% and 19.6% over knockdown factors ranging from 0.6 to 0.9. Next, the buckling imperfection sensitivity of the optimized designs is explored using nonlinear finite-element analysis and the as-measured shape of a large-scale composite cylindrical

  16. Sub-orbital flights, a starting point for space tourism

    Science.gov (United States)

    Gaubatz, William A.

    2002-07-01

    While there is a growing awareness and interest by the general public in space travel neither the market nor the infrastructure exist to make a commercial space tourism business an attractive risk venture. In addition there is much to be learned about how the general public will respond to space flights and what physiological and psychological needs must be met to ensure a pleasurable as well as adventurous experience. Sub-orbital flights offer an incremental approach to develop the market and the infrastructure, demonstrate the safety of space flight, obtain real flight information regarding the needs of general public passengers and demonstrate the profitability of space tourism. This paper will summarize some of the system, operations, and financial aspects of creating a sub-orbital space tourism business as a stepping-stone to public space travel. A sample business case will be reviewed and impacts of markets, operations and vehicle costs and lifetimes will be assessed.

  17. Analysis of a Transonic Alternating Flow Phenomenon Observed During Ares Crew Launch Vehicle Wind Tunnel Tests

    Science.gov (United States)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2010-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition from separated to attached flow about the cone-cylinder junction with increasing Mach number. For locally transonic conditions at this junction, the flow randomly fluctuates back and forth between a subsonic separated flow and a supersonic attached flow. These fluctuations produce a square-wave like pattern in the pressure time histories which, upon integration result in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a wind-tunnel-test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load

  18. Life Cycle Cost Analysis of Shuttle-Derived Launch Vehicles, Volume 1

    Science.gov (United States)

    1982-01-01

    The design, performance, and programmatic definition of shuttle derived launch vehicles (SDLV) established by two different contractors were assessed and the relative life cycle costs of space transportation systems using the shuttle alone were compared with costs for a mix of shuttles and SDLV's. The ground rules and assumptions used in the evaluation are summarized and the work breakdown structure is included. Approaches used in deriving SDLV costs, including calibration factors and historical data are described. Both SDLV cost estimates and SDLV/STS cost comparisons are summarized. Standard formats are used to report comprehensive SDLV life cycle estimates. Hardware cost estimates (below subsystem level) obtained using the RCA PRICE 84 cost model are included along with other supporting data.

  19. Low Pressure Plasma Sprayed Overlay Coatings for GRCop-84 Combustion Chamber Liners for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, S. V.; Barrett, C.; Ghosn, L. J.; Lerch, B.; Robinson,; Thorn, G.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor chamber liners and nozzle ramps in NASA s future generations of reusable launch vehicles (RLVs). However, past experience has shown that unprotected copper alloys undergo an environmental attack called "blanching" in rocket engines using liquid hydrogen as fuel and liquid oxygen as the oxidizer. Potential for sulfidation attack of the liners in hydrocarbon-fueled engines is also of concern. Protective overlay coatings alloys are being developed for GRCop-84. The development of this coatings technology has involved a combination of modeling, coatings development and characterization, and process optimization. Coatings have been low pressure plasma sprayed on GRCop-84 substrates of various geometries and shapes. Microstructural, mechanical property data and thermophysical results on the coated substrates are presented and discussed.

  20. Optimum topology design for the concentrated force diffusion structure of strap-on launch vehicle

    Directory of Open Access Journals (Sweden)

    Mei Yong

    2017-01-01

    Full Text Available The thrust from the booster of strap-on launch vehicle is transmitted to the core via the strap-on linkage device, so the reinforced structure to diffusion the concentrated force should be employed in the installation site of this device. To improve the bearing-force characteristics of the concentrated force diffusion structure in strap-on linkage section and realize the lightweight design requirements, topology optimization under multiple load cases is conducted for the concentrated force diffusion structure in this study. The optimal configuration finally obtained can achieve 17.7% reduction in total weight of the structure. Meanwhile, results of strength analysis under standard load cases show the stress level of this design scheme of the concentrated force diffusion structure meet design requirements and the proposed topology optimization method is suitable for the design of the concentrated force diffusion structure in concept design phase.

  1. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    Science.gov (United States)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  2. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  3. Numerical Estimation of Sound Transmission Loss in Launch Vehicle Payload Fairing

    Science.gov (United States)

    Chandana, Pawan Kumar; Tiwari, Shashi Bhushan; Vukkadala, Kishore Nath

    2017-08-01

    Coupled acoustic-structural analysis of a typical launch vehicle composite payload faring is carried out, and results are validated with experimental data. Depending on the frequency range of interest, prediction of vibro-acoustic behavior of a structure is usually done using the finite element method, boundary element method or through statistical energy analysis. The present study focuses on low frequency dynamic behavior of a composite payload fairing structure using both coupled and uncoupled vibro-acoustic finite element models up to 710 Hz. A vibro-acoustic model, characterizing the interaction between the fairing structure, air cavity, and satellite, is developed. The external sound pressure levels specified for the payload fairing's acoustic test are considered as external loads for the analysis. Analysis methodology is validated by comparing the interior noise levels with those obtained from full scale Acoustic tests conducted in a reverberation chamber. The present approach has application in the design and optimization of acoustic control mechanisms at lower frequencies.

  4. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles

    Science.gov (United States)

    Scotti, Stephen J.; Clay, Christopher; Rezin, Marc

    2003-01-01

    This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.

  5. Structural Sizing of a 25,000-lb Payload, Air-breathing Launch Vehicle for Single-stage-to-orbit

    Science.gov (United States)

    Roche, Joseph M.; Kosareo, Daniel N.

    2001-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (five to ten years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  6. Cryo-Tracker® Mass Gauging System Testing in a Launch Vehicle Simulation

    Science.gov (United States)

    Schieb, Daniel J.; Haberbusch, Mark S.; Yeckley, Alexander J.

    2006-04-01

    Sierra Lobo successfully tested its patented Cryo-Tracker® probe and mass gauging system in an Expendable Launch Vehicle (ELV) liquid oxygen tank simulation for NASA's Launch Service Providers Directorate. The effort involved collaboration between Sierra Lobo, NASA Kennedy Space Center (KSC), and Lockheed Martin personnel. Testing simulated filling and expulsion operations of Lockheed Martin's Atlas V liquid oxygen (LOX) tank and characterized the 10.06 m (33-ft) Cryo-Tracker's performance. Sierra Lobo designed a 9.14 m (30-ft) tall liquid nitrogen test tank to simulate the Atlas V LOX tank flow conditions and validate Cryo-Tracker® data via other sensors and visualization. This test package was fabricated at Sierra Lobo's Cryogenics Testbed at NASA KSC. All test objectives were met or exceeded. Key accomplishments include: fabrication of the longest Cryo-Tracker® probe to date; installation technique proven with only two attachment points at top and bottom of tank; probe survived a harsh environment with no loss of signal or structural integrity; probe successfully measured liquid levels and temperatures under all conditions and successfully demonstrated its feasibility as an engine cut-off signal.

  7. Aerodynamic characteristics of Lockheed delta-body orbiter and stage-and-one-half launch vehicle

    Science.gov (United States)

    Velligan, F. A.; Svendsen, H. O.

    1971-01-01

    An experimental wind tunnel test program was conducted to investigate the subsonic through high supersonic aerodynamic characteristics of the Lockheed delta lifting body orbiter and stage-and-one-half launch vehicle. Analyses and results of these data are presented. A 0.01-scale model of the LS 200-5 system was designed and fabricated for testing in wind tunnels. Orbiter and launch configurations were tested over a speed range of Mach 0.6 to 2.0, whereas only the orbiter was tested over a speed range of Mach 2.3 to 4.6. Six-component force and moment data, base pressures, and schlieren photos were obtained at various angles-of-attack and sideslip. A 0.03-scale model of the orbiter was also designed, fabricated, and tested in a wind tunnel. Six-component force and moment data, base pressure, and a limited amount of tuft flow visualization data were obtained on a variety of configuration combinations.

  8. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  9. Distributed Algorithm for Computing the Vehicle Launch Dynamics under Interaction with the Medium

    Directory of Open Access Journals (Sweden)

    G. A. Shcheglov

    2015-01-01

    Full Text Available The paper describes a distributed algorithm and a structure of the software package for its implementation in which a program for computing the vehicle launch dynamics under interaction with the medium flow is complemented with a program to determine the unsteady hydrodynamic loads by the vortex element method.A distinctive feature of the developed system is that its local (running on a single computing core LEAVING program to calculate the launch dynamics runs together with concurrent (running on multiple computing cores MDVDD program to compute the unsteady vortex flow and hydrodynamic loads. The LEAVING program is the main one. It is launched app and then runs the MDVDD program in concurrent mode on the specified number of cores. Using MPI technology allows you to use a multiprocessor PC or a local network of multiple PCs to perform calculations. The equations of launcher spring-mass model dynamics and equations of vortex elements parameters evolution are integrated with the same time step. The interprogram communiaction in the step is provided asynchronously using the OS Windows Event mechanism (Events. Interfacing between LEAVING and MDVDD programs is built using the OS Windows FileMapping technology, which allows a specified data structure to be displayed and read to the fixed memory area.The paper provides analysis of acceleration achieved with parallel processing on different numbers of cores, and defines a parallelization degree of various operations. It shows that the parallelization efficiency of the developed algorithm is slower than in case of calculation of the rigid body flow. The causes of reduced efficiency are discussed.It is shown that the developed algorithm can be effectively used to solve problems on a small number of cores, e.g. on PC based on one or two quad-core processors.

  10. Evolved Expendable Launch Vehicle: DOD Is Assessing Data on Worldwide Launch Market to Inform New Acquisition Strategy

    Science.gov (United States)

    2016-07-22

    class. Small payloads are those weighing approximately 1-2,600 lbs. Medium class payloads weigh between 2,600-5,500 lbs. Intermediate payloads range in...or partially owned by their governments. The Russian launch provider Khrunichev, which is owned by the Russian government, operates and maintains

  11. Overview of U.S. nuclear launch safety approval process, supporting launch vehicle databook and probabilistic risk assessment methods

    Science.gov (United States)

    Reinhart, L. E.

    2001-01-01

    This paper provides an overview of the U.S. space nuclear power system launch approval process as defined by the two separate requirements of the National Environmental Policy Act (NEPA) and Presidential Directive/National Security Council Memorandum No. 25 (PD/NSC-25).

  12. Earth Observatory Satellite system definition study. Report no. 1: Orbit/launch vehicle tradeoff studies and recommendations

    Science.gov (United States)

    1974-01-01

    A study was conducted to determine the recommended orbit for the Earth Observatory Satellite (EOS) Land Resources Mission. It was determined that a promising sun synchronous orbit is 366 nautical miles when using an instrument with a 100 nautical mile swath width. The orbit has a 17 day repeat cycle and a 14 nautical mile swath overlap. Payloads were developed for each mission, EOS A through F. For each mission, the lowest cost booster that was capable of lifting the payload to the EOS orbit was selected. The launch vehicles selected for the missions are identified on the basis of tradeoff studies and recommendations. The reliability aspects of the launch vehicles are analyzed.

  13. The selection of commercial astronauts for suborbital spaceflight

    Science.gov (United States)

    Kozak, Brian J.

    With the launch of Dennis Tito aboard a Russian Soyuz rocket in 2001 and SpaceShipOne winning the Ansari X-Prize in 2004, the commercial space tourism industry is on the verge of lifting off. In 2007 Burt Rutan spoke about the future of space tourism, "We think that 100,000 people will fly by 2020" (Rutan, 2007). With such a high frequency of suborbital spaceflights, there is a need for qualified crews to operate the spacecraft. The purpose of this qualitative, exploratory study was to investigate the possible selection criteria for suborbital commercial astronauts within the space tourism industry. Data was collected in the form of telephone and email interviews with 4 of the 5 U.S.-based suborbital space tourism companies participating. Purdue University's extensive astronaut alumni network was used to augment data gathered with five astronauts who have flown in space. In addition, Brian Binnie, the pilot who flew SpaceShipOne on its award winning Ansari X-Prize flight, participated. Grounded Theory and Truth and Reality Testing were used as the theoretical framework for data analysis. The data gathered suggests that the commercial astronaut should have at least a Bachelor's degree in engineering, have a test pilot background with thousands of hours of pilot-in-command time in high performance jet aircraft, be confident yet humble in personality, and have a fundamental understanding of their spacecraft, including spacecraft trajectories, and emergency procedures.

  14. Review of Our National Heritage of Launch Vehicles Using Aerodynamic Surfaces and Current Use of These by Other Nations. Part II; Center Director's Discretionary Fund Project Numbe

    Science.gov (United States)

    Barret, C.

    1996-01-01

    Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability. As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director's Discretionary Fund Project 93-05 and has a previous and subsequent companion publication.

  15. Source Data Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models

    Science.gov (United States)

    Al Hassan, Mohammad; Novack, Steven; Ring, Robert

    2016-01-01

    Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system in which it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for suggesting epistemic component uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide one example for assigning environmental factors uncertainty when translating between operating environments for the microelectronic part-type components. The heuristic guidelines will be followed by uncertainty-importance routines to assess the need for more applicable data to reduce model uncertainty.

  16. High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles

    Science.gov (United States)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2004-01-01

    High temperature, dynamic structural seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures from 2000 to 2500 F. NASA GRC became involved in the development of high temperature structural seals in the late 1980 s and early 1990 s during the National Aerospace Plane (NASP) program. Researchers at GRC carried out an in-house program to develop seals for the NASP hypersonic engine and oversaw industry efforts for airframe and propulsion system seal development for this vehicle. The figure shows one of the seal locations in the NASP engine. Seals were needed along the edges of movable panels in the engine to seal gaps between the panels and adjacent engine sidewalls. Seals developed during the NASP program met many requirements but fell short of leakage, durability, and resiliency goals. Due to program termination the seals could not be adequately matured. To overcome these shortfalls, GRC is currently developing advanced seals and seal preloading devices for the hypersonic engines of future space vehicles as part of NASA s Next Generation Launch Technology (NGLT) program.

  17. L1 Adaptive Control Law for Flexible Space Launch Vehicle and Proposed Plan for Flight Test Validation

    Science.gov (United States)

    Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira

    2008-01-01

    This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.

  18. Non-Intrusive Techniques of Inspections During the Pre-Launch Phase of Space Vehicle

    Science.gov (United States)

    Thirumalainambi, Rejkumar; Bardina, Jorge E.

    2005-01-01

    This paper addresses a method of non-intrusive local inspection of surface and sub-surface conditions, interfaces, laminations and seals in both space vehicle and ground operations with an integrated suite of imaging sensors during pre-launch operations. It employs an advanced Raman spectrophotometer with additional spectrophotometers and lidar mounted on a flying robot to constantly monitor the space hardware as well as inner surface of the vehicle and ground operations hardware. This paper addresses a team of micro flying robots with necessary sensors and photometers to monitor the entire space vehicle internally and externally. The micro flying robots can reach altitude with least amount of energy, where astronauts have difficulty in reaching and monitoring the materials and subsurface faults. The micro flying robot has an embedded fault detection system which acts as an advisory system and in many cases micro flying robots act as a Supervisor to fix the problems. As missions expand to a sustainable presence in the Moon, and extend for durations longer than one year in lunar outpost, the effectiveness of the instrumentation and hardware has to be revolutionized if NASA is to meet high levels of mission safety, reliability, and overall success. The micro flying robot uses contra-rotating propellers powered by an ultra-thin, ultrasonic motor with currently the world's highest power weight ratio, and is balanced in mid-air by means of the world's first stabilizing mechanism using a linear actuator. The essence of micromechatronics has been brought together in high-density mounting technology to minimize the size and weight. The robot can take suitable payloads of photometers, embedded chips for image analysis and micro pumps for sealing cracks or fixing other material problems. This paper also highlights advantages that this type of non-intrusive techniques offer over costly and monolithic traditional techniques.

  19. CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests

    Science.gov (United States)

    Pichon, T.; Barreteau, R.; Soyris, P.; Foucault, A.; Parenteau, J. M.; Prel, Y.; Guedron, S.

    2009-07-01

    Experimental re-entry demonstrators are currently being developed in Europe, with the objective of increasing the technology readiness level (TRL) of technologies applicable to future reusable launch vehicles. Among these are the Pre-X programme, currently funded by CNES, the French Space Agency, and which is about to enter into development phase B, and the IXV, within the future launcher preparatory programme (FLPP) funded by ESA. One of the major technologies necessary for such vehicles is the thermal protection system (TPS), and in particular the ceramic matrix composites (CMC) based windward TPS. In support of this goal, technology maturation activities named "generic shingle" were initiated beginning of 2003 by SPS, under a CNES contract, with the objective of performing a test campaign of a complete shingle of generic design, in preparation of the development of a re-entry experimental vehicle decided in Europe. The activities performed to date include: the design, manufacturing of two C/SiC panels, finite element model (FEM) calculation of the design, testing of technological samples extracted from a dedicated panel, mechanical pressure testing of a panel, and a complete study of the attachment system. Additional testing is currently under preparation on the panel equipped with its insulation, seal, attachment device, and representative portion of cold structure, to further assess its behaviour in environments relevant to its application The paper will present the activities that will have been performed in 2006 on the prediction and preparation of these modal characterization, dynamic, acoustic as well as thermal and thermo-mechanical tests. Results of these tests will be presented and the lessons learned will be discussed.

