WorldWideScience

Sample records for submillimeter coherent sources

  1. New development of solid state sub-millimeter sources

    International Nuclear Information System (INIS)

    Nishizawa, Jun-ichi

    1982-01-01

    The TUNNETT (tunnel injection transit time negative resistance) diode was proposed by the author in the analysis of avalanching negative resistance diodes and seemed to be the most promising semiconductor source in the frequency range from 100 to 1000 GHz. The first TUNNETT oscillation was realized experimentally in 1968 from a GaAs p + n diode. Recently, several types of GaAs TUNNETT diodes have been fabricated by the use of the author's new liquid phase epitaxial method, which is named the temperature difference method under controlled vapour pressure. The oscillation characteristics of p + - n - n + diodes are shown. On the other hand, the static induction transistor (SIT) shows the excellent performance for high power use in microwave region. The static induced tunnel transit time transistor (SIT 4 ) is a kind of SIT in which the injection source region is replaced by the tunnel injection for use in submillimeter region. In SIT 4 , the gate voltage controls the field of the tunnelling region, and the tunnelling electrons transit to the drain without reaching the gate. The SIT's using tunnelling and ideal (ballistic) SIT are promising devices in submillimeter region. The author suggested the generation of electromagnetic waves by using phonons in semiconductors from submillimeter to infared. Above 1000 GHz up to 100 THz of the field of conventional semiconductors, semiconductor Raman and Brillouin lasers are expected to be the most useful devices in the future. (Wakatsuki, Y.)

  2. Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F

    International Nuclear Information System (INIS)

    Blumberg, W.A.M.; Fetterman, H.R.; Peck, D.D.; Goldsmith, P.F.

    1979-01-01

    Tunable submillimeter radiation, generated and detected using optically pumped lasers and Schottky diode mixers, has been used in an infrared-submillimeter double resonance investigation of CH 3 F. This technique permits the direct observation of the molecular rotational spectra and kinetics of excited vibrational states and is particularly important for those molecules which are candidates for optically pumped submillimeter lasers

  3. A compact, coherent light source system architecture

    Science.gov (United States)

    Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.

    2016-09-01

    Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.

  4. Infrared frequency-tunable coherent thermal sources

    International Nuclear Information System (INIS)

    Wang, Hao; Yang, Yue; Wang, Liping

    2015-01-01

    In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor–capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm −1 . The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region. (paper)

  5. Tuned sources of submillimetre radiation

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.

    1981-01-01

    The main present directions of development of sources of frequency coherent tuned radiation of electromagnetic waves in the submillimeter range: nonlinear mixing of different frequencies; semiconductor lasers; molecular lasers with optical pumping; relativistic electron beams in a magnetic field as submillimeter radiation sources; submillimeter radiation sources on the basis of SHF classical electrovacuum devices - are considered. The designs of generator systems and their specifications are presented. The main parameters of electromagnetic radiation of different sources, such as: power, stability, frequency, tuning range - are presented. The methods of improving sources and electromagnetic radiation parameters are proposed. The examples of possible applications of submillimeter radiation in different spheres of science and technology are given [ru

  6. Commissioning the Linac Coherent Light Source injector

    Directory of Open Access Journals (Sweden)

    R. Akre

    2008-03-01

    Full Text Available The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  7. A millisecond-risetime sub-millimeter light source for lab and in flight bolometer calibration

    Science.gov (United States)

    Abbon, Ph.; Delbart, A.; Fesquet, M.; Magneville, C.; Mazeau, B.; Pansart, J.-P.; Yvon, D.; Dumoulin, L.; Marnieros, S.; Camus, Ph.; Durand, T.; Hoffmann, Ch.

    2007-06-01

    The Olimpo balloon project will use a 120 bolometer camera to observe the sky at four frequencies (143, 217, 385 and 600 GHz) with a resolution of 3 to 2 arc-minute. This paper presents the sub-millimeter calibration "lamp" developed for ground testing and in-flight secondary calibration of bolometric detectors. By design, main features of the device are reproducibility and stability of light flux and millisecond rise time. The radiative device will be placed inside the bolometer camera and will illuminate the bolometer array through a hole in the last 2 K mirror. Operation, readout, and monitoring of the device is ensured by warm electronics. Light output flux and duration is programmable, triggered and monitored from a simple computer RS232 interface. It was tested to be reliable in ballooning temperature conditions from -80 to 50C. Design and test's results are explained.

  8. Submillimeter Array (SMA) Newsletter August 2011

    OpenAIRE

    Blundell, Raymond

    2011-01-01

    Submillimeter Array (SMA) Newsletter August 2011 Blundell, Raymond Submillimeter Array Newsletter | Number 12 | August 2011 CONTENTS 1 From the Director SCIENCE HIGHLIGHTS: 2 Faint Submillimeter Sources behind Massive Lensing Clusters 5 Millimeter Imaging of the β Pictoris Debris Disk: Evidence for a Planetesimal Belt 7 Physical Properties of the Circumnuclear Starburst Ring in the Barred Galaxy NGC1097 TECHNICAL HIGHLIGHTS: 9 ...

  9. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    International Nuclear Information System (INIS)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M.; Hori, T.; Hatae, T.

    2004-01-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE mn mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE 0n and TE 1n modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level (ΔP/P < 1 %, Δf< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  10. Deep Submillimeter and Radio Observations in the SSA22 Field. I. Powering Sources and the Lyα Escape Fraction of Lyα Blobs

    Science.gov (United States)

    Ao, Y.; Matsuda, Y.; Henkel, C.; Iono, D.; Alexander, D. M.; Chapman, S. C.; Geach, J.; Hatsukade, B.; Hayes, M.; Hine, N. K.; Kato, Y.; Kawabe, R.; Kohno, K.; Kubo, M.; Lehnert, M.; Malkan, M.; Menten, K. M.; Nagao, T.; Norris, R. P.; Ouchi, M.; Saito, T.; Tamura, Y.; Taniguchi, Y.; Umehata, H.; Weiss, A.

    2017-12-01

    We study the heating mechanisms and Lyα escape fractions of 35 Lyα blobs (LABs) at z ≈ 3.1 in the SSA22 field. Dust continuum sources have been identified in 11 of the 35 LABs, all with star formation rates (SFRs) above 100 M ⊙ yr-1. Likely radio counterparts are detected in 9 out of 29 investigated LABs. The detection of submillimeter dust emission is more linked to the physical size of the Lyα emission than to the Lyα luminosities of the LABs. A radio excess in the submillimeter/radio-detected LABs is common, hinting at the presence of active galactic nuclei. Most radio sources without X-ray counterparts are located at the centers of the LABs. However, all X-ray counterparts avoid the central regions. This may be explained by absorption due to exceptionally large column densities along the line-of-sight or by LAB morphologies, which are highly orientation dependent. The median Lyα escape fraction is about 3% among the submillimeter-detected LABs, which is lower than a lower limit of 11% for the submillimeter-undetected LABs. We suspect that the large difference is due to the high dust attenuation supported by the large SFRs, the dense large-scale environment as well as large uncertainties in the extinction corrections required to apply when interpreting optical data.

  11. Functional swept source optical coherence tomography

    International Nuclear Information System (INIS)

    Blatter, C.

    2013-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging modality capable of providing information about a sample structure along the three spatial dimensions with micrometer scale resolution. A new chapter opened with the development of functional OCT that provides additional information to the standard structural imaging. Among those extensions is Doppler OCT (D-OCT) that yields knowledge about the motion of the sample and/or its substructure. Its main application in biomedical imaging is the assessment of blood flow. D-OCT is therefore often associated with blood velocity measurement and recently with the visualization of the vascular network. Blood flow and vasculature are important markers of tissue health. Their assessment provides crucial information for diagnostics, treatment planning and monitoring. OCT is in a good position, as a non-invasive technique, to become an alternative to current fluorescence based techniques, allowing thereby also more frequent examination and broader screenings and, as a high resolution modality, to give insight into potential changes at the capillary level. An important challenge of in vivo imaging is patient motion that decreases the quality of acquisitions. One solution to that issue is high-speed imaging. Recently swept source OCT (SSOCT) revealed to be an efficient technology to achieve high-speed. This thesis investigates the use of swept sources for qualitative and quantitative vasculature imaging. It is presented via five journal papers that form its backbone. Prior to that, main concepts of FDOCT, D-OCT and SS systems are presented. The first paper reports a SSOCT system for skin imaging. In standard OCT systems, improving the lateral resolution comes at a cost of reduced depth of focus. This should be avoided in order to be able to assess different vascular beds in depth while keeping the speed advantage of FDOCT. Employing a Bessel beam for illumination of the sample allows circumventing this issue. The image

  12. Dosimetric characteristics of the Novoste Beta-Cath 90Sr/Y source trains at submillimeter distances

    International Nuclear Information System (INIS)

    Roa, Dante E.; Song Haijun; Yue Ning; D'Errico, Francesco; Nath, Ravinder

    2004-01-01

    Measurements were performed on the 30, 40, and 60 mm 90 Sr/Y β-emitter source trains used in the Novoste Beta-Cath system to determine their dosimetric characteristics at submillimeter distances and provide the necessary TG-60 parameters for mapping their dose distributions. These measurements were carried out in a Solid Water TM phantom where MD55-2 Gafchromic TM films were placed in direct contact with a 5 French (F) catheter used for the 30 and 60 mm source trains and a 3.5F catheter used for thinner 30 and 40 mm source trains. A data set consisted of three pieces of Gafchromic film irradiated for periods of 1.5, 5, and 10 minutes, respectively. This 3-film irradiation technique provided reliable dose data at short, intermediate and long distances from a source train. Three data sets per source train were collected in this study. For the 30 mm source train with a 5F catheter, data were collected with the source axis at proximal (0.41 mm) and distal (1.19 mm) positions to the film surface in order to investigate dosimetric effects due to the off centering of the source train lumen within the catheter. Absolute doses were determined by calibrating the Gafchromic film in a high-energy electron beam from a radiotherapy accelerator. The absolute dose rates at a distance of 2 mm along the source trains transverse axis were found to be within 13.7% of the values provided by Novoste. Radial dose functions were within 13% compared to 90 Sr/Y source train data constructed from Soares' 90 Sr/Y single seed data and within 17% and 25% compared to Monte Carlo data by Ye et al., and Wang et al., respectively. Discrepancies of 33% and 19% were observed at short radial distances (≤1 mm) between the Novoste Monte Carlo and the 3.5F and 5F catheter measured data, respectively. The source off centering data showed higher dose contribution from the source train at its distal rather than proximal position. Radial dose function comparisons between the Novoste Monte Carlo and the

  13. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  14. Spectral Efficiency of OCDMA Systems With Coherent Pulsed Sources

    Science.gov (United States)

    Rochette, Martin; Rusch, Leslie A.

    2005-03-01

    We present a model to evaluate the upper limit of the spectral efficiency of optical code-division multiple-access (OCDMA) systems with coherent sources. Phase-encoded and direct-sequence OCDMA systems are evaluated using this model. The results show that a spectral efficiency of 2.24x10^-2 b/s.Hz can be achieved with a maximum bit error rate of 10^-10 in these systems of the number of users. This result demonstrates that the maximum spectral efficiency of OCDMA systems with coherent sources is at least a factor of 5 higher than OCDMA systems with incoherent sources.

  15. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U.H.; Parson, A.; Rau, C.

    2017-01-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector. (paper)

  16. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  17. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  18. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    International Nuclear Information System (INIS)

    Boutet, Sebastien

    2011-01-01

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  19. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  20. A method for the coherence measurement of the supercontinuum source using Michelson interferometer

    International Nuclear Information System (INIS)

    Semenova, V A; Tsypkin, A V; Putilin, S E; Bespalov, V G

    2014-01-01

    Coherent properties of supercontinuum sources are highly significant for various applications, including low-coherence interferometry and optical frequency metrology. We propose a fast method for the spatial and temporal self-coherence of the SC measurement using Michelson interferometer without a mirror movement. Furthermore, we present self-coherence measurements of the supercontinuum, generated in microstructured fiber at 780 nm.

  1. Complex space source theory of partially coherent light wave.

    Science.gov (United States)

    Seshadri, S R

    2010-07-01

    The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.

  2. X-ray detectors at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    This paper offers an overview of area detectors developed for use at the Linac Coherent Light Source (LCLS) with particular emphasis on their impact on science. The experimental needs leading to the development of second-generation cameras for LCLS are discussed and the new detector prototypes are presented. Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced

  3. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  4. FEL polarization control studies on Dalian coherent light source

    International Nuclear Information System (INIS)

    Zhang Tong; Deng Haixiao; Wang Dong; Zhao Zhentang; Zhang Weiqing; Wu Guorong; Dai Dongxu; Yang Xueming

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. The elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeding 100 μJ could be achieved at Dalian coherent light source. (authors)

  5. Linac Coherent Light Source (LCLS) Design Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, Massimo

    1998-12-04

    The Stanford Linear Accelerator Center, in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. Starting in FY 1998, the first two-thirds of the SLAC linac will be used for injection into the B factory. This leaves the last one-third free for acceleration to 15 GeV. The LCLS takes advantage of this opportunity, opening the way for the next generation of synchrotron light sources with largely proven technology and cost effective methods. This proposal is consistent with the recommendations of the Report of the Basic Energy Sciences Advisory Committee (Synchrotron Radiation Light Source Working Group, October 18-19, 1997). The report recognizes that ''fourth-generation x-ray sources...will in all likelihood be based on the free electron laser concepts. If successful, this technology could yield improvements in brightness by many orders of magnitude.'' This Design Study, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac. Although this design is based on a consistent and feasible set of parameters, some components require more research and development to guarantee the performance. Given appropriate funding, this R and D phase can be completed in 2 years.

  6. Linac Coherent Light Source (LCLS) design study report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 {angstrom}. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues.

  7. Linac Coherent Light Source (LCLS) design study report

    International Nuclear Information System (INIS)

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 angstrom. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues

  8. Assessing embryo development using swept source optical coherence tomography

    Science.gov (United States)

    Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D.; Podoleanu, A.

    2018-03-01

    A detailed assessment of embryo development would assist biologists with selecting the most suitable embryos for transfer leading to higher pregnancy rates. Currently, only low resolution microscopy is employed to perform this assessment. Although this method delivers some information on the embryo surface morphology, no specific details are shown related to its inner structure. Using a Master-Slave Swept-Source Optical Coherence Tomography (SS-OCT), images of bovine embryos from day 7 after fertilization were collected from different depths. The dynamic changes inside the embryos were examined, in detail and in real-time from several depths. To prove our ability to characterize the morphology, a single embryo was imaged over 26 hours. The embryo was deprived of its life support environment, leading to its death. Over this period, clear morphological changes were observed.

  9. Workshop on scientific applications of short wavelength coherent light sources

    International Nuclear Information System (INIS)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region

  10. Linac Coherent Light Source Undulator RF BPM System

    International Nuclear Information System (INIS)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; Argonne; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; SLAC

    2007-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results

  11. Linac coherent light source (LCLS) undulator RF BPM system

    International Nuclear Information System (INIS)

    Lill, R.; Waldschmidt, G.; Morrison, L.; Smith, S.; Straumann, T; Li, Z.; Johnson, R.

    2006-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

  12. Planetary submillimeter spectroscopy

    Science.gov (United States)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  13. Modeling and simulation of RF photoinjectors for coherent light sources

    Science.gov (United States)

    Chen, Y.; Krasilnikov, M.; Stephan, F.; Gjonaj, E.; Weiland, T.; Dohlus, M.

    2018-05-01

    We propose a three-dimensional fully electromagnetic numerical approach for the simulation of RF photoinjectors for coherent light sources. The basic idea consists in incorporating a self-consistent photoemission model within a particle tracking code. The generation of electron beams in the injector is determined by the quantum efficiency (QE) of the cathode, the intensity profile of the driving laser as well as by the accelerating field and magnetic focusing conditions in the gun. The total charge emitted during an emission cycle can be limited by the space charge field at the cathode. Furthermore, the time and space dependent electromagnetic field at the cathode may induce a transient modulation of the QE due to surface barrier reduction of the emitting layer. In our modeling approach, all these effects are taken into account. The beam particles are generated dynamically according to the local QE of the cathode and the time dependent laser intensity profile. For the beam dynamics, a tracking code based on the Lienard-Wiechert retarded field formalism is employed. This code provides the single particle trajectories as well as the transient space charge field distribution at the cathode. As an application, the PITZ injector is considered. Extensive electron bunch emission simulations are carried out for different operation conditions of the injector, in the source limited as well as in the space charge limited emission regime. In both cases, fairly good agreement between measurements and simulations is obtained.

  14. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  15. Coherence Inherent in an Incoherent Synchrotron Radio Source ...

    Indian Academy of Sciences (India)

    It is well known that synchrotron radiation mechanism does not allow MASER type coherent emission (Pacholczyk 1970). Here we show that coherence can naturally occur in a synchrotron ... cally thick region (Fig. 1), then divides the synchrotron spectrum into an incoherent. 1A thin flat circular unleavened Indian bread.

  16. Dual-Source Swept-Source Optical Coherence Tomography Reconstructed on Integrated Spectrum

    Directory of Open Access Journals (Sweden)

    Shoude Chang

    2012-01-01

    Full Text Available Dual-source swept-source optical coherence tomography (DS-SSOCT has two individual sources with different central wavelengths, linewidth, and bandwidths. Because of the difference between the two sources, the individually reconstructed tomograms from each source have different aspect ratio, which makes the comparison and integration difficult. We report a method to merge two sets of DS-SSOCT raw data in a common spectrum, on which both data have the same spectrum density and a correct separation. The reconstructed tomographic image can seamlessly integrate the two bands of OCT data together. The final image has higher axial resolution and richer spectroscopic information than any of the individually reconstructed tomography image.

  17. Alternate Tunings for the Linac Coherent Light Source Photoinjector

    CERN Document Server

    Limborg-Deprey, Cecile

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10 ps long electron bunches of 1nC with a normalized transverse emittance of less than 1 mm.mrad for 80% of the slices constituting the core of the bunch at 135 MeV. Tolerances and regulation requirements are tight for this tuning. The main contribution to emittance is the "cathode emittance which counts for 0.72 mm.mrad for the nominal tuning. As the "cathode emittance" scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2nC, we believe we can achieve an emittance closer to 0.4 mm.mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the nominal one. In this paper, we also discuss how emittance could be further reduced by using the appropriate laser pulse shaping.

  18. Swept-Source Optical Coherence Tomographic Findings of Choroidal Osteoma

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    2014-07-01

    Full Text Available Purpose: To report the morphologic features of a choroidal osteoma using swept-source optical coherence tomography (SS-OCT and fundus autofluorescence (FAF. Methods: Two eyes of two cases with a choroidal osteoma were studied using SS-OCT and FAF. Results: The location of the tumor was circumpapillary without macular involvement in case 1 and juxtapapillary with macular involvement in case 2. Both cases had a mixture of calcified and decalcified areas, and a concomitant choroidal neovascularization was found in case 2. The FAF images showed decreased autofluorescence in the central decalcified regions and relatively preserved fluorescence in marginal calcified regions in both cases. SS-OCT revealed a normal inner retina and an abnormal outer retina in both cases, and subretinal fluid in case 2. The calcified regions appeared sponge-like and were multilayered in case 2. A lamellar reflective pattern was observed in the decalcified regions in case 1, and hyperreflective mound-like areas were observed in both cases. SS-OCT demonstrated hyperreflective areas above Bruch's membrane accompanied by disruption of Bruch's membrane in case 1. The chorioscleral border was visible in both cases. Conclusions: The FAF pattern in the calcified and decalcified areas of the choroidal osteoma may correspond to the different stage of tumor evolution. The SS-OCT findings indicate that choroidal osteomas can have characteristic reflective patterns and alterations of the overlying retina.

  19. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  20. The Development of the Linac Coherent Light Source RF Gun

    International Nuclear Information System (INIS)

    Dowell, D

    2008-01-01

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of

  1. New submillimeter detectors and antenna arrays

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Reible, S.A.; Sollner, G.; Parker, C.D.

    1982-01-01

    Preliminary investigation has been made into the use of SIS (superconductor--insulator--superconductor) diodes for possible roles in sub-millimeter imaging systems. That is, extremely low noise, millimeter wave detectors and mixers have recently been reported which depend on single-particle tunnelling between two superconducting films separated by a thin oxide layer. The combination of excellent low-frequency sensitivity and well-developed fabrication technology make the SIS mixers particularly attractive for the systems using antenna structures and arrays in millimeter and submillimeter regions. The SIS diodes of Nb-Nb 2 O 5 -Pb showed a strong video response to the radiation which could be differentiated from the regular Josephson effect since it was not affected by a magnetic field. In exploring the three-terminal devices for possible detector and source applications in submillimeter region, the authors first determined that millimeter and submillimeter radiation could be effectively coupled to and detected in high-frequency FETs. Video response was readily obtained at 800 GHz, and carcinotron radiation at 350 GHz was mixed with the 5th harmonic of a 70 GHz klystron, producing over 45 db signal-to-noise ratio in the intermediate frequency. Since FET can function as a three-terminal oscillator simultaneously detecting submillimeter radiation or optical beats, it has interesting possibility, such as self-oscillating mixers or subharmonic local oscillators. (Wakatsuki, Y.)

  2. Free-electron masers vs. gyrotrons prospects for high-power sources at millimeter and submillimeter wavelengths

    CERN Document Server

    Thumm, M K

    2002-01-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in...

  3. The LLE, pattern formation and a novel coherent source

    Science.gov (United States)

    Castelli, Fabrizio; Brambilla, Massimo; Gatti, Alessandra; Prati, Franco; Lugiato, Luigi A.

    2017-04-01

    The LLE was introduced in order to provide a paradigmatic model for spontaneous spatial pattern formation in the field of nonlinear optics. In the first part of this paper we describe in details its historical evolution. We underline, first of all, that the multimode instability of optical bistability represents an important precursor of the LLE. Next, we illustrate how the original LLE was conceived in order to describe pattern formation in the planes transverse with respect to the longitudinal direction of propagation of light in the nonlinear medium contained in the optical cavity. We emphasize, in particular, the crucial role of the low transmission limit (also called mean field limit or uniform field limit in the literature) in determining the simplicity of the equation. In discussing transverse pattern formation in the LLE, we underline incidentally the presence of very important quantum aspects related to squeezing of quantum fluctuations and to quantum imaging. We consider not only the case of global patterns but also localized structures (cavity solitons and their control). Then we turn to the temporal/longitudinal version of the LLE, formulated by Haelterman et al. [H. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992)], and to its equivalence with the transverse LLE in 1D, discussing especially the phenomenon of temporal cavity solitons, their experimental observation and their control. Finally for the first part we turn to the very recent topic of broadband frequency combs, observed in a versatile multiwavelength coherent source (driven Kerr microcavity), which is raising a lot of interest and of research activities because of its very favourable physical characteristics, which support quite promising applicative perspectives. Kerr microcavities realize in an ideal manner the basic assumptions of the LLE, and the spontaneous formation of travelling patterns along the microcavity is the crucial mechanism which creates the combs and governs

  4. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    International Nuclear Information System (INIS)

    Canova, Federico; Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  5. Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources

    International Nuclear Information System (INIS)

    Li Yuelin; Kim, Kwang-Je

    2008-01-01

    We propose to generate a train of prebunched electron beams for producing coherently enhanced Smith-Purcell radiation [S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953)] in the terahertz wavelength range. In this scheme, a train of picosecond laser pulses is produced to drive a photoemission gun to generate a train of 50 keV electron pulses. The parameters are chosen so that the space-charge effect does not destroy the pulse time structure. Smith-Purcell radiation from the electron pulse train is enhanced due both to the short length of the individual electron bunch and to the repetitive structure of the beam. Example systems producing coherent terahertz power at about 1 mW are described

  6. Solar Observations at Submillimeter Wavelengths

    Science.gov (United States)

    Kaufmann, P.

    We review earlier to recent observational evidences and theoretical motivations leading to a renewed interest to observe flares in the submillimeter (submm) - infrared (IR) range of wavelengths. We describe the new solar dedicated submillimeter wave telescope which began operations at El Leoncito in the Argentina Andes: the SST project. It consists of focal plane arrays of two 405 GHz and four 212 GHz radiometers placed in a 1.5-m radome-enclosed Cassegrain antenna, operating simultaneously with one millisecond time resolution. The first solar events analyzed exhibited the onset of rapid submm-wave spikes (100-300 ms), well associated to other flare manifestations, especially at X-rays. The spikes positions were found scattered over the flaring source by tens of arcseconds. For one event an excellent association was found between the gamma-ray emission time profile and the rate of occurrence of submm-wave rapid spikes. The preliminary results favour the idea that bulk burst emissions are a response to numerous fast energetic injections, discrete in time, produced at different spatial positions over the flaring region. Coronal mass ejections were associated to the events studied. Their trajectories extrapolated to the solar surface appear to correspond to the onset time of the submm-wave spikes, which might represent an early signature of the CME's initial acceleration process.

  7. Analysis of coherence properties of 3-rd generation synchrotron sources and free-electron lasers

    International Nuclear Information System (INIS)

    Vartanyants, I.A.; Singer, A.

    2009-07-01

    A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and X-ray free-electron lasers (XFEL). Correlation properties of the wave elds are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source. (orig.)

  8. Analysis of coherence properties of 3-rd generation synchrotron sources and free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; Singer, A. [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2009-07-15

    A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and X-ray free-electron lasers (XFEL). Correlation properties of the wave elds are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source. (orig.)

  9. Demonstration of Submillimeter Astrophysics Technology at Caltech Submillimeter Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — Detector technology developments will determine the science product of future astrophysics missions and projects, and this is especially true at submillimeter...

  10. Fundamental characteristics of a synthesized light source for optical coherence tomography.

    Science.gov (United States)

    Sato, Manabu; Wakaki, Ichiro; Watanabe, Yuuki; Tanno, Naohiro

    2005-05-01

    We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.

  11. Simple and versatile long range swept source for optical coherence tomography applications

    International Nuclear Information System (INIS)

    Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G; Vanholsbeeck, Frédérique

    2015-01-01

    We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman–Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples. (paper)

  12. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    International Nuclear Information System (INIS)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-01-01

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 ∼> z ∼> 0.3) and luminosities, finding an average accuracy in (1 + z phot )/(1 + z spec ) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 μm flux ∼> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L IR ∼> 10 12 L ☉ ), and 3% of the total SFRD at z ∼ 2

  13. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

    Science.gov (United States)

    Tsai, Tsung-Han; Ahsen, Osman O.; Lee, Hsiang-Chieh; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Kraus, Martin F.; Hornegger, Joachim; Figueiredo, Marisa; Huang, Qin; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2014-03-01

    We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in the longitudinal direction. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing standard upper and lower endoscopy at the Veterans Affairs Boston Healthcare System (VABHS). Patients with Barrett's esophagus, dysplasia, and inflammatory bowel disease were imaged. The use of distally actuated imaging catheters allowed OCT imaging with more flexibility such as volumetric imaging in the terminal ileum and the assessment of the hiatal hernia using retroflex imaging. The high rotational stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face and cross-sectional imaging. The ability to perform 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies to investigate the ability of OCT to detect pathology as well as assess treatment response.

  14. Coherent radiation from high-current electron beams of linear accelerators and its applications

    International Nuclear Information System (INIS)

    Okuda, Shuichi; Takanaka, Makoto; Nakamura, Mitsumi; Kato, Ryukou; Takahashi, Toshiharu; Nam, Soon-Kwon; Taniguchi, Ryouichi; Kojima, Takao

    2006-01-01

    The characteristics of the far-infrared light source using the coherent radiation emitted from a high-energy short electron bunch have been investigated. The coherent radiation has a continuous spectrum in a submillimeter to millimeter wavelength range and the brightness is relatively high. The spectrum of the radiation is determined by the longitudinal form factor of the electron bunch. The operational conditions of a high-current linear accelerator have been optimized using an electron bunch shape monitor. The coherent transition radiation light source has been applied to absorption spectroscopy for liquid water and to an imaging experiment for a leaf of rose

  15. Radiation safety aspects of the LINAC coherent light source

    International Nuclear Information System (INIS)

    Vylet, V.; Fasso, A.; Rokni, S.H.

    1998-01-01

    The radiation protection systems, which comprise the Personnel Protection System (PPS), Beam Containment System (BCS), and shielding, are described. The radiation sources and methods of their assessment are highlighted; these include bremsstrahlung and neutrons from electron beam losses, gas bremsstrahlung, synchrotron radiation, muons, and induced activity. By way of example, a plot of tissue dose as a function of distance from beam axis at the end of the experimental hutch is reproduced. (P.A.)

  16. Coherent properties of a tunable low-energy electron-matter-wave source

    Science.gov (United States)

    Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.

    2018-01-01

    A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.

  17. Spectral shaping for non-Gaussian source spectra in optical coherence tomography

    NARCIS (Netherlands)

    Tripathi, R; Nassif, N. A.; Nelson, JS; Park, B.H.; de Boer, JF

    2002-01-01

    We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation.

  18. Development of coherent tunable source in 2–16 μm region using ...

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... A very convenient way to obtain widely tunable source of coherent radiation in the infrared region is through nonlinear frequency mixing processes like second harmonic generation (SHG), difference-frequency mixing (DFM) or optical parametric oscillation (OPO). Using commonly available Nd:YAG laser ...

  19. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    DEFF Research Database (Denmark)

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressu...

  20. Atomic and molecular spectroscopy with optical-frequency-comb-referenced IR coherent sources

    International Nuclear Information System (INIS)

    Cancio, P.; Bartalini, S.; De Rosa, M.; Giusfredi, G.; Mazzotti, D.; Maddaloni, P.; Vitiello, M. S.; De Natale, P.

    2013-01-01

    We provide a review of progress in the development of metrological-grade measurements in atomic and molecular systems through the extension, in the mid-infrared and far-infrared range, of optical frequency combs (OFCs) and the introduction of new techniques and highly coherent sources. (authors)

  1. Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source

    Science.gov (United States)

    Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.

    2010-03-01

    We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.

  2. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrej

    2013-06-15

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  3. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    International Nuclear Information System (INIS)

    Singer, Andrej

    2013-06-01

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X

  4. Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen

    2007-01-01

    A previously developed numerical model based on Maxwell-Bloch equations was modified to simulate optical coherent transient and spectral hole burning processes with noisy laser sources. Random walk phase noise was simulated using laser-phase sequences generated numerically according to the normal distribution of the phase shift. The noise model was tested by comparing the simulated spectral hole burning effect with the analytical solution. The noise effects on a few typical optical coherence transient processes were investigated using this numerical tool. Flicker and random walk frequency noises were considered in accumulation process

  5. Direction-of-Arrival Estimation for Coherent Sources via Sparse Bayesian Learning

    Directory of Open Access Journals (Sweden)

    Zhang-Meng Liu

    2014-01-01

    Full Text Available A spatial filtering-based relevance vector machine (RVM is proposed in this paper to separate coherent sources and estimate their directions-of-arrival (DOA, with the filter parameters and DOA estimates initialized and refined via sparse Bayesian learning. The RVM is used to exploit the spatial sparsity of the incident signals and gain improved adaptability to much demanding scenarios, such as low signal-to-noise ratio (SNR, limited snapshots, and spatially adjacent sources, and the spatial filters are introduced to enhance global convergence of the original RVM in the case of coherent sources. The proposed method adapts to arbitrary array geometry, and simulation results show that it surpasses the existing methods in DOA estimation performance.

  6. Adapting Controlled-source Coherence Analysis to Dense Array Data in Earthquake Seismology

    Science.gov (United States)

    Schwarz, B.; Sigloch, K.; Nissen-Meyer, T.

    2017-12-01

    Exploration seismology deals with highly coherent wave fields generated by repeatable controlled sources and recorded by dense receiver arrays, whose geometry is tailored to back-scattered energy normally neglected in earthquake seismology. Owing to these favorable conditions, stacking and coherence analysis are routinely employed to suppress incoherent noise and regularize the data, thereby strongly contributing to the success of subsequent processing steps, including migration for the imaging of back-scattering interfaces or waveform tomography for the inversion of velocity structure. Attempts have been made to utilize wave field coherence on the length scales of passive-source seismology, e.g. for the imaging of transition-zone discontinuities or the core-mantle-boundary using reflected precursors. Results are however often deteriorated due to the sparse station coverage and interference of faint back-scattered with transmitted phases. USArray sampled wave fields generated by earthquake sources at an unprecedented density and similar array deployments are ongoing or planned in Alaska, the Alps and Canada. This makes the local coherence of earthquake data an increasingly valuable resource to exploit.Building on the experience in controlled-source surveys, we aim to extend the well-established concept of beam-forming to the richer toolbox that is nowadays used in seismic exploration. We suggest adapted strategies for local data coherence analysis, where summation is performed with operators that extract the local slope and curvature of wave fronts emerging at the receiver array. Besides estimating wave front properties, we demonstrate that the inherent data summation can also be used to generate virtual station responses at intermediate locations where no actual deployment was performed. Owing to the fact that stacking acts as a directional filter, interfering coherent wave fields can be efficiently separated from each other by means of coherent subtraction. We

  7. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  8. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma

    Directory of Open Access Journals (Sweden)

    Dewang Angmo

    2016-01-01

    Full Text Available Optical coherence tomography (OCT, a noninvasive imaging modality that uses low-coherence light to obtain a high-resolution cross-section of biological structures, has evolved dramatically over the years. The Swept-source OCT (SS-OCT makes use of a single detector with a rapidly tunable laser as a light source. The Casia SS-1000 OCT is a Fourier-domain, SS-OCT designed specifically for imaging the anterior segment. This system achieves high resolution imaging of 10΅m (Axial and 30΅m (Transverse and high speed scanning of 30,000 A-scans per second. With a substantial improvement in scan speed, the anterior chamber angles can be imaged 360 degrees in 128 cross sections (each with 512 A-scans in about 2.4 seconds. We summarize the clinical applications of anterior segment SS-OCT in Glaucoma. Literature search: We searched PubMed and included Medline using the phrases anterior segment optical coherence tomography in ophthalmology, swept-source OCT, use of AS-OCT in glaucoma, use of swept-source AS-OCT in glaucoma, quantitative assessment of angle, filtering bleb in AS-OCT, comparison of AS-OCT with gonioscopy and comparison of AS-OCT with UBM. Search was made for articles dating 1990 to August 2015.

  9. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    DEFF Research Database (Denmark)

    Bravo Gonzalo, Ivan; Engelsholm, Rasmus Dybbro; Bang, Ole

    2017-01-01

    bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which...... the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation...... (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise...

  10. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  11. Noise Source Identification of a Ring-Plate Cycloid Reducer Based on Coherence Analysis

    OpenAIRE

    Yang, Bing; Liu, Yan

    2013-01-01

    A ring-plate-type cycloid speed reducer is one of the most important reducers owing to its low volume, compactness, smooth and high performance, and high reliability. The vibration and noise tests of the reducer prototype are completed using the HEAD acoustics multichannel noise test and analysis system. The characteristics of the vibration and noise are obtained based on coherence analysis and the noise sources are identified. The conclusions provide the bases for further noise research and ...

  12. Proposal of coherent Cherenkov radiation matched to circular plane wave for intense terahertz light source

    International Nuclear Information System (INIS)

    Sei, Norihiro; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu

    2015-01-01

    Highlights: • We proposed a new intense terahertz-wave source based on coherent Cherenkov radiation (CCR). • A hollow conical dielectric is used to generate the CCR beam. • The wave front of the CCR beam can be matched to the basal plane. • The peak-power of the CCR beam is above 1 MW per micropulse with a short interval of 350 ps. - Abstract: We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator

  13. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    Science.gov (United States)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian-Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  14. Submillimeter Confocal Imaging Active Module

    Science.gov (United States)

    Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John

    2009-01-01

    The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams

  15. Iterative deblending of simultaneous-source data using a coherency-pass shaping operator

    Science.gov (United States)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Zhang, Dong; Li, Chao; Pan, Xiao; Chen, Yangkang

    2017-10-01

    Simultaneous-source acquisition helps greatly boost an economic saving, while it brings an unprecedented challenge of removing the crosstalk interference in the recorded seismic data. In this paper, we propose a novel iterative method to separate the simultaneous source data based on a coherency-pass shaping operator. The coherency-pass filter is used to constrain the model, that is, the unblended data to be estimated, in the shaping regularization framework. In the simultaneous source survey, the incoherent interference from adjacent shots greatly increases the rank of the frequency domain Hankel matrix that is formed from the blended record. Thus, the method based on rank reduction is capable of separating the blended record to some extent. However, the shortcoming is that it may cause residual noise when there is strong blending interference. We propose to cascade the rank reduction and thresholding operators to deal with this issue. In the initial iterations, we adopt a small rank to severely separate the blended interference and a large thresholding value as strong constraints to remove the residual noise in the time domain. In the later iterations, since more and more events have been recovered, we weaken the constraint by increasing the rank and shrinking the threshold to recover weak events and to guarantee the convergence. In this way, the combined rank reduction and thresholding strategy acts as a coherency-pass filter, which only passes the coherent high-amplitude component after rank reduction instead of passing both signal and noise in traditional rank reduction based approaches. Two synthetic examples are tested to demonstrate the performance of the proposed method. In addition, the application on two field data sets (common receiver gathers and stacked profiles) further validate the effectiveness of the proposed method.

  16. Metrological-grade tunable coherent source in the mid-infrared for molecular precision spectroscopy

    Science.gov (United States)

    Insero, G.; Clivati, C.; D'Ambrosio, D.; Cancio Pastor, P.; Verde, M.; Schunemann, P. G.; Zondy, J.-J.; Inguscio, M.; Calonico, D.; Levi, F.; De Natale, P.; Santambrogio, G.; Borri, S.

    2018-02-01

    We report on a metrological-grade mid-IR source with a 10-14 short-term instability for high-precision spectroscopy. Our source is based on the combination of a quantum cascade laser and a coherent radiation obtained by difference-frequency generation in an orientation-patterned gallium phosphide (OP-GaP) crystal. The pump and signal lasers are locked to an optical frequency comb referenced to the primary frequency standard via an optical fiber link. We demonstrate the robustness of the apparatus by measuring a vibrational transition around 6 μm on a metastable state of CO molecuels with 11 digits of precision.

  17. Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans

    Science.gov (United States)

    Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas

    2018-03-01

    Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.

  18. Defocusing effects of lensless ghost imaging and ghost diffraction with partially coherent sources

    Science.gov (United States)

    Zhou, Shuang-Xi; Sheng, Wei; Bi, Yu-Bo; Luo, Chun-Ling

    2018-04-01

    The defocusing effect is inevitable and degrades the image quality in the conventional optical imaging process significantly due to the close confinement of the imaging lens. Based on classical optical coherent theory and linear algebra, we develop a unified formula to describe the defocusing effects of both lensless ghost imaging (LGI) and lensless ghost diffraction (LGD) systems with a partially coherent source. Numerical examples are given to illustrate the influence of defocusing length on the quality of LGI and LGD. We find that the defocusing effects of the test and reference paths in the LGI or LGD systems are entirely different, while the LGD system is more robust against defocusing than the LGI system. Specifically, we find that the imaging process for LGD systems can be viewed as pinhole imaging, which may find applications in ultra-short-wave band imaging without imaging lenses, e.g. x-ray diffraction and γ-ray imaging.

