WorldWideScience

Sample records for submicron particle slurries

  1. On the dry deposition of submicron particles

    Energy Technology Data Exchange (ETDEWEB)

    Wesely, M. L.

    1999-10-08

    The air-surface exchange of particles can have a strong role in determining the amount, size, and chemical composition of particles in the troposphere. Here the authors consider only dry processes (deposition processes not directly aided by precipitation) and mostly address particles less than about 2 {micro}m in diameter (often referred to as submicron particles because most of such particles are less than 1 {micro}m in diameter). The processes that control the dry exchange of particulate material between the atmosphere and the surface of the Earth are numerous, highly varied, and sometimes poorly understood. As a result, determining which of the surface processes to parameterize or simulate in modeling the tropospheric mass budget of a particulate substance can be a significant challenge. Dry deposition, for example, can be controlled by a combination of Brownian diffusion, impaction, interception, and gravitational settling, depending on the size of the particles, the roughness of the surface on both micrometeorological and microscopic scales, the geometrical structure of vegetative canopies, and other surface characteristics such as wetness. Particles can be added to the lower atmosphere by resuspension from land surfaces and sea spray. The roles of rapid gas-to-particle conversion and growth or shrinkage of particles as a result of water condensation or evaporation in the lower few meters of the atmosphere can also have a significant impact on particle concentrations in the lower atmosphere. Here, a few micrometeorological observations and inferences on particle air-surface exchange are briefly addressed.

  2. UV Light–Induced Aggregation of Titania Submicron Particles

    Directory of Open Access Journals (Sweden)

    Can Zhou

    2016-11-01

    Full Text Available In this study, aggregation of TiO2 (rutile and anatase submicron particles in deionized (DI water under ultra-violet (UV light irradiation was investigated. While no aggregation was observed in the dark, rutile and anatase submicron particles started aggregating upon application of UV light and ceased aggregation in about 2 and 8.4 h, respectively. It has been demonstrated that UV light directly mitigated the particle mobility of TiO2, resulting in a neutralization effect of the Zeta potential. It was also observed that rutile particles aggregated much faster than anatase particles under UV radiation, indicating that the Zeta potential of as-prepared rutile is less than that of anatase in deionized (DI water. In addition, the interaction energy of rutile and anatase particles was simulated using the Derjaguin–Landau–Verwey–Overbeek (DLVO model. The results showed a significant reduction of barrier energy from 118.2 kBT to 33.6 kBT for rutile and from 333.5 kBT to 46.1 kBT for anatase, respectively, which further validated the remarkable influence of UV irradiation on the aggregation kinetics of rutile and anatase submicron particles. This work presents a further understanding of the aggregation mechanism of light-controlled submicron particles and has a promising potential application in environmental remediation.

  3. Submicron particle chemistry: Vapor condensation analogous to liquid solidification

    Science.gov (United States)

    Jenkins, Neil T.; Eagar, Thomas W.

    2003-06-01

    The chemical composition of submicron particles condensed from vapor can vary with particle size. This chemical variation with size affects industrial health estimates and technological innovation. A model based on similar behavior during the solidification of liquids is proposed to explain this behavior.

  4. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-07-05

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy’s Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  5. Submicron particles of Co, Ni and Co–Ni alloys

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 5 ... Magnetic Materials Volume 24 Issue 5 October 2001 pp 515-521 ... Magnetic sub-micron sized particles (with diameters in the range 100–600 nm) of Co, Ni and Co–Ni alloys, protected with polyvinylpyrrolidone have been prepared in gram quantities ...

  6. Particle size and metal distributions in anaerobically digested pig slurry.

    Science.gov (United States)

    Marcato, Claire E; Pinelli, Eric; Pouech, Philippe; Winterton, Peter; Guiresse, Maritxu

    2008-05-01

    Particle size distribution and trace element patterns were studied in a full-scale anaerobic digestion plant treating pig slurry. Mass balance was established for major (N, P, K, Ca, Fe, Mg and S) and minor (Al, Cu, Mn and Zn) elements. Most of the elements were conserved through the process but part of the P, Ca, Mg and Mn was deposited as crystals lining the digester. In the dry matter of the slurry, Cu and Zn occurred at between 170 and 2600 mg kg(-1) due to pig diet supplements. Analyses of particle size distributions in raw and digested slurries showed a general shift in distribution towards larger sizes due to degradation of small and easily degradable particles as well as formation of large microbial filaments. Graded sieving of digested slurry showed metals to be mainly present on 3-25 microm particles. Less than 2% Cu and Zn was removed by passage through a 250 microm rotary screen.

  7. Submicron particle monitoring of paving and related road construction operations.

    Science.gov (United States)

    Freund, Alice; Zuckerman, Norman; Baum, Lisa; Milek, Debra

    2012-01-01

    This study identified activities and sources that contribute to ultrafine and other submicron particle exposure that could trigger respiratory symptoms in highway repair workers. Submicron particle monitoring was conducted for paving, milling, and pothole repair operations in a major metropolitan area where several highway repair workers were identified as symptomatic for respiratory illness following exposures at the 2001 World Trade Center disaster site. Exposure assessments were conducted for eight trades involved in road construction using a TSI P-Trak portable condensation particle counter. Direct readings near the workers' breathing zones and observations of activities and potential sources were logged on 7 days on 27 workers using four different models of pavers and two types of millers. Average worker exposure levels ranged from 2 to 3 times background during paving and from 1 to 4 times background during milling. During asphalt paving, average personal exposures to submicron particulates were 25,000-60,000, 28,000-70,000, and 23,000-37,000 particles/ cm(3) for paver operators, screed operators, and rakers, respectively. Average personal exposures during milling were 19,000-111,000, 28,000-81,000, and 19,000 particles/cm(3) for the large miller operators, miller screed operators, and raker, respectively. Personal peak exposures were measured up to 467,000 and 455,000 particles/cm(3) in paving and milling, respectively. Several sources of submicron particles were identified. These included the diesel and electric fired screed heaters; engine exhaust from diesel powered construction vehicles passing by or idling; raking, dumping, and paving of asphalt; exhaust from the hotbox heater; pavement dust or fumes from milling operations, especially when the large miller started and stopped; and secondhand cigarette smoke. To reduce the potential for health effects in workers, over 40 recommendations were made to control exposures, including improved maintenance of

  8. Online submicron particle sizing by dynamic light scattering using autodilution

    Science.gov (United States)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  9. Short range investigation of sub-micron zirconia particles

    Energy Technology Data Exchange (ETDEWEB)

    Caracoche, M C; Martinez, J A [Departamento de Fisica, IFLP, Facultad de Ciencias Exactas, CICPBA, Universidad Nacional de La Plata (Argentina); Rivas, P C [IFLP-CONICET, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (Argentina); Bondioli, F; Cannillo, V [Dipartimento di Ingegniria dei Materiali e dell' Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia (Italy); Ferrari, A M, E-mail: cristina@fisica.unlp.edu.a [Dipartimento di Scienza a Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia (Italy)

    2009-05-01

    The Perturbed Angular Correlations technique was used to determine the configurations around Zirconium ions and their thermal behavior in non-aggregated sub-micron zirconia spherical particles. Three residues containing- Zr surroundings were determined for the non-crystalline starting particles, which were identified under the assumption of a certain chemical reactions sequence during synthesis. While the one made up mainly by hydroxyl groups was common to both samples, the two involving mainly organic residues were particle size dependent. Upon crystallization, both samples stabilized in the t'- and t- tetragonal forms and the Xc-cubic form but their amounts and temperatures of appearance were different. On heating, the structure of the smaller particles became gradually monoclinic achieving total degradation upon the subsequent cooling to RT.

  10. Discovering sub-micron ice particles across Dione' surface

    Science.gov (United States)

    Scipioni, Francesca; Schenk, Pual; Tosi, Federico; Clark, Roger; Dalle Ore, Cristina; Combe, Jean-Philippe

    2015-11-01

    Water ice is the most abundant component of Saturn’s mid-sized moons. However, these moons show an albedo asymmetry - their leading sides are bright while their trailing side exhibits dark terrains. Such differences arise from two surface alteration processes: (i) the bombardment of charged particles from the interplanetary medium and driven by Saturn’s magnetosphere on the trailing side, and (ii) the impact of E-ring water ice particles on the satellites’ leading side. As a result, the trailing hemisphere appears to be darker than the leading side. This effect is particularly evident on Dione's surface. A consequence of these surface alteration processes is the formation or the implantation of sub-micron sized ice particles.The presence of such particles influences and modifies the surfaces' spectrum because of Rayleigh scattering by the particles. In the near infrared range of the spectrum, the main sub-micron ice grains spectral indicators are: (i) asymmetry and (ii) long ward minimum shift of the absorption band at 2.02 μm (iii) a decrease in the ratio between the band depths at 1.50 and 2.02 μm (iv) a decrease in the height of the spectral peak at 2.6 μm (v) the suppression of the Fresnel reflection peak at 3.1 μm and (vi) the decrease of the reflection peak at 5 μm relative to those at 3.6 μm.We present results from our ongoing work mapping the variation of sub-micron ice grains spectral indicators across Dione' surface using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). To characterize the global variations of spectral indicators across Dione' surface, we divided it into a 1°x1° grid and then averaged the band depths and peak values inside each square cell.We will investigate if there exist a correspondence with water ice abundance variations by producing water ice' absorption band depths at 1.25, 1.52 and 2.02 μm, and with surface morphology by comparing the results with ISS color maps in the ultraviolet, visible and infrared

  11. Magnetic trapping of superconducting submicron particles produced by laser ablation in superfluid helium

    Science.gov (United States)

    Takahashi, Yuta; Suzuki, Junpei; Yoneyama, Naoya; Tokawa, Yurina; Suzuki, Nobuaki; Matsushima, Fusakazu; Kumakura, Mitsutaka; Ashida, Masaaki; Moriwaki, Yoshiki

    2017-02-01

    We produced spherical superconducting submicron particles by laser ablation of their base metal tips in superfluid helium, and trapped them using a quadrupole magnetic field owing to the diamagnetism caused by the Meissner effect. We also measured their critical temperatures of superconductivity, by observing the threshold temperatures for the confinement of superconducting submicron particles in the trap.

  12. Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.

    Science.gov (United States)

    Vyas, N; Sammons, R L; Pikramenou, Z; Palin, W M; Dehghani, H; Walmsley, A D

    2017-01-01

    Functionalised silica sub-micron particles are being investigated as a method of delivering antimicrobials and remineralisation agents into dentinal tubules. However, their methods of application are not optimised, resulting in shallow penetration and aggregation. The aim of this study is to investigate the impact of cavitation occurring around ultrasonic scalers for enhancing particle penetration into dentinal tubules. Dentine slices were prepared from premolar teeth. Silica sub-micron particles were prepared in water or acetone. Cavitation from an ultrasonic scaler (Satelec P5 Newtron, Acteon, France) was applied to dentine slices immersed inside the sub-micron particle solutions. Samples were imaged with scanning electron microscopy (SEM) to assess tubule occlusion and particle penetration. Qualitative observations of SEM images showed some tubule occlusion. The particles could penetrate inside the tubules up to 60μm when there was no cavitation and up to ∼180μm when there was cavitation. The cavitation bubbles produced from an ultrasonic scaler may be used to deliver sub-micron particles into dentine. This method has the potential to deliver such particles deeper into the dentinal tubules. Cavitation from a clinical ultrasonic scaler may enhance penetration of sub-micron particles into dentinal tubules. This can aid in the development of novel methods for delivering therapeutic clinical materials for hypersensitivity relief and treatment of dentinal caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Deciphering sub-micron ice particles on Enceladus surface

    Science.gov (United States)

    Scipioni, F.; Schenk, P.; Tosi, F.; D'Aversa, E.; Clark, R.; Combe, J.-Ph.; Ore, C. M. Dalle

    2017-07-01

    The surface of Saturn's moon Enceladus is composed primarily by pure water ice. The Cassini spacecraft has observed present-day geologic activity at the moon's South Polar Region, related with the formation and feeding of Saturn's E-ring. Plumes of micron-sized particles, composed of water ice and other non-ice contaminants (e.g., CO2, NH3, CH4), erupt from four terrain's fractures named Tiger Stripes. Some of this material falls back on Enceladus' surface to form deposits that extend to the North at ∼40°W and ∼220°W, with the highest concentration found at the South Pole. In this work we analyzed VIMS-IR data to identify plumes deposits across Enceladus' surface through the variation in band depth of the main water ice spectral features. To characterize the global variation of water ice band depths across Enceladus, the entire surface was sampled with an angular resolution of 1° in both latitude and longitude, and for each angular bin we averaged the value of all spectral indices as retrieved by VIMS. The position of the plumes' deposits predicted by theoretical models display a good match with water ice band depths' maps on the trailing hemisphere, whereas they diverge significantly on the leading side. Space weathering processes acting on Enceladus' surface ionize and break up water ice molecules, resulting in the formation of particles smaller than one micron. We also mapped the spectral indices for sub-micron particles and we compared the results with the plumes deposits models. Again, a satisfactory match is observed on the trailing hemisphere only. Finally, we investigated the variation of the depth of the water ice absorption bands as a function of the phase angle. In the visible range, some terrains surrounding the Tiger Stripes show a decrease in albedo when the phase angle is smaller than 10°. This unusual effect cannot be confirmed by near infrared data, since observations with a phase angle lower than 10° are not available. For phase angle

  14. A Comprehensive Evaluation of Nanoparticle Tracking Analysis (NanoSight) for Characterization of Proteinaceous Submicron Particles

    NARCIS (Netherlands)

    Tian, X.; Nejadnik, M.R.; Baunsgaard, D.; Henriksen, A.; Rischel, C.; Jiskoot, W.

    2016-01-01

    Nanoparticle tracking analysis (NTA) has attracted great interest for application in the field of submicron particle characterization for biopharmaceuticals. It has the virtue of direct sample visualization and particle-by-particle tracking, but the complexity of method development has limited its

  15. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    Science.gov (United States)

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  16. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Maria F. Romero-Creel

    2017-08-01

    Full Text Available The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP and low frequency (<1000 Hz AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle’s surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.

  17. Influence of PEG Stoichiometry on Structure-Tuned Formation of Self-Assembled Submicron Nickel Particles

    Directory of Open Access Journals (Sweden)

    Bingxue Pu

    2018-01-01

    Full Text Available Self-assembled submicron nickel particles were successfully synthesized via the one-step surfactant-assisted solvothermal method. The impact of surfactant and reducing agent stoichiometry is investigated in this manuscript. Different morphologies and structures of Ni particles, including flower-like nanoflakes, hydrangea-like structures, chain structures, sphere-like structures, and hollow structures were prepared through different processing conditions with two parameters such as temperature and time. Based on scanning electron microscopy (SEM, X-ray diffraction (XRD, thermal gravimetric analysis (TGA and vibrating sample magnetometry (VSM, the submicron nickel particles show good saturation magnetization and excellent thermal stabilities with a possible growth mechanism for the variety of the structure-tuned formation. Importantly, the microwave absorption properties of the submicron nickel particles were studied. The lowest reflection loss of Ni-P9/T200/H15 with a thin layer thickness of 1.7 mm can reach −42.6 dB at 17.3 GHz.

  18. Effect of particle size distribution on the rheology of oil-coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hao, L.; Wang, Y.; Xiong, C. [China University of Mining and Technology, Beijing (China)

    2007-02-15

    The rheological behaviour of Shenhua coal-oil slurry was studied as a function of solids concentration, particle size and size distribution. At a certain particle size distribution the apparent viscosity of coal slurry increases with the increase of solid concentration. Coal slurries were found to exhibit a wide spectrum of flow behaviour ranging from Newtonian at low concentrations to shear-thinning and pseudoplastic with a yield stress at higher concentrations. By adding a narrow-sized coarse coal fraction to the finer coal slurry, a flow characteristics optimum coarse-to-fine particle ratio of 40:60 exists at which the slurry is Newtonian. The significant improvement in the rheological behavior with changing the particle size distribution may be explained in terms of spatial rearrangement of the particles and apparent dilution effect. The results indicate that, with a careful control of the particle size distribution, it is possible to prepare an optimum oil-coal slurry which has a low viscosity but with high solids loadings. 10 refs., 4 figs., 3 tabs.

  19. Strong magnetic response of submicron silicon particles in the infrared

    National Research Council Canada - National Science Library

    García-Etxarri, A; Gómez-Medina, R; Froufe-Pérez, L S; López, C; Chantada, L; Scheffold, F; Aizpurua, J; Nieto-Vesperinas, M; Sáenz, J J

    2011-01-01

    .... However, we find that Silicon particles with index of refraction∼3.5 and radius∼200 nm present strong electric and magnetic dipolar resonances in telecom and near-infrared frequencies, (i.e. at wavelengths≈1.2-2 mm...

  20. Nano-ring arrays for sub-micron particle trapping

    Science.gov (United States)

    Han, Xue; Truong, Viet Giang; Nic Chormaic, Síle

    2017-04-01

    Plasmonic tweezers based on nano-ring arrays on gold thin film are demonstrated. A cylindrical surface plasmon resonance is generated in the aperture of a nano-ring and a transmission peak results. When nano-slits are included to connect the nano-rings, the transmission peak becomes narrower. When the size of the aperture of the nano-ring is reduced, this peak is red-shifted. Both 0.5 μm and 1 μm polystyrene particles are trapped successfully by nano-ring arrays. A self-induced back-action effect is observed when a red-shifted laser beam is used. With multiple trapping sites provided by the nano-ring array, this type of plasmonic tweezers has huge potential to be integrated in lab-on-a-chip systems for life sciences research.

  1. Physics of sub-micron cosmic dust particles

    Science.gov (United States)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  2. A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products.

    Science.gov (United States)

    Faust, James J; Doudrick, Kyle; Yang, Yu; Capco, David G; Westerhoff, Paul

    2016-01-01

    Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.

  3. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sunjae; Kulkarni, Atul [School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Qin, Hongyi [SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Taesung, E-mail: tkim@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-04-15

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution by analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.

  4. The absorption of gases in aqueous activated carbon slurries enhanced by adsorbing or catalytic particles

    NARCIS (Netherlands)

    Holstvoogd, R.D.; van Swaaij, Willibrordus Petrus Maria; van Dierendonck, L.L.

    1988-01-01

    The enhanced absorption of gases in aqueous activated carbon slurries of fine particles is studied with an instationary absorption model taking into account the finite adsorption capacity of the carbon particles, and with a stationary geometrical model, which describes the absorption into a highly

  5. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications.

    Science.gov (United States)

    Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-01

    Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Study of the Parametric Performance of Solid Particle Erosion Wear under the Slurry Pot Test Rig

    Directory of Open Access Journals (Sweden)

    S.R. More

    2017-12-01

    Full Text Available Stainless Steel (SS 304 is commonly used material for slurry handling applications like pipelines, valves, pumps and other equipment's. Slurry erosion wear is a common problem in many engineering applications like process industry, thermal and hydraulic power plants and slurry handling equipments. In this paper, experimental investigation of the influence of solid particle size, impact velocity, impact angle and solid concentration parameters in slurry erosion wear behavior of SS 304 using slurry pot test rig. In this study the design of experiments was considered using Taguchi technique. A comparison has been made for the experimental and Taguchi technique results. The erosion wear morphology was studied using micro-graph obtained by scanning electron microscope (SEM analysis. At shallow impact angle 30°, the material removal pattern was observed in the form of micro displacing, scratching and ploughing with plastic deformation of the material. At 60° impact angle, mixed type of micro indentations and pitting action is observed. At normal impact angle 90°, the material removal pattern was observed in form of indentation and rounded lips. It is found that particle velocity was the most influence factor than impact angle, size and solid concentration. From this investigation, it can be concluded that the slurry erosion wear is minimized by controlling the slurry flow velocity which improves the service life of the slurry handling equipments. From the comparison of experimental and Taguchi experimental design results it is found that the percentage deviation was very small with a higher correlation coefficient (r2 0.987 which is agreeable.

  7. Cefquinome Controlled Size Submicron Particles Precipitation by SEDS Process Using Annular Gap Nozzle

    Directory of Open Access Journals (Sweden)

    Kefeng Xiao

    2017-01-01

    Full Text Available An annular gap nozzle was applied in solution enhanced dispersion by supercritical fluids (SEDS process to prepare cefquinome controlled size submicron particles so as to enhance their efficacy. Analysis results of orthogonal experiments indicated that the concentration of solution was the primary factor to affect particle sizes in SEDS process, and feeding speed of solution, precipitation pressure, and precipitation temperature ranked second to fourth. Meanwhile, the optimal operating conditions were that solution concentration was 100 mg/mL, feeding speed was 9 mL/min, precipitation pressure was 10 MPa, and precipitation temperature was 316 K. The confirmatory experiment showed that D50 of processed cefquinome particles in optimal operating conditions was 0.73 μm. Moreover, univariate effect analysis showed that the cefquinome particle size increased with the increase of concentration of the solution or precipitation pressure but decreased with the increase of solution feeding speed. When precipitation temperature increased, the cefquinome particle size showed highest point. Moreover, characterization of processed cefquinome particles was analyzed by SEM, FT-IR, and XRD. Analysis results indicated that the surface appearance of processed cefquinome particles was flakes. The chemical structure of processed cefquinome particles was not changed, and the crystallinity of processed cefquinome particles was a little lower than that of raw cefquinome particles.

  8. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  9. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Collins, Douglas B.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.

    2017-06-19

    Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumed that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.

  10. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Science.gov (United States)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliquevis, T.; Kuwata, M.; Karl, T. G.; Guenther, A.; Allan, J. D.; Coe, H.; Andreae, M. O.; Pöschl, U.; Jimenez, J. L.; Artaxo, P.; Martin, S. T.

    2015-04-01

    Real-time mass spectra of the non-refractory species in submicron aerosol particles were recorded in a tropical rainforest in the central Amazon Basin during the wet season from February to March 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic material accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. There was insufficient ammonium to neutralize sulfate. In this acidic, isoprene-rich, HO2-dominant environment, positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the 99% of the variance in the signal intensities of the organic constituents. The first factor was identified as associated with regional and local pollution and labeled "HOA" for its hydrocarbon-like characteristics. A second factor was associated with long-range transport and labeled "OOA-1" for its oxygenated characteristics. A third factor, labeled "OOA-2," was implicated as associated with the reactive uptake of isoprene oxidation products, especially of epoxydiols to acidic haze, fog, or cloud droplets. A fourth factor, labeled "OOA-3," was consistent with an association with the fresh production of secondary organic material (SOM) by the mechanism of gas-phase oxidation of biogenic volatile organic precursors followed by gas-to-particle conversion of the oxidation products. The suffixes 1, 2, and 3 on the OOA labels signify ordinal ranking with respect to the extent of oxidation represented by the factor. The process of aqueous-phase oxidation of water-soluble products of gas-phase photochemistry might also have been associated to some extent with the OOA-2 factor. The campaign-average factor loadings had a ratio of 1.4:1 for OOA-2 : OOA-3, suggesting the comparable importance of particle-phase compared to gas-phase pathways for the production of SOM during the study period.

  11. Thermal, structural and morphological properties of High Density Polyethylene matrix composites reinforced with submicron agro silica particles and Titania particles

    Directory of Open Access Journals (Sweden)

    Oluyemi O. Daramola

    2017-07-01

    Full Text Available HDPE—based composites samples filled with 2, 4, 6, 8 and 10 wt.% submicron agro-waste silica particles extracted from rice husk ash (RHA at constant 0.3 wt.% Titania loading were prepared using rapra single screw extruder at temperature of 200–230 °C. The extrudates were compressed with a laboratory carver press at a temperature of 230 °C for 10 min under applied pressure of 0.2 kPa and water cooled at 20 °C min−1. Thermal, structural and morphological properties of the composites were studied. The results of the thermogravimetric analysis (TGA revealed that the composites with 10 wt.% SiO2 have the best maximum thermal degradation temperature of 438.73 °C. The crystal structure of neat HDPE, and the siliceous composites developed revealed two obvious diffractive peaks of about 21.3° and 23.7° corresponding to typical crystal plane (1 1 0 and (2 0 0 of orthorhombic phase respectively. The diffractive peaks do not shift with the addition of silica particles; this clearly indicates that the addition of silica particles did not exert much effect on the crystalline structure of HDPE. There is no much difference in the interplanar distance (d-value. Lamellar thickness (L of HDPE increases with the addition of silica particles, which implies that silica particles aid the formation of more perfect crystals. Scanning electron microscopy studies indicated that there were chains inter diffusion and entanglement between HDPE matrix and the silica particles at lower weight fraction (2–4 wt.% of submicron silica particles which resulted into homogeneous dispersion of the particles within the matrix.

  12. Synthesis of gelatin nano/submicron particles by binary nonsolvent aided coacervation (BNAC) method.

    Science.gov (United States)

    Patra, Shamayita; Basak, Piyali; Tibarewala, D N

    2016-02-01

    A newly developed modified coacervation method is utilized to synthesize gelatin nano/submicron particles (GN/SPs) as a drug carrier. Binary nonsolvent aided coacervation (BNAC) method is a modified single step coacervation method, which has yielded approximately a threefold lower particle size and higher average yield in terms of weight percentage of around 94% in comparison to the conventional phase separation methods. In this study 0.5% (w/v) gelatin aqueous solution with a binary nonsolvent system of acetone and ethanol was used. Nanoparticle synthesis was optimized with respect to nonsolvent system type and pH. pH7 has resulted a minimum particle size of 55.67 (±43.74) nm in anhydrous medium along with a swollen particle size of 776nm (±38.57) in aqueous medium with a zeta potential of (-16.3±3.51) mV in aqueous medium. Swelling ratio of 13.95 confirms the crosslinked hydrogel nature of the particles. Furthermore, drug loading efficiency of the gelatin particles prepared at 7pH was observed with nitrofurazone as the model drug. Results of drug release study indicate the potential use of GN/SPs as drug loading matrix for wound management such as burn wound management. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Lara, E-mail: leclerc@emse.fr [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Boudard, Delphine [LINA (France); Pourchez, Jeremie; Forest, Valerie [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Marmuse, Laurence; Louis, Cedric [NANO-H S.A.S (France); Bin, Valerie [LINA (France); Palle, Sabine [Universite Jean Monnet, Centre de Microscopie Confocale Multiphotonique (France); Grosseau, Philippe; Bernache-Assollant, Didier [Ecole Nationale Superieure des Mines, CIS-EMSE, LINA (France); Cottier, Michele [LINA (France)

    2012-11-15

    The relationship between particles' physicochemical parameters, their uptake by cells and their degree of biological toxicity represent a crucial issue, especially for the development of new technologies such as fabrication of micro- and nanoparticles in the promising field of drug delivery systems. This work was aimed at developing a proof-of-concept for a novel model of double fluorescence submicronic particles that could be spotted inside phagolysosomes. Fluorescein isothiocyanate (FITC) particles were synthesized and then conjugated with a fluorescent pHrodo Trade-Mark-Sign probe, red fluorescence of which increases in acidic conditions such as within lysosomes. After validation in acellular conditions by spectral analysis with confocal microscopy and dynamic light scattering, quantification of phagocytosis was conducted on a macrophage cell line in vitro. The biological impact of pHrodo functionalization (cytotoxicity, inflammatory response, and oxidative stress) was also investigated. Results validate the proof-of-concept of double fluorescent particles (FITC + pHrodo), allowing detection of entirely engulfed pHrodo particles (green and red labeling). Moreover incorporation of pHrodo had no major effects on cytotoxicity compared to particles without pHrodo, making them a powerful tool for micro- and nanotechnologies.

  14. Minimizing biases associated with tracking analysis of submicron particles in heterogeneous biological fluids.

    Science.gov (United States)

    Wang, Ying-Ying; Nunn, Kenetta L; Harit, Dimple; McKinley, Scott A; Lai, Samuel K

    2015-12-28

    Tracking the dynamic motion of individual nanoparticles or viruses offers quantitative insights into their real-time behavior and fate in different biological environments. Indeed, particle tracking is a powerful tool that has facilitated the development of drug carriers with enhanced penetration of mucus, brain tissues and other extracellular matrices. Nevertheless, heterogeneity is a hallmark of nanoparticle diffusion in such complex environments: identical particles can exhibit strongly hindered or unobstructed diffusion within microns of each other. The common practice in 2D particle tracking, namely analyzing all trackable particle traces with equal weighting, naturally biases towards rapidly diffusing sub-populations at shorter time scales. This in turn results in misrepresentation of particle behavior and a systematic underestimate of the time necessary for a population of nanoparticles to diffuse specific distances. We show here via both computational simulation and experimental data that this bias can be rigorously corrected by weighing the contribution by each particle trace on a 'frame-by-frame' basis. We believe this methodology presents an important step towards objective and accurate assessment of the heterogeneous transport behavior of submicron drug carriers and pathogens in biological environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Analysis of major air pollutants and submicron particles in New York City and Long Island

    Science.gov (United States)

    Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.

    2017-01-01

    A year-long sampling campaign of major air pollutants and submicron particle number size distributions was conducted at two sites taken as representative of city-wide air quality in New York City and Long Island, respectively. A number of species were quantified with hourly time resolution, including particle number concentrations in 6 size ranges (20-30 nm, 30-50 nm, 50-70 nm, 70-100 nm, 100-200 nm, and >200 nm), nitrogen oxides, sulfur dioxide, ozone, carbon monoxide, methane, non-methane hydrocarbons, PM2.5 mass concentration and some PM major components (sulfate, organic and elemental carbon). Hourly concentrations of primary and secondary organic carbon were estimated using the EC tracer method. Data were matched with weather parameters and air parcel back-trajectories. A series of tools were thus applied to: (i) study the seasonal, weekly, diurnal cycles of pollutants; (ii) investigate the relationships amongst pollutants through correlation and lagged correlation analyses; (iii) depict the role of atmospheric photochemical processes; (iv) examine the location of the potential sources by mean of conditional bivariate probability function analysis and (v) investigate the role of regional transport of air masses to the concentrations of analyzed species. Results indicate that concentrations of NOx, SO2, CO, non-methane hydrocarbons, primary OC and EC are predominantly determined by local sources, but are also affected by regional transports of polluted air masses. On the contrary, the transport of continental polluted air masses has a main effect in raising the concentrations of secondary PM2.5 (sulfate and secondary organic carbon). By providing direct information on the concentrations and trends of key pollutants and submicron particle number concentrations, this study finally enables some general considerations about air quality status and atmospheric processes over the New York City metropolitan area.

  16. Formation of stable submicron peptide or protein particles by thin film freezing

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Keith P.; Engstrom, Joshua; Williams, III, Robert O.

    2017-04-18

    The present invention includes compositions and methods for preparing micron-sized or submicron-sized particles by dissolving a water soluble effective ingredient in one or more solvents; spraying or dripping droplets solvent such that the effective ingredient is exposed to a vapor-liquid interface of less than 50, 100, 150, 200, 250, 200, 400 or 500 cm.sup.-1 area/volume to, e.g., increase protein stability; and contacting the droplet with a freezing surface that has a temperature differential of at least 30.degree. C. between the droplet and the surface, wherein the surface freezes the droplet into a thin film with a thickness of less than 500 micrometers and a surface area to volume between 25 to 500 cm.sup.-1.

  17. Bacterial characterization in ambient submicron particles during severe haze episodes at Ji'nan, China.

    Science.gov (United States)

    Xu, Caihong; Wei, Min; Chen, Jianmin; Wang, Xinfeng; Zhu, Chao; Li, Jiarong; Zheng, Lulu; Sui, Guodong; Li, Weijun; Wang, Wenxing; Zhang, Qingzhu; Mellouki, Abdelwahid

    2017-02-15

    In January 2014, severe haze episodes which sweep across Chinese cities have attracted public concern and interest at home and abroad. In addition to the physicochemical properties of air pollutants, bacteria are thought to be responsible for the spread of respiratory diseases and various allergies. We attempted the bacterial characterization of submicron particles (PM 0.18-0.32 , PM 0.32-0.56 , and PM 0.56-1 ) under severe haze episodes using high-throughput sequencing and real-time quantitative PCR detecting system based on 21 samples collected from January to March 2014 at Ji'nan, China. The high bacterial concentration in PM 0.32-0.56 (7314cells m -3 ), PM 0.18-0.32 (7212cells m -3 ), and PM 0.56-1 (6982cells m -3 ) showed significant negative correlations with SO 2 , NO 2, and O 3 . Under sufficient sequencing depth, 37 phyla, 71 classes, 137 orders, 236 families, and 378 genera were classified, and the bacterial community structure varied significantly in different size fractions. For example, Holophagaceae (Acidobacteria) in PM 0.32-0.56 showed 6-fold higher abundance than that in PM 0.18-0.32 . Moreover, functional categories and bacterial species (Lactococcus piscium, Pseudomonas fragi, Streptococcus agalactiae, and Pseudomonas cichorii) that may potentially be responsible for infections and allergies were also discovered. Source track analysis showed that the ambient bacteria mainly originated from soils, leaf surfaces, and feces. Our results highlighted the importance of airborne microbial communities by understanding the concentration, structure, ecological and health effects, especially those in submicron particles during haze episodes. Copyright © 2016. Published by Elsevier B.V.

  18. Size-Dependent Photodynamic Anticancer Activity of Biocompatible Multifunctional Magnetic Submicron Particles in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kyong-Hoon Choi

    2016-09-01

    Full Text Available In this study, newly designed biocompatible multifunctional magnetic submicron particles (CoFe2O4-HPs-FAs of well-defined sizes (60, 133, 245, and 335 nm were fabricated for application as a photosensitizer delivery agent for photodynamic therapy in cancer cells. To provide selective targeting of cancer cells and destruction of cancer cell functionality, basic cobalt ferrite (CoFe2O4 particles were covalently bonded with a photosensitizer (PS, which comprises hematoporphyrin (HP, and folic acid (FA molecules. The magnetic properties of the CoFe2O4 particles were finely adjusted by controlling the size of the primary CoFe2O4 nanograins, and secondary superstructured composite particles were formed by aggregation of the nanograins. The prepared CoFe2O4-HP-FA exhibited high water solubility, good MR-imaging capacity, and biocompatibility without any in vitro cytotoxicity. In particular, our CoFe2O4-HP-FA exhibited remarkable photodynamic anticancer efficiency via induction of apoptotic death in PC-3 prostate cancer cells in a particle size- and concentration-dependent manner. This size-dependent effect was determined by the specific surface area of the particles because the number of HP molecules increased with decreasing size and increasing surface area. These results indicate that our CoFe2O4-HP-FA may be applicable for photodynamic therapy (PDT as a PS delivery material and a therapeutic agent for MR-imaging based PDT owing to their high saturation value for magnetization and superparamagnetism.

  19. The role of adsorbed water on the friction of a layer of submicron particles

    Science.gov (United States)

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  20. Water ice and sub-micron ice particles on Tethys and Mimas

    Science.gov (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  1. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.

    Science.gov (United States)

    Anderson, Will; Kozak, Darby; Coleman, Victoria A; Jämting, Åsa K; Trau, Matt

    2013-09-01

    The particle size distribution (PSD) of a polydisperse or multimodal system can often be difficult to obtain due to the inherent limitations in established measurement techniques. For this reason, the resolution, accuracy and precision of three new and one established, commercially available and fundamentally different particle size analysis platforms were compared by measuring both individual and a mixed sample of monodisperse, sub-micron (220, 330, and 410 nm - nominal modal size) polystyrene particles. The platforms compared were the qNano Tunable Resistive Pulse Sensor, Nanosight LM10 Particle Tracking Analysis System, the CPS Instruments's UHR24000 Disc Centrifuge, and the routinely used Malvern Zetasizer Nano ZS Dynamic Light Scattering system. All measurements were subjected to a peak detection algorithm so that the detected particle populations could be compared to 'reference' Transmission Electron Microscope measurements of the individual particle samples. Only the Tunable Resistive Pulse Sensor and Disc Centrifuge platforms provided the resolution required to resolve all three particle populations present in the mixed 'multimodal' particle sample. In contrast, the light scattering based Particle Tracking Analysis and Dynamic Light Scattering platforms were only able to detect a single population of particles corresponding to either the largest (410 nm) or smallest (220 nm) particles in the multimodal sample, respectively. When the particle sets were measured separately (monomodal) each platform was able to resolve and accurately obtain a mean particle size within 10% of the Transmission Electron Microscope reference values. However, the broadness of the PSD measured in the monomodal samples deviated greatly, with coefficients of variation being ~2-6-fold larger than the TEM measurements across all four platforms. The large variation in the PSDs obtained from these four, fundamentally different platforms, indicates that great care must still be taken in

  2. Number size distributions and seasonality of submicron particles in Europe 2008-2009

    Science.gov (United States)

    Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.-M.; Sellegri, K.; Birmili, W.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P. P.; Swietlicki, E.; Kristensson, A.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; Harrison, R. M.; Beddows, D.; O'Dowd, C.; Jennings, S. G.; Flentje, H.; Weinhold, K.; Meinhardt, F.; Ries, L.; Kulmala, M.

    2011-06-01

    Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the

  3. Sub-micron particle number size distribution characteristics at two urban locations in Leicester

    Science.gov (United States)

    Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.

    2017-09-01

    The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly

  4. Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.

    Science.gov (United States)

    Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R

    2016-05-03

    The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher

  5. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bing; Feng Weiyue, E-mail: fengwy@mail.ihep.ac.cn; Zhu Motao; Wang Yun; Wang Meng [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Gu Yiqun [Maternity Hospital of Haidian District (China); Ouyang Hong; Wang Huajian; Li Ming; Zhao Yuliang, E-mail: zhaoyuliang@mail.ihep.ac.cn; Chai Zhifang [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Wang Haifang [Peking University, College of Chemistry and Molecular Engineering (China)

    2009-01-15

    Olfactory tract has been demonstrated to be an important portal for inhaled solid nanoparticle transportation into the central nervous system (CNS). We have previously demonstrated that intranasally instilled Fe{sub 2}O{sub 3} nanoparticles could transport into the CNS via olfactory pathway. In this study, we investigated the neurotoxicity and size effect of repeatedly low-dose (130 {mu}g) intranasal exposure of nano- and submicron-sized Fe{sub 2}O{sub 3} particles (21 nm and 280 nm) to mice. The biomarkers of oxidative stress, activity of nitric oxide synthases and release of monoamine neurotransmitter in the brain were studied. Our results showed that significant oxidative stress was induced by the two sizes of Fe{sub 2}O{sub 3} particles. The activities of GSH-Px, Cu,Zn-SOD, and cNOS significantly elevated and the total GSH and GSH/GSSG ratio significantly decreased in the olfactory bulb and hippocampus after the nano- and submicron-sized Fe{sub 2}O{sub 3} particle treatment (p < 0.05). The nano-sized Fe{sub 2}O{sub 3} generally induced greater alteration and more significant dose-effect response than the submicron-sized particle did. Some slight perturbation of monoamine neurotransmitters were found in the hippocampus after exposure to the two sizes of Fe{sub 2}O{sub 3} particle. The TEM image showed that some ultrastructural alterations in nerve cells, including neurodendron degeneration, membranous structure disruption and lysosome increase in the olfactory bulb, slight dilation in the rough endoplasmic reticulum and lysosome increase in the hippocampus were induced by the nano-sized Fe{sub 2}O{sub 3} treatment. In contrast, in the submicron-sized Fe{sub 2}O{sub 3} treated mice, slightly swollen mitochondria and some vacuoles were observed in the olfactory bulb and hippocampus, respectively. These results indicate that intranasal exposure of Fe{sub 2}O{sub 3} nanoparticles could induce more severe oxidative stress and nerve cell damage in the brain than the

  6. Submicron Particles during Macro- and Micro-Weldings Procedures in Industrial Indoor Environments and Health Implications for Welding Operators

    Directory of Open Access Journals (Sweden)

    Pasquale Avino

    2015-06-01

    Full Text Available One of the emerging risks in the engineering and electronic industries is the exposure of workers to ultrafine particles during (micro-welding operations, i.e., processes used for joining two metal parts heated locally, which constitute the base metal, with or without addition of another metal which is the filler metal, melted between the edges to be joined. The process is accompanied by formation of metallic fumes arising from the molten metal as well as by the emission of metal fumes of variable composition depending on the alloys welded and fused. The aim of this paper is to investigate the number, concentration and size distribution of submicron particles produced by (micro-welding processes. Particle number size distribution is continuously measured during (micro-welding operations by means of two instruments, i.e., Fast Mobility Particle Sizer and Nanoparticle Surface Area Monitor. The temporal variation of the particle number size distribution across the peaks evidences the strong and fast-evolving contribution of nucleation mode particles: peak values are maintained for less than 10 s. The implication of such contribution on human health is linked to the high deposition efficiency of submicronic particles in the alveolar interstitial region of the human respiratory system, where gas exchange occurs.

  7. Heated submicron particle fluxes using an optical particle counter in urban environment

    Directory of Open Access Journals (Sweden)

    M. Vogt

    2013-03-01

    Full Text Available From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass Dp (PM1 with water soluble soil contributing 11% and water insoluble soil 47%. Carbonaceous compounds were at the most 27% of PM1 mass. It was found that heating the air from the tower to 200 °C resulted in the loss of approximately 60% of the aerosol volume at 0.25 μm Dp whereas only 40% of the aerosol volume was removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses Dp. The chemical analysis did not include carbonaceous compounds, but based on the difference between the total mass concentration and the sum of the analyzed non-carbonaceous materials, it can be assumed that the non-volatile particulate material (heated to 300 °C consists mainly of carbonaceous compounds, including elemental carbon. Furthermore, it was found that the non-volatile particle fraction Dp correlated (r2 = 0.4 with the BC concentration at roof level in the city, supporting the assumption that the non-volatile material consists of carbonaceous compounds. The average diurnal cycles of the BC emissions from road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx and BC measured on a densely trafficked street and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs for non-volatile particles Dp to be 2.4 ± 1.4 mg veh−1 km−1 based on either CO2 fluxes or traffic activity data. Light (LDV and heavy duty vehicle (HDV EFs were estimated using multiple linear regression and reveal that for non

  8. Submicron Y2O3 particles codoped with Eu and Tb ions: size controlled synthesis and tuning the luminescence emission.

    Science.gov (United States)

    Atabaev, Timur Sh; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2012-05-01

    Eu(3+) and Tb(3+) codoped Y(2)O(3) submicron particles were prepared using the simple urea homogeneous precipitation method. X-ray diffraction patterns revealed the synthesized particles to have a pure cubic Y(2)O(3) structure. Field-emission scanning electron microscopy and field-emission transmission electron microscopy showed that the synthesized particles had almost uniform spherical shapes. The luminescence color emission of the synthesized particles could be tuned from red due to the effective (5)D(0)→(7)F(j) (j=0, 1, 2 and 3) transitions within Eu(3+) to green due to the (5)D(4)→(7)F(5) transition within Tb(3+) by switching the excitation wavelength from 255 to 310 nm. Luminescence quenching was observed at high dopant concentrations. Strong and effective color-tunable emission is expected to find a wide range of applications in industry. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Cathepsin K-targeted sub-micron particles for regenerative repair of vascular elastic matrix.

    Science.gov (United States)

    Jennewine, Brenton; Fox, Jonathan; Ramamurthi, Anand

    2017-04-01

    Abdominal Aortic Aneurysms (AAA) involve slow dilation and weakening of the aortic wall due to breakdown of structural matrix components, such as elastic fibers by chronically overexpressed matrix metalloproteinases (MMPs), primarily, MMPs-2 and -9. Auto-regenerative repair of disrupted elastic fibers by smooth muscle cells (SMCs) at the AAA site is intrinsically poor and together with chronic proteolysis prevents restoration of elastin homeostasis, necessary to enable AAA growth arrest or regression to a healthy state. Oral doxycycline (DOX) therapy can inhibit MMPs to slow AAA growth, but has systemwide side-effects and inhibits new elastin deposition within AAA tissue, diminishing prospects for restoring elastin homeostasis preventing the arrest/regression of AAA growth. We have thus developed cationic amphiphile (DMAB)-modified submicron particles (SMPs) that uniquely exhibit pro-elastogenic and anti-proteolytic properties, separate from similar effects of the encapsulated drug. These SMPs can enable sustained, low dose DOX delivery within AAA tissue to augment elastin regenerative repair. To provide greater specificity of SMP targeting, we have conjugated the DOX-SMP surface with an antibody against cathepsin K, a lysosomal protease that is highly overexpressed within AAA tissue. We have determined conditions for efficient cathepsin K Ab conjugation onto the SMPs, improved SMP binding to aneurysmal SMCs in culture and to injured vessel walls ex vivo, conjugation did not affect DOX release from the SMPs, and improved pro-elastogenic and anti-proteolytic effects due to the SMPs likely due to their increased proximity to cells via binding. Our study results suggest that cathepsin K Ab conjugation is a useful targeting modality for our pro-regenerative SMPs. Future studies will investigate SMP retention and biodistribution following targeting to induced AAAs in rat models through intravenous or catheter-based aortal infusion and thereafter their efficacy for

  10. Effects of submicron ammonium sulfate particles on the growth and yield of komatsuna (Brassica rapa L. var. perviridis)

    Science.gov (United States)

    Motai, Akira; Nakaba, Satoshi; Lenggoro, I. Wuled; Watanabe, Makoto; Wada, Yoshiharu; Izuta, Takeshi

    2017-11-01

    The aim of this study was to determine the effects of submicron ammonium sulfate (AS) particles on komatsuna (Brassica rapa L. cv. Hakkei) plants. First, we optimized a leaf-washing method to measure the amount of AS particles deposited on the leaf surface of the plants. Then, we used this method to determine the retention time of particles deposited on the leaf surface of the plants. We also investigated the effects of AS particles on the growth and yield of the plants. Almost all the AS particles deposited on the leaf surface were removed within 1 min washing time with ultrapure water, and ion leaching from the leaf was relatively slow but continuous during the leaf-washing procedure. On the basis of these results, we determined that 1 min was a suitable washing time to remove most of the AS particles while minimizing the influence of ion leaching from the leaf. The amount of particulate SO42- deposited on the leaf surface decreased over time, probably because AS particles deposited on the leaf surface deliquesced, allowing ions such as SO42- in the deliquescence solution to be absorbed into the leaf. The plants were grown and exposed to AS particles for 16 days in naturally lit phytotrons. The daily mean increase in the concentration of SO42- in PM2.5 by the exposure to AS particles was 22.5 μg m-3 in the phytotrons. The growth and yield of the plants were significantly reduced by the exposure to AS particles. The exposure to AS particles did not affect the leaf concentrations of nitrogen and chlorophyll, but significantly reduced stomatal conductance. Therefore, stomatal closure is one of the reasons for the AS particle-induced reductions in the growth and yield of komatsuna plants.

  11. Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2010-06-01

    Full Text Available Processes occurring in the tropical upper troposphere (UT, the Tropical Transition Layer (TTL, and the lower stratosphere (LS are of importance for the global climate, for stratospheric dynamics and air chemistry, and for their influence on the global distribution of water vapour, trace gases and aerosols. In this contribution we present aerosol and trace gas (in-situ measurements from the tropical UT/LS over Southern Brazil, Northern Australia, and West Africa. The instruments were operated on board of the Russian high altitude research aircraft M-55 "Geophysica" and the DLR Falcon-20 during the campaigns TROCCINOX (Araçatuba, Brazil, February 2005, SCOUT-O3 (Darwin, Australia, December 2005, and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006. The data cover submicron particle number densities and volatility from the COndensation PArticle counting System (COPAS, as well as relevant trace gases like N2O, ozone, and CO. We use these trace gas measurements to place the aerosol data into a broader atmospheric context. Also a juxtaposition of the submicron particle data with previous measurements over Costa Rica and other tropical locations between 1999 and 2007 (NASA DC-8 and NASA WB-57F is provided. The submicron particle number densities, as a function of altitude, were found to be remarkably constant in the tropical UT/LS altitude band for the two decades after 1987. Thus, a parameterisation suitable for models can be extracted from these measurements. Compared to the average levels in the period between 1987 and 2007 a slight increase of particle abundances was found for 2005/2006 at altitudes with potential temperatures, Θ, above 430 K. The origins of this increase are unknown except for increases measured during SCOUT-AMMA. Here the eruption of the Soufrière Hills volcano in the Caribbean caused elevated particle mixing ratios. The vertical profiles from Northern hemispheric mid-latitudes between 1999 and 2006 also are

  12. Attenuation measurements with ultrasonic diffraction grating show dependence upon particle size of slurry and viscosity of base liquid.