  20. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  1. Rocket motor exhaust products generated by the space shuttle vehicle during its launch phase (1976 design data)

    Science.gov (United States)

    Bowyer, J. M.

    1977-01-01

    The principal chemical species emitted and/or entrained by the rocket motors of the space shuttle vehicle during the launch phase of its trajectory are considered. Results are presented for two extreme trajectories, both of which were calculated in 1976.

  2. The Profile Envision and Splicing Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    Science.gov (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Launch vehicle programs require vertically complete atmospheric profiles. Many systems at the ER to make the necessary measurements, but all have different EVR, vertical coverage, and temporal coverage. MSFC Natural Environments Branch developed a tool to create a vertically complete profile from multiple inputs using Python. Forward work: Finish Formal Testing Acceptance Testing, End-to-End Testing. Formal Release

  3. Small Launch Vehicle Trade Space Definition: Development of a Zero Level Mass Estimation Tool with Trajectory Validation

    Science.gov (United States)

    Waters, Eric D.

    2013-01-01

    Recent high level interest in the capability of small launch vehicles has placed significant demand on determining the trade space these vehicles occupy. This has led to the development of a zero level analysis tool that can quickly determine the minimum expected vehicle gross liftoff weight (GLOW) in terms of vehicle stage specific impulse (Isp) and propellant mass fraction (pmf) for any given payload value. Utilizing an extensive background in Earth to orbit trajectory experience a total necessary delta v the vehicle must achieve can be estimated including relevant loss terms. This foresight into expected losses allows for more specific assumptions relating to the initial estimates of thrust to weight values for each stage. This tool was further validated against a trajectory model, in this case the Program to Optimize Simulated Trajectories (POST), to determine if the initial sizing delta v was adequate to meet payload expectations. Presented here is a description of how the tool is setup and the approach the analyst must take when using the tool. Also, expected outputs which are dependent on the type of small launch vehicle being sized will be displayed. The method of validation will be discussed as well as where the sizing tool fits into the vehicle design process.

  4. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities

  5. What can be learned about Polar Mesospheric Clouds from suborbital missions?

    Science.gov (United States)

    Thomas, G. E.; McClintock, W.; Fritts, D. C.

    2011-12-01

    Noctilucent clouds ('night luminous' or NLC) are the highest and coldest clouds in the atmosphere. When viewed from the ground they are referred to as NLC. Viewed from space they are called Polar Mesospheric Clouds, or PMC. Occupying a narrow (81-86 km) height zone below the high-latitude mesopause (a temperature minimum versus height, located near 88 km), NLC offer a splendid sight during summer twilights. They are made visible by scattered sunlight against the dark twilight sky, when the sun lies below the horizon at angles between 6o and 16o. The state of the science has been advanced significantly since the launches of the Odin and Aeronomy of Ice in the Mesosphere (AIM) satellite missions. The spatial scales of the clouds are evident in the Cloud Imaging and Particle Size (CIPS) experiment down to its limiting resolution of 5 km. However, from ground-based photography of NLC, and from theoretical modeling of small-scale 3D instability and turbulence dynamics in the upper mesosphere, we know that there is much structure on the sub-km scale which is yet to be explored. Turbulent breakdown is expected to occur in this sub-km range. Fortunately, on the short-time scales of turbulence, ice particles should act as passive tracers, which are advected by the wind field. Sub-orbital missions provide an ideal observing platform for extending the PMC 'spatial spectrum' ranging currently from hundreds to tens of km (which we now know from CIPS) down to tens of meters, a 'leap' of three orders of magnitude. A high resolution camera with a CMOS chip, is easily capable of sub-km resolution, with S/N ratios exceeding 100 for a bright PMC. A wide (150 nm) bandpass centered on the blue portion of the PMC spectrum isolates the most intense portion of the scattered brightness. Movies of the clouds as the sub-orbital vehicle approaches, and penetrates the cloud, would be valuable, both for the scientific goal of studying the 'transition to turbulence', but also for educational

  6. High Voltage EEE Parts for EMA/EHA Applications on Manned Launch Vehicles

    Science.gov (United States)

    Griffin, Trent; Young, David

    2011-01-01

    The objective of this paper is an assessment of high voltage electronic components required for high horsepower electric thrust vector control (TVC) systems for human spaceflight launch critical application. The scope consists of creating of a database of available Grade 1 electrical, electronic and electromechanical (EEE) parts suited to this application, a qualification path for potential non-Grade 1 EEE parts that could be used in these designs, and pathfinder testing to validate aspects of the proposed qualification plan. Advances in the state of the art in high power electric power systems enable high horsepower electric actuators, such as the electromechnical actuator (EMA) and the electro-hydrostatic actuator (EHA), to be used in launch vehicle TVC systems, dramaticly reducing weight, complexity and operating costs. Designs typically use high voltage insulated gate bipolar transistors (HV-IGBT). However, no Grade 1 HV-IGBT exists and it is unlikely that market factors alone will produce such high quality parts. Furthermore, the perception of risk, the lack of qualification methodoloy, the absence of manned space flight heritage and other barriers impede the adoption of commercial grade parts onto the critical path. The method of approach is to identify high voltage electronic component types and key parameters for parts currently used in high horsepower EMA/EHA applications, to search for higher quality substitutes and custom manufacturers, to create a database for these parts, and then to explore ways to qualify these parts for use in human spaceflight launch critical application, including grossly derating and possibly treating hybrid parts as modules. This effort is ongoing, but results thus far include identification of over 60 HV-IGBT from four manufacturers, including some with a high reliability process flow. Voltage ranges for HV-IGBT have been identified, as has screening tests used to characterize HV-IGBT. BSI BS ISO 21350 Space systems Off

  7. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision

    Science.gov (United States)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  8. Suborbital Asteroid Intercept and Fragmentation for Very Short Warning Time Scenarios

    Science.gov (United States)

    Hupp, Ryan; Dewald, Spencer; Wie, Bong; Barbee, Brent W.

    2015-01-01

    Small near-Earth objects (NEOs) 50150 m in size are far more numerous (hundreds of thousands to millions yet to be discovered) than larger NEOs. Small NEOs, which are mostly asteroids rather than comets, are very faint in the night sky due to their small sizes, and are, therefore, difficult to discover far in advance of Earth impact. However, even small NEOs are capable of creating explosions with energies on the order of tens or hundreds of megatons (Mt).We are, therefore, motivated to prepare to respond effectively to short warning time, small NEO impact scenarios. In this paper we explore the lower bound on actionable warning time by investigating the performance of notional upgraded Intercontinental Ballistic Missiles (ICBMs) to carry Nuclear Explosive Device (NED) payloads to intercept and disrupt a fictitious incoming NEO at high altitudes (generally, at least 2500 km above Earth). We conduct this investigation by developing optimal NEO intercept trajectories for a range of cases and comparing their performances.Our results show that suborbital NEO intercepts using Minuteman III or SM-3 IIA launch vehicles could achieve NEO intercept a few minutes prior to when the NEOwould strike Earth. We also find that more powerful versions of the launch vehicles (e.g., total V 9.511 kms) could intercept incoming NEOs over a day prior to when the NEO would strike Earth, if launched at least several days prior to the time of NEO intercept. Finally, we discuss a number of limiting factors and practicalities that affect whether the notional systems we describe could become feasible.

  9. Suborbital Intercept and Fragmentation of an Asteroid with Very Short Warning Time Scenario

    Science.gov (United States)

    Hupp, Ryan; DeWald, Spencer; Wie, Bong; Barbee, Brent W.

    2015-01-01

    Small near-Earth objects (NEOs) is approx. 50-150 m in size are far more numerous (hundreds of thousands to millions yet to be discovered) than larger NEOs. Small NEOs, which are mostly asteroids rather than comets, are very faint in the night sky due to their small sizes, and are, therefore, difficult to discover far in advance of Earth impact. Furthermore, even small NEOs are capable of creating explosions with energies on the order of tens or hundreds of megatons (Mt). We are, therefore, motivated to prepare to respond effectively to short warning time, small NEO impact scenarios. In this paper we explore the lower bound on actionable warning time by investigating the performance of notional upgraded Intercontinental Ballistic Missiles (ICBMs) to carry Nuclear Explosive Device (NED) payloads to intercept and disrupt a hypothetical incoming NEO at high altitudes (generally at least 2500 km above Earth). We conduct this investigation by developing optimal NEO intercept trajectories for a range of cases and comparing their performances. Our results show that suborbital NEO intercepts using Minuteman III or SM-3 IIA launch vehicles could achieve NEO intercept a few minutes prior to when the NEO would strike Earth. We also find that more powerful versions of the launch vehicles (e.g., total deltaV is approx. 9.5-11 km/s) could intercept incoming NEOs several hours prior to when the NEO would strike Earth, if launched at least several days prior to the time of intercept. Finally, we discuss a number of limiting factors and practicalities that affect whether the notional systems we describe could become feasible.

  10. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    Science.gov (United States)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  11. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase

    Science.gov (United States)

    Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin

    2018-02-01

    A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.

  12. Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique

    Directory of Open Access Journals (Sweden)

    Xiangdong LIU

    2017-08-01

    Full Text Available An autonomous approach and landing (A&L guidance law is presented in this paper for landing an unpowered reusable launch vehicle (RLV at the designated runway touchdown. Considering the full nonlinear point-mass dynamics, a guidance scheme is developed in three-dimensional space. In order to guarantee a successful A&L movement, the multiple sliding surfaces guidance (MSSG technique is applied to derive the closed-loop guidance law, which stems from higher order sliding mode control theory and has advantage in the finite time reaching property. The global stability of the proposed guidance approach is proved by the Lyapunov-based method. The designed guidance law can generate new trajectories on-line without any specific requirement on off-line analysis except for the information on the boundary conditions of the A&L phase and instantaneous states of the RLV. Therefore, the designed guidance law is flexible enough to target different touchdown points on the runway and is capable of dealing with large initial condition errors resulted from the previous flight phase. Finally, simulation results show the effectiveness of the proposed guidance law in different scenarios.

  13. Advanced transportation system studies technical area 2 (TA-2): Heavy lift launch vehicle development. volume 3; Program Cost estimates

    Science.gov (United States)

    McCurry, J. B.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.

  14. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    Science.gov (United States)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the

  15. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers

    Science.gov (United States)

    MacConochie, Ian O.; Stnaley, Douglas O.

    1991-01-01

    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  16. Applied Virtual Reality in Reusable Launch Vehicle Design, Operations Development, and Training

    Science.gov (United States)

    Hale, Joseph P.

    1997-01-01

    Application of Virtual Reality (VR) technology offers much promise to enhance and accelerate the development of Reusable Launch Vehicle (RLV) infrastructure and operations while simultaneously reducing developmental and operational costs. One of the primary cost areas in the RLV concept that is receiving special attention is maintenance and refurbishment operations. To produce and operate a cost effective RLV, turnaround cost must be minimized. Designing for maintainability is a necessary requirement in developing RLVs. VR can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) is beginning to utilize VR for design, operations development, and design analysis for RLVs. A VR applications program has been under development at NASA/MSFC since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. The NASA/MSFC VR capability has also been utilized in several applications. These include: 1) the assessment of the design of the late Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed; 2) a viewing analysis of the Tethered Satellite System's (TSS) "end-of-reel" tether marking options; 3) development of a virtual mockup of the International Space Welding Experiment for science viewing analyses from the Shuttle Remote Manipulator System elbow camera and as a trainer for ground controllers; and 4) teleoperations using VR. This presentation will give a general overview of the MSFC VR Applications Program and describe the use of VR in design analyses, operations development, and training for RLVs.

  17. Technology developments for thrust chambers of future launch vehicle liquid rocket engines

    Science.gov (United States)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D.

    2003-08-01

    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology. developments shown in this paper are: Technologies Technologies for enhanced heat transfer to the coolant for expander cycle engines Advanced injector head technologies Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length Hot gas side ribs in the chamber Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the subscale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation.

  18. The Effects of Foam Thermal Protection System on the Damage Tolerance Characteristics of Composite Sandwich Structures for Launch Vehicles

    Science.gov (United States)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.

    2011-01-01

    For any structure composed of laminated composite materials, impact damage is one of the greatest risks and therefore most widely tested responses. Typically, impact damage testing and analysis assumes that a solid object comes into contact with the bare surface of the laminate (the outer ply). However, most launch vehicle structures will have a thermal protection system (TPS) covering the structure for the majority of its life. Thus, the impact response of the material with the TPS covering is the impact scenario of interest. In this study, laminates representative of the composite interstage structure for the Ares I launch vehicle were impact tested with and without the planned TPS covering, which consists of polyurethane foam. Response variables examined include maximum load of impact, damage size as detected by nondestructive evaluation techniques, and damage morphology and compression after impact strength. Results show that there is little difference between TPS covered and bare specimens, except the residual strength data is higher for TPS covered specimens.

  19. The Profile Envision and Splice Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    Science.gov (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Tropospheric winds are an important driver of the design and operation of space launch vehicles. Multiple types of weather balloons and Doppler Radar Wind Profiler (DRWP) systems exist at NASA's Kennedy Space Center (KSC), co-located on the United States Air Force's (USAF) Eastern Range (ER) at the Cape Canaveral Air Force Station (CCAFS), that are capable of measuring atmospheric winds. Meteorological data gathered by these instruments are being used in the design of NASA's Space Launch System (SLS) and other space launch vehicles, and will be used during the day-of-launch (DOL) of SLS to aid in loads and trajectory analyses. For the purpose of SLS day-of-launch needs, the balloons have the altitude coverage needed, but take over an hour to reach the maximum altitude and can drift far from the vehicle's path. The DRWPs have the spatial and temporal resolutions needed, but do not provide complete altitude coverage. Therefore, the Natural Environments Branch (EV44) at Marshall Space Flight Center (MSFC) developed the Profile Envision and Splice Tool (PRESTO) to combine balloon profiles and profiles from multiple DRWPs, filter the spliced profile to a common wavelength, and allow the operator to generate output files as well as to visualize the inputs and the spliced profile for SLS DOL operations. PRESTO was developed in Python taking advantage of NumPy and SciPy for the splicing procedure, matplotlib for the visualization, and Tkinter for the execution of the graphical user interface (GUI). This paper describes in detail the Python coding implementation for the splicing, filtering, and visualization methodology used in PRESTO.

  20. Best Practices from the Design and Development of the Ares I Launch Vehicle Roll and Reaction Control Systems

    Science.gov (United States)

    Butt, Adam; Paseur, Lila F.; Pitts, Hank M.

    2012-01-01

    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs.

  1. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Science.gov (United States)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  2. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  3. Liability and Insurance for Suborbital Flights

    Science.gov (United States)

    Masson-Zwaan, T.

    2012-01-01

    This paper analyzes and compares liability and liability insurance in the fields of aviation and spaceflight in order to propose solutions for a liability regime and insurance options for suborbital flights. Suborbital flights can be said to take place in the grey zone between air and space, between air law and space law, as well as between aviation insurance and space insurance. In terms of liability, the paper discusses air law and space law provisions in the fields of second and third party liability for damage to passengers and 'innocent bystanders' respectively, touching upon international treaties, national law and EU law, and on insurance to cover those risks. Although the insurance market is currently not ready to provide tailor-made products for operators of suborbital flights, it is expected to adapt rapidly once such flights will become reality. A hybrid approach will provide the best solution in the medium term.

  4. Multi-Agent Management System (MAMS) for Air-Launched, Unmanned Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this work is to design, implement, and demonstrate a guidance and mission planning toolbox for air-launched, unmanned systems, such as guided...

  5. Standard Electric Interface for Payload and Launch Vehicle Enabling Secondary Rideshare Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity. An integration process that minimizes risk to the primary, allows parallel...

  6. An algorithm on simultaneous optimization of performance and mass parameters of open-cycle liquid-propellant engine of launch vehicles

    Science.gov (United States)

    Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.

    2017-12-01

    In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.

  7. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and velocity...

  8. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    Science.gov (United States)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  9. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    Science.gov (United States)

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  10. Use of Probabilistic Engineering Methods in the Detailed Design and Development Phases of the NASA Ares Launch Vehicle

    Science.gov (United States)

    Fayssal, Safie; Weldon, Danny

    2008-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.

  11. Cryo-Tracker mass gauging system testing in a large-scale expendable launch vehicle LOX tank simulator

    Science.gov (United States)

    Schieb, Daniel J.; Haberbusch, Mark S.; Yeckley, Alexander J.