  19. Ultra-broadband ptychography with self-consistent coherence estimation from a high harmonic source

    Science.gov (United States)

    Odstrčil, M.; Baksh, P.; Kim, H.; Boden, S. A.; Brocklesby, W. S.; Frey, J. G.

    2015-09-01

    With the aim of improving imaging using table-top extreme ultraviolet sources, we demonstrate coherent diffraction imaging (CDI) with relative bandwidth of 20%. The coherence properties of the illumination probe are identified using the same imaging setup. The presented methods allows for the use of fewer monochromating optics, obtaining higher flux at the sample and thus reach higher resolution or shorter exposure time. This is important in the case of ptychography when a large number of diffraction patterns need to be collected. Our microscopy setup was tested on a reconstruction of an extended sample to show the quality of the reconstruction. We show that high harmonic generation based EUV tabletop microscope can provide reconstruction of samples with a large field of view and high resolution without additional prior knowledge about the sample or illumination.

  20. LDR: A submillimeter great observatory

    Science.gov (United States)

    Wilson, Robert

    1990-12-01

    The Large Deployable Reflector (LDR), a high Earth orbit free flying 10 to 20 m diameter deployable telescope, is described. The LDR is intended for use throughout the submillimeter band, using imaging receivers with unprecedented sensitivity and angular resolution. Its mission is to produce pictures of line emission regions in the solar neighborhood, in nearby galaxies and in objects at the edge of the known galaxy distribution. It is predicted to be an ideal instrument for exploring the first galaxies and protogalaxies as the submillimeter cooling lines should light up as soon as metals form.

  1. Imaging choroidal neovascular membrane using en face swept-source optical coherence tomography angiography

    Directory of Open Access Journals (Sweden)

    Moussa M

    2017-10-01

    Full Text Available Magdy Moussa,1,2 Mahmoud Leila,3 Hagar Khalid1,2 1Ophthalmology Department, Faculty of Medicine, Tanta University, Tanta, Egypt; 2MEDIC Eye Center, Tanta, Egypt; 3Retina Department, Research Institute of Ophthalmology, Giza, Egypt Purpose: The aim of this study was to assess the efficacy of swept-source optical coherence tomography angiography (SS-OCTA in delineating the morphology of choroidal neovascular membrane (CNV. Patients and methods: This was a retrospective observational case series reviewing clinical data and fundus fluorescein angiography (FFA, swept-source optical coherence tomography (SS-OCT, and SS-OCTA images of patients with CNV and comparing the findings. The swept-source technology enables deeper penetration and superior axial resolution. The incorporated blood flow detection algorithm, optical coherence tomography angiography ratio analysis (OCTARA, enables visualization of CNV in vivo without the need for dye injection. Results: The study included 136 eyes of 105 patients. Active lesions on SS-OCTA images showed increased capillary density, extensive arborization, vascular anastomosis and looping, and peri-lesional hollow. Inactive lesions showed decreased capillary density, presence of large linear vessels, and presence of feeder vessels supplying the CNV. We detected positive correlation between SS-OCTA, FFA, and SS-OCT images in 97% of eyes. In the remaining 3%, SS-OCTA confirmed the absence of CNV, whereas FFA and SS-OCT either were inconclusive in the diagnosis of CNV or yielded false-positive results. Conclusion: SS-OCT and SS-OCTA represent a reproducible risk-free analog for FFA in imaging CNV. SS-OCTA is particularly versatile in cases where FFA and SS-OCT are inconclusive. Keywords: swept-source OCT, OCT angiography, imaging of CNV, OCTARA algorithm

  2. Development and Utilization of Bright Tabletop Sources of Coherent Soft X-Ray Radiation

    International Nuclear Information System (INIS)

    Rocca, Jorge J.

    2005-01-01

    This project investigated aspects of the development and utilization of compact XUV sources based on fast capillary discharges and high order harmonic up conversion. These sources are very compact, yet can generate soft x-ray radiation with peak spectral brightness several orders of magnitude larger than a synchrotron beam lines. The work has included the characterization of some of the important parameters that enable the use of these sources in unique applications, such as the degree of spatial coherence and the wavefront characteristics that affect their focusing capabilities. In relation to source development, they have recently completed preliminary work towards exploring the generation of high harmonics in a pre-ionized medium created by a capillary discharge. Since ions are more difficult to ionize than neutral atoms, the use of pre-ionized nonlinear media may lead to the generation of coherent light at > 1 KeV photon energy. Recent application results include the first study of the damage threshold and damage mechanism of XUV mirrors exposed to intense focalized 46.9 nm laser radiation, and the study of the ablation of polymers with soft x-ray laser light

  3. Submillimeter heterodyne arrays for APEX

    NARCIS (Netherlands)

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.

    2008-01-01

    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  4. Novel coherent supercontinuum light sources based on all-normal dispersion fibers

    Energy Technology Data Exchange (ETDEWEB)

    Heidt, Alexander

    2011-07-05

    submicron waist diameter. It is shown that coherent SC spectra with considerable spectral power densities in the usually hard to reach wavelength region below 300 nm can be generated using these freestanding photonic nanowires. Although technological difficulties currently prevent the fabrication of adequate nanofibers, the concept could be experimentally verified by coherent visible octave-spanning SC generation in tapered suspended core fibers with ANDi profile. The work contained in this thesis therefore makes important contributions to the availability and applicability of fiber-based broadband coherent SC sources with numerous high-impact applications in fundamental science and modern technology. (orig.)

  5. Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography

    International Nuclear Information System (INIS)

    Unterhuber, A; Povazay, B; Bizheva, K; Hermann, B; Sattmann, H; Stingl, A; Le, T; Seefeld, M; Menzel, R; Preusser, M; Budka, H; Schubert, Ch; Reitsamer, H; Ahnelt, P K; Morgan, J E; Cowey, A; Drexler, W

    2004-01-01

    Novel ultra-broad bandwidth light sources enabling unprecedented sub-2 μm axial resolution over the 400 nm-1700 nm wavelength range have been developed and evaluated with respect to their feasibility for clinical ultrahigh resolution optical coherence tomography (UHR OCT) applications. The state-of-the-art light sources described here include a compact Kerr lens mode locked Ti:sapphire laser (λ c = 785 nm, Δλ = 260 nm, P out = 50 mW) and different nonlinear fibre-based light sources with spectral bandwidths (at full width at half maximum) up to 350 nm at λ c = 1130 nm and 470 nm at λ c = 1375 nm. In vitro UHR OCT imaging is demonstrated at multiple wavelengths in human cancer cells, animal ganglion cells as well as in neuropathologic and ophthalmic biopsies in order to compare and optimize UHR OCT image contrast, resolution and penetration depth

  6. Subgingival calculus imaging based on swept-source optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Lu, Chih-Wei; Jiang, Cho-Pei; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-07-01

    We characterized and imaged dental calculus using swept-source optical coherence tomography (SS-OCT). The refractive indices of enamel, dentin, cementum, and calculus were measured as 1.625 +/- 0.024, 1.534 +/- 0.029, 1.570 +/- 0.021, and 2.097 +/- 0.094, respectively. Dental calculus leads strong scattering properties, and thus, the region can be identified from enamel with SS-OCT imaging. An extracted human tooth with calculus is covered with gingiva tissue as an in vitro sample for tomographic imaging.

  7. Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses

    DEFF Research Database (Denmark)

    Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui

    2013-01-01

    We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good...... efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual......-output synchronized ultrafast lasers....

  8. Noise Source Identification of a Ring-Plate Cycloid Reducer Based on Coherence Analysis

    Directory of Open Access Journals (Sweden)

    Bing Yang

    2013-01-01

    Full Text Available A ring-plate-type cycloid speed reducer is one of the most important reducers owing to its low volume, compactness, smooth and high performance, and high reliability. The vibration and noise tests of the reducer prototype are completed using the HEAD acoustics multichannel noise test and analysis system. The characteristics of the vibration and noise are obtained based on coherence analysis and the noise sources are identified. The conclusions provide the bases for further noise research and control of the ring-plate-type cycloid reducer.

  9. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    Science.gov (United States)

    Gonzalo, I. B.; Engelsholm, R. D.; Bang, O.

    2018-03-01

    Commercially available silica-fiber-based and ultra-broadband supercontinuum (SC) sources are typically generated by pumping close to the zero-dispersion wavelength (ZDW) of a photonic crystal fiber (PCF), using high-power picosecond or nanosecond laser pulses. Despite the extremely broad bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise (RIN) as a function of the pump pulse duration and fiber length. Furthermore, we experimentally demonstrate the role of the fiber length on the RIN of the ANDi SC, validating the results calculated numerically. In the end, we compare the RIN of a commercial SC source based on MI and the ANDi SC source developed here, which shows better noise performance when it is carefully designed.

  10. SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS INTERNAL LIMITING MEMBRANE PEELING ALTERS DEEP RETINAL VASCULATURE.

    Science.gov (United States)

    Michalewska, Zofia; Nawrocki, Jerzy

    2018-04-30

    To describe morphology of retinal and choroidal vessels in swept-source optical coherence tomography angiography before and after vitrectomy with the temporal inverted internal limiting membrane (ILM) flap technique for full-thickness macular holes. Prospective, observational study of 36 eyes of 33 patients with full-thickness macular holes swept-source optical coherence tomography angiography was performed in patients before and 1 month after vitrectomy. Vitrectomy with the temporal inverted ILM flap technique was performed. In this method, ILM is peeled only at one side of the fovea. An ILM flap is created to cover the macular hole. Comparison of retina vasculature in the areas of ILM peeling vs. no ILM peeling at 1 and 3 months after successful vitrectomy was performed. The study demonstrated lower density of vessels in the deep retinal plexus in the area where ILM was peeled as compared to the rest of the fovea. Visual acuity and central retinal thickness 1 month after surgery correlates with fovea avascular zone diameter in deep retinal layers at the same time point (P = 0.001). This study confirmed that ILM peeling might alter blood flow in deep retinal vessels below the peeling area in the early postoperative period. The area of the fovea avascular zone corresponds to functional results at the same time point.

  11. Radiation Protection Aspects of the Linac Coherent Light Source Front End Enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Vollaire, J.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, S.H.; Leitner, M.Santana; /SLAC

    2010-08-26

    The Front End Enclosure (FEE) of the Linac Coherent Light Source (LCLS) is a shielding housing located between the electron dump area and the first experimental hutch. The upstream part of the FEE hosts the commissioning diagnostics for the FEL beam. In the downstream part of the FEE, two sets of grazing incidence mirror and several collimators are used to direct the beam to one of the experimental stations and reduce the bremsstrahlung background and the hard component of the spontaneous radiation spectrum. This paper addresses the beam loss assumptions and radiation sources entering the FEE used for the design of the FEE shielding using the Monte-Carlo code FLUKA. The beam containment system prevents abnormal levels of radiations inside the FEE and ensures that the beam remains in its intended path is also described.

  12. A New Method for the 2D DOA Estimation of Coherently Distributed Sources

    Directory of Open Access Journals (Sweden)

    Liang Zhou

    2014-03-01

    Full Text Available The purpose of this paper is to develop a new technique for estimating the two- dimensional (2D direction-of-arrivals (DOAs of coherently distributed (CD sources, which can estimate effectively the central azimuth and central elevation of CD sources at the cost of less computational cost. Using the special L-shape array, a new approach for parametric estimation of CD sources is proposed. The proposed method is based on two rotational invariance relations under small angular approximation, and estimates two rotational matrices which depict the relations, using propagator technique. And then the central DOA estimations are obtained by utilizing the primary diagonal elements of two rotational matrices. Simulation results indicate that the proposed method can exhibit a good performance under small angular spread and be applied to the multisource scenario where different sources may have different angular distribution shapes. Without any peak-finding search and the eigendecomposition of the high-dimensional sample covariance matrix, the proposed method has significantly reduced the computational cost compared with the existing methods, and thus is beneficial to real-time processing and engineering realization. In addition, our approach is also a robust estimator which does not depend on the angular distribution shape of CD sources.

  13. The Submillimeter Telescope (SMT) project

    International Nuclear Information System (INIS)

    Martin, R.N.; Baars, J.W.M.

    1990-01-01

    To exploit the potential of submillimeter astronomy, the Submillimeter Telescope (SMT) will be located at an altitude of 3178 meters on Emerald Peak 75 miles northeast of Tucson in Southern Arizona. The instrument is an altazimuth mounted f/13.8 Cassegrain homology telescope with two Nasmyth and bent Cassegrain foci. It will have diffraction limited performance at a wavelength of 300 microns and an operating overall figure accuracy of 15 microns rms. An important feature of the SMT is the construction of the primary and secondary reflectors out of aluminum-core CFRP face sheet sandwich panels, and the reflector backup structure and secondary support out of CFRP structural elements. This modern technology provides both a means for reaching the required precision of the SMT for both night and day operation (basically because of the low coefficient of thermal expansion and high strength-to-weight ratio of CFRP) and a potential route for the realization of lightweight telescopes of even greater accuracy in the future. The SMT will be the highest accuracy radio telescope ever built (at least a factor of 2 more accurate than existing telescopes). In addition, the SMT will be the first 10 m-class submillimeter telescope with a surface designed for efficient measurements at the important 350 microns wavelength atmospheric window. 9 refs

  14. An Optimized Low-Charge Configuration of the LINAC Coherent Light Source

    CERN Document Server

    Emma, Paul; Huang, Zhirong; Limborg-Deprey, Cecile; Reiche, Sven; Wu, Juhao; Zolotorev, Max S

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The nominal parameter set is founded on a 1-nC bunch charge and normalized emittance of about 1 micron. The most challenging issues, such as emittance generation, wakefields, and coherent synchrotron radiation (CSR), are associated with the high bunch charge. In the LCLS in particular, with its strong linac wakefields, the bunch compression process produces sharp temporal horns at the head and tail of the bunch with degraded local emittance, effectively wasting much of the charge. The sharp horns intensify CSR in the bends and further drive a strong resistive-wall wakefield in the long FEL undulator. Although these issues are not insurmountable, they suggest a lower bunch charge may be more suitable. This study uses a 0.2-nC bunch charge and 0.85-micron emittance with only 30 A of peak current in the injector, producing the same FEL saturation length. The resulting performance is more stable, has negl...

  15. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Woo June Choi; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  16. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    International Nuclear Information System (INIS)

    Woo June Choi; Wang, R K

    2014-01-01

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  17. On-line spectral diagnostic system for Dalian Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chaoyang; Wei, Shen; Du, Xuewei [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Du, Liangliang [National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui 230029 (China); Wang, Qiuping, E-mail: qiuping@ustc.edu.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhang, Weiqing; Wu, Guorong; Dai, Dongxu [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yang, Xueming, E-mail: xmyang@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2015-05-21

    The Dalian Coherent Light Source (DCLS) is a Free electron laser (FEL) user facility currently under construction in the northeast of China. It is designed to work on high gain high harmonic principle with the capability of wavelength continuously tunable in the EUV regime of 50–150 nm. The light source has unique features such as the turntable radiation frequency, wide spectral range, high brightness and peak power, very short pulse time structure, etc. A key diagnostic task in DCLS is the on-line source spectral characteristic recording during the source development, and for the definition of the experimental conditions. For this purpose, an online grazing incidence spectrometer with a toroidal mirror and a variable-line-spacing plane grating is designed and presented in this paper to monitor each single FEL pulse. A circular stage is chosen to fit the focal curve and to realize the wavelength scanning. This scanning mechanics is simpler and stable. Resolving power (λ/Δλ) of this spectrometer is better than 12,000 in the whole wavelength range.

  18. On-line spectral diagnostic system for Dalian Coherent Light Source

    International Nuclear Information System (INIS)

    Li, Chaoyang; Wei, Shen; Du, Xuewei; Du, Liangliang; Wang, Qiuping; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Yang, Xueming

    2015-01-01

    The Dalian Coherent Light Source (DCLS) is a Free electron laser (FEL) user facility currently under construction in the northeast of China. It is designed to work on high gain high harmonic principle with the capability of wavelength continuously tunable in the EUV regime of 50–150 nm. The light source has unique features such as the turntable radiation frequency, wide spectral range, high brightness and peak power, very short pulse time structure, etc. A key diagnostic task in DCLS is the on-line source spectral characteristic recording during the source development, and for the definition of the experimental conditions. For this purpose, an online grazing incidence spectrometer with a toroidal mirror and a variable-line-spacing plane grating is designed and presented in this paper to monitor each single FEL pulse. A circular stage is chosen to fit the focal curve and to realize the wavelength scanning. This scanning mechanics is simpler and stable. Resolving power (λ/Δλ) of this spectrometer is better than 12,000 in the whole wavelength range

  19. Defect inspection of actuator lenses using swept-source optical coherence tomography

    Science.gov (United States)

    Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2017-12-01

    Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.

  20. Swept source optical coherence tomography of objects with arbitrary reflectivity profiles

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Swept Source optical coherence tomography (SS-OCT) has become a well established imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferogram measured in the frequency domain (k-space). Fourier inversion of the obtained interferogram typically produces a potentially overlapping conjugate mirror image, whose overlap could be avoided by restricting the object to have its highest reflectivity at its surface. However, this restriction may not be fulfilled when imaging a very thin object that is placed on a highly reflective surface, or imaging an object containing a contrast agent with high reflectivity. In this paper, we show that oversampling of the SS-OCT signal in k-space would overcome the need for such restriction on the object. Our result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  1. Electron Signal Detection for the Beam-Finder Wire of the Linac Coherent Light Source Undulator

    International Nuclear Information System (INIS)

    Wu, Juhao; Emma, P.; Field, R.C.; SLAC

    2006-01-01

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. The tight tolerances for positioning the electron beam close to the undulator axis calls for the introduction of Beam Finder Wire (BFW) device. A BFW device close to the upstream end of the undulator segment and a quadrupole close to the down stream end of the undulator segment will allow a beam-based undulator segment alignment. Based on the scattering of the electrons on the BFW, we can detect the electron signal in the main dump bends after the undulator to find the beam position. We propose to use a threshold Cherenkov counter for this purpose. According to the signal strength at such a Cherenkov counter, we then suggest choice of material and size for such a BFW device in the undulator

  2. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    Zhu, Diling; Feng, Yiping; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Williams, Garth J.; Messerschmidt, Marc; Boutet, Sébastien; Robert, Aymeric; Stoupin, Stanislav; Shvyd'ko, Yuri V.; Terentyev, Sergey A.; Blank, Vladimir D.; Driel, Tim B. van

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ∼100 μm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 μm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance

  3. A 2--4 nm Linac Coherent Light Source (LCLS) using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-05-01

    We describe the use of the SLAC linac to drive a unique, powerful. short wavelength Linac Coherent Light Source (LCLS). Operating as an FEL, lasing would be achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified spontaneous emission (SASE). The main components are a high-brightness rf photocathode electron gun; pulse compressors; about 1/5 of the SLAC linac; and a long undulator with a FODO quadrupole focussing system. Using electrons below 8 GeV, the system would operate at wavelengths down to about 3 nm, producing ≥10 GW peak power in sub-ps pulses. At a 120 Hz rate the average power is ∼ 1 W

  4. Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation

    CERN Document Server

    Jaeglé, Pierre

    2006-01-01

    Extreme ultraviolet radiation, also referred to as soft X-rays or XUV, offers very special optical properties. The X-UV refractive index of matter is such that normal reflection cannot take place on polished surfaces whereas beam transmission through one micrometer of almost all materials reduces to zero. Therefore, it has long been a difficult task to imagine and to implement devices designed for complex optics experiments in this wavelength range. Thanks to new sources of coherent radiation - XUV-lasers and High Order Harmonics - the use of XUV radiation, for interferometry, holography, diffractive optics, non-linear radiation-matter interaction, time-resolved study of fast and ultrafast phenomena and many other applications, including medical sciences, is ubiquitous.

  5. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    Science.gov (United States)

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  6. Adjustable supercontinuum laser source with low coherence length and low timing jitter

    Science.gov (United States)

    Andreana, Marco; Bertrand, Anthony; Hernandez, Yves; Leproux, Philippe; Couderc, Vincent; Hilaire, Stéphane; Huss, Guillaume; Giannone, Domenico; Tonello, Alessandro; Labruyère, Alexis; Rongeat, Nelly; Nérin, Philippe

    2010-04-01

    This paper introduces a supercontinuum (SC) laser source emitting from 400 nm to beyond 1750 nm, with adjustable pulse repetition rate (from 250 kHz to 1 MHz) and duration (from ~200 ps to ~2 ns). This device makes use of an internally-modulated 1.06 μm semiconductor laser diode as pump source. The output radiation is then amplified through a preamplifier (based on single-mode Yb-doped fibres) followed by a booster (based on a double-clad Yb-doped fibre). The double-clad fibre output is then spliced to an air-silica microstructured optical fibre (MOF). The small core diameter of the double-clad fibre allows reducing the splice loss. The strongly nonlinear propagation regime in the MOF leads to the generation of a SC extending from the violet to the nearinfrared wavelengths. On the Stokes side of the 1.06 μm pump line, i.e., in the anomalous dispersion regime, the spectrum is composed of an incoherent distribution of quasi-solitonic components. Therefore, the SC source is characterised by a low coherence length, which can be tuned by simply modifying pulse duration, that is closely related to the number of quasi-solitonic components brought into play. Finally, the internal modulation of the laser diode permits to achieve excellent temporal stability, both in terms of average power and pulse-to-pulse period.

  7. Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam

    Science.gov (United States)

    Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.

    2018-04-01

    We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.

  8. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system.

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  9. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  10. Generation of new spatial and temporal coherent states using VECSEL technology: VORTEX, high order Laguerre-Gauss mode, continuum source

    Science.gov (United States)

    Sellahi, Mohamed; Seghilani, Mohamed Seghir; Sagnes, Isabelle; Beaudoin, Gregoire; Lafosse, Xavier; Legratiet, Luc; Lalanne, Philippe; Myara, Mikhal; Garnache, Arnaud

    2017-11-01

    Since years, the VeCSEL concept is pointed out as a technology of choice for beyond-state-of-the-art laser light sources. The targeted coherent state in CW is typically the common gaussian TEM00, single frequency, linearly polarized lightstate. In this work, we take advantage of the VeCSEL technology for the generation of other kinds of coherent states, thanks to the insertion of intracavity functions, such as low-loss intensity and phase filters integrated on a semiconductor chip. This technological development permitted to demonstrate very pure high-order Laguerre-Gauss mode, both degenerate and non-degenerate(vortex)modes, preserving the coherence properties of usual TEM00 VeCSELs. This technology paves the way for the generation of other coherences (Bessel beams) or new functionnalities (wavelength filtering, etc.). We also explore new time domain coherence : owing to a high gain semiconductor chip design and the insertion of intracavity AOM, we demonstrated the first Frequecy-Shifted-Feedback VeCSEL, with a broadband coherence state as wide as 300 GHz.

  11. Evaluation of focal choroidal excavation in the macula using swept-source optical coherence tomography.

    Science.gov (United States)

    Lim, F P M; Loh, B K; Cheung, C M G; Lim, L S; Chan, C M; Wong, D W K

    2014-09-01

    To evaluate imaging findings of patients with focal choroidal excavation (FCE) in the macula using swept-source optical coherence tomography (SS-OCT) and correlate it clinically. Prospective observational case series. Eleven consecutive patients (12 eyes) with FCE were described. Data on demographics and clinical presentation were collected and imaging findings (including color photography, fundus autofluorescence imaging, fluorescein angiography, indocyanine green angiography, spectral-domain optical coherence tomography, and SS-OCT) were analyzed. The primary diagnosis was epiretinal membrane (two eyes), choroidal neovascularization (one eye), polypoidal choroidal vasculopathy (three eyes), central serous chorioretinopathy (one eye), and dry age-related macular degeneration (two eyes). Eleven out of 12 of the lesions were conforming. One presented with a non-conforming lesion that progressed to a conforming lesion. One eye had multiFCE and two had two overlapping choroidal excavations. Using the SS-OCT, we found the choroid to be thinned out at the area of FCE but sclera remained normal. The choroidal tissue beneath the FCE was abnormal, with high internal reflectivity and poor visualization of choroidal vessels. There was loss of contour of the outer choroidal boundary that appeared to be pulled inward by this abnormal choroidal tissue. A suprachoroidal space was noted beneath this choroidal tissue and the choroidal-scleral interface was smooth. Repeat SS-OCT 6 months after presentation showed the area of excavation to be stable in size. FCE can be associated with epiretinal membrane, central serous chorioretinopathy, and age-related macular degeneration. The choroid was thinned out in the area of FCE.

  12. Evaluation of focal choroidal excavation in the macula using swept-source optical coherence tomography

    Science.gov (United States)

    Lim, F P M; Loh, B K; Cheung, C M G; Lim, L S; Chan, C M; Wong, D W K

    2014-01-01

    Purpose To evaluate imaging findings of patients with focal choroidal excavation (FCE) in the macula using swept-source optical coherence tomography (SS-OCT) and correlate it clinically. Methods Prospective observational case series. Eleven consecutive patients (12 eyes) with FCE were described. Data on demographics and clinical presentation were collected and imaging findings (including color photography, fundus autofluorescence imaging, fluorescein angiography, indocyanine green angiography, spectral-domain optical coherence tomography, and SS-OCT) were analyzed. Results The primary diagnosis was epiretinal membrane (two eyes), choroidal neovascularization (one eye), polypoidal choroidal vasculopathy (three eyes), central serous chorioretinopathy (one eye), and dry age-related macular degeneration (two eyes). Eleven out of 12 of the lesions were conforming. One presented with a non-conforming lesion that progressed to a conforming lesion. One eye had multiFCE and two had two overlapping choroidal excavations. Using the SS-OCT, we found the choroid to be thinned out at the area of FCE but sclera remained normal. The choroidal tissue beneath the FCE was abnormal, with high internal reflectivity and poor visualization of choroidal vessels. There was loss of contour of the outer choroidal boundary that appeared to be pulled inward by this abnormal choroidal tissue. A suprachoroidal space was noted beneath this choroidal tissue and the choroidal–scleral interface was smooth. Repeat SS-OCT 6 months after presentation showed the area of excavation to be stable in size. Conclusion FCE can be associated with epiretinal membrane, central serous chorioretinopathy, and age-related macular degeneration. The choroid was thinned out in the area of FCE. PMID:24946847

  13. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror.

    Science.gov (United States)

    Lu, Chen D; Kraus, Martin F; Potsaid, Benjamin; Liu, Jonathan J; Choi, Woojhon; Jayaraman, Vijaysekhar; Cable, Alex E; Hornegger, Joachim; Duker, Jay S; Fujimoto, James G

    2013-12-20

    We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm(2) and wide field 10 x 10 mm(2) volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.

  14. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit.

    Science.gov (United States)

    Lee, Kenneth K C; Mariampillai, Adrian; Yu, Joe X Z; Cadotte, David W; Wilson, Brian C; Standish, Beau A; Yang, Victor X D

    2012-07-01

    Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.

  15. SUBMILLIMETER LIGHTCURVES OF ASTEROIDS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Submillimeter lightcurves of large asteroids Ceres, Davida, Io, Juno, Pallas, Vesta, and Victoria, observed at the Heinrich-Hertz Submillimeter Telescope from...

  16. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY.

    Science.gov (United States)

    Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2018-01-10

    To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.

  17. 350 μm POLARIMETRY FROM THE CALTECH SUBMILLIMETER OBSERVATORY

    International Nuclear Information System (INIS)

    Dotson, Jessie L.; Vaillancourt, John E.; Kirby, Larry; Hildebrand, Roger H.; Dowell, C. Darren; Davidson, Jacqueline A.

    2010-01-01

    We present a summary of data obtained with the 350 μm polarimeter, Hertz, at the Caltech Submillimeter Observatory. We give tabulated results and maps showing polarization vectors and intensity contours. The summary includes over 4300 individual measurements in 56 Galactic sources and two galaxies. Of these measurements, 2153 have P ≥ 3σ p statistical significance. The median polarization of the entire data set is 1.46%.

  18. Creating von Laue patterns in crystal scattering with partially coherent sources

    NARCIS (Netherlands)

    Wang, Y.Y.D.; Kuebel, D.; Visser, T.D.; Wolf, E.

    2016-01-01

    When spatially coherent radiation is diffracted by a crystalline object, the field is scattered in specific directions, giving rise to so-called von Laue patterns. We examine the role of spatial coherence in this process. Using the first-order Born approximation, a general analytic expression for

  19. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  20. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  1. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    International Nuclear Information System (INIS)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J

    2011-01-01

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  2. Longitudinal study of arteriogenesis with swept source optical coherence tomography and hyperspectral imaging

    Science.gov (United States)

    Poole, Kristin M.; Patil, Chetan A.; Nelson, Christopher E.; McCormack, Devin R.; Madonna, Megan C.; Duvall, Craig L.; Skala, Melissa C.

    2014-03-01

    Peripheral arterial disease (PAD) is an atherosclerotic disease of the extremities that leads to high rates of myocardial infarction and stroke, increased mortality, and reduced quality of life. PAD is especially prevalent in diabetic patients, and is commonly modeled by hind limb ischemia in mice to study collateral vessel development and test novel therapies. Current techniques used to assess recovery cannot obtain quantitative, physiological data non-invasively. Here, we have applied hyperspectral imaging and swept source optical coherence tomography (OCT) to study longitudinal changes in blood oxygenation and vascular morphology, respectively, intravitally in the diabetic mouse hind limb ischemia model. Additionally, recommended ranges for controlling physiological variability in blood oxygenation with respect to respiration rate and body core temperature were determined from a control animal experiment. In the longitudinal study with diabetic mice, hyperspectral imaging data revealed the dynamics of blood oxygenation recovery distally in the ischemic footpad. In diabetic mice, there is an early increase in oxygenation that is not sustained in the long term. Quantitative analysis of vascular morphology obtained from Hessian-filtered speckle variance OCT volumes revealed temporal dynamics in vascular density, total vessel length, and vessel diameter distribution in the adductor muscle of the ischemic limb. The combination of hyperspectral imaging and speckle variance OCT enabled acquisition of novel functional and morphological endpoints from individual animals, and provides a more robust platform for future preclinical evaluations of novel therapies for PAD.

  3. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  4. Swept source optical coherence tomography for quantitative and qualitative assessment of dental composite restorations

    Science.gov (United States)

    Sadr, Alireza; Shimada, Yasushi; Mayoral, Juan Ricardo; Hariri, Ilnaz; Bakhsh, Turki A.; Sumi, Yasunori; Tagami, Junji

    2011-03-01

    The aim of this work was to explore the utility of swept-source optical coherence tomography (SS-OCT) for quantitative evaluation of dental composite restorations. The system (Santec, Japan) with a center wavelength of around 1300 nm and axial resolution of 12 μm was used to record data during and after placement of light-cured composites. The Fresnel phenomenon at the interfacial defects resulted in brighter areas indicating gaps as small as a few micrometers. The gap extension at the interface was quantified and compared to the observation by confocal laser scanning microscope after trimming the specimen to the same cross-section. Also, video imaging of the composite during polymerization could provide information about real-time kinetics of contraction stress and resulting gaps, distinguishing them from those gaps resulting from poor adaptation of composite to the cavity prior to polymerization. Some samples were also subjected to a high resolution microfocus X-ray computed tomography (μCT) assessment; it was found that differentiation of smaller gaps from the radiolucent bonding layer was difficult with 3D μCT. Finally, a clinical imaging example using a newly developed dental SS-OCT system with an intra-oral scanning probe (Panasonic Healthcare, Japan) is presented. SS-OCT is a unique tool for clinical assessment and laboratory research on resin-based dental restorations. Supported by GCOE at TMDU and NCGG.

  5. Development of cancer medical treatment/diagnostic equipment using the source of X-rays in space coherence

    International Nuclear Information System (INIS)

    Sato, Isamu; Shintomi, Kazutaka; Hayakawa, Ken

    2009-01-01

    In Nihon University, the research and development of Parametric X-rays radiation (PXR) by the 100 MeV electron linac are advanced. It was proved by basic experiment that PXR was a source of coherent X-rays. Coherent X-rays have the characteristic that a refraction action is guided with an irradiation matter. According to this action, the contrast image pick-up of an irradiation matter is attained, and X-rays becomes possible to focus a point itself. Research of cancer medical treatment and diagnosis are advanced using the new source of X-ray. Miniaturization of the source is important for the spread of cancer medical new treatment and diagnoses. Recently, the tabletop type 100 MeV class cryogenic linac with energy recovery is under development. In symposium, we report progress of these research and development. (author)

  6. Long axial imaging range using conventional swept source lasers in optical coherence tomography via re-circulation loops

    Science.gov (United States)

    Bradu, Adrian; Jackson, David A.; Podoleanu, Adrian

    2018-03-01

    Typically, swept source optical coherence tomography (SS-OCT) imaging instruments are capable of a longer axial range than their camera based (CB) counterpart. However, there are still various applications that would take advantage for an extended axial range. In this paper, we propose an interferometer configuration that can be used to extend the axial range of the OCT instruments equipped with conventional swept-source lasers up to a few cm. In this configuration, the two arms of the interferometer are equipped with adjustable optical path length rings. The use of semiconductor optical amplifiers in the two rings allows for compensating optical losses hence, multiple paths depth reflectivity profiles (Ascans) can be combined axially. In this way, extremely long overall axial ranges are possible. The use of the recirculation loops produces an effect equivalent to that of extending the coherence length of the swept source laser. Using this approach, the achievable axial imaging range in SS-OCT can reach values well beyond the limit imposed by the coherence length of the laser, to exceed in principle many centimeters. In the present work, we demonstrate axial ranges exceeding 4 cm using a commercial swept source laser and reaching 6 cm using an "in-house" swept source laser. When used in a conventional set-up alone, both these lasers can provide less than a few mm axial range.

  7. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Lydia Elshoff

    Full Text Available The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS, an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity between coherent sources was investigated using the renormalized partial directed coherence (RPDC method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.

  8. Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography.

    Science.gov (United States)

    de Castro, Alberto; Benito, Antonio; Manzanera, Silvestre; Mompeán, Juan; Cañizares, Belén; Martínez, David; Marín, Jose María; Grulkowski, Ireneusz; Artal, Pablo

    2018-02-01

    To image, describe, and characterize different features visible in the crystalline lens of older adults with and without cataract when imaged three-dimensionally with a swept-source optical coherence tomography (SS-OCT) system. We used a new SS-OCT laboratory prototype designed to enhance the visualization of the crystalline lens and imaged the entire anterior segment of both eyes in two groups of participants: patients scheduled to undergo cataract surgery, n = 17, age range 36 to 91 years old, and volunteers without visual complains, n = 14, age range 20 to 81 years old. Pre-cataract surgery patients were also clinically graded according to the Lens Opacification Classification System III. The three-dimensional location and shape of the visible opacities were compared with the clinical grading. Hypo- and hyperreflective features were visible in the lens of all pre-cataract surgery patients and in some of the older adults in the volunteer group. When the clinical examination revealed cortical or subcapsular cataracts, hyperreflective features were visible either in the cortex parallel to the surfaces of the lens or in the posterior pole. Other type of opacities that appeared as hyporeflective localized features were identified in the cortex of the lens. The OCT signal in the nucleus of the crystalline lens correlated with the nuclear cataract clinical grade. A dedicated OCT is a useful tool to study in vivo the subtle opacities in the cataractous crystalline lens, revealing its position and size three-dimensionally. The use of these images allows obtaining more detailed information on the age-related changes leading to cataract.

  9. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Feng; Zhang, Chun-Hui; Liu, Ai-Ping [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Wang, Qin, E-mail: qinw@njupt.edu.cn [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-01

    In this paper, we propose to implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. By comparing its performance with other existing schemes, we demonstrate that our new scheme can overcome many shortcomings existing in current schemes, and show excellent behavior in the quantum key distribution. Moreover, even when taking the statistical fluctuation into account, we can still obtain quite high key generation rate at very long transmission distance by using our new scheme. - Highlights: • Implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. • Overcome many shortcomings existing in current schemes and show excellent behavior. • Obtain quite high key generation rate even when taking statistical fluctuation into account.

  10. Michelson interferometer design for Linac Coherent Light Source (LCLS) applications in the 15-1.5 Aa wavelength range

    International Nuclear Information System (INIS)

    Tatchyn, Roman

    2000-01-01

    In recent years the continuing development of linac-driven X-Ray Free Electron Laser (XRFEL) designs has significantly expanded the parameter space associated with 3rd and earlier-generation synchrotron radiation sources. In particular, in contrast to the >100 ps pulse durations typical of storage rings, temporal lengths extending down to the <100 fs regime will become available. For example, for the SLAC Linac Coherent Light Source (LCLS) a pulse duration of ∼200-300 fs with finer temporal features extending down to ∼1 fs is anticipated. The characterization of the phase space distributions of such pulses poses a significant challenge for instrumentation design both with regard to the brevity of the pulse structure as well as the X-ray (15-1.5 Aa) wavelength range of the FEL line. In this paper we assess a Michelson interferometer design aimed at characterizing the coherence length of the SLAC LCLS and discuss considerations related to its operation

  11. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  12. Report of the submillimeter splinter group

    Science.gov (United States)

    Harris, A. I.; Lequeux, J.

    1992-12-01

    The aim of the submillimeter splinter group of the LIST (Lunar Interferometry Study Team) was to examine the scientific and technical aspects of a submillimeter interferometer with an emphasis on heterodyne detection. The main elements of the scientific logic that lead to the conclusions that a heterodyne submillimeter array should have a collecting area of at order 1000 sq m are summarized. This conclusion is based on sensitivity constraints and the following points: anything that can be done from the ground, will be; an instrument as complex and expensive as a large submillimeter interferometer must be capable of significant extragalactic observations; and no matter what the future scientific trends are, looking at the main coolants will always be important. It is clear that an instrument of this size is several steps past the next generation of spaceborne observatories.

  13. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

    Science.gov (United States)

    Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G

    2017-01-01

    To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.

  14. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm

    OpenAIRE

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-01-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same ...

  15. X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

    2007-10-29

    An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

  16. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    Science.gov (United States)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  17. Submillimeter heterodyne receiver for the CSO telescope

    International Nuclear Information System (INIS)

    Gulkis, S.

    1988-01-01

    This task is to build a cryogenically cooled 620 to 700 GHz astronomical receiver that will be used as a facility instrument at the CalTech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. The receiver will have applications as a very high resolution spectrometer to investigate spectral lines in planetary and satellite atmospheres, and comets. The receiver will also be used to make continuum measurements of planets, satellites, and asteroids. During FY88, a scale model (200 GHz) SIS mixer radiometer was built and intrgrated into a cryostat designed for use on the CSO telescope. This system will serve as a model to guide the work on the higher frequency mixer. A solid state local oscillator source that covers two bands in the 600 to 700 GHz has been developed under contract JPL and will be delivered before the end of the year. Work has continued on the SIS materials needed for the 620 to 700 GHz mixer. Test hardware has been developed which allow the 1 to 5 curves for SIS material to be easily measured

  18. An intelligent despeckling method for swept source optical coherence tomography images of skin

    Science.gov (United States)

    Adabi, Saba; Mohebbikarkhoran, Hamed; Mehregan, Darius; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2017-03-01

    Optical Coherence Optical coherence tomography is a powerful high-resolution imaging method with a broad biomedical application. Nonetheless, OCT images suffer from a multiplicative artefacts so-called speckle, a result of coherent imaging of system. Digital filters become ubiquitous means for speckle reduction. Addressing the fact that there still a room for despeckling in OCT, we proposed an intelligent speckle reduction framework based on OCT tissue morphological, textural and optical features that through a trained network selects the winner filter in which adaptively suppress the speckle noise while preserve structural information of OCT signal. These parameters are calculated for different steps of the procedure to be used in designed Artificial Neural Network decider that select the best denoising technique for each segment of the image. Results of training shows the dominant filter is BM3D from the last category.