    Science.gov (United States)

    Greenwood, Margaret Stautberg

    2018-03-01

    How can using an ultrasonic diffraction grating lead to slurry characterization? The diffraction grating, which is formed by machining triangular grooves on the flat surface of an aluminum unit, has send and receive transducers fastened to the unit at an angle of 30°. The ultrasonic beam strikes the back of the grating, in contact with the slurry, and reflects a beam to the receive transducer; m = 0 and m = 1 beams are transmitted into the slurry. The angle of the m = 1 beam changes with frequency and, at the critical frequency f CR , it reaches 90°. When f < f CR , the m = 1 beam disappears, its energy is shared with all other beams, producing a peak in the receive transducer. The change in peak height with slurry concentration determines the attenuation; the frequency at the peak yields the velocity of sound. The attenuation has been measured for polystyrene spheres, ranging in size from 98 µm to 463 µm, and slurry concentrations up to 20 wt%. When the spheres are immersed in water, sugar water, or mineral oil, the attenuation measurements show the effect of particle diameter and the viscosity of the base fluid. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    Science.gov (United States)

    Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M

    2008-01-01

    A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780

  14. Application of I-structure though-glass interconnect filled with submicron gold particles to a hermetic sealing device

    Science.gov (United States)

    Nomura, Kazuya; Okada, Akiko; Shoji, Shuichi; Ogashiwa, Toshinori; Mizuno, Jun

    2016-10-01

    We propose hermetic sealing of a glass-to-glass structure with an I-structure through-glass interconnect via (TGV) filled with submicron Au particles. The top and bottom bumps and the TGV were formed by a simple filling process with a bump-patterned dry film resist. The sealing devices consisting of two glass substrates were bonded via Au interlayers. Vacuum ultraviolet irradiation in the presence of oxygen gas (VUV/O3) pretreatment was used for low-temperature Au-Au bonding at 200 °C. The bonded samples showed He leakage rates of less than 1.3  ×  10-9 Pa m3 s-1. The cross-sectional scanning electron microscope images of the fabricated I-structure TGV showed perfect adhesion between the I-structure TGV and glass substrate. These results indicate that the proposed I-structure TGV is suitable for hermetic sealing devices.

  15. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    Directory of Open Access Journals (Sweden)

    Yost Garold S

    2008-12-01

    Full Text Available Abstract A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm and submicron (250 nm silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF, and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter

  16. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  17. [Submicron particles in smoke resulting from welding alloys and cast alloy in metalworking industry].

    Science.gov (United States)

    Avino, P; Manigrasso, M; Fanizza, Carla; Carrai, P; Solfanelli, Linda

    2013-01-01

    The toxicity of welding fumes depends on both chemical composition and ability to penetrate and deposit deeply in the lungs. Their penetration and deposition in the regions of the respiratory system is mainly determined by their size. The knowledge of the size distribution of welding fumes is a crucial information towards the estimate of the doses of toxic compounds delivered into the respiratory tract. Particle number size distribution was continuously measured during different welding operations by means of a Fast Mobility Particle Sizer, which counts and classifies particles, according to their electrical mobility, in 32 size-channels, in the range from 5.6 to 523 nm, with is time resolution. The temporal evolution of submicrometric particles (6-523 nm), nucleation mode particles (6-16 nm) and the fraction 19-523 nm before, during and after the welding operations performed with/without local exhaust ventilation are reported and extensively discussed. Before welding, nucleation mode particles represent about 7% of submicrometric particles; after about 40 s from the welding start, the percent contribution of nucleation mode particles increases to 60%. Total and nucleation mode particle concentrations increase from 2.1 x 10(4) to 2.0 x 10(6) and from 1.6 x 10(3) to 1.0 x 10(6), respectively. The temporal variation of the particle number size distribution across the peaks, evidences the strong and fast-evolving contribution of nucleation mode particles: peak values are maintained for less than 10 s. The implication of such contribution on human health is linked to high deposition efficiency of the submicrometric particles in the alveolar interstitial region of the human respiratory system, where gas exchange occurs.

  18. Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States

    Science.gov (United States)

    Moreau, David; Borit, François; Corté, Laurent; Guipont, Vincent

    2017-06-01

    We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.

  19. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  20. Ozone and limonene in indoor air: a source of submicron particle exposure.

    Science.gov (United States)

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-01-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to

  1. Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay

    Science.gov (United States)

    Generalova, A. N.; Kochneva, I. K.; Khaydukov, E. V.; Semchishen, V. A.; Guller, A. E.; Nechaev, A. V.; Shekhter, A. B.; Zubov, V. P.; Zvyagin, A. V.; Deyev, S. M.

    2015-01-01

    We report a new surface modification approach of upconversion nanoparticles (UCNPs) structured as inorganic hosts NaYF4 codoped with Yb3+ and Er3+ based on their encapsulation in a two-stage process of precipitation polymerization of acrolein under alkaline conditions in the presence of UCNPs. The use of tetramethylammonium hydroxide both as an initiator of acrolein polymerization and as an agent for UCNP hydrophilization made it possible to increase the polyacrolein yield up to 90%. This approach enabled the facile, lossless embedment of UCNPs into the polymer particles suitable for bioassay. These particles are readily dispersible in aqueous and physiological buffers, exhibiting excellent photoluminescence properties, chemical stability, and also allow the control of particle diameters. The feasibility of the as-produced photoluminescent polymer particles mean-sized 260 nm for in vivo optical whole-animal imaging was also demonstrated using a home-built epi-luminescence imaging system.We report a new surface modification approach of upconversion nanoparticles (UCNPs) structured as inorganic hosts NaYF4 codoped with Yb3+ and Er3+ based on their encapsulation in a two-stage process of precipitation polymerization of acrolein under alkaline conditions in the presence of UCNPs. The use of tetramethylammonium hydroxide both as an initiator of acrolein polymerization and as an agent for UCNP hydrophilization made it possible to increase the polyacrolein yield up to 90%. This approach enabled the facile, lossless embedment of UCNPs into the polymer particles suitable for bioassay. These particles are readily dispersible in aqueous and physiological buffers, exhibiting excellent photoluminescence properties, chemical stability, and also allow the control of particle diameters. The feasibility of the as-produced photoluminescent polymer particles mean-sized 260 nm for in vivo optical whole-animal imaging was also demonstrated using a home-built epi-luminescence imaging

  2. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Xu

    2018-01-01

    Full Text Available Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS and a multi-angle absorption photometer (MAAP at Nam Co station (90°57′ E, 30°46′ N; 4730 m a.s.l. at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1 over the whole campaign was  ∼  2.0 µg m−3, with organics accounting for 68 %, followed by sulfate (15 %, black carbon (8 %, ammonium (7 %, and nitrate (2 %. Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA, with an oxygen-to-carbon ratio (O ∕ C of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O ∕ C ratio of 0.72, and an average O ∕ C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the

  3. Preparation of chitosan-TPP sub-micron particles: Critical evaluation and derived recommendations.

    Science.gov (United States)

    Rázga, Filip; Vnuková, Dominika; Némethová, Veronika; Mazancová, Petra; Lacík, Igor

    2016-10-20

    The controlled preparation of chitosan particles is far from being trivial due to a considerable number of experimental parameters. For chitosan-tripolyphosphate (TPP) particles we evaluate the impact of chemical (type of chitosan, concentration, chitosan to TPP ratio, pH, ionic strength) and process factors (dialysis, stirring rate, rate of TPP addition, temperature, needle diameter) on the size and colloidal stability. The particles were prepared at pH=6.0 at which chitosan adopts the coiled conformation that is discussed as the dominant factor in controlling the stoichiometry of crosslinking reaction shifted towards TPP. These conditions result in identical particle size around 400nm and zeta potential around 22mV. The colloidal stability evaluated 24 hours after preparation depends on the amount of TPP during crosslinking. Under the same conditions, the colloidal stability up to 1 month is demonstrated. Several recommendations are provided to increase the control over formation of chitosan-TPP particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Oxygenated organic functional groups and their sources in single and submicron organic particles in MILAGRO 2006 campaign

    Directory of Open Access Journals (Sweden)

    S. Liu

    2009-09-01

    Full Text Available Fourier Transform Infrared (FTIR and X-ray Fluorescence (XRF were used to measure organic functional groups and elements of submicron particles collected during MILAGRO in March 2006 on three platforms: the Mexico City urban area (SIMAT, the high altitude site at 4010 m (Altzomoni, and the NCAR C130 aircraft. Scanning Transmission X-ray Microscopy (STXM and Near-Edge X-ray Absorption Fine Structure (NEXAFS were applied to single particle organic functional group abundance analysis of particles simultaneously collected at SIMAT and C130. Correlations of elemental concentrations showed different groups of source-related elements at SIMAT, Altzomoni, and C130, suggesting different processes affecting the air masses sampled at the three platforms. Cluster analysis resulted in seven distinct clusters of FTIR spectra, with the last three clusters consisting of spectra collected almost exclusively on the C130 platform, reflecting the variety of sources contributing to C130 samples. Positive Matrix Factorization (PMF of STXM-NEXAFS spectra identified three main factors representing soot, secondary, and biomass burning type spectra. PMF of FTIR spectra resulted in two fossil fuel combustion factors and one biomass burning factor, the former representative of source regions to the northeast and southwest of SIMAT. Alkane, carboxylic acid, amine, and alcohol functional groups were mainly associated with combustion related sources, while non-acid carbonyl groups were likely from biomass burning events. The majority of OM and O/C was attributed to combustion sources, although no distinction between direct emissions and atmospherically processed OM could be identified.

  5. Photothermal heating enabled by plasmonic nanoantennas for electrokinetic manipulation and sorting of submicron particles

    DEFF Research Database (Denmark)

    Ndukaife, Justus C.; Mishra, Avanish; Guler, Urcan

    2014-01-01

    The photo-induced collective heating enabled by a plasmonic nanoantenna array is for the first time harnessed for rapid concentration, manipulation and sorting of particles, with high throughput. This work could find application in biosensing, and surface enhanced spectroscopies © 2014 OSA....

  6. Ni-functionalized submicron mesoporous silica particles as a sorbent for metal affinity chromatography.

    Science.gov (United States)

    Kurdyukov, Dmitry A; Chernova, Ekaterina N; Russkikh, Yana V; Eurov, Daniil A; Sokolov, Vasily V; Bykova, Anna A; Shilovskikh, Vladimir V; Keltsieva, Olga A; Ubyivovk, Eugenii V; Anufrikov, Yuri A; Fedorova, Anna V; Selyutin, Artem A; Sukhodolov, Nicolay G; Podolskaya, Ekaterina P; Golubev, Valery G

    2017-09-01

    In this research, a novel IMAC sorbent with high specificity for chlorine-containing compounds was developed. Ni-functionalized monodisperse spherical mesoporous silica particles of 500±25nm diameter were synthesized and their metal affinity properties were studied with the use of diclofenac as the model substance. The particles were aggregatively stable in the pH range of 3-12. The sorbent demonstrated a high adsorption capacity (0.60±0.06μg of DCF per 1mg of the sorbent) and high adsorption/desorption rate (20 and 5min was enough for the sorbent saturation and desorption of DCF, correspondingly). A mixture of eluents with addition of PFOS providing the almost complete recovery (98%) of diclofenac was first proposed. The monodispersity and the high sedimentation and aggregative stability of the particles provide the formation of a stable hydrosol even under ultrasound treatment which makes the mSiO2/Ni particles suitable for batch chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bragg diffraction from sub-micron particles isolated by optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuan, E-mail: ygao0709@anl.gov; Harder, Ross; Southworth, Stephen; Guest, Jeffrey; Ocola, Leonidas; Young, Linda [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Scherer, Norbert; Yan, Zijie [Department of Chemistry, University of Chicago, Chicago, IL 60637 (United States); Pelton, Matthew [Department of Physics, University of Maryland, Baltimore County, MD 21250 (United States)

    2016-07-27

    We describe an apparatus using dynamic holographic optical tweezers which is capable of trapping and aligning a single micron scale anisotropic ZnO particle for x-ray Bragg diffraction experiments. The optical tweezers demonstrate enough stability to perform coherent x-ray diffraction imaging.

  8. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals.

    Science.gov (United States)

    Izhar, Saifi; Goel, Anubha; Chakraborty, Abhishek; Gupta, Tarun

    2016-03-01

    Risk analysis is highly important in toxicology and public health studies. Health risk related to exposure to toxic metals of PM1 was assessed. Concentrations of 13 heavy metals, adsorbed to submicron particulate matter PM1 were experimentally examined but only 12 metals were found at detectable levels inside IIT Kanpur campus in 2008-2009 for all months excluding June and October. A total of 90 samples collected for 8 h sampling time by a single stage round nozzle, grease impaction substrate based impactor type PM1 sampler were analysed by ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). Results showed daily average PM1 concentration is 102.46 ± 35.9 μg/m(3) and metal concentration followed the trend: Ca > Fe > Mg > Zn > Pb > Cu > Cr > Ni > Se > Cd > V > As. Contamination level assessment using geo-accumulation index showed Ca, Fe and Mg exhibited non contamination whereas metals like Cr, Zn, As, Cd, Pb, Se, Ni and Cu exhibited ranges from moderate to extreme contamination. Ingestion is found to be the major exposure pathway for heavy metals. Non-carcinogenic health risk assessment for Pb, Cd and Cr (HI > 1) signified strong chances of adverse impact on children whereas adults are well under safe limit. Cancer Risk for adults and children followed the same decreasing order, Cr(VI)>Cd > Ni > As > Pb. It was found to be higher than permissible limits (10(-6)) for adults and children both. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hydrodynamics of the continuously filtering slurry reactor. Influence of load of solids and particle size distribution.

    NARCIS (Netherlands)

    Huizenga, P.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    Internal filtration in slurry bubble columns offers a possible solution to the filtration problems related to this reactor type. The applicability of the concept has already been demonstrated at full-scale for waste water treatment. Theoretical description of internal filtration is lacking, however.

  10. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    Directory of Open Access Journals (Sweden)

    Linnea Ahlinder

    2016-04-01

    Full Text Available The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.

  11. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  12. Light transport through disordered layers of dense gallium arsenide submicron particles

    Science.gov (United States)

    van der Beek, T.; Barthelemy, P.; Johnson, P. M.; Wiersma, D. S.; Lagendijk, A.

    2012-03-01

    We present a study of optical transport properties of powder layers with submicrometer, strongly scattering gallium arsenide (GaAs) particles. Uniform, thin samples with well controlled thicknesses were created through the use of varying grinding times, sedimentation fractionation, annealing, and a new sedimentation technique. These fabrication parameters were optimized to produce maximum scattering and minimum absorption. The physical properties were characterized using scanning electron microscopy (SEM) and x-ray diffraction. The optical transport mean-free path, absorption length, and the diffusion constant were determined for each sample using both continuous wave and time-resolved methods. The samples scatter strongly in the near infrared region. Total reflection and transmission measurements show that all of these samples have high absorption. X-ray diffraction results suggest that the source of this absorption is grinding induced strain and/or defects in the crystal structure. For all the different grinded GaAs powder samples that we investigated, the absorption length was less than ten micrometers.

  13. The Effect of Submicron Second-Phase Particles on the Rate of Grain Refinement in a Copper-Oxygen Alloy During Cold Spray

    Science.gov (United States)

    Zhang, Yinyin; Brodusch, Nicolas; Descartes, Sylvie; Shockley, J. Michael; Gauvin, Raynald; Chromik, Richard R.

    2017-10-01

    The effect of non-deformable submicron second-phase particles ( d = 200-500 nm) on microstructural refinement during cold spray was examined. Using single particle impact testing, two types of splats were fabricated using two different feedstocks: a Cu-0.21wt.%O powder containing Cu2O second-phase particles and a single-phase Cu. Microstructural evolution analysis using high-resolution electron backscatter diffraction shows grain refinement occurred at a higher rate in the Cu-0.21wt.%O powder. That was due to dynamic recrystallization initiated by particle-stimulated nucleation (PSN). High-strain-rate deformation of cold spray was found to be the key to activate PSN. The present study suggests cold spray is a possible technique to fabricate ultrafine-grained materials by using feedstock containing second-phase particles.

  14. Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column.

    Science.gov (United States)

    Fedotov, Petr S; Ermolin, Mikhail S; Karandashev, Vasily K; Ladonin, Dmitry V

    2014-12-01

    For the first time, nano- and submicron particles of street dust have been separated, weighted, and analyzed. A novel technique, sedimentation field-flow fractionation in a rotating coiled column, was applied to the fractionation of dust samples with water being used as a carrier fluid. The size and morphology of particles in the separated fractions were characterized by electronic microscopy before digestion and the determination of the concentration of elements by ICP-AES and ICP-MS. The elements that may be of anthropogenic origin (Zn, Cr, Ni, Cu, Cd, Sn, Pb) were found to concentrate mainly in particles present only about 0.1 mass% of the sample they are of special concern due to their increased mobility and ability to penetrate into the deepest alveolar area of the lungs. For rare earth elements (La, Ce, Pr, Nd, Sm) that are evidently of natural source and may be found in soil minerals, in contrary, higher concentrations were observed in large particles (10-100 μm). Sc was an exception that needs further studies. The proposed approach to the fractionation and analysis of nano-, submicron, and micron particles can be a powerful tool for risk assessment related to toxic elements in dust, ash, and other particulate environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    Science.gov (United States)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  16. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-12-15

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  17. Second-hand smoke exposure generated by new electronic devices (IQOS® and e-cigs) and traditional cigarettes: submicron particle behaviour in human respiratory system.

    Science.gov (United States)

    Protano, C; Manigrasso, M; Avino, P; Sernia, S; Vitali, M

    2016-01-01

    Passive exposure profiles to submicronic particles (SMPs, 5.6-560 nm) of traditional cigarettes and new electronic commercial devices (e-cig and IQOS®, a new heat-not-burn smoking device) were compared. During smoking, SMPs released by traditional cigarettes resulted four-times higher than those released by electronic and heat-not-burn devices and remained high for at least one hour, while SMPs values returned immediately similar to background for electronic and heat-not-burn devices. In all experiments, approximately half of SMPs resulted so small to reach the alveolar region.

  18. Eulerian-Eulerian Simulation of Particle-Liquid Slurry Flow in Horizontal Pipe

    Directory of Open Access Journals (Sweden)

    Titus Ntow Ofei

    2016-01-01

    Full Text Available In this study, a computational fluid dynamics (CFD simulation which adopts the inhomogeneous Eulerian-Eulerian two-fluid model in ANSYS CFX-15 was used to examine the influence of particle size (90 μm to 270 μm and in situ particle volume fraction (10% to 40% on the radial distribution of particle concentration and velocity and frictional pressure loss. The robustness of various turbulence models such as the k-epsilon (k-ε, k-omega (k-ω, SSG Reynolds stress, shear stress transport, and eddy viscosity transport was tested in predicting experimental data of particle concentration profiles. The k-epsilon model closely matched the experimental data better than the other turbulence models. Results showed a decrease in frictional pressure loss as particle size increased at constant particle volume fraction. Furthermore, for a constant particle volume fraction, the radial distribution of particle concentration increased with increasing particle size, where high concentration of particles occurred at the bottom of the pipe. Particles of size 90 μm were nearly buoyant especially for high particle volume fraction of 40%. The CFD study shows that knowledge of the variation of these parameters with pipe position is very crucial if the understanding of pipeline wear, particle attrition, or agglomeration is to be advanced.

  19. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study

    Directory of Open Access Journals (Sweden)

    M. Cusack

    2013-05-01

    Full Text Available The chemical composition and sources of ambient fine particulate matter (PM1 over a period of 2.5 years for a regional background site in the western Mediterranean are presented in this work. Furthermore, sub-micron particle number concentrations and the sources of these particles are also presented. The mean PM1 concentration for the measurement period was 8.9 μg m−3, with organic matter (OM and sulphate comprising most of the mass (3.2 and 1.5 μg m−3 respectively. Six sources were identified in PM1 by Positive Matrix Factorisation (PMF: secondary organic aerosol, secondary nitrate, industrial, traffic + biomass burning, fuel oil combustion and secondary sulphate. Typically anthropogenic sources displayed elevated concentrations during the week with reductions at weekends. Nitrate levels were elevated in winter and negligible in summer, whereas secondary sulphate levels underwent a contrasting seasonal evolution with highest concentrations in summer, similar to the fuel oil combustion source. The SOA source was influenced by episodes of sustained pollution as a result of anticyclonic conditions occurring during winter, giving rise to thermal inversions and the accumulation of pollutants in the mixing layer. Increased levels in summer were owing to higher biogenic emissions and regional recirculation of air masses. The industrial source decreased in August due to decreased emissions during the vacation period. Increases in the traffic + biomass burning source were recorded in January, April and October, which were attributed to the occurrence of the aforementioned pollution episodes and local biomass burning emission sources, which include agriculture and domestic heating systems. Average particle number concentrations (N9-825 nm from 5/11/2010 to 01/06/2011 and from 15/10/2011 to 18/12/2011 reached 3097 cm−3. Five emission sources of particle of sub-micron particles were determined by Principal Component Analysis (PCA; industrial

  20. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Daniel, Richard C.; Rector, David R.; Bredt, Paul R.; Buck, Edgar C.; Berg, John C.; Saez, Avelino E.

    2006-09-29

    Hanford TRU tank sludges are complex mixtures of undissolved minerals and salt solids in an aqueous phase of high ionic strength. They show complex rheological behavior resulting from interactions at the macroscopic level, such as interparticle friction between grains in the coarse fraction, as well as from interactions at the nano-scale level, such as the agglomeration of colloidal particles. An understanding of how phenomena such as interparticle friction and aggregate stability under shear will allow better control of Hanford TRU tank sludges being processed for disposal. The project described in this report had two objectives. The first was to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of sludge physical properties by correlating the macroscopic behavior with interactions occurring at the particle/colloidal scale. These objectives were accomplished by: 1) developing continuum models for coarse granular slurries and 2) studying the behavior of colloidal agglomerates under shear and under irradiation.

  1. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    Science.gov (United States)

    Smith, J. D.; Kroll, J. H.; Cappa, C. D.; Che, D. L.; Liu, C. L.; Ahmed, M.; Leone, S. R.; Worsnop, D. R.; Wilson, K. R.

    2009-05-01

    The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules cm-3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle-phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle-phase organic matter in the troposphere.

  2. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    Directory of Open Access Journals (Sweden)

    J. D. Smith

    2009-05-01

    Full Text Available The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules cm−3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle-phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle-phase organic matter in the troposphere.

  3. On the Accelerated Settling of Fine Particles in a Bidisperse Slurry

    Directory of Open Access Journals (Sweden)

    Leonid L. Minkov

    2015-01-01

    Full Text Available An estimation of increasing the volume average sedimentation velocity of fine particles in bidisperse suspension due to their capturing in the circulation zone formed in the laminar flow of incompressible viscous fluid around the spherical coarse particle is proposed. The estimation is important for an explanation of the nonmonotonic shape of the separation curve observed for hydrocyclones. The volume average sedimentation velocity is evaluated on the basis of a cellular model. The characteristic dimensions of the circulation zone are obtained on the basis of a numerical solution of Navier-Stokes equations. Furthermore, these calculations are used for modelling the fast sedimentation of fine particles during their cosedimentation in bidisperse suspension. It was found that the acceleration of sedimentation of fine particles is determined by the concentration of coarse particles in bidisperse suspension, and the sedimentation velocity of fine fraction is proportional to the square of the coarse and fine particle diameter ratio. The limitations of the proposed model are ascertained.

  4. Hydrodynamic impact of particle shape in slurry packed liquid chromatography columns

    DEFF Research Database (Denmark)

    Lottes, F.; Arlt, W.; Minceva, M.

    2009-01-01

    for visualization of the inner part of a packed column and measurement of the spatial resolved column packing properties. For evaluation of the influence of the particle shape on the velocity distribution and column performance, irregular and spherical reversed phases were studied in detail. The results showed...... a decreasing velocity towards the column wall most certainly due to a lower permeability. This effect was much less pronounced in the case of spherical particles, indicating a more homogenous packing structure. The influence of the column packing pressure, as a possible measure for improvement of the packing...... homogeneity was also studied. It was shown that under the same packing conditions spherical particles always lead to a more homogeneous packing. The overall results of this work contribute to the origin of the fact that spherical material is superior to irregular one from the hydrodynamic point of view....

  5. Submicron sized ultra-high molecular weight polyethylene wear particle analysis from revised SB Charité III total disc replacements.

    Science.gov (United States)

    Punt, Ilona; Baxter, Ryan; van Ooij, André; Willems, Paul; van Rhijn, Lodewijk; Kurtz, Steven; Steinbeck, Marla

    2011-09-01

    Submicron sized particles are frequently observed in retrieved total hip and knee periprosthetic tissues and appear to be critical in the activation of the phagocytic inflammatory response. In this paper the concentration, size and shape of ultra-high molecular weight polyethylene (UHMWPE) wear particles between 0.05 and 2.00μm were determined after isolation from periprosthetic tissues from retrieved lumbar SB Charité III total disc replacements (TDR) using scanning electron microscopy (SEM). For comparison, UHMWPE wear particles were isolated from γ-radiation-air sterilized total hip arthroplasty (THA) revision tissues. The mean concentration of UHMWPE particles in TDR tissues was 1.6×10(9)g(-1)tissue (range 1.3-2.0), which was significantly lower than the concentration of 2.3×10(9)g(-1) THA revision tissue (range 1.8-3.2) (P=0.03). The mean particle size (equivalent circular diameter: TDR, 0.46μm; THA 0.53μm, P=0.60) and mean shape were comparable between TDR and THA (aspect ratio: TDR, 1.89; THA, 1.99, P=0.35; roundness: TDR, 0.58; THA, 0.56, P=0.35). However, the TDR particles tended to be smaller and more round. Although no correlations were found between visible damage to the UHMWPE core and the concentration or shape of the UHMWPE particles, a positive correlation was found between increasing particle size and increasing rim penetration of the TDR core (P=0.04). The presence of UHMWPE particles of similar size and shape in TDR tissue, albeit lower in concentration, might explain why, unlike THA, pain rather than osteolysis is the major reason for revision surgery. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Investigation of the effect of coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels: Final report, July 1, 1994-June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.

    1996-10-01

    The scope of the project is two fold: (1) examining particle size effect on interfacial properties of CWS fuels by measuring static and dynamic surface tension properties of specially prepared CWS samples containing different ranges of coal particle sizes, and (2) studying the effect of particle size on CWS atomization characteristics by measuring mean diameters of several different CWS sprays generated by sonic air blasting. The results show that both static and dynamic surface tensions decrease with increasing coal particle size and mean droplet diameter of CW-S sprays also decreases with increasing coal particle size. Based on the experimental evidence we conjecture that three different energies are competing in slurry atomization: (1) the internal capillary holding between particles and water, (2) the interfacial surface tensile energy at the slurry surface contacting air, and (3) the external air blast shear energy acting against the former two energies. The internal capillary holding force decreases with increasing particle size. This force is believed to play a major role in determining the effect of particle size on CWS atomization.

  7. Enhanced computational performance of the lattice Boltzmann model for simulating micron- and submicron-size particle flows and non-Newtonian fluid flows

    Science.gov (United States)

    Başağaoğlu, Hakan; Harwell, John R.; Nguyen, Hoa; Succi, Sauro

    2017-04-01

    Significant improvements in the computational performance of the lattice-Boltzmann (LB) model, coded in FORTRAN90, were achieved through application of enhancement techniques. Applied techniques include optimization of array memory layouts, data structure simplification, random number generation outside the simulation thread(s), code parallelization via OpenMP, and intra- and inter-timestep task pipelining. Effectiveness of these optimization techniques was measured on three benchmark problems: (i) transient flow of multiple particles in a Newtonian fluid in a heterogeneous fractured porous domain, (ii) thermal fluctuation of the fluid at the sub-micron scale and the resultant Brownian motion of a particle, and (iii) non-Newtonian fluid flow in a smooth-walled channel. Application of the aforementioned optimization techniques resulted in an average 21 × performance improvement, which could significantly enhance practical uses of the LB models in diverse applications, focusing on the fate and transport of nano-size or micron-size particles in non-Newtonian fluids.

  8. Separation of submicron particles from biofuel combustion with flue gas condensation or wet condensing electrostatic precipitator. Analysis of possibilities; Avskiljning av submikrona partiklar vid biobraenslefoerbraenning med roekgaskondensering eller kondenserande vaata elfilter. Analys av moejligheterna

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    Dust particles in flue gas larger than 1 {mu}m are well separated by conventional techniques, while submicron particles are poorly separated. As the use of biofuels with high ash content is increasing, as well as knowledge about negative health effects from inhalation of submicron particles, the interest for reduction of emissions of submicron particles will probably increase. The aim of this project is to investigate possible techniques for separation of submicron particles during flue gas condensation through modification of conventional technique, or with available techniques not usually used with combustion of biofuels, e.g. a wet electrostatic precipitator. Mechanisms for separation of dust particles are briefly described. Cyclones separates particles larger than about 1 {mu}m. Fabric filters separates all particles sizes, but the efficiency reduces as the size reduces. In flue gas condensers and scrubbers the speed and size of water droplets are important for the reduction efficiency. Dry electrostatic precipitators work for all particle sizes, but with reduced efficiency for sizes between 0.1 and 3 {mu}m. Wet electrostatic precipitators separates submicron particles much better. One reason for this is that the potential between the electrodes can be higher. Among conventional flue gas condensers and scrubbers there are two types that, properly designed, can separate submicron particles, namely 'type venturi scrubbers', i.e. a scrubber where a high flue gas velocity is used to form many, small water droplets by friction forces in a nozzle, and 'type scrubber with nozzles', i.e. a scrubber where nozzles supply droplets to the flue gas. For a scrubber with nozzles, the falling velocity of the droplets must be lower and the size smaller than is common today. Also the wet electrostatic precipitator separates submicron particles with high efficiency. They are used today mainly for problematic particles, e.g. sticky or corrosive ones, or for

  9. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  10. Development of high efficient ESP for submicron particle collection. Sabumikuron ryushi no kokoritsu shujin hoshiki no kaihatsu. ; Seiden gyoshu sochi naizo denki shujin hoshiki no gyoshusayo to shujin koritsu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Suda, T.

    1989-11-01

    The result of testing the operation of an electrostatic agglomeration appratus (ESA) is reported, which has been developed at Central Research Institute of Electric Power Industry (CRIEPI). Details of the apparatus is given in the authors {prime} previous papaer (1988). At first a description is given of an apparatus which produces the aerosol for laboratory use comprising submicron-sized carbon particles and micron-sized flyash particles. This aerosol is similar in quality to that produced by a combustion furnance at CRIEPI. An apparatus provided with mesh electrodes for charging aerosol particles is also developed. Thus preparing aerosol samples, the effect of agglomeration produced by the ESA On the samples is examined to demonstrate that particle sizes in diameter are increased by a factor of four on average and the percentage of submicron-sized particles (less than 1 {mu} m in diameter) is reduced by 20% in weight. Combined with this type of ESA, the efficiency of ESP (electrostatic precipitator) in collecting submicron-sized particles is theoretically calculated to increase by about 1 - 3% when it is used at a thermal power plant of 520MW. 4refs., 21 figs., 6 tabs.

  11. Organic composition of single and submicron particles in different regions of western North America and the eastern Pacific during INTEX-B 2006

    Directory of Open Access Journals (Sweden)

    D. A. Day

    2009-08-01

    Full Text Available Single particles were collected from an aircraft platform as part of the Intercontinental Chemical Transport Experiment – Phase B (INTEX-B conducted over the eastern Pacific and western North America. Single particle spectra were obtained using scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS. Bulk submicron particles were also collected and organic functional group and elemental concentrations were quantified with Fourier transform infrared (FTIR spectroscopy and X-ray fluorescence (XRF. Single particle spectra were classified into metaclasses associated with different sources and atmospheric processing. Particles with spectra indicative of secondary organic aerosol production and combustion sources were found at several locations and a range of altitudes. At lower altitudes, particles with spectra resembling soil dust and biomass burning fingerprints were commonly observed. The types of particle spectra most commonly observed aloft were similar to those observed during a previous study over the northwestern Pacific, indicating that long-range transport may have been an important particle source. Single particle spectra provided evidence that condensation and surface-limited oxidation contributed to particle growth. Organic mass (OM concentrations ranged from 1 to 7 μg m−3 and averaged 2.4–4.1 μg m−3. Alkane functional groups were the largest fraction of OM, averaging 1.9–2.1 μg m−3 or 50–76% of OM, followed by alcohol functional groups (0.35–0.39 μg m−3, 9–14%. Organic and elemental concentrations are compared within and among geographical air mass regions: "Pacific" free troposphere, "Continental" free troposphere, "Seattle" metropolitan region, and the California "Central Valley". OM concentrations were highest and most variable in the Central Valley (3.5±2 μg m−3. Oxygen-to-carbon ratios were

  12. Hygroscopicity of Chemically Aged, sub-micron Squalane Particles: On the Role of Size and Composition towards the Hygroscopicity Parameter κ

    Science.gov (United States)

    Harmon, C. W.; Smith, J. D.; Che, D. L.; Leone, S. R.; Wilson, K. R.

    2010-12-01

    Measurements presented herein explore cloud condensation nuclei (CCN) activity of sub-micron squalane particles chemically aged by hydroxyl radicals as a function of size and OH exposure. As squalane particles are exposed to OH radicals, size-selected 100, 150, and 200 nm particles monotically decrease in size with increasing OH exposure. Concurrently, their CCN derived hygroscopicity parameter values, κ, increase with OH exposure until saturating at 0.165 in the 100 nm data set, 0.140 in the 150 nm data set, and reach a maximum value of 0.075 in the 200 nm data set at the highest level of OH exposure. The critical super-saturation relative humidity (RH) at which CCN activity is achieved decreases initially with increasing OH exposure and then increases with OH exposure, most notably for the 100 nm data set and weakly with the 150 nm data set. Chemically aged squalane particles from the 200 nm data set show a monotonic decrease in critical super-saturation RH with all values of increasing OH exposure between 0.1-2.5 × 10^13 s molec./cc. The measured O:C ratios of 160 nm chemically aged squalane particles, which were reported previously, are compared to κ values by the CCN derived relationship reported in literature: κ = 0.30*O:C and reasonable agreement is attained in the size-selected 150 nm data set. These values are also compared with the hygroscopic growth factor derived relationship in literature: κ = 0.49*(O:C -0.25) and reasonable agreement is attained at O:C > 0.35.

  13. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave.

    Science.gov (United States)

    Kuznetsova, Larisa A; Martin, Stacey P; Coakley, W Terence

    2005-12-15

    The capture of 200 nm biotinylated latex beads from suspensions of concentration 10(7) to 2.5 x 10(8) particle/ml on an immuno-coated surface of the acoustic reflector in an ultrasound standing wave (USW) resonator has been studied while the acoustic pathlength was less than one half wavelength (lambda/2). The particles were delivered to the reflector's surface by acoustically induced flow. The capture dependencies on suspension concentration, duration of experiments and acoustic pressure have been established at 1.09, 1.46 and 1.75 MHz. Five-fold capture increase has been obtained at 1.75 MHz in comparison to the control (no ultrasound) situation. The contrasting behaviours of 1, 0.5 and 0.2 mum fluorescent latex beads in a lambda/4 USW resonator at 1.46 MHz have been characterized. The particle movements were observed with an epi-fluorescent microscope and the velocities of the particles were measured by particle image velocimetry (PIV). The experiments showed that whereas the trajectories of 1 mum particles were mainly affected by the direct radiation force, 0.5 mum particles were influenced both by the radiation force and acoustic streaming. The 0.2 mum latex beads followed acoustic streaming in the chamber and were not detectably affected by the radiation force. The streaming-associated behaviour of the 200 nm particles has implications for enhanced immunocapture of viruses and macromolecules (both of which are also too small to experience significant acoustic radiation force).

  14. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles.

    Science.gov (United States)

    Wang, Xiaofei; Deane, Grant B; Moore, Kathryn A; Ryder, Olivia S; Stokes, M Dale; Beall, Charlotte M; Collins, Douglas B; Santander, Mitchell V; Burrows, Susannah M; Sultana, Camille M; Prather, Kimberly A

    2017-07-03

    The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate.

  15. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    Science.gov (United States)

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Collins, Douglas B.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.

    2017-07-01

    The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate.

  16. Consideration of the respiratory cycle asymmetry in the numerical modeling of the submicron particles deposition in the human nasal cavity

    Science.gov (United States)

    Ganimedov, V. L.; Muchnaya, M. I.

    2017-10-01

    A detailed study of the behavior of the U-shaped curve was conducted, which described deposition efficiency of inhaled particles in human nasal cavity. The particles in the range from 1 nm to 20 µm are considered. Calculations of air flow and particles deposition were carried out for symmetrical (idealized) and asymmetrical (real) breathing cycles at the same volume of inhaled air, which corresponded to calm breathing. The calculations were performed on the base of the mathematical model of the nasal cavity of healthy person using software package ANSYS (FLUENT 12). The comparison of the results was made between these calculations, and also with the results obtained at quasi-stationary statement of the problem for several values of flow rate. The comparison of the results of quasi-stationary calculations with available calculated and experimental data (in vivo i in vitro) was fulfilled previously. Good agreement of the results was obtained. It is shown that the real distribution of deposition efficiency as a function of the particle size can be obtained via a certain combination of the results of quasi-stationary calculations, without the use of laborious and time-consuming non-stationary calculation.

  17. Highly porous acrylonitrile-based submicron particles for UO2(2+) absorption in an immunosensor assay.

    Science.gov (United States)

    Sahiner, Nurettin; Yu, Haini; Tan, Grace; He, Jibao; John, Vijay T; Blake, Diane A

    2012-01-01

    Our laboratory has previously reported an antibody-based assay for hexavalent uranium (UO(2)(2+)) that could be used on-site to rapidly assess uranium contamination in environmental water samples (Melton, S. J.; et al. Environ. Sci. Technol. 2009, 43, 6703-6709). To extend the utility of this assay to less-characterized sites of uranium contamination, we required a uranium-specific adsorbent that would rapidly remove the uranium from groundwater samples, while leaving the concentrations of other ions in the groundwater relatively unaltered. This study describes the development of hydrogel particles containing amidoxime groups that can rapidly and selectively facilitate the uptake of uranyl ions. A miniemulsion polymerization technique using SDS micelles was employed for the preparation of the hydrogel as linked submicrometer particles. In polymerization, acrylonitrile was used as the initial monomer, ethylene glycol dimethacrylate as the crosslinker and 2-hydroxymethacrylate, 1-vinyl-2-pyrrolidone, acrylic acid, or methacrylic acid were added as co-monomers after the initial seed polymerization of acrylonitrle. The particles were characterized by transmission electron spectroscopy, scanning electron microscopy (SEM) and cryo-SEM. The amidoximated particles were superior to a commercially available resin in their ability to rapidly remove dissolved UO(2)(2+) from spiked groundwater samples. © 2011 American Chemical Society

  18. Visualization and quantification of four steps in magnetic field induced two-dimensional ordering of superparamagnetic submicron particles

    DEFF Research Database (Denmark)

    Gajula, Gnana Prakash; Neves Petersen, Teresa; Petersen, Steffen B.

    2010-01-01

    , resolved growth steps (condensation, polarization, co-linearity and concatenation), the average chain growth rate, and inter-particle interaction length were calculated in the presence of a 120 G external magnetic field using optical microscopy and ‘in-house' developed image analysis software...

  19. Transglutaminase-induced or citric acid-mediated cross-linking of whey proteins to tune the characteristics of subsequently desolvated sub-micron and nano-scaled particles.

    Science.gov (United States)

    Bagheri, Leila; Yarmand, Mohammadsaeed; Madadlou, Ashkan; Mousavi, Mohammad E

    2014-01-01

    Whey proteins were inter-connected either by the enzyme transglutaminase or citric acid and then desolvated with ethanol to generate particles. Both samples comprised of sub-micron (>300 nm) and nano-scaled (~100 nm) particles based on the hydrodynamic size measurements. Enzyme-induced cross-linking of proteins yielded more monodisperse particles and decreased the mean size of the major (nano-scaled) fraction of particles. Scanning electron microscopy images revealed a spherical morphology for all samples with mean sizes of particles from enzymatically cross-linked proteins. The mediating role of citric acid in bridging the proteins was confirmed by Fourier transform infrared spectroscopy. Differential scanning calorimetry indicated that pre-heating of protein solution before cross-linking and desolvation denatured the proteins entirely. In vitro degradation of whey protein particles in a simulated gastric fluid demonstrated that cross-linking of whey proteins before desolvation stage enhanced significantly the digestion stability of particles.

  20. Influence of biomass burning on mixing state of sub-micron aerosol particles in the North China Plain

    Science.gov (United States)

    Kecorius, Simonas; Ma, Nan; Teich, Monique; van Pinxteren, Dominik; Zhang, Shenglan; Gröβ, Johannes; Spindler, Gerald; Müller, Konrad; Iinuma, Yoshiteru; Hu, Min; Herrmann, Hartmut; Wiedensohler, Alfred

    2017-09-01

    Particulate emissions from crop residue burning decrease the air quality as well as influence aerosol radiative properties on a regional scale. The North China Plain (NCP) is known for the large scale biomass burning (BB) of field residues, which often results in heavy haze pollution episodes across the region. We have been able to capture a unique BB episode during the international CAREBeijing-NCP intensive field campaign in Wangdu in the NCP (38.6°N, 115.2°E) from June to July 2014. It was found that aerosol particles originating from this BB event showed a significantly different mixing state compared with clean and non-BB pollution episodes. BB originated particles showed a narrower probability density function (PDF) of shrink factor (SF). And the maximum was found at shrink factor of 0.6, which is higher than in other episodes. The non-volatile particle number fraction during the BB episode decreased to 3% and was the lowest measured value compared to all other predefined episodes. To evaluate the influence of particle mixing state on aerosol single scattering albedo (SSA), SSA at different RHs was simulated using the measured aerosol physical-chemical properties. The differences between the calculated SSA for biomass burning, clean and pollution episodes are significant, meaning that the variation of SSA in different pollution conditions needs to be considered in the evaluation of aerosol direct radiative effects in the NCP. And the calculated SSA was found to be quite sensitive on the mixing state of BC, especially at low-RH condition. The simulated SSA was also compared with the measured values. For all the three predefined episodes, the measured SSA are very close to the calculated ones with assumed mixing states of homogeneously internal and core-shell internal mixing, indicating that both of the conception models are appropriate for the calculation of ambient SSA in the NCP.

  1. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

    Directory of Open Access Journals (Sweden)

    H. C. Cheung

    2016-02-01

    Full Text Available The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultra-fine particles (UFPs, d ≤ 100 nm and submicron particles (PM1, d ≤ 1 µm in an east Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at TARO (Taipei Aerosol and Radiation Observatory, an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC and the particle number size distribution (PSD with size range of 4–736 nm. The results indicated that the mass concentration of PM1 was elevated during cold seasons with a peak level of 18.5 µg m−3 in spring, whereas the highest concentration of UFPs was measured in summertime with a mean of 1.64 µg m−3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents of PM1. The seasonal median of total PNCs ranged from 13.9  ×  103 cm−3 in autumn to 19.4  ×  103 cm−3 in spring. Median concentrations for respective size distribution modes peaked in different seasons. The nucleation-mode PNC (N4 − 25 peaked at 11.6  ×  103 cm−3 in winter, whereas the Aitken-mode (N25 − 100 and accumulation-mode (N100 − 736 PNC exhibited summer maxima at 6.0  ×  103 and 3.1  ×  103 cm−3, respectively. The change in PSD during summertime was attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributed to the growth of aerosol particles in the atmosphere. In addition, clear photochemical production of particles was observed, mostly in the summer season

  2. Investigation of the efect of the coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Deignan, P. [Texas A& M Univ., College Station, TX (United States)

    1995-11-01

    Experiments were conducted to investigate the effect of particle size on coal-water slurry (CWS) surface tension properties. Two different coal powder samples of different size ranges were obtained through sieving of coal from the Upper Elkhorn Seam. The surfactant (anionic DDBS-soft, dodecylbenzene sulfonic acid) concentration varied from 0 to 1.0% in weight while the coal loading remained at 40% in weight for all the cases. A du Nouy ring tensiometer and a maximum bubble pressure tensiometer measured the static and dynamic surface tensions, respectively, The results show that both static and dynamic surface tensions tend to increase with decreasing coal particle sizes suspended in CWS fuels. Examination of the peak pressure, minimum pressure, surfactant diffusion time, and dead time were also made to correlate these microscopic pressure behavior with the macroscopic dynamic surface tension and to examine the accuracy of the experiment.

  3. Enhancement of nonlinear optical and temperature dependent dielectric properties of Ce:BaTiO3 nano and submicron particles

    Science.gov (United States)

    Senthilkumar, P.; Dhanuskodi, S.; Thomas, Anitta Rose; Philip, Reji

    2017-08-01

    The solgel synthesized Ce: BaTiO3 (BT) particles are crystallized in tetragonal structure and the expansion of lattice along a-axis is ensured from the Rietveld refined XRD spectra. FTIR shows that the increase of force constant from 199.97 to 213.13 N m-1 is owing to an effective incorporation of heavier atomic mass of Ce in BT lattice. HRTEM reflects the discontinuous atomic planes in the form of Ti vacancies which is supported by EDS measurement. The modification of optical band structure of BT with Ce ions is validated through several absorption and defect emission bands. Energy dependent second harmonic generation is carried out to confirm the non saturated signal, thermal stability and maximum intensity 2483 counts attained for 2 mol% Ce at 200 mJ. Optical limiting characteristics of the samples is analysed at 532 nm using 5 ns laser pulses of energy 50, 100 and 150 µJ. The nonlinear absorption coefficient (β) is found to be enhanced upon Ce doping. Lower optical limiting thresholds of 2.8 and 3.3 J cm-2 are obtained in the case of 1 and 4 mol% Ce samples respectively. Dielectric properties in a broad temperature range (40-500 °C) and frequency (100 Hz-5 MHz) have been investigated in detail. The dielectric constant is increased from 1926 to 3750 on Ce doping and there are two semicircles in the Cole-Cole plot at 500 °C due to grain and grain boundaries and corresponding equivalent circuit model is proposed.

  4. SUCCESSES AND EMERGING ISSUES IN SIMULATING THE MIXING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 211B

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Stone, M.

    2009-09-02

    Aqueous radioactive high-level waste slurries are combined during processing steps that ultimately produce a stable borosilicate glass waste form. Chemically treated waste slurries are combined with each other and with glass frit-water slurries to produce the melter feed. Understanding the evolution of the rheological properties of the slurries is an important aspect of removing and treating the stored waste. To a first approximation, combinations of colloidal waste slurry with {approx}0.1-mm mean diameter glass frit or glass beads act in an analogous matter to slurries of spherical beads in Newtonian liquids. The non-Newtonian rheological properties of the waste slurries without frit, however, add complexity to the hydrodynamic analysis. The use of shear rate dependent apparent viscosities with the modified Einstein equation was used to model the rheological properties of aqueous frit-waste slurries.

  5. Medical ice slurry production device

    Science.gov (United States)

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  6. Separation of coal-tar constituents from soil particles in a two-liquid-phase slurry system.

    Science.gov (United States)

    Schuur, J H Berg; Mattiasson, B

    2003-06-01

    An evaluation has been made of the capability of rapeseed oil to dissolve polycyclic aromatic hydrocarbon (PAH) crystals in a biphasic system and of its capability to extract PAHs from polluted soil in a two-liquid-phase (TLP) slurry system. Up to 220 g l(-1) of the crystalline hydrocarbons could be dissolved in the organic phase, indicating oil/water-partitioning coefficients of 10(5). When soil from a former gasworks site was treated in a TLP slurry system, it was found that a certain critical amount of vegetable oil had to be added in order to form a free oil phase. Single and multiple extractions gave similar results for multiple short-term and single long-term treatments, with a maximum of 87% for pyrene release. Following a 30-day bioslurry treatment, the total concentration of the 16 EPA PAHs in the soil decreased from 2740 mg kg(-1) to 1366 mg kg(-1). This was followed by one of three different 12-day post-bioslurry treatments. Further bioslurry treatment reduced the final concentration to 1002 mg kg(-1). Abiotic treatment with a surfactant (Brij 30) achieved a reduction to 797 mg kg(-1). Treatment with rapeseed oil gave the best reduction to 343 mg kg(-1).

  7. ORGANIC CARBON CONTENTS AND STOCKS IN PARTICLE SIZE FRACTIONS OF A TYPIC HAPLUDOX FERTILIZED WITH PIG SLURRY AND SOLUBLE FERTILIZER

    Directory of Open Access Journals (Sweden)

    Maria Sueli Heberle Mafra

    2015-08-01

    Full Text Available The use of pig slurry (PS as fertilizer can affect the soil quality and increase total stocks of soil organic carbon (TOC. However, the effects of PS on TOC amount and forms in the soil are not fully understood, particularly in areas under no-tillage (NT. The purpose of this study was to determine TOC contents and stocks in the particulate (POC and mineral-associated C fractions (MAC of an Oxisol after nine years of maize-oat rotation under NT, with annual applications of PS, soluble fertilizer and combined fertilization (pig slurry + soluble fertilizer. The experiment was initiated in 2001 in Campos Novos, Santa Catarina, with the following treatments: PS at rates of 0 (without fertilization - PS0; 25 (PS25; 50 (PS50; 100 (PS100; and 200 m3 ha-1yr-1 (PS200; fertilization with soluble fertilizer (SF; and mixed fertilization (PS + SF. The TOC content was determined in samples of six soil layers to a depth of 40 cm, and the POC and MAC contents in four layers to a depth of 20 cm. From the rate of 50 m3 ha-1yr-1 and upwards, the soil TOC content and stock increased according to the PS rates in the layers to a depth of 10 cm. The POC and MAC contents and stocks were higher in the surface layers, with a clear predominance of the second fraction, but a greater relative amplitude in the contents of the first fraction.