    2006-05-01

    Sierra Lobo tested its patented Cryo-Tracker(R) probe and Mass Gauging System in a large scale Expendable Launch Vehicle (ELV) liquid oxygen tank simulation for NASA. Typical Liquid Oxygen (LOX) tank operations were simulated at Lockheed Martin's Engineering Propulsion Laboratory in Denver, Colorado. The Cryo-Tracker(R) probe is 33 feet long, the longest built to date. It was mounted in the tank at only two locations, separated by 26 feet. Each test simulated typical Lockheed Martin booster pre-launch tanking operations, including filling the tank with LOX at fill rates typically used at the launch pad, and maintaining the fill level for a period representative of a typical pad hold. The Cryo-Tracker(R) Mass Gauging System was the primary instrument used for monitoring the fill and controlling the topping operations. Each test also simulated a typical flight profile, expelling the LOX at representative pressures and expulsion flow rates. During expulsion, the Cryo-Tracker(R) System served to generate an Engine Cut-Off (ECO) signal. Test objectives were as follows: Cryo-Tracker(R) data will be validated by flight-like propellant instruments currently used in launch vehicles; the probe will survive the harsh environment (which will be documented by a digital video camera) with no loss of signal or structural integrity; the system will successfully measure liquid levels and temperatures under all conditions and calculate propellant mass in real-time; the system will successfully demonstrate its feasibility as a control sensor for LOX filling and topping operations, as well as for engine cut-off. All objectives were met and the test results are presented.

  12. Metallurgical analysis of a failed maraging steel shear screw used in the band separation system of a satellite launch vehicle

    Directory of Open Access Journals (Sweden)

    S.V.S. Narayana Murty

    2016-10-01

    Full Text Available Maraging steels have excellent combination of strength and toughness and are extensively used for a variety of aerospace applications. In one such critical application, this steel was used to fabricate shear screws of a stage separation system in a satellite launch vehicle. During assembly preparations, one of the shear screws which connected the separation band and band end block has failed at the first thread. Microstructural analysis revealed that the crack originated from the root of the thread and propagated in an intergranular mode. The failure is attributed to combined effect of stress and corrosion leading to stress corrosion cracking.

  13. A comparison of a conventional launch system vs. externally supplied vehicles for installation and maintenance of solar power satellites

    Science.gov (United States)

    Loetzerich, Klaus

    The paper analyzes two principal approaches for the transportation system to support the operational phase of a solar power satellite (SPS) scenario that foresees the continued installation of two 10 GW stations per year equivalent to 150,000 Mg payload per year. One concept consists of conventional single stage to orbit (SSTO) vehicles, the structure of which is left in orbit and used as part of the structure of an SPS. As an alternative concept an externally supplied vehicle is being considered, the required power being supplied by a laser from the ground. A comparison of these two approaches showed, that the conventional launch system is preferable, because it is technically feasible, simpler to development, and no significant inpact to atmosphere is foreseen.

  14. Design and Analysis of Subscale and Full-Scale Buckling-Critical Cylinders for Launch Vehicle Technology Development

    Science.gov (United States)

    Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.

  15. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    Science.gov (United States)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements

  16. Parametric Study to Assess Stability and Controllability of the VLM Vehicle Family

    Science.gov (United States)

    Hrbud, I. A.; Ettl, J.; Hecht, M.; Kirchhartz, R.

    2015-09-01

    The German Aerospace Center (DLR) collaborates with the Brazilian Institute for Aeronautics (DCTA/IAE) aiming to develop and operate a new small-payload launch system. The VLM vehicle family is a launcher system which enables both orbital and sub-orbital mission scenarios. The launch system is capable to deliver small satellites between 70 and 200 kg into orbit, while a payload of up to 500 kg can be inserted into a suborbital trajectory targeted for research applications. Currently a three-stage configuration designated VLM-1 and a two-stage version, VS-50, are under investigation. The present configurations differ considerably in length which in particular poses challenges regarding stability and control for the stubby VS-50. Passive flight control in the VS-50 case overpowers active flight control, and consequently calls for changes of the aerodynamic! geometric contour.

  17. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    Science.gov (United States)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  18. Multiple Model-Based Synchronization Approaches for Time Delayed Slaving Data in a Space Launch Vehicle Tracking System

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2016-01-01

    Full Text Available Due to the inherent characteristics of the flight mission of a space launch vehicle (SLV, which is required to fly over very large distances and have very high fault tolerances, in general, SLV tracking systems (TSs comprise multiple heterogeneous sensors such as radars, GPS, INS, and electrooptical targeting systems installed over widespread areas. To track an SLV without interruption and to hand over the measurement coverage between TSs properly, the mission control system (MCS transfers slaving data to each TS through mission networks. When serious network delays occur, however, the slaving data from the MCS can lead to the failure of the TS. To address this problem, in this paper, we propose multiple model-based synchronization (MMS approaches, which take advantage of the multiple motion models of an SLV. Cubic spline extrapolation, prediction through an α-β-γ filter, and a single model Kalman filter are presented as benchmark approaches. We demonstrate the synchronization accuracy and effectiveness of the proposed MMS approaches using the Monte Carlo simulation with the nominal trajectory data of Korea Space Launch Vehicle-I.

  19. Mission Design and Analysis for Suborbital Intercept and Fragmentation of an Asteroid with Very Short Warning Time

    Science.gov (United States)

    Hupp, Ryan; DeWald, Spencer; Wie, Bong; Barbee, Brent W.

    2014-01-01

    Small near-Earth objects (NEOs) approximately 50-150 m in size are far more numerous (hundreds of thousands to millions yet to be discovered) than larger NEOs. Small NEOs, which are mostly asteroids rather than comets, are very faint in the night sky due to their small sizes, and are, therefore, difficult to discover far in advance of Earth impact. Furthermore, even small NEOs are capable of creating explosions with energies on the order of tens or hundreds of megatons (Mt). We are, therefore, motivated to prepare to respond effectively to short warning time, small NEO impact scenarios. In this paper we explore the lower bound on actionable warning time by investigating the performance of notional upgraded Intercontinental Ballistic Missiles (ICBMs) to carry Nuclear Explosive Device (NED) payloads to intercept and disrupt a hypothetical incoming NEO at high altitudes (generally at least 2500 km above Earth). We conduct this investigation by developing optimal NEO intercept trajectories for a range of cases and comparing their performances. Our results show that suborbital NEO intercepts using Minuteman III or SM-3 IIA launch vehicles could achieve NEO intercept a few minutes prior to when the NEO would strike Earth. We also find that more powerful versions of the launch vehicles (e.g., total delta V of approximately 9.5-11 km/s) could intercept incoming NEOs several hours prior to when the NEO would strike Earth, if launched at least several days prior to the time of intercept. Finally, we discuss a number of limiting factors and practicalities that affect whether the notional systems we describe could become feasible.

  20. 10 meter Sub-Orbital Large Balloon Reflector (LBR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Besides serving as a launch vehicle, the carrier balloon provides a stable mount for the enclosed telescope. Looking up, the LBR will serve as a telescope. Looking...

  1. The relevance of economic data in the decision-making process for orbital launch vehicle programs, a U.S. perspective

    Science.gov (United States)

    Hertzfeld, Henry R.; Williamson, Ray A.; Peter, Nicolas

    2007-12-01

    Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems. The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts. The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation. Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical

  2. The Impact of Concrete Pavement Field Floor to Vehicle Missile Launching Process

    Directory of Open Access Journals (Sweden)

    Wei Xinlin

    2017-01-01

    Full Text Available The conception and evaluation indices of the bearing capacity of the concrete pavement field floor are analyzed in this paper. In order to get the damage process of the concrete panel, its tension and compression injury factors are derived, and a field floor structural dynamic model with concrete damage constitutive relation is built based on ABAQUS, and the influence of thickness and Young’s modulus of the concrete panel to the vehicular missile launching is comparatively analyzed.

  3. SpaceX: Breaking the Barrier to the Space Launch Vehicle Industry

    Science.gov (United States)

    2016-12-22

    launch to break even on the more expensive material cost (Ward, 2000). Then the cost of research and development can be factored into the finances ... startup . In 1984, FedEx began its first international service to Europe and Asia (FedEx, 2016). The U.S. Postal service created a partnership with...innovation and basing the company on that idea. UPS avoided huge startup costs by only providing services in a high-density city before expanding as they

  4. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    Directory of Open Access Journals (Sweden)

    Kui Li

    2015-10-01

    Full Text Available Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS, thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS, odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  5. A Large-Scale Design Integration Approach Developed in Conjunction with the Ares Launch Vehicle Program

    Science.gov (United States)

    Redmon, John W.; Shirley, Michael C.; Kinard, Paul S.

    2012-01-01

    This paper presents a method for performing large-scale design integration, taking a classical 2D drawing envelope and interface approach and applying it to modern three dimensional computer aided design (3D CAD) systems. Today, the paradigm often used when performing design integration with 3D models involves a digital mockup of an overall vehicle, in the form of a massive, fully detailed, CAD assembly; therefore, adding unnecessary burden and overhead to design and product data management processes. While fully detailed data may yield a broad depth of design detail, pertinent integration features are often obscured under the excessive amounts of information, making them difficult to discern. In contrast, the envelope and interface method results in a reduction in both the amount and complexity of information necessary for design integration while yielding significant savings in time and effort when applied to today's complex design integration projects. This approach, combining classical and modern methods, proved advantageous during the complex design integration activities of the Ares I vehicle. Downstream processes, benefiting from this approach by reducing development and design cycle time, include: Creation of analysis models for the Aerodynamic discipline; Vehicle to ground interface development; Documentation development for the vehicle assembly.

  6. Determining Logistics Ground Support Manpower Requirements for a Reusable Military Launch Vehicle

    Science.gov (United States)

    2007-03-01

    along with a definition of logistics support requirements and an explanation of their importance to the RMLV design and development process. Next...body of knowledge concerning: 1. The importance of logistics manpower considerations in aerospace vehicle design; 2. The definition of “ logistics support

  7. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation

  8. Determining Damping Trends from a Range of Cable Harness Assemblies on a Launch Vehicle Panel from Test Measurements

    Science.gov (United States)

    Smith, Andrew; Davis, R. Ben; LaVerde, Bruce; Jones, Douglas

    2012-01-01

    The team of authors at Marshall Space Flight Center (MSFC) has been investigating estimating techniques for the vibration response of launch vehicle panels excited by acoustics and/or aero-fluctuating pressures. Validation of the approaches used to estimate these environments based on ground tests of flight like hardware is of major importance to new vehicle programs. The team at MSFC has recently expanded upon the first series of ground test cases completed in December 2010. The follow on tests recently completed are intended to illustrate differences in damping that might be expected when cable harnesses are added to the configurations under test. This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that employs a finite element model (FEM) of the panel in conjunction with advanced optimization techniques. This paper will report on the \\damping trend differences. observed from response measurements for several different configurations of cable harnesses. The data should assist vibroacoustics engineers to make more informed damping assumptions when calculating vibration response estimates when using model based analysis approach. Achieving conservative estimates that have more flight like accuracy is desired. The paper may also assist analysts in determining how ground test data may relate to expected flight response levels. Empirical response estimates may also need to be adjusted if the measured response used as an input to the study came from a test article without flight like cable harnesses.

  9. Probabilistic Design Analysis (PDA) Approach to Determine the Probability of Cross-System Failures for a Space Launch Vehicle

    Science.gov (United States)

    Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.

    2010-01-01

    Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project

  10. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    Science.gov (United States)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  11. Suborbital Applications in Astronomy and Astrophysics

    Science.gov (United States)

    Unwin, Steve; Werner, Mike; Goldsmith, Paul

    2012-01-01

    Suborbital flights providing access to zero-g in a space environment - Demonstrating new technologies in a relevant environment. - Flight testing of individual elements of a constellation. - Raising the TRL of critical technologies for subsystems on future large missions High-altitude balloons (up to 10 kg payload) -Access to near-space for wavelengths not observable from the ground. -Raising the TRL of critical technologies for subsystems on future large missions. -UV Detector testing.

  12. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    Science.gov (United States)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  13. Feasibility of SCRAMJET Technology for an Intermediate Propulsive Stage of an Expendable Launch Vehicle

    Science.gov (United States)

    2002-09-01

    Fuel/Oxidizer Mass (kg) initm Initial Mass (kg) paym Payload Mass (kg) mfP Propellant Mass Fraction (unit-less) barq Barometric...downrange, and altitude vs. Mach data of the resultant vehicle trajectory. Lines of constant barq are included in order to provide a visual reference...SCRAMJET activation as input and plots the lines of constant barq as overlays on the altitude vs. Mach graph. 44 Figure 4.29 Initial_Conditions.vi

  14. Use of Heated Helium to Simulate Surface Pressure Fluctuations on the Launch Abort Vehicle During Abort Motor Firing

    Science.gov (United States)

    Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.

    2011-01-01

    The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs, and will be used to establish the acoustic environment for vibro-acoustic qualification testing of the MPCV.

  15. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  16. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing

    Science.gov (United States)

    Sulyma, P. R.; Penny, M. M.

    1978-01-01

    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  17. Demonstration of the Dynamic Flowgraph Methodology using the Titan 2 Space Launch Vehicle Digital Flight Control System

    Science.gov (United States)

    Yau, M.; Guarro, S.; Apostolakis, G.

    1993-01-01

    Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan 2 Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, it is found that constructing decision tables for software subroutines is very time consuming. A possible solution is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps.

  18. The issue of ensuring the safe explosion of the spent orbital stages of a launch vehicle with propulsion rocket engine

    Directory of Open Access Journals (Sweden)

    Trushlyakov Valeriy I.

    2017-01-01

    Full Text Available A method for increasing the safe explosion of the spent orbital stages of a space launch vehicle (SLV with a propulsion rocket engine (PRE based on the gasification of unusable residues propellant and venting fuel tanks. For gasification and ventilation the hot gases used produced by combustion of the specially selected gas generating composition (GGC with a set of physical and chemical properties. Excluding the freezing of the drainage system on reset gasified products (residues propellant+pressurization gas+hot gases in the near-Earth space is achieved by selecting the physical-chemical characteristics of the GGC. Proposed steps to ensure rotation of gasified products due to dumping through the drainage system to ensure the most favorable conditions for propellant gasification residues. For example, a tank with liquid oxygen stays with the orbital spent second stage of the SLV “Zenit”, which shows the effectiveness of the proposed method.

  19. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.

    2017-09-01

    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  20. The techniques of quality operations computational and experimental researches of the launch vehicles in the drawing-board stage

    Science.gov (United States)

    Rozhaeva, K.

    2018-01-01

    The aim of the researchis the quality operations of the design process at the stage of research works on the development of active on-Board system of the launch vehicles spent stages descent with liquid propellant rocket engines by simulating the gasification process of undeveloped residues of fuel in the tanks. The design techniques of the gasification process of liquid rocket propellant components residues in the tank to the expense of finding and fixing errors in the algorithm calculation to increase the accuracy of calculation results is proposed. Experimental modelling of the model liquid evaporation in a limited reservoir of the experimental stand, allowing due to the false measurements rejection based on given criteria and detected faults to enhance the results reliability of the experimental studies; to reduce the experiments cost.

  1. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control System Plumes

    Science.gov (United States)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  2. Regulating private human suborbital flight at the international and European level: Tendencies and suggestions

    Science.gov (United States)

    Masson-Zwaan, Tanja; Moro-Aguilar, Rafael

    2013-12-01

    In the context of the FAST20XX project (Future High-Altitude High-Speed Transport) that started in 2009 under the 7th Framework Programme of the European Union (EU), the authors reexamined the legal status of private human suborbital flight, and researched whether it might be regulated as aviation or as spaceflight. International space law is ambiguous as to accommodating suborbital activities. While some provisions of the UN outer space treaties would seem to exclude them, generally there is not any explicit condition in terms of reaching orbit as a requirement for application. International air law presents equal difficulties in dealing with this activity. The classic definition of "aircraft" as contained in the Annexes to the Chicago Convention does not really encompass the kind of rocket-powered vehicles that are envisaged here. As a result, it is unclear whether the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS), the International Civil Aviation Organization (ICAO), or both could be involved in an eventual international regulation of suborbital flight. In the absence of a uniform international regime, each state has the sovereign right to regulate human suborbital flights operating within its airspace. So far, two practical solutions have been realised or proposed, and will be analyzed. On the one hand, the USA granted power for regulation and licensing over private human suborbital flight to the Office of Commercial Space Transportation of the Federal Aviation Administration (FAA/AST). Subsequent regulations by the FAA have set out a series of requirements for companies that want to operate these flights, enabling a market to develop. On the other side of the Atlantic, both the European Space Agency (ESA) and a group of representatives of the European Aviation Safety Agency (EASA) of the European Union (EU) seem to rather regard this activity as aviation, potentially subject to the regulation and certification competences of EASA

  3. Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data

    Science.gov (United States)

    Liever, Peter A.; West, Jeffrey S.; Harris, Robert E.

    2016-01-01

    A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate Discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured mesh Discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.

  4. Flight Reynolds Number Testing of the Orion Launch Abort Vehicle in the NASA Langley National Transonic Facility

    Science.gov (United States)

    Chan, David T.; Brauckmann, Gregory J.