  19. Infrared (IR) vs x-ray power generation in the SLAC Linac Coherent Light Source (LCLS)

    International Nuclear Information System (INIS)

    Tatchyn, R.

    1993-05-01

    The LCLS, a Free-Electron Laser (FEL) designed for operation at a first harmonic energy of 300 eV (λ congruent 40 Angstrom) in the Self-Amplified Spontaneous Emission (SASE) regime, will utilize electron bunches compressed down to durations of <0.5ps, or lengths of <150 μ. It is natural to inquire whether coherent radiation of this (and longer) wavelength will constitute a significant component of the total coherent output of the FEL. In this paper a determination of a simple upper bound on the IR that can be generated by the compressed bunches is outlines. Under the assumed operating parameters of the LCLS undulator, it is shown that that IR component of the coherent output should be strongly dominated by the x-ray component

  20. Diagnostics from three rising submillimeter bursts

    International Nuclear Information System (INIS)

    Zhou, Ai-Hua; Li, Jian-Ping; Wang, Xin-Dong

    2016-01-01

    In this paper we investigate three novel rising submillimeter (THz) bursts that occurred sequentially in Super Active Region NOAA 10486. The average rising rate of the flux density above 200 GHz is only 20 sfu GHz −1 (corresponding to spectral index α of 1.6) for the THz spectral components of the 2003 October 28 and November 4 bursts, but it attained values of 235 sfu GHz −1 (α = 4.8) in the 2003 November 2 burst. The steeply rising THz spectrum can be produced by a population of highly relativistic electrons with a low-energy cutoff of 1 MeV, but it only requires a low-energy cutoff of 30 keV for the two slowly rising THz bursts, via gyrosynchrotron (GS) radiation based on our numerical simulations of burst spectra in the magnetic dipole field case. The electron density variation is much larger in the THz source than in the microwave (MW) source. It is interesting that the THz source radius decreased by 20%–50% during the decay phase for the three events, but the MW source increased by 28% for the 2003 November 2 event. In the paper we will present a formula that can be used to calculate the energy released by ultrarelativistic electrons, taking the relativistic correction into account for the first time. We find that the energy released by energetic electrons in the THz source exceeds that in the MW source due to the strong GS radiation loss in the THz range, although the modeled THz source area is 3–4 orders smaller than the modeled MW source one. The total energies released by energetic electrons via the GS radiation in radio sources are estimated, respectively, to be 5.2 × 10 33 , 3.9 × 10 33 and 3.7 × 10 32 erg for the October 28, November 2 and 4 bursts, which are 131, 76 and 4 times as large as the thermal energies of 2.9 × 10 31 , 2.1 × 10 31 and 5.2 × 10 31 erg estimated from soft X-ray GOES observations. (paper)

  1. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  2. GYRO-ORBIT SIZE, BRIGHTNESS TEMPERATURE LIMIT, AND IMPLAUSIBILITY OF COHERENT EMISSION BY BUNCHING IN SYNCHROTRON RADIO SOURCES

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2012-01-01

    We show that an upper limit on the maximum brightness temperature for a self-absorbed incoherent synchrotron radio source is obtained from the size of its gyro orbits, which in turn must lie well within the confines of the total source extent. These temperature limits are obtained without recourse to inverse Compton effects or the condition of equipartition of energy between magnetic fields and relativistic particles. For radio variables, the intra-day variability implies brightness temperatures ∼10 19 K in the comoving rest frame of the source. This, if interpreted purely due to an incoherent synchrotron emission, would imply gyroradii >10 28 cm, the size of the universe, while from the causality arguments the inferred maximum size of the source in such a case is ∼ 15 cm. Such high brightness temperatures are sometimes modeled in the literature as some coherent emission process where bunches of non-thermal particles are somehow formed that radiate in phase. We show that, unlike in the case of curvature radiation models proposed in pulsars, in the synchrotron radiation mechanism the oppositely charged particles would contribute together to the coherent phenomenon without the need to form separate bunches of the opposite charges. At the same time we show that bunches would disperse over dimensions larger than a wavelength in time shorter than the gyro orbital period (∼< 0.1 s). Therefore, a coherent emission by bunches cannot be a plausible explanation of the high brightness temperatures inferred in extragalactic radio sources showing variability over a few hours or longer.

  3. Non-Gaussian statistics of extreme events in stimulated Raman scattering: The role of coherent memory and source noise

    Science.gov (United States)

    Monfared, Yashar E.; Ponomarenko, Sergey A.

    2017-10-01

    We explore theoretically and numerically extreme event excitation in stimulated Raman scattering in gases. We consider gas-filled hollow-core photonic crystal fibers as a particular system realization. We show that moderate amplitude pump fluctuations obeying Gaussian statistics lead to the emergence of heavy-tailed non-Gaussian statistics as coherent seed Stokes pulses are amplified on propagation along the fiber. We reveal the crucial role that coherent memory effects play in causing non-Gaussian statistics of the system. We discover that extreme events can occur even at the initial stage of stimulated Raman scattering when one can neglect energy depletion of an intense, strongly fluctuating Gaussian pump source. Our analytical results in the undepleted pump approximation explicitly illustrate power-law probability density generation as the input pump noise is transferred to the output Stokes pulses.

  4. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    2011-01-01

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  5. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    Science.gov (United States)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  6. Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian

    Optical coherence tomography (OCT) is a non-invasive imaging technique for visualizing the internal structure of scattering materials, such as biological tissues. It generates two- or three-dimensional images of the sample with cellular (micrometer) resolution. OCT has become an important instrum...

  7. Effect of spatial coherence of LED sources on image resolution in holographic displays

    NARCIS (Netherlands)

    Pourreza Ghoushchi, Vahid; Aas, Mehdi; Ulusoy, Erdem; Ürey, Hakan

    2017-01-01

    Holographic Displays (HDs) provide 3D images with all natural depth cues via computer generated holograms (CGHs) implemented on spatial light modulators (SLMs). HDs are coherent light processing systems based on interference and diffraction, thus they generally use laser light. However, laser

  8. Quantum dot-micropillars: a bright source of coherent single photons

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; He, Yu-Ming; Maier, Sebastian

    2016-01-01

    We present the efficient generation of coherent single photons based on quantum dots in micropillars. We utilize a scalable lithography scheme leading to quantum dot-micropillar devices with 74% extraction efficiency. Via pulsed strict resonant pumping, we show an indistinguishability of consecut...

  9. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    Science.gov (United States)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  10. Submillimeter medical imaging in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lang, C.; Thirolf, P.G. [LMU, Muenchen (Germany); Habs, D. [LMU, Muenchen (Germany); MPQ, Garching (Germany); Zoglauer, A. [SSL, Berkeley (United States)

    2012-07-01

    We present a nuclear medical imaging technique, capable to reach submillimeter spatial resolution in 3 dimensions with a short exposure time and a low radioactive dose compared to conventional PET. This '{gamma}-PET' technique takes advantage of specific e{sup +} sources which simultaneously with the {beta}{sup +} decay emit an additional photon. Exploiting the triple coincidence between the positron annihilation and the additional emitted {gamma}, it is possible to separate the reconstructed 'true' events from background. Thus the spatial uncertainty introduced by the motion of the e{sup +} or by Compton scattering within the patient can be strongly reduced in the direction normal to the annihilation. MC-simulations and image reconstruction studies have been performed using the library MEGAlib, which we modified to realize an event reconstruction using the {beta}{sup +}{gamma} coincidences. The simulated geometry consists of 4 LaBr{sub 3} scintillator crystals (5 x 5 x 3 cm{sup 3}) read out by a 2D-segmented photomultiplier (64 pixels, each 6 x 6 mm{sup 2}) and 4 double-sided silicon strip detectors (each with 2 x 128 strips, active area of 5 x 5 cm{sup 2}, thickness 0.5 mm), positioned around an H{sub 2}O sphere of 6 cm diameter. Inside are two {sup 22}Na point-like test sources, placed at a distance of 0.4 mm. The resolution results in 0.2 mm (FWHM) in each direction, surpassing the performance of conventional PET by about an order of magnitude.

  11. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    Science.gov (United States)

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  12. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  13. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... Tomography (OCT). Over the last 5 years, numerous examples have demonstrated its high potential [3-4] in this context. However, SC light sources present pulse-to-pulse intensity variation that can limit the performance of any OCT system [5] by degrading their signal to noise ratio (SNR). To this goal, we...... have studied and compared the noise of several SC light sources and evaluated how their noise properties affect the performance of Ultra-High Resolution OCT (UHR-OCT) at 1300 nm. We have measured several SC light sources with different parameters (pulse length, energy, seed repetition rate, etc.). We...

  14. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  15. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U H; Pešić, Z D; Fanis, A De; Rau, C

    2013-01-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  16. New ultrafast X-ray sources and their applications. Coherent ultrashort X UV emission by harmonic generation

    International Nuclear Information System (INIS)

    Salieres, P.; Le deroff, L.; Hergott, J.F.; Merdji, H.; Carre, B.

    2000-01-01

    By focusing an intense short-pulse laser into a rare gas jet, high-order harmonics of the laser frequency are generated. Considerable progress have been made in the last few years, with the observation of harmonic orders higher that 200, extending the emission down to 3 nm. Besides its fundamental interest, this XUV emission represents a new source with unique properties of coherence and ultrashort (femtosecond) duration. A growing number of applications are reported, ranging from atomic and molecular spectroscopy to solid-state and plasma physics. (authors)

  17. Submillimeter wave ESR of copper-oxides

    International Nuclear Information System (INIS)

    Ohta, Hitoshi; Motokawa, Mitsuhiro

    1993-01-01

    Since the discovery of high T c superconductors the magnetism of various copper-oxides has attracted much interest. Especially the magnetism of strong spin correlation systems in various CuO 4 networks is of great interest because it is well known that the superconductivity is occurring in the CuO 2 plane of the high T c superconductors. Here the authors will show some of their work done on copper-oxides by submillimeter wave ESR. The submillimeter wave ESR can provide the frequency region of 90 ∼ 3,100 GHz and the pulse magnetic field up to 30T

  18. CLUMPY AND EXTENDED STARBURSTS IN THE BRIGHTEST UNLENSED SUBMILLIMETER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Iono, Daisuke; Hatsukade, Bunyo; Kawabe, Ryohei; Matsuda, Yuichi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Yun, Min S.; Wilson, Grant [University of Massachusetts, Department of Astronomy, 710 North Pleasant Street, Amherst, MA 01003 (United States); Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Ikarashi, Soh [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700AV Groningen (Netherlands); Izumi, Takuma; Kohno, Kotaro; Tamura, Yoichi; Umehata, Hideki [Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Lee, Minju; Saito, Toshiki [Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Ueda, Junko [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Michiyama, Tomonari; Ando, Misaki, E-mail: d.iono@nao.ac.jp [SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-09-20

    The central structure in three of the brightest unlensed z = 3–4 submillimeter galaxies is investigated through 0.″015–0.″05 (120–360 pc) 860 μ m continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kiloparsec in AzTEC1 and AzTEC8 is extremely complex, and they are composed of multiple ∼200 pc clumps. AzTEC4 consists of two sources that are separated by ∼1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ∼300–3000 M {sub ⊙} yr{sup −1} kpc{sup −2}, suggesting regions with extreme star formation near the Eddington limit. By comparing the flux obtained by ALMA and Submillimeter Array, we find that 68%–90% of the emission is extended (≳1 kpc) in AzTEC4 and 8. For AzTEC1, we identify at least 11 additional compact (∼200 pc) clumps in the extended 3–4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at ≲150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10% and 30% of the 860 μ m continuum is concentrated in clumpy structures in the central kiloparsec, while the remaining flux is distributed over ≳1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.

  19. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    Science.gov (United States)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  20. Nonlinear momentum compaction and coherent synchrotron radiation at the metrology light source. Low-α commissioning and development

    International Nuclear Information System (INIS)

    Ries, Markus

    2014-01-01

    Short pulses of synchrotron radiation are becoming an increasingly demanded tool in various fields of science. The generation of short synchrotron radiation pulses can be accomplished by different accelerator-based approaches such as free electron lasers, energy recovery linacs or electron storage rings. Linear accelerator driven free electron lasers are capable of generating intense pulses in the femtosecond regime at moderate repetition rates. In comparison, electron storage rings generate pulses of lower intensity with the advantage of large repetition rates. However, electron storage rings rely on radiation emitted by the same bunch(es) every turn, which are present in an equilibrium state. Thus making the electron storage ring a yet unchallenged source of short synchrotron radiation pulses in terms of stability and reproducibility. In addition, storage rings are capable to serve a large number of users simultaneously. In general, it is possible to distinguish the user community of short pulses at electron storage rings. The first user group is interested in time-resolution applying incoherent synchrotron radiation up to the X-ray regime. The second user group makes use of coherent synchrotron radiation emitted by short bunches at wavelengths large compared to the bunch dimensions, which commonly applies up to the THz-regime. Both user groups are interested in the high average power and stability available at electron storage rings. However, there is a current limitation for stable short bunch operation of electron storage rings, which is due to an instability driven by the emission of coherent synchrotron radiation. The subject of this thesis is the operation of an electron storage ring at a low momentum compaction to generate short electron bunches as a source for coherent synchrotron radiation. For this purpose the Metrology Light Source is ideally suited, as it is the first light source designed with the ability to adjust the three leading orders of the

  1. Beam properties of fully optimized, table-top, coherent source at 30 nm

    Czech Academy of Sciences Publication Activity Database

    Jakubczak, Krzysztof; Mocek, Tomáš; Rus, Bedřich; Polan, Jiří; Hřebíček, Jan; Sawicka, Magdalena; Sikocinski, Pawel; Sobota, Jaroslav; Fořt, Tomáš; Pína, L.

    2011-01-01

    Roč. 19, č. 2 (2011), s. 169-175 ISSN 1230-3402 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20650511 Keywords : laser applications * high−order harmonic generation * coherent extreme ultraviolet radiation * ultrafast optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.966, year: 2011 http://www.springerlink.com/content/y0057067wvw03234/

  2. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    CERN Document Server

    Byrd, John; Martin, Michael C; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Zholents, Alexander; Zolotorev, Max S

    2005-01-01

    At the Advanced Light Source (ALS), the "femtoslicing" beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. This CSR, whose measured intensity is routinely used as a diagnostics for the tune-up of the femtoslicing experiments, represents a potential source of terahertz radiation with very interesting features. Several measurements have been performed for its characterization and in this paper an updated description of the experimental results and of their interpretation is presented.

  3. COMPACT STARBURSTS IN z similar to 3-6 SUBMILLIMETER GALAXIES REVEALED BY ALMA

    NARCIS (Netherlands)

    Ikarashi, Soh; Ivison, R. J.; Caputi, Karina I.; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David H.; Iono, Daisuke; Izumi, Takuma; Kawabe, Ryohei; Kohno, Kotaro; Lagos, Claudia D. P.; Motohara, Kentaro; Nakanishi, Kouichiro; Ohta, Kouji; Tamura, Yoichi; Umehata, Hideki; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2015-01-01

    We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at z(phot) similar to 3-6. Their infrared luminosities and star formation rates (SFRs) are L-IR similar to, 2-6 x 10(12) L-circle dot and similar

  4. Swept source optical coherence tomography for in vivo imaging and vibrometry in the apex of the mouse cochlea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Yoon [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Raphael, Patrick D.; Oghalai, John S. [Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Ellerbee, Audrey K. [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane, tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.

  5. Development of a coherent THz radiation source based on the ultra-short electron beam and its applications

    International Nuclear Information System (INIS)

    Kuroda, R.; Yasumoto, M.; Toyokawa, H.; Sei, N.; Koike, M.; Yamada, K.

    2011-01-01

    At the National Institute of Advanced Industrial Science and Technology (AIST), a coherent terahertz (THz) radiation source has been developed based on an ultra-short electron beam using an S-band compact electron linac. The designed THz pulse has a high peak power of more than 1 kW in the frequency range 0.1-2 THz. The entire system is located in one research room of about 10 m square. The linac consists of a laser photocathode rf gun (BNL type) with a Cs 2 Te photocathode load-lock system and two 1.5-m-long S-band accelerator tubes. The electron beam can be accelerated up to approximately 42 MeV. The electron bunch was compressed to less than 1 ps (rms) with a magnetic bunch compressor. The coherent synchrotron radiation (CSR) of the THz region was generated from the ultra-short electron bunch at the 90 o bending magnet, and it was extracted from a z-cut quartz window for THz applications. In this work, the THz scanning transmission imaging was successfully demonstrated for measuring the freshness of a vegetable leaf over a period of time.

  6. Source analysis of beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography.

    Directory of Open Access Journals (Sweden)

    Muthuraman Muthuraman

    Full Text Available We hypothesized that post-movement beta synchronization (PMBS and cortico-muscular coherence (CMC during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena.We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated.High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and

  7. Source analysis of beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography.

    Science.gov (United States)

    Muthuraman, Muthuraman; Tamás, Gertrúd; Hellriegel, Helge; Deuschl, Günther; Raethjen, Jan

    2012-01-01

    We hypothesized that post-movement beta synchronization (PMBS) and cortico-muscular coherence (CMC) during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena.We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated.High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and spinal systems.

  8. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Mohammed Rigi

    2016-01-01

    Full Text Available Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4 years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69 and FD ASOCT (0.58 and 0.75. Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86 and FD ASOCT (0.57 and 0.85. Interinstrument agreements were fair to good (0.34 to 0.63, with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy.

  9. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    Science.gov (United States)

    Nguyen, Donna; Minnal, Vandana R.

    2016-01-01

    Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT) for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4) years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69) and FD ASOCT (0.58 and 0.75). Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86) and FD ASOCT (0.57 and 0.85). Interinstrument agreements were fair to good (0.34 to 0.63), with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy. PMID:27990300

  10. Josephson frequency meter for millimeter and submillimeter wavelengths

    International Nuclear Information System (INIS)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.

    1994-01-01

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process

  11. Josephson frequency meter for millimeter and submillimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I. [State Research Center, Kiev (Ukraine)] [and others

    1994-12-31

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.

  12. Focal plane optics in far-infrared and submillimeter astronomy

    Science.gov (United States)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  13. Focal plane optics in far-infrared and submillimeter astronomy

    Science.gov (United States)

    Hildebrand, R. H.

    1986-02-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  14. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  15. Present status of the development of far-infrared coherent light sources with the ISIR linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Shuichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research

    1996-07-01

    Far-infrared light sources are being developed with a 38-MeV L-band linear accelerator at the Institute of Scientific and Industrial Research, Osaka University. In the experiments of free-electron laser the self-amplified spontaneous emission was observed at wavelengths of 20 and 40 {mu}m with a high-intensity single-bunch beam for a single passage through a wiggler. In the free-electron laser oscillation experiments with a multibunch beam laser light was obtained at wavelengths from 32 to 40 {mu}m. The peak power in a micropulse of the laser was estimated to be 8.3 MW at a wavelength of 40 {mu}m. Coherent radiation emitted from bunched electrons was observed for Cherenkov and transition radiation processes with the single-bunch beam. (author)

  16. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm.

    Science.gov (United States)

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-12-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  17. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    DEFF Research Database (Denmark)

    Bravo Gonzalo, Ivan; Maria, Michael; Engelsholm, Rasmus Dybbro

    2018-01-01

    of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all......-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize...

  18. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence.

    Science.gov (United States)

    Shrestha, Sebina; Serafino, Michael J; Rico-Jimenez, Jesus; Park, Jesung; Chen, Xi; Zhaorigetu, Siqin; Walton, Brian L; Jo, Javier A; Applegate, Brian E

    2016-09-01

    Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.

  19. High-field strong-focusing undulator designs for X-ray Linac Coherent Light Source (LCLS) applications

    International Nuclear Information System (INIS)

    Caspi, S.; Schlueter, R.; Tatchyn, R.

    1995-01-01

    Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1 angstrom--0.1 angstrom range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B 0 in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 angstrom LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies

  20. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  1. Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography

    Directory of Open Access Journals (Sweden)

    Su GL

    2017-05-01

    Full Text Available Grace L Su,1 Douglas M Baughman,2 Qinqin Zhang,3 Kasra Rezaei,2 Aaron Y Lee,2 Cecilia S Lee2 1Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 2Department of Ophthalmology, 3Department of Bioengineering, University of Washington, Seattle, WA, USA Purpose: The aim of this study was to compare physician preferences regarding the commercially available spectral-domain (SD optical coherence tomography angiography (OCTA and swept-source (SS OCTA prototype device.Design: Comparative analysis of diagnostic instruments was performed.Patients and methods: Subjects at the University of Washington Eye Institute and Harborview Medical Center were prospectively recruited and imaged with the Zeiss SD OCTA (HD-5000, Angioplex and Zeiss SS OCTA (Plex Elite, Everest devices on the same day. The study included 10 eyes from 10 subjects diagnosed with a retinal/choroidal disease. Deidentified images were compiled into a survey and sent to retina specialists in various countries. The survey presented masked SD and SS images of each eye for each retinal sublayer side by side. Respondents were asked about their image preference and impact on clinical management. A priori and post hoc preferences for SD vs SS were collected.Results: Fifty-four retina specialists responded to the survey. Median years in practice was 3.00 (interquartile range [IQR] 1.50–17.00. At baseline, 23 (48% physicians owned an OCTA machine. The majority of physician responses showed a preference for the SS over SD OCTA, independent of the retinal pathology shown (n=454 overall responses, 74%. Nevertheless, the majority indicated that both SD and SS would be equally valuable in informing clinical decisions (n=374 overall responses, 61%.Conclusion: These findings indicate that the majority of retina specialists surveyed prefer SS over SD OCTA based on image quality, regardless of the retinal pathology shown. Regarding the clinical utility of each modality, the majority of

  2. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    Science.gov (United States)

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  3. Nerve Fiber Flux Analysis Using Wide-Field Swept-Source Optical Coherence Tomography.

    Science.gov (United States)

    Tan, Ou; Liu, Liang; Liu, Li; Huang, David

    2018-02-01

    To devise a method to quantify nerve fibers over their arcuate courses over an extended peripapillary area using optical coherence tomography (OCT). Participants were imaged with 8 × 8-mm volumetric OCT scans centered at the optic disc. A new quantity, nerve fiber flux (NFF), represents the cross-sectional area transected perpendicular to the nerve fibers. The peripapillary area was divided into 64 tracks with equal flux. An iterative algorithm traced the trajectory of the tracks assuming that the relative distribution of the NFF was conserved with compensation for fiber connections to ganglion cells on the macular side. Average trajectory was averaged from normal eyes and use to calculate the NFF maps for glaucomatous eyes. The NFF maps were divided into eight sectors that correspond to visual field regions. There were 24 healthy and 10 glaucomatous eyes enrolled. The algorithm converged on similar patterns of NFL tracks for all healthy eyes. In glaucomatous eyes, NFF correlated with visual field sensitivity in the arcuate sectors (Spearman ρ = 0.53-0.62). Focal nerve fiber loss in glaucomatous eyes appeared as uniform tracks of NFF defects that followed the expected arcuate fiber trajectory. Using an algorithm based on the conservation of flux, we derived nerve fiber trajectories in the peripapillary area. The NFF map is useful for the visualization of focal defects and quantification of sector nerve fiber loss from wide-area volumetric OCT scans. NFF provides a cumulative measure of volumetric loss along nerve fiber tracks and could improve the detection of focal glaucoma damage.

  4. The advantages of a swept source optical coherence tomography system in the evaluation of occlusal disorders

    Science.gov (United States)

    Marcauteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Duma, Virgil Florin; Podoleanu, Adrian Gh.

    2014-01-01

    Occlusal disorders are characterized by multiple dental and periodontal signs. Some of these are reversible (such as excessive tooth mobility, fremitus, tooth pain, migration of teeth in the absence of periodontitis), some are not (pathological occlusal/incisal wear, abfractions, enamel cracks, tooth fractures, gingival recessions). In this paper we prove the advantages of a fast swept source OCT system in the diagnosis of pathological incisal wear, a key sign of the occlusal disorders. On 15 extracted frontal teeth four levels of pathological incisal wear facets were artificially created. After every level of induced defect, OCT scanning was performed. B scans were acquired and 3D reconstructions were generated. A swept source OCT instrument is used in this study. The swept source is has a central wavelength of 1050 nm and a sweeping rate of 100 kHz. A depth resolution determined by the swept source of 12 μm in air was experimentally measured. The pathological incisal wear is qualitatively observed on the B-scans as 2D images and 3D reconstructions (volumes). For quantitative evaluations of volumes, we used the Image J software. Our swept source OCT system has several advantages, including the ability to measure (in air) a minimal volume of 2352 μm3 and to collect high resolution volumetric images in 2.5 s. By calculating the areas of the amount of lost tissue corresponding to each difference of B-scans, the final volumes of incisal wear were obtained. This swept source OCT method is very useful for the dynamic evaluation of pathological incisal wear.

  5. Phase-sensitive optical coherence tomography-based vibrometry using a highly phase-stable akinetic swept laser source

    Energy Technology Data Exchange (ETDEWEB)

    Applegate, Brian E.; Park, Jesung; Carbajal, Esteban [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States); Oghalai, John S. [Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex user developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.

  6. Imaging of noncarious cervical lesions by means of a fast swept source optical coherence tomography system

    Science.gov (United States)

    Stoica, Eniko T.; Marcauteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Duma, Virgil Florin; Podoleanu, Adrian Gh.

    2014-01-01

    Non-carious cervical lesions (NCCL) are defined as the loss of tooth substance at the cemento-enamel junction and are caused by abrasion, erosion and/or occlusal overload. In this paper we proved that our fast swept source OCT system is a valuable tool to track the evolution of NCCL lesions in time. On several extracted bicuspids, four levels of NCCL were artificially created. After every level of induced lesion, OCT scanning was performed. B scans were acquired and 3D reconstructions were generated. The swept source OCT instrument used in this study has a central wavelength of 1050 nm, a sweeping range of 106 nm (measured at 10 dB), an average output power of 16 mW and a sweeping rate of 100 kHz. A depth resolution determined by the swept source of 12 μm in air was experimentally obtained. NCCL were measured on the B-scans as 2D images and 3D reconstructions (volumes). For quantitative evaluations of volumes, the Image J software was used. By calculating the areas of the amount of lost tissue corresponding to each difference of Bscans, the final volumes of NCCL were obtained. This swept source OCT method allows the dynamic diagnosis of NCCL in time.

  7. Off-axis full-field swept-source optical coherence tomography using holographic refocusing

    Science.gov (United States)

    Hillmann, Dierck; Franke, Gesa; Hinkel, Laura; Bonin, Tim; Koch, Peter; Hüttmann, Gereon

    2013-03-01

    We demonstrate a full-field swept-source OCT using an off-axis geometry of the reference illumination. By using holographic refocusing techniques, a uniform lateral resolution is achieved over the measurement depth of approximately 80 Rayleigh lengths. Compared to a standard on-axis setup, artifacts and autocorrelation signals are suppressed and the measurement depth is doubled by resolving the complex conjugate ambiguity. Holographic refocusing was done efficiently by Fourier-domain resampling as demonstrated before in inverse scattering and holoscopy. It allowed to reconstruct a complete volume with about 10μm resolution over the complete measurement depth of more than 10mm. Off-axis full-field swept-source OCT enables high measurement depths, spanning many Rayleigh lengths with reduced artifacts.

  8. Narrowband solid state vuv coherent source for laser cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Michan, J. Mario [TRIUMF (Canada); Polovy, Gene; Madison, Kirk W. [The University of British Columbia, Department of Physics and Astronomy (Canada); Fujiwara, Makoto C. [TRIUMF (Canada); Momose, Takamasa, E-mail: momose@chem.ubc.ca [The University of British Columbia, Department of Chemistry, Department of Physics and Astronomy (Canada)

    2015-11-15

    We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman-α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

  9. Linac Coherent Light Source soft x-ray materials science instrument optical design and monochromator commissioning

    Czech Academy of Sciences Publication Activity Database

    Heimann, P.; Krupin, O.; Schlotter, W.F.; Turner, J.; Krzywinski, J.; Sorgenfrei, F.; Messerschmidt, M.; Bernstein, D.; Chalupský, Jaromír; Hájková, Věra; Hau-Riege, S.; Holmes, M.; Juha, Libor; Kelez, N.; Lüning, J.; Nordlund, D.; Perea, M.F.; Scherz, A.; Soufli, R.; Wurth, W.; Rowen, M.

    2011-01-01

    Roč. 82, č. 9 (2011), 093104/1-093104/8 ISSN 0034-6748 R&D Projects: GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffraction gratings * light sources * linear accelerators * optical materials * x-ray monochromators * x-ray optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.367, year: 2011

  10. Photodetection-induced relative timing jitter in synchronized time-lens source for coherent Raman scattering microscopy

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2017-09-01

    Full Text Available Synchronized time-lens source is a novel method to generate synchronized optical pulses to mode-locked lasers, and has found widespread applications in coherent Raman scattering microscopy. Relative timing jitter between the mode-locked laser and the synchronized time-lens source is a key parameter for evaluating the synchronization performance of such synchronized laser systems. However, the origins of the relative timing jitter in such systems are not fully determined, which in turn prevents the experimental efforts to optimize the synchronization performance. Here, we demonstrate, through theoretical modeling and numerical simulation, that the photodetection could be one physical origin of the relative timing jitter. Comparison with relative timing jitter due to the intrinsic timing jitter of the mode-locked laser is also demonstrated, revealing different qualitative and quantitative behaviors. Based on the nature of this photodetection-induced timing jitter, we further propose several strategies to reduce the relative timing jitter. Our theoretical results will provide guidelines for optimizing synchronization performance in experiments.

  11. Microscope-Integrated Intraoperative Ultrahigh-Speed Swept-Source Optical Coherence Tomography for Widefield Retinal and Anterior Segment Imaging.

    Science.gov (United States)

    Lu, Chen D; Waheed, Nadia K; Witkin, Andre; Baumal, Caroline R; Liu, Jonathan J; Potsaid, Benjamin; Joseph, Anthony; Jayaraman, Vijaysekhar; Cable, Alex; Chan, Kinpui; Duker, Jay S; Fujimoto, James G

    2018-02-01

    To demonstrate the feasibility of retinal and anterior segment intraoperative widefield imaging using an ultrahigh-speed, swept-source optical coherence tomography (SS-OCT) surgical microscope attachment. A prototype post-objective SS-OCT using a 1,050-nm wavelength, 400 kHz A-scan rate, vertical cavity surface-emitting laser (VCSEL) light source was integrated to a commercial ophthalmic surgical microscope after the objective. Each widefield OCT data set was acquired in 3 seconds (1,000 × 1,000 A-scans, 12 × 12 mm 2 for retina and 10 × 10 mm 2 for anterior segment). Intraoperative SS-OCT was performed in 20 eyes of 20 patients. In six of seven membrane peels and five of seven rhegmatogenous retinal detachment repair surgeries, widefield retinal imaging enabled evaluation pre- and postoperatively. In all seven cataract cases, anterior imaging evaluated the integrity of the posterior lens capsule. Ultrahigh-speed SS-OCT enables widefield intraoperative viewing in the posterior and anterior eye. Widefield imaging visualizes ocular structures and pathology without requiring OCT realignment. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:94-102.]. Copyright 2018, SLACK Incorporated.

  12. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    International Nuclear Information System (INIS)

    Byrd, John M.; Hao, Zhao; Martin, Michael C.; Robin, David S.; Sannibale, Fernando; Schoenlein, Robert W.; Zholents, Alexander A.; Zolotorev, Max S.

    2005-01-01

    At the Advanced Light Source (ALS), the ''femtoslicing'' beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. These CSR pulses were first observed at the ALS, and the measurement of their intensity is now routinely used as a diagnostics for the tune-up of the femtoslicing x-ray experiments. At the same time, these CSR pulses synchronous with the modulating laser, represent a potential source of terahertz radiation with very interesting features. Several measurements have been performed for their characterization and in this paper we present an updated description of the experimental results and of their interpretation. In particular, we include more data on the interesting interaction, previously observed at the ALS, between the slicing and the microbunching instability (MBI), where under particular circumstances, the slicing seems to trigger the onset of the instability

  13. High-power beam-based coherently enhanced THz radiation source

    Directory of Open Access Journals (Sweden)

    Yuelin Li (李跃林

    2008-08-01

    Full Text Available We propose a compact Smith-Purcell radiation device that can potentially generate high average power THz radiation with high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that, with a beam current of 1 mA, it is feasible to generate hundreds of watts of narrow-band THz radiation at a repetition rate of 1 MHz.

  14. PRISMA - a spectrometer for the measurement of coherent excitations on a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Andreani, C.; Cilloco, F.; Petrillo, C.; Sacchetti, F.; Windsor, C.G.

    1986-04-01

    The measurement of nuclear and magnetic excitation spectra from single crystal samples remains central to condensed matter physics. The requirements in terms of the range and resolution of the scattering vector Q and energy transfer h/2πω are reviewed and typical experiments with a well defined cross-section are chosen. The performance and limitations of existing instruments are reviewed. A design for a new spectrometer, PRISMA, to be installed on the UK spallation neutron source, ISIS, is presented. Its performance for chosen experiments is given in terms of the Q and h/2πω range covered in a single scan, the resolution and the count rate. (author)

  15. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  16. ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Weiss, Axel [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Elbaz, David; Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Riechers, Dominik [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Smail, Ian, E-mail: cunha@mpia.de [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-03-20

    Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

  17. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    International Nuclear Information System (INIS)

    Stohr, J.

    2011-01-01

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only

  18. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J

    2011-11-16

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that

  19. Fourier transform holography with extended references using a coherent ultra-broadband light source.

    Science.gov (United States)

    Tenner, Vasco T; Eikema, Kjeld S E; Witte, Stefan

    2014-10-20

    We demonstrate a technique that enables lensless holographic imaging with extended reference structures, using ultra-broadband radiation sources for illumination. We show that this 'two-pulse imaging' approach works with one- and two-dimensional HERALDO reference structures, and demonstrate that the obtained spectrally resolved data can be used to improve the signal-to-noise ratio in the final image. Intensity stitching of multiple exposures is applied to increase the detected dynamic range, leading to an improved image reconstruction. Furthermore, we show that a combination of holography and iterative phase retrieval can be used to obtain high-quality images quickly and reliably, by using the HERALDO reconstruction as the initial support constraint in the iterative phase retrieval algorithm. A signal-to-noise improvement of two orders of magnitude is achieved compared to the basic HERALDO result.

  20. Optimisation of a polygon mirror-based spectral filter for swept source optical coherence tomography (SS-OCT)

    Science.gov (United States)

    Everson, Michael; Duma, Virgil-Florin; Dobre, George

    2018-03-01

    Medical imaging using Optical Coherence Tomography (OCT) provides clinicians with 3D, high resolution reconstructions of microscopic structures, in depth. It has been initially developed for ophthalmology, in order to scan the retinas of patients to diagnose illness. The quality of the images depends upon their axial and lateral resolutions and the properties of the light being used. Research using a polygon mirror (PM) as a spectral filter in Swept Source OCT (SS-OCT) has resulted in a variety of different experimental arrangements. Although the application of PM-based SS-OCT sources has been successfully demonstrated, the combination of their components' fundamental properties and the overall impact they have on imaging performance is rarely reported. A more detailed examination of these properties would lead to a full description of their operation and to the best methods to employ if system performance is to be maximised. This work presents our current findings of on-going research into the optimisation of PM-based SS-OCT systems. A swept source spectral filter, consisting of a collimator, a transmission grating, a two-lens telescope and an off-axis PM with an end reflector mirror has been evaluated experimentally and compared with theoretical predictions. The system's performance has been compared for two different fibre collimators. Although the beam width on the grating is different for each of the two collimators, the spot size at the PM facet is made the same by selecting appropriate focal lengths. An improvement in the signal roll-off at the interferometer output of 1.0 dB/mm was obtained when using a 3.4 mm collimator compared to a 1.5 mm collimator.

  1. Laser Safety for the Experimental Halls at SLAC_s Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Michael; Anthony, Perry; /SLAC; Barat, Ken; /LBL, Berkeley; Gilevich, Sasha; Hays, Greg; White, William E.; /SLAC

    2009-01-15

    The LCLS at the SLAC National Accelerator Laboratory will be the world's first source of an intense hard x-ray laser beam, generating x-rays with wavelengths of 1nm and pulse durations less than 100fs. The ultrafast x-ray pulses will be used in pump-probe experiments to take stop-motion pictures of atoms and molecules in motion, with pulses powerful enough to take diffraction images of single molecules, enabling scientists to elucidate fundamental processes of chemistry and biology. Ultrafast conventional lasers will be used as the pump. In 2009, LCLS will deliver beam to the Atomic Molecular and Optical (AMO) Experiment, located in one of 3 x-ray Hutches in the Near Experimental Hall (NEH). The NEH includes a centralized Laser Hall, containing up to three Class 4 laser systems, three x-ray Hutches for experiments and vacuum transport tubes for delivering laser beams to the Hutches. The main components of the NEH laser systems are a Ti:sapphire oscillator, a regen amplifier, green pump lasers for the oscillator and regen, a pulse compressor and a harmonics conversion unit. Laser safety considerations and controls for the ultrafast laser beams, multiple laser controlled areas, and user facility issues are discussed.

  2. Defense of fake fingerprint attacks using a swept source laser optical coherence tomography setup

    Science.gov (United States)

    Meissner, Sven; Breithaupt, Ralph; Koch, Edmund

    2013-03-01

    The most established technique for the identification at biometric access control systems is the human fingerprint. While every human fingerprint is unique, fingerprints can be faked very easily by using thin layer fakes. Because commercial fingerprint scanners use only a two-dimensional image acquisition of the finger surface, they can only hardly differentiate between real fingerprints and fingerprint fakes applied on thin layer materials. A Swept Source OCT system with an A-line rate of 20 kHz and a lateral and axial resolution of approximately 13 μm, a centre wavelength of 1320 nm and a band width of 120 nm (FWHM) was used to acquire fingerprints and finger tips with overlying fakes. Three-dimensional volume stacks with dimensions of 4.5 mm x 4 mm x 2 mm were acquired. The layering arrangement of the imaged finger tips and faked finger tips was analyzed and subsequently classified into real and faked fingerprints. Additionally, sweat gland ducts were detected and consulted for the classification. The manual classification between real fingerprints and faked fingerprints results in almost 100 % correctness. The outer as well as the internal fingerprint can be recognized in all real human fingers, whereby this was not possible in the image stacks of the faked fingerprints. Furthermore, in all image stacks of real human fingers the sweat gland ducts were detected. The number of sweat gland ducts differs between the test persons. The typical helix shape of the ducts was observed. In contrast, in images of faked fingerprints we observe abnormal layer arrangements and no sweat gland ducts connecting the papillae of the outer fingerprint and the internal fingerprint. We demonstrated that OCT is a very useful tool to enhance the performance of biometric control systems concerning attacks by thin layer fingerprint fakes.