  8. Abrasive Particle Trajectories and Material Removal Non-Uniformity during CMP and Filtration Characteristics of CMP Slurries - A Simulation and Experimental Study

    Science.gov (United States)

    Rastegar, Vahid

    Nanoscale finishing and planarization are integral process steps in multilevel metallization designs for integrated circuit (IC) manufacturing since it is necessary to ensure local and global surface planarization at each metal layer before depositing the next layer. Chemical mechanical planarization (CMP) has been widely recognized as the most promising technology to eliminate topographic variation and has allowed the construction of multilevel interconnection structures with a more regularly stacked sequence, resulting in better device performance [1]. Understanding fundamental of the CMP mechanisms can offer guidance to the control and optimization of the polishing processes. CMP kinematics based on slurry distribution and particle trajectories have a significant impact on MRR profiles. In this work a mathematical model to describe particle trajectories during chemical mechanical polishing was developed and extended to account for the effect of larger particles, particle location changes due to slurry dispensing and in-situ conditioning. Material removal rate (MRR) and within wafer non-uniformity (WIWNU) were determined based on the calculated particle trajectory densities. Rotary dynamics and reciprocating motion were optimized to obtain best MRR uniformity. Edge-fast MRR profile was discussed based on mechanical aspect of CMP. Using the model, we also investigated the effect of variable rotational speeds of wafer and pad, and of large particles on WIWNU and scratch growth. It was shown that the presence of even a small portion of large particles can deteriorate the WIWNU significantly and also lead to more scratches. Furthermore, it was shown that the in-situ conditioning improves the uniformity of the polished wafers. Furthermore, a combined experimental and computational study of fibrous filters for removal of larger abrasive particles from aqueous dispersions, essential to minimize defects during chemical mechanical polishing, was performed. Dilute aqueous

  9. Exposure to submicron particles (PM1.0) from diesel exhaust and pollen allergens of human lung epithelial cells induces morphological changes of mitochondria tonifilaments and rough endoplasmic reticulum.

    Science.gov (United States)

    Mazzarella, Gennaro; Lucariello, Angela; Bianco, Andrea; Calabrese, Cecilia; Thanassoulas, Theodoros; Savarese, Leonilde; Fiumarella, Angelamaria; Esposito, Vincenzo; DE Luca, Antonio

    2014-01-01

    In recent literature, little has been said regarding the morphological changes that occur in lung cells after treatment with particles and nanoparticles. Using an in vitro model of type-II lung epithelium (A549), we studied the effects of submicron particles (PM1.0), Parietaria officinalis (ALL), and PM1.0 + ALL together. To date several biochemical effects have been described, instead few data exist in literature regarding morphological events following these treatments, in particular we focused on the morphological changes and distribution of mitochondria, tonifilaments and rough endoplasmic reticulum, using a transmission electron microscopic (TEM) approach. After exposure to PM1.0 particles (PM1.0), Parietaria officinalis as allergen, and PM1.0 with P. officinalis, changes in the cytoplasmic area were observed, such as damage to mitochondria and morphological alterations of the tonifilaments and rough endoplasmic reticulum. The data obtained strongly support the hypothesis that cells in contact with submicron particles (PM1.0), or P. officinalis, undergo alteration of their metabolism. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    Energy Technology Data Exchange (ETDEWEB)

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  11. Comparative testing of slurry monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Bayne, C.K. [Oak Ridge National Lab., TN (United States); Anderson, M.S. [Ames Lab., IA (United States); Van Essen, D.C. [Advanced Integrated Management Services, Inc., Oak Ridge, TN (United States)

    1998-05-01

    The US Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks, transferred to treatment facilities, and processed to a final waste form. The wastes will be removed from the current storage tanks by mobilizing the sludge wastes and mixing them with the liquid wastes to create slurries. Each slurry would then be transferred by pipeline to the desired destination. To reduce the risk of plugging a pipeline, the transport properties (e.g., density, suspended solids concentration, viscosity, particle size range) of the slurry should be determined to be within acceptable limits prior to transfer. These properties should also be monitored and controlled within specified limits while the slurry transfer is in progress. The DOE issued a call for proposals for developing on-line instrumentation to measure the transport properties of slurries. In response to the call for proposals, several researchers submitted proposals and were funded to develop slurry monitoring instruments. These newly developed DOE instruments are currently in the prototype stage. Before the instruments were installed in a radioactive application, the DOE wanted to evaluate them under nonradioactive conditions to determine if they were accurate, reliable, and dependable. The goal of this project was to test the performance of the newly developed DOE instruments along with several commercially available instruments. The baseline method for comparison utilized the results from grab-sample analyses.

  12. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  13. Role of ammonium ion and transition metals in the formation of secondary organic aerosol and metallo-organic complex within fog processed ambient deliquescent submicron particles collected in central part of Indo-Gangetic Plain.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Gupta, Tarun

    2017-08-01

    In this study we observed the role of ammonium ion (NH4+) and transition metals (Fe, Mn, Cr, and Cu) present in ambient submicron particles in stabilizing and enhancing the yield of water soluble organic carbon (WSOC). A good correlation of WSOC with transition metals and NH4+ was found (R2 = 0.87 and 0.71), respectively within foggy episode collected ambient PM1 (particles having aerodynamic diameter ≤1.0 μm) suggesting plausibleness of alternate oxidation (primarily various carbonyls into their respective organic acids, esters and other derivatives.) and aging mechanisms. Molar concentration of ammonium ion was observed to be exceeded over and above to require in neutralizing the sulphate and nitrate which further hints its role in the neutralization, stabilization and enhancement of subset of WSOC such as water soluble organic acids. Transition metals were further apportioned using enrichment factor analysis. The source of Fe, Mn, and Cr was found to be crustal and Cu was tagged to anthropogenic origin. This study also described the plausible role of significant predictors (Fe and Cu) in the secondary organic aerosol (SOA) formation through effect of Fenton chemistry. Mass-to-charge ratio of identified oxalic acid from our published recent field study (carried out from same sampling location) was used for understanding the possible metallo-organic complex with Fe supports the substantial role of Fe in SOA formation in the deliquescent submicron particles facilitated by aqueous-phase chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Poloski; R.C. Daniel; D.R. Rector; P.R. Bredt; E.C. Buck; Berg, J.C.; Saez, A.E.

    2006-09-29

    This project had two primary objectives. The first was to understand the physical properties and behavior of select Hanford tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale. The specific tank wastes considered herein are contained in thirteen Hanford tanks including three double-shell tanks (DSTs) (AW-103, AW-105, and SY-102) and ten single-shell tanks (SSTs) (B-201 through B-204, T-201 through T-204, T-110, and T-111). At the outset of the project, these tanks were designated as potentially containing transuranic (TRU) process wastes that would be treated and disposed of in a manner different from the majority of the tank wastes.

  15. Bottom-up synthesis of up-converting submicron-sized Er{sup 3+}-doped LiNbO{sub 3} particles

    Energy Technology Data Exchange (ETDEWEB)

    Jardiel, T., E-mail: jardiel@icv.csic.es [Departamento de Electroceramica, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, 28049 Madrid (Spain); Caballero, A.C. [Departamento de Electroceramica, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, 28049 Madrid (Spain); Marin-Dobrincic, M.; Cantelar, E.; Cusso, F. [Departamento de Fisica de Materiales, C-04, Facultad de Ciencias, Universidad Autonoma de Madrid, Avda. Francisco Tomas y Valiente 7, 28049 Madrid (Spain)

    2012-08-15

    A new and simple wet chemical synthesis method is proposed to prepare submicron-sized Erbium-doped LiNbO{sub 3} powders. The synthesis procedure comprises the co-precipitation of lithium and erbium ions from common precursors and their subsequent reaction with niobium ethoxide. A systematic characterization by means of X-Ray Diffraction (XRD), X-ray Fluorescence (XRF), Inductively Coupled Plasma (ICP-OES), Atomic Absorption (AAS), Field Emission Scanning Electron Microscopy (FE-SEM), as well as by the examination of the luminescence properties, evidence that with this method a congruent Er{sup 3+}-doped LiNbO{sub 3} single phase material can be obtained without using complex and time-consuming processing steps. The synthesized powders exhibit efficient IR to VIS up-conversion emissions under 974 nm pumping. -- Highlights: Black-Right-Pointing-Pointer A novel chemical route to the preparation of LiNbO{sub 3} powders has been developed. Black-Right-Pointing-Pointer This process avoids complex and time-consuming processing steps. Black-Right-Pointing-Pointer A congruent Er{sup 3+}-doped LiNbO{sub 3} single phase material can be obtained by this way. Black-Right-Pointing-Pointer The luminescence properties are the expected for this composition.

  16. Synthesis, characterization and electrochemical characterization of lead selenide sub-micron particles capped with a benzoate ligand and prepared at different temperatures

    Science.gov (United States)

    Rodríguez-Rodríguez, Weyshla A.; Colón, Jadiel; Guzmán, Roger; Rivera, Harry; Santiago-Berríos, Mitk'El B.

    2014-09-01

    Semiconductor materials offer several potential benefits as active elements in the development of harvesting-energy conversion technologies. In particular, lead selenide (PbSe) semiconductors have been used and proposed to design solar energy harvesting devices, IR sensors, FET devices, etc. Lead salts have drawn particular attention from the applied and fundamental research communities due to their exceptionally strong quantum confinement effects. Several syntheses of PbSe have been proposed using long chain surfactants to allow the formation of particles and nanoparticles. Here we present a synthesis using benzoic acid as the capping ligand in ambient atmosphere. Although the particles are not in nanometric size, we compare the crystal structure (using x-ray powder diffraction data), the near infrared and mid-infrared absorption properties of PbSe using oleic acid as the capping ligand with PbSe using benzoic acid as the capping ligand. The new synthetized particles were shown to have similar crystal structure and absorb light in the near infrared region at 1410 nm. We also performed cyclic voltammetry of these particles drop-casted in the surface of a glassy carbon electrode. The particles showed electrochemical behavior with an oxidation peak near (-402 ± 5 mV) versus Ag/AgCl reference electrode. The particles seem to form a polymeric film at the surface of a glassy carbon electrode.

  17. Ice slurry cooling research: Storage tank ice agglomeration and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K. [Argonne National Lab., IL (United States); Hayashi, Kanetoshi [NKK Corp., Kawasaki (Japan)

    1999-08-01

    A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

  18. MASS-TRANSFER IN GAS-LIQUID SLURRY REACTORS

    NARCIS (Netherlands)

    BEENACKERS, AACM; VANSWAAIJ, WPM

    A critical review is presented on the mass transfer characteristics of gas-liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas-liquid mass transfer coefficients

  19. Mass transfer in gas-liquid slurry reactors

    NARCIS (Netherlands)

    Beenackers, A.A.C.M.; van Swaaij, Willibrordus Petrus Maria

    1993-01-01

    A critical review is presented on the mass transfer characteristics of gas¿liquid slurry reactors. The recent findings on the influence of the presence of solid particles on the following mass transfer parameters in slurry reactors are discussed: volumetric gas¿liquid mass transfer coefficients

  20. Ionizer assisted air filtration for collection of submicron and ultrafine particles-evaluation of long-term performance and influencing factors.

    Science.gov (United States)

    Shi, Bingbing; Ekberg, Lars

    2015-06-02

    Previous research has demonstrated that unipolar ionization can enhance the filter performance to collect airborne particles, aeroallergens, and airborne microorganisms, without affecting the filter pressure drop. However, there is a lack of research on the long-term system performance as well as the influence of environmental and operational parameters. In this paper, both field and laboratory tests were carried out to evaluate the long-term particle collection efficiency of a synthetic filter of class M6 with and without ionization. The effect of air velocity, temperature, relative humidity, and particle concentration were further investigated in laboratory tests. Results showed that ionization enhanced the filtration efficiency by 40%-units during most of the operation time. When the ionization system was managed by periodically switching the ionizer polarity, the filtration efficiency against PM0.3-0.5 was maintained above 50% during half a year. Furthermore, the pressure drop of the ionizer-assisted M6 filter was 25-30% lower than that of a filter of class F7. The evaluation of various influencing factors demonstrated that (1) air moisture reduced the increase of filtration efficiency; (2) higher upstream particle concentration and air velocity decreased the filtration efficiency; and (3) the air temperature had very limited effect on the filtration efficiency.

  1. Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.

    Science.gov (United States)

    Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...

  2. Freeforming objects with low-binder slurry

    Science.gov (United States)

    Cesarano, III, Joseph; Calvert, Paul D.

    2000-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  3. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  4. SLURRY FLOW MODELLING BY CFD

    Directory of Open Access Journals (Sweden)

    K.C. Ghanta

    2010-12-01

    Full Text Available An attempt has been made in the present study to develop a generalized slurry flow model using CFD and utilize the model to predict concentration profile. The purpose of the CFD model is to gain better insight into the solid liquid slur¬ry flow in pipelines. Initially a three-dimensional model problem was developed to understand the influence of the particle drag coefficient on the solid concen¬tration profile. The preliminary simulations highlighted the need for correct mo¬delling of the inter phase drag force. The various drag correlations available in the literature were incorporated into a two-fluid model (Euler-Euler along with the standard k- turbulence model with mixture properties to simulate the tur¬bulent solid-liquid flow in a pipeline. The computational model was mapped on to a commercial CFD solver FLUENT6.2 (of Fluent Inc., USA. To push the en¬velope of applicability of the simulation, recent data from Kaushal (2005 (with solid concentration up to 50% was selected to validate the three dimensional simulations. The experimental data consisted of water-glass bead slurry at 125 and 440-micron particle with different flow velocity (from 1 to 5 m/s and overall concentration up to 10 to 50% by volume. The predicted pressure drop and concentration profile were validated by experimental data and showed excel-lent agreement. Interesting findings came out from the parametric study of ve-locity and concentration profiles. The computational model and results discus¬sed in this work would be useful for extending the applications of CFD models for simulating large slurry pipelines.

  5. Technical Development of Slurry Three-Dimensional Printer

    Science.gov (United States)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  6. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    Directory of Open Access Journals (Sweden)

    A. Setyan

    2012-09-01

    Full Text Available An Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS was deployed during the Carbonaceous Aerosols and Radiative Effects Study (CARES that took place in northern California in June 2010. We present results obtained at Cool (denoted as the T1 site of the project in the foothills of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. During this study, the average mass loading of submicrometer particles (PM1 was 3.0 μg m−3, dominated by organics (80% and sulfate (9.9%. The organic aerosol (OA had a nominal formula of C1H1.38N0.004OM0.44, thus an average organic mass-to-carbon (OM/OC ratio of 1.70. Two distinct oxygenated OA factors were identified via Positive matrix factorization (PMF of the high-resolution mass spectra of organics. The more oxidized MO-OOA (O/C = 0.54 was interpreted as a surrogate for secondary OA (SOA influenced by biogenic emissions whereas the less oxidized LO-OOA (O/C = 0.42 was found to represent SOA formed in photochemically processed urban emissions. LO-OOA correlated strongly with ozone and MO-OOA correlated well with two 1st generation isoprene oxidation products (methacrolein and methyl vinyl ketone, indicating that both SOAs were relatively fresh. A hydrocarbon like OA (HOA factor was also identified, representing primary emissions mainly due to local traffic. On average, SOA (= MO-OOA + LO-OOA accounted for 91% of the total OA mass and 72% of the PM1 mass observed at Cool. Twenty three periods of urban plumes from T0 (Sacramento to T1 (Cool were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem. The average PM1 mass loading was considerably higher in urban plumes than in air masses dominated by biogenic SOA. The change in OA

  7. Electrolysis of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, K.E.; Tran, T.; Swinkels, D.

    1984-01-01

    The major aims of the project were: to verify early reports of the American workers and demonstrate the feasibility of the concept of electrolysis of coal slurries; investigate reaction mechanisms and the stoichiometry; measure the reducing power and oxidation kinetics of selected Australian coals; investigate some process variables, and demonstrate an electrolysis cell with practical electrode geometry.

  8. Pressurized Vessel Slurry Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  9. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries

    NARCIS (Netherlands)

    Holstvoogd, R.D.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The enhanced absorption of gases in aqueous activated carbbon slurries of fine particles is studied with a non-steady-state absorption model, taking into account the finite adsorption capacity of the carbon particles. It has been found that, for the different gas/activated carbon slurry systems

  10. Design considerations for slurry bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Zappi, M.E. [Army Corps of Engineers, Vicksburg, MS (United States). Waterways Experiment Station; Banerji, S.K.; Bajpai, R.K. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Slurry treatment is an innovative approach for bioremediation of contaminated soils under controlled conditions of pH, temperature, and nutrients. This treatment of excavated soils permits better control of environmental conditions than in landfarming, composting, and biocell units, and therefore may achieve accelerated rates of decontamination. Bioslurry reactors have been used to remediate a variety of contaminants, such as soils and sludges from refinery wastes, wood-preserving wastes, wastes containing polychlorinated biphenyls and halogenated solvents. Key considerations in design of such reactors involve meeting the oxygen requirements for biodegradation, preventing the settling of soil particles, efficient mixing of additives, and control of foaming. The aspects of reactor design, specifically agitation system have been discussed in this paper.

  11. Electrokinetic sedimentation and dewatering of clay slurries

    Energy Technology Data Exchange (ETDEWEB)

    Mohamedelhassan, E. [Lakehead Univ., Thunder Bay, ON (Canada). Dept. of Civil Engineering

    2008-07-01

    Electrokinetics is the application of a low voltage direct current across soil mass or soil slurry. It involves electro-osmosis, electromigration, and electrophoresis. Electrokinetics improves the sedimentation and dewatering by increasing the sedimentation velocity of soil particles by electrophoresis and draining water from soil pores by electro-osmosis. This presentation discussed a study that involved the electrokinetic sedimentation and dewatering of clay slurries. The objectives of the study were to accelerate the sedimentation by electrophoresis and enhance the dewatering and consolidation by electro-osmosis for two clay slurries. The presentation discussed the experimental program and provided several illustrations and photographs of the sedimentation configuration and dewatering process. Last, results of the experiment were presented. It was concluded that the the volume of the kaolinite/bentonite slurry in the electrokinetic test decreased by 63.6 per cent compared to a decrease of only 2.9 per cent in the control group. Next steps were identified as conducting a sedimentation and dewatering study with a solar panel as the source for direct current. tabs., figs.

  12. Zirconia nanocrystals as submicron level biological label

    Science.gov (United States)

    Smits, K.; Liepins, J.; Gavare, M.; Patmalnieks, A.; Gruduls, A.; Jankovica, D.

    2012-08-01

    Inorganic nanocrystals are of increasing interest for their usage in biology and pharmacology research. Our interest was to justify ZrO2 nanocrystal usage as submicron level biological label in baker's yeast Saccharomyces cerevisia culture. For the first time (to our knowledge) images with sub micro up-conversion luminescent particles in biologic media were made. A set of undoped as well as Er and Yb doped ZrO2 samples at different concentrations were prepared by sol-gel method. The up-conversion luminescence for free standing and for nanocrystals with baker's yeast cells was studied and the differences in up-conversion luminescence spectra were analyzed. In vivo toxic effects of ZrO2 nanocrystals were tested by co-cultivation with baker's yeast.

  13. Numerical simulation of slurry jets using mixture model

    Directory of Open Access Journals (Sweden)

    Wen-xin Huai

    2013-01-01

    Full Text Available Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-ε turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large, the turbulent kinetic energy k and turbulent dissipation rate ε, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the particle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction.

  14. Submicron magnetic core conducting polypyrrole polymer shell: Preparation and characterization.

    Science.gov (United States)

    Tenório-Neto, Ernandes Taveira; Baraket, Abdoullatif; Kabbaj, Dounia; Zine, Nadia; Errachid, Abdelhamid; Fessi, Hatem; Kunita, Marcos Hiroiuqui; Elaissari, Abdelhamid

    2016-04-01

    Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and both in vivo diagnosis and therapy. For in vitro applications and especially in labs-on-a-chip, microfluidics, microsystems, or biosensors, the needed magnetic dispersion should answer various criteria, for instance, submicron size in order to avoid a rapid sedimentation rate, fast separations under an applied magnetic field, and appreciable colloidal stability (stable dispersion under shearing process). Then, the aim of this work was to prepare highly magnetic particles with a magnetic core and conducting polymer shell particles in order to be used not only as a carrier, but also for the in vitro detection step. The prepared magnetic seed dispersions were functionalized using pyrrole and pyrrole-2-carboxylic acid. The obtained core-shell particles were characterized in terms of particle size, size distribution, magnetization properties, FTIR analysis, surface morphology, chemical composition, and finally, the conducting property of those particles were evaluated by cyclic voltammetry. The obtained functional submicron highly magnetic particles are found to be conducting material bearing function carboxylic group on the surface. These promising conducting magnetic particles can be used for both transport and lab-on-a-chip detection. Copyright © 2015. Published by Elsevier B.V.

  15. Effect of internal filtration on slurry reactor performance

    NARCIS (Netherlands)

    Huizenga, P.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1999-01-01

    In slurry bubble column reactors, generally small particles (<200 m) are applied. These particles often introduce a strenuous liquid-solid separation in processes involving liquid-phase products. This operation can be facilitated by performing filtration inside the reactor and thereby utilizing the

  16. Numerical simulation of turbulent slurry flows

    Science.gov (United States)

    Haghgoo, Mohammad Reza; Spiteri, Reymond J.; Bergstrom, Donlad J.

    2016-11-01

    Slurry flows, i.e., the flow of an agglomeration of liquid and particles, are widely employed in many industrial applications, such as hydro-transport systems, pharmaceutical batch crystallizers, and wastewater disposal. Although there are numerous studies available in the literature on turbulent gas-particle flows, the hydrodynamics of turbulent liquid-particle flows has received much less attention. In particular, the fluid-phase turbulence modulation due to the particle fluctuating motion is not yet well understood and remains challenging to model. This study reports the results of a numerical simulation of a vertically oriented slurry pipe flow using a two-fluid model based on the kinetic theory of granular flows. The particle stress model also includes the effects of frictional contact. Different turbulence modulation models are considered, and their capability to capture the characteristic features of the turbulent flow is assessed. The model predictions are validated against published experimental data and demonstrate the significant effect of the particles on the fluid-phase turbulence.

  17. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Yasushi [Daido Hoxan Inc., Osaka (Japan); Takeuchi, Hiromi; Pyatenko, A.T. [Hokkaido National Industrial Research Inst., Sapporo (Japan); Kayukawa, Naoyuki [Hokkaido Univ., Sapporo (Japan). Center for Advanced Research of Energy Technology

    1999-04-01

    The hydrodynamic and heat-transfer characteristics of slurry containing microencapsulated phase-change materials (MCPCMs) were investigated experimentally for use as a heat-transfer fluid. Pressure drop and local convective heat-transfer coefficients of the slurry flows in a circular tube with uniform heat flux were measured. Slurries consisting of octadecane (C{sub 18}H{sub 38}) contained in 2--10-{micro}m-dia. microcapsules and pure water were used. The particle volume fractions in the slurry were varied up to 0.3. Results showed that increases in particle volume fractions caused the slurry flow structure to change from turbulent to laminar, and the pressure-drop reduction of the slurry flow relative to a single-phase water flow was under the same flow-rate conditions. The heat-transfer performance of the slurry also depended on the change in flow structure. When the MCPCMs melted, the local heat-transfer coefficients for turbulent slurry flows increased relative to those for nonmelting slurry. This phenomenon was influenced by the MCPCM fraction, the degree of turbulence, and the heating rate at the tube wall. The experimental data will be useful in the design of thermal-energy transportation systems using MCPCM slurry.

  18. ABSORPTION OF GASES INTO ACTIVATED CARBON WATER SLURRIES IN A STIRRED CELL

    NARCIS (Netherlands)

    TINGE, JT; DRINKENBURG, AAH

    A surface-aerated stirred cell with a flat liquid surface was used to investigate the absorption of propane and ethene gas into slurries of activated carbon and water. Slurries with a solids concentration up to 4% by weight and particle diameters up to 565-mu-m were used. The experimental mass

  19. Differences in the rheological properties of calcitic and dolomitic lime slurries: influence of particle characteristics and practical implications in lime-based mortar manufacturing

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2012-06-01

    Full Text Available The study of the rheological properties of lime suspensions is a useful means to evaluate the workability of lime mortars. In this work, we studied the flow behaviour of two industrial hydrated limes, one of calcitic and the other of dolomitic composition, by means of two types of rheometer with different geometry and setup mode. The obtained results were interpreted taking into account the differences in microstructure and surface properties of the suspended particles. Calcitic lime dry particles are formed by angular and polydisperse clusters and, once dispersed in water, they behave like thixotropic materials. On the other hand, the dolomitic lime is formed by nanoparticles and small round cluster and it shows a pronounced plastic behaviour in suspension. This fundamental difference between the two materials explains the traditional preference for dolomitic lime mortars for plastering and rendering applications.

    El estudio de las propiedades reológicas de suspensiones de cal es una herramienta muy útil para evaluar la trabajabilidad de morteros de cal. En este trabajo se ha estudiado el comportamiento en suspensión de dos cales hidratadas, de composición calcítica y dolomítica, mediante dos tipos de reómetros con geometría y modalidades distintas de medida. Los resultados obtenidos se han interpretado teniendo en cuenta las diferencias en la microestructura y las propiedades de superficie de las partículas en suspensión. Las partículas de cal calcítica están formadas por aglomerados angulares y polidispersos y, una vez dispersadas en agua, presentan un comportamiento tixotrópico. Por su parte, la cal dolomítica está formada por nanopartículas y pequeños agregados redondeados y muestra en suspensión un pronunciado comportamiento plástico. Esta importante diferencia entre las dos cales explica la preferencia tradicional de morteros de cal dolomítica para aplicaciones en revocos.

  20. Charged slurry droplet research

    Science.gov (United States)

    Kelly, A. J.

    1989-02-01

    Rayleigh Bursting, wherein critically charged droplets explosively expel a number of micron sized sibling droplets, enhances atomization and combustion of all liquid fuels. Droplet surface charge is retained during evaporation, permitting multiple Rayleigh Bursts to occur. Moreover, the charge is available for the deagglomeration of residual particulate flocs from slurry droplet evaporation. To fill gaps in our knowledge of these processes, an experimental program involving the use of a charged droplet levitator and a Quadrupole Mass Spectrometer, High Speed Electrometer (QMS/HSE) has been undertaken to observe the disruption and to measure quantitatively the debris. A charged droplet levitator based on a new video frame grabber technology to image transient events, is described. Sibling droplet size is ten microns or less and is close to, if not coincident with, the predicted phase transition in droplet charging level. The research effort has focused on the exploration of this transition and its implications.

  1. Slurry flow principles and practice

    CERN Document Server

    Shook, C A; Brenner, Howard

    2015-01-01

    Slurry Flow: Principles and Practice describes the basic concepts and methods for understanding and designing slurry flow systems, in-plan installations, and long-distance transportation systems. The goal of this book is to enable the design or plant engineer to derive the maximum benefit from a limited amount of test data and to generalize operating experience to new situations. Design procedures are described in detail and are accompanied by illustrative examples needed by engineers with little or no previous experience in slurry transport.The technical literature in this field is extensive:

  2. Slurry pipeline technology: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jay P. [Pipeline Systems Incorporated (PSI), Belo Horizonte, MG (Brazil); Lima, Rafael; Pinto, Daniel; Vidal, Alisson [Ausenco do Brasil Engenharia Ltda., Nova Lima, MG (Brazil). PSI Div.

    2009-12-19

    Slurry pipelines represent an economical and environmentally friendly transportation means for many solid materials. This paper provides an over-view of the technology, its evolution and current Brazilian activity. Mineral resources are increasingly moving farther away from ports, processing plants and end use points, and slurry pipelines are an important mode of solids transport. Application guidelines are discussed. State-of-the-Art technical solutions such as pipeline system simulation, pipe materials, pumps, valves, automation, telecommunications, and construction techniques that have made the technology successful are presented. A discussion of where long distant slurry pipelines fit in a picture that also includes thickened and paste materials pipe lining is included. (author)

  3. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  4. Method for freeforming objects with low-binder slurry

    Science.gov (United States)

    Cesarano, III, Joseph; Calvert, Paul D.

    2002-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  5. CFD Prediction of Erosion Wear in Centrifugal Slurry Pumps for Dilute Slurry Flows

    Directory of Open Access Journals (Sweden)

    K. V. Pagalthivarthi

    2011-12-01

    Full Text Available The paper discusses numerical prediction of erosion wear trends in centrifugal pump casing pumping dilute slurries. The casing geometry is considered two-dimensional. Discrete Phase Model (DPM in FLUENT 6.1® is utilized to obtain dilute slurry flow field through the pump casing employing two-way coupling. Standard k — ε model is used for turbulence. Effect of several operational parameters viz. pump flow rate, pump speed (RPM, particle diameter and various geometry conditions viz. tongue curvature, slope of the discharge pipe and casing width is studied. Qualitative trends of erosion wear is described for these operational and geometric parameters with an idea to lower the wear rates and to make the wear pattern along the casing wall as uniform as possible. For example, with increase in pump flow rate, wear rates tends to even out whereas with increased casing width, wear rates are found to decrease.

  6. Increasing the effectiveness of flotation of large classes of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblin, N.D.; Gruba, I.V.; Samoylov, A.I.

    1983-01-01

    The possibility of increasing the effectiveness of flotation of coal slurries which contain particles of +0.3 millimeters with the use of the proposed technology is shown. The obtained data are confirmed during experimental industrial tests.

  7. Characteristics of Submicron Aerosols in 2013 summer of Beijing

    Science.gov (United States)

    Guo, Song; Hu, Min; Shang, Dongjie; Zheng, Jing; Du, Zhuofei; Wu, Yusheng; Lu, Sihua; Zeng, Limin; Zhang, Renyi

    2016-04-01

    To characterize the air pollution of North China Plain of China, CAREBEIJING-2013 field campaign (Campaigns of Air quality REsearch in BEIJING and surrounding region) was conducted in summer of 2013. Submicron aerosols were measured at an urban site PKU (Peking University, 39° 59'21"N, 116° 18'25"E) from July 28th to September 31st 2013. A suite of integrated instruments was used to measure the size distribution, effective density and hygroscopicity of ambient particles. The chemical composition of submicron particles were measured by using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (Billerica, MA, USA). The average PM2.5 concentration was 73.0±70.7 μg m-3 during the measurement. The particulate pollution showed distinct 4-7 days cycles controlled by the meteorological conditions. Each cycle started with low PM2.5 mass concentrations (air mass was from relatively clean mountainous area. The particle number concentrations were high, but and the sizes were small (60 μg day-1, and the particle mean diameter grew to >100 nm. It is interesting to note that the mean diameters showed similar trend to PM2.5 mass concentrations, indicating the particle pollution attributed to the growth of the newly formed small particles. During the measurement, the average particle densities are between 1.3-1.5 g cm-3, indicating organics and sulfate were dominant in the particles. The densities of smaller particles, i.e. 46 nm, 81nm, showed single peak at 1.3-1.5 g cm-3, indicating the particles are internal mixed sulfate and organics. While the 150nm and 240 nm particle densities exhibited bimodal distribution with an additional small peak at ˜1.1 g cm-3, which is considered as external mixed organic particles or aged soot particles. The particle hygroscopic growth factor for all the measured sizes at RH of 90% showed bimodal distribution, attributing to external mixed organics (or aged soot) and internal mixed organics and sulfate. Both the

  8. Electron acceleration via high contrast laser interacting with submicron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Faenov, Anatoly; Pikuz, Tatiana [Joint Institute for High Temperature of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412 (Russian Federation); Quantum Beams Science Directorate, JAEA, Kizugawa, Kyoto (Japan); Li Dazhang [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Institute of High Energy Physics, CAS, Beijing 100049 (China); Sheng Zhengming [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Jie [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-01-02

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  9. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers.

    Science.gov (United States)

    James, Jeff; Crean, Barry; Davies, Martyn; Toon, Richard; Jinks, Phil; Roberts, Clive J

    2008-09-01

    This study compares the surface characteristics and surface energetics of two potential bulking excipients, anhydrous sub-micron alpha-lactose and sub-micron sucrose, for use with low-dose, suspension formulations in pressurised metered dose inhalers (pMDIs). Both sub-micron bulking excipients are processed from parent materials (alpha-lactose monohydrate/alpha-lactose monohydrate and silk grade sucrose, respectively) so the surface characteristics of each material were determined and compared. Additionally, the surface energetics and adhesive interactions between each sub-micron bulking excipient and some chosen active pharmaceutical ingredients (APIs) used in pMDI formulations were also determined. From this data, it was possible to predict the potential degree of interaction between the APIs and each sub-micron bulking excipient, thus determining suitable API-excipient combinations for pMDI formulation optimisation. Salmon calcitonin was also investigated as a potential API due to the current interest in, and the potential low-dose requirements for, the pulmonary delivery of proteins. The size and morphology of each sub-micron excipient (and parent materials) were determined using scanning electron microscopy (SEM) and the crystalline nature of each sub-micron excipient and parent material was assessed using X-ray diffraction (XRD). The surface chemistry of each sub-micron excipient was analysed using X-ray photoelectron spectroscopy (XPS). The surface energies of each sub-micron excipient, along with their respective parent materials and any intermediates, were determined using two techniques. The surface energies of these materials were determined via (a) single particle adhesive interactions using atomic force microscopy (AFM) and (b) 'bulk' material surface interactions using contact angle measurements (CA). From the CA data, it was possible to calculate the theoretical work of adhesion values for each API-excipient interaction using the surface component

  10. Thermal and hydrodynamic considerations of ice slurry in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Bedecarrats, Jean-Pierre; Strub, Francoise; Peuvrel, Christophe [Laboratoire de Thermique, Energetique et Procedes, Equipe Energetique, Universite de Pau et des Pays de l' Adour, Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France)

    2009-11-15

    This article focuses on the behavior in heat exchangers of an ice slurry composed of fine ice particles inside an ethanol-water solution. The heat transfer and friction characteristics were studied in two double pipe heat exchangers, one with a smooth surface and another with an improved surface. Heat transfer coefficients and pressure drops were experimentally investigated for the slurry flowing in the internal tube with ice mass fractions ranging from 0 to 30% and with flow velocities between 0.3 and 1.9 m s{sup -1}. For some flow velocities, the results showed that an increase in the ice fractions caused a change in the slurry flow structure influencing the evolution of the pressure drops and the heat transfer coefficients. Critical ice fraction values were determined corresponding to a change flow structure from laminar to turbulent motion revealed by the evolution of the friction factor. (author)

  11. Experimental study on heat transfer characteristics of ice slurry

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Shouji, Ryouta [Chubu Plant Service Co., Ltd., 11-22, Gohommatsu-cho, Atsuta-ku, Nagoya, Aichi 456-8516 (Japan); Shirakawa, Michito [Toyota Motor Corp., 1 Toyota-cho, Toyota, Aichi 471-8571 (Japan)

    2010-12-15

    Heat transfer characteristics of ice slurry were investigated experimentally. The Reynolds number, diameter of the tubes and ice packing factor (IPF) were varied as experimental parameters. For laminar flow, it was found that the ratio of the Nusselt numbers increased with the IPF, and an approximation equation of the Nusselt number could be derived using the apparent Reynolds number, IPF and the ratio of the average diameter of the ice particles to the diameter of the test tube. For turbulent flow, the ratio of the Nusselt numbers was 1 for each condition in the case of a low IPF. However, the ratio of the Nusselt numbers increased with the IPF in the high-IPF region. Moreover, the apparent Reynolds number, which can be derived by treating the ice slurry as a pseudoplastic fluid, can be used to determine the condition under which variation in the heat transfer characteristics of ice slurry in turbulent flow occurs. (author)

  12. Pretreatment of wood flour slurries prior to liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Vanasse, C.; Lemonnier, J.P.; Eugene, D.; Chornet, E.

    1988-02-01

    As a part of a solvolytic approach to wood fractionation and liquefaction known as UDES-S, a pretreatment stage has been developed using a fed batch technique to produce high solids content slurries. By using a combination of temperature and shear stress across homogenizing valves, wood flour slurries of poplar or aspen having concentrations of 20-32% by weight in both paraffin oil and ethylene glycol have been produced. Optical and scanning electron microscopy have shown that the recirculation loop and homogenizing valve cause structural degradation, defibration and defibrillation of the original particles as well as partial solubilization of the wood components. The maximum wood flour concentration, attainable before plugging was observed in the small scale system used, was just below 36% by weight. High concentration slurries are a prerequisite in order to obtain realistic reactor space velocities in biomass liquefaction processes. 12 refs., 9 figs.

  13. Slip casting nano-particle powders for making transparent ceramics

    Science.gov (United States)

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  14. The CO{sub 2} hydrate slurry; Le coulis de glace

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Brun, F. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Sari, O.; Hu, J. [Clean Cooling Solutions, spin off of University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec Ltd, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2007-12-15

    A new, very promising refrigerant was developed, which could be used in industrial processes as well as air conditioners: the CO{sub 2} hydrate slurry. Replacing hydrochlorofluorocarbon HCFC refrigerants has a high priority, due to the strong negative environmental impact of these fluids. New refrigerants have to be environment friendly, non-inflammable, cheap and made of natural materials. CO{sub 2} hydrate slurries and/or a mixture of ice slurry and CO{sub 2} hydrate slurry meet these requirements. The University of Applied Sciences of Western Switzerland in Yverdon, together with industrial partners, investigated the properties of such slurries. The slurries were created using the Coldeco process: the refrigerating fluid is directly injected into the liquid brine. The evaporation of the refrigerating fluid cools the liquid down to its freezing point and homogeneously distributed small crystals appear in the liquid. A test rig was built to measure the physical and chemical properties of the slurries obtained in this way. CO{sub 2} hydrate slurries have a higher energy storage capacitance (500 kJ/kg) than ice slurries (333 kJ/kg). The production of CO{sub 2} hydrate slurries in large quantities in a continuous process was demonstrated. The solid particle concentration was 10%, the pressure amounted to 30 bar and the temperature 2 to 4 {sup o}C. Such slurries can be pumped and circulated in pipe networks. Stainless steel is the appropriate material for such networks. However, the main advantage of the new refrigerant will be, according to the authors, a reduced energy consumption compared to traditional refrigerating cycles: the difference between the temperature required by the user and the refrigerant temperature is reduced, thanks to the use of the latent heat in the new process.

  15. Research on and Application to BH-HTC High Density Cementing Slurry System on Tarim Region

    Science.gov (United States)

    Yuanhong, Song; Fei, Gao; Jianyong, He; Qixiang, Yang; Jiang, Yang; Xia, Liu

    2017-08-01

    A large section of salt bed is contented in Tarim region Piedmont which constructs complex geological conditions. For high-pressure gas well cementing difficulties from the region, high density cement slurry system has been researched through reasonable level of particle size distribution and second weighting up. The results of laboratory tests and field applications show that the high density cementing slurry system is available to Tarim region cementing because this system has a well performance in slurry stability, gas breakthrough control, fluidity, water loss, and strength.

  16. Enhancement in electrical conductivity of pastes containing submicron Ag-coated Cu filler with palmitic acid surface modification

    Science.gov (United States)

    Choi, Eun Byeol; Lee, Jong-Hyun

    2017-09-01

    The fabrication and applied use of submicron Ag-coated Cu (Cu@Ag) particles as a filler material for epoxy-based conductive pastes having the advantages of a lower material cost and antioxidation behavior were studied. Submicron Cu@Ag particles were successfully prepared and surface-modified using palmitic acid. Diffuse reflectance infrared Fourier transform spectroscopy and thermogravimetric differential scanning calorimetry results indicated the formation of an organic layer by the chemical interaction between the Cu@Ag surface and palmitic acid and the survival of the organic layer after treatment at 160 °C for 3 h in air. The printed pastes containing both commercial micron Cu@Ag flakes and the fabricated submicron Cu@Ag particles showed a greatly reduced electrical resistivity (4.68 × 10-4 Ω cm) after surface modification compared to an initial value of 1.85 × 10-3 Ω cm when cured.

  17. Slurry Bubble Column Reactor Optimization (book chapter)

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, I.K.; Gidaspow, D. (Illinois Inst. of Technology, Chicago, IL); Jung, J. (ANL)

    2007-03-01

    Slurry bubble column reactors (SBCR) are the preferred contactors for the conversion of syngas to fules and chemicals partially due to their superior heat and mass transfer characteristics. The multiphase fluid dynamics in these systems greatly affect the reactor volumetric productivity. Here, we have developed a computational fluid dynamics (CFD) assisted design methodology for searching the optimum particle size for maximum production in a SBCR. Reactor optimization due to heat exchanger configuration was also investigated. We have rearranged the heat exchangers in a SBCR and constructed a CFD model for a baffled reactor. The novel arrangement of the exchangers prevents the unfavorable high catalysts concentration at the lower stage of the reactor. Thus an optimum catalyst concentration is maintained during the course of the production of liquid fuels.

  18. Slurry rheology of limestone and its effects on wet ultra-fine grinding

    OpenAIRE

    He, Mingzhao

    2005-01-01

    This thesis investigates rheology of limestone slurries and its effects on wet ultra-fine grinding in order to reduce energy cost and increase the throughput and the product fineness. The influences of solids concentration, molecular weight of a dispersant, particle size and distribution, and temperature on the rheological behaviours of limestone slurries have been investigated with rotational and cone-plate viscometers. The results reveal that when the solids concentration of a limestone slu...

  19. Surfactants and submicron sea spray generation

    NARCIS (Netherlands)

    Sellegri, K.; O'Dowd, C.D.; Yoon, Y.J.; Jennings, S.G.; Leeuw, G. de

    2006-01-01

    Laboratory experiments have been carried out to elucidate the role of surfactants on the primary marine aerosol production of submicron marine aerosols. A synthetic surfactant SDS was used in conjunction with artificially generated seawater, and the resultant bubble-mediated aerosol produced was

  20. Nanocrystalline oxide (Y{sub 2}O{sub 3}, Dy{sub 2}O{sub 3}, ZrO{sub 2}, NiO) coatings on BaTiO{sub 3} submicron particles by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bassano, Alessio [University of Genoa, Department of Chemical and Process Engineering (Italy); Buscaglia, Vincenzo, E-mail: v.buscaglia@ge.ieni.cnr.i [National Research Council, Institute for Energetics and Interphases (Italy); Sennour, Mohamed [Ecole des Mines de Paris, Centre des Materiaux (France); Buscaglia, Maria Teresa; Viviani, Massimo [National Research Council, Institute for Energetics and Interphases (Italy); Nanni, Paolo [University of Genoa, Department of Chemical and Process Engineering (Italy)

    2010-02-15

    Nanocoatings (5-20 nm) of different compounds on fine BaTiO{sub 3} particles were obtained by means of precipitation processes. Homogeneous and smooth shells of Y(OH)CO{sub 3} and Dy(OH)CO{sub 3} were grown from nitrate solutions in the presence of urea. An irregular coating consisting of zirconia nanoparticles was produced from zirconyl nitrate solution using ammonia as a precipitating agent after adsorption of a polymeric polyelectrolyte on the BaTiO{sub 3} surface. Composite particles with a peculiar morphology were obtained by inducing heterogeneous nucleation and growth of Ni(OH){sub 2} lamellae on the BaTiO{sub 3} surface. The different shells can be transformed in a nanocrystalline coating of the corresponding oxide (Y{sub 2}O{sub 3}, Dy{sub 2}O{sub 3}, ZrO{sub 2}, NiO) by calcination at moderate temperatures (400-700 {sup o}C). The overall results indicate that precipitation from solution represents a versatile process to grow a second-phase layer on the surface of BaTiO{sub 3} particles. This approach can be used as an alternative to mechanical wet mixing for controlled doping of ferroelectric materials and for the fabrication of composite materials with specific geometry of the two-phase assembly.

  1. Effects of pH on rheological characteristics and stability of petroleum coke water slurry

    Directory of Open Access Journals (Sweden)

    Fu-Yan Gao

    2016-10-01

    Full Text Available Abstract In this study, the effects of pH on slurrying properties of petroleum coke water slurry (PCWS were investigated. The slurrying concentration, rheological characteristics and stability of PCWS were studied with four different types of additives at pH varying from 5 to 11. The results showed that the slurrying concentration, rheological characteristics and stability of PCWS all increased at first and then decreased with increasing pH from 5 to 11, and a pH of around 9 was found to be the most favorable acid–alkali environment to all these three slurrying properties. It was also indicated that only in a moderate alkaline environment can the additives be active enough to react with particle surfaces sufficiently to obtain good slurrying concentration and form a stable three-dimensional network structure, which can support strong pseudoplastic characteristics and good stability. An acid environment was a very unfavorable factor to the slurrying properties of PCWS.

  2. Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling

    Directory of Open Access Journals (Sweden)

    FENG Cai-mei

    2018-02-01

    Full Text Available Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.

  3. Casting of particle-based hollow shapes

    Science.gov (United States)

    Menchhofer, Paul

    1995-01-01

    A method for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product.

  4. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha

    2016-01-01

    Livestock production systems can be major sources of trace gases including ammonia (NH3), the greenhouse gases methane (CH4) and nitrous oxide (N2O), and odorous compounds such as hydrogen sulphide (H2S). Short-term campaigns have indicated that acidification of livestock slurry during in...... generally high. It was concluded that the contribution from floors to NH3 emissions was effect on N2O emissions was observed. The effect...

  5. Comments to "Analysis of constant rate period of spray drying of slurry" by Liang et al., 2001

    DEFF Research Database (Denmark)

    Jørgensen, Kåre; Jensen, Anker Degn; Sloth, Jakob

    2006-01-01

    In the study by Liang et al. [2001. Analysis of constant rate period of spray drying of slurry. Chemical Engineering Science 56, 2205-2213] the Darcy flow of liquid through a pore system of primary particles to the surface of a slurry droplet was applied for the constant rate period. Steep primary...... by Liang et al. is unable to predict the formation of hollow particles....

  6. Aerodynamics and deposition effects of inhaled submicron drug aerosol in airway diseases.

    Science.gov (United States)

    Faiyazuddin, Md; Mujahid, Md; Hussain, Talib; Siddiqui, Hefazat H; Bhatnagar, Aseem; Khar, Roop K; Ahmad, Farhan J

    2013-01-01

    Particle engineering is the prime focus to improve pulmonary drug targeting with the splendor of nanomedicines. In recent years, submicron particles have emerged as prettyful candidate for improved fludisation and deposition. For effective deposition, the particle size must be in the range of 0.5-5 μm. Inhalers design for the purpose of efficient delivery of powders to lungs is again a crucial task for pulmonary scientists. A huge number of DPI devices exist in the market, a significant number are awaiting FDA approval, some are under development and a large number have been patented or applied for patent. Even with superior design, the delivery competence is still deprived, mostly due to fluidisation problems which cause poor aerosol generation and deposition. Because of the cohesive nature and poor flow characteristics, they are difficult to redisperse upon aerosolization with breath. These problems are illustrious in aerosol research, much of which is vastly pertinent to pulmonary therapeutics. A technical review is presented here of advances that have been utilized in production of submicron drug particles, their in vitro/in vivo evaluations, aerosol effects and pulmonary fate of inhaled submicron powders.

  7. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter

    Science.gov (United States)

    Eichler, P.; Müller, M.; D'Anna, B.; Wisthaler, A.

    2015-03-01

    We herein present a novel modular inlet system designed to be coupled to low-pressure gas analyzers for online chemical characterization of semi-volatile submicron particles. The "chemical analysis of aerosol online" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. The denuder was measured to remove gas-phase organics with an efficiency > 99.999% and to transmit particles in the 100-750 nm size range with a 75-90% efficiency. The measured average particle enrichment factor in the subsampling flow from the aerodynamic lens was 25.6, which is a factor of 3 lower than the calculated theoretical optimum. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined CHARON-PTR-ToF-MS setup is thus capable of measuring both the organic and the ammonium fraction in submicron particles in real time. Individual organic compounds can be detected down to levels of 10-20 ng m-3. Two proof-of-principle studies were carried out for demonstrating the analytical power of this new instrumental setup: (i) oxygenated organics and their partitioning between the gas and the particulate phase were observed from the reaction of limonene with ozone and (ii) nicotine was measured in cigarette smoke particles demonstrating that selected organic target compounds can be detected in submicron particles in real time.