    2011-01-01

    A 6%-scale unpowered model of the Orion Launch Abort Vehicle (LAV) ALAS-11-rev3c configuration was tested in the NASA Langley National Transonic Facility to obtain static aerodynamic data at flight Reynolds numbers. Subsonic and transonic data were obtained for Mach numbers between 0.3 and 0.95 for angles of attack from -4 to +22 degrees and angles of sideslip from -10 to +10 degrees. Data were also obtained at various intermediate Reynolds numbers between 2.5 million and 45 million depending on Mach number in order to examine the effects of Reynolds number on the vehicle. Force and moment data were obtained using a 6-component strain gauge balance that operated both at warm temperatures (+120 . F) and cryogenic temperatures (-250 . F). Surface pressure data were obtained with electronically scanned pressure units housed in heated enclosures designed to survive cryogenic temperatures. Data obtained during the 3-week test entry were used to support development of the LAV aerodynamic database and to support computational fluid dynamics code validation. Furthermore, one of the outcomes of the test was the reduction of database uncertainty on axial force coefficient for the static unpowered LAV. This was accomplished as a result of good data repeatability throughout the test and because of decreased uncertainty on scaling wind tunnel data to flight.

  5. Study of optimum propellant production facilities for launch of space shuttle vehicles

    Science.gov (United States)

    Laclair, L. M.

    1970-01-01

    An integrated propellant manufacturing plant and distribution system located at Kennedy Space Center is studied. The initial planned propellant and pressurant production amounted to 160 tons/day (TPD) LH2, 10 TPD GH2, 800 TPD LO2, 400 TPD LN2, and 120 TPD GN2. This was based on a shuttle launch frequency of 104 per year. During the study, developments occurred which may lower cryogen requirements. A variety of plant and processing equipment sizes and costs are considered for redundancy and supply level considerations. Steam reforming is compared to partial oxidation as a means of generating hydrogen. Electric motors, steam turbines, and gas turbines are evaluated for driving compression equipment. Various sites on and off Government property are considered to determine tradeoffs between costs and problems directly associated with the site, product delivery and storage costs, raw material costs, and energy costs. Coproduction of other products such as deuterium, methanol, and ammonia are considered. Legal questions are discussed concerning a private company's liabilities and its rights to market commercial products under Government tax and cost shelters.

  6. X-34 Vehicle Aerodynamic Characteristics

    Science.gov (United States)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  7. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    Science.gov (United States)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  8. Application of Fault Management Theory to the Quantitive Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    SHM/FM theory has been successfully applied to the selection of the baseline set Abort Triggers for the NASA SLS center dot Quantitative assessment played a useful role in the decision process ? M&FM, which is new within NASA MSFC, required the most "new" work, as this quantitative analysis had never been done before center dot Required development of the methodology and tool to mechanize the process center dot Established new relationships to the other groups ? The process is now an accepted part of the SLS design process, and will likely be applied to similar programs in the future at NASA MSFC ? Future improvements center dot Improve technical accuracy ?Differentiate crew survivability due to an abort, vs. survivability even no immediate abort occurs (small explosion with little debris) ?Account for contingent dependence of secondary triggers on primary triggers ?Allocate "? LOC Benefit" of each trigger when added to the previously selected triggers. center dot Reduce future costs through the development of a specialized tool ? Methodology can be applied to any manned/unmanned vehicle, in space or terrestrial

  9. A Structurally-Integrated Ice Detection and De-Icing System for Unmanned Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned air vehicles (UAVs) are becoming more prevalent for Suborbital Scientific Earth Exploration, which often involves high altitude, long endurance flight...

  10. Commercial suborbital space tourism-proposal on passenger's medical selection

    Science.gov (United States)

    Kluge, Götz; Stern, Claudia; Trammer, Martin; Chaudhuri, Indra; Tuschy, Peter; Gerzer, Rupert

    2013-12-01

    of general aviation, the standardized diagnostic programme should be purposefully extended. The third part of the selection consists of an intensive training programme, preparing the passengers for the upcoming challenges. In detail this training should comprise lectures about aerospace physiology, countermeasures to g-forces and motion sickness, emergency practices (e.g. rapid decompression or hypoxia) and a centrifuge ride with g-forces adapted to the respective flight profile. An altitude chamber flight, hypoxia experience and participation in a Zero-G-Flight might also be included optionally. The fourth step of the evaluation is caused by a possible delay between medical examination and launch. In the interval, the health status might have changed and serious illnesses might have developed. So, a short re-evaluation should be performed 7-14 days before take-off. A brief check-out procedure for medical re-evaluation of passenger's health status is recommended. As launch of suborbital spaceflights will take place all over the world at so called "Spaceports", the development of standards for medical examinations and the training programmes as well as a mutual acceptance of the participating medical test and training centres will be very helpful for development of this industry. Joint recommendations for the emergency equipment of commercial spaceships will also have to be developed.

  11. Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments

    Science.gov (United States)

    Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.; hide

    2016-01-01

    This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production

  12. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  13. Automation of vibroacoustic data bank for random vibration criteria development. [for the space shuttle and launch vehicles

    Science.gov (United States)

    Ferebee, R. C.

    1982-01-01

    A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.

  14. Pitfalls and Precautions When Using Predicted Failure Data for Quantitative Analysis of Safety Risk for Human Rated Launch Vehicles

    Science.gov (United States)

    Hatfield, Glen S.; Hark, Frank; Stott, James

    2016-01-01

    Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account system integration risks such as those attributable to manufacturing and assembly. These sources often dominate component level risk. While consequence of failure is often understood, using predicted values in a risk model to estimate the probability of occurrence may underestimate the actual risk. Managers and decision makers use the probability of occurrence to influence the determination whether to accept the risk or require a design modification. The actual risk threshold for acceptance may not be fully understood due to the absence of system level test data or operational data. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.

  15. Experimental and Numerical Investigation of Reduced Gravity Fluid Slosh Dynamics for the Characterization of Cryogenic Launch and Space Vehicle Propellants

    Science.gov (United States)

    Walls, Laurie K.; Kirk, Daniel; deLuis, Kavier; Haberbusch, Mark S.

    2011-01-01

    As space programs increasingly investigate various options for long duration space missions the accurate prediction of propellant behavior over long periods of time in microgravity environment has become increasingly imperative. This has driven the development of a detailed, physics-based understanding of slosh behavior of cryogenic propellants over a range of conditions and environments that are relevant for rocket and space storage applications. Recent advancements in computational fluid dynamics (CFD) models and hardware capabilities have enabled the modeling of complex fluid behavior in microgravity environment. Historically, launch vehicles with moderate duration upper stage coast periods have contained very limited instrumentation to quantify propellant stratification and boil-off in these environments, thus the ability to benchmark these complex computational models is of great consequence. To benchmark enhanced CFD models, recent work focuses on establishing an extensive experimental database of liquid slosh under a wide range of relevant conditions. In addition, a mass gauging system specifically designed to provide high fidelity measurements for both liquid stratification and liquid/ullage position in a micro-gravity environment has been developed. This pUblication will summarize the various experimental programs established to produce this comprehensive database and unique flight measurement techniques.

  16. Final Environmental Assessment: Falcon 9 and Falcon 9 Heavy Launch Vehicle Programs from Space Launch Complex 4 East at Vandenberg Air Force Base, California

    Science.gov (United States)

    2011-03-01

    dominant native species at this site are coyote brush (Baccharis pilularis), California sagebrush ( Artemisia californica), mock heather (Ericameria...Force Base: Population size, reproductive success, and management. Unpublished Report. Point Reyes Bird Observatory. Stinson Beach, California. 29 pp...observed. Startle responses are rare and reproductive success does not seem to be affected by launch activities, even near SLC-2 where Delta II

  17. Satellite Power Systems (SPS) concept definition study. Volume 5: Transportation and operations analysis. [heavy lift launch and orbit transfer vehicles for orbital assembly

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    The development of transportation systems to support the operations required for the orbital assembly of a 5-gigawatt satellite is discussed as well as the construction of a ground receiving antenna (rectenna). Topics covered include heavy lift launch vehicle configurations for Earth-to LEO transport; the use of chemical, nuclear, and electric orbit transfer vehicles for LEO to GEO operations; personnel transport systems; ground operations; end-to-end analysis of the construction, operation, and maintenance of the satellite and rectenna; propellant production and storage; and payload packaging.

  18. A Discrete-Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Post-Landing Operations

    National Research Council Canada - National Science Library

    Martindale, Michael

    2006-01-01

    The purpose of this research was to develop a discrete-event computer simulation model of the post-landing vehicle recoveoperations to allow the Air Force Research Laboratory, Air Vehicles Directorate...

  19. Low Noise Camera for Suborbital Science Applications

    Science.gov (United States)

    Hyde, David; Robertson, Bryan; Holloway, Todd

    2015-01-01

    Low-cost, commercial-off-the-shelf- (COTS-) based science cameras are intended for lab use only and are not suitable for flight deployment as they are difficult to ruggedize and repackage into instruments. Also, COTS implementation may not be suitable since mission science objectives are tied to specific measurement requirements, and often require performance beyond that required by the commercial market. Custom camera development for each application is cost prohibitive for the International Space Station (ISS) or midrange science payloads due to nonrecurring expenses ($2,000 K) for ground-up camera electronics design. While each new science mission has a different suite of requirements for camera performance (detector noise, speed of image acquisition, charge-coupled device (CCD) size, operation temperature, packaging, etc.), the analog-to-digital conversion, power supply, and communications can be standardized to accommodate many different applications. The low noise camera for suborbital applications is a rugged standard camera platform that can accommodate a range of detector types and science requirements for use in inexpensive to mid range payloads supporting Earth science, solar physics, robotic vision, or astronomy experiments. Cameras developed on this platform have demonstrated the performance found in custom flight cameras at a price per camera more than an order of magnitude lower.

  20. Optimal Control of Shock Wave Attenuation in Single- and Two-Phase Flow with Application to Ignition Overpressure in Launch Vehicles

    Science.gov (United States)

    2011-12-01

    of an ignition sequence in launch vehicles using solid-grain propellants. When the grain is ignited the pressure inside the combustion chamber quickly...rises several orders of magnitude. This drives hot combustion products toward the nozzle and out to the open atmosphere at supersonic speeds. An IOP...Equations 2.101 and 102 respectively. I(Ũ(·, 0)) = ∫ Ω a 2 (αl(x, 0)) 2 dx (2.101) K(Ũ(·, T )) = ∫ Ωs b 2 (Pg(x, T )−Q(x))2+ dx (2.102) The multiphase

  1. Importance Of Quality Control in Reducing System Risk, a Lesson Learned From The Shuttle and a Recommendation for Future Launch Vehicles

    Science.gov (United States)

    Safie, Fayssal M.; Messer, Bradley P.

    2006-01-01

    This paper presents lessons learned from the Space Shuttle return to flight experience and the importance of these lessons learned in the development of new the NASA Crew Launch Vehicle (CLV). Specifically, the paper discusses the relationship between process control and system risk, and the importance of process control in improving space vehicle flight safety. It uses the External Tank (ET) Thermal Protection System (TPS) experience and lessons learned from the redesign and process enhancement activities performed in preparation for Return to Flight after the Columbia accident. The paper also, discusses in some details, the Probabilistic engineering physics based risk assessment performed by the Shuttle program to evaluate the impact of TPS failure on system risk and the application of the methodology to the CLV.

  2. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    Science.gov (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S

  3. Analysis of SRM model nozzle calibration test data in support of IA12B, IA12C and IA36 space shuttle launch vehicle aerodynamics tests

    Science.gov (United States)

    Baker, L. R., Jr.; Tevepaugh, J. A.; Penny, M. M.

    1973-01-01

    Variations of nozzle performance characteristics of the model nozzles used in the Space Shuttle IA12B, IA12C, IA36 power-on launch vehicle test series are shown by comparison between experimental and analytical data. The experimental data are nozzle wall pressure distributions and schlieren photographs of the exhaust plume shapes. The exhaust plume shapes were simulated experimentally with cold flow while the analytical data were generated using a method-of-characteristics solution. Exhaust plume boundaries, boundary shockwave locations and nozzle wall pressure measurements calculated analytically agree favorably with the experimental data from the IA12C and IA36 test series. For the IA12B test series condensation was suspected in the exhaust plumes at the higher pressure ratios required to simulate the prototype plume shapes. Nozzle calibration tests for the series were conducted at pressure ratios where condensation either did not occur or if present did not produce a noticeable effect on the plume shapes. However, at the pressure ratios required in the power-on launch vehicle tests condensation probably occurs and could significantly affect the exhaust plume shapes.

  4. Air Force Space Command. Space and Missile Systems Center Standard. Lithium-Ion Battery for Launch Vehicle Applications

    Science.gov (United States)

    2008-06-13

    55 Appendix 1—Summary OF EWR 127-1 Requirements for Batteries Brought to the Launch Site . 57...Regarding EWR 127-1 Requirements for System Safety for Flight and Aerospace Ground Equipment Lithium-Ion Batteries.” Aerospace Report No. TOR-2004...requirements specific to lithium-ion batteries generated after EWR 127-1 was released. If a sealed battery design is used, a pressure relief device such as

  5. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    Science.gov (United States)

    Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen

    2015-01-01

    The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that

  6. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASAs Space Launch System

    Science.gov (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM

  7. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  8. 14 CFR 415.115 - Flight safety.

    Science.gov (United States)

    2010-01-01

    ... orbital or guided suborbital launch vehicle, and nine months for any unguided suborbital launch vehicle... trajectories applied for, or the worst case vehicle and trajectory under which flight will be attempted, no... triggered lightning. For any orbital or guided suborbital expendable launch vehicle, an applicant must...

  9. Solar power satellites and the ionosphere - The effect of high power microwave beams on the ionosphere and the chemical effects due to Heavy-Lift Launch Vehicles

    Science.gov (United States)

    The effects of solar power satellites on the ionosphere are discussed, separated into two categories: (1) passive interactions, in which the ionospheric plasma influences the propagation of the power satellite beam in some way, and in some instances possibly gives rise to co-channel interference through scattering off the beam, and (2) an active inteference, in which ionospheric plasma itself is modified. Strong electron heating from the power satellite beam may produce irregularities in the ionization capable of scattering radio waves of lower frequencies, thereby increasing the potential for broad-band interference. Ionospheric modification may also result from the emission of exhaust effluents from heavy lift launch vehicles, and associated changes in ionospheric chemistry can lead to depletions in ionization at F-region heights. Interference with radio services is briefly discussed.

  10. Dysrhythmias in Laypersons During Centrifuge-Simulated Suborbital Spaceflight.

    Science.gov (United States)

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles H; Castleberry, Tarah L; Vanderploeg, James M

    2017-11-01

    There are limited data on cardiac dysrhythmias in laypersons during hypergravity exposure. We report layperson electrocardiograph (ECG) findings and tolerance of dysrhythmias during centrifuge-simulated suborbital spaceflight. Volunteers participated in varied-length centrifuge training programs of 2-7 centrifuge runs over 0.5-2 d, culminating in two simulated suborbital spaceflights of combined +Gz and +Gx (peak +4.0 Gz, +6.0 Gx, duration 5 s). Monitors recorded pre- and post-run mean arterial blood pressure (MAP), 6-s average heart rate (HR) collected at prespecified points during exposures, documented dysrhythmias observed on continuous 3-lead ECG, self-reported symptoms, and objective signs of intolerance on real-time video monitoring. Participating in the study were 148 subjects (43 women). Documented dysrhythmias included sinus pause (N = 5), couplet premature ventricular contractions (N = 4), bigeminy (N = 3), accelerated idioventricular rhythm (N = 1), and relative bradycardia (RB, defined as a transient HR drop of >20 bpm; N = 63). None were associated with subjective symptoms or objective signs of acceleration intolerance. Episodes of RB occurred only during +Gx exposures. Subjects had a higher post-run vs. pre-run MAP after all exposures, but demonstrated no difference in pre- and post-run HR. RB was more common in men, younger individuals, and subjects experiencing more centrifuge runs. Dysrhythmias in laypersons undergoing simulated suborbital spaceflight were well tolerated, though RB was frequently noted during short-duration +Gx exposure. No subjects demonstrated associated symptoms or objective hemodynamic sequelae from these events. Even so, heightened caution remains warranted when monitoring dysrhythmias in laypersons with significant cardiopulmonary disease or taking medications that modulate cardiac conduction.Suresh R, Blue RS, Mathers CH, Castleberry TL, Vanderploeg JM. Dysrhythmias in laypersons during centrifuge-stimulated suborbital

  11. Peer Review of Launch Environments

    Science.gov (United States)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  12. The designing of launch vehicles with liquid propulsion engines ensuring fire, explosion and environmental safety requirements of worked-off stages

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.; Sujmenbaev, B.; Baranov, D.

    2017-02-01

    The paper addresses the problem of the launch vehicles (LV) with main liquid propulsion engines launch technogenic impact in different environment areas. Therefore, as the study subjects were chosen the worked-off stages (WS) with unused propellant residues in tanks, the cosmodrome ecological monitoring system, the worked-off stage design and construction solutions development system and the unified system with the "WS+the cosmodrome ecological monitoring system+design and construction solutions development system" feedback allowing to form the optimal ways of the WS design and construction parameters variations for its fire and explosion hazard management in different areas of the environment. It is demonstrated that the fire hazard effects of propellant residues in WS tanks increase the ecosystem disorder level for the Vostochny cosmodrome impact area ecosystem. Applying the system analysis, the proposals on the selection of technologies, schematic and WS design and construction solutions aimed to the fire and explosion safety improvement during the LV worked-off stages with the main liquid propulsion engines operation were formulated. Among them are the following: firstly, the unused propellant residues in tanks convective gasification based on the hot gas (heat carrier) supply in WS tanks after main liquid propulsion engines cutoff is proposed as the basic technology; secondly, the obtained unused propellant residues in WS tanks gasification products (evaporated propellant residues + pressurizing agent + heat carrier) are used for WS stabilization and orientation while descending trajectory moving. The applying of the proposed technologies allows providing fire and explosion safety requirements of LV with main liquid propulsion engines practically.