  3. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio

    2010-04-05

    FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.

  4. Ultra-compact swept-source optical coherence tomography handheld probe with motorized focus adjustment (Conference Presentation)

    Science.gov (United States)

    LaRocca, Francesco; Nankivil, Derek; Keller, Brenton; Farsiu, Sina; Izatt, Joseph A.

    2017-02-01

    Handheld optical coherence tomography (OCT) systems facilitate imaging of young children, bedridden subjects, and those with less stable fixation. Smaller and lighter OCT probes allow for more efficient imaging and reduced operator fatigue, which is critical for prolonged use in either the operating room or neonatal intensive care unit. In addition to size and weight, the imaging speed, image quality, field of view, resolution, and focus correction capability are critical parameters that determine the clinical utility of a handheld probe. Here, we describe an ultra-compact swept source (SS) OCT handheld probe weighing only 211 g (half the weight of the next lightest handheld SSOCT probe in the literature) with 20.1 µm lateral resolution, 7 µm axial resolution, 102 dB peak sensitivity, a 27° x 23° field of view, and motorized focus adjustment for refraction correction between -10 to +16 D. A 2D microelectromechanical systems (MEMS) scanner, a converging beam-at-scanner telescope configuration, and an optical design employing 6 different custom optics were used to minimize device size and weight while achieving diffraction limited performance throughout the system's field of view. Custom graphics processing unit (GPU)-accelerated software was used to provide real-time display of OCT B-scans and volumes. Retinal images were acquired from adult volunteers to demonstrate imaging performance.

  5. Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source

    International Nuclear Information System (INIS)

    2011-01-01

    We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

  6. Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system

    Science.gov (United States)

    Alonso-Caneiro, David; Karnowski, Karol; Kaluzny, Bartlomiej J.; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2011-07-01

    We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.

  7. Research and Development Toward a 4.5-1.5 Angstrom Linac Coherent Light Source (LCLS) at SLAC

    International Nuclear Information System (INIS)

    Tatchyn, R.; Arthur, J.; Baltay, M.

    1995-08-01

    In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 A) Linac Coherent Light Source (LCLS), a Free Electron Laser (FEL) operating in the Self- Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: (1) a peak current in the 7 kA range, (2) a relative energy spread of <0.05%, and (3) a transverse emittance, ε[r-m], approximating the diffraction limit condition ε = λ / 4π, where lambda(m) is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam processing techniques necessary for LCLS operation down to approx. 20 A, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 A LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas

  8. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)

    2006-04-15

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.

  9. Comparison of choroidal thickness using swept-source and spectral-domain optical coherence tomography in normal Indian eyes.

    Science.gov (United States)

    Narendran, Siddharth; Manayath, George; Venkatapathy, Narendran

    2018-01-01

    Choroidal thickness measurements are reported to differ between spectral-domain optical coherence tomography (SD-OCT) and swept-source OCT (SS-OCT). The aim of this study was to assess the comparability of choroidal thickness measurements using SS-OCT and SD-OCT devices among normal participants. This was a prospective study of 31 (62 eyes) normal participants. Choroidal imaging was performed sequentially with the Spectralis OCT (SD-OCT) and the deep range imaging OCT (DRI OCT-1) (SS-OCT) using standardized imaging protocols. The subfoveal choroidal thickness (SFChT) was measured manually by two masked retinal specialists. Paired t -tests and intraclass correlation coefficients (ICCs) were used to compare the measurements. The mean SFChT was 319.5 μm and 325.3 μm for DRI OCT-1 and Spectralis OCT, respectively ( P = 0.001), with a mean difference of 5.9 with ICC of 0.97. The mean difference in choroidal thickness between the OCT devices was larger among eyes with choroidal thickness > 350 μm compared with eyes with thinner choroids (8.0 μm vs. 4.7 μm). SFChT measurements are comparable between DRI OCT-1 and Spectralis OCT. The variability between the devices increases in thicker choroids.

  10. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Science.gov (United States)

    Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.

    2018-02-01

    Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  11. Repeatability of swept-source optical coherence tomography retinal and choroidal thickness measurements in neovascular age-related macular degeneration

    DEFF Research Database (Denmark)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie

    2017-01-01

    BACKGROUND: The aim was to determine the intrasession repeatability of swept-source optical coherence tomography (SS-OCT)-derived retinal and choroidal thickness measurements in eyes with neovascular age-related macular degeneration (nAMD). METHODS: A prospective study consisting of patients...... with active nAMD enrolled in the Distance of Choroid Study at Moorfields Eye Hospital, London. Patients underwent three 12×9 mm macular raster scans using the deep range imaging (DRI) OCT-1 SS-OCT (Topcon) device in a single imaging session. Retinal and choroidal thicknesses were calculated for the ETDRS...... macular subfields. Repeatability was calculated according to methods described by Bland and Altman. RESULTS: 39 eyes of 39 patients with nAMD were included with a mean (±SD) age of 73.9 (±7.2) years. The mean (±SD) retinal thickness of the central macular subfield was 225.7 μm (±12.4 μm...

  12. Evaluation of circumferential angle closure using iridotrabecular contact index after laser iridotomy by swept-source optical coherence tomography.

    Science.gov (United States)

    Cho, Hyun-Kyung; Ahn, Dongsub; Kee, Changwon

    2017-05-01

    To investigate the quantitative changes of circumferential angle closure after laser iridotomy (LI) using the iridotrabecular contact (ITC) index by Swept-Source optical coherence tomography (OCT). In this prospective observational study conducted in a hospital setting, 42 eyes of 36 patients (five males, 31 females) who underwent LI were included. The mean age was 65.00 ± 8.13 years old and the diagnosis included primary angle closure (PAC, 21 eyes), PAC suspect (16 eyes) and PAC glaucoma (five eyes). Optical coherence tomography (OCT) images were obtained pre-LI and at 1 week post-LI. In each image frame, the scleral spur (SS) and the ITC end-point were marked, from which the ITC index was calculated as a percentage of the angle closure across 360°. Measurements inspected before and after LI included: central anterior chamber depth (ACD), anterior chamber volume (ACV), lens vault (LV), nasal and temporal angle opening distance (AOD), angle recess area (ARA), trabecular-iris space area (TISA), trabecular-iris angle (TIA) at 500 μm and 750 μm from the SS and intraocular pressure (IOP). The ITC index and IOP decreased significantly after LI from 71.52 ± 26.29 to 35.31 ± 27.19 and from 20.64 ± 12.72 mmHg to 14.02 ± 3.49 mmHg, respectively (p  0.05), but ACV increased significantly after LI (p angle parameters except for nasal TIAs increased significantly after LI (all p angle showed a significant decrease after LI, but part of the angle closure was not relieved after LI. Other mechanisms besides pupillary block may play a role together in causing angle closure. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Microwave, Millimeter, Submillimeter, and Far Infrared Spectral Databases

    Science.gov (United States)

    Pearson, J. C.; Pickett, H. M.; Drouin, B. J.; Chen, P.; Cohen, E. A.

    2002-01-01

    The spectrum of most known astrophysical molecules is derived from transitions between a few hundred to a few hundred thousand energy levels populated at room temperature. In the microwave and millimeter wave regions. spectroscopy is almost always performed with traditional microwave techniques. In the submillimeter and far infrared microwave technique becomes progressively more technologically challenging and infrared techniques become more widely employed as the wavelength gets shorter. Infrared techniques are typically one to two orders of magnitude less precise but they do generate all the strong features in the spectrum. With microwave technique, it is generally impossible and rarely necessary to measure every single transition of a molecular species, so careful fitting of quantum mechanical Hamiltonians to the transitions measured are required to produce the complete spectral picture of the molecule required by astronomers. The fitting process produces the most precise data possible and is required in the interpret heterodyne observations. The drawback of traditional microwave technique is that precise knowledge of the band origins of low lying excited states is rarely gained. The fitting of data interpolates well for the range of quantum numbers where there is laboratory data, but extrapolation is almost never precise. The majority of high resolution spectroscopic data is millimeter or longer in wavelength and a very limited number of molecules have ever been studied with microwave techniques at wavelengths shorter than 0.3 millimeters. The situation with infrared technique is similarly dire in the submillimeter and far infrared because the black body sources used are competing with a very significant thermal background making the signal to noise poor. Regardless of the technique used the data must be archived in a way useful for the interpretation of observations.

  14. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    Science.gov (United States)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  15. Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma.

    Science.gov (United States)

    Lai, Isabel; Mak, Heather; Lai, Gilda; Yu, Marco; Lam, Dennis S C; Leung, Christopher K S

    2013-06-01

    To investigate the use of swept-source optical coherence tomography (OCT) for measuring the area and degree of peripheral anterior synechia (PAS) involvement in patients with angle-closure glaucoma. Cross-sectional study. Twenty-three eyes with PAS (detected by indentation gonioscopy) from 20 patients with angle-closure glaucoma (20 eyes had primary angle-closure glaucoma and 3 eyes had angle-closure glaucoma secondary to chronic anterior uveitis [n = 2] and Axenfeld-Rieger syndrome [n = 1]). The anterior chamber angles were evaluated with indentation gonioscopy and imaged by swept-source OCT (Casia OCT, Tomey, Nagoya, Japan) in room light and in the dark using the "angle analysis" protocol, which was composed of 128 radial B-scans each with 512 A-scans (16-mm scan length). The area and degree of PAS involvement were measured in each eye after manual detection of the scleral spur and the anterior irido-angle adhesion by 2 masked observers. The interobserver variability of the PAS measurements was calculated. The agreement of PAS assessment by gonioscopy and OCT, the area and the degree of PAS involvement, and the intraclass correlation coefficient (ICC) of interobserver PAS measurements. The area of PAS (mean ± standard deviation) was 20.8 ± 16.9 mm(2) (range, 3.9-74.9 mm(2)), and the degree of PAS involvement was 186.5 ± 79.9 degrees (range, 42-314 degrees). There was no difference in the area of PAS (P = 0.90) and the degree of PAS involvement (P = 0.95) between images obtained in room light and in the dark. The interobserver ICCs were 0.99 (95% confidence interval [CI], 0.98-1.00) for the area of PAS and 0.99 (95% CI, 0.97-1.00) for the degree of PAS involvement. There was good agreement of PAS assessment between gonioscopy and OCT images (kappa = 0.79; 95% CI, 0.67-0.91). Swept-source OCT allows visualization and reproducible measurements of the area and degree of PAS involvement, providing a new paradigm for evaluation of PAS progression and risk assessment

  16. Research and development toward a 4.5-1.5{angstrom} linac coherent light source (LCLS) at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R.; Arthur, J.; Baltay, M. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    In recent years significant studies have been initiated on the theoretical and technical feasibility of utilizing a portion of the 3km S-band accelerator at the Stanford Linear Accelerator Center (SLAC) to drive a short wavelength (4.5-1.5 {Angstrom}) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation include: (1) a peak current in the 3-7 kA range, (2) a relative energy spread of <0.05%, ad (3) a transverse emittance, {epsilon}{le}{lambda}/4{pi}, where {lambda}[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.1-0.2% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 4-8 m for inhibiting the dilution of its transverse density. Although much progress techniques necessary for LCLS operation down to {approximately}20 {angstrom}, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 {angstrom} LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mr; development of advanced beam compression, stability, an emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs.

  17. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement

    Science.gov (United States)

    Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei

    2017-01-01

    Objective To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. Methods and analysis One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), −1 D, −3 D and −5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. Results The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. Conclusions This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress. PMID:29354706

  18. Can Probability Maps of Swept-Source Optical Coherence Tomography Predict Visual Field Changes in Preperimetric Glaucoma?

    Science.gov (United States)

    Lee, Won June; Kim, Young Kook; Jeoung, Jin Wook; Park, Ki Ho

    2017-12-01

    To determine the usefulness of swept-source optical coherence tomography (SS-OCT) probability maps in detecting locations with significant reduction in visual field (VF) sensitivity or predicting future VF changes, in patients with classically defined preperimetric glaucoma (PPG). Of 43 PPG patients, 43 eyes were followed-up on every 6 months for at least 2 years were analyzed in this longitudinal study. The patients underwent wide-field SS-OCT scanning and standard automated perimetry (SAP) at the time of enrollment. With this wide-scan protocol, probability maps originating from the corresponding thickness map and overlapped with SAP VF test points could be generated. We evaluated the vulnerable VF points with SS-OCT probability maps as well as the prevalence of locations with significant VF reduction or subsequent VF changes observed in the corresponding damaged areas of the probability maps. The vulnerable VF points were shown in superior and inferior arcuate patterns near the central fixation. In 19 of 43 PPG eyes (44.2%), significant reduction in baseline VF was detected within the areas of structural change on the SS-OCT probability maps. In 16 of 43 PPG eyes (37.2%), subsequent VF changes within the areas of SS-OCT probability map change were observed over the course of the follow-up. Structural changes on SS-OCT probability maps could detect or predict VF changes using SAP, in a considerable number of PPG eyes. Careful comparison of probability maps with SAP results could be useful in diagnosing and monitoring PPG patients in the clinical setting.

  19. Noninvasive Characterisation of Foot Reflexology Areas by Swept Source-Optical Coherence Tomography in Patients with Low Back Pain

    Directory of Open Access Journals (Sweden)

    Krishna Dalal

    2013-01-01

    Full Text Available Objective. When exploring the scientific basis of reflexology techniques, elucidation of the surface and subsurface features of reflexology areas (RAs is crucial. In this study, the subcutaneous features of RAs related to the lumbar vertebrae were evaluated by swept source-optical coherence tomography (SS-OCT in subjects with and without low back pain (LBP. Methods. Volunteers without LBP (n=6 (male : female = 1 : 1 and subjects with LBP (n=15 (male : female = 2 : 3 were clinically examined in terms of skin colour (visual perception, localised tenderness (visual analogue scale and structural as well as optical attributes as per SS-OCT. From each subject, 6 optical tomograms were recorded from equidistant transverse planes along the longitudinal axis of the RAs, and from each tomogram, 25 different spatial locations were considered for recording SS-OCT image attributes. The images were analysed with respect to the optical intensity distributions and thicknesses of different skin layers by using AxioVision Rel. 4.8.2 software. The SS-OCT images could be categorised into 4 pathological grades (i.e., 0, 1, 2, and 3 according to distinctness in the visible skin layers. Results. Three specific grades for abnormalities in SS-OCT images were identified considering gradual loss of distinctness and increase in luminosity of skin layers. Almost 90.05% subjects were of mixed type having predominance in certain grades. Conclusion. The skin SS-OCT system demonstrated a definite association of the surface features of healthy/unhealthy RAs with cutaneous features and the clinical status of the lumbar vertebrae.

  20. Noninvasive characterisation of foot reflexology areas by swept source-optical coherence tomography in patients with low back pain.

    Science.gov (United States)

    Dalal, Krishna; Elanchezhiyan, D; Das, Raunak; Dalal, Devjyoti; Pandey, Ravindra Mohan; Chatterjee, Subhamoy; Upadhyay, Ashish Datt; Maran, V Bharathi; Chatterjee, Jyotirmoy

    2013-01-01

    Objective. When exploring the scientific basis of reflexology techniques, elucidation of the surface and subsurface features of reflexology areas (RAs) is crucial. In this study, the subcutaneous features of RAs related to the lumbar vertebrae were evaluated by swept source-optical coherence tomography (SS-OCT) in subjects with and without low back pain (LBP). Methods. Volunteers without LBP (n = 6 (male : female = 1 : 1)) and subjects with LBP (n = 15 (male : female = 2 : 3)) were clinically examined in terms of skin colour (visual perception), localised tenderness (visual analogue scale) and structural as well as optical attributes as per SS-OCT. From each subject, 6 optical tomograms were recorded from equidistant transverse planes along the longitudinal axis of the RAs, and from each tomogram, 25 different spatial locations were considered for recording SS-OCT image attributes. The images were analysed with respect to the optical intensity distributions and thicknesses of different skin layers by using AxioVision Rel. 4.8.2 software. The SS-OCT images could be categorised into 4 pathological grades (i.e., 0, 1, 2, and 3) according to distinctness in the visible skin layers. Results. Three specific grades for abnormalities in SS-OCT images were identified considering gradual loss of distinctness and increase in luminosity of skin layers. Almost 90.05% subjects were of mixed type having predominance in certain grades. Conclusion. The skin SS-OCT system demonstrated a definite association of the surface features of healthy/unhealthy RAs with cutaneous features and the clinical status of the lumbar vertebrae.

  1. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1985-01-01

    The propagation of submillimeter-waves (smm) in tokamak plasmas has been investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses have been carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system has been employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes have been developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements

  2. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1986-01-01

    Propagation of submillimeter waves (smm) in tokamak plasma was investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses were carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system was employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes were developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements. 5 references, 2 figures

  3. [Cortical functional connectivity during retention of affective pictures in working memory: EEG-source theta coherence analysis].

    Science.gov (United States)

    Machinskaya, R I; Rozovskaya, R I; Kurgansky, A V; Pechenkova, E V

    2016-01-01

    A pattern of cortical functional connectivity in the source space was studied in a group of right-handed adult participants (N = 44:17 women, 27 men, aged M = 29.61 ± 6.45 years) who retained in their working memory (WM) traces of realistic pictures of positive, neutral, and negative emotional valence while in their working memory (WM) while performing same different task in which participants had to compare an etalon picture against a target picture that followed after a specified delay. A coherence (COH) between pairs of cortical sources chosen in advance according to fMRI data was estimated in the theta frequency range for the period of time preceding the etalon stimulus, distinct sets of functional links are found. The links of the first type that presumably reflect the involvement of sustained attention were between the dorsal anterior cingulate cortex, the prefrontal areas, and temporal areas of the right hemispheres. When compared to the rest period, links of this type showed strengthening not only during the retention period but also during the period preceding the etalon picture. The links of the second type presumably reflecting a progressive neocortex-to-hippocampus functional integration with increasing memory load and strengthened exclusively during retention period. Those links were between parietal, temporal and prefrontal cortices in the lateral surface of both hemispheres with the additional inclusion of the posterior cingulate cortex and the medial parietal cortex in the left hemisphere. An impact of emotional valence onto the strength and topography of the functional links of the second type was found. In the left hemisphere, an increase in the strength of cortical interaction was more pronounced for pictures of positive valence than for pictures of either neutral or negative valences. When compared to the pictures of neutral valence, the retention of pictorial information of both positive and negative valence showed some extraneous integration

  4. Photon caliper to achieve submillimeter positioning accuracy

    Science.gov (United States)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  5. The Submillimeter Polarization of Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Daniel P [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Moran, James M [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Rao, Ramprasad [Inst. of Ast. and Astrophys., Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan (China)

    2006-12-15

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300-400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized 'blob' orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 {+-} 0.7) x 10{sup 5} rad m{sup 2}, with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167{sup 0}{+-}7{sup 0} and we detect variations of 31{sup +18}{sub -9} degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 x 10{sup -7} M o-dot yr{sup -1} to 2 x 10{sup -9} M o-dot yr{sup -1}, if the magnetic field is near equipartition and ordered.

  6. The Submillimeter Polarization of Sgr A*

    International Nuclear Information System (INIS)

    Marrone, Daniel P; Moran, James M; Zhao, Jun-Hui; Rao, Ramprasad

    2006-01-01

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300-400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized 'blob' orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 ± 0.7) x 10 5 rad m 2 , with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167 0 ±7 0 and we detect variations of 31 +18 -9 degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 x 10 -7 M o-dot yr -1 to 2 x 10 -9 M o-dot yr -1 , if the magnetic field is near equipartition and ordered

  7. The Submillimeter Polarization of Sgr A*

    Science.gov (United States)

    Marrone, Daniel P.; Moran, James M.; Zhao, Jun-Hui; Rao, Ramprasad

    2006-12-01

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300 400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized "blob" orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 ± 0.7) × 105 rad m2, with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167°±7° and we detect variations of 31+18-9 degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 × 10-7 Mdot o yr-1 to 2 × 10-9 Mdot o yr-1, if the magnetic ffeld is near equipartition and ordered.

  8. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    International Nuclear Information System (INIS)

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2013-01-01

    Highlights: ► We have developed a simultaneous measurement system of CARS and CSRS. ► We can obtain information on the electronic resonance effect with the measurement. ► The simultaneous measurement provides us with more reliable spectral information. - Abstract: We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ (3) without introducing any arbitrary parameter in the maximum entropy method (MEM)

  9. Text Coherence in Translation

    Science.gov (United States)

    Zheng, Yanping

    2009-01-01

    In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can…

  10. Assessment of circumferential angle-closure by the iris-trabecular contact index with swept-source optical coherence tomography.

    Science.gov (United States)

    Baskaran, Mani; Ho, Sue-Wei; Tun, Tin A; How, Alicia C; Perera, Shamira A; Friedman, David S; Aung, Tin

    2013-11-01

    To evaluate the diagnostic performance of the iris-trabecular contact (ITC) index, a measure of the degree of angle-closure, using swept-source optical coherence tomography (SSOCT, CASIA SS-1000, Tomey Corporation, Nagoya, Japan) in comparison with gonioscopy. Prospective observational study. A total of 108 normal subjects and 32 subjects with angle-closure. The SSOCT 3-dimensional angle scans, which obtain radial scans for the entire circumference of the angle, were performed under dark conditions and analyzed using customized software by a single examiner masked to the subjects' clinical details. The ITC index was calculated as a percentage of the angle that was closed on SSOCT images. First-order agreement coefficient (AC1) statistics and area under the receiver operating characteristic curve (AUC) analyses were performed for angle-closure on the basis of the ITC index in comparison with gonioscopy. Angle-closure on gonioscopy was defined as nonvisibility of posterior trabecular meshwork for at least 2 quadrants. Agreement of the ITC index with gonioscopically defined angle-closure was assessed using the AC1 statistic. Study subjects were predominantly Chinese (95.7%) and female (70.7%), with a mean age of 59.2 (standard deviation, 8.9) years. The median ITC index was 15.24% for gonioscopically open-angle eyes (n = 108) and 48.5% for closed-angle eyes (n = 32) (P = 0.0001). The agreement for angle-closure based on ITC index cutoffs (>35% and ≥50%) and gonioscopic angle-closure was 0.699 and 0.718, respectively. The AUC for angle-closure detection using the ITC index was 0.83 (95% confidence interval, 0.76-0.89), with an ITC index >35% having a sensitivity of 71.9% and specificity of 84.3%. The ITC index is a summary measure of the circumferential extent of angle-closure as imaged with SSOCT. The index had moderate agreement and good diagnostic performance for angle-closure with gonioscopy as the reference standard. Copyright © 2013 American Academy of

  11. Ultrabright multikilovolt coherent tunable x-ray source at λ ∼ 2.71-2.93 A

    International Nuclear Information System (INIS)

    Borisov, Alex B; Song Xiangyang; Frigeni, Fabrizio; Koshman, Yevgeniya; Dai Yang; Boyer, Keith; Rhodes, Charles K

    2003-01-01

    Detailed molecular structural information of the living state is of enormous significance to the medical and biological communities. Since hydrated biologically active structures are small delicate complex three-dimensional (3D) entities, it is essential to have molecular scale spatial resolution, high contrast, distortionless, direct 3D modalities of visualization of naturally functioning specimens in order to faithfully reveal their full molecular architectures. An x-ray holographic microscope equipped with an x-ray laser as the illuminator would be uniquely capable of providing these images. A quantitative interlocking concordance of physical evidence, that includes (a) the observation of strong enhancement of selected spectral components of several Xe q+ hollow-atom transition arrays (q = 31, 32, 34, 35, 36, 37) radiated axially from confined plasma channels, (b) the measurement of line narrowing that is spectrally correlated with the amplified transitions, (c) evidence for spectral hole-burning in the spontaneous emission, a manifestation of saturated amplification, that corresponds spectrally with the amplified lines, and (d) the detection of an intense narrow (δθ x ∼ 0.2 mrad) directed beam of radiation, (1) experimentally demonstrates in the λ ∼ 2.71-2.93 A range (h-bar ω x ∼ = 4230-4570 eV) the operation of a new concept capable of producing the ideal conditions for amplification of multikilovolt x-rays and (2) proves the feasibility of a compact x-ray illuminator that can cost-effectively achieve the mission of biological x-ray microholography. The measurements also (α) establish the property of tunability in the quantum energy over a substantial fraction of the spectral region exhibiting amplification (Δ h-bar ω x ∼ 345 eV) and (β) demonstrate the coherence of the x-ray output through the observation of a canonical spatial mode pattern. An analysis of the physical scaling revealed by these results indicates that the capability of the x

  12. Repeatability, interocular correlation and agreement of quantitative swept-source optical coherence tomography angiography macular metrics in healthy subjects.

    Science.gov (United States)

    Fang, Danqi; Tang, Fang Yao; Huang, Haifan; Cheung, Carol Y; Chen, Haoyu

    2018-05-29

    To investigate the repeatability, interocular correlation and agreement of quantitative swept-source optical coherence tomography angiography (SS-OCTA) metrics in healthy subjects. Thirty-three healthy normal subjects were enrolled. The macula was scanned four times by an SS-OCTA system using the 3 mm×3 mm mode. The superficial capillary map images were analysed using a MATLAB program. A series of parameters were measured: foveal avascular zone (FAZ) area, FAZ perimeter, FAZ circularity, parafoveal vessel density, fractal dimension and vessel diameter index (VDI). The repeatability of four scans was determined by intraclass correlation coefficient (ICC). Then the averaged results were analysed for intereye difference, correlation and agreement using paired t-test, Pearson's correlation coefficient (r), ICC and Bland-Altman plot. The repeatability assessment of the macular metrics exported high ICC values (ranged from 0.853 to 0.996). There is no statistically significant difference in the OCTA metrics between the two eyes. FAZ area (ICC=0.961, r=0.929) and FAZ perimeter (ICC=0.884, r=0.802) showed excellent binocular correlation. Fractal dimension (ICC=0.732, r=0.578) and VDI (ICC=0.707, r=0.547) showed moderate binocular correlation, while parafoveal vessel density had poor binocular correlation. Bland-Altman plots showed the range of agreement was from -0.0763 to 0.0954 mm 2 for FAZ area and from -0.0491 to 0.1136 for parafoveal vessel density. The macular metrics obtained using SS-OCTA showed excellent repeatability in healthy subjects. We showed high intereye correlation in FAZ area and perimeter, moderate correlation in fractal dimension and VDI, while vessel density had poor correlation in normal healthy subjects. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. LOOKING INTO THE HEARTS OF BOK GLOBULES: MILLIMETER AND SUBMILLIMETER CONTINUUM IMAGES OF ISOLATED STAR-FORMING CORES

    International Nuclear Information System (INIS)

    Launhardt, R.; Henning, Th.; Khanzadyan, T.; Schmalzl, M.; Wolf, S.; Nutter, D.; Ward-Thompson, D.; Bourke, T. L.; Zylka, R.

    2010-01-01

    We present the results of a comprehensive infrared, submillimeter, and millimeter continuum emission study of isolated low-mass star-forming cores in 32 Bok globules, with the aim to investigate the process of star formation in these regions. The submillimeter and millimeter dust continuum emission maps together with the spectral energy distributions are used to model and derive the physical properties of the star-forming cores, such as luminosities, sizes, masses, densities, etc. Comparisons with ground-based near-infrared and space-based mid- and far-infrared images from Spitzer are used to reveal the stellar content of the Bok globules, association of embedded young stellar objects (YSOs) with the submillimeter dust cores, and the evolutionary stages of the individual sources. Submillimeter dust continuum emission was detected in 26 out of the 32 globule cores observed. For 18 globules with detected (sub)millimeter cores, we derive evolutionary stages and physical parameters of the embedded sources. We identify nine starless cores, most of which are presumably prestellar, nine Class 0 protostars, and twelve Class I YSOs. Specific source properties like bolometric temperature, core size, and central densities are discussed as a function of evolutionary stage. We find that at least two thirds (16 out of 24) of the star-forming globules studied here show evidence of forming multiple stars on scales between 1000 and 50,000 AU. However, we also find that most of these small prototstar and star groups are comprised of sources with different evolutionary stages, suggesting a picture of slow and sequential star formation in isolated globules.

  14. Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Oh, Seung Ryeol; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Kim, Soohyun

    2015-03-01

    Single-pulse coherently controlled nonlinear Raman spectroscopy is the simplest method among the coherent anti-Stokes Raman spectroscopy systems. In recent research, it has been proven that notch-shaped femtosecond pulse laser can be used to collect the coherent anti-Stokes Raman signals. In this study, we applied a fiber Bragg grating to the notch filtering component on the femtosecond pulse lasers. The experiment was performed incorporating a titanium sapphire femtosecond pulse laser source with a 100 mm length of 780-HP fiber which is inscribed 30 mm of Bragg grating. The fiber Bragg grating has 785 nm Bragg wavelength with 0.9 nm bandwidth. We proved that if the pulse lasers have above a certain level of positive group delay dispersion, it is sufficient to propagate in the fiber Bragg grating without any spectral distortion. After passing through the fiber Bragg grating, the pulse laser is reflected on the chirped mirror for 40 times to make the transform-limited pulse. Finally, the pulse time duration was 37 fs, average power was 50mW, and showed an adequate notch shape. Furthermore, the simulation of third order polarization signal is performed using MATLAB tools and the simulation result shows that spectral characteristic and time duration of the pulse is sufficient to use as an excitation source for single-pulse coherent anti-Stokes Raman spectroscopy. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab.

  15. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  16. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  17. Black Holes and Sub-millimeter Dimensions

    CERN Document Server

    Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John

    1998-01-01

    Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...

  18. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  19. AzTEC on ASTE Survey of Submillimeter Galaxies

    Science.gov (United States)

    Kohno, K.; Tamura, Y.; Hatsukade, B.; Nakanishi, K.; Iono, D.; Takata, T.; Wilson, G. W.; Yun, M. S.; Perera, T.; Austermann, J. E.; Scott, K. S.; Hughes, H.; Aretxaga, I.; Tanaka, K.; Oshima, T.; Yamaguchi, N.; Matsuo, H.; Ezawa, H.; Kawabe, R.

    2008-10-01

    We have conducted an unprecedented survey of submillimeter galaxies (SMGs) using the 144 pixel bolometer camera AzTEC mounted on the ASTE 10-m dish in Chile. We have already obtained many (>20) wide (typically 12' × 12' or wider) and deep (1 σ sensitivity of 0.5-1.0 mJy) 1.1 mm continuum images of known blank fields and over-density regions/protoclusters across a wide range of redshifts with a spatial resolution of ˜ 30''. It has resulted in the numerous (˜ a few 100, almost equivalent to the total number of the previously known SMGs) new and secure detections of SMGs. In this paper, we present initial results of two selected fields, SSA 22 and AKARI Deep Field South (ADF-S). A significnat clustering of bright SMGs toward the density peak of LAEs is found in SSA 22. We derived the differential and cumulative number counts from the detected sources in ADF-S, which probe the faintest flux densities (down to ˜1 mJy) among 1-mm blank field surveys to date.

  20. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  1. Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Kazuko Omodaka

    Full Text Available To investigate the influence of various risk factors on thinning of the lamina cribrosa (LC, as measured with swept-source optical coherence tomography (SS-OCT; Topcon.This retrospective study comprised 150 eyes of 150 patients: 22 normal subjects, 28 preperimetric glaucoma (PPG patients, and 100 open-angle glaucoma patients. Average LC thickness was determined in a 3 x 3 mm cube scan of the optic disc, over which a 4 x 4 grid of 16 points was superimposed (interpoint distance: 175 μm, centered on the circular Bruch's membrane opening. The borders of the LC were defined as the visible limits of the LC pores. The correlation of LC thickness with Humphrey field analyzer-measured mean deviation (MD; SITA standard 24-2, circumpapillary retinal nerve fiber layer thickness (cpRNFLT, the vertical cup-to-disc (C/D ratio, and tissue mean blur rate (MBR was determined with Spearman's rank correlation coefficient. The relationship of LC thickness with age, axial length, intraocular pressure (IOP, MD, the vertical C/D ratio, central corneal thickness (CCT, and tissue MBR was determined with multiple regression analysis. Average LC thickness and the correlation between LC thickness and MD were compared in patients with the glaucomatous enlargement (GE optic disc type and those with non-GE disc types, as classified with Nicolela's method.We found that average LC thickness in the 16 grid points was significantly associated with overall LC thickness (r = 0.77, P < 0.001. The measurement time for this area was 12.4 ± 2.4 minutes. Average LC thickness in this area had a correlation coefficient of 0.57 with cpRNFLT (P < 0.001 and 0.46 (P < 0.001 with MD. Average LC thickness differed significantly between the groups (normal: 268 ± 23 μm, PPG: 248 ± 13 μm, OAG: 233 ± 20 μm. Multiple regression analysis showed that MD (β = 0.29, P = 0.013, vertical C/D ratio (β = -0.25, P = 0.020 and tissue MBR (β = 0.20, P = 0.034 were independent variables significantly

  2. Improvement of gamma-ray Sn transport calculations including coherent and incoherent scatterings and secondary sources of bremsstrahlung and fluorescence: Determination of gamma-ray buildup factors

    International Nuclear Information System (INIS)

    Kitsos, S.; Diop, C.M.; Assad, A.; Nimal, J.C.; Ridoux, P.

    1996-01-01

    Improvements of gamma-ray transport calculations in S n codes aim at taking into account the bound-electron effect of Compton scattering (incoherent), coherent scattering (Rayleigh), and secondary sources of bremsstrahlung and fluorescence. A computation scheme was developed to take into account these phenomena by modifying the angular and energy transfer matrices, and no modification in the transport code has been made. The incoherent and coherent scatterings as well as the fluorescence sources can be strictly treated by the transfer matrix change. For bremsstrahlung sources, this is possible if one can neglect the charged particles path as they pass through the matter (electrons and positrons) and is applicable for the energy range of interest for us (below 10 MeV). These improvements have been reported on the kernel attenuation codes by the calculation of new buildup factors. The gamma-ray buildup factors have been carried out for 25 natural elements up to 30 mean free paths in the energy range between 15 keV and 10 MeV

  3. Science with the wideband Submillimeter Array: A Strategy for the Decade 2017-2027

    Science.gov (United States)

    Wilner, D.; Keto, E.; Bower, G.; Ching, T. C.; Gurwell, M.; Hirano, N.; Keating, G.; Lai, S. P.; Patel, N.; Petitpas, G.; Qi, C.; Sridharan, T. K.; Urata, Y.; Young, K.; Zhang, Q.; Zhao, J.-H.

    2017-01-01

    The Submillimeter Array (SMA) comprises eight movable 6-meter diameter antennas sited on Maunakea, Hawaii, designed for high spatial and spectral resolution observations at submillimeter wavelengths. Pioneering observations with the SMA have provided new insights into a wide variety of astrophysical phenomena, including the formation and evolution of galaxies, stars and planets, and the nature of the supermassive black hole at the center of the Milky Way. Following careful deliberation, the SMA project is embarking on an ambitious, staged, strategic upgrade that will increase its instantaneous bandwidth and dramatically improve its observational sensitivity and speed. The unique capabilities of this ultra-wideband SMA - the "wSMA" promise to spark a new era of forefront discoveries. In brief, the wSMA upgrade will provide a core receiver set providing dual-polarization observing bands covering the 345 GHz and 230 GHz atmospheric windows, each with 32 GHz of spectral coverage. Together with upgrades of the signal transport system and digital correlator, this brings a factor of 16 increase in instantaneous bandwidth from the original SMA capability. For continuum observations, speed increases linearly with bandwidth to a given level of sensitivity, enabling more observations to the same depth in the same amount of time. Or, for a given amount of time, the sensitivity increases as the square root of bandwidth, enabling deeper observations. For line observations, spectral coverage increases linearly with bandwidth, enabling observations of many lines simultaneously, all at high spectral resolution. In effect, every wSMA observation of an astronomical source is an imaging spectral line survey, and an enormous amount of information can be extracted from such data in conjunction with physical, chemical and dynamical models. This whitepaper elaborates on illustrative examples in key scientific areas, including the evolutionary state of protostellar sources, the chemistry

  4. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    Science.gov (United States)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  5. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  6. SPATIALLY RESOLVED SPECTROSCOPY OF SUBMILLIMETER GALAXIES AT z ≃ 2

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, V.; Treister, E.; Privon, G. C.; Nagar, N. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Alaghband-Zadeh, S.; Chapman, S. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA UK (United Kingdom); Casey, Caitlin M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Schawinski, K. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Kurczynski, P.; Gawiser, E. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Sanders, D. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States)

    2016-08-10

    We present near-infrared integral-field spectroscopic observations targeting H α in eight submillimeter galaxies (SMGs) at z = 1.3–2.5 using the Very Large Telescope/Spectrograph for Integral Field Observations in the Near Infrared, obtaining significant detections for six of them. The star formation rates derived from the H α emission are ∼100 M {sub ⊙} yr{sup −1}, which account for only ∼20%–30% of the infrared-derived values, thus suggesting that these systems are very dusty. Two of these systems present [N ii]/H α ratios indicative of the presence of an active galactic nucleus. We mapped the spatial distribution and kinematics of the star-forming regions in these galaxies on kiloparsec scales. In general, the H α morphologies tend to be highly irregular and/or clumpy, showing spatial extents of ∼3–11 kpc. We find evidence for significant spatial offsets, of ∼0.″1–0.″4 or 1.2–3.4 kpc, between the H α and the continuum emission in three of the sources. Performing a kinemetry analysis, we conclude that the majority of the sample is not consistent with disk-like rotation-dominated kinematics. Instead, they tend to show irregular and/or clumpy and turbulent velocity and velocity dispersion fields. This can be interpreted as evidence for a scenario in which these extreme star formation episodes are triggered by galaxy–galaxy interactions and major mergers. In contrast to recent results for SMGs, these sources appear to follow the same relations between gas and star-forming rate densities as less luminous and/or normal star-forming galaxies.

  7. STUDY OF BIREFRINGENCE INFLUENCE ON IMAGE QUALITY OF PHOTOLITHOGRAPHY SYSTEMS IN VIEW OF PARTIALLY-COHERENT LIGHT SOURCE

    Directory of Open Access Journals (Sweden)

    E. A. Nikulina

    2015-03-01

    Full Text Available Subject of study. A vector model for conversion of electromagnetic radiation in optical systems is considered, taking into account the influence of birefringence, as well as partially coherent illumination. Model. The proposed model is based on the representation of the complex amplitude of the monochromatic field through thesuperposition of basic plane waves. Transmitted light image with partially coherent illumination is performed by the sourceintegration method. Main results. The results of simulation for the point spread function are demonstrating the level of the birefringence influence on the image quality. In the presence of the wave aberration about 0.098 of the wavelength, the wave energy loss in the center of the Airy disk with an average birefringence of 4 nm/cm was 8%, and at 16 nm/cm it reached 30%. The calculation of the point spread function for a real sample of fluorite is given. The central peak of the PSF without birefringence was 0.722, with regard to birefringence it was equal to 0.701. Practical significance. The findings can be used in the development of photolithographic lenses, as well as for the manufacturing of any other optical systems that require consideration of the polarization properties of the materials.