  8. Efficient filtration system for paraffin-catalyst slurry separation

    Directory of Open Access Journals (Sweden)

    Khodagholi Mohammad Ali

    2013-01-01

    Full Text Available The filtration efficiency for separating liquid paraffin (or water from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (ΔP were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16μm. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ΔPs and for ΔP more than 1 bar is neither harmful nor helpful. The highest filtration rates at ΔPs higher than 1 bar were 170 and 248 ml/minute for 4 and 16μm respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm. The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.

  9. Modeling of sand-water slurry flow through horizontal pipe using CFD

    Directory of Open Access Journals (Sweden)

    Kumar Gopaliya Manoj

    2016-09-01

    Full Text Available The paper presents three-dimensional CFD analysis of two-phase (sand-water slurry flows through 263 mm diameter pipe in horizontal orientation for mixture velocity range of 3.5-4.7 m/s and efflux concentration range of 9.95-34% with three particle sizes viz. 0.165 mm, 0.29 mm and 0.55 mm with density 2650 kg/m3. RNG k-ε turbulence closure equations with Eulerian multi-phase model is used to simulate various slurry flows. The simulated values of local solid concentration are compared with the experimental data and are found to be in good agreement for all particle sizes. Effects of particle size on various slurry flow parameters such as pressure drop, solid phase velocity distribution, friction factor, granular pressure, turbulent viscosity, turbulent kinetic energy and its dissipation have been analyzed.

  10. Micromagnetic Simulations of Submicron Cobalt Dots

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G.J.; Cerjan, C.

    1999-08-30

    Numerical simulations of submicron Co extruded elliptical dots were performed to illustrate the relative importance of different physical parameters on the switching behavior in the easy direction. Shape, size, magnetic moment magnitude and crystalline anisotropy, both magnitude and distribution, were varied. The simulation includes calculation of the magnetostatic, exchange and crystalline anisotropy fields on a structured mesh using finite difference techniques. The smooth boundary of the dots are accurately represented by use of the Embedded Curve Boundary method.

  11. Submicron Surface-Patterned Fibers and Textiles

    Science.gov (United States)

    2016-11-04

    The patterned fiber surface behaves as an optical diffraction grating when the feature size is comparable with visible light wavelengths. A red laser...the optical fiber gratings For the first diffraction order of the micron and submicron patterned fiber , we utilize the formula α tanh (where s...e) SEM images of patterned PMMA fiber are depicted. The inset shows the cross- section of this fiber . Submitted to 20 Figure S3

  12. Studies on Slurry Design Fundamentals for Advanced CMP Applications

    KAUST Repository

    Basim, G. B.

    2013-06-14

    New developments and device performance requirements in microelectronics industry add to the challenges in chemical mechanical planarization (CMP) process. One of the recently introduced materials is germanium which enables improved performance through better channel mobility in shallow trench isolation (STI) applications. This paper reports on the slurry design alternatives for Ge CMP with surfactant mediation to improve on the silica/germanium selectivity using colloidal silica slurry. In addition to the standard CMP tests to evaluate the material removal rates, atomic force microscopy (AFM) based wear tests were also conducted to evaluate single particle-surface interaction of the polishing system. Furthermore, nature of the surface oxide film of germanium was studied through contact angle measurements and surface roughness tested by AFM. It was observed that the CMP selectivity of the silica/germanium system and defectivity control were possible with a reasonable material removal rate value by using self-assembled structures of cationic surfactants.

  13. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    with this interaction mechanism mainly give a geometrical protection against oxidation by blocking oxygen access at the surface of the oxide scale. The protecting effect is gradually reduced as the oxide scale grows thicker than the diameter of the coating particles. Interaction mechanism B entails a chemical reaction.......85Sr0.15)CoO3 + 10% Co3O4, LSC, coatings were found to be relatively successful in decreasing the oxidation rate, the chromium content in the outermost part of ii the dense scale, and the electrical resistance in the growing oxide scales when applied onto Crofer 22APU. But, the positive effects......In this project, high temperature oxidation experiments of slurry coated ferritic alloys in atmospheres similar to the atmosphere found at the cathode in an SOFC were conducted. From the observations possible interaction mechanisms between the slurry coatings and the growing oxide scale...

  14. Submicron ionography of nanostructures using a femtosecond-laser-driven-cluster-based source

    OpenAIRE

    Faenov, A. Ya; Pikuz, T. A.; Fukuda, Y.(Miyagi University of Education, Department of Physics, Sendai, Japan); Kando, M; Kotaki, H.; Homma, T.; KAWASE, K; Kameshima, T.; Pirozkhov, A.; Yogo, A.; Tampo, M.; Mori, M.; Sakaki, H.; Hayashi, Y; Nakamura, T.

    2009-01-01

    An intense isotropic source of multicharged carbon and oxygen ions with energy above 300 keV and particle number >108 per shot was obtained by femtosecond Ti:Sa laser irradiation of submicron clusters. The source was employed for high-contrast contact ionography images with 600 nm spatial resolution. A variation in object thickness of 100 nm was well resolved for both Zr and polymer foils.

  15. Comprehensive investigation of the dynamics of micron and submicron lunar ejecta in heliocentric space

    Energy Technology Data Exchange (ETDEWEB)

    Hargrave, A.D.

    1984-01-01

    The forces which act on micron and submicron dust particles in interplanetary space are studied in detail. Particular attention is given to Mie scattering theory as it applies to the calculation of the force due to radiation pressure. All of the forces are integrated into a computer model to study the heliocentric orbits of lunar ejecta. It is shown that lunar ejecta contribute to a geocentric dust cloud, as well as to a heliocentric dust belt.

  16. Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals.

    Science.gov (United States)

    Chai, Guanqi; Dong, Guoping; Qiu, Jianrong; Zhang, Qinyuan; Yang, Zhongmin

    2013-01-01

    Yttrium fluoride YF3:Er(3+) and yttrium oxyfluoride YOF:Er(3+) submicron-crystals with mid-infrared fluorescent emissions were synthesized for the first time. The rhombohedral phase YOF submicron-crystals were synthesized by the crystalline phase transformation from pure orthorhombic YF3 submicron-crystals, which were prepared by co-precipitation method. The composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM), which showed that submicron-crystals were quasi-spherical with the particle size of ~400 nm. A novel formation mechanism of YOF submicron-crystals was proposed. Photoluminescence (PL) spectra indicated the 2.7 μm emission of Er(3+) has remarkably enhanced with the increase of Er(3+) doping concentration, and a novel dynamic circulatory energy transfer mechanism was proposed. Fourier transform infrared spectra (FTIR) were used to demonstrate the change of hydroxyl content. These oxyfluoride submicron-crystals provide a new material for nano/submicron-crystals-glass composites, and open a brand new field for the realization of mid-infrared micro/nano-lasers.

  17. An experimental investigation of the thermal/fluid properties of the nitrate to ammonia and ceramic (NAC) product slurry

    Energy Technology Data Exchange (ETDEWEB)

    Muguercia, I.; Lagos, L.; Yang, G.; Li, W.; Ebadian, M.A. [Florida International Univ., Miami, FL (United States). Dept. of Mechanical Engineering; Mattus, A.J.; Lee, D.D.; Walker, J.W.; Hunt, R.D. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1994-12-31

    Recently, a new immobilization technique for LLW, the Nitrate to Ammonia and Ceramic (NAC) process, has been developed. Instead of mixing the liquid waste form directly with the cement to make concrete blocks, the NAC process eliminates the nitrate from the LLW by converting it to ammonia gas. Aluminum particles are used as a reductant to complete this conversion. The final product of the NAC process is gibbsite, which can be further sintered to a ceramic waste form. Experimental tests are conducted to measure the apparent viscosity, the pressure drop, and the heat transfer coefficient of the pipe flow of the Nitrate to Ammonia and Ceramic (NAC) process product slurry. The tests indicate that the NAC product slurry exhibits a typical pseudoplastic fluid behavior. The pressure drop in the pipe flow is a function of the Reynolds number and the slurry temperature. The results also indicate that at a low slurry temperature, the slurry is uniformly heated peripherally. At a high slurry temperature, however, the slurry may be thermally stratified. In a straight pipe, the Nusselt number is reduced as the slurry temperature increases.

  18. Slurry discharge management-beach profile prediction

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Nawrot, J.R. [Southern Illinois University at Carbondale, Carbondale, IL (United States). Dept. of Civil Engineering

    1996-11-01

    Mine tailings dams are embankments used by the mining industry to retain the tailings products after the mineral preparation process. Based on the acid-waste stereotype that all coal slurry is acid producing, current reclamation requires a four foot soil cover for inactive slurry disposal areas. Compliance with this requirement is both difficult and costly and in some case unnecessary, as not all the slurry, or portions of slurry impoundments are acid producing. Reduced costs and recent popularity of wetland development has prompted many operators to request reclamation variances for slurry impoundments. Waiting to address slurry reclamation until after the impoundment is full, limits the flexibility of reclamation opportunities. This paper outlines a general methodology to predict the formation of the beach profile for mine tailings dams, by the discharge volume and location of the slurry into the impoundment. The review is presented under the perspective of geotechnical engineering and waste disposal management emphasizing the importance of pre-planning slurry disposal land reclamation. 4 refs., 5 figs.

  19. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    Science.gov (United States)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  20. Laser direct writing using submicron-diameter fibers.

    Science.gov (United States)

    Tian, Feng; Yang, Guoguang; Bai, Jian; Xu, Jianfeng; Hou, Changlun; Liang, Yiyong; Wang, Kaiwei

    2009-10-26

    In this paper, a novel direct writing technique using submicron-diameter fibers is presented. The submicron-diameter fiber probe serves as a tightly confined point source and it adopts micro touch mode in the process of writing. The energy distribution of direct writing model is analyzed by Three-Dimension Finite-Difference Time-Domain method. Experiments demonstrate that submicron-diameter fiber direct writing has some advantages: simple process, 350-nm-resolution (lower than 442-nm-wavelength), large writing area, and controllable width of lines. In addition, by altering writing direction of lines, complex submicron patterns can be fabricated.

  1. Development and evaluation of highly-loaded coal slurries. Phase I summary report, October 15, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Scheffee, R.S.

    1979-05-01

    Slurry fuels comprised of either bituminous, subbituminous, or lignite coal, and either aqeuous media or emulsions of No. 6 oil in water as the carrier were developed and evaluated at solids loadings up to 70% by weight. Emphasis was placed on aqueous slurries of bituminous coal. These slurries were developed for use in place of No. 6 oil in oil-fired burners. High solids loadings were attained by use of bimodal particle size distributions, which are blends of coarse-grind coal (approx. 50 to 85% -50 mesh) and fine-grind coal (generally 90% -200 mesh). The effect of the blends on slurry viscosity was determined to find the blends that minimize viscosity. The effect of mill conditions on particle size distribution was determined for each coal, using a hammermill pulverizer. A large number of water-soluble resins were evaluated for effect on slurry stability and viscosity. The best of these was found to be hydroxypropylated corn starch. Slurries based on the use of 3% solutions of the starch in water were prepared with up to 70% by weight bituminous coal and up to 65% subbituminous coal. The slurries are pourable pseudo-plastic fluids having room-temperature viscosities in the range of 550 to 1100 cp at a shear rate of 3000 sec/sup -1/, depending on the type of coal, solids loading, and particle size distribution. None of the slurries exhibited hard pack settling, even after room-temperature storage up to 74 days. Oil-in-water emulsions made with polyethylene glycol (23) lauryl ether as an emulsifier were found to be stable with respect to phase separation when stored at 160/sup 0/F. Slurries made with these emulsions do not exhibit hard pack settling after one week storage at 160/sup 0/F.

  2. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  3. Rheology of slurries and environmental impacts in the mining industry.

    Science.gov (United States)

    Boger, David V

    2013-01-01

    The world's resource industries are the largest producers of waste. Much of this waste is produced as a fine particle slurry, which is pumped to a storage area, generally at a low concentration, where it behaves like a Newtonian fluid. Simply removing, reusing, and recycling water from the slurry represents a step toward a more sustainable practice in this industry. As the concentration of such a slurry is increased as a result of dewatering, the materials exhibit non-Newtonian behavior, which is characterized by shear thinning, a yield stress, and in some instances thixotropic behavior. Such high-concentration, nonideal (dirty) suspensions in the resource industries have meant that new rheological methods and techniques have been needed to measure and interpret the basic flow properties. Also, some older empirical techniques have needed to be modified and interpreted in a more fundamental way so that the results could be used in design. This article reviews these techniques and illustrates how the industry itself has motivated their development. Understanding and exploiting this rheology has resulted in dramatic improvement in the waste-disposal strategy for some industries, but many have failed to embrace the available technology. The reasons for this are discussed. The article concludes that a greater positive change in waste-management practice will occur in the future, motivated by several factors, including public perception, tighter regulation, and perhaps even commonsense life cycle accounting.

  4. Tank Farm WM-182 and WM 183 Heel Slurry Samples PSD Results

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas

    2000-09-01

    Particle size distribution (PSD) analysis of INTEC Tank Farm WM-182 and WM-183 heel slurry samples were performed using a modified Horiba LA-300 PSD analyzer at the RAL facility. There were two types of testing performed: typical PSD analysis, and setting rate testing. Although the heel slurry samples were obtained from two separate vessels, the particle size distribution results were quite similar. The slurry solids were from approximately a minimum particle size of 0.5 mm to a maximum of 230 mm-with about 90% of the material between 2-to-133 mm, and the cumulative 50% value at approximately 20 mm. This testing also revealed that high frequency sonication with an ultrasonic element may break-up larger particles in the WM-182 and WM-183 tank from heel slurries. This finding represents useful information regarding ultimate tank heel waste processing. Settling rate testing results were also fairly consistent with material from both vessels in that it appears that most of the mass of solids settle to an agglomerated, yet easily redispersed layer at the bottom. A dispersed and suspended material remained in the "clear" layer above the settled layer after about one-half an hour of settling time. This material had a statistical mode of approximately 5 mm and a maximum particle size of 30 mm.

  5. New plug flow slurry bioreactor for polycyclic aromatic hydrocarbon degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gamati, S.; Gosselin, C.; Bergeron, E.; Chenier, M.; Truong, T.V. [Sodexen Group, Laval, PQ (Canada); Bisaillon, J.G. [INRS-Inst. Armand-Frappier, Laval, PQ (Canada)

    1999-11-01

    Sodexen Group has developed a new bioslurry bioreactor capable of efficiently and economically treating polycyclic aromatic hydrocarbons (PAHs) contaminated soils and sediments. A pilot plug-flow reactor was constructed, and innovations included were specifically-designed Venturi jet aerators for improved mixing and and oxygen distribution, and the development of bacterial consortia selectively adapted to high molecular weight PAH soil matrices. Rapid biodegradation is provided due to enhanced mass transfer rates and better microorgamism/contaminant contact. Various soil mixtures were tested in a 200 L pilot, and recirculation of a 50% slurry solid concentration was obtained by the use of centrifugal pumps along with submerged aerators and water nozzles. Based on microcosm biodegradation results, specific bioenhancing agents were added to the slurry to optimize bacterial activity and increase substrate bioavailability. Collected volatile organic compounds were treated by a biofilter. The feasibility of operating the continuously fed plug-flow reactor at high slurry solid content was shown. The bioslurry reactor allowed adequate operational conditions and mass transfer rates. Initial operation tests showed that increasing the slurry solid content up to 50% required certain design modifications to move settled particles. These included the number, size, position and distribution of the aerators. Internal shape of the reactor was also changed to obtain adequate mixing and solid suspension. Obtained oxygen levels throughout the reactor showed the efficiency of the aeration system. Resulting PAH removal efficiencies ranged from 63-90% depending on PAH molecular weights. Residence times of about ten days were needed to attain this removal rate. A rapid biodegradation of 80-90% of the more readily-available 2- and 3- ring PHAs occurred. Overall removal rates of more sorbed 4- and 6- ring PHAs were lower, suggesting the need for longer residence times, improved

  6. Forced convection heat transfer with microencapsulated phase-change-material slurries. Turbulent flow in a circular tube; Microcapsuleka sohenka busshitsu slurries no kyosei tairyu netsudentatsu tokusei. Enkannai ranryu

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Y.; Sugano, T. [Daido Hoxan Inc., Hokkaido (Japan); Takeuchi, H.; Pyatenko, A. [Hokkaido National Industrial Research Institute Sapporo (Japan)

    1998-01-01

    An experimental study using a slurry of micro-encapsulated phase change material (MCPCM) in water is conducted in order to investigate the increase in convection heat transfer coefficients of slurry flows as well as the increase in thermal capacity of a slurry by using the latent heat from a solid-liquid phase change material (PCM). Experiments were done for turbulent, hydrodynamically fully developed flows in a circular tube with constant wall heat flux. Local convective heat transfer coefficients were measured along the heating test section in order to study the effects of the melting phenomena inside MCPCMs. Experimental data are presented for various particle concentrations, slurry flow rates, and heating rates. Results show that an increase in the local convective heat transfer coefficient is found when the MCPCMs melted. Enhancement of heat transfer due to phase change is affected to varying degrees by Reynolds numbers of slurry flows, the fraction of PCM which is solid phase and heating rates. This paper provides and presents an explanation of the physical mechanism of the convective heat transfer enhancement due to the phase change of MCPCMs and a set of data available for the adjustments of system operating conditions for optimum heat transfer performance. 15 refs., 11 figs., 4 tabs.

  7. Thickened aqueous slurry explosive composition

    Energy Technology Data Exchange (ETDEWEB)

    Craig, J.F.M.; Matts, T.C.; Seto, P.F.L.

    1979-01-04

    A thickened slurry explosive composition consists of water, inorganic oxidizing salt, fuel, and thickener wherein the thickener is a mixture of an unmodified guar gum and a hydroxypropyl-modified guar gum. The thickener mixture improves the stability and rheologic properties of the explosive. The preferred thickener mixture contains from 15 to 85% by weight of unmodified guar to 15 to 85% by weight of hydroxypropyl-modified guar and the composition preferably comprises 0.2% to 2.0% by weight of the thickener mixture. The thickener mixture is especially effective in explosive compositions sensitized with gas bubbles or with water-soluble organic nitrate for example, ethylene glycol mononitrate, propylene glycol mononitrate, ethanolamine nitrate, propanolamine nitrate, methylamine nitrate, ethylamine nitrate, ethylenediamine dinitrate, urea nitrate, or aniline nitrate. 14 claims.

  8. Submicron particles of Co, Ni and Co–Ni alloys

    Indian Academy of Sciences (India)

    Unknown

    Solid State Ionics 84 271. Ayyappan S, Gopalan R S, Subbanna G N and Rao C N R 1997. J. Mater. Res. 12 398. Bradley J S 1994 Clusters and colloids: From theory to appli- cations (eds) G Schmid (Weinheim: VCH) Ch. 1. Cullity B D 1972 Introduction to magnetic materials (Reading,. Massachusetts: Addison-Wesley).

  9. Study and optimization of an annular photocatalytic slurry reactor.

    Science.gov (United States)

    Camera-Roda, Giovanni; Santarelli, Francesco; Panico, Mauro

    2009-05-01

    The experimental results obtained for the photocatalytic degradation of a model organic dye in an annular slurry reactor are analyzed with the aid of a mathematical model. The model is used also to study the effects on the performances of many operative conditions: flow rate, photocatalyst concentration, power of the lamp, size of the photocatalytic particles, dimensions of the reactor. The investigation demonstrates that the rate of the process is often limited by the radiant energy transfer and that some simple rules can be followed in order to optimize different yields and the observed rate of reaction.

  10. Microscopic imaging ellipsometry of submicron-scale bacterial cells ...

    African Journals Online (AJOL)

    Microscopic imaging ellipsometry of submicron-scale bacterial cells. ... Conclusion: MIE is a sensitive non-optical technique that can be used to image biological systems without the need for labeling of molecules. Keywords: Objective plane, Imaging ellipsometry, Submicron-scale bacterial cells, Streptococcus mutans, ...

  11. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination......This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... of technologies) having the largest potential for reducing the overall environmental impacts....

  12. Novel techniques for slurry bubble column hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  13. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.

    2009-05-22

    The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.

  14. THE ENHANCEMENT OF THE PHYSICAL ABSORPTION OF GASES IN AQUEOUS ACTIVATED CARBON SLURRIES

    NARCIS (Netherlands)

    TINGE, JT; DRINKENBURG, AAH

    The enhancement of the gas-liquid mass transfer rates in aqueous slurries containing small activated carbon particles was studied in a semi-batchwise operated stirred cell absorber with a plane interface. The maximum observed enhancement factors for absorption of propane, ethene and hydrogen in the

  15. Spray-drying of alumina powder for APS: effect of slurry properties ...

    Indian Academy of Sciences (India)

    In this paper, effects of variables concerning slurry properties and drying conditions on the particle size and morphology of feedstock were discussed. The results indicated that, the increase of powder loading increased 50 and volume content but reduced recovery rate slightly. Other variables, such as inlet temperature, ...

  16. Spray-drying of alumina powder for APS: effect of slurry properties ...

    Indian Academy of Sciences (India)

    Administrator

    pension (slurry) is transformed into a dry granule (feed- stock) by spraying the fluid feed material into a stream of heated air. Spray drying enables the fabrication of com- posite powder by aggregation of different small particles using an appropriate organic binder. The rapid heat and mass transfer occurs during the process.

  17. Ethylene polymerization kinetics with a heteregeneous catalyst - Comparison of gas and slurry phases

    NARCIS (Netherlands)

    Bergstra, M.F.; Weickert, G.

    2005-01-01

    Ethylene homopolymerizations were executed with a supported Ind2ZrCl2/MAO catalyst using the so-called Reactive Bed Preparation method. This RBP method combined a slurry polymerization with a gas phase polymerization with the same polymerizing particles, i.e., a reactive bed. Polymerization kinetics

  18. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Cindy, E-mail: c.gunawan@unsw.edu.au [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Sirimanoonphan, Aunchisa [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Teoh, Wey Yang [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Marquis, Christopher P., E-mail: c.marquis@unsw.edu.au [School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW (Australia); Amal, Rose [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2013-09-15

    Highlights: • Uptake of TiO{sub 2} solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO{sub 2} exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO{sub 2} and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO{sub 2} exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO{sub 2} stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO{sub 2} exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO{sub 2}/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.

  19. Prediction of changes in important physical parameters during composting of separated animal slurry solid fractions

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters...... composts showed different dynamics as described by the first-order kinetic equation. The estimated component particle density of 1441 kg m-3 for VS and 2625 kg m-3 for fixed solids can be used to improve estimates of AFP for SSF within the range tested. The linear relationship between wet bulk density...... and AFP reported by previous researchers held true for SSF....

  20. Pretreatment methods to obtain pumpable high solid loading wood–water slurries for continuous hydrothermal liquefaction systems

    DEFF Research Database (Denmark)

    Dãrãbana, Iulia-Maria; Rosendahl, Lasse Aistrup; Pedersen, Thomas Helmer

    2015-01-01

    with alkalis. This method is less sensitive to particle size or wood type. 1 mm particles of either softwood or hardwood could be converted into pumpable liquid feedstock by thermal treatment with NaOH at 180 °C. Wood-water-biocrude slurries viscosity is reduced from 100 to 1000 Pa s to about 1 Pa s, when...

  1. The differences between soil grouting with cement slurry and cement-water glass slurry

    Science.gov (United States)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  2. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2004-10-01

    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established.

  3. Airborne studies of submicron aerosol in the troposphere over West Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Panchenko, M.V.; Zuev, V.E.; Belan, B.D.; Terpugova, S.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    Submicron fraction particles that have the longest lifespan and are included in almost all atmospheric processes are of special importance among the great variety of sizes of particles present in the atmosphere. Submicron particles mainly determine the opticle state of the atmosphere in the visible spectral range, essentially cause the absorption of infrared radiation and, since they are the products and participants in all aerosol-to-gas transformations, accumulate of a lot of various chemical compounds and transfer them to large distances. Investigation of the processes of the spatial-temporal variability of aerosol particles for different climatic zones of the earth is the experimental base for studying their effect on climatically and ecologically significant factors and estimating their unfavorable tendencies. The increasing anthropogenic loading of the earth`s atmosphere is creating an urgency for aerosol research. Regardless of how perfect the analytical and numerical methods of solving radiation problems may be, success in forecasting climatic change is mainly determined by the reliability of the experimental data on optical parameters of the atmosphere and of the description of their variability under the effect of external factors.

  4. Novel Fischer-Tropsch slurry catalysts and process concepts for selective transportation fuel production: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Withers, H.P. Jr.; Eliezer, K.F.; Mitchell, J.W.

    1987-12-01

    The preparation, characterization and performance of cobalt and ruthenium carbonyl cluster-based catalysts for use in slurry-phase Fischer-Tropsch (FT) technology was investigated. The use of metal carbonyls as active metal precursor allows for the possible control of metal particle size on the support surface and thus offers the potential for better control of activity and selectivity of the FT reaction. Accomplishments included reproducible catalyst preparation, improvements in activity by use of a silica support, understanding diffeences between nitrate and carbonyl precursors, a nd good activity maintenance in the slurry reactor. A CO/sub 2/(CO)/sub 8/Zr(OPr)/sub 4/SiO/sub 2/ catalyst (3.5% CO, 6.6% Zr) was developed as the most active system in the slurry reactor and also gave the best liquid fuel selectivity. Silica support provided the highest catalyst activities. This catalyst was successfully tested in an extended slurry-phase run that achieved 6 months on stream with a 10% loss in activity. Ru catalysts showed the highest activity in the fixed-bed reactor but deactivated rapidly in the slurry reactor. In the analysis of the kinetic data, catalyst deactivation was assumed to proceed linearly between baseline experients at fixed temperture. Causes of the deactivation are not fully understood. 27 refs., 37 figs., 20 tabs.

  5. Studies of coal slurries property; Slurry no seijo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, M.; Aihara, Y.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Sakaki, T.; Shibata, M.; Hirosue, H. [Kyushu National Industrial Research Institute, Saga (Japan)

    1996-10-28

    It was previously found that the increase of slurry temperature provides a significant effect of slurry viscosity reduction for the coal slurry with high concentration of 50 wt%. To investigate the detailed influence of slurry temperature for the coal slurry with concentration of 50 wt%, influence of temperature on the successive change of apparent viscosity was observed at the constant shear rate. When the concentration of coal was increased from 45 wt% to 50 wt%, viscosity of the slurry was rapidly increased. When heated above 70{degree}C, the apparent viscosity decreased during heating to the given temperature, but it increased successively after reaching to the given temperature. The apparent viscosity showed higher value than that of the initial viscosity. The coal slurry with concentration of 50 wt% showed the fluidity of Newtonian fluid at the lower shear rate region, but showed the fluidity of pseudo-plastic fluid at the higher shear rate region. The slurry having high apparent viscosity by the successive change showed higher apparent viscosity with increasing the higher even by changing the shear rate. 1 ref., 4 figs.

  6. EXPERIMENTAL INVESTIGATION OF EROSIVE WEAR ON THE HIGH CHROME CAST IRON IMPELLER OF SLURRY DISPOSAL PUMP USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Jasbir Singh Ratol

    2012-07-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behaviour of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  7. Experimental Investigation of Erosive Wear on the High Chrome Cast Iron Impeller of Slurry Disposal Pump Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-05-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behavior of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  8. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  9. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin; Washton, Nancy M.; Walter, Eric D.; Szanyi, János; Gao, Feng; Wang, Yong; Peden, Charles H. F.

    2017-02-01

    For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction reactions, such as NO reduction. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, simulating SCR reaction conditions, is more destructive in respect to dealumination for smaller particles prior to Cu-exchange. However, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, the stability of tetrahedral framework Al is improved in the sub-micron Cu/SSZ-13 catalysts of comparable Cu loading. This indicates that variations in the Al distribution for different SSZ-13 synthesis procedures have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  10. Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrefah, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hohimer, Ryan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nigl, Franz [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toth, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokuda, Satoru T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication of slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 μm in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity

  11. Submicron Emulsions and Their Applications in Oral Delivery.

    Science.gov (United States)

    Mundada, Veenu; Patel, Mitali; Sawant, Krutika

    2016-01-01

    A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.

  12. Environmental Consequences of Pig Slurry Treatment Technologies

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke

    for one impact category, but disadvantageous for another, while another type showed the opposite trends. Slurry acidification was the preferred technology for reducing terrestrial acidification and eutrophication potential, while slurry separation performed best for freshwater eutrophication......, and anaerobic digestion showed the lowest impact potential for fossil resource depletion and marine eutrophication. For climate change potential, whether a beneficial or disadvantageous impact potential was revealed depended on the specific technology (moment of acidification, separation and fraction upgrading...... occur during manure storage and after field application. The main emissions are ammonia, nitrous oxide, methane, carbon dioxide, nitrate, phosphorus and odour. Slurry treatment technologies have been and are being developed in order to reduce the environmental impacts of manure. However, it is important...

  13. Submicron Features in Higher Manganese Silicide

    Directory of Open Access Journals (Sweden)

    Yatir Sadia

    2013-01-01

    Full Text Available The world energy crisis had increased the demand for alternative energy sources and as such is one of the topics at the forefront of research. One way for reducing energy consumption is by thermoelectricity. Thermoelectric effects enable direct conversion of thermal into electrical energy. Higher manganese silicide (HMS, MnSi1.75 is one of the promising materials for applications in the field of thermoelectricity. The abundance and low cost of the elements, combined with good thermoelectric properties and high mechanical and chemical stability at high temperatures, make it very attractive for thermoelectric applications. Recent studies have shown that Si-rich HMS has improved thermoelectric properties. The most interesting of which is the unusual reduction in thermal conductivity. In the current research, transmission (TEM and scanning (SEM electron microscopy as well as X-ray diffraction methods were applied for investigation of the govern mechanisms resulting in very low thermal conductivity values of an Si-rich HMS composition, following arc melting and hot-pressing procedures. In this paper, it is shown that there is a presence of sub-micron dislocations walls, stacking faults, and silicon and HMS precipitates inside each other apparent in the matrix, following a high temperature (0.9 Tm hot pressing for an hour. These are not just responsible for the low thermal conductivity values observed but also indicate the ability to create complicate nano-structures that will last during the production process and possibly during the application.

  14. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up to 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.

  15. Research on Si (100) crystal substrate CMP based on FA/O alkaline slurry

    Science.gov (United States)

    Hong, Jiao; Niu, Xinhuan; Wang, Juan; Wang, Chenwei; Zhang, Baoguo; Wang, Ru; Sun, Ming; Liu, Yuling

    2017-10-01

    For the advanced IC technology nodes, the surface quality of the polished silicon substrate surface becomes more and more critical. Haze is used to characterize extremely small pits scatter light disproportionately at the angle of measurement (90°), and Haze collected on full wafer scale with high throughput is the key CMP output parameter in an advanced CMP process. In this study, the influence of surface defects especially scratch, particle contamination, and surface roughness on Haze was investigated. The results indicate scratch and particle contamination take some influence on Haze, and Haze increases quickly with the increasing of surface roughness. So it can be concluded that surface roughness is the key affecting factor of Haze. In addition, the influence of FA/O surfactant in the alkaline slurry on Haze was studied. The results show FA/O surfactant can effectively decrease Haze. Finally, the advantages of the FA/O alkaline slurry were exhibited by the contrast experiments. A much lower level of metallic ions residual and a much better WIWNU were gotten for silicon wafers polished by FA/O alkaline slurry than that by the commercial one. Hence, the FA/O alkaline slurry provides a high quality silicon wafer surface. The results are helpful for researching the silicon CMP as well as the other materials.

  16. Vectors and submicron precision: redundancy and 3D stacking in silicon pixel detectors

    CERN Document Server

    Heijne, E H M; Wong, W; Idarraga, J; Visser, J; Jakubek, J; Leroy, C; Turecek, D; Visschers, J; Pospisil, S; Ballabriga, R; Vykydal, Z; Vermeulen, J; Plackett, R; Heijne, E H M; Llopart, X; Boltje, D; Campbell, M

    2010-01-01

    Measurements are shown of GeV pions and muons in two 300 mu m thick, Si Medipix pixel detector assemblies that are stacked on top of each other, with a 25 mu m thick brass foil in between. In such a radiation imaging semiconductor matrix with a large number of pixels along the particle trail, one can determine local space vectors for the particle trajectory instead of points. This improves pattern recognition and track reconstruction, especially in a crowded environment. Stacking of sensor planes is essential for resolving directional ambiguities. Signal charge sharing can be employed for measuring positions with submicron precision. In the measurements one notices accompanying `delta' electrons that emerge outside the particle trail, far beyond the boundaries of the 55 mu m pixel cells. The frequency of such corrupted position measurements is similar to one per 2.5mm of traversed Si.

  17. Continuous in-house acidification affecting animal slurry composition

    DEFF Research Database (Denmark)

    Hjorth, Maibritt; Cocolo, Giorgia; Jonassen, Kristoffer

    2015-01-01

    The emerging slurry acidification technology affects gaseous emissions, fertiliser value, biogas production and solid-liquid separation; however, maximising the advantages is difficult, as the effect of acidification on the slurry characteristics resulting in those observations remains unclarifie...

  18. Results of sludge slurry pipeline pluggage tests. [Simulation of Radioactive Slurry Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, J.M.

    1987-02-06

    Test results of sludge slurry transport through the Interarea Transfer Line (IAL) Mock-up Facility showed little risk of plugging the interarea pipelines with sludge slurry. Plug-free operation of the pipeline was successfully demonstrated by worst case IAL operating scenarios. Pipeline pressure gradients were measured vs. flow rate for comparison with a computer model over a range of sludge slurry rheological properties. A mathematical computer model developed by L. M. Lee is included in this report which will predict pressure drop for Bingham plastic fluid flow in a pipeline. IAL pluggage situations and pumping requirements may be realized from this model. 4 refs., 11 figs., 2 tabs.

  19. A novel method of atomizing coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, P.E.; Lefebvre, A.H.

    1990-05-01

    Despite the body of work describing the performance of effervescent atomizers, its potential for use with coal water slurries (CWS) had not been evaluated prior to this study. This program was therefore undertaken: to demonstrate that effervescent atomization can produce CWS sprays with mean drop sizes below 50{mu}m; to determine a lower size limit for effervescent atomizer produced CWS sprays; to determine the mechanism(s) responsible for the formation of effervescent atomizer produced sprays. An analysis of the effects of slurry rheological properties (as indicated by the consistency index and the flow behavior index) and formulation (in terms of loading and coal particle top size) on the spray formation process was performed. The experimental data reported were then analyzed to explain the physical processes responsible for spray formation. The analysis began by considering an energy balance across a control volume that extended from the nozzle exit plant to the line of spray measurement. The inlet conditions were calculated using two-phase flow techniques and the outlet conditions were calculated by using conservation of momentum and assuming that the final velocities of the air and liquid were equal. Entrainment was considered negligible and losses were accounted for by realizing that only a small fraction of the atomizing air participated in the spray formation process with the remainder passing through the control volume unperturbed. Results are discussed. 41 figs., 4 tabs.

  20. Rheology of corn stover slurries during fermentation to ethanol

    Science.gov (United States)

    Ghosh, Sanchari; Epps, Brenden; Lynd, Lee

    2017-11-01

    In typical processes that convert cellulosic biomass into ethanol fuel, solubilization of the biomass is carried out by saccharolytic enzymes; however, these enzymes require an expensive pretreatment step to make the biomass accessible for solubilization (and subsequent fermentation). We have proposed a potentially-less-expensive approach using the bacterium Clostridium thermocellum, which can initiate fermentation without pretreatment. Moreover, we have proposed a ``cotreatment'' process, in which fermentation and mechanical milling occur alternately so as to achieve the highest ethanol yield for the least milling energy input. In order to inform the energetic requirements of cotreatment, we experimentally characterized the rheological properties of corn stover slurries at various stages of fermentation. Results show that a corn stover slurry is a yield stress fluid, with shear thinning behavior well described by a power law model. Viscosity decreases dramatically upon fermentation, controlling for variables such as solids concentration and particle size distribution. To the authors' knowledge, this is the first study to characterize the changes in the physical properties of biomass during fermentation by a thermophilic bacterium.

  1. Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Goldstein, Harvey [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Dooher, John [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2013-09-30

    This study investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO2 is much lower than water. This means it should take less energy to pump liquid CO2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO2/coal slurry properties.

  2. Yield Stress Reduction of Radioactive Waste Slurries by Addition of Surfactants

    Energy Technology Data Exchange (ETDEWEB)

    MICHAEL, STONE

    2005-02-08

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass while the facilities at the Hanford site are in the design/construction phase. Both processes utilize slurry-fed joule heated melters to vitrify the waste slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and melter feed processes. The use of a surface active agent, or surfactant, to increase the solids loading that can be fed to the melters would increase melt rate by reducing the heat load on the melter required to evaporate the water in the feed. The waste slurries are non-Newtonian fluids with rheological properties that were modeled using the Bingham Plastic mod el (this model is typically used by SRNL when studying the DWPF process1).The results illustrate that altering the surface chemistry of the particulates in the waste slurries can lead to a reduction in the yield stress. Dolapix CE64 is an effective surfactant over a wide range of pH values and was effective for all simulants tested. The effectiveness of the additive increased in DWPF simulants as the concentration of the additive was increased. No maxi main effectiveness was observed. Particle size measurements indicate that the additive acted as a flocculant in the DWPF samples and as a dispersant in the RPP samples.

  3. Abrasion of eroded dentin caused by toothpaste slurries of different abrasivity and toothbrushes of different filament diameter.

    Science.gov (United States)

    Wiegand, Annette; Kuhn, Mirjam; Sener, Beatrice; Roos, Malgorzata; Attin, Thomas

    2009-06-01

    This study aimed to evaluate the impact of toothpaste slurry abrasivity and toothbrush filament diameter on abrasion of eroded dentin in vitro. Eroded dentin samples (hydrochloric acid, pH 2.6, 15s) were brushed with 40 strokes in an automatic brushing machine using manual toothbrushes with different filament diameter (0.15, 0.20 or 0.25 mm). The toothbrushes were applied with a control slurry free of abrasive particles (RDA-value 10) or toothpastes slurries with different abrasivity (RDA-values 20, 50 or 100). Each erosive-abrasive cycle was followed by storage of the dentin samples in artificial saliva for 3h. After each 4 cycles, the samples were stored in artificial saliva for 15 h. After 60 cycles, dentin loss was measured by profilometry and statistically analysed by ANOVA and linear regression analysis. Dentin loss increased along with the RDA-value of the toothpaste slurries. The impact of the filament diameter on dentin loss was less evident compared to the RDA-value. However, toothbrushes with smaller filament stiffness caused higher dentin wear in all toothpaste slurry groups (RDA 20, 50 and 100) except for the paste-free control group (RDA 10). Abrasion of eroded dentin increased along with the RDA-value of the toothpaste slurry and with decreasing filament diameter of the toothbrush.

  4. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates

    Science.gov (United States)

    Chen, Guomei; Ni, Zifeng; Xu, Laijun; Li, Qingzhong; Zhao, Yongwu

    2015-12-01

    Colloidal silica and ceria based slurries, both using KMnO4 as an oxidizer, for chemical mechanical polishing (CMP) of Si-face (0 0 0 1) 6H-SiC substrate, were investigated to obtain higher material removal rate (MRR) and ultra-smooth surface. The results indicate that there was a significant difference in the CMP performance of 6H-SiC between silica and ceria based slurries. For the ceria based slurries, a higher MRR was obtained, especially in strong acid KMnO4 environment, and the maximum MRR (1089 nm/h) and a smoother surface with an average roughness Ra of 0.11 nm was achieved using slurries containing 2 wt% colloidal ceria, 0.05 M KMnO4 at pH 2. In contrast, due to the attraction between negative charged silica particles and positive charged SiC surface below pH 5, the maximum MRR of silica based slurry was only 185 nm/h with surface roughness Ra of 0.254 nm using slurries containing 6 wt% colloidal silica, 0.05 M KMnO4 at pH 6. The polishing mechanism was discussed based on the zeta potential measurements of the abrasives and the X-ray photoelectron spectroscopy (XPS) analysis of the polished SiC surfaces.

  5. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV

  6. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    Science.gov (United States)

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  7. Nitrification limitation in animal slurries at high temperatures

    NARCIS (Netherlands)

    Willers, H.C.; Derikx, P.J.L.; Have, ten P.J.W.; Vijn, T.K.

    1998-01-01

    Nitrification rates in two types of animal slurry were measured at temperatures between 20 and 60°C. The rates were assessed in rapid laboratory assays using samples from aeration tanks of large scale treatment plants for pig or veal-calf slurry. Maximum nitrification rates for the two slurries were

  8. X, Ku-band microwave-absorption properties of polyarylene ether nitriles terminated with phthalonitrile/Fe{sub 3}O{sub 4} hybrid submicron spheres

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lifen, E-mail: 361626614@qq.com; Pu, Zejun; Huang, Xu; Liu, Xiaobo, E-mail: liuxb@uestc.edu.cn

    2014-05-01

    Highlights: • PEN-t-Ph/Fe{sub 3}O{sub 4} hybrid spheres were prepared via one-step solvothermal method. • Polymer compatibility is introduced into inorganic submicron spheres successfully. • PEN-t-Ph/Fe{sub 3}O{sub 4} hybrid submicron spheres possessed good ferrimagnetism. • Control the microwave absorption band of PEN-t-Ph/Fe{sub 3}O{sub 4} hybrid submicron spheres. - Abstract: A novel series of PEN-t-Ph/Fe{sub 3}O{sub 4} hybrid submicron spheres with different additions of PEN-t-Ph have been prepared successfully via solvothermal method, and their structures and morphologies were characterized by X-ray powder diffraction (XRD), energy dispersive spectrometer (EDS), Fourier transform infrared spectrophotometer (FTIR), and scanning electron microscopy (SEM). The results revealed that the crystallinity, dispersity, and size of hybrid submicron spheres can be controlled by altering the addition content of PEN-t-Ph. Magnetization measurement showed that the PEN-t-Ph/Fe{sub 3}O{sub 4} hybrid submicron spheres possessed good ferrimagnetism. The electromagnetic measurement indicated that the resonance peaks of complex permittivity, complex permeability, dielectric loss, and magnetic loss were shifted to the higher frequency as the addition of PEN-t-Ph increased. Moreover, the microwave absorption band was also shifted to higher frequency as the addition of PEN-t-Ph increased. Through this method, the polymer compatibility can be introduced into inorganic submicron spheres, which could provide the inorganic particles with more applications.

  9. Potassium sorbate as an inhibitor in copper chemical mechanical planarization slurry. Part I. Elucidating slurry chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagar, Magi; Starosvetsky, David [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel); Vaes, Jan [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Ein-Eli, Yair, E-mail: eineli@tx.technion.ac.i [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel)

    2010-04-01

    The integration of an advanced inhibitor, potassium sorbate (K[CH{sub 3}(CH){sub 4}CO{sub 2}]), in a copper CMP slurry based on hydrogen peroxide and glycine is reported. The first part of the study discusses the slurry chemistry by qualitatively describing the processes involved and proposes a mechanism for a hydrogen peroxide-glycine based slurry having sorbate anion as an inhibitor. For this purpose, the specific role of each chemical constituent in the slurry was elucidated at a fundamental level by electrochemical studies, X-ray photon spectroscopy (XPS) and contact angle measurements, all linked to the CMP performance on blanket wafers. Once the polishing mechanism was resolved the influence of the inhibitor was evaluated by CMP processing of patterned wafers.

  10. Evaluation of the Monroe Slurry Maker.

    Science.gov (United States)

    2009-05-01

    In early February, 2009, the Maine Department of Transportation (MaineDOT) installed a Monroe Slurry : Maker on one of its 2009 Volvo Wheelers (see Photos 1 and 2). This truck was equipped with a : Henderson Utility Body. An 18 gallon per minute spoo...

  11. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  12. Bio-slurry as fertilizer : is bio-slurry from household digesters a better fertilizer than manure? : a literature review

    NARCIS (Netherlands)

    Bonten, L.T.C.; Zwart, K.B.; Rietra, R.P.J.J.; Postma, R.; Haas, de M.J.G.; Nysingh, S.L.

    2014-01-01

    In many developing countries manure is anaerobically digested to produce biogas. The residue of manure digestion, bio-slurry, can be used as fertilizer for crop production and aquaculture. This study compared bio-slurry and manure as fertilizers. Nutrients in bio-slurry, especially nitrogen, are

  13. CFD simulation and experimental analysis of erosion in a slurry tank test rig

    Directory of Open Access Journals (Sweden)

    Bart Hans-Jörg

    2013-04-01

    Full Text Available Erosion occurring in equipment dealing with liquid-solid mixtures such as pipeline parts, slurry pumps, liquid-solid stirred reactors and slurry mixers in various industrial applications results in operational failure and economic costs. A slurry erosion tank test rig is designed and was built to investigate the erosion rates of materials and the influencing parameters such as flow velocity and turbulence, flow angle, solid particle concentration, particles size distribution, hardness and target material properties on the material loss and erosion profiles. In the present study, a computational fluid dynamics (CFD tool is used to simulate the erosion rate of sample plates in the liquid-solid slurry mixture in a cylindrical tank. The predictions were made in a steady state and also transient manner, applying the flow at the room temperature and using water and sand as liquid and solid phases, respectively. The multiple reference frame method (MRF is applied to simulate the flow behavior and liquid-solid interactions in the slurry tank test rig. The MRF method is used since it is less demanding than sliding mesh method (SM and gives satisfactory results. The computational domain is divided into three regions: a rotational or MRF zone containing the mixer, a rotational zone (MRF containing the erosion plates and a static zone (outer liquid zone. It is observed that changing the MRF zone diameter and height causes a very low impact on the results. The simulated results were obtained for two kinds of hard metals namely stainless steel and ST-50 under some various operating conditions and are found in good agreement with the experimental results.

  14. Physicochemical and rheological characteristics of charcoal slurry fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ugwu, K.E.; Eze, S.I. [National Center for Energy Research and Development, University of Nigeria, Nsukka (Nigeria)

    2013-07-01

    Charcoal slurry fuel (CCF) was prepared from a mixture of charcoal, water and a surfactant. Some properties of the slurry were examined and evaluated. The rheological characteristics which were evaluated from the measurement of the viscosity of the slurry at varying solid concentrations showed it to be a Newtonian and non-Newtonian fluid depending on the solid concentrations. The slurry was stable at below 40% solid concentration. This research results provided data that may be useful in the consideration of charcoal slurry as a potential substitute for the conventional petroleum-based diesel oil.

  15. Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand

    Science.gov (United States)

    Cole, S. E.; Cronin, S. J.; Sherburn, S.; Manville, V.

    2009-05-01

    Detection of ground shaking forms the basis of many lahar-warning systems. Seismic records of two lahar types at Ruapehu, New Zealand, in 2007 are used to examine their nature and internal dynamics. Upstream detection of a flow depends upon flow type and coupling with the ground. 3-D characteristics of seismic signals can be used to distinguish the dominant rheology and gross physical composition. Water-rich hyperconcentrated flows are turbulent; common inter-particle and particle-substrate collisions engender higher energy in cross-channel vibrations relative to channel-parallel. Plug-like snow-slurry lahars show greater energy in channel-parallel signals, due to lateral deposition insulating channel margins, and low turbulence. Direct comparison of flow size must account for flow rheology; a water-rich lahar will generate signals of greater amplitude than a similar-sized snow-slurry flow.

  16. Investigation of the enhanced spatial density of submicron lunar ejecta between L values 1.2 and 3.0 in the earth's magnetosphere: Theory

    Science.gov (United States)

    Alexander, W. M.; Tanner, W. G.; Goad, H. S.

    1987-01-01

    Initial results from the measurement conducted by the dust particle experiment on the lunar orbiting satellite Lunar Explorer 35 (LE 35) were reported with the data interpreted as indicating that the moon is a significant source of micrometeroids. Primary sporadic and stream meteoroids impacting the surface of the moon at hypervelocity was proposed as the source of micron and submicron particles that leave the lunar craters with velocities sufficient to escape the moon's gravitational sphere of influence. No enhanced flux of lunar ejecta with masses greater than a nanogram was detected by LE 35 or the Lunar Orbiters. Hypervelocity meteoroid simulation experiments concentrating on ejecta production combined with extensive analyses of the orbital dynamics of micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space have shown that a pulse of these lunar ejecta, with a time correlation relative to the position of the moon relative to the earth, intercepts the earth's magnetopause surface (EMPs). As shown, a strong reason exists for expecting a significant enhancement of submicron dust particles in the region of the magnetosphere between L values of 1.2 and 3.0. This is the basis for the proposal of a series of experiments to investigate the enhancement or even trapping of submicron lunar ejecta in this region. The subsequent interaction of this mass with the upper-lower atmosphere of the earth and possible geophysical effects can then be studied.