  13. Comparative Evaluation of the Two Methods of Determining the Unsteady Aerodynamic Characteristics of Cylindrical Patterns Separated Parts of Launch Vehicles for Space Purposes

    Directory of Open Access Journals (Sweden)

    A. I. Khlupnov

    2015-01-01

    Full Text Available Ecology and security clearance of cargo into Earth orbit space considered in unsteadyaerodynamics of the separated parts of of launch vehicles for space applications, which directly involves the definition of the shape and size of fields separated by falling parts, fragmentation issues and software problems aeroballistic reusable space systems (such as "Baikal" (Russian Federation, Falcon - Task 1 (USA and others..To resolve the methodological issues determining the value of the aerodynamic damping (and / or anti-damping separable parts as the object of study was chosen cylindrical model as a bluff body for which there are no systematic dependence of unsteady aerodynamic coefficients pitch moment of defining the parameters of the problem (the Mach number, angle of attack, Reynolds number, etc..The value of the derivative of pitching moment coefficient of the angular velocitydetermined numerically for the most intense stress of supersonic flight mode as the method of curved bodies, and direct numerical simulation of unsteady motion of the body in the air flow within the full Navier-Stokes equations.Comparison of these two approaches implemented as a tool for scientific research in theform of a software package FineOpen (products of the Company Numeca and programs for solving the Navier-Stokes equations (the author's version helped establish the limits of applicability of the curved bodies in the implementation of the marked change in the form of slots defining parameters of the problem.

  14. 14 CFR 440.11 - Duration of coverage for licensed launch, including suborbital launch, or permitted activities...

    Science.gov (United States)

    2010-01-01

    ... LICENSING FINANCIAL RESPONSIBILITY Financial Responsibility for Licensed and Permitted Activities § 440.11...; modifications. (a) Insurance coverage required under § 440.9, or other form of financial responsibility, shall... recovery; or (ii) The FAA's determination that risk to third parties and Government property as a result of...

  15. Evolved Expendable Launch Vehicle (EELV)

    Science.gov (United States)

    2015-12-15

    transitioning to a long-term sustained competitive environment and fully implement the National Space Transportation Policy direction: to increase the U.S...commercial space transportation industry robustness and cost effectiveness; foster innovation-driven entrepreneurship and international...Command Quantity to Sustain : 0 Unit of Measure: Years Service Life per Unit: 31.00 Years Fiscal Years in Service: FY 2000 - FY 2030 Sustainment

  16. Launch window extensions and launch opportunities for Navstar GPS

    Science.gov (United States)

    Vaughan, Scott H.; Mullikin, Thomas L.

    The original nine minute launch window for Navstar Global Positioning System vehicles allowed a very limited capability to overcome problems late in the countdown sequence. A longer launch window was desired in order to minimize the chance of an aborted launch attempt. However, the methods used to determine the original launch window could not provide an extended window without producing a conflict with the tight tolerances required for the final orbit plane. By taking full advantage of the dynamics and geometry of the plane change maneuver, we have developed a launch window definition that will provide as much as a 32 minute window. This definition maintains tight orbit plane tolerances and identifies all possible launch opportunities. The extended launch window has been in use since the eighth Navstar launch and has been highly successful.

  17. Enabling Technology for Small Satellite Launch Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses need to...

  18. Enabling Technology for Small Satellite Launch Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses of small...

  19. Study and Development of a Sub-Orbital Re-Entry Demonstrator

    Science.gov (United States)

    Savino, R.

    The Italian and European Space Agencies are supporting a research programme, developed in Campania region by a cluster of industries, research institutes and universities, on a low-cost re-entry capsule, able to return payloads from the ISS to Earth and/or to perform short-duration scientific missions in Low Earth Orbit (LEO). The ballistic capsule is characterized by a deployable, disposable "umbrella-like" heat shield that allows relatively small dimensions at launch and a sufficient exposed surface area in re-entry conditions, reducing the ballistic coefficient and leading to acceptable heat fluxes, mechanical loads and final descent velocity. ESA is supporting a preliminary study to develop a flight demonstrator of the capsule to be embarked as a secondary payload onboard a sub-orbital sounding rocket. The deployable thermal protection system concept may be applied to future science and robotic exploration mission requiring planetary entry and, possibly also to missions in the framework of Human Space flight, requiring planetary entry or re-entry. The technology offers also an interesting potential for aerobraking, aerocapture and for de-orbiting. This paper summarizes the results of these activities, which are being more and more refined as the work proceeds, including the definition and analysis of the mission scenario, the aerodynamic, aerothermodynamic, mechanical and structural analyses and the technical definition of avionics, instrumentation and main subsystems.

  20. Persistant Launch Range Surveillance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch site infrastructure and space vehicle assets represent multi-billion dollar investments that must be protected. Additionally, personnel and equipment must be...

  1. Developing hybrid near-space technologies for affordable access to suborbital space

    Science.gov (United States)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  2. From suborbital space tourism to commercial personal spaceflight

    Science.gov (United States)

    Peeters, Walter

    2010-06-01

    Excellent essays have been recently published on the profitability and the future of space tourism. This paper is intended to supplement the considerations in this field and emphasizes the further potential evolution of commercial personal spaceflights. Indeed, based upon work done at the International Space University (ISU) the oligopolistic character of suborbital space tourism has been linked to marketing and product life cycle (PLC) considerations and has led to the thesis that space tourism as a profitable sector will require a follow-on strategy. Orbital space tourism, on one hand, could become an extension of the PLC but, on the other hand, it is assumed that point-to-point (P2P) commercial space transport will become the long term sustainable market. Without ignoring technical challenges, this paper will mainly concentrate on marketing and commercial aspects of personal spaceflight.

  3. Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket

    Science.gov (United States)

    Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.

    2018-01-01

    An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.

  4. Space Logistics: Launch Capabilities

    Science.gov (United States)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  5. [Doctor, may I travel in space? Aeromedical considerations regarding commercial suborbital space flights].

    Science.gov (United States)

    Haerkens, Marck H T M; Simons, Ries; Kuipers, André

    2011-01-01

    Within a few years, the first commercial operators will start flying passengers on suborbital flights to the verge of space. Medical data on the effects of space journeys on humans have mainly been provided by professional astronauts. There is very little research into the aeromedical consequences of suborbital flights for the health of untrained passengers. Low air pressure and oxygen tension can be compensated for by pressurising the spacecraft or pressure suit. Rapid changes in gravitational (G-)force pose ultimate challenges to cardiovascular adaptation mechanisms. Zero-gravity and G-force may cause motion sickness. Vibrations and noise during the flight may disturb communication between passengers and crew. In addition, the psychological impact of a suborbital flight should not be underestimated. There are currently no legal requirements available for medical examinations for commercial suborbital flights, but it seems justifiable to establish conditions for potential passengers' states of health.

  6. Occupational exposure to ionizing radiation for crews of suborbital spacecraft : questions & answers.

    Science.gov (United States)

    2013-12-01

    Crewmembers on future suborbital commercial spaceflights will be occupationally exposed to ionizing radiation, principally from galactic cosmic radiation. On infrequent occasions, the sun or thunderstorms may also contribute significantly to the ioni...

  7. Final Environmental Assessment for the Deactivation and Turnover of Titan Space Launch Vehicle Capability at Cape Canaveral Air Force Station, Florida

    Science.gov (United States)

    2005-05-01

    Space Gateway Support SHPO State Historic Preservation Office SJRWMD Saint John’s River Water Management District SLC Space Launch Complex...demolition process. • Service Towers – Leave the MST in the maintenance position (away from launch pad) and apply hurricane tie-downs. Secure/drain all...well as the 45 SW Asbestos Management Plan. The point of contact for ART is Bart Geyer at 867-2400. • FDEP must be notified 10 days in advance

  8. Suborbital graphs of the symmetric group S n acting on unordered r ...

    African Journals Online (AJOL)

    In this paper we construct the suborbital graphs of the symmetric group Sn acting on unordered r‐element subsets of X = {1, 2, 3, ..., n}, χ(r) (r,n ∈ ℕ) and analyse their properties. It is shown that the suborbital graphs are undirected, connected if r <½n, and have girth three if n ≥ 3r. Key words: Symmetric group, r‐element ...

  9. Space Probe Launch

    Science.gov (United States)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  10. Ares V: Game Changer for National Security Launch

    Science.gov (United States)

    Sumrall, Phil; Morris, Bruce

    2009-01-01

    . Its propellants are liquid hydrogen and liquid oxygen. The two solid rocket boosters provide about 3.5 million pounds of thrust at liftoff. These 5.5-segment boosters are derived from the 4-segment boosters now used on the Space Shuttle, and are similar to those used in the Ares I first stage. The EDS is powered by one J-2X engine. The J-2X, which has roughly 294,000 pounds of thrust, also powers the Ares I Upper Stage. It is derived from the J-2 that powered the Saturn V second and third stages. The EDS performs two functions. Its initial suborbital burns will place the lunar lander into a stable Earth orbit. After the Orion crew vehicle, launched separately on an Ares I, docks with the lander/EDS stack, EDS will ignite a second time to put the combined 65-metric ton vehicle into a lunar transfer orbit. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be approximately 381 feet tall and have a gross liftoff mass of 8.1 million pounds. The current point-of-departure design exceeds Saturn V s mass capability by approximately 40 percent. Using the current payload shroud design, Ares V can carry 315,000 pounds to 29-degree low Earth orbit (LEO) or 77,000 pounds to a geosynchronous orbit. Another unique aspect of the Ares V is the 33-foot-diameter payload shroud, which encloses approximately 30,400 cubic feet of usable volume. A larger hypothetical shroud for encapsulating larger payloads has been studied. While Ares V makes possible larger payload masses and volumes, it may alternately make possible more cost-effective mission design if the relevant payload communities are willing to consider an alternative to the existing approach that has driven them to employ complexity to solve current launch vehicle mass and volume constraints. By using Ares V s mass and volume capabilities as margin, payload designers stand to reduce development risk and cost. Significant progress has been made on the Ares V to support a plaed

  11. Launch Control Network Engineer

    Science.gov (United States)

    Medeiros, Samantha

    2017-01-01

    The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.

  12. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Bumper Wac on Launch Pad

    Science.gov (United States)

    1950-01-01

    A Bumper Wac, a combination the V-2 rocket with a WAC Corporal upper stage, awaits launch on July 24, 1950. It was the eighth in the Bumper Project and the vehicle reached the altitude of 393 kilometers. The Bumper was built by the German Rocket experts at the White Sands Proving Ground in New Mexico. In 1950, the last two Bumper launches took place in Florida, at the Long Range Proving Ground, located at Cape Canaveral.

  14. On 23 March ESA’s third Automated Transfer Vehicle (ATV), named in honour of Amaldi, was launched on board an Ariane rocket.

    CERN Multimedia

    CERN Video Productions

    2012-01-01

    Live webcast from CERN on the occasion of the launch of a "Space Ferry", named after Edoardo Amaldi, by the European Space Agency (ESA). Amaldi was CERN's first Secretary General and founding father, and a visionary pioneer for ESA. With the participation of Ugo Amaldi, CERN physicist and son of Edoardo Amaldi, Carlo Rubbia, Nobel Laureate in Physics and Former Director General of CERN and Arturo Russo, historian and author with John Kriege of CERN and ESA's History

  15. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Science.gov (United States)

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  16. Space Shuttle Day-of-Launch Trajectory Design and Verification

    Science.gov (United States)

    Harrington, Brian E.

    2010-01-01

    A top priority of any launch vehicle is to insert as much mass into the desired orbit as possible. This requirement must be traded against vehicle capability in terms of dynamic control, thermal constraints, and structural margins. The vehicle is certified to a specific structural envelope which will yield certain performance characteristics of mass to orbit. Some envelopes cannot be certified generically and must be checked with each mission design. The most sensitive envelopes require an assessment on the day-of-launch. To further minimize vehicle loads while maximizing vehicle performance, a day-of-launch trajectory can be designed. This design is optimized according to that day s wind and atmospheric conditions, which will increase the probability of launch. The day-of-launch trajectory verification is critical to the vehicle's safety. The Day-Of-Launch I-Load Uplink (DOLILU) is the process by which the Space Shuttle Program redesigns the vehicle steering commands to fit that day's environmental conditions and then rigorously verifies the integrated vehicle trajectory's loads, controls, and performance. The Shuttle methodology is very similar to other United States unmanned launch vehicles. By extension, this method would be similar to the methods employed for any future NASA launch vehicles. This presentation will provide an overview of the Shuttle's day-of-launch trajectory optimization and verification as an example of a more generic application of dayof- launch design and validation.

  17. The Launch Processing System for Space Shuttle.

    Science.gov (United States)

    Springer, D. A.

    1973-01-01

    In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).

  18. Personnel Launch System definition

    Science.gov (United States)

    Piland, William M.; Talay, Theodore A.; Stone, Howard W.

    1990-01-01

    A lifting-body Personnel Launch System (PLS) is defined for assured manned access to space for future U.S. space missions. The reusable craft described is configured for reliable and safe operations, maintainability, affordability, and improved operability, and could reduce life-cycle costs associated with placing personnel into orbit. Flight simulations show the PLS to be a very flyable vehicle with very little control and propellant expenditure required during entry. The attention to crew safety has resulted in the design of a system that provides protection for the crew throughout the mission profile. However, a new operations philosophy for manned space vehicles must be adopted to fully achieve low-cost, manned earth-to-orbit transportation.

  19. 14 CFR 401.5 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... reentry vehicle and any payload from Earth in a suborbital trajectory, in Earth orbit in outer space, or... launch. (i) For launch of an orbital expendable launch vehicle (ELV), launch ends after the licensee's last exercise of control over its launch vehicle. (ii) For launch of an orbital reusable launch vehicle...

  20. NASA's Space Launch System: Moving Toward the Launch Pad

    Science.gov (United States)

    Creech, Stephen D.; May, Todd

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. NASA is working to develop this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS program has made in the 2 years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen which combines the use and enhancement of legacy systems and technology with strategic new development projects that will evolve the capabilities of the launch vehicle. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved version of the vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight

  1. NASA's Space Launch System: Momentum Builds Towards First Launch

    Science.gov (United States)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  2. Affordable Vehicle Avionics Overview

    Science.gov (United States)

    Cockrell, James J.

    2015-01-01

    Public and private launch vehicle developers are reducing the cost of propulsion for small commercial launchers, but conventional high-performance, high-reliability avionics remain the disproportionately high cost driver for launch. AVA technology performs as well or better than conventional launch vehicle avionics, but with a fraction of the recurring costs. AVA enables small launch providers to offer affordable rides to LEO to nano-satellites as primary payloads meaning, small payloads can afford to specify their own launch and orbit parameters

  3. Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future

    Science.gov (United States)

    Cates, Grant R.

    2014-01-01

    The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.

  4. Point-to-point people with purpose—Exploring the possibility of a commercial traveler market for point-to-point suborbital space transportation

    Science.gov (United States)

    Webber, Derek

    2013-12-01

    An argument was made at the First Arcachon Conference on Private Human Access to Space in 2008 [1] that some systematic market research should be conducted into potential market segments for point-to-point suborbital space transportation (PtP), in order to understand whether a commercial market exists which might augment possible government use for such a vehicle. The cargo market potential was subsequently addressed via desk research, and the results, which resulted in a pessimistic business case outlook, were presented in [2]. The same desk research approach is now used in this paper to address the potential business and wealthy individual passenger traveler market segment ("point-to-point people with purpose"). The results, with the assumed ticket pricing, are not encouraging.

  5. Tabletop Experimental Track for Magnetic Launch Assist

    Science.gov (United States)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  6. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  7. Software and Hardware for Suborbital Telepresence: UAVs on the Web

    Science.gov (United States)

    Sorenson, C. E.; Freudinger, L. C.; Yarbrough, S. K.; Jennison, C. D.; Miller, M. J.; Friets, E. M.; Blakeslee, R. J.; Mach, D. M.; Bateman, M. G.; Bailey, J. C.; Hall, J. M.

    2005-12-01

    A NASA Dryden project creating prototype sensor web tools has resulted in software and hardware for implementing network telemetry, telepresence, and other data system functions for platforms including UAVs. The Research Environment for Vehicle-Embedded Analysis on Linux (REVEAL) software is a self-configuring/verifying/documenting framework for realtime embedded and distributed data systems based on open standards XML. With interfaces for instruments, avionics, and networking, using small PC/104 hardware with one or more Iridium modems, REVEAL systems are well suited to long endurance UAVs. These systems serve as a telemetry and communications gateway for internet-based experimenters. REVEAL systems also provide traditional Earth Science platform data system services, configured by and for each experimenter in a secure manner. On the ground segment, buffering middleware enables efficient data distribution across the internet. The innovative REVEAL architecture and its use by experimenters on recent missions using NASA's ER-2 and General Atomics Altair aircraft is described.