  8. Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source

    DEFF Research Database (Denmark)

    Tu, H.; Liu, Y.; Lægsgaard, Jesper

    2012-01-01

    source with the MIIPS-integrated pulse shaper produces compressed transform-limited 9.6 fs (FWHM) pulses or arbitrarily shaped pulses at a central wavelength of 1020 nm, an average power over 100 mW, and a repetition rate of 76 MHz. In comparison to the 229-fs pump laser pulses that generate the fiber......The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intrapulse interference phase scan (MIIPS) with background subtraction. This cross......-validation confirms the absolute pulse measurement by MIIPS and the transform-limited compression of the fiber continuum pulses by the pulse shaper performing the MIIPS measurement, and permits the subsequent coherent control on the fiber continuum pulses by this pulse shaper. The combination of the fiber continuum...

  9. Tracing Magnetic Fields With The Polarization Of Submillimeter Lines

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2017-10-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.

  10. Submillimeter (Lambda < 1 mm) Continuum Imaging at CSO: A Retrospective

    Science.gov (United States)

    Dowell, C. Darren

    2009-01-01

    This contribution is submitted on behalf of all students, postdocs, and staff inspired and supported by Tom Phillips to build an instrument and then wait for low precipitable water vapor. Over the 20 plus years of its existence, the Caltech Submillimeter Observatory (CSO) has seen a succession of ever more powerful detectors to measure continuum emission in the shortest submillimeter bands available from Mauna Kea. These instruments have been trained on the nearest solar systems, the most distant galaxies, and objects in between. I show several images collected over the 5 plus year history of the SHARC II camera and anecdotal comparison with past work.

  11. The Overdense Environments of WISE-Selected, Ultra-Luminous, High-Redshift AGN in the Submillimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Suzy F., E-mail: suzy.jones@chalmers.se [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, Onsala (Sweden)

    2017-11-21

    The environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively, were found to have overdensities of companion Submillimeter-selected sources. The overdensities were of ~2–3 and ~5–6, respectively, compared with blank field submm surveys. The space densities in both samples were found to be overdense compared to normal star-forming galaxies and Submillimeter galaxies (SMGs). All of the companion sources have consistent mid-IR colors and mid-IR to submm ratios to SMGs. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5 arcmin scale maps. WISE-selected AGNs appear to be good indicators of overdense areas of active galaxies at high redshift.

  12. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  13. Sub-millimeter science with the Heinrich-Hertz-Telescope

    Science.gov (United States)

    Dumke, Michael

    The Heinrich-Hertz-Telescope on Mt. Graham, Arizona, is a state-of-the-art single-dish radio telescope for observations in the sub-millimeter wavelength range. It is operated by the Sub-Millimeter Telescope Observatory (SMTO), which is a collaboration between the University of Arizona, Tucson, and the Max-Planck-Institut für Radioastronomie, Bonn. In this talk I give an overview over the telescope and its instrumentation, and show some examples of forefront research performed by astronomers from both the U.S. and Europe using this instrument. The telescope is located on Mt. Graham, Arizona, at an altitude of 3178 m, which ensures sub-mm weather conditions during a significant amount of available observing time. It has a primary reflector of 10 m diameter, mounted on a carbon fiber backup structure, and is equipped with a corotating enclosure. The surface accuracy of the primary reflector is 12 microns rms, what makes the HHT the most accurate radio telescope ever built. For spectral line observations, SIS receivers covering the frequency range from 200 to 500 GHz are available. Furthermore, a Hot-Electron-Bolometer, developed at the CfA, can be used for spectral line observations above 800 GHz. The continuum receivers are a 4-color bolometer, observing at 1300, 870, 450, and 350 microns, and a 19-channel bolometer array, developed at the MPIfR, which is sensitive around 850 microns. In the last few years, the HHT has been used by several groups to perform astronomical research. The most notable result was the measurement of the CO(9--8) line in Orion at 1.037 THz with the Hot-Electron Bolometer -- the first radioastronomical observation above 1 THz from a ground-based telescope. Several galactic molecular line sources have been mapped in the CO(7--6) line at 806 GHz, and in two fine-structure lines of atomic carbon. A continuum map of the galactic center at 850 microns could be produced using the new 19-channel bolometer array. Even external galaxies, where

  14. Submillimeter Wave Antenna With Slow Wave Feed Line

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Kotiranta, Mikko

    2009-01-01

    Submillimeter wave radiation, which is also referred to as terahertz radiation, has not been extensively explored until recently due to a lack of reliable components and devices in this frequency range. Current advances in technology have made it possible to explore this portion of the electromag...

  15. Status of a Novel 4-Band Submm/mm Camera for the Caltech Submillimeter Observatory

    Science.gov (United States)

    Noroozian, Omid; Day, P.; Glenn, J.; Golwala, S.; Kumar, S.; LeDuc, H. G.; Mazin, B.; Nguyen, H. T.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Zmuidzinas, J.

    2007-12-01

    Submillimeter observations are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. To this end, we are undertaking the construction of a 4-band (750, 850, 1100, 1300 microns) 8-arcminute field of view camera for the Caltech Submillimeter Observatory. The focal plane will make use of three novel technologies: photolithographic phased array antennae, on-chip band-pass filters, and microwave kinetic inductance detectors (MKID). The phased array antenna design obviates beam-defining feed horns. On-chip band-pass filters eliminate band-defining metal-mesh filters. Together, the antennae and filters enable each spatial pixel to observe in all four bands simultaneously. MKIDs are highly multiplexable background-limited photon detectors. Readout of the MKID array will be done with software-defined radio (See poster by Max-Moerbeck et al.). This camera will provide an order-of-magnitude larger mapping speed than existing instruments and will be comparable to SCUBA 2 in terms of the detection rate for dusty sources, but complementary to SCUBA 2 in terms of wavelength coverage. We present results from an engineering run with a demonstration array, the baseline design for the science array, and the status of instrument design, construction, and testing. We anticipate the camera will be available at the CSO in 2010. This work has been supported by NASA ROSES APRA grants NNG06GG16G and NNG06GC71G, the NASA JPL Research and Technology Development Program, and the Gordon and Betty Moore Foundation.

  16. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    Science.gov (United States)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-07-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam.

  17. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    International Nuclear Information System (INIS)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-01-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam. (paper)

  18. Advancing non-equilibrium ARPES experiments by a 9.3 eV coherent ultrafast photon source

    Energy Technology Data Exchange (ETDEWEB)

    Cilento, F., E-mail: federico.cilento@elettra.eu [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Crepaldi, A. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Manzoni, G.; Sterzi, A. [Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); Zacchigna, M. [C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Bugnon, Ph.; Berger, H. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Parmigiani, F. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); International Faculty, University of Köln, 50937 Köln (Germany)

    2016-02-15

    The quest for investigating the non-equilibrium dynamics of the band structure of strongly-correlated materials over their entire Brillouin zone is a primary objective. However, the actual ultrafast UV light sources are not suitable for addressing several critical questions in the field. Here we report on a novel light source generating sub-250 fs, 9.3 eV photon energy light pulses at 250 kHz repetition rate, obtained via third-harmonic generation in Xe of frequency-doubled 50 fs laser pulses at 1.55 eV. By reporting the measured band dispersion of a Cu(111) crystal and the non-equilibrium dynamics of the Bi{sub 2}Se{sub 3} topological insulator, we prove that this source is suitable for studying the non-equilibrium dynamics of the entire Fermi surface of several complex materials, with high signal statistics and limited space-charge effect.

  19. Optics for MUSIC: a new (sub)millimeter camera for the Caltech Submillimeter Observatory

    Science.gov (United States)

    Sayers, Jack; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Schlaerth, James A.; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    We will present the design and implementation, along with calculations and some measurements of the performance, of the room-temperature and cryogenic optics for MUSIC, a new (sub)millimeter camera we are developing for the Caltech Submm Observatory (CSO). The design consists of two focusing elements in addition to the CSO primary and secondary mirrors: a warm off-axis elliptical mirror and a cryogenic (4K) lens. These optics will provide a 14 arcmin field of view that is diffraction limited in all four of the MUSIC observing bands (2.00, 1.33, 1.02, and 0.86 mm). A cold (4K) Lyot stop will be used to define the primary mirror illumination, which will be maximized while keeping spillover at the sub 1% level. The MUSIC focal plane will be populated with broadband phased antenna arrays that efficiently couple to factor of (see manuscript) 3 in bandwidth,1, 2 and each pixel on the focal plane will be read out via a set of four lumped element filters that define the MUSIC observing bands (i.e., each pixel on the focal plane simultaneously observes in all four bands). Finally, a series of dielectric and metal-mesh low pass filters have been implemented to reduce the optical power load on the MUSIC cryogenic stages to a quasi-negligible level while maintaining good transmission in-band.

  20. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  1. Coherent detectors

    International Nuclear Information System (INIS)

    Lawrence, C R; Church, S; Gaier, T; Lai, R; Ruf, C; Wollack, E

    2009-01-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  2. Coherent detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  3. A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography).

    Science.gov (United States)

    Maloca, Peter; Gyger, Cyrill; Hasler, Pascal W

    2016-06-01

    To visualize and measure the vascular network of melanocytic choroidal tumors with speckle noise-free swept source optical coherence tomography (SS-OCT choroidal angiography). Melanocytic choroidal tumors from 24 eyes were imaged with 1050-nm optical coherence tomography (Topcon DRI OCT-1 Atlantis). A semi-automated algorithm was developed to remove speckle noise and to extract and measure the volume of the choroidal vessels from the obtained OCT data. In all cases, analysis of the choroidal vessels could be performed with SS-OCT without the need for pupillary dilation. The proposed method allows speckle noise-free, structure-guided visualization and measurement of the larger choroidal vessels in three dimensions. The obtained data suggest that speckle noise-free OCT may be more effective at identifying choroidal structures than traditional OCT methods. The measured volume of the extracted choroidal vessels of Haller's layer and Sattler's layer in the examined tumorous eyes was on average 0.982463955 mm(3) /982463956 μm(3) (range of 0.209764406 mm(3) /209764405.9 μm(3)to 1.78105544 mm(3) /1781055440 μm(3)). Full thickness obstruction of the choroidal vasculature by the tumor was found in 18 cases (72 %). In seven cases (18 %), choroidal vessel architecture did not show pronounced morphological abnormalities (18 %). Speckle noise-free OCT may serve as a new illustrative imaging technology and enhance visualization of the choroidal vessels without the need for dye injection. OCT can be used to identify and evaluate the choroidal vessels of melanocytic choroidal tumors, and may represent a potentially useful tool for imaging and monitoring of choroidal nevi and melanoma.

  4. Discovery of a Lensed Ultrabright Submillimeter Galaxy at z = 2.0439

    Science.gov (United States)

    Díaz-Sánchez, A.; Iglesias-Groth, S.; Rebolo, R.; Dannerbauer, H.

    2017-07-01

    We report an ultrabright lensed submillimeter galaxy (SMG) at z = 2.0439, WISE J132934.18+224327.3, identified as a result of a full-sky cross-correlation of the AllWISE and Planck compact source catalogs aimed to search for bright analogs of the SMG SMM J2135, the Cosmic Eyelash. Inspection of archival SCUBA-2 observations of the candidates revealed a source with fluxes ({S}850μ {{m}}=130 mJy) consistent with the Planck measurements. The centroid of the SCUBA-2 source coincides within 1 arcsec with the position of the AllWISE mid-IR source, and, remarkably, with an arc-shaped lensed galaxy in HST images at visible wavelengths. Low-resolution rest-frame UV-optical spectroscopy of this lensed galaxy obtained with 10.4 m GTC reveals the typical absorption lines of a starburst galaxy. Gemini-N near-IR spectroscopy provided a clear detection of {{{H}}}α emission. The lensed source appears to be gravitationally magnified by a massive foreground galaxy cluster lens at z = 0.44 modeling with Lenstool indicates a lensing amplification factor of 11 ± 2. We determine an intrinsic rest-frame 8-1000 μm luminosity, {L}{IR}, of (1.3+/- 0.1)× {10}13 {L}⊙ , and a likely star formation rate (SFR) of ˜ 500{--}2000 {M}⊙ {{yr}}-1. The SED shows a remarkable similarity with the Cosmic Eyelash from optical-mid/IR to submillimeter/radio, albeit at higher fluxes.

  5. Coherent Smith-Purcell radiation as a pulse length diagnostic

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1997-01-01

    Recently, Smith-Purcell radiation has been studied as a candidate for laser-type radiation production in the submillimeter regime. With appropriate choices of beam energy, impact parameter, and grating spacing, there is good coupling to strongly polarized, forward directed radiation. Another regime of possible interest is to use Smith-Purcell radiation as a pulse length diagnostic for medium to high energy electron beams of extremely short pulse duration, on the order of tens of femtoseconds to 1000 fs. Strongly in favor of development of such a diagnostic is its relatively non-destructive nature. With the electron beam passing near, but not through, a metal grating, reaction of the beam distribution itself to the production of the radiation is reduced relative to the much stronger scattering induced by passage through a foil. By careful choice of parameters usable diagnostic radiation ought to be produced with acceptably small emittance growth for an on-line beam monitor, even for the extremely bright electron beams proposed for X-ray FELs, Compton backscatter X-ray sources, or laser/plasma accelerator schemes. In this paper coherent and incoherent Smith-Purcell radiation is examined for reasonable operating parameters of the SATURNUS system at UCLA, with comparisons with results reported from the accelerator test facility (ATF) at Brookhaven National Laboratory. (orig.)

  6. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye.

    Science.gov (United States)

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P; Leitgeb, Rainer A; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-04-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.

  7. Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Men, Shaojie; Wang, Ruikang K.

    2017-11-01

    There is an increasing demand for imaging tools in clinical dermatology that can perform in vivo wide-field morphological and functional examination from surface to deep tissue regions at various skin sites of the human body. The conventional spectral-domain optical coherence tomography-based angiography (SD-OCTA) system is difficult to meet these requirements due to its fundamental limitations of the sensitivity roll-off, imaging range as well as imaging speed. To mitigate these issues, we demonstrate a swept-source OCTA (SS-OCTA) system by employing a swept source based on a vertical cavity surface-emitting laser. A series of comparisons between SS-OCTA and SD-OCTA are conducted. Benefiting from the high system sensitivity, long imaging range, and superior roll-off performance, the SS-OCTA system is demonstrated with better performance in imaging human skin than the SD-OCTA system. We show that the SS-OCTA permits remarkable deep visualization of both structure and vasculature (up to ˜2 mm penetration) with wide field of view capability (up to 18×18 mm2), enabling a more comprehensive assessment of the morphological features as well as functional blood vessel networks from the superficial epidermal to deep dermal layers. It is expected that the advantages of the SS-OCTA system will provide a ground for clinical translation, benefiting the existing dermatological practice.

  8. TiO2 nanoparticles as exogenous contrast agent for 1 µm swept source optical coherence tomography: an in vitro study

    Science.gov (United States)

    Kumar, Atul; Mondal, Indranil; Roy, Poulomi; Poddar, Raju

    2018-03-01

    Optical coherence tomography (OCT) is a rapidly evolving, robust technology that has profoundly changed the practice of medical imaging. Swept source OCT (SSOCT) combines the standard time domain and the spatially encoded frequency domain OCT. We have employed a high-speed SSOCT system that utilizes a swept source laser with an A-scan rate of 100 kHz and a central wavelength of 1060 nm for the imaging of the tissue. SSOCT at 1060 nm allows for high penetration in the tissue. TiO2 nanoparticles (NPs) are mostly used for various experimental purposes as an exogenous imaging contrast agent. The in vitro imaging of chicken breast tissue is performed with and without the application of TiO2 NPs for exogenous contrast. Characterization of the chemically synthesized TiO2 NPs was done with dynamic light scattering and a scanning electron microscope method. The effect of TiO2 is studied at different exposure times. A significant improvement in the contrast to noise ratio has been observed through the in vitro imaging of a TiO2 treated tissue.

  9. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  10. THE HAWAII SCUBA-2 LENSING CLUSTER SURVEY: NUMBER COUNTS AND SUBMILLIMETER FLUX RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Li-Yen; Cowie, Lennox L.; Barger, Amy J. [Institute of Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Chen, Chian-Chou [Center for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Wang, Wei-Hao [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2016-09-20

    We present deep number counts at 450 and 850 μ m using the SCUBA-2 camera on the James Clerk Maxwell Telescope. We combine data for six lensing cluster fields and three blank fields to measure the counts over a wide flux range at each wavelength. Thanks to the lensing magnification, our measurements extend to fluxes fainter than 1 mJy and 0.2 mJy at 450 μ m and 850 μ m, respectively. Our combined data highly constrain the faint end of the number counts. Integrating our counts shows that the majority of the extragalactic background light (EBL) at each wavelength is contributed by faint sources with L {sub IR} < 10{sup 12} L {sub ⊙}, corresponding to luminous infrared galaxies (LIRGs) or normal galaxies. By comparing our result with the 500 μ m stacking of K -selected sources from the literature, we conclude that the K -selected LIRGs and normal galaxies still cannot fully account for the EBL that originates from sources with L {sub IR} < 10{sup 12} L {sub ⊙}. This suggests that many faint submillimeter galaxies may not be included in the UV star formation history. We also explore the submillimeter flux ratio between the two bands for our 450 μ m and 850 μ m selected sources. At 850 μ m, we find a clear relation between the flux ratio and the observed flux. This relation can be explained by a redshift evolution, where galaxies at higher redshifts have higher luminosities and star formation rates. In contrast, at 450 μ m, we do not see a clear relation between the flux ratio and the observed flux.

  11. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chul [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of); Lee, Gwang-Ho, E-mail: jclee@kasi.re.kr [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-12-20

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S{sub 350μm} = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10{sup 7} M {sub ⊙} and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  12. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    Science.gov (United States)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  13. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2016-01-01

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S 350μm = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10 7 M ⊙ and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  14. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  15. COHERENT Experiment: current status

    International Nuclear Information System (INIS)

    Akimov, D; Belov, V; Bolozdynya, A; Burenkov, A; Albert, J B; Del Valle Coello, M; D’Onofrio, M; Awe, C; Barbeau, P S; Cervantes, M; Becker, B; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Detwiler, J; Eberhardt, A; Dean, D; Dolgolenko, A G

    2017-01-01

    The COHERENT Collaboration is realizing a long term neutrino physics research program. The main goals of the program are to detect and study elastic neutrino-nucleus scattering (CEνNS). This process is predicted by Standard Model but it has never been observed experimentally because of the very low energy of the recoil nucleus. COHERENT is using different detector technologies: CsI[Na] and NaI scintillator crystals, a single-phase liquid Ar and a Ge detectors. The placement of all the detector setups is in the basement of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The current status of the COHERENT experimental program is presented. (paper)

  16. HerMES: Spectral energy distributions of submillimeter galaxies at z > 4

    International Nuclear Information System (INIS)

    Huang, J.-S.; Rigopoulou, D.; Magdis, G.; Rowan-Robinson, M.; Clements, D. L.; Dai, Y.; Fazio, G. G.; Bock, J. J.; Burgarella, D.; Chapman, S.; Cooray, A.; Farrah, D.; Glenn, J.; Oliver, S.; Smith, A. J.; Wang, L.; Page, M.; Symeonidis, M.; Riechers, D.; Roseboom, I.

    2014-01-01

    We present a study of the infrared properties for a sample of seven spectroscopically confirmed submillimeter galaxies (SMGs) at z > 4.0. By combining ground-based near-infrared, Spitzer IRAC and MIPS, Herschel SPIRE, and ground-based submillimeter/millimeter photometry, we construct their spectral energy distributions (SEDs) and a composite model to fit the SEDs. The model includes a stellar emission component at λ rest < 3.5 μm, a hot dust component peaking at λ rest ∼ 5 μm, and cold dust component which becomes significant for λ rest > 50 μm. Six objects in the sample are detected at 250 and 350 μm. The dust temperatures for the sources in this sample are in the range of 40-80 K, and their L FIR ∼ 10 13 L ☉ qualifies them as hyper-luminous infrared galaxies. The mean FIR-radio index for this sample is around (q) = 2.2 indicating no radio excess in their radio emission. Most sources in the sample have 24 μm detections corresponding to a rest-frame 4.5 μm luminosity of Log 10 (L 4.5 /L ☉ ) = 11 ∼ 11.5. Their L 4.5 /L FIR ratios are very similar to those of starburst-dominated SMGs at z ∼ 2. The L CO – L FIR relation for this sample is consistent with that determined for local ULIRGs and SMGs at z ∼ 2. We conclude that SMGs at z > 4 are hotter and more luminous in the FIR but otherwise very similar to those at z ∼ 2. None of these sources show any sign of the strong QSO phase being triggered.

  17. In vivo microvascular imaging of human oral and nasal cavities using swept-source optical coherence tomography with a single forward/side viewing probe

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-03-01

    We report three-dimensional (3D) imaging of microcirculation within human cavity tissues in vivo using a high-speed swept-source optical coherence tomography (SS-OCT) at 1.3 μm with a modified probe interface. Volumetric structural OCT images of the inner tissues of oral and nasal cavities are acquired with a field of view of 2 mm x 2 mm. Two types of disposable and detachable probe attachments are devised and applied to the port of the imaging probe of OCT system, enabling forward and side imaging scans for selective and easy access to specific cavity tissue sites. Blood perfusion is mapped with OCT-based microangiography from 3D structural OCT images, in which a novel vessel extraction algorithm is used to decouple dynamic light scattering signals, due to moving blood cells, from the background scattering signals due to static tissue elements. Characteristic tissue anatomy and microvessel architectures of various cavity tissue regions of a healthy human volunteer are identified with the 3D OCT images and the corresponding 3D vascular perfusion maps at a level approaching capillary resolution. The initial finding suggests that the proposed method may be engineered into a promising tool for evaluating and monitoring tissue microcirculation and its alteration within a wide-range of cavity tissues in the patients with various pathological conditions.

  18. High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Tsubaki, Ippei; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2012-12-15

    Recently, there has been an increasing interest in broadband light sources to develop a biomolecular imaging technique called optical coherence tomography (OCT). We fabricated superluminescent diodes (SLDs) using three kinds of quantum dot (QD) layers with different emission wavelength in the active region. The emission wavelength was controlled by reducing the strain in QDs by using In{sub 0.1}Ga{sub 0.9}As strain-reducing layer. The SLD device showed a broad electroluminescence spectrum with the center wavelength of 1104 nm and the spectral linewidth of 122 nm at the injection of 40 mA, which corresponds to the theoretical axial resolution of 4.4 {mu}m. To estimate the actual resolution of the OCT system using fabricated SLD, we measured the interference signal in the Michelson interferometer. An axial resolution of 5.4 {mu}m, which is close to the theoretical limit, was obtained (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy

    Science.gov (United States)

    Watanabe, Hideyuki; Rajagopalan, Uma Maheswari; Nakamichi, Yu; Igarashi, Kei M.; Madjarova, Violeta Dimitrova; Kadono, Hirofumi; Tanifuji, Manabu

    2011-01-01

    Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB’s layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields. PMID:21833364

  20. Investigation of firing temperature variation in ovens for ceramic-fused-to-metal dental prostheses using swept source optical coherence tomography

    Science.gov (United States)

    Todor, Raluca; Negrutiu, Meda-Lavinia; Sinescu, Cosmin; Topala, Florin Ionel; Bradu, Adrian; Duma, Virgil-Florin; Romînu, Mihai; Podoleanu, Adrian G.

    2018-03-01

    One of the most common fabrication techniques for dental ceramics is sintering, a process of heating of the ceramic to ensure densification. This occurs by viscous flow when the firing temperature is reached. Acceptable restorations require the alloy and ceramic to be chemically, thermally, mechanically, and aesthetically compatible. Thermal and mechanical compatibility include a fusing temperature of ceramic that does not cause distortion of the metal substructure. Decalibration of ovens used for firing of the ceramic layers for metal ceramic dental prostheses leads to stress and cracks in the veneering material, and ultimately to the failure of the restoration. 25 metal ceramic prostheses were made for this study. They were divided in five groups, each sintered at a different temperature: a group at the temperature prescribed by the producer, two groups at lower and two groups at higher temperatures set in the ceramic oven. An established noninvasive biomedical imaging method, swept source (SS) optical coherence tomography (OCT) was employed, in order to evaluate the modifications induced when using temperatures different from those prescribed for firing the samples. A quantitative assessment of the probes is performed by en-face OCT images, taken at constant depths inside the samples. The differences in granulation, thus in reflectivity allow for extracting rules-of-thumb to evaluate fast, by using only the prostheses currently produced the current calibration of the ceramic oven. OCT imaging can allow quick identification of the oven decalibration, to avoid producing dental prostheses with defects.

  1. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    A. Lunin

    2018-02-01

    Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  2. Real-time calibration-free C-scan images of the eye fundus using Master Slave swept source optical coherence tomography

    Science.gov (United States)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Garway-Heath, David F.; Rajendram, Ranjan; Keane, Pearce; Podoleanu, Adrian G.

    2015-03-01

    Recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), specialized for delivering en-face images. This method uses principles of spectral domain interfereometry in two stages. MS-OCT operates like a time domain OCT, selecting only signals from a chosen depth only while scanning the laser beam across the eye. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. The tremendous advantage in terms of parallel provision of data from numerous depths could not be fully employed by using multi core processors only. The data processing required to generate images at multiple depths simultaneously is not achievable with commodity multicore processors only. We compare here the major improvement in processing and display, brought about by using graphic cards. We demonstrate images obtained with a swept source at 100 kHz (which determines an acquisition time [Ta] for a frame of 200×200 pixels2 of Ta =1.6 s). By the end of the acquired frame being scanned, using our computing capacity, 4 simultaneous en-face images could be created in T = 0.8 s. We demonstrate that by using graphic cards, 32 en-face images can be displayed in Td 0.3 s. Other faster swept source engines can be used with no difference in terms of Td. With 32 images (or more), volumes can be created for 3D display, using en-face images, as opposed to the current technology where volumes are created using cross section OCT images.

  3. Agreement of Anterior Segment Parameters Obtained From Swept-Source Fourier-Domain and Time-Domain Anterior Segment Optical Coherence Tomography.

    Science.gov (United States)

    Chansangpetch, Sunee; Nguyen, Anwell; Mora, Marta; Badr, Mai; He, Mingguang; Porco, Travis C; Lin, Shan C

    2018-03-01

    To assess the interdevice agreement between swept-source Fourier-domain and time-domain anterior segment optical coherence tomography (AS-OCT). Fifty-three eyes from 41 subjects underwent CASIA2 and Visante OCT imaging. One hundred eighty-degree axis images were measured with the built-in two-dimensional analysis software for the swept-source Fourier-domain AS-OCT (CASIA2) and a customized program for the time-domain AS-OCT (Visante OCT). In both devices, we examined the angle opening distance (AOD), trabecular iris space area (TISA), angle recess area (ARA), anterior chamber depth (ACD), anterior chamber width (ACW), and lens vault (LV). Bland-Altman plots and intraclass correlation (ICC) were performed. Orthogonal linear regression assessed any proportional bias. ICC showed strong correlation for LV (0.925) and ACD (0.992) and moderate agreement for ACW (0.801). ICC suggested good agreement for all angle parameters (0.771-0.878) except temporal AOD500 (0.743) and ARA750 (nasal 0.481; temporal 0.481). There was a proportional bias in nasal ARA750 (slope 2.44, 95% confidence interval [CI]: 1.95-3.18), temporal ARA750 (slope 2.57, 95% CI: 2.04-3.40), and nasal TISA500 (slope 1.30, 95% CI: 1.12-1.54). Bland-Altman plots demonstrated in all measured parameters a minimal mean difference between the two devices (-0.089 to 0.063); however, evidence of constant bias was found in nasal AOD250, nasal AOD500, nasal AOD750, nasal ARA750, temporal AOD500, temporal AOD750, temporal ARA750, and ACD. Among the parameters with constant biases, CASIA2 tends to give the larger numbers. Both devices had generally good agreement. However, there were proportional and constant biases in most angle parameters. Thus, it is not recommended that values be used interchangeably.

  4. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  5. Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples

    Science.gov (United States)

    Lee, M. C.

    1981-01-01

    An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.

  6. Submillimeter vibrationally excited water emission from the peculiar red supergiant VY Canis Majoris

    Science.gov (United States)

    Menten, K. M.; Philipp, S. D.; Güsten, R.; Alcolea, J.; Polehampton, E. T.; Brünken, S.

    2006-08-01

    Context: .Vibrationally excited emission from the SiO and H2O molecules probes the innermost circumstellar envelopes of oxygen-rich red giant and supergiant stars. VY CMa is the most prolific known emission source in these molecules. Aims: .Observations were made to search for rotational lines in the lowest vibrationally excited state of H2O. Methods: .The APEX telescope was used for observations of H2O lines at frequencies around 300 GHz. Results: .Two vibrationally excited H2O lines were detected, a third one could not be found. In one of the lines we find evidence for weak maser action, similar to known (sub)millimeter ν2 = 1 lines. We find that the other line's intensity is consistent with thermal excitation by the circumstellar infrared radiation field. Several SiO lines were detected together with the H2O lines.

  7. Investigation of imaging properties for submillimeter rectangular pinholes

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Dan, E-mail: dxia@uchicago.edu [The Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Moore, Stephen C., E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Park, Mi-Ae, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Cervo, Morgan, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu [Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Metzler, Scott D., E-mail: metzler@upenn.edu [The Department of Radiology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-12-15

    Purpose: Recently, a multipinhole collimator with inserts that have both rectangular apertures and rectangular fields of view (FOVs) has been proposed for SPECT imaging since it can tile the projection onto the detector efficiently and the FOVs in transverse and axial directions become separable. The purpose of this study is to investigate the image properties of rectangular-aperture pinholes with submillimeter apertures sizes. Methods: In this work, the authors have conducted sensitivity and FOV experiments for 18 replicates of a prototype insert fabricated in platinum/iridium (Pt/Ir) alloy with submillimeter square-apertures. A sin{sup q}θ fit to the experimental sensitivity has been performed for these inserts. For the FOV measurement, the authors have proposed a new formula to calculate the projection intensity of a flood image on the detector, taking into account the penumbra effect. By fitting this formula to the measured projection data, the authors obtained the acceptance angles. Results: The mean (standard deviation) of fitted sensitivity exponents q and effective edge lengths w{sub e} were, respectively, 10.8 (1.8) and 0.38 mm (0.02 mm), which were close to the values, 7.84 and 0.396 mm, obtained from Monte Carlo calculations using the parameters of the designed inserts. For the FOV measurement, the mean (standard deviation) of the transverse and axial acceptances were 35.0° (1.2°) and 30.5° (1.6°), which are in good agreement with the designed values (34.3° and 29.9°). Conclusions: These results showed that the physical properties of the fabricated inserts with submillimeter aperture size matched our design well.

  8. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  9. Surveying Low-Mass Star Formation with the Submillimeter Array

    Science.gov (United States)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  10. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question exa...

  11. Accuracy of Corneal Thickness by Swept-Source Optical Coherence Tomography and Scheimpflug Camera in Virgin and Treated Fuchs Endothelial Dystrophy.

    Science.gov (United States)

    Arnalich-Montiel, Francisco; Ortiz-Toquero, Sara; Auladell, Clara; Couceiro, Ana

    2018-06-01

    To assess intraobserver repeatability, intersession reproducibility, and agreement of swept-source Fourier-domain optical coherence tomography (SS-OCT) and the Scheimpflug camera in measuring corneal thickness in virgin and grafted eyes with Fuchs endothelial corneal dystrophy (FECD). Thirty-six control eyes, 35 FECD eyes, 30 FECD with corneal edema eyes, 25 Descemet stripping automated endothelial keratoplasty (DSAEK) eyes, and 29 Descemet membrane endothelial keratoplasty (DMEK) eyes were included. The apical center, pupillary center, and thinnest corneal thickness were determined in 3 consecutive images and repeated 2 weeks later. Repeatability and reproducibility coefficients, intraclass correlation coefficients, and 95% limits of agreement (LOA) between measurements were calculated. Agreement between devices was assessed using Bland-Altman analysis. Corneal thickness measurements were highly reproducible and repeatable with both systems. SS-OCT showed better repeatability in all corneal locations in the normal, FECD, FECD with edema, DSAEK, and DMEK groups (coefficient of variation ≤0.60%, ≤0.36%, ≤0.43%, ≤1.09%, and ≤0.48%, respectively) than the Scheimpflug (coefficient of variation ≤1.15%, ≤0.92%, ≤1.10%, ≤1.25%, and ≤1.14%, respectively). Between-session 95% LOA for SS-OCT was less than 3% for all groups except for the FECD with edema group, being almost double using the Scheimpflug camera. Differences between instruments were statistically significant in all groups and locations (P group (P ≤ 0.51); however, SS-OCT underestimated all measurements. SS-OCT provides better reproducible and repeatable measurements of corneal thickness than those obtained with the Scheimpflug camera in patients with FECD or an endothelial transplant. Variations between examinations higher than the 95% LOA observed in our study should raise awareness of changes in the endothelial function.

  12. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  13. Development of a Submillimeter-Wavelength Immersion Grating Spectrometer

    Science.gov (United States)

    Phillips, T. G.

    2001-01-01

    The broad goal of this project was to develop a broadband, moderate-resolution spectrometer for submillimeter wavelengths. Our original approach was to build an immersion grating spectrometer, and as such, the first step was to identify the best material (lowest loss, highest index) for the grating medium, and to characterize its properties at the foreseen optical-bench operating temperature of 1.5 K. To this end, we put our initial efforts into upgrading an existing laboratory submillimeter Fourier transform spectrometer, which allowed us to carry out the requisite materials measurements. The associated cryogenic detector dewar was also redesigned and rebuilt to carry out this work. This dewar houses the 1.5 K detector and the filter wheel used in the materials characterization. Our goal was to have the beam propagate through the samples as uniformly as possible, so the optics were redesigned to allow for the samples to be traversed by a well-defined collimated beam. The optics redesign also placed the samples at an image of the aperture stop located within the FTS. After the rebuild, we moved into the testing phase.

  14. The CCAT-prime Extreme Field-of-View Submillimeter Telescope on Cerro Chajnantor

    Science.gov (United States)

    Koopman, Brian; Bertoldi, Frank; Chapman, Scott; Fich, Michel; Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry L.; Murray, Norman W.; Niemack, Michael D.; Riechers, Dominik; Schilke, Peter; Stacey, Gordon J.; Stutzki, Juergen; CCAT-prime Collaboration

    2017-01-01

    CCAT-prime is a six meter aperture off-axis submillimeter telescope that we plan to build at 5600m elevation on Cerro Chajnantor in Chile. The CCAT-prime optics are based on a cross-Dragone design with high throughput and a wide field-of-view optimized to increase the mapping speed of next generation cosmic microwave background (CMB) observations. These characteristics make CCAT-prime an excellent platform for a wide range of next generation millimeter and submillimeter science goals, and a potential platform for CMB stage-IV measurements. Here we present the telescope design for CCAT-prime and review the science goals.Taking advantage of the high elevation site, the first generation instrument for CCAT-prime will measure seven different frequency bands from 350um to 3mm. These seven bands will enable precise measurements of the Sunyaev-Zel’dovich effects (SZE) by separating contributions from CMB, thermal SZE, kinetic SZE, bright submm galaxies, and radio sources with a goal of extracting the peculiar velocities from a large number of galaxy clusters. Additional science priorities for CCAT-prime include: Galactic Ecology studies of the dynamic intersteller medium by mapping the fine structure lines [CI], [CII] and [NII] as well as high-excitation CO lines at the shortest wavelength bands; high redshift intensity mapping of [CII] emission from star-forming galaxies that likely dominates cosmic reionization at z~5-9 to probe the Epoch of Reionization; and next generation CMB polarization measurements to constrain inflation and cosmological models. The CCAT-prime facility will further our understanding of astrophysical processes from moments after the Big Bang to the present-day evolution of the Milky Way.

  15. Design considerations for large detector arrays on submillimeter-wave telescopes

    Science.gov (United States)

    Stark, Antony A.

    2000-07-01

    The emerging technology of large (approximately 10,000 pixel) submillimeter-wave bolometer arrays presents a novel optical design problem -- how can such arrays be fed by diffraction- limited telescope optics where the primary mirror is less than 100,000 wavelengths in diameter? Standard Cassegrain designs for radiotelescope optics exhibit focal surface curvature so large that detectors cannot be placed more than 25 beam diameters from the central ray. The problem is worse for Ritchey-Chretien designs, because these minimize coma while increasing field curvature. Classical aberrations, including coma, are usually dominated by diffraction in submillimeter- wave single dish telescopes. The telescope designer must consider (1) diffraction, (2) aberration, (3) curvature of field, (4) cross-polarization, (5) internal reflections, (6) the effect of blockages, (7) means of beam chopping on- and off-source, (8) gravitational and thermal deformations of the primary mirror, (9) the physical mounting of large detector packages, and (10) the effect of gravity and (11) vibration on those detectors. Simultaneous optimization of these considerations in the case of large detector arrays leads to telescopes that differ considerably from standard radiotelescope designs. Offset optics provide flexibility for mounting detectors, while eliminating blockage and internal reflections. Aberrations and cross-polarization can be the same as on-axis designs having the same diameter and focal length. Trade-offs include the complication of primary mirror homology and an increase in overall cost. A dramatic increase in usable field of view can be achieved using shaped optics. Solutions having one to six mirrors will be discussed, including possible six-mirror design for the proposed South Pole 10 m telescope.

  16. PHYSICAL PROPERTIES AND MORPHOLOGY OF A NEWLY IDENTIFIED COMPACT z = 4.04 LENSED SUBMILLIMETER GALAXY IN ABELL 2218

    International Nuclear Information System (INIS)

    Knudsen, Kirsten K.; Kneib, Jean-Paul; Richard, Johan; Petitpas, Glen; Egami, Eiichi

    2010-01-01

    We present the identification of a bright submillimeter (submm) source, SMM J163555.5+661300, detected in the lensing cluster Abell 2218, for which we have accurately determined the position using observations from the Submillimeter Array (SMA). The identified optical counterpart has a spectroscopic redshift of z = 4.044 ± 0.001 if we attribute the single emission line detected at λ = 6140 A to Lyα. This redshift identification is in good agreement with the optical/near-infrared photometric redshift as well as the submm flux ratio S 450 /S 850 ∼ 1.6, the radio-submm flux ratio S 1.4 /S 850 24 /S 850 12 L sun , which implies a star formation rate (SFR) of 230 M sun yr -1 . This makes it the lowest-luminosity submillimeter galaxy (SMG) known at z>4 to date. Previous CO(4-3) emission line observations yielded a non-detection, for which we derived an upper limit of the CO line luminosity of L CO ' = 0.3x10 10 K km s -1 pc -2 , which is not inconsistent with the L ' CO -L FIR relation for starburst galaxies. The best-fit model to the optical and near-infrared photometry give a stellar population with an age of 1.4 Gyr and a stellar mass of 1.6 x 10 10 M sun . The optical morphology is compact and in the source plane the galaxy has an extent of ∼6 x 3 kpc with individual star-forming knots of sun yr -1 kpc 2 . The redshift of J163556 extends the redshift distribution of faint, lensed SMGs, and we find no evidence that these have a different redshift distribution than bright SMGs.

  17. Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging

    Science.gov (United States)

    Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.

    2011-01-01

    Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter

  18. Complete destructive interference of partially coherent fields

    NARCIS (Netherlands)

    Gbur, G.J.; Visser, T.D.; Wolf, E.