  17. Chemical mechanical polishing of copper using nanoparticle-based slurries

    Science.gov (United States)

    Jung, Su-Ho

    Chemical mechanical polishing (CMP) is a vital step for planarizing multi-level interconnect structures in ultra large-scale integrated circuit applications. The CMP has become the fastest growing semiconductor manufacturing operation in the past decade and is expected to continue its high growth rate with the emergence of next generation interconnect materials such as copper and ultra-low dielectric constant insulators in the coming decade. However, these next generation interconnects, due to their fragility and poor adhesion, are susceptible to CMP-induced defect formation such as microscratches, copper and barrier peeling, low k damage, dishing, and erosion. The state-of-the-art slurries presently designed for polishing copper/silica dielectric use hard aggregate particles (fumed alumina, 100--300 nm in diameter), which, we believe, may not be easily extended to polishing of copper/low k or ultra low k dielectrics. In this study, we investigate copper CMP using nanoparticle based slurries to reduce the defect formation. The reduction of defect formation, however, is among other considerations such as high removal rate. We examine the nanoscale synergistic chemical and mechanical interactions to determine controlling factors in defectivity and removal rate. Our experimental results indicate that the synergistic effect, that is, the rapid formation of surface passive layer that can be subsequently removed by the nanoparticles without deforming underlying bare copper, is needed to obtain the 'gentle' copper CMP. The removal rate is synergistic, but more dominated by the chemical reaction than by the mechanical abrasion. The formation mechanism of the removable surface layer is investigated. It is suggested that the enhanced the reaction kinetics of the layer formation by addition of chelating agent in the slurry leads to a less dense oxide layer on copper surface that can be removed by the nanoparticles. The role of nanoparticle size and concentration is also

  18. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  19. Electrospun submicron bioactive glass fibers for bone tissue scaffold.

    Science.gov (United States)

    Lu, H; Zhang, T; Wang, X P; Fang, Q F

    2009-03-01

    Submicron bioactive glass fibers 70S30C (70 mol% SiO(2), 30 mol% CaO) acting as bone tissue scaffolds were fabricated by electrospinning method. The scaffold is a hierarchical pore network that consists of interconnected fibers with macropores and mesopores. The structure, morphological characterization and mechanical properties of the submicron bioactive glass fibers were studied by XRD, EDS, FIIR, SEM, N(2) gas absorption analyses and nanoindentation. The effect of the voltage on the morphology of electrospun bioactive glass fibers was investigated. It was found that decreasing the applied voltage from 19 to 7 kV can facilitate the formation of finer fibers with fewer bead defects. The hardness and Young's modulus of submicron bioactive glass fibers were measured as 0.21 and 5.5 GPa, respectively. Comparing with other bone tissue scaffolds measured by nanoindentation, the elastic modulus of the present scaffold was relatively high and close to the bone.

  20. NATO Advanced Study Institute on Physics of Submicron Semiconductor Devices

    CERN Document Server

    Ferry, David; Jacoboni, C

    1988-01-01

    The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES...................

  1. Magnetic and Optical Properties of Submicron-Size Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Hirofumi Yoshikawa

    2010-02-01

    Full Text Available Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials, and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.

  2. An introduction to deep submicron CMOS for vertex applications

    CERN Document Server

    Campbell, M; Cantatore, E; Faccio, F; Heijne, Erik H M; Jarron, P; Santiard, Jean-Claude; Snoeys, W; Wyllie, K

    2001-01-01

    Microelectronics has become a key enabling technology in the development of tracking detectors for High Energy Physics. Deep submicron CMOS is likely to be extensively used in all future tracking systems. Radiation tolerance in the Mrad region has been achieved and complete readout chips comprising many millions of transistors now exist. The choice of technology is dictated by market forces but the adoption of deep submicron CMOS for tracking applications still poses some challenges. The techniques used are reviewed and some of the future challenges are discussed.

  3. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Lam; Dimitri Gidaspow

    2000-09-01

    The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

  4. Bloch-Wave Engineered Submicron Diameter Micropillars with Quality Factors Exceeding 10,000

    DEFF Research Database (Denmark)

    Hofling, S.; Lermer, M.; Gregersen, Niels

    2011-01-01

    Adiabatic design submicron diameter quantum-dot micropillars have been designed and implemented for cavity quantum electrodynamics experiments. Ultra-high experimental quality factors (>10,000) are obtained for submicron diameters and strong light-matter interaction is observed.......Adiabatic design submicron diameter quantum-dot micropillars have been designed and implemented for cavity quantum electrodynamics experiments. Ultra-high experimental quality factors (>10,000) are obtained for submicron diameters and strong light-matter interaction is observed....

  5. A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter

    Science.gov (United States)

    Wisthaler, A.; Eichler, P.; Müller, M.; D'anna, B.

    2014-12-01

    We herein present the concept of a novel modular inlet system that allows using gas-phase analyzers for on-line chemical characterization of semi-volatile submicron particles. The "Chemical analysis of aerosol on-line" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle enrichment in the sampling flow and a thermo-desorption unit for particle volatilization prior to chemical analysis. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined set-up measures submicron organic and ammonium nitrate/sulfate particles online. Proof-of-principle studies were carried out for demonstrating the analytical power of the new set-up in analyzing primarily emitted and secondarily generated particles. A promising future application is the study of the partitioning of organic compounds between the gas and the particulate phase.

  6. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia.

    Science.gov (United States)

    Calvet, Salvador; Hunt, John; Misselbrook, Tom H

    2017-07-01

    Low frequency aeration of slurries may reduce ammonia (NH3) and methane (CH4) emissions without increasing nitrous oxide (N2O) emissions. The aim of this study was to quantify this potential reduction and to establish the underlying mechanisms. A batch experiment was designed with 6 tanks with 1 m3 of pig slurry each. After an initial phase of 7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of the tanks to aeration (2 min every 6 h, airflow 10 m3 h-1), whereas the other three tanks remained as a control. A final phase of 9 days was established with no aeration in any tank. Emissions of NH3, CH4, carbon dioxide (CO2) and N2O were measured. In the initial phase no differences in emissions were detected, but during the second phase aeration increased NH3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m-3 [slurry] d-1, P effect was detected for CO2, and no relevant N2O emissions were detected during the experiment. Our results demonstrate that low frequency aeration of stored pig slurry increases slurry pH and increases NH3 emissions.

  7. Fischer-Tropsch Slurry Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Gamwo, I.K.; Harke, F.W. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  8. Submicron/nano-structured icephobic surfaces made from fluorinated polymethylsiloxane and octavinyl-POSS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yancai; Luo, Chenghao; Li, Xiaohui; Zhang, Kaiqiang; Zhao, Yunhui; Zhu, Kongying; Yuan, Xiaoyan, E-mail: yuanxy@tju.edu.cn

    2016-01-01

    Graphical abstract: The submicron/nano-structured morphology induced by OVPOSS has a strong effect on ice attachment. The OVPOSS particles aggregated on the top surface could decrease the ice adhesion strength. - Highlights: • Fluorinated hybrid films were fabricated from PMHS–xFMA and OVPOSS. • The hybrid films presented icephobic surfaces in submicron/nano-structure. • PMHS–17FMA could enhance hydrophobicity rather than icephobic properties. • Proper OVPOSS content (10–15 wt%) favored reducing the ice adhesion strength. • Rougher surface morphology (R{sub q} > 90 nm) was benefit for repelling water droplets. - Abstract: Fluorinated hybrid films composed of fluorinated polymethylsiloxane (PMHS–xFMA, x = 6, 13, 17) and octavinyl-polyhedral oligomeric silsesquioxanes (OVPOSS) were prepared for icephobic applications. PMHS–xFMA with diverse fluorinated side groups were synthesized via hydrosilylation of polymethylhydrosiloxane (PMHS) with fluorinated methacrylate (xFMA), i.e., hexafluorobutyl methacrylate (6FMA), tridecafluorooctyl methacrylate (13FMA) and heptadecafluorodecyl methacrylate (17FMA), respectively. Characterizations of atomic force microscope and scanning electron microscope indicated that surfaces of the hybrid films consisted of submicron/nano-scaled OVPOSS aggregates, and the root-mean-square roughness (S{sub q}) could vary from 42.6 nm to 145.2 nm with various OVPOSS content (5–20 wt%). Wettability measurements of the prepared films demonstrated that the relatively longer fluorinated side groups in PMHS–17FMA were beneficial for decreasing surface energy and enhancing hydrophobic properties. However, the fluorinated hybrid films with PMHS–17FMA presented higher ice shear strengths due to the stronger interfacial interactions between the film surface and ice/water. The film prepared by PMHS–13FMA and 10 wt% of OVPOSS with proper roughness (90.2 nm) performed the lowest ice shear strength (188.2 ± 13.4 kPa) among all the

  9. Creosote treatability using a slurry bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Hosier, K. R.; Vale, E.; Wardlaw, C. [Environment Canada, Burlington, ON (Canada). Wastewater Technology Centre

    1995-12-31

    A treatability study using continuously-stirred bioslurry reactors was performed to test the biodegradability of a creosote-contaminated soil taken from a wood-preserving plant site. The experiment evaluated the use of two surfactants, a microbial inocculant from a sewage treatment plant (STP)and a combination of surfactants and STP inoculum. A biotic control (i.e. no treatment) and an abiotic treatment (no treatment; autoclaved slurry) were also used. Monitoring was performed on a periodic basis for pH, dissolved oxygen, electrical conductivity, oxygen consumption rate, slurry surface tension, temperature, microbial biomass, toxicity, and PAHs (polyaromatic hydrocarbons). Viable fluoranthene -degrading microbes were found to be present in the slurries. Toxicity was quite high initially, but decreased with time. Surface tension also decreased initially, but periodic additions of surfactants helped to maintain desired levels. Oxygen consumption rates appeared to increase progressively. Gas chromatography showed a decrease in the contaminants-of-concern (i.e. those on the EPA`s priority pollutant list) over the course of the study.

  10. COMPUTATIONAL AND EXPERIMENTAL MODELING OF THREE-PHASE SLURRY-BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Isaac K. Gamwo; Dimitri Gidaspow

    1999-09-01

    Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

  11. Coalescence of freely moving bubbles in water by the action of suspended hydrophobic particles

    NARCIS (Netherlands)

    van der Zon, M.; Hamersma, P.J.; Poels, E.K.; Bliek, A.

    2002-01-01

    The presence of (catalyst) particles in slurry columns may induce significant changes in the overall column hydrodynamics. This is commonly attributed to changes in the apparent viscosity and density of the slurry phase as a result of the presence of particles. However, in case of solids

  12. Deep-submicron CMOS Single Photon Detectors and Quantum Effects

    NARCIS (Netherlands)

    Karami, M.A.

    2011-01-01

    Quantum parasitic effects and miniaturization of Single Photon Avalanche Diodes in deep-submicron technologies have been studied in this thesis in detail. Tunneling noise and Random Telegraph Signal (RTS) noise have been the main two parasitic effects addressed comprehensively. While the fundamental

  13. Comparison of Raw Dairy Manure Slurry and Anaerobically Digested Slurry as N Sources for Grass Forage Production

    Directory of Open Access Journals (Sweden)

    Olivia E. Saunders

    2012-01-01

    Full Text Available We conducted a 3-year field study to determine how raw dairy slurry and anaerobically digested slurry (dairy slurry and food waste applied via broadcast and subsurface deposition to reed canarygrass (Phalaris arundinacea affected forage biomass, N uptake, apparent nitrogen recovery (ANR, and soil nitrate concentrations relative to urea. Annual N applications ranged from 600 kg N ha−1 in 2009 to 300 g N ha−1 in 2011. Forage yield and N uptake were similar across slurry treatments. Soil nitrate concentrations were greatest at the beginning of the fall leaching season, and did not differ among slurry treatments or application methods. Urea-fertilized plots had the highest soil nitrate concentrations but did not consistently have greatest forage biomass. ANR for the slurry treatments ranged from 35 to 70% when calculations were based on ammonium-N concentration, compared with 31 to 65% for urea. Slurry ANR calculated on a total N basis was lower (15 to 40% due to lower availability of the organic N in the slurries. No consistent differences in soil microbial biomass or other biological indicators were observed. Anaerobically digested slurry supported equal forage production and similar N use efficiency when compared to raw dairy slurry.

  14. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland

    2000-12-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.

  15. Compensated gamma ray densimeter measures slurry densities in flow

    Energy Technology Data Exchange (ETDEWEB)

    Guest, R.J.; Zimmerman, C.W.

    1973-09-01

    A gamma-ray densitometer has been compensated so that the density of flowing oil-field slurries is measured accurately and independent of slurry composition. Accuracies over the range of densities employed in oil-field applications is within +.25 lb/gal of true density. Normal drilling mud densities are measured while flowing through the rig's standpipe at accuracies of +0.1 lb/gal of true density. Until the compensated gamma-ray densitometer was developed, it was necessary to recalibrate densitometers when slurries containing elements of high atomic numbers were present. Most oil-field cementing slurries contain no significant amounts of high atomic number elements. However, some cement slurries and drilling mud contain barite (atomic number 56) which precluded accurate measurements by earlier gamma-ray densitometers without recalibration for changes in slurry composition.

  16. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination...... of the compounds in fresh or aged slurry. Generally, addition of a sulfate increased the contribution from H2S dramatically, whereas acidification lowered the H2S contribution but increased that of MT. Thus, acidification of slurry with sulfuric acid may potentially produce more odor from S compounds than...... with acidification, on sulfur transformations in slurry and emissions of volatile sulfur compounds (VSC) during storage of fresh and aged cattle slurry. When pH was lowered to 5.5 it resulted in an almost complete inhibition of sulfate reduction. There was a huge emission of hydrogen sulfide (H2S) with addition...

  17. Biogas slurry pricing method based on nutrient content

    Science.gov (United States)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  18. Geotechnical properties of debris-flow sediments and slurries

    Science.gov (United States)

    Major, J.J.; Iverson, R.M.; McTigue, D.F.; Macias, S.; Fiedorowicz, B.K.

    1997-01-01

    Measurements of geotechnical properties of various poorly sorted debris-flow sediments and slurries (??? 32 mm diameter) emphasize their granular nature, and reveal that properties of slurries can differ significantly from those of compacted sediments. Measurements show that: (1) cohesion probably offers little resistance to shear in most debris flows under low confining stresses normally found in nature; (2) intrinsic hydraulic permeabilities of compacted debris-flow sediments vary from about 10-14-10-9 m2; permeabilities of 'typical' debris-flow slurries fall toward the low end of the range; (3) debris-flow slurries are characterized by very large values of 'elastic' compressibility (C approx. 10-2 kPa-1); and (4) hydraulic diffusivities of quasistatically consolidating slurries are approx. 10-4-10-7 m2/s. Low hydraulic diffusivity of debris slurries permits excess fluid pressure and low effective strength to persist during sediment transport and deposition.

  19. Progression towards optimization of viscosity of highly concentrated carbonaceous solid-water slurries by incorporating and modifying surface chemistry parameters with and without additives

    Science.gov (United States)

    Mukherjee, Amrita

    Carbonaceous solid-water slurries (CSWS) are concentrated suspensions of coal, petcoke bitumen, pitch etc. in water which are used as feedstock for gasifiers. The high solid loading (60-75 wt.%) in the slurry increases CSWS viscosity. For easier handling and pumping of these highly loaded mixtures, low viscosities are desirable. Depending on the nature of the carbonaceous solid, solids loading in the slurry and the particle size distribution, viscosity of a slurry can vary significantly. Ability to accurately predict the viscosity of a slurry will provide a better control over the design of slurry transport system and for viscosity optimization. The existing viscosity prediction models were originally developed for hard-sphere suspensions and therefore do not take into account surface chemistry. As a result, the viscosity predictions using these models for CSWS are not very accurate. Additives are commonly added to decrease viscosity of the CSWS by altering the surface chemistry. Since additives are specific to CSWS, selection of appropriate additives is crucial. The goal of this research was to aid in optimization of CSWS viscosity through improved prediction and selection of appropriate additive. To incorporate effect of surface chemistry in the models predicting suspension viscosity, the effect of the different interfacial interactions caused by different surface chemistries has to be accounted for. Slurries of five carbonaceous solids with varying O/C ratio (to represent different surface chemistry parameters) were used for the study. To determine the interparticle interactions of the carbonaceous solids in water, interfacial energies were calculated on the basis of surface chemistries, characterized by contact angles and zeta potential measurements. The carbonaceous solid particles in the slurries were assumed to be spherical. Polar interaction energy (hydrophobic/hydrophilic interaction energy), which was observed to be 5-6 orders of magnitude higher than the

  20. Fate of Multimeric Oligomers, Submicron, and Micron Size Aggregates of Monoclonal Antibodies Upon Subcutaneous Injection in Mice.

    Science.gov (United States)

    Kijanka, Grzegorz; Bee, Jared S; Bishop, Steven M; Que, Ivo; Löwik, Clemens; Jiskoot, Wim

    2016-05-01

    The aim of this study was to examine the fate of differently sized protein aggregates upon subcutaneous injection in mice. A murine and a human monoclonal immunoglobulin G 1 (IgG1) antibody were labeled with a fluorescent dye and subjected to stress conditions to create aggregates. Aggregates fractionated by centrifugation or gel permeation chromatography were administered subcutaneously into SKH1 mice. The biodistribution was measured by in vivo fluorescence imaging for up to 1 week post injection. At several time points, mice were sacrificed and selected organs and tissues were collected for ex vivo analysis. Part of injected aggregated IgGs persisted much longer at the injection site than unstressed controls. Aggregate fractions containing submicron (0.1-1 μm) or micron (1-100 μm) particles were retained to a similar extent. Highly fluorescent "hot-spots" were detected 24 h post injection in spleens of mice injected with submicron aggregates of murine IgG. Submicron aggregates of human IgG showed higher accumulation in draining lymph nodes 1 h post injection than unstressed controls or micron size aggregates. For both tested proteins, aggregated fractions seemed to be eliminated from circulation more rapidly than monomeric fractions. The biodistribution of monomers isolated from solutions subjected to stress conditions was similar to that of unstressed control. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Effect of the molecular weight of sodium polystyrene sulfonate on the properties of coal water slurry

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y.; Gao, F.; Li, Y. [Ningxia University, Yinchuan (China)

    2006-06-15

    Three sodium polystyrene sulfonate (PSS) additives with different molecular weight and 8 coals are selected to evaluate the effect of molecular weight of PSS on the properties of coal water slurry (CWS). The range of weight average molecular weight of PSS for preparing coal water slurry is from 53400 to 333900. The results indicate that the slurryability of CWS of 8 coals decreases as the molecular weight of PSS increases. The relation between slurry ability of CWS and molecular weight of PSS is attributed to the adsorption of PSS on the coal particles. The adsorption quantity of PSS with low molecular weight on the coal particles is larger than that of PSS with high molecular weight. On the other hand, the rheological behavior of CWS of 8 coals is changed from dilatant flow to pseudoplastic one as the increase of molecular weight of PSS. The static stability of CWS is also improved with increasing molecular weight of PSS. 9 refs., 3 figs., 3 tabs.

  2. High Proportions of Sub-micron Particulate Matter in Icelandic Dust Storms in 2015

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Magnusdottir, Agnes

    2017-04-01

    Iceland is extremely active dust region and desert areas of over 44,000 km2 acknowledge Iceland as the largest Arctic and European desert. Frequent dust events, up to 135 dust days annually, transport dust particles far distances towards the Arctic and Europe. Satellite MODIS pictures have revealed dust plumes exceeding 1,000 km. The annual dust deposition was calculated as 40.1 million tons yr-1. Two dust storms were measured in transverse horizontal profile about 90 km far from different dust sources in southwestern Iceland in the summer of 2015. Aerosol monitor DustTrak DRX 8533EP was used to measure PM mass concentrations corresponding to PM1, PM2.5, PM4, PM10 and the total PM15 at several places within the dust plume. Images from camera network operated by the Icelandic Road and Coastal Administration were used to estimate the visibility and spatial extent of measured dust events. A numerical simulation of surface winds was carried out with the numerical model HIRLAM with horizontal resolution of 5 km and used to calculate the total dust flux from the sources. The in situ measurements inside the dust plumes showed that aeolian dust can be very fine. The study highlights that suspended volcanic dust in Iceland causes air pollution with extremely high PM1 concentrations comparable to the polluted urban stations in Europe or Asia rather than reported dust event observations from around the world. The PM1/PM2.5 ratios are generally low during dust storms outside of Iceland, much lower than > 0.9 and PM1/PM10 ratios of 0.34-0.63 found in our study. It shows that Icelandic volcanic dust consists of higher proportion of submicron particles compared to crustal dust. The submicron particles are predicted to travel long distances. Moreover, such submicron particles pose considerable health risk because of high potential for entering the lungs. Icelandic volcanic glass has often fine pipe-vesicular structures known from asbestos and high content of heavy metals. Previous

  3. System and method for continuous solids slurry depressurization

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    2017-07-11

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resist a backflow of the slurry from the first outlet to the first inlet.

  4. Effects of Iron Oxides on the Rheological Properties of Cementitious Slurry

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chul-Woo; Chun, Jaehun; Wang, Guohui; Um, Wooyong

    2014-04-02

    Iron oxide has been considered a promising host for immobilizing and encapsulating radioactive 99Tc (t1/2=2.1x105 year), which significantly enhances the stability of 99Tc within a cementitious waste form. However, the flow behavior of cementitious slurry containing iron oxide has never been investigated to ensure its workability, which directly influences the preparation and performance of the cementitious waste form monolith. Variation in the rheological properties of the cementitious slurry were studied using rheometry and ultrasonic wave reflection to understand the effects of various iron oxides (magnetite, hematite, ferrihydrite, and goethite) during the cement setting and stiffening processes. The rheological behavior significantly varied with the addition of different chemical compounds of iron oxides. Complementary microscopic characteristics such as colloidal vibration currents, morphology, and particle size distributions further suggest that the most adverse alteration of cement setting and stiffening behavior caused by the presence of goethite may be attributed to its acicular shape.

  5. Local treatment of coal-water slurries from thermal power plants with the use of coagulants

    Science.gov (United States)

    Sarapulova, G. I.; Logunova, N. I.

    2015-04-01

    The coagulation of coal particles in a coal-water slurry from the Novo-Irkutsk thermal power plant was studied. The advisability of the application of highly basic aluminum hydroxochloride of grade B for the treatment of contaminated water with a concentration of suspended particles of 30 g/dm3 was shown. The granulometric analysis of coal particles was performed. The application of the reagent was revealed to be efficient for the coagulation of both coarse particles and a finely dispersed fraction. Carbonate hardness values of up to 1.5 mmol-equiv/dm3 and pH ≤ 7.8 were shown to be typical for the contaminated water from the fuel supply shop. They were the most optimal parameters for hydrolysis and efficient flocculation and did not require the addition of sodium bicarbonate and flocculants. The process flowsheet of the separate purification of a coal-water slurry was developed for the fuel supply shop. Among the advantages of this purification method are the return of rather highly purified water for thermal power plant needs, and also the production of additional fuel in the form of recovered coal particles. The product was characterized by improved engineering parameters in comparison with the initial fuel, i.e., had a higher calorific value and a lower sulfur content. The purified water corresponded to the normative requirements to the content of residual aluminum. This technology of purification was resource-saving, environmental-friendly, and economically profitable.

  6. Characterization methodology for re-using marble slurry in industrial applications

    Science.gov (United States)

    Marras, Graziella; Careddu, Nicola; Peretti, Roberto; Bortolussi, Augusto

    2017-04-01

    In the effort towards waste minimization and circular economy, natural stone waste is one of the foremost parameter to turn scientific community attention. At this time, calcium carbonate has a great importance in industrial fields and currently there is the necessity of appreciate the potential value of marble waste and convert it into marketable products. A large amount of residues is produced in ornamental stone sector with different dimension and particle size. The research focused on marble slurry, recovered at the end of the treatment plant in the filter-press section. The aim of this paper is to propose a defined way to characterize marble slurry, primarily composed of micronized particles, in order to obtain useful data to make a comparison with market specifications. In particular the proposed characterization methodology follows the indicated steps: Leaching test (TCLP) - Grain size distribution and bulk density - Mineralogical analyses - X-Ray diffraction - Chemical analysis - Loss on ignition - SEM determination - Colorimetric and bright analysis. Marble slurry samples, collected by different dimension stone treatment plants in Orosei marble district (Sardinia - Italy), were analyzed by physical, mineralogical and chemical determinations and the obtained data were evaluated for compatibility with the CaCO3 specifications required by a definite industrial sector, seeing as how CaCO3 product specifications vary depending on the utilization. The importance of this investigation is to characterize completely the "waste" that must apply for further uses and to identify the feasibility to substitute marketable micronized CaCO3 with marble slurry. Further goal is to enhance the environmental advantages of re-using stone waste by reducing marble waste landfills and by applying raw material substitution, in accordance with regulatory requirements, thus pursuing the objective to convert natural stone waste into by-product with a renewed environmental and economic

  7. Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation

    NARCIS (Netherlands)

    Bertora, C.; Alluvione, F.; Zavattaro, L.; Groenigen, van J.W.; Velthof, G.L.; Grignani, C.

    2008-01-01

    The treatment of manures may improve their agricultural value and environmental quality, for instance with regards to greenhouse gases mitigation and enhancement of carbon (C) sequestration. The present study verified whether different pig slurry treatments (i.e. solid/liquid separation and

  8. Multi-stage slurry system used for grinding and polishing materials

    Energy Technology Data Exchange (ETDEWEB)

    Hed, P. Paul (San Ramon, CA); Fuchs, Baruch A. (Aventura, FL)

    2001-01-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of slurry in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  9. Changes of propagation light in optical fiber submicron wires

    Science.gov (United States)

    Stasiewicz, K. A.; Łukowski, A.; Jaroszewicz, L. R.

    2013-05-01

    At the moment technology allows to miniaturize measurement system to several micrometers. Application of an optical fiber taper in such system needs to manufacture a new one with diameters below single micrometers which is very difficult and expensive. Another way to obtain this level of diameters is the process of tapering from the existing fibers. In the paper, experimental results of propagation light from a supercontinnum sources of the wavelength generates the wavelength of 350-2000 nm, in different optical fiber submicron wires made from tapers manufactured from single mode fibers are presented. Biconical optical fibers' tapers were manufactured in low pressure gas burner technique. There are presented spectral characteristics of a propagated beam. For the test, there was manufactured an optical fiber submicron wires with a different length of waist region with a diameter near one micrometer. We put to the test a taper made from a standard telecommunication fiber SMF-28 with a cutoff wavelength equal to 1260.

  10. Developing Archetypal Machines for a Sequence of Food- Slurry ...

    African Journals Online (AJOL)

    Conventional methods of producing these food-slurries prior to their consumption as food cannot meet up with the high demand for these gruels. This current ... The results show that the machines have increased the sieving rate of steeped grain and in extension the production of these food-slurries by over 50%. Design ...

  11. Comparison of catalytic ethylene polymerization in slurry and gas phase

    NARCIS (Netherlands)

    Daftaribesheli, Majid

    2009-01-01

    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different

  12. theoretical basis for slurry computation and compounding in highly

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... 6 shows the conventional slurry distribution over the annular space of a casing landed in a devi- ated well. Grain size distribution of the slurry is uni- form. Free water and sedimentation tendencies exist. Hence it is expected that every little inter-granular space would be occupied with equal hydrostatic pres-.

  13. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

      Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  14. Fluidized bed ice slurry generator for enhanced secondary cooling systems

    NARCIS (Netherlands)

    Meewisse, J.W.

    2004-01-01

    Ice slurries are liquid solutions of a freezing point depressant in water, in which small ice crystals are present. Ice slurries are efficient secondary cooling fluids because they utilize the latent heat effect involved with the ice/water phase change. A high heat capacity is available at

  15. The resource utilization of algae - preparing coal slurry with algae

    Energy Technology Data Exchange (ETDEWEB)

    Weidong Li; Weifeng Li; Haifeng Li [East China University of Science and Technology, Shanghai (China). Key Laboratory of Coal Gasification of Education Ministry of China

    2010-05-15

    Nowadays, the occurrence of harmful algal blooms is increasing rapidly all over the world. However, the methods of resource utilization of algae are very few. In this study, we propose a new way to dispose algae, which is gasification of coal-algae slurry. Coal slurries prepared with algae were investigated, and gasification reactivity of coal-algae slurry was compared with that of coal-water slurry (CWS). The results showed that, anaerobic fermentation, chemical treatment, high-speed shearing and heating are effective pre-treatment methods on reducing the viscosity of algae, which could obviously increase the maximum solids concentration of coal-algae slurry. When the de-ionized water/algae ratio is 1:1, the maximum solids concentration could get to 62.5 wt.%, which is almost the same as that of CWS. All the coal-algae slurries exhibit pseudo-plastic behavior, and this type of fluid is shear-thinning. Compared with CWS, the stability of coal-algae slurry is much better, which could be no solids deposition after 70 h. The coal-algae slurry displays better gasification reactivity than CWS. 30 refs., 6 figs., 3 tabs.

  16. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha−1 from the loam, 0.38 kg P ha−1 from the sandy loam, and 0.22 kg P ha−1...

  17. The Settling and Compaction of Nuclear Waste Slurries

    Energy Technology Data Exchange (ETDEWEB)

    MACLEAN, G.T.

    1999-11-15

    The settling and compaction of simulated and real nuclear waste slurries were extensively studied. Experiments were carried out with simulated wastes at laboratory and large-scale sizes, and the results compared. A model of settling was derived and a method developed to correlate and scale-up settling data for different slurries and vessel sizes.

  18. Submicron bioactive glass tubes for bone tissue engineering.

    Science.gov (United States)

    Xie, Jingwei; Blough, Eric R; Wang, Chi-Hwa

    2012-02-01

    Herein we describe a method to fabricate submicron bioactive glass tubes using sol-gel and coaxial electrospinning techniques for applications in bone tissue engineering. Heavy mineral oil and gel solution were delivered by two independent syringe pumps during the coaxial electrospinning process. Subsequently, submicron bioactive glass tubes were obtained by removal of poly(vinyl pyrrolidone) and heavy mineral oil via calcination at 600 °C for 5 h. Tubular structure was confirmed by scanning electron microscopy and transmission electron microscopy imaging. We examined the bioactivity of submicron bioactive glass tubes and fibers and evaluated their biocompatibility, using electrospun poly(ε-caprolactone) fibers--a bioinactive material--for comparison. The bioactivity of the glass tubes was examined in a simulated body fluid and they demonstrated the formation of hydroxyapatite-like minerals on both the outer and inner surfaces. In contrast, mineralization only occurred on their surface for bioactive glass solid fibers. Energy-dispersive X-ray data suggested that the bioactive glass tubes had a faster induction of mineral formation than the solid fibers. We demonstrate that the proliferation rate of mouse preosteoblastic MC3T3-E1 cells on bioactive glass tubes was comparable to that on solid fibers. We also show that bioactive glass tubes can be loaded with a model protein drug, bovine serum albumin, and that these structures exhibit delayed release properties. The bioactivity of released lysozyme can be as high as 90.9%. Taken together, these data suggest that submicron bioactive glass tubes could hold great potential for use in bone tissue engineering as well as topical drug or gene delivery. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Energy Efficient Signaling in Deep-submicron Technology

    Directory of Open Access Journals (Sweden)

    Imed Ben Dhaou

    2002-01-01

    Full Text Available In deep-submicron technology, global interconnect capacitances have started reaching several orders of magnitude greater than the intrinsic capacitances of the CMOS gates. The dynamic power consumption of a CMOS gate driving a global wire is the sum of the power dissipated due to (discharging (i the intrinsic capacitance of the gate, and (ii the wire capacitance. The latter is referred to as on-chip signaling power consumption.

  20. Submicron plasticity: yield stress, dislocation avalanches, and velocity distribution

    OpenAIRE

    Ispánovity, Péter Dusán; Groma, István; Györgyi, Géza; Csikor, Ferenc F.; Weygand, Daniel

    2010-01-01

    The existence of a well defined yield stress, where a macroscopic piece of crystal begins to plastically flow, has been one of the basic observations of materials science. In contrast to macroscopic samples, in micro- and nanocrystals the strain accumulates in distinct, unpredictable bursts, which makes controlled plastic forming rather difficult. Here we study by simulation, in two and three dimensions, plastic deformation of submicron objects under increasing stress. We show that, while the...

  1. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  2. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Adam P.; Gong, Zhaoheng; Harder, Tristan H.; de Sá, Suzane S.; Wang, Bingbing; Castillo, Paulo; China, Swarup; Liu, Yingjun; O& amp; apos; Brien, Rachel E.; Palm, Brett B.; Shiu, Hung-Wei; Cirino, Glauber G.; Thalman, Ryan; Adachi, Kouji; Alexander, M. Lizabeth; Artaxo, Paulo; Bertram, Allan K.; Buseck, Peter R.; Gilles, Mary K.; Jimenez, Jose L.; Laskin, Alexander; Manzi, Antonio O.; Sedlacek, Arthur; Souza, Rodrigo A. F.; Wang, Jian; Zaveri, Rahul; Martin, Scot T.

    2017-02-06

    The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two intensive operating periods (IOP1 and IOP2) that took place during the wet and dry seasons of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional- and continental-scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, an indicator of physical state, was measured in real time at ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered, while nonliquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95 % of the particles adhered as a campaign average. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, produces liquid PM over this tropical forest. During periods of anthropogenic influence, by comparison, the rebound fraction dropped to as low as 60 % at 95 % RH. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of nonliquid PM at high RH correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70 % of the variance in the observed rebound fractions. Anthropogenic influences can contribute to the presence of nonliquid PM in the atmospheric particle population through the combined effects of molecular species that increase viscosity

  3. Effective Compressibility of a Bubbly Slurry.

    Science.gov (United States)

    Kam, S. I.; Gauglitz, P. A.; Rossen, W. R.

    2001-09-01

    The goal of this study is to fit model parameters to changes in waste level in response to barometric pressure changes in underground storage tanks at the Hanford Site. This waste compressibility is a measure of the quantity of gas, typically hydrogen and other flammable gases, that can pose a safety hazard, retained in the waste. A one-dimensional biconical-pore-network model for compressibility of a bubbly slurry is presented in a companion paper. Fitting these results to actual waste level changes in the tanks implies that bubbles in the slurry layer are long and the ratio of pore-body radius to pore-throat radius is close to 1; unfortunately, compressibility can not be quantified unambiguously from the data without additional information on pore geometry. Therefore, determining the quantity of gas in the tanks requires more than just waste-level data. The non-uniqueness of the fit is also found with two other simple models: a capillary-tube model with contact angle hysteresis and a spherical-pore model. Copyright 2001 Academic Press.

  4. Bauxite slurry pipeline: start up operation

    Energy Technology Data Exchange (ETDEWEB)

    Othon, Otilio; Babosa, Eder; Edvan, Francisco; Brittes, Geraldo; Melo, Gerson; Janir, Joao; Favacho, Orlando; Leao, Marcos; Farias, Obadias [Vale, Rio de Janeiro, RJ (Brazil); Goncalves, Nilton [Anglo Ferrous Brazil S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The mine of Miltonia is located in Paragominas-PA, in the north of Brazil. Bauxite slurry pipeline starts at the Mine of Miltonia and finishes in the draining installation of Alunorte refinery at the port of Barcarena-PA, located approximately 244km away from the mine. The pipeline runs over seven cities and passes below four great rivers stream beds. The system was designed for an underground 24 inches OD steel pipe to carry 9.9 million dry metric tonnes per annum (dMTAs) of 50.5% solid concentration bauxite slurry, using only one pumping station. The system is composed by four storage tanks and six piston diaphragm pumps, supplying a flow of 1680 m3/h. There is a cathodic protection system along the pipeline extension to prevent external corrosion and five pressure monitoring stations to control hydraulic conditions, there is also a fiber optic cable interconnection between pump station and terminal station. Pipeline Systems Incorporated (PSI) was the designer and followed the commissioning program of the start up operations. This paper will describe the beginning of the pipeline operations, technical aspects of the project, the operational experiences acquired in these two years, the faced problems and also the future planning. (author)

  5. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  6. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  7. Observations on microbial activity in acidified pig slurry

    DEFF Research Database (Denmark)

    Ottosen, Lars Ditlev Mørck; Poulsen, Henrik Vestergaard; Nielsen, Daniel Aagren

    2009-01-01

    Acidification of pig slurry to pH 5.5 is used as a measure to reduce ammonia emission from pits and storages. The slurry is acidified with sulphuric acid in a process tank and pumped back to the slurry pits or to a storage tank. We investigated the effect of acidification on microbial activity...... by the high concentration of protonized short-chained volatile fatty acids in the acidified slurry (approximately 25 mM, compared to untreated slurry ... acidification are greatly reduced production rates and loss of sulphide and methane, and eliminated loss of ammonia. On the other hand, increased volatilization and loss of smelly fatty acids is to be expected....

  8. Rheology of Fly Ash Mixed Tailings Slurries and Applicability of Prediction Models

    Directory of Open Access Journals (Sweden)

    Joon Kyu Lee

    2017-09-01

    Full Text Available Coal fly ash has potential applications in the management of reactive mine tailings. The shear stress versus shear rate curves obtained during viscometer tests are presented to describe the rheological behaviors of tailings slurries mixed with fly ash. The investigation was conducted on specimens prepared with different fly ash additions as well as prepared at variable conditions of temperature, mixing time, and CaCl2 solution. It was observed that the rheological properties of ash-tailings slurry mixtures are influenced by the hydration of fly ash as well as the particle packing and arrangement. Rheological properties of specimen mixtures were determined from the resulting flow curves using the existing rheological models. The performance of prediction models in calculating the rheological properties of the mixed specimens, as quantified by the root mean square error (RMSE, varied with the mixture constituents, temperature, and time. In general, the Papanastasion, Herschel-Bulkley, Sisko, and Robertson-Stiff models were found to be favorable for use with mixtures of fly ash and tailings slurries, compared to the Bingham, Modified Bingham, Casson, and De Kee models.

  9. Multi-stage slurry system used for grinding and polishing materials

    Energy Technology Data Exchange (ETDEWEB)

    Hed, P. Paul; Fuchs, Baruch A.

    2000-03-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of shiny in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  10. Desulfurization from Bauxite Water Slurry (BWS) Electrolysis

    Science.gov (United States)

    Gong, Xuzhong; Ge, Lan; Wang, Zhi; Zhuang, Siyuan; Wang, Yuhua; Ren, Lihui; Wang, Mingyong

    2016-02-01

    Feasibility of high-sulfur bauxite electrolysis desulfurization was examined using the electrochemical characterization, XRD, DTA, and FTIR. The cyclic voltammetry curves indicated that bauxite water slurry (BWS) electrolysis in NaOH system was controlled by diffusion. Additionally, the desulfurization effect of NaCl as the electrolyte was significantly better than that of NaOH as an electrolyte. As the stirring rate increased, the desulfurization ratio in NaCl system was not increased obviously, while the desulfurization ratio in NaOH system increased significantly, indicating further that electrolysis desulfurization in NaOH solution was controlled by diffusion. According to XRD, DTA, and FTIR analysis, the characteristic peaks of sulfur-containing phase in bauxite after electrolysis weakened or disappeared, indicating that the pyrite in bauxite was removed from electrolysis. Finally, the electrolytic desulfurization technology of bauxite was proposed based on the characteristics of BWS electrolysis.

  11. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    Directory of Open Access Journals (Sweden)

    Wenyan Chen

    2014-07-01

    Full Text Available Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri, larvae and embryos of zebrafish (Danio rerio were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v and 1.95% (v/v respectively, and embryonic development was inhibited at just 1% (v/v. Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR, while the LC50 of larvae was 75.23% (v/v and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent.

  12. Microstructural evaluation of oil well cementing slurries using alternative materials

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Maria D.M.; Melo, Dulce M.A.; Martinelli, Antonio E. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    n this work, cementing slurries were prepared with densities between 12.2 and 13.8 lb/gal with addition of clay materials (vermiculite and paligorskite) and pozzolans (metakaolin), comparing with neat reference slurries, from 15.6 to 15.8 lb/gal. The cements employed were the Portland G and ordinary Portland. These mixes were evaluated microstructurally through microhardness testing and acquisition of electronic images by ESEM and X-ray maps by EDS. A semi-quantitative analysis software was developed to identify phase distributions from the X-ray maps. It was found that the addition of metakaolin generated slurries with microhardness comparable to or superior to neat slurries, although a new phase was introduced in the hardened material. On the other hand, clay materials generated slurries with lower microhardness. It was observed in these cases a lower hydration degree, possibly due to water absorption by the clays' grains. One exception was the light slurry with paligorskite, which has an excess of water compared to the others. However, the higher water-cement ratio produced a lower microhardness due to the presence of voids, visible by ESEM. Clay inclusions also decreased the microhardness of the slurries. Based on these results, we can recommend metakaolin as the best performing addition to be further evaluated in the field. (author)

  13. ORGANIC NITROGEN IN A TYPIC HAPLUDOX FERTILIZED WITH PIG SLURRY

    Directory of Open Access Journals (Sweden)

    Marco André Grohskopf

    2015-02-01

    Full Text Available The application of pig slurry may have a different effect on nitrogen dynamics in soil compared to mineral fertilization. Thus, the aim of this study was to determine the different forms of organic N in a Latossolo Vermelho distroférrico (Typic Hapludox and their relationship to N uptake by crops in response to 10 years of annual application of pig slurry and mineral fertilizer. The treatments were application rates of 0, 25, 50, 100, and 200 m3 ha-1 of pig slurry, in addition to mineral fertilizer, organized in a randomized block design with four replications. The N contents were determined in the plant tissue and in the forms of total N and acid hydrolyzed fractions: ammonium-N, hexosamine-N, α-amino-N, amide-N, and unidentified-N. Annual application of pig slurry or mineral fertilizer increased the total-N content in the 0-10 cm depth layer. The main fractions of organic N in the soil were α-amino-N when pig slurry was applied and unidentified-N in the case of mineral fertilizers. Pig slurry increased the N fractions considered as labile: α-amino-N, ammonium-N, and amide-N. The increase in these labile organic N fractions in the soil through pig slurry application allows greater N uptake by the maize and oat crops in a no-tillage system.

  14. KINETICS OF THE GAS-SLURRY METHANOL-HIGHER ALCOHOL SYNTHESIS FROM CO/CO2/H-2 OVER A CS-CU/ZNO/AL2O3 CATALYST, INCLUDING SIMULTANEOUS FORMATION OF METHYL-ESTERS AND HYDROCARBONS

    NARCIS (Netherlands)

    BREMAN, BB; BEENACKERS, AACM; SCHUURMAN, HA; OESTERHOLT, E

    1995-01-01

    First kinetic results are presented for the gas-slurry methanol-higher alcohol synthesis from CO/CO2/H-2 (syngas) over a CU0.44Zn0.43Al0.12Cs0.031 catalyst (particle size: 50-75 mu m), slurried in n-octacosane. Experimental conditions varied as follows: pressure = 20-80 bar, temperature = 473-573 K,

  15. Slurry fired heater cold-flow modelling

    Energy Technology Data Exchange (ETDEWEB)

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  16. Ignition of the Soaring Droplet Sets of Waste-Derived Coal-Water Slurry With Petrochemicals

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2016-01-01

    Full Text Available We have analyzed the ignition of droplet sets of waste-derived coal-water slurry with petrochemicals for the case of their soaring inside special combustion chamber. The fuel composition consists of filter cake of bituminous coal type G, waste turbine oil, water and plasticizer. Features of the ignition process were emphasized for groups of three soaring droplets in comparison with single droplet ignition. The ignition delay times were registered for particles that were deformed or segregated due to the interaction of initial fuel droplets with walls of the combustion chamber.

  17. Effect of short-term regional traffic restriction on urban submicron particulate pollution.

    Science.gov (United States)

    Zhao, Suping; Yu, Ye

    2017-05-01

    During the 2013 and 2015 Lanzhou International Marathon Events (LIME1 and LIME2), the local government made a significant effort to improve traffic conditions and air quality by implementing traffic restriction measures. To fill the gap in information on the effect of short-period (several hours) traffic control on urban air quality, submicron particle size distributions and meteorological data were measured simultaneously during June 2013 and June 2015 in urban Lanzhou. The number and surface area concentrations of particles in the 100-200nm range declined by 67.2% and 65.0% for LIME1 due to traffic control, while they decreased by 39.2% and 37.1% for LIME2. The impact of traffic restriction on air pollution near the sampling site lagged behind the traffic control period for LIME2. In addition, the effect of traffic restriction on air pollution near the sampling site was dependent on the distance between the relative orientation of the sampling site and traffic-restricted zones, as well as meteorological conditions such as wind direction. The influence of traffic restrictions on the particle concentrations differed for different particle sizes. The size range most affected by traffic restriction was 60-200 and 60-300nm for number and surface area concentrations in the urban environment, respectively, while for the particle volume concentration it was the 100-600nm range. This study will provide a basis for implementation of future urban traffic-induced particulate pollution control measures. Copyright © 2016. Published by Elsevier B.V.

  18. Interaction between submicron COD crystals and renal epithelial cells.

    Science.gov (United States)

    Peng, Hua; Ouyang, Jian-Ming; Yao, Xiu-Qiong; Yang, Ru-E

    2012-01-01

    This study aims to investigate the adhesion characteristics between submicron calcium oxalate dihydrate (COD) with a size of 150 ± 50 nm and African green monkey kidney epithelial cells (Vero cells) before and after damage, and to discuss the mechanism of kidney stone formation. Vero cells were oxidatively injured by hydrogen peroxide to establish a model of injured cells. Scanning electron microscopy was used to observe Vero-COD adhesion. Inductively coupled plasma emission spectrometry was used to quantitatively measure the amount of adhered COD microcrystals. Nanoparticle size analyzer and laser scanning confocal microscopy were performed to measure the change in the zeta potential on the Vero cell surface and the change in osteopontin expression during the adhesion process, respectively. The level of cell injury was evaluated by measuring the changes in malonaldehyde content, and cell viability during the adhesion process. The adhesion capacity of Vero cells in the injury group to COD microcrystals was obviously stronger than that of Vero cells in the control group. After adhesion to COD, cell viability dropped, both malonaldehyde content and cell surface zeta potential increased, and the fluorescence intensity of osteopontin decreased because the osteopontin molecules were successfully covered by COD. Submicron COD further damaged the cells during the adhesion process, especially for Vero cells in the control group, leading to an elevated amount of attached microcrystals. Submicron COD can further damage injured Vero cells during the adhesion process. The amount of attached microcrystals is proportional to the degree of cell damage. The increased amount of microcrystals that adhered to the injured epithelial cells plays an important role in the formation of early-stage kidney stones.

  19. Particle size distribution control of Pt particles used for particle gun

    Science.gov (United States)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  20. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  1. Highly sensitive measurement of submicron waveguides based on Brillouin scattering

    Science.gov (United States)

    Godet, Adrien; Ndao, Abdoulaye; Sylvestre, Thibaut; Beugnot, Jean-Charles; Phan Huy, Kien

    2017-02-01

    Fabrication and characterization of submicron optical waveguides is one of the major challenges in modern photonics, as they find many applications from optical sensors to plasmonic devices. Here we report on a novel technique that allows for a complete and precise characterization of silica optical nanofibers. Our method relies on the Brillouin backscattering spectrum analysis that directly depends on the waveguide geometry. Our method was applied to several fiber tapers with diameter ranging from 500 nm to 3 μm. Results were compared to scanning electron microscopy (SEM) images and numerical simulations with very good agreement and similar sensitivity.

  2. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2017-10-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( TIT) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured TIT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the TIT, TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size <1 µm coupled with a porosity level <0.7% could yield translucency values ( TIT, TP, CR) similar to those of the commercial high-translucency porcelains. These values are far superior to the high-translucency lithium disilicate glass-ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high

  3. Nano to micro particle size distribution measurement in the fluid by interactive force apparatus for fine particle processing.

    Science.gov (United States)

    Fujita, Toyohisa; Dodbiba, Gjergj; Okaya, Katsunori; Matsuo, Seiji; Wang, Li Pang; Onda, Kana; Otsuki, Akira

    2013-12-01

    The direct measurement of fine particles size distribution of dispersions or coagulations in liquid is important for water purification, fine particles separation for recycling and mineral processing, as well as the new material production. The nano to micro particle size is usually measured by light scattering method; however, it is difficult to measure at high concentration of suspension. Here, a novel dynamical method by using the interactive force measurement between particles in liquid under electric field is used for measuring distribution of fine particle. Three types of nano to submicron particles, that is well-dispersed nano particles, coagulated nano particles and settled submicron particles, have been measured by interactive force measurement method. The particle size distributions are compered with the size distributions of dried particles measured by TEM or SEM. The well-dispersed nano particle size distribution by interactive force measurement is influenced by the nano size surfactant micelles. The size distribution of coagulated nano particles in water is larger than the result by TEM. On the other hand, the submicron nickel particle size distribution is similar with the one analyzed by SEM.

  4. Polyacrylamide thickened slurry explosive with particular cross-linking combination

    Energy Technology Data Exchange (ETDEWEB)

    Sheeran, H.W.; Oriard, M.H.