  8. STS-121: Discovery Launch Postponement MMT Briefing

    Science.gov (United States)

    2006-01-01

    Bruce Buckingham from NASA Public Affairs introduces the panel who consist of: John Shannon, MMT chairman JSC; Mike Leinbach, NASA Launch Director; and 1st Lieutenant Kaleb Nordren, USAF 45th Weather Squadron. An opening statement is given from John Shannon on the postponement of the launch due to thunderstorms. Mike Leinbach also elaborates on the weather and talks about scrubbing two hours early, draining the vehicle, and reloading the hydrogen for the fuel cells for a possible launch attempt on Tuesday morning. Norden gives his weather forecast for Tuesday and Wednesday. Questions from the media on launch attempts, weather, and the cost of the scrub are addressed.

  9. NASA's Space Launch System: Momentum Builds Toward First Launch

    Science.gov (United States)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  10. NASA's Space Launch System: An Evolving Capability for Exploration

    Science.gov (United States)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. The vehicle will be able to deliver greater mass to orbit than any contemporary launch vehicle. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads.

  11. Launching technological innovations

    DEFF Research Database (Denmark)

    Talke, Katrin; Salomo, Søren

    2009-01-01

    have received less attention. This study considers the interdependencies between strategic, internally and externally, directed tactical launch activities and investigates both direct and indirect performance effects. The analysis is based upon data from 113 technological innovations launched...... in industrial markets. The launch strategy and tactics addressing resistance of customers, market players and parties from the broader firm environment are found to have a direct impact on market success. The launch strategy also drives both internally and externally directed launch tactics. For launch tactics...

  12. Motivation for Air-Launch: Past, Present, and Future

    Science.gov (United States)

    Kelly, John W.; Rogers, Charles E.; Brierly, Gregory T.; Martin, J Campbell; Murphy, Marshall G.

    2017-01-01

    Air-launch is defined as two or more air-vehicles joined and working together, that eventually separate in flight, and that have a combined performance greater than the sum of the individual parts. The use of the air-launch concept has taken many forms across civil, commercial, and military contexts throughout the history of aviation. Air-launch techniques have been applied for entertainment, movement of materiel and personnel, efficient execution of aeronautical research, increasing aircraft range, and enabling flexible and efficient launch of space vehicles. For each air-launch application identified in the paper, the motivation for that application is discussed.

  13. Launch vehicle aerodynamic flight test results

    Science.gov (United States)

    Gaines, L. M.; Osborn, W. L.; Wiltse, P. D.

    1983-01-01

    The aerodynamic flight test procedures and results for the Space Shuttle orbiter are presented. The aerodynamic characteristics used in testing were determined from flights STS-1 and through STS-4. Normal force and pitching moment were different than predicted, suggesting an unanticipated aerodynamic force acting upward on the end of the orbiter. However, lateral-directional aerodynamic characteristics were in good management with good predictions. The flight measured aerodynamics are repeatable and show good correlation with angle of attack and angle of sideslip.

  14. Air Launch Instrumented Vehicles Evaluation (ALIVE).

    Science.gov (United States)

    1977-02-01

    S’l” liz - -I _ L\\~~~~ — — — ~~~ ~ _~_ — — — — — / L_ t I (I ~-j-, . -, / I / - / - ~ - I (tI ’ Ilz \\ ~~- / 7 5 , \\1 / / S’)() U,. __•1 I i gil

  15. Small Satellite Transceiver for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NAL Research Corporation proposes to develop a small, light-weight, low-cost transceivers capable of establishing satellite communications links for telemetry and...

  16. Control of NASA's Space Launch System

    Science.gov (United States)

    VanZwieten, Tannen S.

    2014-01-01

    The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).

  17. International space Launch Services Today, ILS

    Science.gov (United States)

    Rymarcsuk, James A.; Haase, Ethan E.

    2002-01-01

    In the last five years the international space launch industry has undergone substantial change. New entrants and existing players in this market have introduced new and upgraded vehicles with greater lift capability than was available five years ago. In addition, some of these vehicles offer reduced risk from their predecessors thanks to design improvements and reductions in the number of failure points. The entry of these vehicles have generated greater supply, increased choice, and improved capabilities to the benefit of satellite operators and manufacturers. Some launch service providers have also enhanced the products and services they offer due to the increased competitiveness in the market. Although the number of commercial satellites launched per year has remained within a fairly narrow range in the last five years, expectations for the future that were once very optimistic have fallen dramatically. The significant number of commercial NGSO satellites launched in the late 1990s helped raise these expectations, but today, the predicted continued growth in launches due to NGSO and broadband systems has not materialized. Despite the decline in expectations from the late 1990s, however, the satellite market that the launch industry supports remains robust. Satellite operators maintain generally favorable financial positions, but the number of satellites required to provide services worldwide is growing slowly, with the number of new and replacement satellites launched per year remaining essentially flat. Satellite operators are undergoing consolidation that is rendering them stronger than ever, and putting them in a position to demand better service from their launch service providers. The increase in supply in the marketplace and the corresponding lack of growth in demand has led to a highly competitive marketplace for launch services internationally. ILS is well positioned with products and services to meet customer needs. Key customer buying factors include

  18. National Launch System comparative economic analysis

    Science.gov (United States)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  19. Point-to-point sub-orbital space tourism: Some initial considerations

    Science.gov (United States)

    Webber, Derek

    2010-06-01

    Several public statements have been made about the possible, or even likely, extension of initial sub-orbital space tourism operations to encompass point-to-point travel. It is the purpose of this paper to explore some of the basic considerations for such a plan, in order to understand both its merits and its problems. The paper will discuss a range of perspectives, from basic physics to market segmentation, from ground segment logistics to spacecraft design considerations. It is important that these initial considerations are grasped before more detailed planning and design takes place.

  20. Launch and Recovery System Literature Review

    Science.gov (United States)

    2010-12-01

    conjunction with cages or other intermediate devices. The launch process using a crane typically involves the attachment of the crane’s hook to the...vehicle or intermediate device after which it is hoisted up via winch and moved slowly over the side of the surface platform, lowered to the water...of traits for an optimal LARS. Of special concern is the need for a fast, safe winch, a latch/ hook mechanism, and controlling vehicle pendulation

  1. The " Daphnia" Lynx Mark I Suborbital Flight Experiment: Hardware Qualification at the Drop Tower Bremen

    Science.gov (United States)

    Knie, Miriam; Schoppmann, Kathrin; Eck, Hendrik; Ribeiro, Bernard Wolfschoon; Laforsch, Christian

    2016-06-01

    The Drop Tower Bremen, a ground-based facility enabling research under real microgravity conditions, is an excellent platform for testing new types of experimental hardware to ensure full performance when deployed in costly and rare flight opportunities such as suborbital flights. Here we describe the " Daphnia" experiment which will fly on XCOR Aerospace Lynx Mark I and our experience from the hardware tests with the catapult system at the drop tower. The aim of the " Daphnia" experiment is to obtain data on the biological performance of daphnids and predator-prey interactions in microgravity, which are important for the development of aquatic bioregenerative life support systems (BLSS). The experiment consists of two subunits: The first unit is dedicated to predator-prey interactions, where behavioural analysis should reveal if microgravity interfere with prey ( Daphnia) detection or feeding and therefore may interrupt the trophic cascade. The functioning of such an artificial food web is indispensable for a long-lasting BLSS suitable for long-duration manned space missions or Earth-based explorations to extreme habitats. The second unit is designed to investigate the impact of microgravity on gene expression and the cytoskeleton in Daphnia. Next to data collection, the real microgravity conditions at the drop tower have helped to identify the weak points of the " Daphnia" experimental hardware and lead to further improvement. Hence, the drop tower is ideal for testing new experimental hardware which is indispensable before the implementation in suborbital flights.

  2. Iraq Radiosonde Launch Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Iraqi upper air records loaned to NCDC from the Air Force 14th Weather Squadron. Scanned notebooks containing upper air radiosonde launch records and data. Launches...

  3. Comparison of Two Recent Launch Abort Platforms

    Science.gov (United States)

    Dittemore, Gary D.; Harding, Adam

    2011-01-01

    The development of new and safer manned space vehicles is a top priority at NASA. Recently two different approaches of how to accomplish this mission of keeping astronauts safe was successfully demonstrated. With work already underway on an Apollo-like launch abort system for the Orion Crew Exploration Vehicle (CEV), an alternative design concept named the Max Launch Abort System, or MLAS, was developed as a parallel effort. The Orion system, managed by the Constellation office, is based on the design of a single solid launch abort motor in a tower positioned above the capsule. The MLAS design takes a different approach placing the solid launch abort motor underneath the capsule. This effort was led by the NASA Engineering and Safety Center (NESC). Both escape systems were designed with the Ares I Rocket as the launch vehicle and had the same primary requirement to safely propel a crew module away from any emergency event either on the launch pad or during accent. Beyond these two parameters, there was little else in common between the two projects, except that they both concluded in successful launches that will further promote the development of crew launch abort systems. A comparison of these projects from the standpoint of technical requirements; program management and flight test objectives will be done to highlight the synergistic lessons learned by two engineers who worked on each program. This comparison will demonstrate how the scope of the project architecture and management involvement in innovation should be tailored to meet the specific needs of the system under development.

  4. Ariane transfer vehicle scenario

    Science.gov (United States)

    Deutscher, Norbert; Cougnet, Claude

    1990-10-01

    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  5. Signal transduction in primary human T lymphocytes in altered gravity - results of the MASER-12 suborbital space flight mission.

    Science.gov (United States)

    Tauber, Svantje; Hauschild, Swantje; Crescio, Claudia; Secchi, Christian; Paulsen, Katrin; Pantaleo, Antonella; Saba, Angela; Buttron, Isabell; Thiel, Cora Sandra; Cogoli, Augusto; Pippia, Proto; Ullrich, Oliver

    2013-05-07

    We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation

  6. Illustration of Launching Samples Home from Mars

    Science.gov (United States)

    2005-01-01

    One crucial step in a Mars sample return mission would be to launch the collected sample away from the surface of Mars. This artist's concept depicts a Mars ascent vehicle for starting a sample of Mars rocks on their trip to Earth.

  7. Trajectory driven multidisciplinary design optimization of a sub-orbital spaceplane using non-stationary Gaussian process

    NARCIS (Netherlands)

    Dufour, R.; De Meulenaere, J.; Elham, A.

    2015-01-01

    This paper presents the multidisciplinary optimization of an aircraft carried sub-orbital spaceplane. The optimization process focused on three disciplines: the aerodynamics, the structure and the trajectory. The optimization of the spaceplane geometry was coupled with the optimization of its

  8. The Launch Systems Operations Cost Model

    Science.gov (United States)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  9. COSMOS Launch Services

    Science.gov (United States)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  10. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    Science.gov (United States)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  11. Pushing the Boundaries of X-ray Grating Spectroscopy in a Suborbital Rocket

    Science.gov (United States)

    McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen; Cash, Webster

    2013-01-01

    Developments in grating spectroscopy are paramount for meeting the soft X-ray science goals of future NASA X-ray Observatories. While developments in the laboratory setting have verified the technical feasibility of using off-plane reflection gratings to reach this goal, flight heritage is a key step in the development process toward large missions. To this end we have developed a design for a suborbital rocket payload employing an Off-Plane X-ray Grating Spectrometer. This spectrometer utilizes slumped glass Wolter-1 optics, an array of gratings, and a CCD camera. We discuss the unique capabilities of this design, the expected performance, the science return, and the perceived impact to future missions.

  12. Sustained Accelerated Idioventricular Rhythm in a Centrifuge-Simulated Suborbital Spaceflight.

    Science.gov (United States)

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M

    2017-08-01

    Hypergravitational exposures during human centrifugation are known to provoke dysrhythmias, including sinus dysrhythmias/tachycardias, premature atrial/ventricular contractions, and even atrial fibrillations or flutter patterns. However, events are generally short-lived and resolve rapidly after cessation of acceleration. This case report describes a prolonged ectopic ventricular rhythm in response to high G exposure. A previously healthy 30-yr-old man voluntarily participated in centrifuge trials as a part of a larger study, experiencing a total of 7 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak +3.5 Gz, run 2) and two +Gx runs (peak +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Hemodynamic data collected included blood pressure, heart rate, and continuous three-lead electrocardiogram. Following the final acceleration exposure of the last Day 2 run (peak +4.5 Gx and +4.0 Gz combined, resultant +6.0 G), during a period of idle resting centrifuge activity (resultant vector +1.4 G), the subject demonstrated a marked change in his three-lead electrocardiogram from normal sinus rhythm to a wide-complex ectopic ventricular rhythm at a rate of 91-95 bpm, consistent with an accelerated idioventricular rhythm (AIVR). This rhythm was sustained for 2 m, 24 s before reversion to normal sinus. The subject reported no adverse symptoms during this time. While prolonged, the dysrhythmia was asymptomatic and self-limited. AIVR is likely a physiological response to acceleration and can be managed conservatively. Vigilance is needed to ensure that AIVR is correctly distinguished from other, malignant rhythms to avoid inappropriate treatment and negative operational impacts.Suresh R, Blue RS, Mathers C, Castleberry TL, Vanderploeg JM. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(8):789-793.

  13. Apollo 6 Transported to Launch Pad at KSC

    Science.gov (United States)

    1968-01-01

    Apollo 6, the second and last of the unmarned Saturn V test flights, is slowly transported past the Vehicle Assembly Building on the way to launch pad 39-A. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  14. Cube Sat Launching Investigation

    OpenAIRE

    Shahmari, Elham; Molaverdikhani, Karan; Jazebizadeh, Hooman; Bakhtiari Mojaz, Sahar; Taheran, Mahsa

    2008-01-01

    Today different groups started to manufacture cubesats because of the low cost of manufacturing and launching the satellites. With the growth of cubesat manufacturing, the scientist has tried to produce the small launchers to respond the needs of new researchers and young scientists. In 1980 the manufactured the commercial small launcher and starting launch in 1990. Also Russia with improvement of their ballistic missile and performing changes and improvement tried to manufacture small launch...

  15. Ionospheric response to a rocket launch from the Vostochnyi Cosmodrome

    Science.gov (United States)

    Zherebtsov, G. A.; Perevalova, N. P.

    2016-12-01

    The atmospheric disturbances caused by the first rocket launch from the Vostochnyi Cosmodrome on April 28, 2016, were registered 10-24 min after the launch using the signals of the GPS/GLONASS global navigation satellite systems. The analysis of the spatial distribution of the disturbances allowed the conclusion that the launch vehicle moved northwest from the cosmodrome, which corresponds to a trajectory of the satellite movement to the orbit with an inclination of 98º.

  16. A Modular Minimum Cost Launch System for Nano-Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As minimum cost will be required for a dedicated Nano-Sat Launch Vehicle, a parallel staged, highly modular vehicle architecture is proposed for development. The...

  17. Flight Performance Feasibility Studies for the Max Launch Abort System

    Science.gov (United States)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  18. Rationales for the Lightning Launch Commit Criteria

    Science.gov (United States)

    Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.

    2016-01-01

    Since natural and triggered lightning are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the Lightning Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural lightning or triggering a lightning flash during launch from a Federal Range. NASA and DoD utilize the Lightning Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed Lightning Flight Commit Criteria in G417.

  19. Launch Pad Flame Trench Refractory Materials

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  20. Space Launch System (SLS) Mission Planner's Guide

    Science.gov (United States)

    Smith, David Alan

    2017-01-01

    The purpose of this Space Launch System (SLS) Mission Planner's Guide (MPG) is to provide future payload developers/users with sufficient insight to support preliminary SLS mission planning. Consequently, this SLS MPG is not intended to be a payload requirements document; rather, it organizes and details SLS interfaces/accommodations in a manner similar to that of current Expendable Launch Vehicle (ELV) user guides to support early feasibility assessment. Like ELV Programs, once approved to fly on SLS, specific payload requirements will be defined in unique documentation.

  1. B-52 Launch Aircraft in Flight

    Science.gov (United States)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  2. Focal plane actuation by hexapod for the development of a high-resolution suborbital telescope

    Science.gov (United States)

    Miller, Alexander D.; Scowen, Paul A.; Veach, Todd J.

    2016-07-01

    We present a prototype hexapod image stabilization system as the key instrument for a proposed suborbital balloon mission. The unique design thermally isolates an off-the-shelf non-cryogenic hexapod from a liquid nitrogen cooled focal plane, enabling its use in a cryogenic environment. Balloon gondolas currently achieve 1-2 arcsecond pointing error, but cannot correct for unavoidable jitter movements ( 20 micron amplitude at 20 Hz at the worst) caused by wind rushing over balloon surfaces, thermal variations, and vibrations from cryocoolers, and reaction wheels. The jitter causes image blur during exposures and limits the resolution of the system. Removal of this final jitter term decreases pointing error by an order of magnitude and allows for true diffraction-limited observation. Tip-tilt pointing systems have been used for these purposes in the past, but require additional optics and introduce multiple reflections. The hexapod system, rather, is compact and can be plugged into the focal point of nearly any configuration. For a 0.8m telescope the improvement in resolution by this system would provide 0.1" angular resolution at 300nm, which is comparable to Hubble for a fraction of the cost. On an actual balloon, the hexapod system would actuate the focal plane to counteract the jitter using position information supplied by guidestar cameras. However, in the lab, we instead simulate guide camera tracking, using a 1024 × 1024 e2v science-grade CCD to take long exposures of a target attached to an XY stage driven with the balloon jitter signal recorded during the STO mission. Further confirmation of the positional accuracy and agility of the hexapod is achieved using a laser and fast-sampling position-sensitive diode. High-resolution time domain multispectral imaging of the gas giants, especially in the UV range, is of particular interest to the planetary community, and a suborbital telescope with the hexapod stabilization in place would provide a wealth of new

  3. Reaction Control Engine for Space Launch Initiative

    Science.gov (United States)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  4. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  5. Launch strategy for manned spacecraft: Improving safety or increasing of launch mass?