    2004-01-01

    A three-point source model is used to study the interference of wavefields which are mutually partially coherent. It is shown that complete destructive interference of the fields is possible in such a "three-pinhole interferometer" even if the sources are not fully coherent with respect to each

  19. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Smith, D. J. B.; Bonfield, D.; Dunne, L. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Dye, S.; Eales, S. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Auld, R. [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; Fritz, J. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L.; Dariush, A. [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Coppin, K. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Dannerbauer, H. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, 1180 Wien, Oesterreich (Austria); De Zotti, G. [Universita di Padova, Dipto di Astronomia, Vicolo dell' Osservatorio 2, IT 35122, Padova (Italy); Hopwood, R., E-mail: rbussmann@cfa.harvard.edu [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies

  20. Coherent Baryogenesis

    CERN Document Server

    Garbrecht, B; Schmidt, M G; Garbrecht, Bjorn; Prokopec, Tomislav; Schmidt, Michael G.

    2004-01-01

    We propose a new baryogenesis scenario based on coherent production and mixing of different fermionic species. The mechanism is operative during phase transitions, at which the fermions acquire masses via Yukawa couplings to scalar fields. Baryon production is efficient when the mass matrix is nonadiabatically varying, nonsymmetric and when it violates CP and B-L directly, or some other charges that are eventually converted to B-L. We first consider a toy model, which involves two mixing fermionic species, and then a hybrid inflationary scenario embedded in a supersymmetric Pati-Salam GUT. We show that, quite generically, a baryon excess in accordance with observation can result.

  1. Compact Receiver Front Ends for Submillimeter-Wave Applications

    Science.gov (United States)

    Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.

    2012-01-01

    The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.

  2. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  3. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu; Pelivanov, Ivan; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K., E-mail: wangrk@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-05-09

    We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ∼3.0 nm sensitivity at ∼16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promising non-contact, real-time, and high-resolution optical coherence elastography.

  4. Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+γ coincidences

    Science.gov (United States)

    Lang, C.; Habs, D.; Parodi, K.; Thirolf, P. G.

    2014-01-01

    We present a nuclear medical imaging technique, employing triple-γ trajectory intersections from β+-γ coincidences, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced requirement of reconstructed intersections per voxel compared to a conventional PET reconstruction analysis. This 'γ-PET' technique draws on specific β+-decaying isotopes, simultaneously emitting an additional photon. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize this technique, Monte-Carlo simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a 22Na point source. Only 40 intersections are sufficient for a reliable sub-millimeter image reconstruction of a point source embedded in a scattering volume of water inside a voxel volume of about 1 mm3 ('high-resolution mode'). Moreover, starting with an injected activity of 400 MBq for 76Br, the same number of only about 40 reconstructed intersections are needed in case of a larger voxel volume of 2 x 2 x 3 mm3 ('high-sensitivity mode'). Requiring such a low number of reconstructed events significantly reduces the required acquisition time for image reconstruction (in the above case to about 140 s) and thus may open up the perspective for a quasi real-time imaging.

  5. DETECTION OF AN ULTRA-BRIGHT SUBMILLIMETER GALAXY BEHIND THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo; Habe, Asao [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Tamura, Yoichi; Kohno, Kotaro [Institute of Astronomy, University of Tokyo, Osawa, Mitaka, Tokyo 181-0015 (Japan); Oogi, Taira [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Ezawa, Hajime; Komugi, Shinya; Mizuno, Norikazu; Muller, Erik; Kawamura, Akiko [Chile Observatory, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Oshima, Tai [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Scott, Kimberly S. [North American ALMA Science Center, National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Austermann, Jason E. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Tosaki, Tomoka [Joetsu University of Education, Joetsu, Niigata 943-8512 (Japan); Onishi, Toshikazu [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, 599-8531 Osaka (Japan); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Matsuo, Hiroshi [Advanced Technology Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Aretxaga, Itziar [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), 72000 Puebla (Mexico); and others

    2013-09-10

    We report the discovery of a new ultra-bright submillimeter galaxy (SMG) behind the Small Magellanic Cloud (SMC). This SMG is detected as a 43.3 {+-} 8.4 mJy point source (MM J01071-7302, hereafter MMJ0107) in the 1.1 mm continuum survey of the SMC by AzTEC on the ASTE telescope. MMJ0107 is also detected in the radio (843 MHz), Herschel/SPIRE, Spitzer MIPS 24 {mu}m, all IRAC bands, Wide-field Infrared Survey Explorer, and near-infrared (J, H, K{sub S} ). We find an optical (U, B, V) source, which might be the lensing object, at a distance of 1.''4 from near-infrared and IRAC sources. Photometric redshift estimates for the SMG using representative spectral energy distribution templates show the redshifts of 1.4-3.9. We estimate total far-infrared luminosity of (0.3-2.2) Multiplication-Sign 10{sup 14} {mu}{sup -1} L{sub Sun} and a star formation rate of 5600-39, 000 {mu}{sup -1} M{sub Sun} yr{sup -1}, where {mu} is the gravitational magnification factor. This apparent extreme star formation activity is likely explained by a highly magnified gravitational lens system.

  6. SUBMILLIMETER POLARIZATION SPECTRUM IN THE VELA C MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Ade, Peter A. R.; Pascale, Enzo [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Dober, Bradley; Galitzki, Nicholas; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Ashton, Peter; Fissel, Laura M.; Matthews, Tristan G.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Benton, Steven J. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Fukui, Yasuo [Department of Physics and Astrophysics, Nagoya University, Nagoya 464-8602 (Japan); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI, 02912 (United States); Li, Zhi-Yun [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Martin, Peter G. [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Moncelsi, Lorenzo [California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Netterfield, Calvin B., E-mail: ngandil1@jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, Maryland (United States); and others

    2016-06-20

    Polarization maps of the Vela C molecular cloud were obtained at 250, 350, and 500 μ m during the 2012 flight of the balloon-borne telescope BLASTPol. These measurements are used in conjunction with 850 μ m data from Planck to study the submillimeter spectrum of the polarization fraction for this cloud. The spectrum is relatively flat and does not exhibit a pronounced minimum at λ ∼ 350 μ m as suggested by previous measurements of other molecular clouds. The shape of the spectrum does not depend strongly on the radiative environment of the dust, as quantified by the column density or the dust temperature obtained from Herschel data. The polarization ratios observed in Vela C are consistent with a model of a porous clumpy molecular cloud being uniformly heated by the interstellar radiation field.

  7. SUBMILLIMETER-WAVE ROTATIONAL SPECTROSCOPY OF H2F+

    International Nuclear Information System (INIS)

    Fujimori, R.; Kawaguchi, K.; Amano, T.

    2011-01-01

    Five pure rotational transitions of H 2 F + generated by a discharge in an HF/H 2 /Ar mixture were observed in the range 473-774 GHz with a backward-wave oscillator based submillimeter-wave spectrometer. A simultaneous analysis of the rotational lines with 120 combination differences for the ground state derived from the infrared spectra was carried out to determine the precise molecular constants for the ground state. The rotational transition frequencies that lie below 2 THz were calculated, together with their estimated uncertainties, to facilitate future astronomical identifications. The chemistry for H 2 F + formation in interstellar space is discussed in comparison with a case for recently detected H 2 Cl + .

  8. Cryogenic readout integrated circuits for submillimeter-wave camera

    International Nuclear Information System (INIS)

    Nagata, H.; Kobayashi, J.; Matsuo, H.; Akiba, M.; Fujiwara, M.

    2006-01-01

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6μV/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit

  9. Cryogenic readout integrated circuits for submillimeter-wave camera

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan) and National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)]. E-mail: hirohisa.nagata@nao.ac.jp; Kobayashi, J. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Matsuo, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Akiba, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan); Fujiwara, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan)

    2006-04-15

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6{mu}V/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit.

  10. Integrated flux-flow oscillators for submillimeter wave receivers

    International Nuclear Information System (INIS)

    Koshelets, V.P.; Shchukin, A.V.; Shitov, S.V.; Filippenko, L.V.; Fischer, G.M.; Mygind, J.

    1994-01-01

    A superconducting Flux-Flow Oscillator (FFO) integrated on the same chip with a small Josephson junction detector has been experimentally investigated in the frequency range 100 - 450 GHz. Both the emitted power and the frequency of the FFO can be varied by adjusting the dc bias current and/or the applied dc magnetic field. Microwave powers as high as 0.3 μW have been measured at 375 GHz. The spectral width of the FFO is about 1 MHz as estimated from harmonic mixing experiments. Also a fully integrated superconducting submillimeter wave receiver using the FFO as local oscillator has been successfully tested. The circuit included coupling transformers, a superconducting variable attenuator and a detector junction with tuned-out capacitance. (orig.)

  11. Submillimeter and millimeter observations of solar system objects

    International Nuclear Information System (INIS)

    Muhleman, D.O.

    1988-01-01

    Planetary atmospheres and satellite surfaces are observed with the three element array at Caltech's Owens Valley Radio Observatory, Caltech's submillimeter telescope on Mauna Kea and at the 12-meter telescope at Kitt Peak. Researchers are primarily interested in spectroscopy of the atmospheres of Venus, Mars and Titan and the continuum structure of Saturn Rings, Galilean satellites, Neptune and Uranus. During the last year researchers completed a supersynthesis of the Saturn system at 2.8 mm with spatial resolution of 3 arc sec. They just completed a 4-confuguration synthesis of Venus in the CO absorption line. They hope to recover the wind patterns in the altitude range from 60 to 100 km where winds have never been measured. Two important questions are being investigated: (1) how high in the Venus atmosphere do 4-day winds extend, and (2) can we produce experiment proof (or disproof) of the subsolar-to-anti-solar flow (Dickenson winds) predicted by general circulation models

  12. Stimulated Raman scattering of sub-millimeter waves in bismuth

    Science.gov (United States)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  13. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    Science.gov (United States)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  14. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto; Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas; Sayers, Jack; Bridge, Carrie; Benford, Dominic; Blain, Andrew; Petty, Sara; Lake, Sean; Bussmann, Shane; Comerford, Julia M.; Evans, Neal J. II; Lonsdale, Carol; Rho, Jeonghee; Stanford, S. Adam

    2012-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (∼1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 μm, yet are clearly detected at 12 and 22 μm. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 μm, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 μm, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10 13 L ☉ . These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  15. Submillimeter Follow-up of Wise-Selected Hyperluminous Galaxies

    Science.gov (United States)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2013-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approximately 1000 all-sky) population of galaxies at high redshift (peaks at zeta = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 micrometers, yet are clearly detected at 12 and 22 micrometers. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (zeta greater than 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 micrometers, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 micrometers, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) solar luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  16. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Sayers, Jack; Bridge, Carrie [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Petty, Sara; Lake, Sean [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Bussmann, Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS78, Cambridge, MA 02138 (United States); Comerford, Julia M.; Evans, Neal J. II [Department of Astronomy, University of Texas, Austin, TX 78731 (United States); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rho, Jeonghee [SETI Institute, 189 BERNARDO Avenue, Mountain View, CA 94043 (United States); Stanford, S. Adam, E-mail: jingwen.wu@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  17. Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Golwala, Sunil R.; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Hollister, Matthew I.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Schlaerth, James A.; Siegel, Seth; Vayonakis, Anastasios K.; Wilson, Philip R.; Zmuidzinas, Jonas

    2012-09-01

    We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses broadband superconducting phased-array slot-dipole antennas to form beams, lumpedelement on-chip bandpass filters to define spectral bands, and microwave kinetic inductance detectors to sense incoming light. The focal plane is fabricated in 8 tiles consisting of 72 spatial pixels each. It is coupled to the telescope via an ambient-temperature ellipsoidal mirror and a cold reimaging lens. A cold Lyot stop sits at the image of the primary mirror formed by the ellipsoidal mirror. Dielectric and metal-mesh filters are used to block thermal infrared and out-ofband radiation. The instrument uses a pulse tube cooler and 3He/ 3He/4He closed-cycle cooler to cool the focal plane to below 250 mK. A multilayer shield attenuates Earth's magnetic field. Each focal plane tile is read out by a single pair of coaxes and a HEMT amplifier. The readout system consists of 16 copies of custom-designed ADC/DAC and IF boards coupled to the CASPER ROACH platform. We focus on recent updates on the instrument design and results from the commissioning of the full camera in 2012.

  18. Far-infrared and submillimeter spectroscopy of photodissociation regions

    International Nuclear Information System (INIS)

    Qaiyum, A.

    1993-12-01

    The physical properties of the galactic and extragalactic photodissociation regions, warm gas components molecular clouds are, generally, derived through the far-infrared (FIR) fine structure and submillimeter line emissions arising out of these regions. In the theoretical studies of these lines the model of Tielens and Hollenbach (herein after referred as TH) are usually employed in which all the opacity is assumed local in escape probability formalism and inward directed photons do not escape. These assumptions are contrary to the observational facts, where most of the lines are found optically thin except OI (63 μm) and low rotational transitions of CO and some other molecules. The optically thin medium will allow the radiation to escape through any face of the region. These observational evidences let us to assume finite parallel plane slab, instead of semi-infinite parallel slab, in which the photons are allowed to escape from both surfaces (back and front). In the present study an attempt has been made to incorporate the two sided escape of photons from the PDRs and to study its effect on the FIR and submillimeter line emission from the PDRs/molecular clouds. Further the present formalism is also employed to study the clumpy PDRs/molecular clouds. The preliminary results show that now serious consequences are found on the thermal and chemical structure of the regions but individual line emissions are modified by differing factors. Particularly at low density and low kinetic temperature the change is substantial but at density greater than the critical density of the line and temperature close to the excitation temperature its effect is almost negligible. An attempt has also been made to study the physical conditions of the M17 region employing the present formalism. (author). 49 refs, 8 figs, 1 tab

  19. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    Science.gov (United States)

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  20. THE SCUBA-2 COSMOLOGY LEGACY SURVEY: MULTIWAVELENGTH COUNTERPARTS TO 10{sup 3} SUBMILLIMETER GALAXIES IN THE UKIDSS-UDS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chian-Chou; Smail, Ian; Ma, Cheng-Jiun; Simpson, James M.; Swinbank, A. Mark [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Ivison, Rob J.; Arumugam, Vinodiran; Mortlock, Alice; Dunlop, James S.; Michałowski, Michał J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Almaini, Omar; Conselice, Christopher J.; Hartley, Will G. [University of Nottingham, School of Physics and Astronomy, Nottingham, NG7 2RD (United Kingdom); Geach, James E. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Simpson, Chris [Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Blain, Andrew [Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2 (Canada); Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2016-04-01

    We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850 μm in the SCUBA-2 Cosmology Legacy Survey study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical–near-infrared (OIR) data available in this field, we develop a novel technique, Optical–IR Triple Color (OIRTC), using z − K, K − [3.6], [3.6] − [4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates for 80% of the Class = 1 ≥ 4σ SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82% ± 20%, with a completeness of 69% ± 16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850 μm sources, and we argue that for follow-up observations sensitive to SMGs with S{sub 850} ≳ 1 mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S{sub 850} ≳ 4 mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z = 2.3 ± 0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z = 2.6 ± 0.1 for SMGs with S{sub 850} > 1 mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.

  1. Coherent γ-ray production

    International Nuclear Information System (INIS)

    Bertolotti, M.; Sibilia, C.

    1985-01-01

    In this article the authors discuss a new approach for developing a coherent source of γ-rays. They offer a completely different scheme for development of the source that should overcome most of the problems encountered in ''classical γ-ray lasers,'' and in which the use of inverse Compton scattering of laser radiation onto a relativistic electron beam is made. This kind of interaction has been used to obtain γ-ray photons with good polarization and monochromaticity properties. The authors describe a new geometry of interaction which allows one to obtain coherent emission

  2. Assessment of Open-Angle Glaucoma Peripapillary and Macular Choroidal Thickness Using Swept-Source Optical Coherence Tomography (SS-OCT.

    Directory of Open Access Journals (Sweden)

    Yong Ju Song

    Full Text Available To compare peripapillary and macular choroidal thickness (PCT and MCT between open-angle glaucoma (OAG and normal controls using swept-source optical coherence tomography (SS-OCT, and to evaluate global and localized relationships between choroidal thickness and various factors in OAG, also using SS-OCT.In this cross-sectional comparative study, 134 OAG patients and 73 normal controls were examined. PCT (global, 12 clock-hour sectors, MCT (global, six sectors were measured by SS-OCT. The difference in choroidal thickness between the OAG patients and the normal controls was analyzed. The relationships between choroidal thickness and various factors including age, sex, spherical equivalent (SE, axial length (AXL, central corneal thickness (CCT, intraocular pressure (IOP, peripapillary retinal nerve fiber layer thickness (pRNFLT, visual field mean deviation (MD, ganglion cell-inner plexiform layer thickness (GCIPLT, and disc area were analyzed by univariate and multivariate linear regression. Global and regional analyses were performed in 12 segments of the peripapillary circle and in six sectors of the macula.There were significant differences in global PCT and MCT between the OAG patients and the normal controls (115.22±41.17 vs. 138.89±44.70, P<0.001, (184.36±57.15 vs. 209.25±61.11, P = 0.004. The difference in global PCT remained, both after adjusting for age, AXL (117.08±3.45 vs. 135.47±4.70, P = 0.002 and also after adjusting for age, AXL, disc area (117.46±3.46 vs. 135.67±4.67, P = 0.002. But the difference in global MCT did not remain after adjusting for age, AXL, SE (188.18±4.46 vs. 202.25±6.08, P = 0.066. PCT showed significant differences between the groups in all of the 12 clock-hour sectors. These differences remained after adjusting for age, AXL and for age, AXL, disc area, with the exception of the 10 o'clock (o/c sector. MCT in six sectors showed differences between the two groups, but they did not remain after adjusting

  3. Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project

    Science.gov (United States)

    Camps, Peter; Trčka, Ana; Trayford, James; Baes, Maarten; Theuns, Tom; Crain, Robert A.; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop

    2018-02-01

    We present dust-attenuated and dust emission fluxes for sufficiently resolved galaxies in the EAGLE suite of cosmological hydrodynamical simulations, calculated with the SKIRT radiative transfer code. The post-processing procedure includes specific components for star formation regions, stellar sources, and diffuse dust and takes into account stochastic heating of dust grains to obtain realistic broadband fluxes in the wavelength range from ultraviolet to submillimeter. The mock survey includes nearly half a million simulated galaxies with stellar masses above {10}8.5 {M}ȯ across six EAGLE models. About two-thirds of these galaxies, residing in 23 redshift bins up to z = 6, have a sufficiently resolved metallic gas distribution to derive meaningful dust attenuation and emission, with the important caveat that the same dust properties were used at all redshifts. These newly released data complement the already publicly available information about the EAGLE galaxies, which includes intrinsic properties derived by aggregating the properties of the smoothed particles representing matter in the simulation. We further provide an open-source framework of Python procedures for post-processing simulated galaxies with the radiative transfer code SKIRT. The framework allows any third party to calculate synthetic images, spectral energy distributions, and broadband fluxes for EAGLE galaxies, taking into account the effects of dust attenuation and emission.

  4. Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions

    Science.gov (United States)

    Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.

    2012-06-01

    We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.

  5. A COMPREHENSIVE VIEW OF A STRONGLY LENSED PLANCK-ASSOCIATED SUBMILLIMETER GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Jullo, E. [Observatoire d' Astrophysique de Marseille-Provence, 38 rue Frederic Joliot-Curie, F-13388 Marseille (France); Bussmann, R. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Perez-Fournon, I. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Djorgovski, S. G.; Scoville, N.; Yan, L.; Riechers, D. A.; Bradford, M. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Aguirre, J. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Auld, R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd., Piscataway, NJ 08854 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Dannerbauer, H. [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1160 Wien (Austria); Dariush, A. [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); De Zotti, G., E-mail: haif@uci.edu [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2012-07-10

    We present high-resolution maps of stars, dust, and molecular gas in a strongly lensed submillimeter galaxy (SMG) at z = 3.259. HATLAS J114637.9-001132 is selected from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) as a strong lens candidate mainly based on its unusually high 500 {mu}m flux density ({approx}300 mJy). It is the only high-redshift Planck detection in the 130 deg{sup 2} H-ATLAS Phase-I area. Keck Adaptive Optics images reveal a quadruply imaged galaxy in the K band while the Submillimeter Array and the Jansky Very Large Array show doubly imaged 880 {mu}m and CO(1{yields}0) sources, indicating differentiated distributions of the various components in the galaxy. In the source plane, the stars reside in three major kpc-scale clumps extended over {approx}1.6 kpc, the dust in a compact ({approx}1 kpc) region {approx}3 kpc north of the stars, and the cold molecular gas in an extended ({approx}7 kpc) disk {approx}5 kpc northeast of the stars. The emissions from the stars, dust, and gas are magnified by {approx}17, {approx}8, and {approx}7 times, respectively, by four lensing galaxies at z {approx} 1. Intrinsically, the lensed galaxy is a warm (T{sub dust} {approx} 40-65 K), hyper-luminous (L{sub IR} {approx} 1.7 Multiplication-Sign 10{sup 13} L{sub Sun }; star formation rate (SFR) {approx}2000 M{sub Sun} yr{sup -1}), gas-rich (M{sub gas}/M{sub baryon} {approx} 70%), young (M{sub stellar}/SFR {approx} 20 Myr), and short-lived (M{sub gas}/SFR {approx} 40 Myr) starburst. With physical properties similar to unlensed z > 2 SMGs, HATLAS J114637.9-001132 offers a detailed view of a typical SMG through a powerful cosmic microscope.

  6. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  7. SOFIA MID-INFRARED IMAGING AND CSO SUBMILLIMETER POLARIMETRY OBSERVATIONS OF G034.43+00.24 MM1

    International Nuclear Information System (INIS)

    Jones, T. J.; Gordon, Michael; Shenoy, Dinesh; Gehrz, R. D.; Vaillancourt, John E.; Krejny, M.

    2016-01-01

    We present 11.1 to 37.1 μ m imaging observations of the very dense molecular cloud core MM1 in G034.43+00.24 using FORCAST on SOFIA and submillimeter (submm) polarimetry using SHARP on the Caltech Submillimeter Observatory. We find that at the spatial resolution of SOFIA, the point-spread function (PSF) of MM1 is consistent with being a single source, as expected based on millimeter (mm) and submm observations. The spectral energy distributions (SEDs) of MM1 and MM2 have a warm component at the shorter wavelengths not seen in mm and submm SEDs. Examination of H(1.65 μ m) stellar polarimetry from the Galactic Plane Infrared Polarization Survey shows that G034 is embedded in an external magnetic field aligned with the Galactic Plane. The SHARP polarimetry at 450 μ m shows a magnetic field geometry in the vicinity of MM1 that does not line up with either the Galactic Plane or the mean field direction inferred from the CARMA interferometric polarization map of the central cloud core, but is perpendicular to the long filament in which G034 is embedded. The CARMA polarimetry does show evidence for grain alignment in the central region of the cloud core, and thus does trace the magnetic field geometry near the embedded Class 0 YSO.

  8. Multi-imaging adaptive concept for IR and submillimeter space telescopes

    Science.gov (United States)

    Vasilyev, Victor P.

    1995-06-01

    Nontraditional IR and submillimeter spaceborne telescope concept basing on blind-type parabolic multi-ring mirror is proposed and discussed. Preliminary results for optimization of mirror parameters by means of computer simulation are presented.

  9. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  10. Status of the USA program on the development of submillimeter lasers to measure ion temperatures

    International Nuclear Information System (INIS)

    Barnett, C.F.; Hutchinson, D.P.; Vander Sluis, K.; Staats, P.A.

    1977-01-01

    The concept of ion laser scattering is outlined briefly and the parameters of the required submillimeter laser system are described. The current state of the development of lasers, laser and viewing dumps, and detectors is reviewed

  11. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  12. Superconducting Hot-Electron Submillimeter-Wave Detector

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in

  13. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    International Nuclear Information System (INIS)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.

    2014-01-01

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z phot = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z phot = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M * = (8 ± 1) × 10 10 M ☉ , although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M H distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  14. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Bertoldi, F.; Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße, D-85748 Garching bei München (Germany); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Da Cunha, E.; Hodge, J. A.; Schinnerer, E. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K. [Department of Earth and Space Science, Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden); Poggianti, B. M., E-mail: j.m.simpson@dur.ac.uk [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  15. A submillimeter galaxy illuminating its circumgalactic medium: Lyα scattering in a cold, clumpy outflow

    Energy Technology Data Exchange (ETDEWEB)

    Geach, J. E.; Coppin, K. E. K.; Smith, D. J. B. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Bower, R. G.; Alexander, D. M.; Swinbank, A. M. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Bremer, M. N. [School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Chapin, E. L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canada, Madrid (Spain); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University Halifax, NS B3H 3J5 (Canada); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Dunlop, J. S.; Koprowski, M. P.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Farrah, D. [Virginia Polytechnic Institute and State University Department of Physics, MC 0435, 910 Drillfield Drive, Blacksburg, VA 24061 (United States); Jenness, T. [Joint Astronomy Centre, 660 North A' ohoku Place University Park, Hilo, HI 96720 (United States); Robson, E. I. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Spaans, M. [Kapteyn Institute, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Van der Werf, P., E-mail: j.geach@herts.ac.uk [Leiden Observatory, Leiden University, PO box 9513, 2300 RA Leiden (Netherlands)

    2014-09-20

    We report the detection at 850 μm of the central source in SSA22-LAB1, the archetypal 'Lyman-α Blob' (LAB), a 100 kpc scale radio-quiet emission-line nebula at z = 3.1. The flux density of the source, S {sub 850} = 4.6 ± 1.1 mJy, implies the presence of a galaxy or group of galaxies with a total luminosity of L {sub IR} ≈ 10{sup 12} L {sub ☉}. The position of an active source at the center of a ∼50 kpc radius ring of linearly polarized Lyα emission detected by Hayes et al. suggests that the central source is leaking Lyα photons preferentially in the plane of the sky, which undergo scattering in H I clouds at a large galactocentric radius. The Lyα morphology around the submillimeter detection is reminiscent of a biconical outflow, and the average Lyα line profiles of the two 'lobes' are dominated by a red peak, which is expected for a resonant line emerging from a medium with a bulk velocity gradient that is outflowing relative to the line center. Taken together, these observations provide compelling evidence that the central active galaxy (or galaxies) is responsible for a large fraction of the extended Lyα emission and morphology. Less clear is the history of the cold gas in the circumgalactic medium being traced by Lyα: is it mainly pristine material accreting into the halo that has not yet been processed through an interstellar medium (ISM), now being blown back as it encounters an outflow, or does it mainly comprise gas that has been swept-up within the ISM and expelled from the galaxy?.

  16. Spectrum and isotropy of the submillimeter background radiation

    International Nuclear Information System (INIS)

    Muehlner, D.

    1977-01-01

    Two great astronomical discoveries have most shaped our present concept of the Big Bang universe. Like the Hubble recession of the galaxies, the discovery of the 3 0 K background radiation by Penzias and Wilson in 1965 has given rise to a line of research which is still very active today. Penzias and Wilson's universal microwave background at 7 cm was immediately interpreted by R.H. Dicke's group at Princeton as coming from the primordial fireball of incandescent plasma which filled the universe for the million years or so after its explosive birth. This interpretation gives rise to two crucial predictions as to the nature of the background radiation. Its spectrum should be thermal even after having been red shifted by a factor of approximately 1000 by the expansion of the universe, and the radiation should be isotropic - assuming that the universe itself is isotropic. If the background radiation is indeed from the primordial fireball it affords us the only direct view at the very young universe. This paper deals with the spectrum and then the isotropy of the background radiation, with emphasis on high frequency or submillimeter measurements. Prospects for the future are discussed briefly. (Auth.)

  17. Millimeter and submillimeter wave spectroscopy: molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Plummer, G.M.

    1985-01-01

    Species of three general types of molecular ions were studied by means of millimeter-submillimeter (mm/sub-mm) wave spectroscopy. Because of their highly reactive nature, it has been possible to study ionic species in the microwave region for only the past ten is presented here. A new method is presented here for production of such molecular ions in concentrations greater by one to two orders of magnitude than possible with previous techniques, and the subsequent first mm/sub/mm/ detections of two isotopic forms of HCO + , three isotopic forms of ArD + , and the molecular ion H 3 O + . Simple neutral species, which are generally less reactive than ions, are also present in relatively large concentrations in the interstellar medium and in the atmospheres of cool stars themselves. Presented here is the first laboratory microwave detection of two isotopic species of LiH 2 , a solid at normal temperatures and pressures. In addition, a combined analysis of these data, additional data collected on the related species LiD, and existing data on LiD is presented. Finally, a large fraction of the mm/sub/mm/ emissions observed toward the interstellar medium were shown to belong to a small number of relatively heavy, stable, but spectroscopically complicated molecules, many of them internal rotors

  18. Submillimeter Spectroscopy of the R Coronae Australis Molecular Cloud Region

    Science.gov (United States)

    Dunn, Marina Madeline; Walker, Christopher K.; Pat, Terrance; Sirsi, Siddhartha; Swift, Brandon J.; Peters, William L.

    2018-01-01

    The Interstellar Medium is comprised of large amounts of gas and dust which coalesce to form stars. Observing in the Terahertz regime of the electromagnetic spectrum, approximately 0.3 -300 microns, allows astronomers to study the ISM in unprecedented detail. Using the high spectral resolution imaging system of the SuperCam receiver, a 64-pixel array previously installed on the Submillimeter Telescope on Mt. Graham, AZ, we have begun a 500 square degree survey of the galactic plane. This instrument was designed to do a complete survey of the Milky Way from the ground, with the main focus being to observe two specific transitions of the carbon monoxide molecule, 12CO(3-2) and 13CO(3-2), at 345 GHz. In this work, we present results from these observations for the R Coronae Australis (R Cr A) complex, a region in the southern hemisphere of the sky, using spectroscopic data from a portion of the survey to gain better insight into the life cycle of the ISM. The majority of stars being formed here are similar to the stellar class of the Sun, making it an excellent area of observing interest. Using these results, we attempt to better ascertain the large-scale structure and kinematics inside of the molecular cloud.

  19. Progress in passive submillimeter-wave video imaging

    Science.gov (United States)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Peiselt, Katja; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Bauer, Frank; Meyer, Hans-Georg

    2014-06-01

    Since 2007 we are developing passive submillimeter-wave video cameras for personal security screening. In contradiction to established portal-based millimeter-wave scanning techniques, these are suitable for stand-off or stealth operation. The cameras operate in the 350GHz band and use arrays of superconducting transition-edge sensors (TES), reflector optics, and opto-mechanical scanners. Whereas the basic principle of these devices remains unchanged, there has been a continuous development of the technical details, as the detector array, the scanning scheme, and the readout, as well as system integration and performance. The latest prototype of this camera development features a linear array of 128 detectors and a linear scanner capable of 25Hz frame rate. Using different types of reflector optics, a field of view of 1×2m2 and a spatial resolution of 1-2 cm is provided at object distances of about 5-25m. We present the concept of this camera and give details on system design and performance. Demonstration videos show its capability for hidden threat detection and illustrate possible application scenarios.

  20. 基于MUSIC-Group Delay算法的相邻相干信号源定位%Closely spaced coherent-source localization based on MUSIC-group delay algorithm

    Institute of Scientific and Technical Information of China (English)

    郑家芝

    2016-01-01

    为了准确的进行相邻的相干信号源定位,提出了一种基于多重信号分类群延迟(MUSIC-group delay)的改进算法。首先,将空间平滑技术引入到波达方向(DoA)估计当中去除部分相干信号。由于在信号源相邻的情况下子空间算法的性能降低,就结合了 MUSIC-Group Delay算法来区分相邻的信号源,这种方法因为自身的加和性通过 MUSIC 相位谱来计算群延迟函数,从而能估计出相邻的信号源。理论分析和仿真结果表明提出的方法估计相邻的相干信号源比子空间算法更精确,分辨率更高。%In this paper,the closely spaced coherent-source localization is considered,and an improved method based on the group delay of Multiple Signal Classification (MUSIC)is presented.Firstly,we introduce the spatial smoothing technique into direction of arrival (DoA)estimation to get rid of the coherent part of signals.Due to the degraded per-formance of sub-space based methods on the condition of nearby sources,we then utilize the MUSIC-Group Delay algo-rithm to distinguish the closely spaced sources,which can resolve spatially close sources by the use of the group delay function computed from the MUSIC phase spectrum for efficient DoA estimation owing to its spatial additive property. Theoretical analysis and simulation results demonstrate that the proposed approach can estimate the DoA of the coherent close signal sources more precisely and have higher resolution compared with sub-space based methods.

  1. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    Science.gov (United States)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  2. Ptychotomography at DLS Coherence Beamline I13

    Science.gov (United States)

    Kuppili, V. S. C.; Sala, S.; Chalkidis, S.; Wise, A. M.; Parsons, A. D.; Zanette, I.; Rau, C.; Thibault, P.

    2017-06-01

    We describe the implementation and execution of ptychotomography at I13-1, the coherence branchline at Diamond Light Source. The data collection and image reconstruction protocol is demonstrated with the three dimensional reconstruction of a nanoporous gold sample.

  3. Ptychotomography at DLS Coherence Beamline I13

    International Nuclear Information System (INIS)

    Kuppili, V.S.C.; Sala, S.; Chalkidis, S.; Wise, A.M.; Parsons, A.D.; Zanette, I.; Rau, C.; Thibault, P.

    2017-01-01

    We describe the implementation and execution of ptychotomography at I13-1, the coherence branchline at Diamond Light Source. The data collection and image reconstruction protocol is demonstrated with the three dimensional reconstruction of a nanoporous gold sample. (paper)

  4. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas, E-mail: xuepeng.chen@yale.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  5. Swept source optical coherence tomography for in vivo growth monitoring of capsicum annuum seeds treated with different NaCl concentrations

    Science.gov (United States)

    Ravichandran, Naresh Kumar; Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Shirazi, Muhammad Faizan; Park, Kibeom; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2017-04-01

    In this study, Optical coherence tomography (OCT) is demonstrated as a plausible optical tool for in vivo detection of plant seeds and its morphological changes during growth. The experiment was carried out on Capsicum annuum seeds that were treated with different molar concentrations of NaCl to investigate the most optimal concentration for the seed growth. The monitoring process was carried out for 9 consecutive days. The in vivo 2D OCT images of the treated seeds were obtained and compared with seeds that were grown with sterile distilled water. The obtained results confirm the feasibility of using OCT for the proposed application. Normalized A-scan analysis method is utilized for supporting the concluded results.

  6. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  7. SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Fukagawa, Misato [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Shibai, Hiroshi [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Hanawa, Tomoyuki [Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522 (Japan); Murakawa, Koji, E-mail: kataoka@uni-heidelberg.de [College of General Education, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka 574-8530 (Japan)

    2016-11-10

    We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. The polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.

  8. HERSCHEL/SPIRE SUBMILLIMETER SPECTRA OF LOCAL ACTIVE GALAXIES {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Pereira-Santaella, Miguel; Spinoglio, Luigi; Busquet, Gemma [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Wilson, Christine D.; Schirm, Maximilien R. P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem [Center for Astrophysics and Space Astronomy, 389-UCB, University of Colorado, Boulder, CO 80303 (United States); Isaak, Kate G. [ESA Astrophysics Missions Division, ESTEC, P.O. Box 299, 2200 AG Noordwijk (Netherlands); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Boselli, Alessandro [Laboratoire d' Astrophysique de Marseille (LAM), Universite d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Cooray, Asantha [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Cormier, Diane, E-mail: miguel.pereira@ifsi-roma.inaf.it [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France)

    2013-05-01

    We present the submillimeter spectra from 450 to 1550 GHz of 11 nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) on board Herschel. We detect CO transitions from J{sub up} = 4 to 12, as well as the two [C I] fine structure lines at 492 and 809 GHz and the [N II]1461 GHz line. We used radiative transfer models to analyze the observed CO spectral line energy distributions. The FTS CO data were complemented with ground-based observations of the low-J CO lines. We found that the warm molecular gas traced by the mid-J CO transitions has similar physical conditions (n{sub H{sub 2}}{approx} 10{sup 3.2}-10{sup 3.9} cm{sup -3} and T{sub kin} {approx} 300-800 K) in most of our galaxies. Furthermore, we found that this warm gas is likely producing the mid-IR rotational H{sub 2} emission. We could not determine the specific heating mechanism of the warm gas, however, it is possibly related to the star formation activity in these galaxies. Our modeling of the [C I] emission suggests that it is produced in cold (T{sub kin} < 30 K) and dense (n{sub H{sub 2}}>10{sup 3} cm{sup -3}) molecular gas. Transitions of other molecules are often detected in our SPIRE/FTS spectra. The HF J = 1-0 transition at 1232 GHz is detected in absorption in UGC 05101 and in emission in NGC 7130. In the latter, near-infrared pumping, chemical pumping, or collisional excitation with electrons are plausible excitation mechanisms likely related to the active galactic nucleus of this galaxy. In some galaxies, few H{sub 2}O emission lines are present. Additionally, three OH{sup +} lines at 909, 971, and 1033 GHz are identified in NGC 7130.

  9. EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING

    International Nuclear Information System (INIS)

    Brown, J. M.; Blake, G. A.; Qi, C.; Wilner, D. J.; Dullemond, C. P.; Williams, J. P.

    2009-01-01

    Mid-infrared spectrophotometric observations have revealed a small subclass of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model-dependent method of finding central holes. Imaging of protoplanetry disks provides an independent check of SED modeling. We present here the direct characterization of three 33-47 AU radii inner gaps, in the disks around LkHα 330, SR 21N, and HD 135344B, via 340 GHz (880 μm) dust continuum aperture synthesis observations obtained with the Submillimeter Array (SMA). The large gaps are fully resolved at ∼0.''3 by the SMA data and mostly empty of dust, with less than (1-7.5) x 10 -6 M sun of fine grained solids inside the holes. Gas (as traced by atomic accretion markers and CO 4.7 μm rovibrational emission) is still present in the inner regions of all three disks. For each, the inner hole exhibits a relatively steep rise in dust emission to the outer disk, a feature more likely to originate from the gravitational influence of a companion body than from a process expected to show a more shallow gradient like grain growth. Importantly, the good agreement between the spatially resolved data and spectrophotometry-based models lends confidence to current interpretations of SEDs, wherein the significant dust emission deficits arise from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.