    1973-02-20

    In manufacturing slurry blasting agents, it is commonly very important to produce a uniform and stable suspension of the liquid and nonexplosive solid ingredients along with a desired amount of fine entrained air bubbles in order to obtain optimum density and reactivity. Slurry explosives require the same type of uniform stable suspension of the liquid and explosive solid ingredients for optimum performance. In addition, it is very important that the suspending medium, the liquid or continuous phase of the slurries, be stable for extended periods of time at all normally encountered storage and use conditions. Further, it is very desirable that this liquid phase must resist penetration or dilution by water when the slurry is loaded in drill holes prior to a blast. Water-resistant gels are described which are produced by cross linking water-soluble polyacrylamide resins in an aqueous nitrate solution. (15 claims)

  5. Developing Archetypal Machines for a Sequence of Food- Slurry ...

    African Journals Online (AJOL)

    ... Archetypal Machines for a Sequence of Food- Slurry Processing Operations: An ... Conclusively, this work presents a remarkable contribution to research on the ... developing nations through the introduction of new processing technologies.

  6. Interactions between soil texture and placement of dairy slurry application

    DEFF Research Database (Denmark)

    Glæsner, Nadia Andersen; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    -textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting...... soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  7. Impact of drilled shaft synthetic slurries on groundwater.

    Science.gov (United States)

    2011-06-01

    The overall objective of this project is to evaluate the effect of the aforementioned synthetic slurries on groundwater quality. The objective of Phase I (this report), however, was to conduct a comprehensive literature survey to gather data to evalu...

  8. Effect of flotation on preparation of coal-water slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada)

    2009-07-01

    In order to study the effect of flotation reagents on the properties of coal-water slurry, a sub-bituminous coal was cleaned via either forward flotation or reverse flotation. The froth product from the forward flotation, obtained with the use of diesel oil and MIBC, and the tailings of the reverse flotation, carried out with dextrin-tannic acid depressants and dodecyltrimethylammonium chloride collector, were used in the preparation of coal-water slurries. It was shown that while it was possible to obtain the coal-water slurry with a high-solids content from the coal rendered hydrophilic (tailings from the coal reverse flotation), in the case of the hydrophobic product (froth product from the forward flotation) a dispersing agent was required to obtain the coal-water slurry of the same high-solids content.

  9. Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing

    Science.gov (United States)

    Wang, Yuying; Zhang, Fang; Li, Zhanqing

    2017-04-01

    A series of strict emission control measures were implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely, the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0%-8.5% during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5%-10.5%. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly-hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant non-volatile (NV) mode throughout the day, suggesting a more externally-mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation analysis of the number fractions

  10. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    Science.gov (United States)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag

    2015-01-01

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.

  11. Chemical compositions, sources and evolution processes of the submicron aerosols in Nanjing, China during wintertime

    Science.gov (United States)

    Wu, Y.; He, Y.; Ge, X.; Wang, J.; Yu, H.; Chen, M.

    2016-12-01

    Elevated atmospheric particulate matter pollution is one of the most significant environmental issues in the Yangtze River Delta (YRD), China. Thus it is important to unravel the characteristics, sources and evolution processes of the ambient aerosols in order to improve the air quality. In this study, we report the real-time monitoring results on submicron aerosol particles (PM1) in suburban Nanjing during wintertime of 2015, using an Aerodyne soot particle aerosol mass spectrometer (SP-AMS). This instrument allows the fast measurement of refractory black carbon simultaneously with other aerosol components. Results show that organics was on average the most abundant species of PM1 (25.9%), but other inorganic species, such as nitrate (23.7%) and sulfate (23.3%) also comprised large mass fractions. As the sampling site is heavily influenced by various sources including industrial, traffic and other anthropogenic emissions, etc., six organic aerosol (OA) factors were identified from Positive matrix factorization (PMF) analysis of the SP-AMS OA mass spectra. These factors include three primary OA factors - a hydrocarbon-like OA, an industry-related OA (IOA) and a cooking OA (COA), and three secondary OA factors, i.e., a local OOA (LSOA), a semi-volatile OOA (SV-OOA) and a low-volatility OOA (LV-OOA). Overall, the primary organic aerosol (POA) (HOA, IOA and COA) dominated the total OA mass. Behaviors and evolution processes of these OA factors will be discussed in combining with the other supporting data.

  12. Development and evaluation of shallow injection of slurry into ley

    OpenAIRE

    Rodhe, Lena

    2004-01-01

    Shallow injection of slurry on grassland can reduce ammonia emissions compared to surface spreading and increase plant nitrogen utilisation. Other advantages include enhanced silage quality and lower odour. Disadvantages include higher investment costs, increased draught requirements and potential crop damage. The objective of this thesis was to determine appropriate techniques for slurry injection into ley that would minimise ammonia emissions, contamination of crops and energy inputs, while...

  13. Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Bonebrake, Michael L.; Casella, Andrew M.; Johnson, Michael D.; Toth, James J.; Adkins, Harold E.; Chun, Jaehun; Denslow, Kayte M.; Luna, Maria; Tingey, Joel M.

    2009-07-01

    One of the concerns expressed by the External Flowsheet Review Team (EFRT) is about the potential for pipe plugging at the Waste Treatment and Immobilization Plant (WTP). Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, deposition-velocity tests were performed on several physical simulants to determine whether the design approach is conservative. Deposition velocity is defined as the velocity below which particles begin to deposit to form a moving bed of particles on the bottom of a straight horizontal pipe during slurry-transport operations. The deposition velocity depends on the system geometry and the physical properties of the particles and fluid. An experimental program was implemented to test the stability-map concepts presented in WTP-RPT-175 Rev. 01. Two types of simulant were tested. The first type of simulant was similar to the glass-bead simulants discussed in WTP-RPT-175 Rev. 0 ; it consists of glass beads with a nominal particle size of 150 µm in a kaolin/water slurry. The initial simulant was prepared at a target yield stress of approximately 30 Pa. The yield stress was then reduced, stepwise, via dilution or rheological modifiers, ultimately to a level of <1 Pa. At each yield-stress step, deposition-velocity testing was performed. Testing over this range of yield-stress bounds the expected rheological operating window of the WTP and allows the results to be compared to stability-map predictions for this system. The second simulant was a precipitated hydroxide that simulates HLW pretreated sludge from Hanford waste tank AZ-101. Testing was performed in a manner similar to that for the first simulant over a wide range of yield stresses; however, an additional test of net-positive suction-head required (NPSHR

  14. Assessment of slurry pressure letdown valve and slurry block valve technology for direct coal liquefaction demonstration and pioneer commercial plants

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.P.

    1984-10-01

    This report examines the status of the technology of high pressure slurry letdown valves and slurry block valves in coal liquefaction service. All of the demonstration and pioneer commercial direct liquefaction plant designs call for the use of high pressure slurry letdown valves for flow control and slurry block valves for flow isolation. Successful performance and reliability of these valves is a serious concern because of the severity of the process streams and the limited experience and performance data on these valves under such conditions. The objectives of this report are: (1) to examine the existing data base on these valves from the four major direct coal liquefaction pilot plants in the US, (2) to present the recommendations from the pilot plant experience, (3) to examine the specifications for the letdown and block valves in the demonstration/pioneer commercial designs, and (4) to identify the scale-up issues, data gaps, and development and testing needs. 23 references, 20 figures, 7 tables.

  15. Slurry combustion. Volume 1, Text: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Essenhigh, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Mechanical Engineering

    1993-06-21

    The project described in this Report was to investigate the possibility of using sorbent added to coal-water fuel (CWF) mixtures as a means of reducing SOX emissions when burning Ohio coal. The results are significantly encouraging, with SOX concentrations reduced by amounts ranging from 25% to 65%, depending on the sorbent type and the firing conditions, where one major condition identified was the residence time in the flame gases. With the sorbent-loaded slurrys, the trend generally showed increasing SO{sub 2} capture with increasing sorbent loading. There were significant differences between the two different mixture formulations, however: The calcite/No. 8-seam mixture showed significantly higher SO{sub 2} capture at all times (ranging from 45% to 65%) than did the dolomite/No. 5 seam mixture (ranging from 25% to 45%). If the successes so far achieved are not to be wasted, advantage should be taken of these encouraging results by extending the work at both the present scale to determine the other unknown factors controlling sorption efficiency, and at larger scale to start implementation in commercial systems.

  16. Particle Emissions from Domestic Gas Cookers

    DEFF Research Database (Denmark)

    Glarborg, Peter; Livbjerg, Hans; Wagner, Ayten Yilmaz

    2010-01-01

    The authors experimentally studied the formation of submicron particles from a domestic gas cooker in a compartment free from external particle sources. The effects of fuel (methane, natural gas, odorant-free natural gas), primary aeration, flow rate, and fuel sulphur content on particle emissions...... of the emitted particles were found to have a mean value of about 7 nm for partially premixed flames, increasing to ∼10 nm for nonpremixed flames. The quantity of primary air had a strong impact on the particle emissions, showing a minimum at a primary aeration level of 60-65%. Presence of sulphur in small...

  17. Synthesis and application of flocculants for treatment of ultra-fine coal slurry

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shu-quan; Jiang Lin-hua; Zou Li-zhuang [China University of Mining & Technology, Beijing (China). School of Chemical and Environmental Engineering

    2009-04-15

    The flocculants play an important role in treatment and closed-circulation of ultra-fine coal slurry. The cationic modified starch macromolecule flocculants St-DMDAAC-AM was prepared by grafting dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) onto starch, and its thermal stability and surface morphology were characterized by FTIR, DSC and SEM, respectively. The flocculation and filtration experiments with typical fine coal slurry were carried out and the treatment process was optimized. The characteristic peak of groups on IR spectrum shows the successful synthesis of St-DMDAAC-AM, and its high performance can be confirmed by results of DSC and SEM. The cationic flocculants play both roles of the charge neutralization and the formation of particle-polymer-particle bridges, and can effectively improve the effect of settlement and pressure filtration of ultra-fine coal. Under the optimized operation parameters, the concentration of thickener overflow is 2 g/L, the moisture of filter cake of thickener underflow is about 20%-25% and the concentration of filter liquid is less than 10 g/L. 14 refs., 6 figs., 3 tabs.

  18. Acoustically enhanced combustion of micronized coal water slurry fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koopmann, G. M.; Scaroni, A. W.; Yavuzkurt, S.; Reethof, G.; Ramachandran, P.; Ha, M. Y.

    1989-05-01

    A multi-faceted investigation has been carried out to demonstrate analytically and experimentally, that a high intensity acoustic field can be substantially enhance the convective transfer processes occurring during MCWSF (micronized coal water slurry fuel) combustion. The initial stage of the investigation dealt with elucidating the transient as well as time-averaged efforts of high intensity acoustic fields on the heat and mass transfer between a single spherical particle and its environment. A two-dimensional unsteady computer code was developed, which employs the unsteady conservation of mass, momentum, and energy equations for laminar flow in spherical coordinates. One objective of the present project was the modeling of MCWSF combustion in a laboratory scale combustor with and without the application of a sonic field. The influence of various operating parameters (sound frequency and level, etc.) on sonic enhancement could thus be studied. The combustion of pulverized coal (PC) was also modeled for the sake of comparison. The first of the two coal combustion experiments was performed using a flat flame methane-air burner. Micronized coal was injected in the same direction as, and burned together with the methane. The final investigation was carried out in a 300,000 Btu/h sonic combustor. For the runs conducted, SPLs of 156 dB and 145 dB, respectively, were measured below the fuel injection point and before the exit to the combustor. Frequency was held at 1400 Hz. Finally, an attempt was made to model the runs performed in the down-fired unit, using the PCGC-2 code. 61 refs., 60 figs., 8 tabs.

  19. Large-scale self-assembly of uniform submicron silver sulfide material driven by precise pressure control

    Science.gov (United States)

    Qi, Juanjuan; Chen, Ke; Zhang, Shuhao; Yang, Yun; Guo, Lin; Yang, Shihe

    2017-03-01

    The controllable self-assembly of nanosized building blocks into larger specific structures can provide an efficient method of synthesizing novel materials with excellent properties. The self-assembly of nanocrystals by assisted means is becoming an extremely active area of research, because it provides a method of producing large-scale advanced functional materials with potential applications in the areas of energy, electronics, optics, and biologics. In this study, we applied an efficient strategy, namely, the use of ‘pressure control’ to the assembly of silver sulfide (Ag2S) nanospheres with a diameter of approximately 33 nm into large-scale, uniform Ag2S sub-microspheres with a size of about 0.33 μm. More importantly, this strategy realizes the online control of the overall reaction system, including the pressure, reaction time, and temperature, and could also be used to easily fabricate other functional materials on an industrial scale. Moreover, the thermodynamics and kinetics parameters for the thermal decomposition of silver diethyldithiocarbamate (Ag(DDTC)) are also investigated to explore the formation mechanism of the Ag2S nanosized building blocks which can be assembled into uniform sub-micron scale architecture. As a method of producing sub-micron Ag2S particles by means of the pressure-controlled self-assembly of nanoparticles, we foresee this strategy being an efficient and universally applicable option for constructing other new building blocks and assembling novel and large functional micromaterials on an industrial scale.

  20. Viability of Ascaris suum eggs in stored raw and separated liquid slurry.

    Science.gov (United States)

    Katakam, Kiran Kumar; Roepstorff, Allan; Popovic, Olga; Kyvsgaard, Niels C; Thamsborg, Stig Milan; Dalsgaard, Anders

    2013-03-01

    Separation of pig slurry into solid and liquid fractions is gaining importance as a way to manage increasing volumes of slurry. In contrast to solid manure and slurry, little is known about pathogen survival in separated liquid slurry. The viability of Ascaris suum eggs, a conservative indicator of fecal pollution, and its association with ammonia was investigated in separated liquid slurry in comparison with raw slurry. For this purpose nylon bags with 6000 eggs each were placed in 1 litre bottles containing one of the two fractions for 308 days at 5 °C or 25 °C. Initial analysis of helminth eggs in the separated liquid slurry revealed 47 Ascaris eggs per gramme. At 25 °C, egg viability declined to zero with a similar trend in both raw slurry and the separated liquid slurry by day 308, a time when at 5 °C 88% and 42% of the eggs were still viable in separated liquid slurry and raw slurry, respectively. The poorer survival at 25 °C was correlated with high ammonia contents in the range of 7.9-22.4 mM in raw slurry and 7.3-23.2 mM in liquid slurry compared to 3.2-9.5 mM in raw slurry and 2.6-9.5 mM in liquid slurry stored at 5 °C. The study demonstrates that at 5 °C, A. suum eggs have a higher viability in separated liquid slurry as compared to raw slurry. The hygiene aspect of this needs to be further investigated when separated liquid slurry is used to fertilize pastures or crops.

  1. Examining of slurries and production of moulds by spraying method in lost wax technology

    Directory of Open Access Journals (Sweden)

    M. Nadolski

    2008-07-01

    Full Text Available The work presents the results of investigation centred around the selection of a ceramic slurry composition if ceramic fibre is applied as a component of moulding material used for the lost wax technology. Producing a ceramic material of assumed parameters demands for changing the surface properties of the mineral grains. The critical concentration of solid particles or the gel point depends on the size of mineral particles, their shape and ability to aggregate. This ability has been achieved by modifying their surface properties by adding some polymer and the wetting agent (surfactant, which are adsorbed. Using the fibre material has required developing a method of its applying to the pattern set. The technology of multi-layer spraying has been recognised as the most advantageous one. The performed laboratory experiments have allowed for determining both the material composition and the parameters of its applying, such as air pressure, nozzle diameter, and the spraying distance for gravity pneumatic spraying gun.

  2. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    Science.gov (United States)

    Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  3. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    Science.gov (United States)

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM

  4. Properly synchronized measurements of droplet sizes for high-pressure intermittent coal-water slurry fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States)

    1993-12-31

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation with a laser diffraction particle analyzing (LDPA) technique. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. A correlation of the SMD with the injection conditions was determined which should show a satisfactory agreement with the measured SMD data. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure.

  5. Ice slurry flow and heat transfer during flow through tubes of rectangular and slit cross-sections

    Directory of Open Access Journals (Sweden)

    Niezgoda-Żelasko Beata

    2014-09-01

    Full Text Available The paper presents the results of experimental research of pressure drop and heat transfer coefficients of ice slurry during its flow through tubes of rectangular and slit cross-sections. Moreover, the work discusses the influence of solid particles, type of motion and cross-section on the changes in the pressure drop and heat transfer coefficient. The analysis presented in the paper allows for identification of the criterial relations used to calculate the Fanning factor and the Nusselt number for laminar and turbulent flow, taking into account elements such as phase change, which accompanies the heat transfer process. Ice slurry flow is treated as a generalized flow of a non-Newtonian fluid.

  6. Chemical strategies for die/wafer submicron alignment and bonding.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, James Ellis; Baca, Alicia I.; Chu, Dahwey; Rohwer, Lauren Elizabeth Shea

    2010-09-01

    This late-start LDRD explores chemical strategies that will enable sub-micron alignment accuracy of dies and wafers by exploiting the interfacial energies of chemical ligands. We have micropatterned commensurate features, such as 2-d arrays of micron-sized gold lines on the die to be bonded. Each gold line is functionalized with alkanethiol ligands before the die are brought into contact. The ligand interfacial energy is minimized when the lines on the die are brought into registration, due to favorable interactions between the complementary ligand tails. After registration is achieved, standard bonding techniques are used to create precision permanent bonds. We have computed the alignment forces and torque between two surfaces patterned with arrays of lines or square pads to illustrate how best to maximize the tendency to align. We also discuss complex, aperiodic patterns such as rectilinear pad assemblies, concentric circles, and spirals that point the way towards extremely precise alignment.

  7. Submicron Plasticity: Yield Stress, Dislocation Avalanches, and Velocity Distribution

    Science.gov (United States)

    Ispánovity, Péter Dusán; Groma, István; Györgyi, Géza; Csikor, Ferenc F.; Weygand, Daniel

    2010-08-01

    The existence of a well-defined yield stress, where a macroscopic crystal begins to plastically flow, has been a basic observation in materials science. In contrast with macroscopic samples, in microcrystals the strain accumulates in random bursts, which makes controlled plastic formation difficult. Here we study by 2D and 3D simulations the plastic deformation of submicron objects under increasing stress. We show that, while the stress-strain relation of individual samples exhibits jumps, its average and mean deviation still specify a well-defined critical stress. The statistical background of this phenomenon is analyzed through the velocity distribution of dislocations, revealing a universal cubic decay and the appearance of a shoulder due to dislocation avalanches.

  8. Microscopic methods in analysis of submicron phospholipid dispersions

    Directory of Open Access Journals (Sweden)

    Płaczek Marcin

    2016-03-01

    Full Text Available Microscopy belongs to the group of tests, used in pharmaceutical technology, that despite the lapse of time and the development of new analytical methods, still remain irreplaceable for the characterization of dispersed drug dosage forms (e.g., suspensions and emulsions. To obtain complete description of a specific drug formulation, such as parenteral colloidal products, a combination of different microscopic techniques is sometimes required. Electron microscopy methods are the most useful ones; however, even such basic methods as optical microscopy may be helpful for determination of some properties of a sample. The publication explicates the most popular microscopical techniques used nowadays for characterization of the morphology of nanoparticles suspended in pharmaceutical formulations; ad vantages and disadvantages of these methods are also discussed. Parenteral submicron formulations containing lecithin or a particular phospholipid were chosen as examples.

  9. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    Science.gov (United States)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent

  10. Facile synthesis and stable cycling ability of hollow submicron silicon oxide–carbon composite anode material for Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong-Yeon; Nguyen, Dan Thien [Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kang, Joon-Sup [Department of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Song, Seung-Wan, E-mail: swsong@cnu.ac.kr [Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-06-05

    Highlights: • Hollow submicron SiO{sub 2}–carbon composite material was synthesized using Si{sup 4+}-citrate chelation. • Composite material possessed a homogeneous distribution of SiO{sub 2} and carbon. • Composite electrode delivered ⩾600 mAh/g with a stable cycling stability. • This materials design and synthesis provides a useful platform for scalable production. - Abstract: Advanced SiO{sub 2}–carbon composite anode active material for lithium-ion battery has been synthesized through a simple chelation of silicon cation with citrate in a glyme-based solvent. The resultant composite material demonstrates a homogeneous distribution of constituents over the submicron particles and a unique hollow spherical microstructure, which provides an enhanced electrical conductivity and better accommodation of volume change of silicon during electrochemical charge–discharge cycling, respectively. As a result, the composite electrode exhibits a high cycling stability delivering the capacity retention of 91% at the 100th cycle and discharge capacities of 662–602 mAh/g and coulombic efficiencies of 99.8%. This material synthesis is scalable and cost-effective in preparing various submicron or micron composite electrode materials.

  11. Assessing The Durability of Polymer Modified Asphalt Emulsions Slurry Seal

    Science.gov (United States)

    Singgih, C.; Handayani, D.; Setyawan, A.

    2017-02-01

    Slurry Seal is an application of road preservation in the form of impermeable nonstructural thin layer with maximum thickness of 10 mm, which consisting of a cold laid mixture of asphalt emulsion with continuous graded fine aggregate, mineral filler, water and other added ingredients. Road preservation use slurry seal only functioning as a surface layer on the existing pavement structure. This preliminary research was conducted to determine the value of consistency, setting time, and indirect tensile strength of polymer modified slurry seal. The laboratory tests were conducted to determine the optimum residual asphalt content. The results show that the value of the optimum water content by pre-wetting 5% is getting smaller with increasing levels of residual asphalt emulsion. The addition of water 0 - 2.5% with 5% water for pre-wetting, the mixture provides a sufficient consistency in accordance with the specifications. The increasing levels of residual asphalt emulsion obtained the longer setting time at all slurry seal mixtures, but all of the mixtures still meet the specifications. The use of polymer modified asphalt emulsion on slurry seal was improved durability significantly, based on the value of indirect tensile strength.

  12. Gas migration through cement slurries analysis: A comparative laboratory study

    Directory of Open Access Journals (Sweden)

    Arian Velayati

    2015-12-01

    Full Text Available Cementing is an essential part of every drilling operation. Protection of the wellbore from formation fluid invasion is one of the primary tasks of a cement job. Failure in this task results in catastrophic events, such as blow outs. Hence, in order to save the well and avoid risky and operationally difficult remedial cementing, slurry must be optimized to be resistant against gas migration phenomenon. In this paper, performances of the conventional slurries facing gas invasion were reviewed and compared with modified slurry containing special gas migration additive by using fluid migration analyzer device. The results of this study reveal the importance of proper additive utilization in slurry formulations. The rate of gas flow through the slurry in neat cement is very high; by using different types of additives, we observe obvious changes in the performance of the cement system. The rate of gas flow in neat class H cement was reported as 36000 ml/hr while the optimized cement formulation with anti-gas migration and thixotropic agents showed a gas flow rate of 13.8 ml/hr.

  13. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  14. Low density lipoprotein peptide conjugated submicron emulsions for combating prostate cancer.

    Science.gov (United States)

    Sun, Pengchao; Zhang, Nan; Hua, Haiying; Liang, Qian; Zhang, Xuexiao; Sun, Qian; Zhao, Yongxing

    2017-02-01

    Submicron emulsions (SEs) is an advanced formulation that possesses good biocompatibility, high loading of hydrophobic drugs, and good stability through autoclave sterilization. To enhance tumor targeting and tumor cell uptake, SEs could be modified with positive charge and targeting moieties. In the present study, three formulations were prepared: Docetaxel-loaded SEs (DocSEs), cationic DocSEs (DocCSEs), and low density lipoprotein receptor (LDLR) targeted peptide-RLT (CEKLKEAFRLTRKRGLKLA) modified DocCSEs (RLT-DocCSEs). The optimized RLT-DocCSEs showed a particle size 182.2±10nm, a zeta potential 39.62±2.41mV, and a loading efficiency of Docetaxel (Doc) 98%. RLT-DocCSEs demonstrated sustained release in 96h and was stable for two months at 4°C. Compared to DocSEs and DocCSEs, RLT-DocCSEs caused significantly more PC-3 cell inhibition and cell apoptosis. RLT-DocCSEs also showed more cellular uptake and slower cellular elimination than that of DocSEs and DocCSEs. The present study indicated RLT-DocCSEs could be a potential formulation for injection of anti-cancer therapeutics with increased tumor targeting and anti-tumor efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. A new circuit technique for reduced leakage current in Deep Submicron CMOS technologies

    Directory of Open Access Journals (Sweden)

    A. Schmitz

    2005-01-01

    Full Text Available Modern CMOS processes in the Deep Submicron regime are restricted to supply voltages below 2 volts and further to account for the transistors' field strength limitations and to reduce the power per logic gate. To maintain the high switching performance, the threshold voltage must be scaled according with the supply voltage. However, this leads to an increased subthreshold current of the transistors in standby mode (VGS=0. Another source of leakage is gate current, which becomes significant for gate oxides of 3nm and below. We propose a Self-Biasing Virtual Rails (SBVR - CMOS technique which acts like an adaptive local supply voltage in case of standby mode. Most important sources of leakage currents are reduced by this technique. Moreover, SBVR-CMOS is capable of conserving stored information in sleep mode, which is vital for memory circuits. Memories are exposed to radiation causing soft errors. This well-known problem becomes even worse in standby mode of typical SRAMs, that have low driving performance to withstand alpha particle hits. In this paper, a 16-transistor SRAM cell is proposed, which combines the advantage of extremely low leakage currents with a very high soft error stability.

  16. Immunogenicity Studies of Bivalent Inactivated Virions of EV71/CVA16 Formulated with Submicron Emulsion Systems

    Directory of Open Access Journals (Sweden)

    Chih-Wei Lin

    2014-01-01

    Full Text Available We assessed two strategies for preparing candidate vaccines against hand, foot, and mouth disease (HFMD caused mainly by infections of enterovirus (EV 71 and coxsackievirus (CV A16. We firstly design and optimize the potency of adjuvant combinations of emulsion-based delivery systems, using EV71 candidate vaccine as a model. We then perform immunogenicity studies in mice of EV71/CVA16 antigen combinations formulated with PELC/CpG. A single dose of inactivated EV71 virion (0.2 μg emulsified in submicron particles was found (i to induce potent antigen-specific neutralizing antibody responses and (ii consistently to elicit broad antibody responses against EV71 neutralization epitopes. A single dose immunogenicity study of bivalent activated EV71/CVA16 virion formulated with either Alum or PELC/CpG adjuvant showed that CVA16 antigen failed to elicit CVA16 neutralizing antibody responses and did not affect EV71-specific neutralizing antibody responses. A boosting dose of emulsified EV71/CVA16 bivalent vaccine candidate was found to be necessary to achieve high seroconversion of CVA16-specific neutralizing antibody responses. The current results are important for the design and development of prophylactic vaccines against HFMD and other emerging infectious diseases.

  17. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  18. Microalgal cultivation with biogas slurry for biofuel production.

    Science.gov (United States)

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A Fast and Efficient Dehydration Process for Waste Drilling Slurry

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2017-01-01

    Full Text Available In this article, slurry system was converted to colloid from fluid with the colloidization of high polymer coagulants with high viscosity. The solid-liquid separation of the waste slurry was realized by the process of chemical colloidal gel breaking, coagulation function, acidification gelout. In addition, the surface morphology of slurry cake was investigated by using Field emission scanning electron microscope (FE-SEM. The results indicate that mud separation effect is decides on the type of flocculants, gel breaker. The solid content of mud cake increases from 40.5% to 77.5% when A-PA and H20 are employed as the flocculants, gelout, with the dosage of zero point four grams and zero point five grams.

  20. Concentrated biogas slurry enhanced soil fertility and tomato quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang-Bo Yu; Xi-Ping Luo; Fang-Bo Yu; Xi-Ping Luo; Cheng-Fang Song; Miao-Xian Zhang; Sheng-Dao Shan (Dept. of Environmental Sciences, Inst. of Environmental Technology, Zhejiang Forestry University, Linan (China))

    2010-05-15

    Biogas slurry is a cheap source of plant nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its further development. In this paper, a one-growing-season field study was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of microflora in both nonrhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could bring significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, beta-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It was concluded that the application is a practicable means in tomato production and will better service the area of sustainable agriculture

  1. Development of Alternative Rheological Measurements for DWPF Slurry Samples (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. c.

    2005-09-01

    Rheological measurements are used to evaluate the fluid dynamic behavior of Defense Waste Processing Facility, DWPF, slurry samples. Measurements are currently made on non-radioactive simulant slurries using two state-of-the-art rheometers located at the Aiken County Technical Laboratory, ACTL. Measurements are made on plant samples using a rheometer in the Savannah River National Laboratory, SRNL, Shielded Cells facility. Low activity simulants or plant samples can be analyzed using a rheometer located in a radioactive hood in SRNL. Variations in the rheology of SB2 simulants impacted the interpretation of results obtained in a number of related studies. A separate rheological study was initiated with the following four goals: (1) Document the variations seen in the simulant slurries, both by a review of recent data, and by a search for similar samples for further study. (2) Attempt to explain the variations in rheological behavior, or, failing that, reduce the number of possible causes. In particular, to empirically check for rheometer-related variations. (3) Exploit the additional capabilities of the rheometers by developing new measurement methods to study the simulant rheological properties in new ways. (4) Formalize the rheological measurement process for DWPF-related samples into a series of protocols. This report focuses on the third and fourth goals. The emphasis of this report is on the development and formalization of rheological measurement methods used to characterize DWPF slurry samples. The organization is by rheological measurement method. Progress on the first two goals was documented in a concurrent technical report, Koopman (2005). That report focused on the types and possible causes of unusual rheological behavior in simulant slurry samples. It was organized by the sample being studied. The experimental portion of this study was performed in the period of March to April 2004. A general rheology protocol for routine DWPF slurry samples, Koopman

  2. Defining the upper viscosity limit for mineral slurries used in drilled shaft construction.

    Science.gov (United States)

    2014-02-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during : excavation and concreting. Florida Department of Transportation (FDOT) specifications require that the : mineral slurry used for all primary str...

  3. Studies on solvatochromic properties of aminophenylstyryl-quinolinum dye, LDS 798, and its application in studying submicron lipid based structure.

    Science.gov (United States)

    Sarkar, Pabak; Luchowski, Rafal; Raut, Sangram; Sabnis, Nirupama; Remaley, Alan; Lacko, Andras G; Thamake, Sanjay; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2010-12-01

    The styryl group of dyes has been used in cellular studies for over 20 years because of their solvatochromic and/or electrochromic properties. Here we report characterization of solubility and solvatochromic properties of a near infra-red styryl dye, styryl 11 or LDS 798. We have extended our studies to small unilamellar vesicles and lipid based nanoparticles and found that solvatochromic properties of this dye used in tandem with fluorescence correlation spectroscopy can be used to efficiently determine the diffusion coefficient and hence the size of the submicron lipid based particles. This technique has the potential to provide essential information about liposomal and vesicular structures and their movement in vitro and in situ. Published by Elsevier B.V.

  4. Entrained flow gasification of coal/bio-oil slurries

    DEFF Research Database (Denmark)

    Feng, Ping; Lin, Weigang; Jensen, Peter Arendt

    2016-01-01

    Coal/bio-oil slurry (CBS) is a new partial green fuel for bio-oil utilization. CBS reacts with gasification agents at high temperatures and converts into hydrogen and carbon monoxide. This paper provides a feasibility study for the gasification of CBS in an atmospheric entrained flow reactor...... with steam/carbon ratio of 5, the syngas components are similar with that in equilibrium. A synergistic effect exists between coal and bio-oil in coal/bio-oil slurry gasification which might be caused by the catalysis effect of alkali metals and alkaline earth metals in bio-oil....

  5. Morphometric analysis of polygonal cracking patterns in desiccated starch slurries

    Science.gov (United States)

    Akiba, Yuri; Magome, Jun; Kobayashi, Hiroshi; Shima, Hiroyuki

    2017-08-01

    We investigate the geometry of two-dimensional polygonal cracking that forms on the air-exposed surface of dried starch slurries. Two different kinds of starches, made from potato and corn, exhibited distinguished crack evolution, and there were contrasting effects of slurry thickness on the probability distribution of the polygonal cell area. The experimental findings are believed to result from the difference in the shape and size of starch grains, which strongly influence the capillary transport of water and tensile stress field that drives the polygonal cracking.

  6. Morphometric analysis of polygonal cracking patterns in desiccated starch slurries.

    Science.gov (United States)

    Akiba, Yuri; Magome, Jun; Kobayashi, Hiroshi; Shima, Hiroyuki

    2017-08-01

    We investigate the geometry of two-dimensional polygonal cracking that forms on the air-exposed surface of dried starch slurries. Two different kinds of starches, made from potato and corn, exhibited distinguished crack evolution, and there were contrasting effects of slurry thickness on the probability distribution of the polygonal cell area. The experimental findings are believed to result from the difference in the shape and size of starch grains, which strongly influence the capillary transport of water and tensile stress field that drives the polygonal cracking.

  7. Slurry Coating System Statement of Work and Specification

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for a new system. This document presents the specifications and requirements for the system.

  8. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  9. Numerical Analysis of Convective Transport of Fly Ash-Water Slurry through a Horizontal Pipe

    Directory of Open Access Journals (Sweden)

    Bibhuti Bhusan Nayak

    2015-06-01

    Full Text Available The thermal transport of solid-liquid suspension under turbulent flow condition is not well understood because of the complex interaction between the solid particles and the turbulent carrier fluid. The solid particles may enhance or suppress the rate of heat transfer and turbulence depending on their size and concentration. In the present paper, a three-dimensional numerical simulation is carried out in order to study the pressure drop and heat transfer characteristics of a liquid-solid slurry flow in a horizontal pipe. The simulation is performed by using the algebraic slip mixture (ASM model which is a part of the finite-volume based CFD software Ansys Fluent. The turbulence is handled by the RNG k – ε model. A hexagonal shape and cooper type non-uniform three-dimensional grid is created to discretize the computational domain. Spherical fly ash particles, with mass median diameter of 13mm for an average flow velocity ranging from 1–5 m/s and particle concentrations within 0–40% by volume for each velocity, are considered as the dispersed phase. The results illustrate that higher particle concentration in the flow causes an increase in the heat transfer and pressure drop. Moreover, both heat transfer and pressure drop are seen to show a positive dependence on the mean velocity of the flow.

  10. Slurry-phase Fischer-Tropsch synthesis and kinetic studies over supported cobalt carbonyl derived catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Withers, H.P. Jr.; Eliezer, K.F.; Mitchell, J.W. (Air Products and Chemicals, Inc., Allentown, PA (USA))

    1990-09-01

    This paper reports the preparation characterization, and performance of cobalt carbonyl cluster based catalysts for use in slurry-phase Fischer--Tropsch (FT) technology investigated. Using metal carbonyls as active metal precursors allows for the control of metal particle size on the support surface, thus offering the potential for better control of activity and selectivity of the FT reaction. Silica as the support provided the highest catalyst activities. A Co{sub 2}(CO){sub 8}/Zr(OPr){sub 4}/SiO{sub 2} catalyst (3.5% cobalt, 6.6% zirconium) was developed as the most active system in the FT slurry reactor and also gave the best liquid fuel selectivity. Selectivity patterns correlated to the Schulz--Flory prediction. These catalysts exhibited low water/gas shift activity. Diesel fuel product produced by this catalyst was high quality. A kinetic expression that took water inhibition into account was verified, yielding an activation energy of 97 kJ/mol for syngas conversion ranging from 34% to 71% at 240--280{degrees} C.

  11. Formulation and validation of a computational model for a dilute biomass slurry undergoing rotational mixing

    Science.gov (United States)

    Sprague, Michael; Stickel, Jonathan; Sitaraman, Hariswaran

    2017-11-01

    In this work we focus on development and validation of a computational fluid dynamics model of a dilute biomass slurry, which is a highly viscous particle-laden fluid for which settling effects can dominate. We model the biomass slurry as a generalized Newtonian fluid that includes biomass-concentration-dependent viscosity and solids transport due to settling and shear. We solve the model with the Nek5000 spectral-finite-element code in a simple vane mixer and calculate the torque as a function of various rotation rates. We compare simulation results against those from experiments for a suspension of 5% wt alpha-cellulose in water. Excellent agreement is demonstrated in the well-mixed regime, and the model satisfactorily captures the transition from the well-mixed regime (at higher rotation rates) to the settled regime (at low rotation rates), but is unable to capture the yield-stress behavior evident in experiments as the rotation rate goes to zero. This work was funded by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. Funding was provided by U.S. DOE Office of Energy Efficiency and Renewable Energy.

  12. Wear surface studies on coal water slurry nozzles in industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Zeliang [Hunan Engineering Technology Key Laboratory of Inorganic and Nonmetal Materials, Hunan University of Technology, Zhuzhou 412008, Hunan Province (China)]. E-mail: dingzl@263.net; Deng Jianxin [Department of Mechanical Engineering, Shandong University, Jinan 250061, Shandong Province (China)]. E-mail: jxdeng@sdu.edu.cn; Li Jianfeng [Department of Mechanical Engineering, Shandong University, Jinan 250061, Shandong Province (China)]. E-mail: ljf@sdu.edu.cn

    2007-07-01

    In this study, Al{sub 2}O{sub 3}/(W,Ti)C ceramic, WC/Co cemented carbide, and 1Cr18Ni9Ti stainless steel were produced to be used as nozzle materials in coal water slurry (CWS) industry boilers. Coal water slurry burning tests with these nozzles were carried out. The wear surface features of the nozzles made from these materials were examined. The results showed that the wear mechanisms of nozzles varied from entry to exit. The material removal of Al{sub 2}O{sub 3}/(W,Ti)C ceramic nozzle in CWS atomizing and burning is attributed to a mixed mode damage by brittle fracture, polishing, thermal cracking and chipping. The nozzle entry section appears to be entirely brittle in nature with evidence of large scale-chipping. The centre bore area showed a polishing effect with a very smooth surface. While the exit section exhibits cracking owing to the large thermal shock. Examination of the eroded bore surface of the WC/Co cemented carbide nozzles demonstrated that the wear occurred through preferential removal of the metal binder (Co) followed by pluck-out of the exposed WC grains at the entry zone, while the center and the exit zone showed polishing action. The primary wear mechanisms of 1Cr18Ni9Ti stainless steel nozzle exhibited plastic deformation at the entry zone, and plowing and micro-cutting at the other zones by the eroded particles.

  13. Simulation technique for slurries interacting with moving parts and deformable solids with applications

    Science.gov (United States)

    Mutabaruka, Patrick; Kamrin, Ken

    2017-09-01

    A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main issue of this work, since separately each of these methods is a mature tool, is to develop coupling and model-reduction approaches in order to efficiently simulate coupled problems of this nature, as in various geological and engineering applications. The lattice Boltzmann method incorporates a large eddy simulation technique using the Smagorinsky turbulence model. The discrete element method incorporates spherical and polyhedral particles for stiff contact interactions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed description of how to couple the three solvers within a unified algorithm. The technique we propose for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element problem at each time step. We also developed a technique to reduce the domain size of the full system by replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for the lattice Boltzmann method. The major ingredients of the routine are separately validated. To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston valve geometries. The dynamics of the valve and slurry are studied and reported over a large range of input parameters.

  14. Pulmonary clearance kinetics and extrapulmonary translocation of seven titanium dioxide nano- and submicron materials following intratracheal administration in rats.

    Science.gov (United States)

    Shinohara, Naohide; Oshima, Yutaka; Kobayashi, Toshio; Imatanaka, Nobuya; Nakai, Makoto; Ichinose, Takayuki; Sasaki, Takeshi; Kawaguchi, Kenji; Zhang, Guihua; Gamo, Masashi

    2015-01-01

    We evaluated and compared the pulmonary clearance kinetics and extrapulmonary translocations of seven titanium dioxide (TiO2) nano- and submicron particles with different characteristics, including size, shape and surface coating. Varying doses of TiO2 nano- and submicron particles dispersed in 0.2% disodium phosphate solution were intratracheally administered to male F344 rats. The rats were euthanized under anesthesia for 3, 28 and 91 days after administration. Ti levels in pulmonary and various extrapulmonary organs were determined using inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). The lungs, including bronchoalveolar lavage fluid (BALF), contained 55-89% of the administered TiO2 dose at 3 days after administration. The pulmonary clearance rate constants, estimated using a one-compartment model, were higher after administration of 0.375-2.0 mg/kg body weight (bw) (0.016-0.020/day) than after administration of 3.0-6.0 mg/kg bw (0.0073-0.013/day) for six uncoated TiO2. In contrast, the clearance rate constant was 0.011, 0.0046 and 0.00018/day following administration of 0.67, 2.0 and 6.0 mg/kg bw TiO2 nanoparticle with Al(OH)3 coating, respectively. Translocation of TiO2 from the lungs to the thoracic lymph nodes increased in a time- and dose-dependent manner. Furthermore, the translocation of TiO2 from the lungs to the thoracic lymph nodes after 91 days was higher when Al(OH)3 coated TiO2 was administered (0.93-6.4%), as compared to uncoated TiO2 (0.016-1.8%). Slight liver translocation was observed (kidney, spleen and brain.

  15. Carbon Slurry Fuels for Volume Limited Missiles

    Science.gov (United States)

    1979-11-01

    4 Intia~l Partice Diameter (pmn) - onesecond - 1.0 Figare B-7 . Dependence Of Carbon Particle Co !Tib usti,)ri Ti!,,(: -’r l’irti cl 213 iii 0A= CoEN ...Formation of Soot and Poly- cyclic Aromatic Hydrocarbons in Diflusion Flames lli--Effect of Additions of Oxygen to Ethylene and Ethane Respectively as Fuels

  16. [Study on preparation of intravenous submicron emulsions of Oleum Cinnamomi oil of Miao nationality herbal].

    Science.gov (United States)

    Li, Jiang; Liu, Ying-bo

    2007-11-01

    To study the prescription and preparation of intravenous submicron emulsion of Oleum Cinnamomi oil of Miao nationality herbal. Using the high speed blender mixed round the Oleum Cinnamomi oil with the soybean phospholipids and Pluronic F68 as emulsifier, then using the high pressure homogenizer made the intravenous submicron emulsion of the Oleum Cinnamomi oil and investigate its grain path and distributing. Having been done by using hydroextractor 4,500 r min(-1) 15 minutes the submicron emulsion grain path has well proportioned distribution. The preparation technology is simple and has good stability, so it can be used as a method to make the intravenous submicron emulsion of the Oleum Cinnamomi oil of Miao nationality herbal.

  17. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  18. Beschrijving van een verdampings-condensatie aerosol generator voor de produktie van submicron aerosol

    NARCIS (Netherlands)

    Feijt; A.*; Meulen; A.van der

    1985-01-01

    Dit rapport is een handleiding voor een bedrijfszeker, routinematig gebruik van een zgn. Evaporation-Condensation aerosol Conditioner. Met deze aerosol generatie apparatuur kunnen op stabiele, reproduceerbare manier zeer hoge concentraties (tot 1 miljoen deeltjes per cc) monodispers submicron

  19. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  20. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Science.gov (United States)

    2010-07-01

    ... structures which impound water, sediment, or slurry shall be required if such an existing or proposed impounding structure can: (1) Impound water, sediment, or slurry to an elevation of five feet or more above... design and construction of all new water, sediment, or slurry impoundments and impounding structures...

  1. Draught requirement of trailing foot and shallow injection equipment for applying slurry to grassland

    NARCIS (Netherlands)

    Huijsmans, J.F.M.; Hendriks, J.L.G.; Vermeulen, G.D.

    1998-01-01

    Surface spreading of slurry leads to the inevitable emission of ammonia into the environment. Injection of slurry on grassland reduces these emissions. However, injection of slurry by deep working injector tines with goose foot chisels (wings) requires high draught forces. This type of injection has

  2. Measurement of ion speciation in animal slurries using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Stelt, van der B.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2005-01-01

    The availability of nutrients in animal slurry for plant uptake depends on the total content as well as on the forms in which these nutrients are present in slurry manure. A DMT-manure cell was developed which can help to determine the speciation of nutrients in animal slurries. The cell consists of

  3. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry was studied as a function of the microstructure developed by austempering at 380 and 300°C for different exposure time in the slurry. The corrosion rates of the ADI balls immersed in the iron ore slurry was determined using weight loss method.

  4. Effects of different treatments of cattle slurry manure on water-extractable phosphorus

    NARCIS (Netherlands)

    Chapuis-Lardy, L.; Temminghoff, E.J.M.; Goede, de R.G.M.

    2003-01-01

    Cattle slurry manure applied to land increases the risk of phosphorus (P) movement to surface waters, which may lead to eutrophication. The water-extractable fraction of P in slurry manure is correlated with P concentration in runoff from soils amended with slurry smanure, and thus is an effective

  5. Physical properties, fuel characteristics and P-fertilizer production related to animal slurry and products from separation of animal slurry

    DEFF Research Database (Denmark)

    Thygesen, Ole; Johnsen, Tina; Triolo, Jin Mi

    The purpose of this study was twofold: firstly to examine the relationship between dry matter content (DM) and specific gravity (SG) and viscosity in slurry and the liquid fraction from slurry separation, and secondly to investigate the potential of energy production from combustion of manure fib...... comprising acid addition and drying/pelletizing is estimated at 3.7 mol HNO3 mol-1 P for mink, 4.5 mol HNO3 mol-1 P for pig and AD and 7.4 mol HNO3 mol-1 P for cattle....

  6. Impact-disrupted gunshot residue: A sub-micron analysis using a novel collection protocol

    Directory of Open Access Journals (Sweden)

    V. Spathis

    2017-06-01

    Full Text Available The analysis of gunshot residue (GSR has played an integral role within the legal system in relation to shooting cases. With a characteristic elemental composition of lead, antimony, barium, and a typically discriminative spheroidal morphology, the presence and distribution of GSR can aid in firearm investigations. In this experiment, three shots of low velocity rim-fire ammunition were fired over polished silicon collection substrates placed at six intervals over a 100 cm range. The samples were analysed using a Field Emission Gun Scanning Electron Microscope (FEG-SEM in conjunction with an X-flash Energy Dispersive X-ray (EDX detector, allowing for GSR particle analyses of composition and structure at the sub-micron level. The results of this experiment indicate that although classic spheroidal particles are present consistently throughout the entire range of samples their sizes vary significantly, and at certain distances from the firearm particles with an irregular morphology were discerned, forming “impact-disrupted” GSR particles, henceforth colloquially referred to as “splats”. Upon further analysis, trends with regards to the formation of these splat particles were distinguished. An increase in splat frequency was observed starting at 10 cm from the firearm, with 147 mm−2 splat density, reaching a maximal flux at 40 cm (451 mm−2, followed by a gradual decrease to the maximum range sampled. Moreover, the structural morphology of the splats changes throughout the sampling range. At the distances closest to the firearm, molten-looking particles were formed, demonstrating the metallic residues were in a liquid state when their flight path was disrupted. However, at increased distances-primarily where the discharge plume was at maximum dispersion and moving away from the firearm, the residues have had time to cool in-fight resulting in semi-congealed and solid particles that subsequently disrupted upon impact, forming more

  7. Investigation on the relationship between the fine particle emission and crystallization characteristics of gypsum during wet flue gas desulfurization process.

    Science.gov (United States)

    Pan, Danping; Wu, Hao; Yang, Linjun

    2017-05-01

    The relationship between the fine particles emitted after desulfurization and gypsum crystals in the desulfurization slurry was investigated, and the crystallization characteristics varying with the operation parameters and compositions of the desulfurization slurry were discussed. The results showed that the fine particles generated during the desulfurization process were closely related to the crystal characteristics in the desulfurization slurry by comparison of their morphology and elements. With the higher proportion of fine crystals in the desulfurization slurry, the number concentration of fine particles after desulfurization was increased and their particle sizes were smaller, indicating that the optimization of gypsum crystallization was beneficial for the reduction of the fine particle emission. The lower pH value and an optimal temperature of the desulfurization slurry were beneficial to restrain the generation of fine crystals in the desulfurization slurry. In addition, the higher concentrations of the Fe(3+) ions and the F(-) ions in the desulfurization slurry both promoted the generation of fine crystals with corresponding change of the morphology and the effect of the Fe(3+) ions was more obvious. With the application of the desulfurization synergist additive, it was beneficial for the inhibition of fine crystals while the thinner crystals were generated. Copyright © 2016. Published by Elsevier B.V.

  8. Rapid heterogeneous oxidation of organic coatings on submicron aerosols

    Science.gov (United States)

    Lim, C. Y.; Browne, E. C.; Sugrue, R. A.; Kroll, J. H.