    Science.gov (United States)

    Murtazin, Rafail; Petrov, Nikolay; Ulybyshev, Yuri

    2011-09-01

    Traditionally the launch mass of a crew vehicle with a launch abort system (LAS) should be in compliance with the ultimate launch vehicle (LV) payload mass capability. The LAS is used to provide crew safety in the case of LV failure. An additional propellant for the LV (that exceeds the mass of propellant required for the injection into a nominal orbit) may contribute to crew safety in the case of LV failures. Currently rescue strategies used to provide emergency landing or splashdown along the ground track (for a spacecraft with a low lift-to-drag ratio ( L/D), such as the Soyuz descent capsule) or landing on a back-up runway located near the flight path (for spacecraft with a high L/D, such as the Buran or Space Shuttle Orbiter). The advanced Russian human spacecraft with a low L/D that delivers crew to the International Space Station is designed to launch from the new Vostochny launch site. Major part of the LV ground track will pass over the Pacific Ocean. It means that any rescue operation will be challenging and complex. The paper explores possible launch abort strategies when an additional LV propellant is used. The optimal strategy is to provide a controlled abort landing into specified areas. The number and size of the areas should be minimal in order to minimize search-and-rescue time. A qualitative comparison between the traditional and proposed strategies is shortly discussed.

  6. First Accessible Boat Launch

    Science.gov (United States)

    This is a story about how the Northwest Indiana urban waters partnership location supported the process to create and open the first handicap accessible canoe and kayak launch in the state of Indiana.

  7. Anchor Trial Launch

    Science.gov (United States)

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  8. Launch under attack

    Energy Technology Data Exchange (ETDEWEB)

    Steinbruner, J.

    1984-01-01

    The strategy of launch under attack calls for launching nuclear weapons on warning that attacking weapons are on their way. The political pressures for adopting this strategy are symptomatic of an increasing instability in the nuclear balance. The author describes a Brookings Institute model, which indicates that the problems of decentralized control and precise timing could lead to failures in retargeting procedures. The major concern is that the strategy imposes powerful incentives for preemption as the most promising means of conducting nuclear war.

  9. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  10. Acquisition of a Biomedical Database of Acute Responses to Space Flight during Commercial Personal Suborbital Flights

    Science.gov (United States)

    Charles, John B.; Richard, Elizabeth E.

    2010-01-01

    There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.

  11. A suborbital experiment to study Circumgalactic Lines in Ultraviolet Emission (CLUE)

    Science.gov (United States)

    Cook, Timothy; Wakker, Bart P.; Finn, Susanna; Martel, Jason F.

    2016-06-01

    We present the design and expected performance of CLUE, a new suborbital mission designed to image OVI emission from the circumgalactic medium of nearby galaxies. CLUE will act as a scientific pathfinder for future far ultraviolet emission missions. It will establish, on three nearby galaxies, the brightness, extent, and morphology of the OVI emission from the circumgalactic medium. These results will be essential in planning and evaluating any future FUV emission mission.The experiment will demonstrate an instrument design, called the monochromatic imager, which provides an all-reflective solution to the "narrow band imaging problem". Narrowband imaging is a staple astronomical technique. It allows observers to map the spatial distribution of ionic, atomic, and molecular features, and to determine the temperature, density, etc. of the emitting gas. Unfortunately, this technique cannot be applied in the far-ultraviolet band where transmissive materials are unavailable and ionic features are closely spaced, requiring a quickly varying spectral response.The monochromatic imager uses a conventional telescope with a grating monochromator to select the wavelength of interest. After passing through the monochromator an image of the target (now monochromatic) is focused on the detector. Unlike a push broom imaging system, CLUE produces a full image in a single emission line. CLUE is able to efficiently devote its observing time and detector area to collecting photons of interest while NOT devoting time and collecting area to recording uninteresting spectral regions.

  12. Liberty Bell 7 the suborbital Mercury flight of Virgil I. Grissom

    CERN Document Server

    Burgess, Colin

    2014-01-01

    NASA’s Mercury astronauts were seven highly skilled professional test pilots. Each of them seemed to possess the strength of character and commitment necessary to overcome apparently insurmountable obstacles as the United States entered into a Cold War space race with the Soviet Union. This was never more evident than on the epic suborbital MR-4 flight of Liberty Bell 7 with astronaut Virgil (‘Gus’) Grissom piloting the spacecraft to a successful splashdown, followed by the premature blowing of the craft’s explosive hatch. After a hurried exit and struggling to stay afloat, he could only watch helplessly as the recovery helicopter pilot valiantly fought a losing battle to save the sinking capsule.   That day NASA not only lost a spacecraft but came perilously close to losing one of its Mercury astronauts, a decorated Korean fighter pilot from Indiana who might one day have soared to the highest goal of them all, as the first person to set foot on the Moon.   For the first time, many of those closest...

  13. Low-voltage Power Supply Subsystem for a Sub-Orbital Particle Physic Instrument

    Directory of Open Access Journals (Sweden)

    Hector Hugo Silva Lopez

    2014-01-01

    Full Text Available The Japanese Experiment Module–Extreme Universe Space Observatory (JEM-EUSO is a wide-field (+/-~30°of aperture 2.5m refractor telescope to be installed in the International Space Station (ISS. The instrument looks downward from its orbit, into Earth’s atmosphere, with the main objective of observing ultra-violet (UV fluorescence light generated by Ultra-High Energy Cosmic Rays (UHECR extensive air showers (EAS. It is a frontier particle-physics experiment, the first of its kind. The validation of the technical readiness level of such a complex and unique instrument requires prototypes at several levels of integration. At the highest level, the EUSO-Balloon instrument has been conceived, through French space agency (CNES. At a smaller scale and in suborbital flight, EUSO-Balloon integrates all the sub-systems of the full space JEM-EUSO telescope, allowing end-to-end testing of hardware and interfaces, and to probing the global detection chain and strategy, while improving at the same time our knowledge of atmospheric and terrestrial UV background. EUSO-Balloon will be flown by CNES for the first time from Timmins, Canada; on spring 2014.This article presents the low-voltage power supply (LVPS subsystem development for the EUSO-Balloon instrument. This LVPS is the fully operational prototype for the space instrument JEM-EUSO. Besides design and construction, all performance tests and integration results with the other involved subsystems are shown.

  14. Space Launch System Mission Flexibility Assessment

    Science.gov (United States)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  15. 78 FR 49729 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Air Force Launches, Aircraft and...

    Science.gov (United States)

    2013-08-15

    ... incidental to launching space launch vehicles, intercontinental ballistic and small missiles, aircraft and... from noise or visual disturbance from rocket and missile launches, as well as from the use of heavy... missiles launched from various facilities on North VAFB, including the Minuteman III and several types of...

  16. 75 FR 28587 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Missile Launch...

    Science.gov (United States)

    2010-05-21

    ... to sound produced by the engines of all launch vehicles, and, in some cases, their booster rockets... Marine Mammals Incidental to Missile Launch Operations from San Nicolas Island, CA AGENCY: National... three species of seals and sea lions incidental to missile launch operations from San Nicolas Island...

  17. NASA's Space Launch System: An Evolving Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  18. NASA's Space Launch System Progress Report

    Science.gov (United States)

    Singer, Joan A.; Cook, Jerry R.; Lyles, Garry M.; Beaman, David E.

    2011-01-01

    Exploration beyond Earth will be an enduring legacy for future generations, confirming America's commitment to explore, learn, and progress. NASA's Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program's Saturn V that sent Americans to the Moon. The SLS offers a flexible design that may be configured for the MultiPurpose Crew Vehicle and associated equipment, or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Both options support a national capability that will pay dividends for future generations. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 metric tons (mT) and will be evolvable to 130 mT. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of asteroids and Mars. With its superior lift capability, the SLS can expand the interplanetary highway to many possible destinations, conducting revolutionary missions that will change the way we view ourselves, our planet and its place in the cosmos. To perform missions such as these, the SLS will be the largest launch vehicle ever built. It is being designed for safety and affordability - to sustain our journey into the space age. Current plans include launching the first flight, without crew, later this decade, with crewed flights beginning early next decade. Development work now in progress is based on heritage space systems and working knowledge, allowing for a relatively quick start and for maturing the SLS rocket as future technologies become available. Together, NASA and the U.S. aerospace industry are partnering to develop this one-of-a-kind asset. Many of NASA's space

  19. Lightning interaction with launch facilities

    Science.gov (United States)

    Mata, C. T.; Rakov, V. A.

    2009-12-01

    Lightning is a major threat to launch facilities. In 2008 and 2009 there have been a significant number of strikes within 5 nautical miles of Launch Complexes 39A and 39B at the Kennedy Space Center. On several occasions, the Shuttle Space Vehicle (SSV) was at the pad. Fortunately, no accidents or damage to the flight hardware occurred, but these events resulted in many launch delays, one launch scrub, and many hours of retesting. For complex structures, such as launch facilities, the design of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some “unprotected” or “exposed” areas. In order to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for a large number of years using a long term ground flash density that corresponds to the geographical region where the structures being analyzed are located or will be installed. The output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution. This tool was used in designing the lightning protection system of Launch Complex 39B at the Kennedy Space Center, FL, for NASA’s Constellation program. The tool allowed the designers to select the position of the towers and to design the catenary wire system to minimize the probability of direct strikes to the spacecraft and associated ground support equipment. This tool can be used to evaluate

  20. Climate analysis of lightning launch commit criteria for Kennedy Space Center and Cape Canaveral Air Force Station

    OpenAIRE

    Muller, Eric C.

    2010-01-01

    Approved for public release; distribution is unlimited We have conducted climate analyses of natural lightning activity at Kennedy Space Center and Cape Canaveral Air Force Station (KSC/CCAFS). These analyses were conducted to improve forecasts of lightning related hazards for, and the planning of, space vehicle launches at KSC/CCAFS. If a space vehicle is hit by lightning during launch, the vehicle and payload may sustain irreparable damage. Lightning-based rules for conducting launch a...

  1. Focal plane actuation to achieve ultra-high resolution on suborbital balloon payloads

    Science.gov (United States)

    Scowen, Paul A.; Miller, Alex; Challa, Priya; Veach, Todd; Groppi, Chris; Mauskopf, Phil

    2014-07-01

    Over the past few years there has been remarkable success flying imaging telescope systems suspended from suborbital balloon payload systems. These imaging systems have covered optical, ultraviolet, sub-­-millimeter and infrared passbands (i.e. BLAST, STO, SBI, Fireball and others). In recognition of these advances NASA is now considering ambitious programs to promote planetary imaging from high altitude at a fraction of the cost of similar fully orbital systems. The challenge with imaging from a balloon payload is delivering the full diffraction-­-limited resolution of the system from a moving payload. Good progress has been made with damping mechanisms and oscillation control to remove most macroscopic movement in the departures of the imaging focal plane from a static configuration, however a jitter component remains that is difficult to remove using external corrections. This paper reports on work to demonstrate in the laboratory the utility and performance of actuating a detector focal plane (of whatever type) to remove the final jitter terms using an agile hexapod design. The input to this demonstration is the jitter signal generated by the pointing system of a previously flown balloon mission (the Stratospheric Terahertz Observatory, STO). Our group has a mature jitter compensation system that thermally isolates the control head from the focal plane itself. This allows the hexapod to remain at ambient temperature in a vacuum environment with the focal plane cooled to cryogenic temperatures. Our lab design mounts the focal plane on the hexapod in a custom cryostat and delivers an active optical stimulus together with the corresponding jitter signal, using the actuation of the hexapod to correct for the departures from a static, stable configuration. We believe this demonstration will make the case for inclusion of this technological solution in future balloon-­-borne imaging systems requiring ultra-­-high resolution.

  2. Tolerance of centrifuge-simulated suborbital spaceflight in subjects with implanted insulin pumps.

    Science.gov (United States)

    Levin, Dana R; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2015-04-01

    With commercial spaceflight comes the possibility of spaceflight participants (SFPs) with significant medical conditions. Those with previously untested medical conditions, such as diabetes mellitus (DM) and the use of indwelling medical devices, represent a unique challenge. It is unclear how SFPs with such devices will react to the stresses of spaceflight. This case report describes two subjects with Type I DM using insulin pumps who underwent simulated dynamic phases of spaceflight via centrifuge G force exposure. Two Type I diabetic subjects with indwelling Humalog insulin pumps, a 23-yr-old man averaging 50 u of Humalog daily and a 27-yr-old man averaging 60 u of Humalog daily, underwent seven centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular evaluation, and questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Neither subject experienced adverse clinical responses to the centrifuge exposure. Both maintained blood glucose levels between 110-206 mg · dl(-1). Potential risks to SFPs with insulin pump dependent DM include hypo/hyperglycemia, pump damage, neurovestibular dysfunction, skin breakdown, and abnormal stress responses. A search of prior literature did not reveal any previous studies of individuals with DM on insulin pumps exposed to prolonged accelerations. These cases suggest that individuals with conditions dependent on continuous medication delivery might tolerate the accelerations anticipated for commercial spaceflight.

  3. Donato Mancini Print Launch

    OpenAIRE

    Shing, Cherman; Mancini, Donato

    2012-01-01

    During Institutions by Artists, Fillip was pleased to present a series of free, parallel events in the lobby of SFU Woodward’s that investigated the material culture produced by the institutional practices of artists. The Print Centre featured talks, launches, and screenings by conference presenters and attendees. Presented in collaboration with a temporary book store hosted by Motto Books (Berlin).

  4. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  5. Successful launch of SOHO

    Science.gov (United States)

    1995-12-01

    "Understanding how the Sun behaves is of crucial importance to all of us on Earth. It affects our everyday lives" said Roger Bonnet, Director of Science at ESA, who witnessed SOHO's spectacular nighttime launch from Cape Canaveral. "When SOHO begins work in four months time, scientists will, for the first time, be able to study this star 24 hours a day, 365 days a year". The 12 instruments on SOHO will probe the Sun inside out, from the star's very centre to the solar wind that blasts its way through the solar system. It will even listen to sounds, like musical notes, deep within the star by recording their vibrations when they reach the surface. SOHO was launched from Cape Canaveral Air Station, Florida, atop an Atlas IIAS rocket, at 09:08 CET on Saturday 2 December 1995. The 1.6 tonne observatory was released into its transfer orbit from the rocket's Centaur upper stage about two hours after launch. It will take four months for the satellite to reach its final position, a unique vantage point, located 1.5 million kilometres from Earth, where the gravitational pull of the Earth and Sun are equal. From here, the Lagrange point, SOHO will have an unobstructed view of the Sun all year round. SOHO's launch was delayed from 23 November because a flaw was discovered in a precision regulator, which throttles the power of the booster engine on the Atlas rocket. The system was replaced and retested before the launch. SOHO is a project of international cooperation between ESA and NASA. The spacecraft was designed and built in Europe, NASA provided the launch and will operate the satellite from its Goddard Space Flight Center, Maryland. European scientists provided eight of the observatory's instruments and US scientists a further three. The spacecraft is part of the international Solar-Terrestrial Science Programme, the next member of which is Cluster, a flotilla of four spacecraft that will study how the Sun affects Earth and surrounding space. Cluster is scheduled for

  6. Vehicle health management technology needs

    Science.gov (United States)

    Hammond, Walter E.; Jones, W. G.

    1992-01-01

    Background material on vehicle health management (VHM) and health monitoring/control is presented. VHM benefits are described and a list of VHM technology needs that should be pursued is presented. The NASA funding process as it impacts VHM technology funding is touched upon, and the VHM architecture guidelines for generic launch vehicles are described. An example of a good VHM architecture, design, and operational philosophy as it was conceptualized for the National Launch System program is presented. Consideration is given to the Strategic Avionics Technology Working Group's role in VHM, earth-to-orbit, and space vehicle avionics technology development considerations, and some actual examples of VHM benefits for checkout are given.

  7. NASA's Space Launch System: A Cornerstone Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created

  8. 14 CFR 420.5 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... the surface of the Earth, whichever is shorter, for an orbital launch vehicle; and ending with an impact dispersion area for a guided sub-orbital launch vehicle. E,F,G coordinate system means an... each piece of debris created by a launch vehicle failure at a particular point on its trajectory. The...

  9. Orion Launch Abort System Performance During Exploration Flight Test 1

    Science.gov (United States)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  10. Evolution of the Florida Launch Site Architecture: Embracing Multiple Customers, Enhancing Launch Opportunities

    Science.gov (United States)

    Colloredo, Scott; Gray, James A.