  10. The Digital Motion Control System for the Submillimeter Array Antennas

    Science.gov (United States)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  11. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  12. THE CIRCUMGALACTIC MEDIUM OF SUBMILLIMETER GALAXIES. I. FIRST RESULTS FROM A RADIO-IDENTIFIED SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Hai; Mutel, R.; Isbell, J.; Lang, C.; McGinnis, D. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Hennawi, J. F. [Max-Planck-Institut fur Astronomie, Heidelberg (Germany); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Casey, C. [Department of Astronomy, the University of Texas at Austin, 2515 Speedway Blvd, Stop C1400, Austin, TX 78712 (United States); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Kereš, D. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Zhang, Z.-Y.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Clements, D. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Mooley, K. [Oxford Centre For Astrophysical Surveys, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United States); Perley, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Stockton, A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Thompson, D. [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States)

    2016-11-20

    We present the first results from an ongoing survey to characterize the circumgalactic medium (CGM) of massive high-redshift galaxies detected as submillimeter galaxies (SMGs). We constructed a parent sample of 163 SMG–QSO pairs with separations less than ∼36″ by cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed QSOs. The Herschel sources were selected to match the properties of the SMGs. We determined the sub-arcsecond positions of six Herschel sources with the Very Large Array and obtained secure redshift identification for three of those with near-infrared spectroscopy. The QSO sightlines probe transverse proper distances of 112, 157, and 198 kpc at foreground redshifts of 2.043, 2.515, and 2.184, respectively, which are comparable to the virial radius of the ∼10{sup 13} M {sub ⊙} halos expected to host SMGs. High-quality absorption-line spectroscopy of the QSOs reveals systematically strong H i Ly α absorption around all three SMGs, with rest-frame equivalent widths of ∼2–3 Å. However, none of the three absorbers exhibit compelling evidence for optically thick H i gas or metal absorption, in contrast to the dominance of strong neutral absorbers in the CGM of luminous z ∼ 2 QSOs. The low covering factor of optically thick H i gas around SMGs tentatively indicates that SMGs may not have as prominent cool gas reservoirs in their halos as the coeval QSOs and that they may inhabit less massive halos than previously thought.

  13. SUBMILLIMETER ARRAY OBSERVATIONS TOWARD THE MASSIVE STAR-FORMING CORE MM1 OF W75N

    International Nuclear Information System (INIS)

    Minh, Y. C.; Su, Y.-N.; Liu, S.-Y.; Yan, C.-H.; Chen, H.-R.; Kim, S.-J.

    2010-01-01

    The massive star-forming core MM1 of W75N was observed using the Submillimeter Array with ∼1'' and 2'' spatial resolutions at 217 and 347 GHz, respectively. From the 217 GHz continuum we found that the MM1 core consists of two sources, separated by about 1'': MM1a (∼0.6 M sun ) and MM1b (∼1.4 M sun ), located near the radio continuum sources VLA 2/VLA 3 and VLA 1, respectively. Within MM1b, two gas clumps were found to be expanding away from VLA 1 at about ±3 km s -1 , as a result of the most recent star formation activity in the region. Observed molecular lines show emission peaks at two positions, MM1a and MM1b: sulfur-bearing species have emission peaks toward MM1a, but methanol and saturated species at MM1b. We identified high-temperature (∼200 K) gas toward MM1a and the hot core in MM1b. This segregation may result from the evolution of the massive star-forming core. In the very early phase of star formation, the hot core is seen through the evaporation of dust ice-mantle species. As the mantle species are consumed via evaporation the high-temperature gas species (such as the sulfur-bearing molecules) become bright. The SiO molecule is unique in having an emission peak exactly at the VLA 2 position, probably tracing a shock powered by VLA 2. The observed sulfur-bearing species show similar abundances both in MM1a and MM1b, whereas the methanol and saturated species show significant abundance enhancement toward MM1b, by about an order of magnitude, compared to MM1a.

  14. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  15. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  16. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  17. Comparative Study of Anterior Eye Segment Measurements with Spectral Swept-Source and Time-Domain Optical Coherence Tomography in Eyes with Corneal Dystrophies.

    Science.gov (United States)

    Nowinska, Anna K; Teper, Sławomir J; Janiszewska, Dominika A; Lyssek-Boron, Anita; Dobrowolski, Dariusz; Koprowski, Robert; Wylegala, Edward

    2015-01-01

    To compare anterior eye segment measurements and morphology obtained with two optical coherence tomography systems (TD OCT, SS OCT) in eyes with corneal dystrophies (CDs). Fifty healthy volunteers (50 eyes) and 54 patients (96 eyes) diagnosed with CD (epithelial basement membrane dystrophy, EBMD = 12 eyes; Thiel-Behnke CD = 6 eyes; lattice CD TGFBI type = 15 eyes; granular CD type 1 = 7 eyes, granular CD type 2 = 2 eyes; macular CD = 23 eyes; and Fuchs endothelial CD = 31 eyes) were recruited for the study. Automated and manual central corneal thickness (aCCT, mCCT), anterior chamber depth (ACD), and nasal and temporal trabecular iris angle (nTIA, tTIA) were measured and compared with Bland-Altman plots. Good agreement between the TD and SS OCT measurements was demonstrated for mCCT and aCCT in normal individuals and for mCCT in the CDs group. The ACD, nTIA, and tTIA measurements differed significantly in both groups. TBCD, LCD, and FECD caused increased CCT. MCD caused significant corneal thinning. FECD affected all analyzed parameters. Better agreement between SS OCT and TD OCT measurements was demonstrated in normal individuals compared to the CDs group. OCT provides comprehensive corneal deposits analysis and demonstrates the association of CD with CCT, ACD, and TIA measurements.

  18. Comparative Study of Anterior Eye Segment Measurements with Spectral Swept-Source and Time-Domain Optical Coherence Tomography in Eyes with Corneal Dystrophies

    Directory of Open Access Journals (Sweden)

    Anna K. Nowinska

    2015-01-01

    Full Text Available Purpose. To compare anterior eye segment measurements and morphology obtained with two optical coherence tomography systems (TD OCT, SS OCT in eyes with corneal dystrophies (CDs. Methods. Fifty healthy volunteers (50 eyes and 54 patients (96 eyes diagnosed with CD (epithelial basement membrane dystrophy, EBMD = 12 eyes; Thiel-Behnke CD = 6 eyes; lattice CD TGFBI type = 15 eyes; granular CD type 1 = 7 eyes, granular CD type 2 = 2 eyes; macular CD = 23 eyes; and Fuchs endothelial CD = 31 eyes were recruited for the study. Automated and manual central corneal thickness (aCCT, mCCT, anterior chamber depth (ACD, and nasal and temporal trabecular iris angle (nTIA, tTIA were measured and compared with Bland-Altman plots. Results. Good agreement between the TD and SS OCT measurements was demonstrated for mCCT and aCCT in normal individuals and for mCCT in the CDs group. The ACD, nTIA, and tTIA measurements differed significantly in both groups. TBCD, LCD, and FECD caused increased CCT. MCD caused significant corneal thinning. FECD affected all analyzed parameters. Conclusions. Better agreement between SS OCT and TD OCT measurements was demonstrated in normal individuals compared to the CDs group. OCT provides comprehensive corneal deposits analysis and demonstrates the association of CD with CCT, ACD, and TIA measurements.

  19. Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics.

    Science.gov (United States)

    MacDougall, Dan; Farrell, Joshua; Brown, Jeremy; Bance, Manohar; Adamson, Robert

    2016-11-01

    We present the design, implementation and validation of a swept-source optical coherence tomography (OCT) system for real-time imaging of the human middle ear in live patients. Our system consists of a highly phase-stable Vernier-tuned distributed Bragg-reflector laser along with a real-time processing engine implemented on a graphics processing unit. We use the system to demonstrate, for the first time in live subjects, real-time Doppler measurements of middle ear vibration in response to sound, video rate 2D B-mode imaging of the middle ear and 3D volumetric B-mode imaging. All measurements were performed non-invasively through the intact tympanic membrane demonstrating that the technology is readily translatable to the clinic.

  20. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  1. AlInGaN-Based Superlattice Terahertz Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — WaveBand Corporation in collaboration with Virginia Commonwealth University proposes to design and fabricate a new sub-millimeter source based on an InAlGaN...

  2. Micropole Undulators In Synchrotron Radiation Technology: Design And Construction Of A Submillimeter Period Prototype With A 3 Kilogauss Peak Field At SSRL

    Science.gov (United States)

    Tatchyn, Roman; Csonka, Paul

    1986-01-01

    The availability of undulators with submillimeter periods will profoundly affect the future development of soft x-ray sources and their attendant instrumentation. Outputs comparable to those of present-day conventional undulators, obtainable with much lower energy storage rings, is only one promising aspect of such devices. This paper critically examines some of the future prospects of such devices and describes the design and practical construction of a 1" long prototype consisting of 35 periods. A proposed experiment to test this device on a linac is described.

  3. Micropole undulators in synchrotron radiation technology: Design and construction of a submillimeter period prototype with a 3 kilogauss peak field at SSRL

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.

    1987-01-01

    The availability of undulators with submillimeter periods profoundly affects the future development of soft x-ray sources and their attendant instrumentation. Outputs comparable to those of present-day conventional undulators, obtainable with much lower energy storage rings, is only one promising aspect of such devices. This paper critically examines some of the future prospects of such devices and describes the design and practical construction of a 1'' long prototype consisting of 35 periods. A proposed experiment to test this device on a linac is described

  4. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  5. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  6. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  7. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  8. Millimeter and submillimeter observations from the Atacama plateau and high altitude balloons

    Science.gov (United States)

    Devlin, Mark

    2002-05-01

    A new generation of ground-based and sub-orbital platforms will be operational in the next few years. These telescopes will operate from high sites in Chile and Antarctica, and airborne platforms where the atmosphere is transparent enough to allow sensitive measurements in the millimeter and submillimeter bands. The telescopes will employ state-of-the-art instrumentation including large format bolometer arrays and spectrometers. I will discuss the results of our observations in the Atacama region of Chile (MAT/TOCO), our future observations on the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) now under construction, and our proposed Atacama Cosmology Telescope (ACT). .

  9. Thin-film VO2 submillimeter-wave modulators and polarizers

    International Nuclear Information System (INIS)

    Fan, J.C.C.; Fetterman, H.R.; Bachner, F.J.; Zavracky, P.M.; Parker, C.D.

    1977-01-01

    Submillimeter-wave modulators and switchable polarizers have been fabricated from VO 2 thin films deposited on sapphire substrates. By passing electric current pulses through elements made from these films, the films can be thermally cycled through the insulator-to-metal transition that occurs in VO 2 at about 65 degreeC. In the insulating state, the films are found to have negligible effect on the transmission at submillimeter wavelengths, while above the phase transition the transmission is strongly reduced by the free-electron effects characteristic of a metal. Other possible applications of such switchable VO 2 elements include variable bandpass filters and diffraction grating beam-steering devices

  10. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Hashimoto, Jun [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji [National Astronomical Observatory Japan (NAOJ), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Abe, Lyu [Lboratoire Lagrange (UMR 7293), Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto, Ontario (Canada); Egner, Sebastian E.; Guyon, Olivier [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Goto, Miwa [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Grady, Carol, E-mail: ttsuka@mx.ibaraki.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  11. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, V. [Conacyt—SCiESMEX, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, México (Mexico)

    2016-07-10

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H{sup −}. In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H{sup −}, and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  12. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    International Nuclear Information System (INIS)

    De la Luz, V.

    2016-01-01

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H − . In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H − , and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  13. NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Del Moro, A.; Rovilos, E. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Altieri, B.; Coia, D. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computation Physics, University of Crete, 71003 Heraklion (Greece); Daddi, E.; Le Floc' h, E.; Leiton, R. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Dannerbauer, H. [Insitut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dasyra, K. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l' Observatoire, F-75014 Paris (France); Dickinson, M.; Kartaltepe, J. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Magnelli, B.; Popesso, P.; Rosario, D. [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); and others

    2012-11-20

    Many theoretical models require powerful active galactic nuclei (AGNs) to suppress star formation in distant galaxies and reproduce the observed properties of today's massive galaxies. A recent study based on Herschel-SPIRE submillimeter observations claimed to provide direct support for this picture, reporting a significant decrease in the mean star formation rates (SFRs) of the most luminous AGNs (L{sub X} >10{sup 44} erg s{sup -1}) at z Almost-Equal-To 1-3 in the Chandra Deep Field-North (CDF-N). In this Letter, we extend these results using Herschel-SPIRE 250 {mu}m data in the COSMOS and Chandra Deep Field-South fields to achieve an order-of-magnitude improvement in the number of sources at L{sub X} >10{sup 44} erg s{sup -1}. On the basis of our analysis, we find no strong evidence for suppressed star formation in L{sub X} >10{sup 44} erg s{sup -1} AGNs at z Almost-Equal-To 1-3. The mean SFRs of the AGNs are constant over the broad X-ray luminosity range of L{sub X} Almost-Equal-To 10{sup 43}-10{sup 45} erg s{sup -1} (with mean SFRs consistent with typical star-forming galaxies at z Almost-Equal-To 2; (SFRs) Almost-Equal-To 100-200 M{sub Sun} yr{sup -1}). We suggest that the previous CDF-N results were likely due to low number statistics. We discuss our results in the context of current theoretical models.

  14. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    International Nuclear Information System (INIS)

    Kato, T; Kataoka, J; Nakamori, T; Kishimoto, A; Yamamoto, S; Sato, K; Ishikawa, Y; Yamamura, K; Kawabata, N; Ikeda, H; Kamada, K

    2013-01-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 10 5 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤ 400 kcps per channel. We selected Ce-doped (Lu,Y) 2 (SiO 4 )O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm 2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22 Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  15. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); De Breuck, C.; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Holzapfel, W. L., E-mail: jspilker@as.arizona.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  16. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  17. Coherent dynamics of plasma mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Thaury, C; George, H; Quere, F; Monot, P; Martin, Ph [CEA, DSM, IRAMIS, Serv Photons Atomes and Mol, F-91191 Gif Sur Yvette, (France); Loch, R [Univ Twente, Laser Phys and Nonlinear Opt Grp, Fac Sci and Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, (Netherlands); Geindre, J P [Ecole Polytech, Lab Pour Utilisat Lasers Intenses, CNRS, F-91128 Palaiseau, (France)

    2008-07-01

    Coherent ultrashort X-ray pulses provide new ways to probe matter and its ultrafast dynamics. One of the promising paths to generate these pulses consists of using a nonlinear interaction with a system to strongly and periodically distort the waveform of intense laser fields, and thus produce high-order harmonics. Such distortions have so far been induced by using the nonlinear polarizability of atoms, leading to the production of atto-second light bursts, short enough to study the dynamics of electrons in matter. Shorter and more intense atto-second pulses, together with higher harmonic orders, are expected by reflecting ultra intense laser pulses on a plasma mirror - a dense (approximate to 10{sup 23} electrons cm{sup -3}) plasma with a steep interface. However, short-wavelength-light sources produced by such plasmas are known to generally be incoherent. In contrast, we demonstrate that like in usual low-intensity reflection, the coherence of the light wave is preserved during harmonic generation on plasma mirrors. We then exploit this coherence for interferometric measurements and thus carry out a first study of the laser-driven coherent dynamics of the plasma electrons. (authors)

  18. QUANTUM ELECTRONIC DEVICES: Superconducting Nb3Sn point contact in the submillimeter range of electromagnetic radiation

    Science.gov (United States)

    Belenov, É. M.; Danileĭko, M. V.; Derkach, V. E.; Romanenko, V. I.; Uskov, A. V.

    1988-05-01

    An investigation was made of the influence of submillimeter radiation emitted by an HCN laser operating at a frequency νl = 891 GHz on a superconducting point contact made of Nb3Sn. Three steps of the electric current were recorded. The experimental results indicated that such a contact could be used for frequency multiplication up to 3 THz.

  19. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  20. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NARCIS (Netherlands)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into

  1. Coherence comes full circle. Interview by Joerg Heber.

    Science.gov (United States)

    Materlik, Gerhard

    2010-05-01

    Coherent synchrotron radiation has revolutionized the study of molecules and materials. Talking to Nature Materials, Gerhard Materlik, CEO of the Diamond Light Source, discusses the many uses of synchrotron sources and free electron lasers.

  2. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model

    Science.gov (United States)

    Cutiongco, Marie F. A.; Kukumberg, Marek; Peneyra, Jonnathan L.; Yeo, Matthew S.; Yao, Jia Y.; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K. F.

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  3. Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz

    Science.gov (United States)

    Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd; hide

    2010-01-01

    In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems

  4. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  5. Quantum learning of coherent states

    International Nuclear Information System (INIS)

    Sentis, Gael; Guta, Madalin; Adesso, Gerardo

    2015-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  6. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    Science.gov (United States)

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  7. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  8. Speckles generated by skewed, short-coherence light beams

    International Nuclear Information System (INIS)

    Brogioli, D; Salerno, D; Ziano, R; Mantegazza, F; Croccolo, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called ‘skewed coherence beam’, i.e. a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. Moreover, we show that the heterodyne signal is not affected by multiple scattering. We suggest that the phenomenon presented here can be used as a means of carrying out heterodyne scattering measurement with any short-coherence radiation, including x-rays. (paper)

  9. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials

    Science.gov (United States)

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-01

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  10. Coherent Multistatic ISAR Imaging

    NARCIS (Netherlands)

    Dorp, Ph. van; Otten, M.P.G.; Verzeilberg, J.M.M.

    2012-01-01

    This paper presents methods for Coherent Multistatic Radar Imaging for Non Cooperative Target Recognition (NCTR) with a network of radar sensors. Coherent Multistatic Radar Imaging is based on an extension of existing monostatic ISAR algorithms to the multistatic environment. The paper describes the

  11. VCSEL Based Coherent PONs

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero Jambrina, Antonio

    2014-01-01

    We present a review of research performed in the area of coherent access technologies employing vertical cavity surface emitting lasers (VCSELs). Experimental demonstrations of optical transmission over a passive fiber link with coherent detection using VCSEL local oscillators and directly modula...

  12. Self-imaging of partially coherent light in graded-index media.

    Science.gov (United States)

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  13. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  14. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  15. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  16. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  17. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    International Nuclear Information System (INIS)

    Song, Tae Yong; Wu Heyu; Komarov, Sergey; Tai, Yuan-Chuan; Siegel, Stefan B

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm 3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  18. Determination of radial peculiar velocities of galaxy clusters by means of the submillimeter spectrophotometry

    International Nuclear Information System (INIS)

    Sholomitskij, G.B.

    1984-01-01

    The possibility is considered to obtain from the extraatmospheric submillimeter spectrophotometry of galaxy clusters the ratios vsub(r)/Tsub(e) for clusters intergalactic gas that permits, together with the X-ray measurements of electronic temperature Tsub(e) in the case of hot scattering gas to determine absolute radial peculiar velocities vsub(r) of galaxy clusters relative to the relic radiation. By simulating such peculiar velocities as an example for the system of bandpass filters in the wavelength range 300 μm - 2 mm the accuracy of vsub(r) estimates is proved to be about 300 km/s (not taking into account the errors in Tsub(e)) the sensitivity of deeply cooled submillimeter bolometers being 1x10 -15 W/Hzsup(1/2)

  19. The Status of MUSIC: A Multicolor Sub/millimeter MKID Instrument

    Science.gov (United States)

    Schlaerth, J. A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Nguyen, H. T.; Noroozian, O.; Sayers, J.; Siegel, S.; Zmuidzinas, J.

    2012-05-01

    We report on the recent progress of the Multicolor Submillimeter (kinetic) Inductance Camera, or MUSIC. MUSIC will use antenna-coupled Microwave Kinetic Inductance Detectors to observe in four colors (150 GHz, 230 GHz, 290 GHz and 350 GHz) with 2304 detectors, 576 per band, at the Caltech Submillimeter Observatory. It will deploy in 2012. Here we provide an overview of the instrument, focusing on the array design. We have also used a pathfinder demonstration instrument, DemoCam, to identify problems in advance of the deployment of MUSIC. In particular, we identified two major limiters of our sensitivity: out-of-band light directly coupling to the detectors (i.e. not through the antenna), effectively an excess load, and a large 1/f contribution from our amplifiers and electronics. We discuss the steps taken to mitigate these effects to reach background-limited performance (BLIP) in observation.

  20. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    Science.gov (United States)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  1. Pressure broadening measurement of submillimeter-wave lines of O3

    International Nuclear Information System (INIS)

    Yamada, M.M.; Amano, T.

    2005-01-01

    The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, 16 O 18 O 16 O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5-3% accuracy for the normal species transitions

  2. Submillimeter molecular spectroscopy with the Texas millimeter wave observatory radio telescope

    International Nuclear Information System (INIS)

    Loren, R.B.; Wootten, A.; National Radio Astronomy Observatory, Charlottesville, VA)

    1986-01-01

    A large number of previously unreported molecular transitions have been detected in the submillimeter wavelength band toward OMC-1 and M17 SW using the Texas 4.9 m radio antenna. The emission components in OMC-1 that come from the unresolved plateau and hot core regions are stronger in these higher energy transitions than in the lower-energy, lower-frequency lines. Intense, probably thermalized high J SiO lines require a very hot core if they arise in a region the same size as that mapped in J = 2-1 SiO by interferometer measurements. Despite the high energy levels of the submillimeter lines of CN and CCH, there is no broad emission component evident, consistent with their greatly reduced abundance due to removal by chemical reactions. 33 references

  3. Interferometric investigation methods of plasma spatial characteristics on stellarators and tokamaks in submillimeter region

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.; Kononenko, V.I.; Epishin, V.A.; Topkov, A.N.

    1992-01-01

    The review of interferometric methods of plasma investigation in the wave submillimeter range is given. The diagnostic schemes in stellarators and tokamaks designed for experienced thermonuclear reactors and also the perspective ones, which are still out of practice, are shown. The methods of these diagnostics, their physical principles, the main possibilities and restrictions at changes of electron density, magnetic fields (currents) and their spatial distributions are described. 105 refs.; 9 figs.; 2 tables. (author)

  4. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    Science.gov (United States)

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  5. Generation of a strong core-centering force in a submillimeter compound droplet system

    International Nuclear Information System (INIS)

    Lee, M.C.; Feng, I.; Elleman, D.D.; Wang, T.G.; Young, A.T.

    1981-01-01

    By amplitude-modulating the driving voltage of an acoustic levitating apparatus, a strong core-centering force can be generated in a submillimeter compound droplet system suspended by the radiation pressure in a gaseous medium. Depending on the acoustic characteristics of the droplet system, it has been found that the technique can be utilized advantageously in the multiple-layer coating of an inertial-confinement-fusion pellet

  6. Development of a submillimeter free electron laser using a compact electro-static accelerator

    International Nuclear Information System (INIS)

    Kawamura, Y.; Shu, S.H.; Tanabe, T.; Li, D.J.; Toyoda, K.

    1995-01-01

    An experimental facilities for the studies on submillimeter wavelength free electron laser (FEL) are now under construction in our group. In this paper the possibilities for the two kinds of operation modes, which are expected to be obtained, such as the self mode-locked operations in a small net-gain region and the evolution of CW radiation in a large net-gain region, are analized. (author)

  7. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  8. Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    Science.gov (United States)

    Kulesa, C. A.; Walker, C. K.; Schein, M.; Golish, D.; Tothill, N.; Siegel, P.; Weinreb, S.; Jones, G.; Bardin, J.; Jacobs, K.; Martin, C. L.; Storey, J.; Ashley, M.; Lawrence, J.; Luong-Van, D.; Everett, J.; Wang, L.; Feng, L.; Zhu, Z.; Yan, J.; Yang, J.; Zhang, X.-G.; Cui, X.; Yuan, X.; Hu, J.; Xu, Z.; Jiang, Z.; Yang, H.; Li, Y.; Sun, B.; Qin, W.; Shang, Z.

    2008-07-01

    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the 13CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented.

  9. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  10. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    International Nuclear Information System (INIS)

    Smolčić, V.; Navarrete, F.; Bertoldi, F.; Aravena, M.; Sheth, K.; Ilbert, O.; Yun, M. S.; Salvato, M.; Finoguenov, A.; McCracken, H. J.; Diener, C.; Aretxaga, I.; Hughes, D.; Wilson, G.; Riechers, D. A.; Capak, P.; Scoville, N. Z.; Karim, A.; Schinnerer, E.

    2012-01-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F 1m > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ∼10''-30'', resolution. All three sources—AzTEC/C1, Cosbo-3, and Cosbo-8—are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution (∼2'') mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z ∼> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 ± 1.2, 1.9 +0.9 –0.5 , and ∼4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of ∼> 1000 M ☉ yr –1 and IR luminosities of ∼10 13 L ☉ consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z ∼ 2 and today's passive galaxies.

  11. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    International Nuclear Information System (INIS)

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E.; Aretxaga, I.; Auld, R.; Dariush, A.; Barton, E.; Cooke, J.; Cooray, A.; Beelen, A.; Bertoldi, F.; Bock, J. J.; Bradford, C. M.; Bonfield, D.; Buttiglione, S.; De Zotti, G.; Cava, A.; Clements, D. L.; Dannerbauer, H.; Dunne, L.

    2012-01-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z ∼ 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10 2–3 M ☉ yr –1 . Lower limits for the dust masses (∼ a few 10 8 M ☉ ) and spatial extents (∼1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures (∼< 100 K) and optical depths (τ ∼< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 → 3 to 10 → 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.

  12. Intracoronary optical coherence tomography

    DEFF Research Database (Denmark)

    Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei

    2017-01-01

    By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT...

  13. Coherence in Industrial Transformation

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Lauridsen, Erik Hagelskjær

    2003-01-01

    The notion of coherence is used to illustrate the general finding, that the impact of environmental management systems and environmental policy is highly dependent of the context and interrelatedness of the systems, procedures and regimes established in society....

  14. Coherent imaging at FLASH

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Duesterer, S; Treusch, R; Barty, A; Benner, W H; Bogan, M J; Frank, M; Hau-Riege, S P; Woods, B W; Boutet, S; Cavalleri, A; Hajdu, J; Iwan, B; Seibert, M M; Timneanu, N; Marchesini, S; Sakdinawat, A; Sokolowski-Tinten, K

    2009-01-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  15. TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    Daddi, E.; Elbaz, D.; Mancini, C.; Dannerbauer, H.; Stern, D.; Dickinson, M.; Pope, A.; Morrison, G.; Giavalisco, M.; Spinrad, H.

    2009-01-01

    We present the serendipitous discovery of molecular gas CO emission lines with the IRAM Plateau de Bure interferometer coincident with two luminous submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey North (GOODS-N) field. The identification of the millimeter emission lines as CO[4-3] at z = 4.05 is based on the optical and near-IR photometric redshifts, radio-infrared photometric redshifts, and Keck+DEIMOS optical spectroscopy. These two galaxies include the brightest submillimeter source in the field (GN20; S 850μm = 20.3 mJy, z CO = 4.055 ± 0.001) and its companion (GN20.2; S 850μm = 9.9 mJy, z CO = 4.051 ± 0.003). These are among the most distant submillimeter-selected galaxies reliably identified through CO emission and also some of the most luminous known. GN20.2 has a possible additional counterpart and a luminous active galactic nucleus inside its primary counterpart revealed in the radio. Continuum emission of 0.3 mJy at 3.3 mm (0.65 mm in the rest frame) is detected at 5σ for GN20, the first dust continuum detection in an SMG at such long wavelength, unveiling a spectral energy distribution that is similar to local ultra luminous IR galaxies. In terms of CO to bolometric luminosities, stellar mass, and star formation rates (SFRs), these newly discovered z > 4 SMGs are similar to z ∼ 2-3 SMGs studied to date. These z ∼ 4 SMGs have much higher specific star formation rates than those of typical B-band dropout Lyman break galaxies at the same redshift. The stellar mass-SFR correlation for normal galaxies does not seem to evolve much further, between z ∼ 2 and z ∼ 4. A significant z = 4.05 spectroscopic redshift spike is observed in GOODS-N, and a strong spatial overdensity of B-band dropouts and IRAC selected z > 3.5 galaxies appears to be centered on the GN20 and GN20.2 galaxies. This suggests a protocluster structure with total mass ∼10 14 M sun . Using photometry at mid-IR (24 μm), submillimeter (850 μm), and

  16. Coherent diffractive imaging methods for semiconductor manufacturing

    Science.gov (United States)

    Helfenstein, Patrick; Mochi, Iacopo; Rajeev, Rajendran; Fernandez, Sara; Ekinci, Yasin

    2017-12-01

    The paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.

  17. Connecting coherent structures and strange attractors

    Science.gov (United States)

    Keefe, Laurence R.

    1990-01-01

    A concept of turbulence derived from nonlinear dynamical systems theory suggests that turbulent solutions to the Navier-Stokes equations are restricted to strange attractors, and, by implication, that turbulent phenomenology must find some expression or source in the structure of these mathematical objects. Examples and discussions are presented to link coherent structures to some of the commonly known characteristics of strange attractors. Basic to this link is a geometric interpretation of conditional sampling techniques employed to educe coherent structures that offers an explanation for their appearance in measurements as well as their size.

  18. Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Venturini, Marco

    2002-01-01

    We take a detour from the main theme of this volume and present a discussion of coherent synchrotron radiation (CSR) in the context of storage rings rather than single-pass systems. Interest in this topic has been revived by a series of measurements carried out at several light source facilities. There is strong evidence that the observed coherent signal is accompanied by a beam instability, possibly driven by CSR itself. In this paper we review a ''self-consistent'' model of longitudinal beam dynamics in which CSR is the only agent of collective forces. The model yields numerical solutions that appear to reproduce the main features of the observations

  19. Beam line for experiments with coherent soft x-rays

    International Nuclear Information System (INIS)

    Howells, M.R.; Kirz, J.; Krinsky, S.

    1982-12-01

    The advantages of coherent soft x-rays for three-dimensional imaging of biological specimens are discussed, the x-ray source requirements are described, and the general design of the beam line and its optical system are given

  20. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Jabbour, Ghassan

    2013-01-01

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu

  1. Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere

    Science.gov (United States)

    Zhang, Xu; Wang, Haiyan; Tang, Lei

    2018-01-01

    A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.

  2. A Monte Carlo approach for simulating the propagation of partially coherent x-ray beams

    DEFF Research Database (Denmark)

    Prodi, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2011-01-01

    Advances at SR sources in the generation of nanofocused beams with a high degree of transverse coherence call for effective techniques to simulate the propagation of partially coherent X-ray beams through complex optical systems in order to characterize how coherence properties such as the mutual...

  3. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  4. Dynamic coherent backscattering mirror

    Energy Technology Data Exchange (ETDEWEB)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  5. CO J = 1-0 SPECTROSCOPY OF FOUR SUBMILLIMETER GALAXIES WITH THE ZPECTROMETER ON THE GREEN BANK TELESCOPE

    International Nuclear Information System (INIS)

    Harris, A. I.; Zonak, S. G.; Rauch, K.; Baker, A. J.; Sharon, C. E.; Genzel, R.; Watts, G.; Creager, R.

    2010-01-01

    We report detections of three z ∼ 2.5 submillimeter-selected galaxies (SMGs; SMM J14011+0252, SMM J14009+0252, SMM J04431+0210) in the lowest rotational transition of the carbon monoxide molecule (CO J = 1-0) and one nondetection (SMM J04433+0210). For the three galaxies we detected, we find a line-integrated brightness temperature ratio of the J = 3-2 and 1-0 lines of 0.68 ± 0.08; the 1-0 line is stronger than predicted by the frequent assumption of equal brightnesses in the two lines and by most single-component models. The observed ratio suggests that mass estimates for SMGs based on J = 3-2 observations and J = 1-0 column density or mass conversion factors are low by a factor of 1.5. Comparison of the 1-0 line intensities with intensities of higher-J transitions indicates that single-component models for the interstellar media in SMGs are incomplete. The small dispersion in the ratio, along with published detections of CO lines with J upper >3 in most of the sources, indicates that the emission is from multi-component interstellar media with physical structures common to many classes of galaxies. This result tends to rule out the lowest scaling factors between CO luminosity and molecular gas mass, and further increases molecular mass estimates calibrated against observations of galaxies in the local universe. We also describe and demonstrate a statistically sound method for finding weak lines in broadband spectra that will find application in searches for molecular lines from sources at unknown redshifts.

  6. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  7. EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708

    International Nuclear Information System (INIS)

    Sharon, Chelsea E.; Baker, Andrew J.; Harris, Andrew I.; Tacconi, Linda J.; Lutz, Dieter; Longmore, Steven N.

    2015-01-01

    We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ∼500 km s –1 that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blueshifted component dispersion-dominated and the redshifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8 ± 4.0)/sin 2 (i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the redshifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ∼1'' resolution of our observations could not have distinguished between the two components due to their separation (0.''73 ± 0.''06), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys

  8. SUBMILLIMETER H{sub 2}O MEGAMASERS IN NGC 4945 AND THE CIRCINUS GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Pesce, D. W. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Braatz, J. A.; Impellizzeri, C. M. V., E-mail: dpesce@virginia.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2016-08-10

    We present 321 GHz observations of five active galactic nuclei (AGNs) from ALMA Cycle 0 archival data: NGC 5793, NGC 1068, NGC 1386, NGC 4945, and the Circinus galaxy. Submillimeter maser emission is detected for the first time toward NGC 4945, and we present a new analysis of the submillimeter maser system in Circinus. None of the other three galaxies show maser emission, although we have detected and imaged the continuum from every galaxy. Both NGC 4945 and Circinus are known to host strong (≳10 Jy) 22 GHz megamaser emission, and VLBI observations have shown that the masers reside in the innermost ∼1 pc of the galaxies. The peak flux densities of the 321 GHz masers in both systems are substantially weaker (by a factor of ∼100) than what is observed at 22 GHz, although the corresponding isotropic luminosities are more closely matched (within a factor of ∼10) between the two transitions. We compare the submillimeter spectra presented here to the known 22 GHz spectra in both galaxies, and we argue that while both transitions originate from the gaseous environment near the AGNs, not all sites are in common. In Circinus, the spectral structure of the 321 GHz masers indicates that they may trace the accretion disk at radii interior to the 22 GHz masers. The continuum emission in NGC 4945 and NGC 5793 shows a spatial distribution indicative of an origin in the galactic disks (likely thermal dust emission), while for the other three galaxies the emission is centrally concentrated and likely originates from the nucleus.

  9. SUBMILLIMETER-HCN DIAGRAM FOR ENERGY DIAGNOSTICS IN THE CENTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Takuma; Kohno, Kotaro [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Aalto, Susanne [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Observatory, SE-439 94 Onsala (Sweden); Espada, Daniel; Martín, Sergio; Nakanishi, Kouichiro [Joint ALMA Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355 (Chile); Fathi, Kambiz [Stockholm Observatory, Department of Astronomy, Stockholm University, AlbaNova Centre, SE-106 91 Stockholm (Sweden); Harada, Nanase; Hsieh, Pei-Ying; Matsushita, Satoki [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hatsukade, Bunyo; Imanishi, Masatoshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Krips, Melanie [Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire, F-38406 St. Martin d’Hères (France); Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Soccoro, NM 87801 (United States); Nakai, Naomasa [Department of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8571 (Japan); Schinnerer, Eva [Max Planck Institute for Astronomy, Königstuhl 17, Heidelberg D-69117 (Germany); Sheth, Kartik [NASA, 300 E Street SW, Washington, DC 20546 (United States); Terashima, Yuichi [Department of Physics, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Turner, Jean L., E-mail: takumaizumi@ioa.s.u-tokyo.ac.jp [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2016-02-10

    Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4–3)/HCO{sup +}(4–3) and/or HCN(4–3)/CS(7–6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO{sup +} and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even ≳10 are a plausible explanation for the submillimeter HCN enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral–neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.

  10. EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Chelsea E.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Harris, Andrew I. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Tacconi, Linda J.; Lutz, Dieter [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Longmore, Steven N. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Warf, Birkenhead CH41 1LD (United Kingdom)

    2015-01-10

    We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ∼500 km s{sup –1} that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blueshifted component dispersion-dominated and the redshifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8 ± 4.0)/sin {sup 2}(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the redshifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ∼1'' resolution of our observations could not have distinguished between the two components due to their separation (0.''73 ± 0.''06), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys.

  11. Measurement Results of the Caltech Submillimeter Observatory 230 GHz and 460 GHz Balanced Receivers

    Science.gov (United States)

    Kooi, J. W.; Monje, R. R.; Force, B. L.; Rice, F.; Miller, D.; Phillips, T. G.

    2010-03-01

    The Caltech Submillimeter observatory (CSO) is located on top of Mauna Kea, Hawaii, at an altitude of 4.2km. The existing suite of heterodyne receivers covering the submillimeter band is rapidly aging, and in need of replacement. To this extend we have developed a family of balanced receivers covering the astrophysical important 180-720 GHz atmospheric windows. For the CSO, wide IF bandwidth receivers are implemented in a balanced receiver configuration with dual frequency observation capability. This arrangement was opted to be an optimal compromise between scientific merit and finite funding. In principle, the balanced receiver configuration has the advantage that common mode amplitude noise in the LO system is canceled, while at the same time utilizing all available LO power. Both of these features facilitate the use of commercially available synthesized LO system. In combination with a 4 GHz IF bandwidth, the described receiver layout allows for rapid high resolution spectral line surveys. Dual frequency observation is another important mode of operation offered by the new facility instrumentation. Two band observations are accomplished by separating the H and V polarizations of the incoming signal and routing them via folded optics to the appropriate polarization sensitive balanced mixer. Scientifically this observation mode facilitates pointing for the higher receiver band under mediocre weather conditions and a doubling of scientific throughput (2 x 4 GHz) under good weather conditions. Not only do these changes greatly enhance the spectroscopic capabilities of the CSO, they also enable the observatory to be integrated into the Harvard-Smithsonian Submillimeter Array (eSMA) as an additional baseline. The upgrade of the 345 GHz/650 GHz dual band balanced receivers is not far behind. All the needed hardware has been procured, and commissioning is expected the summer of 2010. The SIS junctions are capable of a 2-12 GHz bandwidth.

  12. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...

  13. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  14. Early phases in the stellar and substellar formation and evolution. Infrared and submillimeter data in the Barnard 30 dark cloud

    Science.gov (United States)

    Barrado, D.; de Gregorio Monsalvo, I.; Huélamo, N.; Morales-Calderón, M.; Bayo, A.; Palau, A.; Ruiz, M. T.; Rivière-Marichalar, P.; Bouy, H.; Morata, Ó.; Stauffer, J. R.; Eiroa, C.; Noriega-Crespo, A.

    2018-04-01

    Aims: The early evolutionary stage of brown dwarfs (BDs) is not very well characterized, especially during the embedded phase. Our goal is to gain insight into the dominant formation mechanism of very low-mass objects and BDs. Methods: We have conducted deep observations at 870 μm obtained with the LABOCA bolometer at the APEX telescope in order to identify young submillimeter (submm) sources in the Barnard 30 dark cloud. We have complemented these data with multi-wavelength observations from the optical to the far-IR and compiled complete spectral energy distributions in order to identify the counterparts, characterize the sources and to assess their membership to the association and stellar or substellar status based on the available photometric information. Results: We have identified 34 submm sources and a substantial number of possible and probable Barnard 30 members within each individual APEX/LABOCA beam. They can be classified into three distinct groups. First, 15 of these 34 have a clear optical or IR counterpart to the submm peak and nine of them are potential proto-BD candidates. Moreover, a substantial number of them could be multiple systems. A second group of 13 sources comprises candidate members with significant infrared excesses located away from the central submm emission. All of them include BD candidates, some displaying IR excess, but their association with submm emission is unclear. In addition, we have found six starless cores and, based on the total dust mass estimate, three might be pre-substellar (or pre-BDs) cores. Finally, the complete characterization of our APEX/LABOCA sources, focusing on those detected at 24 and/or 70 μm, indicates that in our sample of 34 submm sources there are, at least: two WTTs, four CTTs, five young stellar objects, eight proto-BD candidates (with another three dubious cases), and one very low luminosity objects. Conclusions: Our findings provide additional evidence concerning the BD formation mechanism

  15. Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies

    Science.gov (United States)

    Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.