    2017-03-01

    Laboratory studies have found that heterogeneous oxidation can affect the composition and loading of atmospheric organic aerosol particles over time scales of several days, but most studies have examined pure organic particles only. In this study, in order to probe the reactivity of organic species confined near the particle surface, the rates and products of the OH-initiated oxidation of pure squalane particles are compared to oxidation of thin coatings of squalane on ammonium sulfate particles. The squalane reaction rate constant shows a linear dependence on the organic surface area-to-volume ratio, with rate constants for coated particles up to 10 times larger than for pure particles. Changes in the carbon oxidation state and fraction of particulate carbon remaining show similar enhancements, implying that heterogeneous oxidation may exhibit a stronger effect on the loadings and properties of organic aerosol than previously estimated from laboratory studies.

  9. Selection of design parameters for a slurry injection tool

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    Injection has been recognized as an effective method for land application of liquid slurry. Optimization design is essential for developing higher-performance injection tools and identifying potential improvement of existing tools. In this study, design parameters of an injection tool were determ...

  10. Developing Archetypal Machines for a Sequence of Food- Slurry ...

    African Journals Online (AJOL)

    User

    different operations respectively. The results show that the machines have increased the sieving rate of steeped grain and in extension the production of these food-slurries by over 50%. Design considerations for a dual- processing machine-assembly that combines the sieving and milling processes into a single operation ...

  11. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  12. Environmental Consequences of Future Biogas Technologies based on Separated Slurry

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik

    2011-01-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involvi...

  13. Prediction of coal slurry concentration based on artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Li, Y.; Cheng, J.; Zhou, Z.; Li, S.; Liu, J.; Cen, K. [Zhejiang University, Hangzhou (China)

    2005-12-15

    Based on experimental data of coal slurry, three BP neural network models with 8, 7 and 5 input factors, were set up for predicting the slurry concentration. Three BP neural networks algorithm was Levenberg Marquardt algorithm, and their learning rate was 0.01. The hidden neurons number was settled by practical training effect of the networks. The hidden neurons number of BP model, with 8, 7 and 5 input factors is 27, 30 and 24, respectively. Two data treated methods were tested by seven input factors network model, which proves that the first method is the better one. The mean absolute error of the neural network models with 5, 7 and 8 factors is 0.53%, 0.50% and 0.74%, respectively, while that of the existed regression model is 1.15%. This indicates that the neural network models, especially the 7 factors model, are effective in predicting the slurry. The HGI input neuron in eight input factors model affects the prediction result because of its interference to other input factors. The effect of H and N in coal on the slurry is slight. 8 refs., 7 figs., 3 tabs.

  14. SLURRY NEBULIZATION ICP-OES FOR THE DETERMINATION OF ...

    African Journals Online (AJOL)

    a

    SLURRY NEBULIZATION ICP-OES FOR THE DETERMINATION OF Cu, Fe, Mg,. Mn AND Zn IN BOVINE LIVER. Ntebogeng S. Mokgalaka1*, Taddese Wondimu2 and Robert I. McCrindle1. 1Tshwane University of Technology, Department of Chemistry, Arcadia Campus, P.O. Box. 56208, Arcadia 0007, South Africa.

  15. Separation of phosphorus from pig slurry using chemical additives

    DEFF Research Database (Denmark)

    Estevez Rodriguez, M.D.; Gomez del Puerto, A.M.; Montealegre Meléndez, M.L.

    2005-01-01

    retention of P in a solid fraction. The laboratory studies showed that 98% of the P in slurry was retained in the solid fraction retained on the filter net (12% to 28% retained W:W) after the addition of coagulants and flocculants. Linear cationic polyacrylamide polymers proved to be more efficient at lower...

  16. Explorative study of phosphorus recovery from pig slurry : laboratory experiments

    NARCIS (Netherlands)

    Schoumans, O.F.; Ehlert, P.A.I.; Nelemans, J.A.; Doorn-van Tintelen, van W.; Rulkens, W.H.; Oenema, O.

    2014-01-01

    Here, we report on laboratory experiments with the aim to explore cheap and innovative techniques. The main focus of the experiments was to lower the P-content in pig slurry with 25%. In that case, in principle all manure produced in the Netherlands can be applied on agricultural land in The

  17. Agronomic recycling of pig slurry and pig sewage

    Science.gov (United States)

    Gómez Garrido, Melisa; Sánchez García, Pablo; Faz Cano, Ángel; Büyükkılıç Yanardag, Asuman; Yanardag, Ibrahim; Kabas, Sebla; Ángeles Múñoz García, María; María Rosales Aranda, Rosa; Segura Ruíz, Juan Carlos

    2013-04-01

    Recycling pig slurry as organic fertilizer is a convenient and suitable way of waste elimination due to its low cost and high agronomic benefits. The objectives of this two year study are focused on improving and recycling pig slurry appropriately, and monitoring the soil-plant system at the same time. The evaluation of the agronomic effectiveness of different types of pig slurry (raw, solid, treated and depurated) in different doses (170 kg N ha-1 (legislated dose), 340 and 510 kg N ha-1) is innovative because the fertilizer value of each amendment can be balanced. Furthermore environmental issues such us volatilisation, leaching and salinisation have been considered for each treatment in order to set the viability of the study and to justify the treatments applied. Electrical conductivity, Kjeldhal nitrogen, sodium and potassium are the physico-chemical parameters most influenced in soils treated with doses 340 and 510 kg N ha-1. Additionally plant samples, especially halophyte, have shown the highest major and minor nutrients contents. Finally, pig slurry application in legislated doses could be considered a useful environmental practice; however, the development of the crop will be very influenced by the type of dose and amendment selected.

  18. Chemical mapping of proterozoic organic matter at submicron spatial resolution.

    Science.gov (United States)

    Oehler, Dorothy Z; Robert, François; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S

    2006-12-01

    A NanoSIMS ion microprobe was used to map the submicron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae in a thin section of the approximately 0.85 billion year old Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and the biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments revealed distinct wall- and sheath-like structures enriched in C, N, and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibited filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N, and S. By analogy to NanoSIMS data from the well-preserved microfossils, these structures were interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Given that the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings indicate that a re-evaluation of ancient specimens via in situ structural, chemical, and isotopic study is warranted. Our analyses have led us to propose new criteria for assessing the biogenicity of problematic kerogenous materials, and, thus, these criteria can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.

  19. Controlled motion of domain walls in submicron amorphous wires

    Directory of Open Access Journals (Sweden)

    Mihai Ţibu

    2016-05-01

    Full Text Available Results on the control of the domain wall displacement in cylindrical Fe77.5Si7.5B15 amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the first time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.

  20. Controlled motion of domain walls in submicron amorphous wires

    Energy Technology Data Exchange (ETDEWEB)

    Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian; Atiţoaie, Alexandru; Lupu, Nicoleta; Óvári, Tibor-Adrian, E-mail: taovari@phys-iasi.ro; Chiriac, Horia [Department of Magnetic Materials and Devices, National Institute of Research and Development for Technical Physics, Iaşi, 700050 (Romania); Allwood, Dan A. [Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-05-15

    Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the first time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.

  1. Submicron Surface Vibration Profiling Using Doppler Self-Mixing Techniques

    Directory of Open Access Journals (Sweden)

    Tânia Pereira

    2014-01-01

    Full Text Available Doppler self-mixing laser probing techniques are often used for vibration measurement with very high accuracy. A novel optoelectronic probe solution is proposed, based on off-the-shelf components, with a direct reflection optical scheme for contactless characterization of the target’s movement. This probe was tested with two test bench apparatus that enhance its precision performance, with a linear actuator at low frequency (35 µm, 5–60 Hz, and its dynamics, with disc shaped transducers for small amplitude and high frequency (0.6 µm, 100–2500 Hz. The results, obtained from well-established signal processing methods for self-mixing Doppler signals, allowed the evaluation of vibration velocity and amplitudes with an average error of less than 10%. The impedance spectrum of piezoelectric (PZ disc target revealed a maximum of impedance (around 1 kHz for minimal Doppler shift. A bidimensional scan over the PZ disc surface allowed the categorization of the vibration mode (0, 1 and explained its deflection directions. The feasibility of a laser vibrometer based on self-mixing principles and supported by tailored electronics able to accurately measure submicron displacements was, thus, successfully demonstrated.

  2. Enhancements of the refractory submicron aerosol fraction in the Arctic polar vortex: feature or exception?

    Science.gov (United States)

    Weigel, R.; Volk, C. M.; Kandler, K.; Hösen, E.; Günther, G.; Vogel, B.; Grooß, J.-U.; Khaykin, S.; Belyaev, G. V.; Borrmann, S.

    2014-11-01

    In situ measurements with a four-channel stratospheric condensation particle counter (CPC) were conducted at up to 20 km altitude on board the aircraft M-55 Geophysica from Kiruna, Sweden, in January through March (EUPLEX 2003, RECONCILE 2010) and in December (ESSenCe 2011). During all campaigns air masses from the upper stratosphere and mesosphere were subsiding inside the Arctic winter vortex, thus initializing a transport of refractory aerosol into the lower stratosphere (Θ content of nitrous oxide (70 nmol mol-1 of N2O). This indicates that refractory aerosol originates from the upper stratosphere or the mesosphere. Derived from the mixing ratio of the simultaneously measured long-lived tracer N2O, an empirical index serves to differentiate probed air masses according to their origin: inside the vortex, the vortex edge region, or outside the vortex. Previously observed high fractions of refractory submicron aerosol in the 2003 Arctic vortex were ascribed to unusually strong subsidence during that winter. However, measurements under perturbed vortex conditions in 2010 and during early winter in December 2011 revealed similarly high values. Thus, the abundance of refractory aerosol in the lower stratosphere within the Arctic vortices appears to be a regular feature rather than the exception. During December, the import from aloft into the lower stratosphere appears to be developing; thereafter the abundance of refractory aerosol inside the vortex reaches its highest levels in March. The correlations of refractory aerosol with N2O suggest that, apart from mean subsidence, diabatic dispersion inside the vortex significantly contributes to the transport of particles to the Arctic lower stratosphere. A measurement-based estimate of the total mass of refractory aerosol inside the vortex is provided for each campaign. Based on the derived increase of particle mass in the lower stratospheric vortex (100-67 hPa pressure altitude) by a factor of 4.5 between early and

  3. Life cycle assessment of biogas from separated slurry

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H. (Univ. of Southern Denmark, Odense (Denmark)); Molt Petersen, B. (Aarhus Univ.. Faculty of Agricultural Sciences, Aarhus (Denmark))

    2010-07-01

    The environmental aspects of biogas production based on pre-treated slurry from fattening pigs and dairy cows have been investigated in a life cycle perspective. The pre-treatment consists of concentrating the slurry using a separation technology. Significant environmental benefits, compared to the status quo slurry management, can be obtained for both pig and cow slurry, especially regarding reductions of the contributions to global warming, but the results depend to a large extent on the efficiency of the separation technology. Adding separation after the biogas plant can contribute to a more efficient management of the phosphorus, and this has also been investigated. Based on the results of the study it can be concluded that: 1) The environmental benefits of biogas from separated slurry are very dependent upon the separation efficiency (for carbon, nitrogen and phosphorous). This particularly applies for carbon, as the separation efficiency defines the extent to which the degradable carbon contained in the slurry is transferred to the biogas plant. Efficient separation can be obtained by using polymer, but also by using a suitable separation technology. It could be mentioned that the decanter centrifuge used has a rather high efficiency of transferring volatile solids (VS) to the fibre fraction also without the use of polymer. 2) Biogas production from separated slurry can lead to significant reductions in the contributions to global warming, provided that the 'best available technologies' described in the report are used. That includes, among others: - a covered and short time storage of the fibre fraction before entering the biogas plant, - a 2-step biogas production where the post-digestion tank is covered with air-tight cover, - a covered storage of the degassed fibre fraction The benefits are also highly dependent upon the source of energy substituted by the biogas. 3) Based on evidences from reviewed studies, the cationic polyacrylamide polymer

  4. A new cement slurry modified with chitosan/alginate interpenetrating networks and hydroxyapatite: structural characteristics after long-term contact with hyper-saline produced water from oil well operations

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ivory Marcos Gomes dos; Santos, Danilo Oliveira; Cestari, Antonio Reinaldo, E-mail: ivorymarcos@hotmail.com, E-mail: danilo.quimico@yahoo.com.br, E-mail: rcestari@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Ciencia dos Materiais; Ribeiro, Joenesson Filip Santos, E-mail: joenesson.joe@hotmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Lab, Materiais e Calorimetria; Alves, Jose do Patrocinio Hora; Ferreira, Angelica Baganha, E-mail: jphalves@uol.com.br, E-mail: angelica.bferreira@itps.se.gov.br [Instituto Tecnologico e de Pesquisas do Estado de Sergipe (ITPS), Aracaju, SE (Brazil)

    2017-01-15

    Oil is an important source of energy, mainly in developing countries. Important research has been conducted to find cementing procedures that guarantee safe and cost-effective oil exploration below pre-salt layers. This work aimed to make a new cement paste with cement, seawater, silica, biopolymers (chitosan and sodium alginate) and hydroxyapatite (HA), found in nature. For comparison purposes, slurry without additives was prepared and characterized. The HA used was extracted from fish scales (Cynoscion acoupa) in optimized condition NaOH concentration, temperature and reaction time. Both slurry were prepared with ratios water/cement (w/c) and silica/cement (s/c) equal to 0.50 and 0.35, respectively. The new cement slurry was obtained with proportions of 5% of each biopolymer and HA with respect to the total weight of the cement. In the immersion tests, specimens were immersed in samples of hyper production of saline water by 35°C for 15 days. Thereafter, they were washed, dried and its surface layers were scraped. Before, the resulting materials were characterized. The values of the ratios Ca/Si of new cement slurry (3.38 ± 0.06) were superior compared to standard (2.58 ± 0.05). The new slurry had high thermal stability and low amounts of small crystallite-type portlandite (35.70 nm). Conversely, a slurry standard formed larger crystals of about 50.3 nm. Significantly, after continuous long-term contact of both slurries with hyper-saline produced water from oil well fields operations, in comparison with standard slurry structural characteristics, the new slurry has practically maintained its pristine chemical structure, as well as has shown crystallite-type particles of NaCl and Friedel’s/Kuzel’s salts with lower proportion. The presence of the biopolymers and HA has driven the improved the self-healing properties observed in the new cement slurry. In this first study, the new slurry has shown adequate characteristics to contribute to cost effective and

  5. Ice slurry ingestion increases running time in the heat.

    Science.gov (United States)

    Dugas, Jonathan

    2011-11-01

    To examine the effect of drinking an ice slurry (slushy) compared with cold water on prolonged submaximal exercise performed in the heat and on thermoregulatory responses. Crossover trial, with the 2 conditions counterbalanced and in random order. Results were adjusted for multiple comparisons by the method of Bonferroni. Exercise laboratory study; Edith Cowan University, Western Australia. Moderately active male volunteers (n = 10; mean age, 28 years) who participated in recreational sport and who had no injuries or history of heat illness were included. Five to 14 days before the trials, the participants were familiarized with the procedure by a progressive treadmill run to volitional exhaustion at their previously determined first ventilatory threshold running speed, in the same hot environment as the trials (34°C, 55% relative humidity). The 2 experimental trials were completed at the same time of day, 5 to 20 days apart. During the first 15 minutes, the participants rested while baseline measurements were taken. Over the next 30 minutes, they drank either a 7.5 g/kg flavored ice slurry (-1°C) or the same volume of flavored cold water (4°C) and then commenced the treadmill run. Participants were instructed to keep their normal lifestyle habits stable. In the 24 hours preceding the trials, they were asked to avoid strenuous exercise and to consume a specified amount of carbohydrate and fluid but no alcohol, caffeine, nonsteroidal anti-inflammatory drugs, or nutritional supplements. Urine and blood samples were taken, and respiratory variables, heart rate, and rectal and skin temperatures were continuously monitored. Heat storage was calculated from temperature and anthropomorphic measurements. The primary outcome measures were comparisons of run time to exhaustion, perceived exhaustion, heat storage capacity, and changes in rectal and skin body temperatures during the 2 trials. All 10 participants took longer to fatigue (range, 2.4-14.2 minutes) after ice

  6. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  7. Parametric Study of Slurry-Erosion of Hydroturbine Steels with and without Detonation Gun Spray Coatings using Taguchi Technique

    Science.gov (United States)

    Grewal, Harpreet Singh; Bhandari, Sanjeev; Singh, Harpreet

    2012-09-01

    WC-Co-Cr coatings were deposited on some hydroturbine 13Cr4Ni and 16Cr5Ni steels by the detonation-gun spray process. An in-depth characterization of the as-sprayed coating was done using X-ray diffraction (XRD) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) techniques. Microhardness and porosity measurements were also made. The coating was found to have a typical splat-like morphology with some indications of unmelted carbide particles. The XRD results showed the presence of WC as the primary phase along with W2C and Co6W6C as secondary phases. Furthermore, the slurry erosion behavior of the coatings was investigated to ascertain the usefulness of the coatings to reduce the slurry erosion of the steels. The effect of four operating factors viz. the velocity, impact angle, concentration, and particle size on the slurry erosion of coated and bare steels has been studied using a high-speed jet-type test rig. The sand used as an erodent was collected from a power plant to replicate the actual turbine conditions. It has been observed that the given cermet coating can enhance the erosion resistance of the steel. Velocity was found to be the most significant factor affecting the erosion behavior of the coating, whereas it was the erodent particle size in the case of uncoated steel. As evidenced from the SEM images, the platelet mechanism of erosion seemed to be the prominent one, causing the removal of material from the surface of the steel, whereas for the coating, the formation and interlinking of cracks resulted in the removal of material.

  8. Effect of erodent particles on the erosion of metal specimens

    Energy Technology Data Exchange (ETDEWEB)

    Razzaque, M. Mahbubur, E-mail: mmrazzaque@me.buet.ac.bd; Alam, M. Khorshed; Khan, M. Ishak, E-mail: ishak.buet@gmail.com [Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET), Dhaka (Bangladesh)

    2016-07-12

    This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens are examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.

  9. Evaluation of abiotic fate mechanisms in soil slurry bioreactor treatment

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, J.A.; McCauley, P.T. [Environmental Protection Agency, Cincinnati, OH (United States); Dosani, M.A. [IT Corp., Cincinnati, OH (United States)] [and others

    1995-10-01

    Biological treatment of contaminated soil slurries may offer a viable technology for soil bioremediation. Slurry bioreactor treatment of soils, however, has not sufficiently progressed to be a durable, reliable, and cost-effective treatment option. Critical to the evaluation of slurry bioreactors is a better description of pollutant mass transfer during the treatment phase. Losses attributable to abiotic means are generally overlooked in field application of the technology. Discussions with EPA regional personnel and inspection of active soil slurry bioreactor operations have identified operational problems such as foaming which could result in possible abiotic loss. Field bioslurry operations have adopted various approaches to reduce foaming: (1) the addition of defoaming agents, (2) the reduction of rotational speed of the agitator, and (3) the reduction of gas flow through the bioreactor system. We have conducted two bench-scale slurry bioreactor treatability studies, at the U.S. EPA Testing & Evaluation Facility in Cincinnati, Ohio, which were designed to investigate some of the operating factors leading to foam formation and identify the most advantageous means to deal with foaming. The initial study has been previously presented as a general treatability study for treatment of creosote contamination in a soil. During this study, foaming became a major problem for operation. The foaming conditions were mitigated by use of defoamer and, in the more extreme cases, through reduction of the mixer rotational speed and gas flow. A subsequent study which was devoted specifically to investigating the causes and conditions of foaming using a different batch of soil from the same site as the earlier study showed little foaming at the very beginning of the study.

  10. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  11. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Petersen, Heidi Huus; Enemark, Heidi L.; Olsen, Annette

    2012-01-01

    The potential for transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a four week period...... to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether application of separated liquid slurry to agricultural land may represent higher risks for ground water contamination as compared to application of raw slurry....

  12. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    CERN Document Server

    Plettner, Tomas; Spencer, James; Wisdom, Jeffrey

    2005-01-01

    Laser driven particle accelerators based on the current generation of lasers will require sub-micron control of the laser field as well as precise beam guiding. Hence the fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such particle accelerators. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003 but with a variety of complications on the laser side. Fortunately, in recent years the fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss this area, its advantages such as the range of materials it provides and various ways to implement it followed by some different test examples that have been considered. One important goal of this approach is an integrated system that could avoid the necessity of having to inject either laser or particle pulses into these structures.

  13. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO interference by least-squares background correction.

    Science.gov (United States)

    Husáková, Lenka; Urbanová, Iva; Šafránková, Michaela; Šídová, Tereza

    2017-12-01

    In this work a simple, efficient, and environmentally-friendly method is proposed for determination of Be in soil and sediment samples employing slurry sampling and high-resolution continuum source electrothermal atomic absorption spectrometry (HR-CS-ETAAS). The spectral effects originating from SiO species were identified and successfully corrected by means of a mathematical correction algorithm. Fractional factorial design has been employed to assess the parameters affecting the analytical results and especially to help in the development of the slurry preparation and optimization of measuring conditions. The effects of seven analytical variables including particle size, concentration of glycerol and HNO3 for stabilization and analyte extraction, respectively, the effect of ultrasonic agitation for slurry homogenization, concentration of chemical modifier, pyrolysis and atomization temperature were investigated by a 27-3 replicate (n = 3) design. Using the optimized experimental conditions, the proposed method allowed the determination of Be with a detection limit being 0.016mgkg-1 and characteristic mass 1.3pg. Optimum results were obtained after preparing the slurries by weighing 100mg of a sample with particle size samples by slurry sampling with those determined after microwave-assisted extraction by inductively coupled plasma time of flight mass spectrometry (TOF-ICP-MS). The reported method has a precision better than 7%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Viability of Ascaris suum eggs in stored raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Katakam, Kiran Kumar; Roepstorff, Allan Knud; Popovic, Olga

    2013-01-01

    indicator of fecal pollution, and its association with ammonia was investigated in separated liquid slurry in comparison with raw slurry. For this purpose nylon bags with 6000 eggs each were placed in 1 litre bottles containing one of the two fractions for 308 days at 5 °C or 25 °C. Initial analysis...... of helminth eggs in the separated liquid slurry revealed 47 Ascaris eggs per gramme. At 25 °C, egg viability declined to zero with a similar trend in both raw slurry and the separated liquid slurry by day 308, a time when at 5 °C 88% and 42% of the eggs were still viable in separated liquid slurry and raw...... slurry, respectively. The poorer survival at 25 °C was correlated with high ammonia contents in the range of 7·9-22·4 mm in raw slurry and 7·3-23·2 mm in liquid slurry compared to 3·2-9·5 mm in raw slurry and 2·6-9·5 mm in liquid slurry stored at 5 °C. The study demonstrates that at 5 °C, A. suum eggs...

  15. Prediction of changes in important physical parameters during composting of separated animal slurry solid fractions.

    Science.gov (United States)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40-70 degreeC). Depending on SSF, total wet mass and volume losses (expressed as % of initial value) were up to 37% and 34%, respectively. After 30 d of composting, relative losses of total solids varied from 17.9% to 21.7% and of volatile solids (VS) from 21.3% to 27.5%, depending on SSF. VS losses in all composts showed different dynamics as described by the first-order kinetic equation. The estimated component particle density of 1441 kg m-3 for VS and 2625 kg m-3 for fixed solids can be used to improve estimates of AFP for SSF within the range tested. The linear relationship between wet bulk density and AFP reported by previous researchers held true for SSF.

  16. Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2012-02-01

    Full Text Available Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML, equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE – a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1 species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz of gaseous pollutants (e.g. HCHO, NO2, NO, O3, and CO2, etc., black carbon (BC, and particle number concentrations and size distributions. Particulate organics varied dramatically during periods with high traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA, a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate and oxygenated OA (OOA showed much smoother variations indicating minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60% with HOA accounting for a major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ∼120 nm and 500 nm (vacuum

  17. Recovery of Cerium Dioxide from Spent Glass-Polishing Slurry and Its Utilization as a Reactive Sorbent for Fast Degradation of Toxic Organophosphates

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2015-01-01

    Full Text Available The recovery of cerium (and possibly other rare earth elements from the spent glass-polishing slurries is rather difficult because of a high resistance of polishing-grade cerium oxide toward common digestion agents. It was shown that cerium may be extracted from the spent polishing slurries by leaching with strong mineral acids in the presence of reducing agents; the solution may be used directly for the preparation of a ceria-based reactive sorbent. A mixture of concentrated nitric acid and hydrogen peroxide was effective in the digestion of partially dewatered glass-polishing slurry. After the removal of undissolved particles, cerous carbonate was precipitated by gaseous NH3 and CO2. Cerium oxide was prepared by a thermal decomposition of the carbonate precursor in an open crucible and tested as reactive sorbent for the degradation of highly toxic organophosphate compounds. The samples annealed at the optimal temperature of approximately 400°C exhibited a good degradation efficiency toward the organophosphate pesticide fenchlorphos and the nerve agents soman and VX. The extraction/precipitation procedure recovers approximately 70% of cerium oxide from the spent polishing slurry. The presence of minor amounts of lanthanum does not disturb the degradation efficiency.

  18. Nutrient losses from cattle co-digestate slurry during storage

    Directory of Open Access Journals (Sweden)

    Francesca Perazzolo

    2016-06-01

    Full Text Available Among environmental issues related to intensive livestock activity, emissions to air from manure management are of increasing concern. Thus the knowledge of the effect of treatment application on subsequent emissions from manure is required to assess the environment impact of management solutions. This work addresses the effect of anaerobic digestion and phase separation on emissions during storage by studying nitrogen losses from lab-scale stores and field pilot-scale stores of a co-digestate cattle slurry and its respective separated fractions. Lab-scale experiment was carried in temperature-controlled room where each fraction (untreated, separated liquid and separated solid was stored in duplicate for a period of 32 days in 30 L vessel. Pilot-scale experiment was carried out both during the cold season and during warm season for 90 days of storage. In both experimentations samples of the manure were analysed periodically for total Kjeldahl nitrogen (TKN, total ammonia nitrogen, dry matter and volatile solids and pH. These analyses allow estimating nitrogen losses in different storage conditions. Effects of mechanical separation and season were assessed by ANOVA (Wilcoxon test, P<0.05. In temperature controlled conditions nitrogen losses measured account for 13% and 26% of TKN for unseparated and separated slurries respectively. In field conditions during cold season nutrient losses were limited. On average unseparated and separated slurries lost respectively 6.8% and 12.6% of their initial TKN content. Much higher were the TKN losses from the slurries examined in warm season where losses raised up to 40% of the initial TKN content. Generally mechanical separation increases nutrient losses, but the differences were not significant in field conditions. The results highlighted that nutrient losses, in particular the nitrogen ones, can be considerable especially during summer storage. The latter, in case of separated slurries, are mainly related

  19. A statistical analysis of North East Atlantic (submicron aerosol size distributions

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2011-12-01

    Full Text Available The Global Atmospheric Watch research station at Mace Head (Ireland offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical cluster analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75% throughout the year. By applying the Hartigan-Wong k-Means method, 12 clusters were identified as systematically occurring. These 12 clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time, open ocean nucleation category (occurring 32.6% of the time, background clean marine category (occurring 26.1% of the time and anthropogenic category (occurring 20% of the time aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less than 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine aerosol exhibited a clear bimodality in the sub-micron size distribution, with although it should be noted that either the Aitken mode or the accumulation mode may dominate the number concentration. However, peculiar background clean marine size distributions with coarser accumulation modes are also observed during winter months. By contrast, the continentally-influenced size distributions are generally more monomodal (accumulation, albeit with traces of bimodality. The open ocean category occurs more often during May, June and July, corresponding with the North East (NE Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6%, this suggests that the marine biota is an important source of new nano aerosol particles in NE Atlantic Air.

  20. Relative contribution of submicron and supermicron particles to aerosol light scattering in the marine boundary layer

    NARCIS (Netherlands)

    Kleefeld, C.; O'Dowd, C.D.; O'Reilly, S.; Jennings, S.G.; Aalto, P.; Becker, E.; Kunz, G.J.; Leeuw, G. de

    2002-01-01

    Measurements of the aerosol light scattering coefficient (σsp) at a wavelength of λ - 550 nm were conducted at a coastal atmospheric research station in the east Atlantic Ocean during June 1999. Size distribution measurements between diameters of 3 nm and 40 um (at ambient humidity) were used to

  1. Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China.

    Science.gov (United States)

    Zhang, J K; Cheng, M T; Ji, D S; Liu, Z R; Hu, B; Sun, Y; Wang, Y S

    2016-08-15

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other observation instruments to measure the characteristics of PM1 (particulate matter with a vacuum aerodynamic diameter of ≤1μm) during the biomass burning period (October 1 to 27; BBP) and the coal combustion period (December 10 to 31; CCP) in Beijing in 2014. The average PM1 mass concentrations during the BBP and CCP were 82.3 and 37.5μgm(-3), respectively. Nitrate, ammonium and other pollutants emitted by the burning processes, especially coal combustion, increased significantly in association with increased pollution levels. Positive matrix factorization (PMF) was applied to a unified high-resolution mass spectra database of organic species with NO(+) and NO2(+) ions to discover the relationships between organic and inorganic species. One inorganic factor was identified in both periods, and another five and four distinct organic factors were identified in the BBP and CCP, respectively. Secondary organic aerosols (SOAs) accounted for 55% of the total organic aerosols (OAs) during the BBP, which is higher than the proportion during the CCP (oxygenated OA, 40%). The organic nitrate and inorganic nitrate were first successfully separated through the PMF analysis based on the HR-ToF-AMS observations in Beijing, and organic nitrate components accounted for 21% and 18% of the total nitrate mass during the BBP and CCP, respectively. Although the PM1 mass concentration during the CCP was much lower than in the BBP, the average concentration of polycyclic aromatic hydrocarbons (PAHs) during the CCP (107.3±171.6ngm(-3)) was ~5 times higher than that in the BBP (21.9±21.7ngm(-3)). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Process Intensification in Crystallization : Submicron Particle Generation Using Alternative Energy Forms

    NARCIS (Netherlands)

    Radacsi, N.

    2012-01-01

    Crystallization is one of the oldest separation and product formation techniques that continues to be in use today. Despite its long history, it only started to develop significantly in the past few decades. In this thesis, the application of Process Intensification in crystallization is

  3. Process Intensification in Crystallization: Submicron Particle Generation Using Alternative Energy Forms

    OpenAIRE

    Radacsi, N.

    2012-01-01

    Crystallization is one of the oldest separation and product formation techniques that continues to be in use today. Despite its long history, it only started to develop significantly in the past few decades. In this thesis, the application of Process Intensification in crystallization is investigated. Process Intensification is a set of often radically innovative principles in process and equipment design, which can bring significant benefits in terms of process and chain efficiency, capital ...

  4. Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis

    OpenAIRE

    D. Ceburnis; A. Garbaras; S. Szidat; M. Rinaldi; S. Fahrni; N. Perron; L. Wacker; S. Leinert; V. Remeikis; M. C. Facchini; A. S. H. Prevot; S. G. Jennings; C. D. O'Dowd

    2011-01-01

    Dual carbon isotope analysis has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides a conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is...

  5. Study of Submicron Particle Size Distributions by Laser Doppler Measurement of Brownian Motion.

    Science.gov (United States)

    1984-10-29

    acquisition and recording apparatus; and c) Development of appropriate software for analysis of signals obtained from the Brownian motion instrument...time scales (e.g., the transit time of the A-17 .- -. . , " 2.0 19 _j 1.2 08 0.6 0.4 0.2 0.0 0 500 1000 1500 2000 TIPOE STEP (10 ns/step) 2.0 1.8

  6. Dynamics of Dissolved Organic Matter and Microbes in Seawater through Sub-Micron Particle Size Analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Goes, J.I.; Balch, W.M.; Vaughn, J.M.; Gomes, H.R.

    processes responsible for the dynamics of DOM rely on monitoring the consumption and breakdown of specific compounds of phytoplankton origin, generally, through the use of labeled precursors and substrates (Kirchman et al., 1991; Fry et al., 1996; Rich et al... attempts to determine the molecular weight or size spectrum of DOM using size exclusion chromatography, but these have generally proven unsatisfactory (Beckett et al., 1987). One reason is that DOM is exposed to high shear stresses during separation...

  7. Ozone and Limonene in Indoor Air: A Source of Submicron Particle Exposure

    National Research Council Canada - National Science Library

    Thomas Wainman; Junfeng Zhang; Charles J. Weschler; Paul J. Lioy

    2000-01-01

    .... We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners...

  8. Flow characteristics of ice slurry in narrow tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Shouji, Ryouta; Hagiwara, Yosuke [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Shirakawa, Michito [Toyota Motor Corporation, 1 Toyota-cho, Toyota, Aichi 471-8571 (Japan)

    2010-12-15

    Flow characteristics of ice slurry were experimentally investigated using narrow tubes. Reynolds number, the diameter of the tubes and the ice packing factor (IPF) were varied as the experimental parameters. Theoretical analysis was carried out using the experimental results. For laminar flow, it was found that the ratio of the coefficients of pipe friction increases with the IPF, and the rate of increase is high in the case of a low Reynolds number. For turbulent flow, the ratio of the coefficients of pipe friction was 1 for each condition in the case of a low IPF. The ratio of coefficients of pipe friction then decreased slightly at a particular IPF and increased with the IPF in the high-IPF region. In theoretical analysis, it was found that the flow characteristics of ice slurry can be treated as those of pseudoplastic fluid and clarified using the apparent Reynolds number. (author)

  9. Design of a new abrasive slurry jet generator

    Science.gov (United States)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  10. Fulvic acid constituents of coal slurry transport wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M.C.; Davis, J.W.; Minear, R.A.; Sayler, G.S.

    1988-01-01

    Humic and fulvic components in coal slurry transport wastewater (pipeline and laboratory generated) were fractionated by XAD-8 adsorption chromatography. The wastewaters were dominated by fulvic acids with humic acid contributing <1% of the total DOC. Partial degradation of the fulvic and non-fulvic acid fractions was conducted using permanganate oxidation and derivatization with diazomethane. Methylated decomposition products were examined by GC-MS. Wyodak coal slurry preparations were dominated by both aromatic and aliphatic moieties as demonstrated by six distinct classes of decomposition products, while Black Mesa pipeline wastewater DOC appeared to be dominated by fulvic acids of an aliphatic character as suggested by the presence of a single decomposition product, oxalic acid. 15 refs., 2 figs., 2 tabs.

  11. Why is acidification of slurry a success only in Denmark?

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    . Several technologies have been used in the buildings, in the storage and when applying manure. One technology now used widely in Denmark (20% of all slurry) is acidification of slurry where the application of sulphuric acid reduces the ammonia emission. However, the technology has hardly been used......The EU countries are trying to reduce the ammonia emission towards the 2020 and the 2030 targets in the Clean Air agreement. In order to do so, the countries need to implement a range of technologies. The Danish ammonia emission has been reduced by 40% from 1980 to 2015, but more is required...... about safety. For a technology to be accepted in a “non-native” country, national farm scale tests are required as the technology acceptance. It is shown that regulatory requirements help companies producing these technologies and without these requirements the companies might struggle financially...

  12. Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications. A supplement to final report: Design of slurry reactor for indirect liquefaction applications

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A.; Bendale, P.G.

    1991-12-01

    This work is a comparative evaluation of slurry reactors and fixed-bed reactors, with special emphasis on cost. Relative differences between slurry reactors and fixed-bed reactors have been pointed out in previous reviews; the differences pertinent to indirect liquefaction are summarized here. Design of both types is outlined.

  13. Determination of Al, Cu, Li and Mn in spruce seeds and plant reference materials by slurry sampling graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Engelsen, C; Wibetoe, G

    2000-03-01

    An ultrasonic slurry sampling graphite furnace AAS method was developed for the determination of Al, Cu, Li and Mn in spruce seeds, NBS SRM 1575 pine needles and GBW CRM 07602 bush branches and leaves. The only sample preparation was grinding in a Mixer Mill before preparing a slurry by adding 0.14 mol/L nitric acid to a small sample aliquot. Cryogenic grinding was used for the spruce seeds to solve the problem of agglomerating during grinding at room temperature. A modified sample tray was applied allowing the use of both the commercial 1.5 mL vials and home-made 15 mL vials. With optimal conditions for ultrasonic agitation the homogeneity and particle size distributions in the slurries prepared in the two different vials were similar. Several aspects of the slurry sampling approach are discussed and data of important parameters are given, including the total number of particles injected into the graphite furnace, densities of the materials and percentage of analyte extracted into the liquid phase of the slurry. The density of the materials was determined by two methods; by using a Coulter particle analyser and by using a gravimetric method. The two methods gave similar accuracy and precision. The concentration ranges of the elements (in microg g(-1)) were: 80-2100 for Al, 3-15 for Cu, 0.06-2.5 for Li and 50-700 for Mn. External calibration with aqueous standards was employed. Chemical modifiers were not found to be necessary. The relative standard deviations were in the range 1.7-7%. Analyses of the two certified plant reference materials confirmed the accuracy of the method. In addition no significant difference was found for analyses of digested and slurried spruce seeds. The detection limit was 10 ng g(-1) for Li and 170 ng g(-1) for Cu. The characteristic mass (area measurements) was 4.4 pg for Li and 11 pg for Cu. For Al and Mn less sensitive wavelengths were used.

  14. Planarization effect evaluation of acid and alkaline slurries in the copper interconnect process

    Science.gov (United States)

    Yi, Hu; Yan, Li; Yuling, Liu; Yangang, He

    2015-03-01

    We observed and analyzed the acid and HEBUT alkaline of Cu chemical mechanical polishing (CMP) slurry to evaluate their effects. Material analysis has shown that the planarity surfaces and the removal rate of alkaline slurry are better than the acid slurry during metal CMP processes. The global surface roughness and the small-scale surface roughness by 10 × 10 μm2 of copper film polished by the SVTC slurry are 1.127 nm and 2.49 nm. However, it is found that the surface roughnesses of copper films polished by the HEBUT slurry are 0.728 nm and 0.215 nm. All other things being equal, the remaining step heights of copper films polished by the SVTC slurry and HEBUT slurry are respectively 150 nm and 50 nm. At the end of the polishing process, the dishing heights of the HEBUT slurry and the SVTC slurry are approximately both 30 nm, the erosion heights of the HEBUT slurry and the SVTC slurry are approximately both 20 nm. The surface states of the copper film after CMP are tested, and the AFM results of two samples are obviously seen. The surface polished by SVTC slurry shows many spikes. This indicates that the HEBUT alkaline slurry is promising for inter-level dielectric (ILD) applications in ultra large-scale integrated circuits (ULSI) technology. Project supported by the Special Project Items No. 2 in National Long-Term Technology Development Plan (No. 2009ZX02308), the Doctoral Program Foundation of Xinjiang Normal University Plan (No. XJNUBS1226), the Key Laboratory of Coal Gasification, Ministry of Education, and the Inorganic Chemistry Key Disciplines of Xinjiang Normal University.

  15. Ice slurry on outdoor running performance in heat.

    Science.gov (United States)

    Yeo, Z W; Fan, P W P; Nio, A Q X; Byrne, C; Lee, J K W

    2012-11-01

    The efficacy of ingestion of ice slurry on actual outdoor endurance performance is unknown. This study aimed to investigate ice slurry ingestion as a cooling intervention before a 10 km outdoor running time-trial. Twelve participants ingested 8 g · kg (- 1) of either ice slurry ( - 1.4°C; ICE) or ambient temperature drink (30.9°C; CON) and performed a 15-min warm-up prior to a 10 km outdoor running time-trial (Wet Bulb Globe Temperature: 28.2 ± 0.8°C). Mean performance time was faster with ICE (2 715 ± 396 s) than CON (2 730 ± 385 s; P=0.023). Gastrointestinal temperature (Tgi) reduced by 0.5 ± 0.2°C after ICE ingestion compared with 0.1 ± 0.1°C (P<0.001) with CON. During the run, the rate of rise in Tgi was greater (P=0.01) with ICE than with CON for the first 15 min. At the end of time-trial, Tgi was higher with ICE (40.2 ± 0.6°C) than CON (39.8 ± 0.4°C, P=0.005). Ratings of thermal sensation were lower during the cooling phase and for the first kilometre of the run ( - 1.2 ± 0.8; P<0.001). Although ingestion of ice slurry resulted in a transient increase in heat strain following a warm up routine, it is a practical and effective pre-competition cooling manoeuvre to improve performance in warm and humid environments. © Georg Thieme Verlag KG Stuttgart · New York.

  16. An improved cement slurry formulation for oil and geothermal wells

    OpenAIRE

    Fridriksson, Fridrik Hilmar Zimsen

    2017-01-01

    Master's thesis in Petroleum engineering Properly designed cement slurry and good cement job are crucial factors for integrity during a well‘s life cycle. For this, cement must be able to prevent migration of formation fluids, support the well construction and withstand high pressure and temperature. A survey on the Norwegian continental shelf showed that 11% of well integrity issues were due to cement related problems [1]. Another integrity survey in Pennsylvania showed that 2.41% of over...

  17. Energetic performances of a refrigerating loop using ice slurry

    OpenAIRE

    Abbassi, Ikram El; Castaing-Lasvignottes, Jean; Bédécarrats, Jean-Pierre; Dumas, Jean-Pierre; Mimet, Et Abdelaziz

    2010-01-01

    Abstract The consideration of environmental constraints in production, transport and distribution of cold energy resulted in reconsidering the practices of installations dimensioning in particular. Their containment led to the development of secondary refrigerants such as ice slurries to store, transport and distribute the cold energy. These heat transfer fluids should have good thermophysical properties, giving high transport capability, high heat transfer ability as well as low p...

  18. Explorative study of phosphorus recovery from pig slurry : laboratory experiments

    OpenAIRE

    Schoumans, O.F.; Ehlert, P.A.I.; Nelemans, J.A.; Doorn-van Tintelen, van, W.; Rulkens, W.H.; Oenema, O.

    2014-01-01

    Here, we report on laboratory experiments with the aim to explore cheap and innovative techniques. The main focus of the experiments was to lower the P-content in pig slurry with 25%. In that case, in principle all manure produced in the Netherlands can be applied on agricultural land in The Netherlands itself, including the organic matter and other nutrients in the manure. The results show that with physical and chemical treatment techniques 25% of the phosphate can rather easily be recovere...

  19. Surfactant mediated slurry formulations for Ge CMP applications

    KAUST Repository

    Basim, G. Bahar

    2013-01-01

    In this study, slurry formulations in the presence of self-assembled surfactant structures were investigated for Ge/SiO2 CMP applications in the absence and presence of oxidizers. Both anionic (sodium dodecyl sulfate-SDS) and cationic (cetyl trimethyl ammonium bromide-C12TAB) micelles were used in the slurry formulations as a function of pH and oxidizer concentration. CMP performances of Ge and SiO2 wafers were evaluated in terms of material removal rates, selectivity and surface quality. The material removal rate responses were also assessed through AFM wear rate tests to obtain a faster response for preliminary analyses. The surfactant adsorption characteristics were studied through surface wettability responses of the Ge and SiO2 wafers through contact angle measurements. It was observed that the self-assembled surfactant structures can help obtain selectivity on the silica/germanium system at low concentrations of the oxidizer in the slurry. © 2013 Materials Research Society.

  20. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Castaldi, F.J.; Bombaugh, K.J. [Radian Corp., Austin, TX (United States); McFarland, B. [Chevron Research and Technology Co., Richmond, CA (United States)

    1995-12-31

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

  1. Automation of the second iron ore slurry pipeline from Samarco

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Juliana M.; Fonseca, Mario L.; Drumond, Pablo P.; Barbosa, Sylvio [IHM Engenharia, Belo Horizonte, MG (Brazil)

    2009-07-01

    The second iron ore slurry pipeline from Samarco was build to attend the Third Pellet Plant Project, which includes a new Concentration Plant at Germano-MG and a third Pellet Plant at Ubu-ES. It has 396km of extension and links the two plants by pulping the iron ore slurry prepared at Germano Unit. This works aims to present the iron ore slurry pipeline with emphasis on the automation architecture for the supervision and control system, interconnect throughout the pipe extension by fiber optics. The control system is composed of ControlLogix CLP's at the pulping and valve station and Micrologix CLP's at the pressure and cathodic protection monitoring points, totalizing 19 PLC's. The supervisory system was developed using the Wonderware IAS 3.0 suite, including the supervisory software InTouch 9.5 and the integrated ArchestrA IDE, and is composed of two data servers in redundancy and nine operation stations. The control and supervision system is interconnect through and Ethernet network using fiber optics and multiplexer modules (GE JungleMux) for voice, data and video. Among the expected results, it can be highlighted the sequence automation, greater process data availability (real and historical) and greater facility for the operation and detection of failures. (author)

  2. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Plettner, T.; Gaume, R.; Wisdom, J.; /Stanford U., Phys. Dept.; Spencer, J.; /SLAC

    2005-06-07

    Laser driven particle accelerators require sub-micron control of the laser field as well as precise electron-beam guiding so fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such next generation machines. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003[1] but with a variety of complications on the laser side. However, fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss the advantages such as the range of materials available and ways to implement them followed by some different test examples we been considered. One important goal is an integrated system that avoids having to inject either laser or particle pulses into these structures.

  3. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    Directory of Open Access Journals (Sweden)

    R. Xiao

    2011-07-01

    Full Text Available Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS at the rural site Back Garden (BG, located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m−3 and 13.5 ± 8.7 μg m−3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva ∼200 nm and the second mode occurred at Dva from 300–700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions. The analysis of AMS mass spectra data by positive matrix factorization (PMF model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA, low volatility oxygenated organic aerosol (LV-OOA and semi-volatile oxygenated organic aerosol (SV-OOA. The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly

  4. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    Science.gov (United States)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  5. Uptake of Cd, Cu, Ni and Zn by the water hyacinth, Eichhornia crassipes (mart.) solms from pulverised fuel ash (PFA) leachates and slurries

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, K.B.; Mehra, A.; Farago, M.E.; Banerjee, D.K. [University of Derby, Derby (United Kingdom). School of Environmental and Applied Science

    2000-12-01

    The main solid waste product from coal-fired power stations is pulverised fuel ash (PFA). This study investigates the uptake of Cd, Cu, Ni and Zn by the aquatic plant E-crassipes grown in leachates and slurries prepared from two different PFA samples. PFA samples were obtained from Indraprastha Power Station (IPP stn.) in New Delhi, India and the Ratcliffe-on-Soar Power Station in the UK. Results show that E. crassipes has a high accumulation capacity for Cd, Cu, Ni and Zn from leachates and slurries generated from two different PFAs and uptake of these metals is stronger in the roots than in the tops of the plant. As the metal concentrations in the growth medium increase in the 1:5 PFA:DIW ratio as compared to the 1:50 ratio, metal accumulation (as indicated by accumulation factor (AF) values) from both leachates and slurries is higher for plants grown in the 1:50 (PFA:DIW) ratios than in the 1:5 ratios. Lower metal accumulation in the plants grown in slurries than in leachates is related to the high turbidity of growth medium in slurries resulting in ash particles adhering to the root surfaces thus reducing the surface area of metal absorption. In terms of neutralisation capacity of the pH of the growth medium, Eichhornia is seen to be able to reduce the pH of all leachates. Accumulation of Cd and Zn by the plant is higher from the lower pH IPP leachates than the Ratcliffe leachates, indicating that these metals are more soluble and bioavailable in the acidic medium. Accumulation of Cu and Ni is independent of the pH of the leachates; indicating that there may be other contributory factors. 78 refs., 7 tabs.

  6. Fabrication and characterization of submicron polymer waveguides by micro-transfer molding

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Te-Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Various methods exist for fabrication of micron and submicron sized waveguide structures. However, most of them include expensive and time consuming semiconductor fabrication techniques. An economical method for fabricating waveguide structures is introduced and demonstrated in this thesis. This method is established based on previously well-developed photonic crystal fabrication method called two-polymer microtransfer molding. The waveguide in this work functions by a coupler structure that diffracts the incident light into submicron polymer rods. The light is then guided through the rods. Characterization is done by collecting the light that has been guided through the waveguide and exits the end of these submicron polymer bars. The coupling and waveguiding capabilities are demonstrated using two light sources, a laser and white light.

  7. Sorption of 17b-Estradiol to Pig Slurry Separates and Soil in the Soil-Slurry Environment

    DEFF Research Database (Denmark)

    Amin, Mostofa; Petersen, Søren O; Lægdsmand, Mette

    2012-01-01

    fractions (SS2 > SS3 > SS4) were prepared from the liquid fraction of the separated slurry by sedimentation and centrifugation. Sorption experiments were conducted in 0.01 mol L−1 CaCl2 and in natural pig urine matrix. Sorption in 0.01 mol L−1 CaCl2 was higher than that in pig urine for all solids used...