    2011-01-01

    The impending conclusion of the Space Shuttle Program and the Constellation Program cancellation unveiled in the FY2011 President's budget created a large void for human spaceflight capability and specifically launch activity from the Florida launch Site (FlS). This void created an opportunity to re-architect the launch site to be more accommodating to the future NASA heavy lift and commercial space industry. The goal is to evolve the heritage capabilities into a more affordable and flexible launch complex. This case study will discuss the FlS architecture evolution from the trade studies to select primary launch site locations for future customers, to improving infrastructure; promoting environmental remediation/compliance; improving offline processing, manufacturing, & recovery; developing range interface and control services with the US Air Force, and developing modernization efforts for the launch Pad, Vehicle Assembly Building, Mobile launcher, and supporting infrastructure. The architecture studies will steer how to best invest limited modernization funding from initiatives like the 21 st elSe and other potential funding.

  11. Apollo 11 astronaut Buzz Aldrin appears relaxed before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 astronaut Edwin E. Aldrin Jr. appears to be relaxed during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  12. Apollo 11 astronaut Neil Armstrong suits up before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  13. NASA'S Space Launch System: Opening Opportunities for Mission Design

    Science.gov (United States)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will

  14. Upper Atmospheric Monitoring for Ares I-X Ascent Loads and Trajectory Evaluation on the Day-of-Launch

    Science.gov (United States)

    Roberts, Barry C.; McGrath, Kevin; Starr, Brett; Brandon, Jay

    2009-01-01

    During the launch countdown of the Ares I-X test vehicle, engineers from Langley Research Center will use profiles of atmospheric density and winds in evaluating vehicle ascent loads and controllability. A schedule for the release of balloons to measure atmospheric density and winds has been developed by the Natural Environments Branch at Marshall Space Flight Center to help ensure timely evaluation of the vehicle ascent loads and controllability parameters and support a successful launch of the Ares I-X vehicle.

  15. Three Dimensional Analysis of Elastic Rocket and Launcher at Launching

    Science.gov (United States)

    Takeuchi, Shinsuke

    In this paper, a three-dimensional analysis of launching dynamics of a sounding rocket is investigated. In the analysis, the elastic vibration of the vehicle and launcher is considered. To estimate a trajectory dispersion including the effect of elasticity of the vehicle and launcher, a three-dimensional numerical simulation of a launch is performed. The accuracy of the numerical simulation is discussed and it is concluded that the simulation can estimate the maximum value of the trajectory dispersion properly. After that, the maximum value is estimated for the actual sounding rocket and the value is shown to be within the safty margin for this particular case.

  16. Launch of Zoological Letters.

    Science.gov (United States)

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.

  17. Tests for digital classification of orbital and suborbital images in multitemporal examination of recent PCH - Sao Simao, Alegre, ES; Ensaios de classificacao digital de imagens orbital e suborbital na analise multitemporal da recente barragem PCH - Sao Simao

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Aldeir de O.; Silva, Kmila G. da; Andrade, Monique B.; Areas, Mario L.; Santos, Alexander R. dos [Universidade Federal do Espirito Santo (CCA/UFES), Alegre, ES (Brazil). Centro de Ciencias Agrarias; Ferrari, Jeferson L. [Instituto Federal do Espirito Santo (IFES), Alegre, ES (Brazil)], E-mail: jlferrari@ifes.edu.br

    2010-07-01

    PCH - Sao Simao is a brand new development, located in Alegre - ES, aiming to produce 27 MW of electricity by damming the Rio Itapemirim left arm. The area has a range of thematic classes related to changes both in the aquatic environment and in the adjacent land. The aim of this paper is to present results of tests carried out in Spring, for defining the best parameters resulting from the supervised classification methods, Maxver and Euclidean Distance on two high-resolution images, a suborbital (Ortofoto/2007) and other characteristics (Geoeye/2009) that portray, respectively, the moments leading up to and what happened to that building. It contains six thematic categories: watercourse; Exposed land, pasture, forest fragmentation; material rocky and unpaved roads. The results showed that the classifier that performed better was the Maxver, with average performance and confusion average respectively 85.45% and 15.55% f or the image suborbital (Ortofoto/2007) and 85.13% and 14.87% for the orbital image (Geoeye/2009). Moreover, he realized the importance of applying the technique of linear filtering low-pass 7 x 7, raising the average performance of 67.09% and 84.45% stop reducing confusion average of 32.91% to 15.55%. (author)

  18. NASA Space Launch System: A Cornerstone Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Robinson, Kimberly F.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space

  19. Fluvial response to sub-orbital scale environmental changes in southern French Alps

    Science.gov (United States)

    Bonneau, Lucile; Jorry, Stephan; Toucanne, Samuel; Emmanuel, Laurent

    2013-04-01

    Linkage between landscape processes and deep sea deposits is assumed by rivers transfer. Despite all the efforts of the Source-to-Sink community during the last decade, very few studies permit to link marine sedimentary records with phenomena occurring onland. The Var sedimentary system is a spatial restricted sediment routing system with a very narrow continental shelf and steep slope. This particularity makes the Var an ideal target for studying sediment transfers under glacial climate. Late Quaternary sea level changes didn't modified the size of drainage area and during both highstand and lowstand, the deep submarine fan (Var Sedimentary Ridge) was continuously feed by a single channel directly connected to Var river mouth. Located at the border between Mediterranean and alpine domains, the Var River watershed is characterized by steep slope and rare sediment dams. Several studies during the last 20 years had shown that for centennial to daily scale, turbidity flows are related to Var river floods. Based on the analysis of stable oxygen isotopes and radiocarbon dates we established the first high resolution stratigraphy of 20 meters long turbidite deposits on the Var Sedimentary Ridge. This record covers the last 75 ka of the Var turbiditic activity which directly reflects the hydrological and sediment discharge of the onshore fluvial system. The turbidite frequencies show a multiscale variability : (1) the higher frequency corresponds to Dansgaard-Oeschger oscillations and Heinrich events, and (2) the lower frequency characterizes the amplitude of suborbital-scale variability which seems to be modulated by long term orbital parameters variations. The same pattern is reported for vegetation history of European Mediterranean border. This is consistent with our results which suggest that soil stabilization by vegetation cover plays an important role in the modulation of sediment transfers. Under stadials and Heinrich cold and dry climate, the scarce vegetation

  20. LQG controller designs from reduced order models for a launch ...

    Indian Academy of Sciences (India)

    MyE = (IR + mRlRlc)¨δi + mRlR ˙U0δi. (7). 2.1d Aerodynamic forces: The aerodynamic force acts at the center of pressure of the LV. It acts along the line of the vehicle velocity, that is making an angle equal to the angle of attack with the axis of the launch vehicle as shown in figure 1 and can be described as. FAz = Czsq and.

  1. Wireless Intra-vehicle Communication System (WICS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon's Wireless Intra-vehicle Communication System (WICS) is being designed as an enabling technology for low-cost launch vehicles. It will reduce the cost of...

  2. Artists drawing of partial cutaway view of Apollo/Saturn IB space vehicle

    Science.gov (United States)

    1968-01-01

    Artists drawing of a partial cutaway view of an Apollo/Saturn IB space vehicle in a launch configuration. Arrow point to various features and components of the vehicle. This drawing is representative of the Apollo 7 space vehicle.

  3. NASA Space Launch System Operations Strategy

    Science.gov (United States)

    Singer, Joan A.; Cook, Jerry R.; Singer, Christer E.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is charged with delivering a new capability for human and scientific exploration beyond Earth orbit (BEO). The SLS may also provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle (MPCV) on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and Ground Systems Development and Operations (GSDO) programs are working together to create streamlined, affordable operations for sustainable exploration for decades to come.

  4. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  5. NASA'S Space Launch System Mission Capabilities for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to

  6. CryoSat: ready to launch (again)

    Science.gov (United States)

    Francis, R.; Wingham, D.; Cullen, R.

    2009-12-01

    Over the last ten years the relationship between climate change and the cryosphere has become increasingly important. Evidence of change in the polar regions is widespread, and the subject of public discussion. During this same ten years ESA has been preparing its CryoSat mission, specifically designed to provide measurements to determine the overall change in the mass balance of all of the ice caps and of change in the volume of sea-ice (rather than simply its extent). In fact the mission was ready for launch in October 2005, but a failure in the launch vehicle led to a loss of the satellite some 6 minutes after launch. The determination to rebuild the satellite and complete the mission was widespread in the relevant scientific, industrial and political entities, and the decision to redirect financial resources to the rebuild was sealed with a scientific report confirming that the mission was even more important in 2005 than at its original selection in 1999. The evolution of the cryosphere since then has emphasised that conclusion. In order to make a meaningful measurement of the secular change of the surface legation of ice caps and the thickness of sea-ice, the accuracy required has been specified as about half of the variation expected due to natural variability, over reasonable scales for the surfaces concerned. The selected technique is radar altimetry. Previous altimeter missions have pioneered the method: the CryoSat instrument has been modified to provide the enhanced capabilities needed to significantly extend the spatial coverage of these earlier missions. Thus the radar includes a synthetic aperture mode which enables the along-track resolution to be improved to about 250 m. This will will allow detection of leads in sea-ice which are narrower than those detected hitherto, so that operation deeper into pack-ice can be achieved with a consequent reduction in errors due to omission. Altimetry over the steep edges of ice caps is hampered by the irregular

  7. NASA's SPACE LAUNCH SYSTEM: Development and Progress

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS) and robotic probes are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) (Figure 1), that will carry out a series of increasingly challenging missions leading to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (mT) (154,324 pounds) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 mT (286,601 pounds) through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any existing rocket, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward launch readiness in 2018. Every major element of SLS continued to make significant progress in 2015. Engineers fired Qualification Motor 1 (QM-1) in March 2015 to test the 5-segment motor, including new insulation, joint, and propellant grain designs. More than 70 major components of test article and flight hardware for the Core Stage have been manufactured. Seven test firings have been completed with an RS-25 engine under SLS operating conditions. The test article for the Interim Cryogenic Propulsion Stage (ICPS) has also been completed

  8. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  9. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  10. New Product Launching Ideas

    Science.gov (United States)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  11. Launching a world-class joint venture.

    Science.gov (United States)

    Bamford, James; Ernst, David; Fubini, David G

    2004-02-01

    More than 5,000 joint ventures, and many more contractual alliances, have been launched worldwide in the past five years. Companies are realizing that JVs and alliances can be lucrative vehicles for developing new products, moving into new markets, and increasing revenues. The problem is, the success rate for JVs and alliances is on a par with that for mergers and acquisitions--which is to say not very good. The authors, all McKinsey consultants, argue that JV success remains elusive for most companies because they don't pay enough attention to launch planning and execution. Most companies are highly disciplined about integrating the companies they target through M&A, but they rarely commit sufficient resources to launching similarly sized joint ventures or alliances. As a result, the parent companies experience strategic conflicts, governance gridlock, and missed operational synergies. Often, they walk away from the deal. The launch phase begins with the parent companies' signing of a memorandum of understanding and continues through the first 100 days of the JV or alliance's operation. During this period, it's critical for the parents to convene a team dedicated to exposing inherent tensions early. Specifically, the launch team must tackle four basic challenges. First, build and maintain strategic alignment across the separate corporate entities, each of which has its own goals, market pressures, and shareholders. Second, create a shared governance system for the two parent companies. Third, manage the economic interdependencies between the corporate parents and the JV. And fourth, build a cohesive, high-performing organization (the JV or alliance)--not a simple task, since most managers come from, will want to return to, and may even hold simultaneous positions in the parent companies. Using real-world examples, the authors offer their suggestions for meeting these challenges.

  12. The international trade in launch services : the effects of U.S. laws, policies and practices on its development

    NARCIS (Netherlands)

    Fenema, van H.P.

    1999-01-01

    Rockets or launch vehicles, though sharing the same technology, have both military and civil applications: they can be used as missiles or as 'ordinary' transportation vehicles. As a consequence, national security and foreign policy considerations stand in the way of the international launch

  13. Ares I-X Launch Abort System, Crew Module, and Upper Stage Simulator Vibroacoustic Flight Data Evaluation, Comparison to Predictions, and Recommendations for Adjustments to Prediction Methodology and Assumptions

    Science.gov (United States)

    Smith, Andrew; Harrison, Phil

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the

  14. The Launch of the MA-6, Friendship 7

    Science.gov (United States)

    1962-01-01

    The launch of the MA-6, Friendship 7, on February 20, 1962. Boosted by the Mercury-Atlas vehicle, a modified Atlas Intercontinental Ballistic Missile (ICBM), Friendship 7 was the first U.S. marned orbital flight and carried Astronaut John H. Glenn into orbit. Astronaut Glenn became the first American to orbit the Earth.

  15. Launch strategy for Indian lunar mission and precision injection to ...

    Indian Academy of Sciences (India)

    payload optimization and the transfer trajectory determination that accomplishes these require- ments. Recent studies indicate that for an optimal use of the existing launch vehicle and space- craft systems, highly elliptical inclined orbits are preferable. This indeed is true for the Indian. Moon mission Chandrayaan-1.

  16. Launch strategy for Indian lunar mission and precision injection to ...

    Indian Academy of Sciences (India)

    The Indian lunar mission Chandrayaan-1 will have a mass of 523 kg in a 100 km circular polar orbit around the Moon.The main factors that dictate the design of the Indian Moon mission are to use the present capability of launch vehicles and to achieve the scientific objectives in the minimum development time and cost.

  17. International Human Mission to Mars: Analyzing A Conceptual Launch and Assembly Campaign

    Science.gov (United States)

    Cates, Grant; Stromgren, Chel; Arney, Dale; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    In July of 2013, U.S. Congressman Kennedy (D-Mass.) successfully offered an amendment to H.R. 2687, the National Aeronautics and Space Administration Authorization Act of 2013. "International Participation—The President should invite the United States partners in the International Space Station program and other nations, as appropriate, to participate in an international initiative under the leadership of the United States to achieve the goal of successfully conducting a crewed mission to the surface of Mars." This paper presents a concept for an international campaign to launch and assemble a crewed Mars Transfer Vehicle. NASA’s “Human Exploration of Mars: Design Reference Architecture 5.0” (DRA 5.0) was used as the point of departure for this concept. DRA 5.0 assumed that the launch and assembly campaign would be conducted using NASA launch vehicles. The concept presented utilizes a mixed fleet of NASA Space Launch System (SLS), U.S. commercial and international launch vehicles to accomplish the launch and assembly campaign. This concept has the benefit of potentially reducing the campaign duration. However, the additional complexity of the campaign must also be considered. The reliability of the launch and assembly campaign utilizing SLS launches augmented with commercial and international launch vehicles is analyzed and compared using discrete event simulation.

  18. LHCb launches new website

    CERN Multimedia

    2008-01-01

    A new public website for the LHCb experiment was launched last Friday to coincide with CERN’s Open Day weekend. Designed to provide accessible information on all aspects of the experiment, the website contains images and key facts about the LHCb detector, its design and installation and the international team behind the project. "LHCb is going to be one of the most important b-physics experiments in the world when it starts taking data later this year", explains Roger Forty, the experiment’s deputy spokesperson. "We hope the website will be a valuable resource, enabling people to learn about this fascinating area of research." The new website can be found at: http://cern.ch/lhcb-public

  19. Launch area theodolite system

    Science.gov (United States)

    Bradley, Lester M.; Corriveau, John P.; Tindal, Nan E.

    1991-08-01

    White Sands Missile Range has developed a Launch Area Theodolite (LAT) optical tracking system that provides improved Time-Space-Position-Information (TSPI) for the new class of hyper-velocity missiles being developed by the Army. The LAT system consists of a high- performance optical tracking mount equipped with an 8-12 micrometers Forward Looking Infrared (FLIR) sensor, a newly designed full-frame pin-registered 35-mm film camera, and an auto- focused 50-in. focal length lens. The FLIR has been integrated with the WSMR in-house developed statistical based automatic video tracker to yield a powerful system for the automatic tracking of missiles from a short standoff distance. The LAT has been designed to replace large fixed-camera arrays for test programs on short-range anti-tank missiles. New tracking techniques have been developed to deal with angular tracking rates that exceed one radian in both velocity and acceleration. Special techniques have been developed to shock the tracking mount at the missile launch to match the target motion. An adaptive servo control technique allows a Type III servo to be used to compensate for the high angular accelerations that are generated by the placement of the LAT mounts along the missile flight path. An automated mode selection adjustment is employed as the missile passes a point perpendicular to the tracking mount to compensate for the requirement to rapidly decelerate the tracking mount and keep the target in the field-of-view of the data camera. This paper covers the design concept for a network of eight LAT mounts, the techniques of automatic video tracking using a FLIR sensor, and the architecture of the servo control algorithms that have allowed the LAT system to produce results to a degree never before achieved at White Sands Missile Range.

  20. Illustration of Ares I During Launch

    Science.gov (United States)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the Ares I is illustrated during lift off. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. With a primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I uses a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine, derived from the J-2 engine used on the second stage of the Apollo vehicle, will power the Ares I second stage. Ares I can lift more than 55,000 pounds to low Earth orbit. The Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.