    2011-01-01

    Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.

  16. EMPIRICAL PREDICTIONS FOR (SUB-)MILLIMETER LINE AND CONTINUUM DEEP FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Da Cunha, Elisabete; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Elbaz, David; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Riechers, Dominik [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Weiss, Axel, E-mail: cunha@mpia.de [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)

    2013-03-01

    Modern (sub-)millimeter/radio interferometers such as ALMA, JVLA, and the PdBI successor NOEMA will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[C II] lines and dust continuum emission in the (sub-)millimeter regime. In this paper, we present empirical predictions for such line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared Advanced Camera for Surveys and NICMOS data on the Hubble Ultra Deep Field (over an area of about 12 arcmin{sup 2}). Using a physically motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13,099 galaxies with redshifts up to z = 5, and obtain median-likelihood estimates of their stellar mass, star formation rate, dust attenuation, and dust luminosity. We combine the attenuated stellar spectra with a library of infrared emission models spanning a wide range of dust temperatures to derive statistical constraints on the dust emission in the infrared and (sub-)millimeter which are consistent with the observed optical/near-infrared emission in terms of energy balance. This allows us to estimate, for each galaxy, the (sub-)millimeter continuum flux densities in several ALMA, PdBI/NOEMA, and JVLA bands. As a consistency check, we verify that the 850 {mu}m number counts and extragalactic background light derived using our predictions are consistent with previous observations. Using empirical relations between the observed CO/[C II] line luminosities and the infrared luminosity of star-forming galaxies, we infer the luminosity of the CO(1-0) and [C II] lines from the estimated infrared luminosity of each galaxy in our sample

  17. Simulation of partially coherent light propagation using parallel computing devices

    Science.gov (United States)

    Magalhães, Tiago C.; Rebordão, José M.

    2017-08-01

    Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.

  18. Enhanced delegated computing using coherence

    Science.gov (United States)

    Barz, Stefanie; Dunjko, Vedran; Schlederer, Florian; Moore, Merritt; Kashefi, Elham; Walmsley, Ian A.

    2016-03-01

    A longstanding question is whether it is possible to delegate computational tasks securely—such that neither the computation nor the data is revealed to the server. Recently, both a classical and a quantum solution to this problem were found [C. Gentry, in Proceedings of the 41st Annual ACM Symposium on the Theory of Computing (Association for Computing Machinery, New York, 2009), pp. 167-178; A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 2009), pp. 517-526]. Here, we study the first step towards the interplay between classical and quantum approaches and show how coherence can be used as a tool for secure delegated classical computation. We show that a client with limited computational capacity—restricted to an XOR gate—can perform universal classical computation by manipulating information carriers that may occupy superpositions of two states. Using single photonic qubits or coherent light, we experimentally implement secure delegated classical computations between an independent client and a server, which are installed in two different laboratories and separated by 50 m . The server has access to the light sources and measurement devices, whereas the client may use only a restricted set of passive optical devices to manipulate the information-carrying light beams. Thus, our work highlights how minimal quantum and classical resources can be combined and exploited for classical computing.

  19. The Puzzle of Coherence

    DEFF Research Database (Denmark)

    Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten

    2016-01-01

    Background During the past decade, politicians and healthcare providers have strived to create a coherent healthcare system across primary and secondary healthcare sectors in Denmark. Nevertheless, elderly patients with chronic diseases (EPCD) continue to report experiences of poor-quality care a...

  20. Coherence in quantum estimation

    Science.gov (United States)

    Giorda, Paolo; Allegra, Michele

    2018-01-01

    The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.

  1. Coherence Multiplex System Topologies

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; Heideman, G.H.L.M.; van Etten, Wim

    2007-01-01

    Coherence multiplexing is a potentially inexpensive form of optical code-division multiple access, which is particularly suitable for short-range applications with moderate bandwidth requirements, such as access networks, LANs, or interconnects. Various topologies are known for constructing an

  2. Coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Agoh, Tomonori

    2006-01-01

    This article presents basic properties of coherent synchrotron radiation (CSR) with numerical examples and introduces the reader to important aspects of CSR in future accelerators with short bunches. We show interesting features of the single bunch instability due to CSR in storage rings and discuss the longitudinal CSR field via the impedance representation. (author)

  3. Interference due to coherence swapping

    Indian Academy of Sciences (India)

    particle is, its interaction with the beam splitter does not reveal this information .... If one shines a strong linearly polarised monochromatic laser beam, or a quasi .... to be a hindrance to coherence, can be suitably designed to create coherence.

  4. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  5. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  6. Stratospheric isotopic water profiles from a single submillimeter limb scan by TELIS

    Directory of Open Access Journals (Sweden)

    A. de Lange

    2009-08-01

    Full Text Available Around 490 GHz relatively strong HDO and H218O emission lines can be found in the submillimeter thermal-emission spectrum of the Earth's atmosphere, along with lines of the principal isotopologue of water vapour. These can be used for remote sensing of the rare/principal isotope ratio in the stratosphere. A sensitivity study has been performed for retrieval simulations of water isotopologues from balloon-borne measurements by the limb sounder TELIS (TErahertz and submillimeter LImb Sounder. The study demonstrates the capability of TELIS to determine, from a single limb scan, the profiles for H218O and HDO between 20 km and 37 km with a retrieval error of ≈3 and a spatial resolution of 1.5 km, as determined by the width of the averaging kernel. In addition HDO can be retrieved in the range of 10–20 km, albeit with a strongly deteriorated retrieval error. Expected uncertainties in instrumental parameters have only limited impact on the retrieval results.

  7. Micro combustion in sub-millimeter channels for novel modular thermophotovoltaic power generators

    International Nuclear Information System (INIS)

    Pan, J F; Tang, A K; Duan, L; Li, X C; Yang, W M; Chou, S K; Xue, H

    2010-01-01

    The performance of micro combustion-driven power systems is strongly influenced by the combustor structure. A novel modular thermophotovoltaic (TPV) power generator is presented, which is based on the sub-millimeter parallel plate combustor. It has the potential to achieve a high power density because of the high radiation energy per unit volume due to the high surface-to-volume ratio of the micro-combustor. The work experimentally investigated the ignition limitation for two micro-combustors. It also studied the effects of three major parameters on a sub-millimeter combustor, namely hydrogen to oxygen mixing ratio, hydrogen volumetric flow rate and nozzle geometry. The results show that the combustion efficiency decreases with the increase of the hydrogen flow rate, which is caused by reduced residence time. The average wall temperature with the rectangular nozzle is 25 K higher than that with the circle nozzle. The output electrical power and power density of the modular TPV power generator are projected to be 0.175 W and 0.0722 W cm −3 respectively. We experimentally achieve 0.166 W of electrical power, which is in good agreement with the model prediction

  8. Centralized operations and maintenance planning at the Atacama Large Millimeter/submillimeter Array (ALMA)

    Science.gov (United States)

    Lopez, Bernhard; Whyborn, Nicholas D.; Guniat, Serge; Hernandez, Octavio; Gairing, Stefan

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA consists of 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. Since the inauguration of the observatory back in March 2013 there has been a continuous effort to establish solid operations processes for effective and efficient management of technical and administrative tasks on site. Here a key aspect had been the centralized maintenance and operations planning: input is collected from science stakeholders, the computerized maintenance management system (CMMS) and from the technical teams spread around the world, then this information is analyzed and consolidated based on the established maintenance strategy, the observatory long-term plan and the short-term priorities definitions. This paper presents the high-level process that has been developed for the planning and scheduling of planned- and unplanned maintenance tasks, and for site operations like the telescope array reconfiguration campaigns. We focus on the centralized planning approach by presenting its genesis, its current implementation for the observatory operations including related planning products, and we explore the necessary next steps in order to fully achieve a comprehensive centralized planning approach for ALMA in steady-state operations.

  9. Development Of A Multicolor Sub/millimeter Camera Using Microwave Kinetic Inductance Detectors

    Science.gov (United States)

    Schlaerth, James A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Noroozian, O.; Sayers, J.; Siegel, S.; Vayonakis, A.; Zmuidzinas, J.

    2011-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting resonators useful for detecting light from the millimeter-wave to the X-ray. These detectors are easily multiplexed, as the resonances can be tuned to slightly different frequencies, allowing hundreds of detectors to be read out simultaneously using a single feedline. The Multicolor Submillimeter Inductance Camera, MUSIC, will use 2304 antenna-coupled MKIDs in multicolor operation, with bands centered at wavelengths of 0.85, 1.1, 1.3 and 2.0 mm, beginning in 2011. Here we present the results of our demonstration instrument, DemoCam, containing a single 3-color array with 72 detectors and optics similar to MUSIC. We present sensitivities achieved at the telescope, and compare to those expected based upon laboratory tests. We explore the factors that limit the sensitivity, in particular electronics noise, antenna efficiency, and excess loading. We discuss mitigation of these factors, and how we plan to improve sensitivity to the level of background-limited performance for the scientific operation of MUSIC. Finally, we note the expected mapping speed and contributions of MUSIC to astrophysics, and in particular to the study of submillimeter galaxies. This research has been funded by grants from the National Science Foundation, the Gordon and Betty Moore Foundation, and the NASA Graduate Student Researchers Program.

  10. The excess flux in the cosmic submillimeter background radiation and the primordial deuterium abundance

    International Nuclear Information System (INIS)

    Dermer, C.D.; Guessoum, N.; National Aeronautics and Space Administration, Greenbelt, MD

    1989-01-01

    Recent measurements of the cosmic background radiation (CBR) show an enhanced flux in the submillimeter regime, compared to the spectrum of a 2.7 K blackbody. Thermal Comptonization of the relic radiation by a hot nonrelativistic plasma has long been known to produce distortions in the CBR spectrum, similar to what has now been observed. Heating of the primeval plasma to temperatures T ∼ 10 6 - 10 8 K could result from the injection of subcosmic ray protons at epoch z ∼ 10--100. The intensity of the subcosmic ray flux that provide conditions needed to explain the submillimeter excess by thermal Comptonization also leads to the production of cosmologically significant amounts of deuterium in collisions between subcosmic ray protons and primordial protons and α-particles. However, the amount of lithium produced through α-α reactions is in conflict with the observed Li abundance. If lithium is depleted, for example, by processing through Population II stars, arguments for the baryon content of the universe based on primordial deuterium and He abundances are weakened. 12 refs., 1 fig., 1 tab

  11. The status of MUSIC: the multiwavelength sub-millimeter inductance camera

    Science.gov (United States)

    Sayers, Jack; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Golwala, Sunil R.; Hollister, Matthew I.; Lam, Albert; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David A.; Mroczkowski, Anthony K.; Noroozian, Omid; Nguyen, Hien Trong; Schlaerth, James A.; Siegel, Seth R.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2014-08-01

    The Multiwavelength Sub/millimeter Inductance Camera (MUSIC) is a four-band photometric imaging camera operating from the Caltech Submillimeter Observatory (CSO). MUSIC is designed to utilize 2304 microwave kinetic inductance detectors (MKIDs), with 576 MKIDs for each observing band centered on 150, 230, 290, and 350 GHz. MUSIC's field of view (FOV) is 14' square, and the point-spread functions (PSFs) in the four observing bands have 45'', 31'', 25'', and 22'' full-widths at half maximum (FWHM). The camera was installed in April 2012 with 25% of its nominal detector count in each band, and has subsequently completed three short sets of engineering observations and one longer duration set of early science observations. Recent results from on-sky characterization of the instrument during these observing runs are presented, including achieved map- based sensitivities from deep integrations, along with results from lab-based measurements made during the same period. In addition, recent upgrades to MUSIC, which are expected to significantly improve the sensitivity of the camera, are described.

  12. Optical coherence tomography in dermatology

    Science.gov (United States)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  13. Coherent Diffractive Imaging at LCLS

    Science.gov (United States)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  14. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  15. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  16. Coherent imaging using SACLA

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Kimura, Takashi; Suzuki, Akihiro; Joti, Yasumasa; Bessho, Yoshitaka

    2017-01-01

    X-ray free-electron lasers (XFELs) with femtosecond pulse duration offer an innovative solution to transcend the spatial resolution limitation in conventional X-ray imaging for biological samples and soft matters by clearing up the radiation damage problem using the “diffraction-before-destruction” strategy. Building on this strategy, the authors are developing a method to image solution sample under controlled environment, pulsed coherent X-ray solution scattering (PCXSS), using XFELs and phase retrieval algorithms in coherent diffractive imaging (CDI). This article describes the basics of PCXSS and examples of PCXSS measurement, for a living cell and self-assemblies of gold nanoparticles, performed by the authors using SACLA. An attempt toward the industrial application of PCXSS is also described. (author)

  17. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    enhanced in quantum confined lower-dimensional systems, where exciton and biexciton effects dominate the spectra even at room temperature. The coherent dynamics of excitons are at modest densities well described by the optical Bloch equations and a number of the dynamical effects known from atomic......Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  18. Generalized hypergeometric coherent states

    International Nuclear Information System (INIS)

    Appl, Thomas; Schiller, Diethard H

    2004-01-01

    We introduce a large class of holomorphic quantum states by choosing their normalization functions to be given by generalized hypergeometric functions. We call them generalized hypergeometric states in general, and generalized hypergeometric coherent states in particular, if they allow a resolution of unity. Depending on the domain of convergence of the generalized hypergeometric functions, we distinguish generalized hypergeometric states on the plane, the open unit disc and the unit circle. All states are eigenstates of suitably defined lowering operators. We then study their photon number statistics and phase properties as revealed by the Husimi and Pegg-Barnett phase distributions. On the basis of the generalized hypergeometric coherent states we introduce new analytic representations of arbitrary quantum states in Bargmann and Hardy spaces as well as generalized hypergeometric Husimi distributions and corresponding phase distributions

  19. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  20. On coherent states

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1975-01-01

    A definition of the coherent state representation is given in this paper. In the representation quantum theory equations take the form of classical field theory equations (with causality inherent to the latter) not only in simple cases (free field and interactions with an external current or field), but also in the general case of closed systems of interacting fields. And, conversely, a classical field theory can be transformed into a form of a quantum one

  1. The Puzzle of Coherence

    DEFF Research Database (Denmark)

    Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten

    2016-01-01

    During the past decade, politicians and health care providers have strived to create a coherent health care system across primary and secondary health care systems in Denmark. Nevertheless, elderly patients with chronic diseases (EPCD) continue to report experiences of poor-quality care and lack ...... both nationally and internationally in preparation of health agreements, implementation of new collaboration forms among health care providers, and in improvement of delegation and transfer of information and assignments across sectors in health care....

  2. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  3. Coherent laser vision system

    International Nuclear Information System (INIS)

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  4. Collision-induced coherence

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1985-01-01

    Collision-induced coherence is based on the elimination of phase correlations between coherent Feynman-type pathways which happen to interfere destructively in the absence of damping for certain nonlinear processes. One consequence is the appearance of the extra resonances in four-wave light mixing experiments, for which the intensity increases with increasing buffer gas pressure. These resonances may occur between a pair of initially unpopulated excited states, or between a pair of initially equally populated ground states. The pair of levels may be Zeeman substrates which became degenerate in zero magnetic field. The resulting collision-enhanced Hanle resonances can lead to very sharp variations in the four-wave light mixing signal as the external magnetic field passes through zero. The theoretical description in terms of a coherence grating between Zeeman substrates is equivalent to a description in terms of a spin polarization grating obtained by collision-enhanced transverse optical pumping. The axis of quantization in the former case is taken perpendicular to the direction of the light beams; in the latter case is taken parallel to this direction

  5. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  6. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  7. Coherent radiation from pulsars

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1979-01-01

    Interaction between a relativistic electrom stream and a plasma under conditions believed to exist in pulsar magnetospheres is shown to result in the simultaneous emission of coherent curvature radiation at radio wavelengths and incoherent curvature radiation at X-ray wavelengths from the same spatial volume. It is found that such a stream can propagate through a plasma parallel to a very strong magnetic field only if its length is less than a critical length L/sub asterisk/ic. Charge induced in the plasma by the stream co-moves with the stream and has the same limitation in longitudinal extent. The resultant charge bunching is sufficient to cause the relatively low energy plasma particles to radiate at radio wavelengths coherently while the relatively high energy stream particles radiate at X-ray wavelengths incoherently as the stream-plasma system moves along curved magnetic field lines. The effective number of coherently radiating particles per bunch is estimated to be approx.10 14 --10 15 for a tupical pulsar

  8. Collective CO2 laser scattering on moving discharge structures in the submillimeter range in a magnetohydrodynamic generator

    NARCIS (Netherlands)

    de Haas, J.C.M.; Schenkelaars, H.J.W.; vd Mortel, P.J.; Schram, D.C.; Veefkind, A.

    1986-01-01

    Collective scattering of CO/sub 2/ laser light on electrons is used to determine the radial scale length of the discharge structures occurring in a closed cycle magnetohydrodynamic generator. Heterodyne detection of scattered radiation is used to obtain a spatial resolution in the submillimeter

  9. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8

    Directory of Open Access Journals (Sweden)

    S. A. Buehler

    2012-07-01

    Full Text Available Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8, which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.

  10. The JCMT Transient Survey: Detection of Submillimeter Variability in a Class I Protostar EC 53 in Serpens Main

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunju; Cho, Jungyeon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-Daero, Giheung-gu Yongin-shi, Gyunggi-do 17104 (Korea, Republic of); Mairs, Steve; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan 5, Haidian Qu, 100871 Beijing (China); Kang, Sung-ju; Kang, Miju, E-mail: jeongeun.lee@khu.ac.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Collaboration: JCMT Transient Team

    2017-11-01

    During the protostellar phase of stellar evolution, accretion onto the star is expected to be variable, but this suspected variability has been difficult to detect because protostars are deeply embedded. In this paper, we describe a submillimeter luminosity burst of the Class I protostar EC 53 in Serpens Main, the first variable found during our dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions. EC 53 remained quiescent for the first six months of our survey, from 2016 February to August. The submillimeter emission began to brighten in 2016 September, reached a peak brightness of 1.5 times the faint state, and has been decaying slowly since 2017 February. The change in submillimeter brightness is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar of a factor of ≥4. The 850 μ m light curve resembles the historical K -band light curve, which varies by a factor of ∼6 with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. The predictable detections of accretion variability observed at both near-infrared and submillimeter wavelengths make the system a unique test-bed, enabling us to capture the moment of the accretion burst and to study the consequences of the outburst on the protostellar disk and envelope.

  11. The Atacama Large Millimeter/Submillimeter Array (ALMA) - A Successful Three-Way International Partnership Without a Majority Stakeholder

    Science.gov (United States)

    Vanden Bout, Paul A.

    2013-04-01

    The Atacama Millimeter/Submillimeter Array (ALMA) is the largest ground-based astronomical facility built to date. It's size and challenging site required an international effort. This talk presents the partnership structure, management challenges, current status, and examples of early scientific successes.

  12. Principles of optical fibre communication techniques: Noncoherent and coherent

    International Nuclear Information System (INIS)

    Jain, V.K.

    1990-01-01

    In this paper a brief historical description of optical fibre communication system (OFCS) has been presented and the main characteristics of the basic components used in it are summarized. Introduction of noncoherent and coherent (homodyne and heterodyne) system is given. In coherent OFCS, source linewidth requirement, phase and polarization - diversity and combined phase and polarization - diversity receivers are described. (author). 16 refs, 8 figs, 1 tab

  13. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Martin, M.C.; Venturini, M.

    2004-01-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission

  14. Experimental study of coherent radiation in the millimeter-wave region at the KURRI-LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshiharu [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1996-07-01

    Coherent radiation, i.e., synchrotron radiation, transition radiation, Cherenkov radiation, or Smith-Purcell radiation emitted by short bunches of electrons has been observed in the millimeter-wave region. Properties of coherent radiation are characterized by the coherence effect and the relativistic one. The intensity of coherent radiation is enormously enhanced by several orders of magnitude in comparison with the incoherent radiation and the flux of radiation concentrates around the direction of the electron beam. Coherent radiation is useful as the intense light source in the millimeter-wave region. (author)

  15. A dynamic method for continuously measuring magnetic field profiles in planar micropole undulators with submillimeter gaps

    International Nuclear Information System (INIS)

    Tatchyn, R.; Oregon Univ., Eugene

    1989-01-01

    Conventional techniques for measuring magnetic field profiles in ordinary undulators rely predominantly on Hall probes for making point-by-point static measurements. As undulators with submillimeter periods and gaps become available, such techniques will start becoming untenable, due to the relative largeness of conventional Hall probe heads and the rapidly increasing number of periods in devices of fixed length. In this paper a method is presented which can rapidly map out field profiles in undulators with periods and gaps extending down to the 100 μm range and beyond. The method, which samples the magnetic field continuously, has been used successfully in profiling a recently constructed 726 μm period undulator, and seems to offer some potential advantages over conventional Hall probe techniques in measuring large-scale undulator fields as well. (orig.)

  16. Far-infrared and submillimeter brightness temperatures of the giant planets

    International Nuclear Information System (INIS)

    Hildebrand, R.H.; Loewenstein, R.F.; Harper, D.A.; Orton, G.S.; Keene, J.; Yerkes Observatory, Williams Bay, WI; California Institute of Technology, Jet Propulsion Laboratory, Pasadena; California Institute of Technology, Pasadena)

    1985-01-01

    The brightness temperatures of Jupiter, Saturn, Uranus, and Neptune were measured in the 35-1000 micron range with the 3-m NASA Infrared Telescope Facility (at wavelengths greater than 350 microns) and with the Kuiper Airborne Observatory (at wavelengths less than 350 microns). The data indicate the presence in Jupiter's spectrum of excess radiation (compared to theoretical models) at 300-400 microns. In addition, slightly less flux was observed from Saturn at 200 microns than predicted by atmospheric models, which suggests the possible presence of an unmodeled absorber. The submillimeter fluxes from Uranus and Neptune appear to be most consistent with low mixing ratios (less than 1 percent) of CH 4 in their deep atmospheres. 73 refs

  17. Fabrication and Testing of Carbon Fiber, Graphite-Epoxy Panels for Submillimeter Telescope Use

    Science.gov (United States)

    Rieger, H.; Helwig, G.; Parks, R. E.; Ulich, B. L.

    1983-12-01

    An experimental carbon-fiber, graphite-epoxy, aluminum Flexcore sandwich panel roughly 1-m square was made by Dornier System, Friedrichshafen, West Germany. The panel was a pre-prototype of the panels to be used in the dish of the 10-m diameter Sub-Millimeter Telescope, a joint project of the Max-Planck-Institute fur Radioastronomie, Bonn, West Germany, and Steward Observatory, the University of Arizona in Tucson. This paper outlines the fabrication process for the panel and indicates the surface accuracy of the panel replication process. To predict the behavior of the panel under various environmental loads, the panel was modeled structurally using anisotropic elements for the core material. Results of this analysis along with experimental verification of these predictions are also given.

  18. In situ production of microporous foams in sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Yuan Guanghui; Wang Honglian; Zhou Lan; Zhang Lin; Du Kai

    2009-01-01

    The preparation of microcellular foam in sub-millimeter cylindrical gold targets is described. Small, open-ended, gold cylinders of 400 μm diameter, 700 μm length, and 20 μm wall thickness were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing acrylate monomers. The solution was polymerized in situ with ultraviolet light to produce a gel. Precipitation of these gels in a non-solvent such as methanol and subsequent drying by means of a critical point drying apparatus produced cylinders filled with microporous foams. The foams have densities of 50 mg · cm -3 and cell sizes on more than 1 μm. They fill the cylinders completely without shrinkage during the drying process, and need no subsequent machining. (authors)

  19. Logarithmic unification from symmetries enhanced in the sub-millimeter infrared

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Dimopoulos, Savas; March-Russell, John

    1999-01-01

    In theories with TeV string scale and sub-millimeter extra dimensions the attractive picture of logarithmic gauge coupling unification at 10 16 GeV is seemingly destroyed. In this paper we argue to the contrary that logarithmic unification can occur in such theories. The rationale for unification is no longer that a gauge symmetry is restored at short distances, but rather that a geometric symmetry is restored at large distances in the bulk away from our 3-brane. The apparent ''running'' of the gauge couplings to energies far above the string scale actually arises from the logarithmic variation of classical fields in (sets of) two large transverse dimensions. We present a number of N = 2 and N = 1 supersymmetric D-brane constructions illustrating this picture for unification

  20. Submillimeter laboratory identification of CH{sup +} and CH{sub 2}D{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Amano, T. [Department of Chemistry and Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2015-01-22

    Laboratory identification of two basic and important interstellar molecular ions is presented. The J = 1 - 0 rotational transition of {sup 12}CH{sup +} together with those of {sup 13}CH{sup +} and {sup 12}CD{sup +} was observed in the laboratory. The newly obtained frequencies were found to be different from those reported previously. Various experimental evidences firmly support the new measurements. In addition, the Zeeman effect and the spin-rotation hyperfine interaction enforce the laboratory identification with no ambiguity. Rotational lines of CH{sub 2}D{sup +} were observed in the submillimeter-wave region. This laboratory observation is consistent with a recent tentative identification of CH{sub 2}D{sup +} toward Ori IRc2.

  1. Infrared and submillimeter space missions in the coming decade programmes, programmatics, and technology

    CERN Document Server

    Sauvage, Marc; Gallais, Pascal; Vigroux, Laurent

    1996-01-01

    A revolution similar to that brought by CCDs to visible astronomy is still ahead in IR and submillimeter astronomy. There is certainly no wavelength range which has, over the past several years, seen such impressive advances in technology: large-scale detector arrays, new designs for cooling in space, lightweight mirror technologies. Scientific cases for observing the cold universe are outstanding. Observations in the FIR/Submm range will provide answers to such fundamental questions as: What is the spectrum of the primordial fluctuations? How do primeval galaxies look? What are the first stages of star formation? Most of the international space missions that have been triggered by these questions are presented in detail here. Technological issues raised by these missions are reviewed, as are the most recent achievements in cooling and detector technologies.

  2. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  3. Imaging the environment of a z = 6.3 submillimeter galaxy with SCUBA-2

    Energy Technology Data Exchange (ETDEWEB)

    Robson, E. I.; Holland, W. S. [United Kingdom Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Ivison, R. J. [European Space Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Geach, J. E. [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Gibb, A. G. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Riechers, D. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Ade, P. A. R. [Astronomy and Instrumentation Group, Cardiff University, Cardiff, Wales CF10 3XQ (United Kingdom); Bintley, D. [Joint Astronomy Centre, 660 North Ahoku Place, University Park, Hilo, HI 96720 (United States); Bock, J. [Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA 91109 (United States); Chapin, E. L. [XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 79, E-28691 Villaneueva de la Canada, Madrid (Spain); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Coburg Road, Halifax B3H 1A6 (Canada); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Farrah, D., E-mail: rob.ivison@gmail.com [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); and others

    2014-09-20

    We describe a search for submillimeter emission in the vicinity of one of the most distant, luminous galaxies known, HerMES FLS3, at z = 6.34, exploiting it as a signpost to a potentially biased region of the early universe, as might be expected in hierarchical structure formation models. Imaging to the confusion limit with the innovative, wide-field submillimeter bolometer camera, SCUBA-2, we are sensitive to colder and/or less luminous galaxies in the surroundings of HFLS3. We use the Millennium Simulation to illustrate that HFLS3 may be expected to have companions if it is as massive as claimed, but find no significant evidence from the surface density of SCUBA-2 galaxies in its vicinity, or their colors, that HFLS3 marks an overdensity of dusty, star-forming galaxies. We cannot rule out the presence of dusty neighbors with confidence, but deeper 450 μm imaging has the potential to more tightly constrain the redshifts of nearby galaxies, at least one of which likely lies at z ≳ 5. If associations with HFLS3 can be ruled out, this could be taken as evidence that HFLS3 is less biased than a simple extrapolation of the Millennium Simulation may imply. This could suggest either that it represents a rare short-lived, but highly luminous, phase in the evolution of an otherwise typical galaxy, or that this system has suffered amplification due to a foreground gravitational lens and so is not as intrinsically luminous as claimed.

  4. Diffusion in and around alginate and chitosan films with embedded sub-millimeter voids

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Subhajit; Bal, Dharmendra Kumar; Ganguly, Somenath, E-mail: snganguly@che.iitkgp.ernet.in

    2016-02-01

    Hydrogel scaffolds from biopolymers have potential use in the controlled release of drugs, and as 3-D structure for the formation of tissue matrix. This article describes the solute release behavior of alginate and chitosan films with embedded voids of sub-millimeter dimensions. Nitrogen gas was bubbled in a fluidic arrangement to generate bubbles, prior to the crosslinking. The crosslinked gel was dried in a vacuum oven, and subsequently, soaked in Vitamin B-12 solution. The dimensions of the voids immediately after the cross-linking of gel, and also after complete drying were obtained using a digital microscope and scanning electron microscope respectively. The porosity of the gel was measured gravimetrically. The release of Vitamin B-12 in PBS buffer on a shaker was studied. The release experiments were repeated at an elevated temperature of 37 °C in the presence of lysozyme. The diffusion coefficient within the gel layer and the mass transfer coefficient at the interface with the bulk-liquid were estimated using a mathematical model. For comparison, the experiment was repeated with a film that does not have any embedded void. The enhancement in diffusion coefficient due to the presence of voids is discussed in this article. - Highlights: • Formation of sub-millimeter voids in biopolymer films using fluidic arrangement • The retention of self-assembled bubbles in films after crosslinking, and drying • The enhancement observed in release of model drug with introduction of voids • The diffusion coefficients in and around biopolymer films from model regression • Use of classical model in explaining release profiles from dual porosity media.

  5. Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE.

    Science.gov (United States)

    Zaretskaya, Natalia; Fischl, Bruce; Reuter, Martin; Renvall, Ville; Polimeni, Jonathan R

    2018-01-15

    Recent advances in MR technology have enabled increased spatial resolution for routine functional and anatomical imaging, which has created demand for software tools that are able to process these data. The availability of high-resolution data also raises the question of whether higher resolution leads to substantial gains in accuracy of quantitative morphometric neuroimaging procedures, in particular the cortical surface reconstruction and cortical thickness estimation. In this study we adapted the FreeSurfer cortical surface reconstruction pipeline to process structural data at native submillimeter resolution. We then quantified the differences in surface placement between meshes generated from (0.75 mm) 3 isotropic resolution data acquired in 39 volunteers and the same data downsampled to the conventional 1 mm 3 voxel size. We find that when processed at native resolution, cortex is estimated to be thinner in most areas, but thicker around the Cingulate and the Calcarine sulci as well as in the posterior bank of the Central sulcus. Thickness differences are driven by two kinds of effects. First, the gray-white surface is found closer to the white matter, especially in cortical areas with high myelin content, and thus low contrast, such as the Calcarine and the Central sulci, causing local increases in thickness estimates. Second, the gray-CSF surface is placed more interiorly, especially in the deep sulci, contributing to local decreases in thickness estimates. We suggest that both effects are due to reduced partial volume effects at higher spatial resolution. Submillimeter voxel sizes can therefore provide improved accuracy for measuring cortical thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Sub-millimeter scale magnetostratigraphy and environmental magnetism of ferromanganese crusts using a scanning SQUID microscope

    Science.gov (United States)

    Oda, H.; Noguchi, A.; Yamamoto, Y.; Usui, A.; Ito, T.; Kawai, J.; Takahashi, H.

    2017-12-01

    Ferromanganese crusts are chemical sedimentary rock composed mainly of iron-manganese oxide. Because the ferromanganese crusts grow very slowly on the sea floor at rates of 3-10 mm/Ma, long-term deep-sea environmental changes can be reconstructed from the ferromanganese crusts. Thus, it is important to provide reliable age model for the crusts. For the past decades 10Be/9Be dating method has been used extensively to give age models for crusts younger than 15 Ma. Alternatively, sub-millimeter scale magnetostratigraphic study on a ferromanganese crust sample using a scanning SQUID (superconducting quantum interference device) microscope (Kawai et al., 2016; Oda et al., 2016) has been applied successfully (e.g. Oda et al., 2011; Noguchi et al. 2017). Also, environmental magnetic mapping was successful for the ferromanganese crust from the Takuyo Daigo Seamount (Noguchi et al., 2017). The ferromanganese crust used in this study was sampled from the Hanzawa Seamount, Ryukyu trench and the Shotoku Seamount. The vertical component of the magnetic field above thin section samples of the ferromanganese crust was measured using the scanning SQUID microscope on 100 μm grids. Magnetic mapping of the Hanzawa Seamount shows sub-millimeter scale magnetic stripes parallel to lamina. By correlating the boundaries of magnetic stripes with known geomagnetic reversals, we estimated that average growth rate of the Hanzawa Seamount is 2.67 +/- 0.04 mm/Ma , which is consistent with that deduced from the 10Be/9Be dating method (2.56 +/- 0.04 mm/Ma). The crust sample from the Shotoku Seamount used by Oda et al. (2011) shows prominent periodical lamination. Further details are going to be discussed together with the environmental magnetic mapping.

  7. CORRELATIONS IN THE (SUB)MILLIMETER BACKGROUND FROM ACT Multiplication-Sign BLAST

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, Amir; Battaglia, Nick; Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Viero, Marco P.; Bock, James J. [California Institute of Technology, Pasadena, CA 91125 (United States); Addison, Graeme [Department of Astrophysics, Oxford University, Oxford, OX1 3RH (United Kingdom); Aguirre, Paula [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica, Casilla 306, Santiago 22 (Chile); Appel, John William; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Das, Sudeep; Dunkley, Joanna [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hasselfield, Matthew [Laboratoire APC, Universite Paris Diderot, 75205 Paris (France); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); and others

    2012-01-01

    We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at 250, 350, and 500 {mu}m (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope (BLAST); and at 1380 and 2030 {mu}m (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope (ACT). The overlapping observations cover 8.6 deg{sup 2} in an area relatively free of Galactic dust near the south ecliptic pole. The ACT bands are sensitive to radiation from the cosmic microwave background, to the Sunyaev-Zel'dovich effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline and also detect correlations between the ACT and BLAST maps at over 25{sigma} significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at 4{sigma}, and using a model for the DSFG evolution and number counts, we successfully fit all of our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models.

  8. Imaging the environment of a z = 6.3 submillimeter galaxy with SCUBA-2

    International Nuclear Information System (INIS)

    Robson, E. I.; Holland, W. S.; Ivison, R. J.; Smail, Ian; Geach, J. E.; Gibb, A. G.; Riechers, D.; Ade, P. A. R.; Bintley, D.; Bock, J.; Chapin, E. L.; Chapman, S. C.; Clements, D. L.; Conley, A.; Cooray, A.; Dunlop, J. S.; Farrah, D.

    2014-01-01

    We describe a search for submillimeter emission in the vicinity of one of the most distant, luminous galaxies known, HerMES FLS3, at z = 6.34, exploiting it as a signpost to a potentially biased region of the early universe, as might be expected in hierarchical structure formation models. Imaging to the confusion limit with the innovative, wide-field submillimeter bolometer camera, SCUBA-2, we are sensitive to colder and/or less luminous galaxies in the surroundings of HFLS3. We use the Millennium Simulation to illustrate that HFLS3 may be expected to have companions if it is as massive as claimed, but find no significant evidence from the surface density of SCUBA-2 galaxies in its vicinity, or their colors, that HFLS3 marks an overdensity of dusty, star-forming galaxies. We cannot rule out the presence of dusty neighbors with confidence, but deeper 450 μm imaging has the potential to more tightly constrain the redshifts of nearby galaxies, at least one of which likely lies at z ≳ 5. If associations with HFLS3 can be ruled out, this could be taken as evidence that HFLS3 is less biased than a simple extrapolation of the Millennium Simulation may imply. This could suggest either that it represents a rare short-lived, but highly luminous, phase in the evolution of an otherwise typical galaxy, or that this system has suffered amplification due to a foreground gravitational lens and so is not as intrinsically luminous as claimed.

  9. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    OpenAIRE

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the conseque...

  10. Gabor fusion master slave optical coherence tomography

    DEFF Research Database (Denmark)

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller

    2017-01-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system......, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright...

  11. Further evidence of antibunching of two coherent beams of fermions

    International Nuclear Information System (INIS)

    Iannuzzi, M.; Messi, R.; Moricciani, D.; Orecchini, A.; Sacchetti, F.; Facchi, P.; Pascazio, S.

    2011-01-01

    We describe an experiment confirming the evidence of the antibunching effect on a beam of noninteracting thermal neutrons. The comparison between the results recorded with a high-energy-resolution source of neutrons and those recorded with a broad-energy-resolution source enables us to clarify the role played by the beam coherence in the occurrence of the antibunching effect.

  12. A Multiwavelength Study of the Intracluster Medium and the Characterization of the Multiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Siegel, Seth Robert

    -arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the

  13. Topological Properties of Spatial Coherence Function

    International Nuclear Information System (INIS)

    Ji-Rong, Ren; Tao, Zhu; Yi-Shi, Duan

    2008-01-01

    The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function

  14. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  15. Volitional Control of Neuromagnetic Coherence

    Directory of Open Access Journals (Sweden)

    Matthew D Sacchet

    2012-12-01

    Full Text Available Coherence of neural activity between circumscribed brain regions has been implicated as an indicator of intracerebral communication in various cognitive processes. While neural activity can be volitionally controlled with neurofeedback, the volitional control of coherence has not yet been explored. Learned volitional control of coherence could elucidate mechanisms of associations between cortical areas and its cognitive correlates and may have clinical implications. Neural coherence may also provide a signal for brain-computer interfaces (BCI. In the present study we used the Weighted Overlapping Segment Averaging (WOSA method to assess coherence between bilateral magnetoencephalograph (MEG sensors during voluntary digit movement as a basis for BCI control. Participants controlled an onscreen cursor, with a success rate of 124 of 180 (68.9%, sign-test p < 0.001 and 84 out of 100 (84%, sign-test p < 0.001. The present findings suggest that neural coherence may be volitionally controlled and may have specific behavioral correlates.

  16. Coherent quantum logic

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1987-01-01

    The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex

  17. Hadron coherent production

    International Nuclear Information System (INIS)

    Dremin, I.M.

    1981-01-01

    The process of the coherent production of hadrons analogous to Cherenkov radiation of photons is considered. Its appearence and qualitative treatment are possible now because it is known from experiment that the real part of the πp (and pp) forward elastic scattering amplitude is positive at high energies. The threshold behaviour of the process as well as very typical angular and psub(T)-distributions where psub(t)-transverse momentum corresponding to the ring structure of the target diagram at rather large angles and to high-psub(T) jet production are emphasized [ru

  18. Optical coherence refractometry.

    Science.gov (United States)

    Tomlins, Peter H; Woolliams, Peter; Hart, Christian; Beaumont, Andrew; Tedaldi, Matthew

    2008-10-01

    We introduce a novel approach to refractometry using a low coherence interferometer at multiple angles of incidence. We show that for plane parallel samples it is possible to measure their phase refractive index rather than the group index that is usually measured by interferometric methods. This is a significant development because it enables bulk refractive index measurement of scattering and soft samples, not relying on surface measurements that can be prone to error. Our technique is also noncontact and compatible with in situ refractive index measurements. Here, we demonstrate this new technique on a pure silica test piece and a highly scattering resin slab, comparing the results with standard critical angle refractometry.

  19. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power