  8. Modeling PAH mass transfer in a slurry of contaminated soil or sediment amended with organic sorbents.

    Science.gov (United States)

    Ahn, Sungwoo; Werner, David; Luthy, Richard G

    2008-06-01

    A three-compartment kinetic partitioning model was employed to assess contaminant mass transfer and intraparticle diffusion in systems comprising dense slurries of polluted soil or aquifer sediment with or without sorbent amendments to sequester polycyclic aromatic hydrocarbons (PAHs). The model was applied to simulate temporal changes in aqueous and particle-bound PAH concentrations comparing different pollution sources (heavy oil or tar sludge) and various sorbent amendments (polyoxymethylene (POM), coke breeze, and activated carbon). For the model evaluation, all the parameters needed were directly measured from a series of experiments, allowing full calibration and verification of model predictions without parameter fitting. The numerical model reproduced two separate laboratory-scale experiments reasonably: PAH uptake in POM beads and PAH uptake by semipermeable membrane devices. PAH mass transfer was then simulated for various scenarios, considering different sorbent doses and mass transfer rates as well as biodegradation. Such model predictions provide a quick assessment tool for identifying mass transfer limitations during washing, stabilization, or bioslurry treatments of polluted soil or sediment in mixed systems. It appears that PAHs would be readily released from materials contaminated by small oil droplets, but not tar decanter sludge. Released PAHs would be sequestered rapidly by activated carbon amendment but to a much lesser extent by coke breeze. If sorbing black carbon is present in the slurries, POM pellets would not be effective as a sequestration amendment. High first-order biodegradation rates in the free aqueous phase, e.g., in the order of 0.001 s(-1) for phenanthrene, would be required to compete effectively with adsorption and mass transfer for strong sorbents.

  9. Modeling PAH mass transfer in a slurry of contaminated soil or sediment amended with organic sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.; Werner, D.; Luthy, R.G. [Stanford University, Stanford, CA (United States). Dept. for Civil & Environmental Engineering

    2008-06-15

    A three-compartment kinetic partitioning model was employed to assess contaminant mass transfer and intraparticle diffusion in systems comprising dense slurries of polluted soil or aquifer sediment with or without sorbent amendments to sequester polycyclic aromatic hydrocarbons (PAHs). The model was applied to simulate temporal changes in aqueous and particle-bound PAH concentrations comparing different pollution sources (heavy oil or tar sludge) and various sorbent amendments (polyoxymethylene (POM), coke breeze, and activated carbon). For the model evaluation, all the parameters needed were directly measured from a series of experiments, allowing full calibration and verification of model predictions without parameter fitting. The numerical model reproduced two separate laboratory-scale experiments reasonably: PAH uptake in POM beads and PAH uptake by semipermeable membrane devices. PAH mass transfer was then simulated for various scenarios, considering different sorbent doses and mass transfer rates as well as biodegradation. Such model predictions provide a quick assessment tool for identifying mass transfer limitations during washing, stabilization, or bioslurry treatments of polluted soil or sediment in mixed systems. It appears that PAHs would be readily released from materials contaminated by small oil droplets, but not tar decanter sludge. Released PAHs would be sequestered rapidly by activated carbon amendment but to a much lesser extent by coke breeze. If sorbing black carbon is present in the slurries, POM pellets would not be effective as a sequestration amendment. High first-order biodegradation rates in the free aqueous phase, e.g., in the order of 0.001 s{sup -1} for phenanthrene, would be required to compete effectively with adsorption and mass transfer for strong sorbents.

  10. Rheological analysis of an effect of different deflocculants on the fly-ash slurry

    Science.gov (United States)

    Sarnecki, K.; Bartosik, A.

    2014-08-01

    During the combustion of coal in the combined heat and power plant (CHP), a very large amount of combustion waste, called further as a fly-ash, is produced. It is typical that fly-ash appears during the combustion process of the fine coal and is transported by a pipeline with support of water as a carrier liquid to a pond storage site, where it is disposed. The pond is localized usually a few kilometers from the CHP, which makes it possible that decrease of friction in such a pipeline can result in energy savings of electricity needed for the pump and water needed as a carrier liquid. In the study an efficient method using a few deflocculants for reducing shear stress, and as a consequence viscosity, is demonstrated. The objective of the paper is to improve the efficiency of the hydrotransport of the fly-ash slurry by adding own designed additives. During the experiments a solids concentration by weight was determined from procured raw material in order to compute the real value occurring in industrial conditions. In addition, the analysis of the particle size distribution was conducted. The Anton Paar MCR 302 electronic rheometer was used to measure the dependence of shear stress and viscosity vs shear rate in the fly-ash existing in the CHP. Another part of the analysis was focused on the additives (deflocculants), to examine their influence on the reduction of the shear stress. The paper proves positive deflocculants impact on the rheological properties of the fly-ash slurry. The results of measurements are presented as figures and conclusions.

  11. Effects of main parameters on rheological properties of oil-coal slurry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yong-gang; Hao Li-fang; Xiong Chu-an; Sun Xiu-ying [China University of Mining & Technology, Beijing (China). School of Chemical and Environmental Engineering

    2006-09-15

    Oil-coal slurry prepared in coal direct liquefaction is a dispersed solid-liquid suspension system. In this paper, some factors such as solvent properties, solid concentrations and temperatures, which affect viscosity change of oil-coal slurry, were studied. The viscosity of coal slurry was measured using rotary viscometer, and the rheological properties have been investigated. The viscosity and rheological curves were plotted and regressed, respectively. The results show that the coal slurry behaves a pseudoplastic and thixotropic property. The rheological type of coal slurry was ascertained and its rheological equations were educed. The oil-coal slurry changes to non-Newtonian fluid from Newtonian fluid with the increasing of solid concentration. 10 refs., 5 figs., 3 tabs.

  12. Prediction of the heat transfer coefficient for ice slurry flows in a horizontal pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kousksou, T.; Jamil, A.; Zeraouli, Y. [Laboratoire de Thermique Energetique et Procedes, Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France); El Rhafiki, T. [Laboratoire de Thermique Energetique et Procedes, Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France); Laboratoire d' Energetique, Mecanique des Fluides et Sciences des Materiaux, Universite AbdelMalek Essaidi, 90000 Tetouan (Morocco)

    2010-06-15

    In this study, heat transfer for ice slurry flows was investigated. For the experiments, ice slurry was made from 9% ethanol-water solution flow in a 20 mm internal diameter, 1000 mm long horizontal copper tube. The ice slurry was heated by a cylindrical electrical resistance. Experiments of the melting process were conducted with changing the ice slurry mass flux rate and the heat flux. The enthalpy-porosity formulation was used to predict the ice slurry temperature and the local values of heat transfer coefficient in the exchanger. Measurements and data acquisition of ice slurry temperature and mass flow rate at the inlet and outlet are performed. It was found that the heat transfer rates increase with the mass flow rate, the ice fraction and the heat flux density. However, the effect of ice fraction appears not to be significant at high mass flow rates. In addition, the correlation proposed by Christensen and Kauffeld gives good agreement with numerical results. (author)

  13. Spread of Hepatitis E virus from pig slurry to the water environment

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Forslund, Anita; Breum, Solvej Østergaard

    Objectives: Spread of pig slurry as an organic fertilizer is commonly used in Danish agriculture. The slurry is spread untreated so pathogens able to survive in slurry tanks will be widely distributed in the environment. The objective of this study was to examine if hepatitis E virus (HEV), which...... HEV cannot be cultivated in cells. We did not find any HEV positive mussel samples indicating that the release of HEV from fields is not a concern for shellfish production....

  14. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    Energy Technology Data Exchange (ETDEWEB)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-07-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  15. Effect of plastic viscosity and yield value on spray characteristics of magnesium-slurry fuel

    Science.gov (United States)

    Prok, George M

    1957-01-01

    Magnesium slurries were sprayed onto a sheet of paper from an air-atomizing injector. Drop sizes and distributions were then determined from photomicrographs. Four different surface-active additives were used in preparing the slurries to give plastic viscosities between 0.22 and 0.51 poise and yield values between 150 and 810 dynes-cm(exp 2). It was found that there was no significant variation in the spray characteristics of these slurries when tested under the same conditions.

  16. Larger voids in mechanically stable, loose packings of 1.3μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency.

    Science.gov (United States)

    Reising, Arved E; Godinho, Justin M; Hormann, Kristof; Jorgenson, James W; Tallarek, Ulrich

    2016-03-04

    Lateral transcolumn heterogeneities and the presence of larger voids in a packing (comparable to the particle size) can limit the preparation of efficient chromatographic columns. Optimizing and understanding the packing process provides keys to better packing structures and column performance. Here, we investigate the slurry-packing process for a set of capillary columns packed with C18-modified, 1.3μm bridged-ethyl hybrid porous silica particles. The slurry concentration used for packing 75μm i.d. fused-silica capillaries was increased gradually from 5 to 50mg/mL. An intermediate concentration (20mg/mL) resulted in the best separation efficiency. Three capillaries from the set representing low, intermediate, and high slurry concentrations were further used for three-dimensional bed reconstruction by confocal laser scanning microscopy and morphological analysis of the bed structure. Previous studies suggest increased slurry concentrations will result in higher column efficiency due to the suppression of transcolumn bed heterogeneities, but only up to a critical concentration. Too concentrated slurries favour the formation of larger packing voids (reaching the size of the average particle diameter). Especially large voids, which can accommodate particles from>90% of the particle size distribution, are responsible for a decrease in column efficiency at high slurry concentrations. Our work illuminates the increasing difficulty of achieving high bed densities with small, frictional, cohesive particles. As particle size decreases interparticle forces become increasingly important and hinder the ease of particle sliding during column packing. While an optimal slurry concentration is identified with respect to bed morphology and separation efficiency under conditions in this work, our results suggest adjustments of this concentration are required with regard to particle size, surface roughness, column dimensions, slurry liquid, and external effects utilized during the

  17. Remote Laser Diffraction Particle Size Distribution Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  18. Solidification and Re-melting Phenomena During Slurry Preparation Using the RheoMetal™ Process

    Science.gov (United States)

    Payandeh, M.; Sabzevar, Mohsen Haddad; Jarfors, A. E. W.; Wessén, M.

    2017-12-01

    The melting sequence of the enthalpy exchange material (EEM) and formation of a slurry in the RheoMetal™ process was investigated. The EEM was extracted and quenched, together with a portion of the slurry at different processing times before complete melting. The EEM initially increased in size/diameter due to melt freezing onto its surface, forming a freeze- on layer. The initial growth of this layer was followed by a period of a constant diameter of the EEM with subsequent melting and decrease of diameter. Microstructural characterization of the size and morphology of different phases in the EEM and in the freeze-on layer was made. Dendritic equiaxed grains and eutectic regions containing Si particles and Cu-bearing particles and Fe-rich particles were observed in the as-cast EEM. The freeze-on layer consisted of dendritic aluminum tilted by about 30 deg in the upstream direction, caused by the rotation of the EEM. Energy dispersion spectroscopy analysis showed that the freeze-on layer had a composition corresponding to an alloy with higher melting point than the EEM and thus shielding the EEM from the surrounding melt. Microstructural changes in the EEM showed that temperature rapidly increased to 768 K (495 °C), indicated by incipient melting of the lowest temperature melting eutectic in triple junction grain boundary regions with Al2Cu and Al5Mg8Si6Cu2 phases present. As the EEM temperature increased further the binary Al-Si eutectic started to melt to form a region of a fully developed coherent mushy state. Experimental results and a thermal model indicated that as the dendrites spheroidized near to the interface at the EEM/freeze-on layer reached a mushy state with 25 pct solid fraction, coherency was lost and disintegration of the freeze-on layer took place. Subsequently, in the absence of the shielding effect from the freeze-on Layer, the EEM continued to disintegrate with a coherency limit of a solid fraction estimated to be 50 pct.

  19. Hydraulic testing of simulated DWPF waste slurries at the Georgia Iron Works Hydraulic Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.P.

    1982-12-31

    Pipeline tests of current simulations of Defense Waste Processing Facility (DWPF) waste slurries were performed during August 1982 at the Georgia Iron Works Hydraulic Laboratory (GIW). Measurements of pressure gradient versus flow in 3-inch pipes and fittings were made for various concentrations of unformated sludge and formated sludge with frit. All slurries were shown to behave generally as Bingham Plastic fluids. Formated sludge/frit slurries behaved generally like unformated sludge slurries of comparable yield stress. No frit settling problems were observed. 8 refs., 16 figs., 6 tabs.

  20. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    Science.gov (United States)

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  1. Influences of Substrate Adhesion and Particle Size on the Shape Memory Effect of Polystyrene Particles.

    Science.gov (United States)

    Cox, Lewis M; Killgore, Jason P; Li, Zhengwei; Long, Rong; Sanders, Aric W; Xiao, Jianliang; Ding, Yifu

    2016-04-19

    Formulations and applications of micro- and nanoscale polymer particles have proliferated rapidly in recent years, yet knowledge of their mechanical behavior has not grown accordingly. In this study, we examine the ways that compressive strain, substrate surface energy, and particle size influence the shape memory cycle of polystyrene particles. Using nanoimprint lithography, differently sized particles are programmed into highly deformed, temporary shapes in contact with substrates of differing surface energies. Atomic force microscopy is used to obtain in situ measurements of particle shape recovery kinetics, and scanning electron microscopy is employed to assess differences in the profiles of particles at the conclusion of the shape memory cycle. Finally, finite element models are used to investigate the growing impact of surface energies at smaller length scales. Results reveal that the influence of substrate adhesion on particle recovery is size-dependent and can become dominating at submicron length scales.

  2. Airborne measurements of submicron aerosols across the coastline ...

    Indian Academy of Sciences (India)

    track in the east–west direction extended partly over land and partly over ocean. 2. Instrumentation. A Scanning Mobility Particle Sizer (SMPS), Model. 3080, of TSI, installed onboard a beachcraft air- craft is used to make measurements of the number concentration and size distribution of aerosol par- ticles in the size range ...

  3. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    2006-12-31

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of iron catalyst particles and the formation of ultra-fine particles.

  4. The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets

    NARCIS (Netherlands)

    Reznik, Nikita; Shpak, O.; Gelderblom, E.C.; Williams, Ross; de Jong, N.; Versluis, Andreas Michel; Burns, Peter N.

    2013-01-01

    Submicron droplets of liquid perfluorocarbon converted into microbubbles with applied ultrasound have been studied, for a number of years, as potential next generation extravascular ultrasound contrast agents. In this work, we conduct an initial ultra-high-speed optical imaging study to examine the

  5. Analysis and Design of Monolithic Inductors in Sub-micron CMOS

    DEFF Research Database (Denmark)

    Fallesen, Carsten; Jørgensen, Allan

    1997-01-01

    In the last few years the CMOS processes have gone into deep sub-micron channel lengths. This means that it is now possible to make GHz applications in CMOS. In analog GHz applications it is often necessary to have access to inductors. This report describes the development of a physical model of ...

  6. Submicron organic nanofiber devices with different anode-cathode materials: A simple approach

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann; Sturm, Heinz; Bøggild, Peter

    2010-01-01

    The authors present a simple general method for simultaneously producing tens of submicron electrode gaps with different cathode and anode materials on top of nanofibers, nanowires, and nanotubes, with an optional gap size variation. Using this method, an ensemble of para-hexaphenylene (p6P...

  7. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils

    Science.gov (United States)

    Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu

    2014-01-01

    The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...

  8. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  9. [Effects of seed soaking with biogas slurry on seed germination and seedling growth of Tagetes erecta].

    Science.gov (United States)

    Yuan, Dagang; Liu, Cheng; Pu, Guanglan; Wu, Deyong

    2011-04-01

    The experiment was conducted to study the effect of soaking seeds with biogas slurry on seed germination and growth of Tagetes erecta so that we can provide theory base for cultivation management of T. ercta. In order to find the best combine of biogas slurry concentration (25%, 50%, 75%, 100%) and soaking time (2, 3, 4, 5 h), completely randomized design was selected, germination percentage, seedling height, root length, root activity, content of chlorophyll (a, b) and MDA were analyzed and principle component analysis was adopted. Both soaking for 5 h in 25% biogas slurry and soaking for 4 h in 50% biogas slurry had the highest germination percentage (81.3%). Soaking for 5 h in 50% biogas slurry had the longest root, and soaking for 4 h in 50% biogas slurry had the highest root activity. They were significant higher than other 19 treatments. Soaking for 5 h in 50% biogas slurry had the highest content of chlorophyll a, chlorophyll b, chlorophyll (a + b) and ratio of chlorophyll a/ chlorophyll b. It was significant higher in these index, except b, than other 19 treatment. Soaking for 5 h in 25% biogas slurry had the lowest MDA content (0.0280 micromol x L(-1)), then was Soaking for 4 h in 50% biogas slurry (0.0286 micromol x L(-1) in MDA content). Appropriate biogas slurry concentration combined with seed soaking time can improve the germination and growth of T. erecta. As a whole, soaking for 5 h in 50% biogas slurry had the best effects on germination and growth in seedling stage for T. erecta.

  10. Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

    Energy Technology Data Exchange (ETDEWEB)

    Becaccia, A.; Ferrer, P.; Ibañez, M.A.; Estellés, F.; Rodríguez, C.; Moset, V.; Blas, C. de; Calvet, P.; García-Rebollar, P.

    2015-07-01

    This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2>0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production. (Author)

  11. Microparticulate ICE slurry for renal hypothermia: laparoscopic partial nephrectomy in a porcine model.

    Energy Technology Data Exchange (ETDEWEB)

    Shikanov, S; Wille, M; Large, M; Razmaria, A; Lifshitz, D; Chang, A; Wu, Y; Kasza, K; Shalhav, A (Nuclear Engineering Division); (University of Chicago Medical Center)

    2010-10-01

    Previously, we described the feasibility of renal hypothermia using microparticulate ice slurry during laparoscopy. In the present study, we compared surface cooling with the ice slurry versus near-frozen saline or warm ischemia (WI) during laparoscopic partial nephrectomy (LPN) in a porcine model. We used a single-kidney porcine model. Animals in 5 equal groups (n = 6 each) underwent right laparoscopic complete nephrectomy. In Phase I, left LPN was performed under 90 minutes of ischemia and 90-minute renal cooling with either slurry (Slurry group 1) or saline (Saline group 1). No cooling was applied in the WI group. In Phase II, to simulate more extreme condition, ischemia time was extended to 120 minutes and cooling shortened to 10 minutes (Slurry group 2 and Saline group 2). The study endpoints were renal and core temperature during the surgery and serum creatinine at baseline and days 1, 3, 7, and 14 after the procedure. The ice slurry was easily produced and delivered. Nadir renal temperature (mean {+-} SD) was 8 {+-} 4 C in Slurry group 1 vs. 22.5 {+-} 3 C in Saline group 1 (P < .0001). Renal rewarming to 30 C occurred after 61 {+-} 7 minutes in Slurry group 2 vs. 24 {+-} 6 minutes in Saline group 2 (P < .0001). Core temperature decreased on average to 35 C in the Saline groups compared with 37 C in the Slurry groups (P < .0001). Serum creatinine did not differ between the Saline and Slurry groups in Phases I and II at any time point. Ice slurry provides superior renal cooling compared with near-frozen saline during LPN without associated core hypothermia.

  12. Influence of soil structure on contaminant leaching from injected slurry.

    Science.gov (United States)

    Amin, M G Mostofa; Pedersen, Christina Østerballe; Forslund, Anita; Veith, Tamie L; Laegdsmand, Mette

    2016-12-15

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha-1 and followed with four irrigation events: 3.5-h period at 10 mm h-1 after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO3-N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO3-N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly lower

  13. Field Efficiency of Slurry Applications Involving In-field Transports

    DEFF Research Database (Denmark)

    Bochtis, Dionysis; Sørensen, Claus Aage Grøn; Green, Ole

    2009-01-01

    event model for the simulation of CTF operations executed by cooperating machines has been introduced. The use of this model makes it possible to estimate the extent of reduction of the field efficiency. In this paper, a field experiment involving slurry application under the conventional unconstrained......Controlled traffic farming can significantly reduce the soil compaction caused from heavy machinery systems. However, using CTF in material handling operations executed by cooperative machines, the significantly increased in-field transports lead to a lower system’s efficiency. Recently, a discrete...

  14. Advanced control of propylene polimerizations in slurry reactors

    Directory of Open Access Journals (Sweden)

    Bolsoni A.

    2000-01-01

    Full Text Available The objective of this work is to develop a strategy of nonlinear model predictive control for industrial slurry reactors of propylene polymerizations. The controlled variables are the melt index (polymer quality and the amount of unreacted monomer (productivity. The model used in the controller presents a linear dynamics and a nonlinear static gain given by a neuronal network MLP (multilayer perceptron. The simulated performance of the controller was evaluated for a typical propylene polymerization process. It is shown that the performance of the proposed control strategy is much better than the one obtained with the use of linear predictive controllers for setpoint tracking control problems.

  15. Influence of soil structure on contaminant leaching from injected slurry

    DEFF Research Database (Denmark)

    Amin, M. G. Mostofa; Pedersen, Christina Østerballe; Forslund, Anita

    2016-01-01

    of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils...... macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect...

  16. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit

  17. Slurry pipelines: economic and political issues. A review

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-11-30

    In the controversy surrounding the proposal to grant Federal eminent domain to coal-slurry pipelines, the fundamental issue is whether, on balance, such a grant is in the national interest. The principal subissues (peripheral issues) of economics, water supply and disposal, energy consumption and conservation, employment, safety, and environmental impact are analyzed. It is found that, as compared with unit trains, which are the only immediate alternative for movement of large quantities of Western coal, the pipelines are not against the national interest, except in the case of employment. It is concluded that, on balance, the pipelines are in the national interest and should be granted the power of Federal eminent domain.

  18. Deep conversion of black oils with Eni Slurry technology

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, Nicoletta; Rispoli, Giacomo

    2010-09-15

    Eni Slurry Technology represents a significant technological innovation in residue conversion and unconventional oils upgrading. EST allows the almost total conversion of heavy feedstocks into useful products, mainly transportation fuels, with a great major impact on the economic and environmental valorization of hydrocarbon resources. The peculiar characteristics of EST in terms of yields, products quality, absence of undesired by-products and feedstock flexibility constitute its superior economic and environmental attractiveness. The first full scale industrial plant based on this new technology will be realized in Eni's Sannazzaro refinery (23,000 bpd). Oil in is scheduled by 4th quarter 2012.

  19. Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign

    Directory of Open Access Journals (Sweden)

    L.-H. Rivellini

    2017-09-01

    Full Text Available The present study offers the first chemical characterization of the submicron (PM1 fraction in western Africa at a high time resolution, thanks to collocated measurements of nonrefractory (NR species with an Aerosol Chemical Speciation Monitor (ACSM, black carbon and iron concentrations derived from absorption coefficient measurements with a 7-wavelength Aethalometer, and total PM1 determined by a TEOM-FDMS (tapered element oscillating microbalance–filtered dynamic measurement system for mass closure. The field campaign was carried out over 3 months (March to June 2015 as part of the SHADOW (SaHAran Dust Over West Africa project at a coastal site located in the outskirts of the city of Mbour, Senegal. With an averaged mass concentration of 5.4 µg m−3, levels of NR PM1 in Mbour were 3 to 10 times lower than those generally measured in urban and suburban polluted environments. Nonetheless the first half of the observation period was marked by intense but short pollution events (NR PM1 concentrations higher than 15 µg m−3, sea breeze phenomena and Saharan desert dust outbreaks (PM10 up to 900 µg m−3. During the second half of the campaign, the sampling site was mainly under the influence of marine air masses. The air masses on days under continental and sea breeze influences were dominated by organics (36–40 %, whereas sulfate particles were predominant (40 % for days under oceanic influence. Overall, measurements showed that about three-quarters of the total PM1 were explained by NR PM1, BC (black carbon and Fe (a proxy for dust concentrations, leaving approximately one-quarter for other refractory species. A mean value of 4.6 % for the Fe ∕ PM1 ratio was obtained. Source apportionment of the organic fraction, using positive matrix factorization (PMF, highlighted the impact of local combustion sources, such as traffic and residential activities, which contribute on average to 52 % of the total organic

  20. Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign

    Science.gov (United States)

    Rivellini, Laura-Hélèna; Chiapello, Isabelle; Tison, Emmanuel; Fourmentin, Marc; Féron, Anaïs; Diallo, Aboubacry; N'Diaye, Thierno; Goloub, Philippe; Canonaco, Francesco; Prévôt, André Stephan Henry; Riffault, Véronique

    2017-09-01

    The present study offers the first chemical characterization of the submicron (PM1) fraction in western Africa at a high time resolution, thanks to collocated measurements of nonrefractory (NR) species with an Aerosol Chemical Speciation Monitor (ACSM), black carbon and iron concentrations derived from absorption coefficient measurements with a 7-wavelength Aethalometer, and total PM1 determined by a TEOM-FDMS (tapered element oscillating microbalance-filtered dynamic measurement system) for mass closure. The field campaign was carried out over 3 months (March to June 2015) as part of the SHADOW (SaHAran Dust Over West Africa) project at a coastal site located in the outskirts of the city of Mbour, Senegal. With an averaged mass concentration of 5.4 µg m-3, levels of NR PM1 in Mbour were 3 to 10 times lower than those generally measured in urban and suburban polluted environments. Nonetheless the first half of the observation period was marked by intense but short pollution events (NR PM1 concentrations higher than 15 µg m-3), sea breeze phenomena and Saharan desert dust outbreaks (PM10 up to 900 µg m-3). During the second half of the campaign, the sampling site was mainly under the influence of marine air masses. The air masses on days under continental and sea breeze influences were dominated by organics (36-40 %), whereas sulfate particles were predominant (40 %) for days under oceanic influence. Overall, measurements showed that about three-quarters of the total PM1 were explained by NR PM1, BC (black carbon) and Fe (a proxy for dust) concentrations, leaving approximately one-quarter for other refractory species. A mean value of 4.6 % for the Fe / PM1 ratio was obtained. Source apportionment of the organic fraction, using positive matrix factorization (PMF), highlighted the impact of local combustion sources, such as traffic and residential activities, which contribute on average to 52 % of the total organic fraction. A new organic aerosol (OA) source

  1. Study of Agglomeration Characteristics of Hydrate Particles in Oil/Gas Pipelines

    National Research Council Canada - National Science Library

    Wang, W; Li, Y; Liu, H; Zhao, P

    2015-01-01

    ... advantages. Forces acting on hydrate particles and agglomeration characteristic of hydrate particles which are crucial for the application of the new technique in engineering field should be studied thoroughly so as to offer instruction for hydrate slurry steady flow. Based on literatures, force balance model based on hydrate agglomeration force ana...

  2. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa

    Science.gov (United States)

    Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy sl...

  3. Dispersion and rheological studies of Y–PSZ tape casting slurry

    Indian Academy of Sciences (India)

    Optimized tape casting slurry was prepared using PEG 600 and BBP as plasticizers and PVB as the binder. Cyclohexanone was used as the homogenizer. The optimized slurry composition with 58% solid loading exhibited shear-thinning pseudoplastic rheological behaviour. Y–PSZ tapes of ∼ 50 m thickness free from ...

  4. Bioslurry reactor for treatment of slurries containing minerals, soils and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Hanify, D.E.; Duncan, S.P.; Emmett, R.C. Jr.; Brox, G.H.; O' Connor, L.T.

    1993-07-13

    Apparatus for use in treating, through use of bacteria, minerals, soils or sludges which have been contaminated with hazardous waste organic compounds, said apparatus is described comprising: slurry-forming means for adding water to said minerals, soils or sludges to form a slurry; screening means, associated with said slurry-forming means, for removing all solid material of a preselected size from said slurry; a container means associated with said screening means for containing a quantity of slurry and bacteria suited to treat hazardous waste organic compounds; an oxygen supply means mounted within said container means, said oxygen supply means including at least one flexible porous membrane diffuser adapted for receiving a supply of oxygen-containing gas and distributing said gas into said container means in a form of fine bubbles; a mixing means mounted within said container means for mixing and recirculating the slurry contained within said container means; an exhaust gas recycling means mounted on said container means for drawing off a quantity of exhaust gases from said container means, treating said exhaust gas by extracting carbon dioxide therefrom, injecting oxygen into said quantity of exhaust gas and thereafter reintroducing said treated exhaust gas into said container means by means of said oxygen supply means, wherein said container means is sealed to prevent escape of exhaust gases; and dewatering means, associated with said container means, for receiving said slurry from said container means and dewatering said slurry.

  5. 30 CFR 77.216-4 - Water, sediment or slurry impoundments and impounding structures; reporting requirements...

    Science.gov (United States)

    2010-07-01

    ....216-4 Water, sediment or slurry impoundments and impounding structures; reporting requirements... reporting period. (4) Storage capacity of the impounding structure. (5) The volume of the impounded water... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment or slurry impoundments and...

  6. 30 CFR 77.216-5 - Water, sediment or slurry impoundments and impounding structures; abandonment.

    Science.gov (United States)

    2010-07-01

    ... slurry impoundments and impounding structures; abandonment. (a) Prior to abandonment of any water... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment or slurry impoundments and impounding structures; abandonment. 77.216-5 Section 77.216-5 Mineral Resources MINE SAFETY AND HEALTH...

  7. 30 CFR 77.216-1 - Water, sediment or slurry impoundments and impounding structures; identification.

    Science.gov (United States)

    2010-07-01

    ..., operating, or controlling the structure, shall be located on or immediately adjacent to each water, sediment... applicable. (a) For existing water, sediment or slurry impounding structures, markers shall be placed before May 1, 1976. (b) For new or proposed water, sediment, or slurry impounding structures, markers shall...

  8. Semisolid slurry of 7A04 aluminum alloy prepared by electromagnetic stirring and Sc, Zr additions

    Directory of Open Access Journals (Sweden)

    Jun-wen Zhao

    2017-05-01

    Full Text Available Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring (EMS and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.

  9. Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A.; Bendale, P.G.

    1991-12-01

    This work is a comparative evaluation of slurry reactors and fixed-bed reactors, with special emphasis on cost. Relative differences between slurry reactors and fixed-bed reactors have been pointed out in previous reviews; the differences pertinent to indirect liquefaction are summarized here. Design of both types is outlined.

  10. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  11. Anaerobic digestion of pig manure fibres from commercial pig slurry separation units

    DEFF Research Database (Denmark)

    Thygesen, Ole; Triolo, Jin M.; Sommer, Sven G.

    2014-01-01

    and screw press on average produced approximately 220l [CH4]kg-1 [VS]. Initial methane production can be described using a first-order kinetic model. The average rate constant for manure fibres was 0.030d-1 and for pig slurry 0.071d-1, showing that pig slurry is digested much faster than manure fibres....

  12. Use Of The African Locust Bean, Parkia biglobosa Waste Slurry As ...

    African Journals Online (AJOL)

    An assessment of the nutritive value of the waste slurry of the African locust bean, Parkia biglobosa as an energy source in practical diets for tilapia was carried out in glass aquaria. Five diets (35% crude protein) were formulated in which yellow maize was replaced at varying level with parkia slurry waste as follows: Diet 1, ...

  13. Hydrate slurry as cold energy storage and distribution medium : Enhancing the performance of refrigeration systems

    NARCIS (Netherlands)

    Zhou, H.

    2017-01-01

    The research presented in this thesis focuses on the use of hydrate slurries in the air conditioning and refrigeration areas. Both experimental and mathematical methods have been used. Hydrate slurries have been suggested as promising cold storage materials that can be used in air conditioning

  14. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-09-29

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sup 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions.

  15. Metals attenuation in minerally-enhanced slurry walls

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Prince, M.J. [Bucknell Univ., Lewisburg, PA (United States); Adams, T.L. [Woodward-Clyde Consultants, Blue Bell, PA (United States)

    1997-12-31

    In current practice, a soil-bentonite slurry trench cutoff wall is a mixture of water, soil, and bentonite that is designed to serve as a passive barrier to ground water and contaminant transport. This study evaluated the transformation of a passive slurry trench cutoff wall barrier to an active barrier system. Conventional soil-bentonite vertical barriers presently serve as passive barriers to contaminated ground water. An active barrier will not only fulfill the functions of the present passive barrier system, but also retard contaminant transport by adsorptive processes. Attapulgite, Na-chabazite, and Ca-chabazite were added to {open_quotes}activate{close_quotes} the conventional soil-bentonite backfill. Batch extraction tests were performed to determine the partitioning coefficients of cadmium and zinc between the liquid and solid phase when in contact with the backfill mixes. Batch extraction and mathematical modeling results demonstrate the ability of an active barrier to retard the transport of cadmium and zinc. The reactivity of the soil-bentonite vertical barrier depends heavily on the inorganic being adsorbed. The reactivity of the barrier also depends on the adsorptive capabilities of the clay minerals added to the conventional soil-bentonite vertical barrier. The results of laboratory studies suggest that passive barrier systems can be transformed to active systems. Further, the data suggests that although conventional soil-bentonite vertical barriers are presently designed as passive barriers, they already have adsorptive capacity associated with active barriers.

  16. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    Energy Technology Data Exchange (ETDEWEB)

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  17. Chemical vapor deposition of silicon nanodots on TiO{sub 2} submicronic powders in vibrated fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Cadoret, L. [Laboratoire de Genie Chimique, UMR CNRS 5503, Universite de Toulouse, ENSIACET/INPT, 4 allee Emile Monso, BP 74233, 31432 Toulouse Cedex 4 (France); Rossignol, C.; Dexpert-Ghys, J. [CEMES, UPR CNRS 8011, UPS-Toulouse, 29 rue Jean Marvig, 31055 Toulouse Cedex 4 (France); Caussat, B., E-mail: Brigitte.Caussat@ensiacet.fr [Laboratoire de Genie Chimique, UMR CNRS 5503, Universite de Toulouse, ENSIACET/INPT, 4 allee Emile Monso, BP 74233, 31432 Toulouse Cedex 4 (France)

    2010-06-15

    Silicon nanodots have been deposited on TiO{sub 2} submicronic powders in a vibrated fluidized bed chemical vapor deposition (FBCVD) reactor from silane SiH{sub 4}. Deposition conditions involving very low deposition rates have been studied. After treatment, powders are under the form of micronic agglomerates. In the operating range tested, this agglomerates formation mainly depends on the fluidization conditions and not on the CVD parameters. The best results have been obtained for anatase TiO{sub 2} powders for which the conditions of fluidization have been the most optimized. For these anatase powders, agglomerates are porous. SEM and TEM imaging prove that silicon nanodots (8-10 nm in size) have been deposited on the surface of particles and that this deposition is uniform on the whole powders and conformal around each grain, even if not fully continuous. Raman spectroscopy shows that the TiO{sub 2} powders have been partially reduced into TiO{sub 2-x} during deposition. The TiO{sub 2} stoichiometry can be recovered by annealing under air, and IR spectroscopy indicates that the deposited silicon nanodots have been at least partly oxidized into SiO{sub 2} after this annealing.

  18. Bench-scale cross flow filtration of Tank S-107 sludge slurries and Tank C-107 supernatant

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Reynolds, B.A.

    1996-10-01

    Hanford tank waste filtration experiments were conducted using a bench-scale cross flow filter on 8 wt%, 1.5 wt%, and 0.05 wt% Tank S- 107 sludge slurries and on Tank C-107 supernatant. For comparison, two simulants each with solids loadings of 8 wt% and 0.05 wt% were also tested. The purpose of the tests was to determine the efficacy of cross flow filtration on slurries of various solids loadings. -In addition, filtrate flux dependency on axial velocity and transmembrane pressure was sought so that conditions for future experiments might be better selected. The data gathered are compared to the simulants and three cross flow filtration models. A two- parameter central composite design which tested. transmembrane pressure from 5 to 40 psig and axial Velocity from 3 to 9 ft/s was used for all feeds. The cross flow filter effectively removed solids from the liquid, as 19 of 20 filtrate samples had particle concentrations below the resolution limit of the photon correlation spectrometer used in the Hanford Radiocolloid Laboratory. Radiochemical analysis indicate that all filtrate samples were below Class A waste classification standards for 9OSr and transuranics.

  19. The Influence of Clinoptilolite on Technological Properties of Fresh and Set Slag-Alkaline Slurries

    Directory of Open Access Journals (Sweden)

    Rafał Wiśniowski

    2006-10-01

    Full Text Available Since 1990 the AGH-UST scientists have been working on more efficient recipes of slag-alkaline slurries for sealing the soil and rock mass with hole injection methods.A special attention has been paid to the increasing efficiency of geoengineering works on a rational shaping of technological parameters of fresh and set slag-alkaline slurries.The properties of slurries containing clinoptiolite zeolites from the Košice area are presented in the paper.An addition of zeolites to the slurries increases the tightness of the set slurries. Zeolites favorably influence the course of crystallization of sodium zeolite and the hydroparameters in the slag-alkaline matrix.

  20. Effects of Cattle Slurry Acidification on Ammonia and Methane Evolution during Storage

    DEFF Research Database (Denmark)

    Petersen, Søren O; Andersen, Astrid; Eriksen, Jørgen

    2012-01-01

    . In a third storage experiment, cattle slurry acidified with commercial equipment on two farms was incubated. In the manipulation experiments, effects of acid and sulfate were distinguished by adding hydrochloric acid and potassium sulfate separately or in combination, rather than sulfuric acid. In one......Slurry acidification before storage is known to reduce NH3 emissions, but recent observations have indicated that CH4 emissions are also reduced. We investigated the evolution of CH4 from fresh and aged cattle slurry during 3 mo of storage as influenced by pH adjustment to 5.5 with sulfuric acid...... experiment sulfur was also added to slurry as the amino acid methionine in separate treatments. In each treatment 20-kg portions of slurry (n = 4) were stored for 95 d. All samples were subsampled nine to 10 times for determination of NH3 and CH4 evolution rates using a 2-L flow-through system. In all...

  1. Reducing DRIFT Backgrounds with a Submicron Aluminized-Mylar Cathode

    OpenAIRE

    Battat, J. S. R.; Daw, E.; Dorofeev, A.; Ezeribe, A. C.; Fox, J. R.; Gauvreau, J-L.; Gold, M; Harmon, L.; Harton, J.; Lafler, R.; Landers, J.; Lauer, R. J.; Lee, E.R.; Loomba, D.; Lumnah, A.

    2015-01-01

    Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a 0.9 micron thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of backgrou...

  2. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  3. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  4. Filtration of submicrometer particles by pelagic tunicates.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P; Stocker, Roman

    2010-08-24

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-microm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 microm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-microm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 microm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean.

  5. Optimization of nanoparticulate indium tin oxide slurries for the manufacture of ultra-thin indium tin oxide coatings with the slot-die coating process

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, M.; Riess, K.; Roosen, A. [Erlangen-Nuremberg Univ., Erlangen (Germany). Dept. of Materials Science, Glass and Ceramics

    2016-07-01

    This paper deals with the optimization of colloidal processing to achieve suitable nanoparticulate indium tin oxide (ITO) slurries for the production of sub-μm-thin ITO coatings with the slot die coating process. For application in printed electronics these ITO coatings, which are composite films consisting of nanoparticulate ITO and a polymeric binder, should offer high flexibility, transparency and electrical conductivity. To preserve their flexibility, the composite films are not subject to any heat treatment, instead they are used as deposited and dried. To achieve very good transparency and electrical conductivity at the same time, the slurries must exhibit excellent dispersivity to result in a dense particle packing during film formation and drying. To reduce materials costs, films with thicknesses of several 100 nm are of interest. Therefore, the slot-die technique was applied as a fast, pre-dosing technique to produce sub-μm-thin ITO/binder composite films. The resulting ITO/binder films were characterized with regard to their key properties such as total transmission and specific electrical resistance. With the colloidal optimization of ethanol- and water-based nanoparticulate ITO slurries using PVP and PVB as binders, it was possible to achieve films of 250 nm in thickness exhibiting high total transmission of ∝ 93 % and a low specific electrical resistance of ∝ 10 Ω.cm.

  6. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa.

    Science.gov (United States)

    Coblentz, W K; Muck, R E; Borchardt, M A; Spencer, S K; Jokela, W E; Bertram, M G; Coffey, K P

    2014-11-01

    Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy slurry was applied to 0.17-ha plots of alfalfa; applications were made to the second (HARV1) and third (HARV2) cuttings during June and July of 2012, respectively, at mean rates of 42,400 ± 5271 and 41,700 ± 2397 L/ha, respectively. Application strategies included (1) no slurry, (2) slurry applied directly to stubble immediately after the preceding harvest, (3) slurry applied after 1 wk of post-ensiled regrowth, or (4) slurry applied after 2 wk of regrowth. All harvested forage was packaged in large, rectangular bales that were ensiled as wrapped balage. Yields of DM harvested from HARV1 (2,477 kg/ha) and HARV2 (781 kg/ha) were not affected by slurry application treatment. By May 2013, all silages appeared to be well preserved, with no indication of undesirable odors characteristic of clostridial fermentations. Clostridium tyrobutyricum, which is known to negatively affect cheese production, was not detected in any forage on either a pre- or post-ensiled basis. On a pre-ensiled basis, counts for Clostridium cluster 1 were greater for slurry-applied plots than for those receiving no slurry, and this response was consistent for HARV1 (4.44 vs. 3.29 log10 genomic copies/g) and HARV2 (4.99 vs. 3.88 log10 genomic copies/g). Similar responses were observed on a post-ensiled basis; however, post-ensiled counts also were greater for HARV1 (5.51 vs. 5.17 log10 genomic copies/g) and HARV2 (5.84 vs. 5.28 log10 genomic copies/g) when slurry was applied to regrowth compared with stubble. For HARV2, counts also were greater following a 2-wk application delay compared with a 1-wk delay (6.23 vs. 5.45 log10 genomic copies/g). These results suggest that the risk of clostridial

  7. Dispersion of fine phosphor particles by newly developed beads mill

    Science.gov (United States)

    Joni, I. Made; Panatarani, C.; Maulana, Dwindra W.

    2016-02-01

    Fine phosphor Y2O3:Eu3+ particles has advanced properties compare to conventional particles applied for compact fluorescent lamp (CFL) as three band phosphor. However, suspension of fine particles easily agglomerated during preparation of spray coating of the CFL tube. Therefore, it is introduced newly developed beads mill system to disperse fine phosphor. The beads mill consist of glass beads, dispersing chamber (impellers), separator chamber, slurry pump and motors. The first important performance of beads mill is the performance of the designed on separating the beads with the suspended fine particles. We report the development of beads mill and its separation performance vary in flow rate and separator rotation speeds. The 27 kg of glass beads with 30 µm in size was poured into dispersing chamber and then water was pumped continuously through the slurry pump. The samples for the separation test was obtained every 1 hours vary in rotation speed and slurry flow rate. The results shows that the separation performance was 99.99 % obtained for the rotation speed of >1000 rpm and flow rate of 8 L/minute. The performances of the system was verified by dispersing fine phosphor Y2O3:Eu3+ particles with concentration 1 wt.%. From the observed size distribution of particles after beads mill, it is concluded that the current design of bead mill effectively dispersed fine phosphor Y2O3:Eu3+.

  8. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    National Research Council Canada - National Science Library

    Soichiro Kumamoto; Kazuya Okubo; Toru Fujii

    2016-01-01

    The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP...

  9. Catalytic oxidation of S(IV) in seawater slurries of activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    B.F. Vidal; P. Ollero; F.J. Gutierrez Ortiz; R. Arjona [University of Seville, Sevilla (Spain). Department of Chemical and Environmental Engineering

    2005-07-01

    Flue gas desulfurization (FGD) by means of SO{sub 2} absorption in seawater is a well-known process with a main drawback; due to the low S(IV) oxidation rate at the low pH values of the absorption tower effluent, a large oxidation basin is required. Laboratory reactor tests, in which a commercially available activated carbon was used, showed a significant catalytic effect. It is shown that the kinetic equation for the catalytic oxidation of S(IV), in seawater slurries of activated carbon, is first-order with respect to S(IV) and zero-order with respect to oxygen. The dependence of the kinetic constant with respect to pH, temperature, and catalyst size particles were also obtained. The study showed that using an appropriated size and concentration of catalyst, it is possible to reach, at pH = 4, S(IV), oxidation rates similar to those obtained at pH = 6 without catalyst. Operating at pH = 4 requires less seawater flow rate in the oxidation basin than at pH = 6. Thus, the volume of the water treatment plant can be reduced too. The space requirements and both the capital and the operating cost are lower, a critical issue concerning the retrofitting of existing power stations. 12 refs., 9 figs., 3 tabs.

  10. Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Vass, A.A.; Ho, C.H.

    1998-08-01

    Treatment of 2,4,6-trinitrotoluene (TNT)-contaminated soil in the Joliet Army Ammunition Plant (JAAP) soil slurry bioreactor (SSBR) eliminated detectable TNT but left trace levels of residual monoamino and diamino metabolites under some reactor operating conditions. The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA) field demonstration. Aquatic toxicity to Ceriodaphnia dubia from TNT in the leachates of TNT-contaminated soil was eliminated in the leachates of JAAP SSBR product soil. The toxicity of soil product leachates to Ceriodaphnia dubia was reasonably predicted using the specific toxicities of the components detected, weighted by their leachate concentrations. In samples where TNT metabolites were observed in the soil product and its leachates, this method determined that the contribution to predicted toxicity values was dominated by trace amounts of the diamino-metabolites, which are very toxic to ceriodaphnia dubia. When the SSBR operating conditions reduced the concentrations of TNT metabolites in the product soils and their leachates to undetectable concentrations, the main contributors to predicted aquatic toxicity values appeared to be molasses residues, potassium, and bicarbonate. Potassium and bicarbonate are beneficial or benign to the environment, and molasses residues are substantially degraded in the environment. Exotoxins, pathogenic bacteria, inorganic particles, ammonia, and dissolved metals did not appear to be important to soil product toxicity.

  11. Moment expansion approach to calculate impact ionization rate in submicron silicon devices

    Science.gov (United States)

    Sonoda, Ken-ichiro; Yamaji, Mitsuru; Taniguchi, Kenji; Hamaguchi, Chihiro; Dunham, Scott T.

    1996-11-01

    A method to calculate the impact ionization rate in submicron silicon devices is developed using both an average energy and an average square energy of electrons. The method consists of an impact ionization model formulated with the average energy and conservation equations for the average square energy in the framework of an energy transport model. Parameters for the transport equations are extracted in such a way that calculated moments based on these equations match Monte Carlo simulation results. The impact ionization generation rate in an n+nn+ structure calculated with this method agrees well with the results obtained from Monte Carlo simulation. The new method is also applied to a submicron n-MOSFET. The calculated distribution of the generation rate is found to be quite different from the results based on a conventional method.

  12. Effective Use of Focused Ion Beam (FIB) in Investigating Fundamental Mechanical Properties of Metals at the Sub-Micron Scale

    OpenAIRE

    Greer, Julia R.

    2006-01-01

    Recent advances in the 2-beam focused ion beams technology (FIB) have enabled researchers to not only perform high-precision nanolithography and micro-machining, but also to apply these novel fabrication techniques to investigating a broad range of materials' properties at the submicron and nano-scales. In our work, the FIB is utilized in manufacturing of sub-micron cylinders, or nano-pillars, as well as of TEM cross-sections to directly investigate plasticity of metals at thes...

  13. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland, Ph.D.

    1999-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  14. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland

    2002-09-30

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  15. An integrated approach to route selection in slurry pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy G.; Altmann, Nara [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    The pressure to get engineering projects done and constructed as fast as possible in order to take advantage of the high prices in metals and petrochemicals has been driving companies to skip the conceptual phase and go straight into basic engineering with cost estimates in the level of 15% accuracy. By-passing early engineering and demanding higher cost estimating accuracy is a contradiction. In most cases, savings made on capital investment is much higher had money been spent in conceptual studies which allow for the optimal solution to be found. This paper reviews one of the key aspects in conceptual engineering of slurry pipeline designs: route selection. This activity is often overlooked, causing capital cost and operating difficulties to rise unnecessarily. This paper describes and gives example on how an integrated client/engineering company's approach to route selection can produce significant savings in pipeline construction and operating costs. (author)

  16. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland, Ph.D.

    1999-03-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors. The past three months of research have been focused on two major areas of bubble column hydrodynamics: (1) pressure and temperature effects on gas holdup and (2) region transition using a sparger as a gas distributor.

  17. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland, Ph.D.

    2000-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  18. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland, Ph.D.

    2002-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  19. Changes in the properties of pig manure slurry.

    Science.gov (United States)

    Kowalski, Zygmunt; Makara, Agnieszka; Fijorek, Kamil

    2013-01-01

    The paper presents the results of analyses of samples of manure from a pig farm located near Piła, Poland performed between June 2011 and May 2012 using a single sampling system. The statistical analyses of the average content of chemical and biological oxide demands, nitrogen, phosphorus, potassium, calcium and dry mass in the slurry in various seasons allowed us to draw conclusions concerning the changes in the chemical composition of the manure in specific seasons and to determine the correlations between the chemical parameters. The average content of N, BOD, P, and dry mass content tended to decrease systematically from the spring until the winter. The highest correlation coefficient, which indicates significant interdependency among the variables tested, was consistently found for COD and BOD, whereas the smallest correlation coefficient was found consistently for K and Ca and once for Ca and N.

  20. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.