WorldWideScience

Sample records for submerged-diffuser thermal plumes

  1. Field studies of submerged-diffuser thermal plumes with comparisons to predictive model results

    International Nuclear Information System (INIS)

    Frigo, A.A.; Paddock, R.A.; Ditmars, J.D.

    1976-01-01

    Thermal plumes from submerged discharges of cooling water from two power plants on Lake Michigan were studied. The system for the acquisition of water temperatures and ambient conditions permitted the three-dimensional structure of the plumes to be determined. The Zion Nuclear Power Station has two submerged discharge structures separated by only 94 m. Under conditions of flow from both structures, interaction between the two plumes resulted in larger thermal fields than would be predicted by the superposition of single non-interacting plumes. Maximum temperatures in the near-field region of the plume compared favorably with mathematical model predictions. A comparison of physical-model predictions for the plume at the D. C. Cook Nuclear Plant with prototype measurements indicated good agreement in the near-field region, but differences in the far-field occurred as similitude was not preserved there

  2. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  3. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... above a point heat source cannot be used. This is caused either by the way of generating the plume including a long intermediate region or by the environmental conditions where vertical temperature gradients are present. The flow has a larger angle of spread and the entrainment factor is greather than...... turbulent plumes from different heated bodies are investigated. The measurements have taken place in a full-scale test room where the vertical temperature gradient have been changed. The velocity and the temperature distribution in the plume are measured. Large scale plume axis wandering is taken...

  4. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter

    Axisymmeric circular buoyant jets are treated both theoretically and experimentally. From a literature study the author concludes that the state of experimental knowledge is less satisfactory. Further three different measuring methods have been established to investigate the thermal plumes from...

  5. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  6. Thermal turbulent convection: thermal plumes and fluctuations

    International Nuclear Information System (INIS)

    Gibert, M.

    2007-10-01

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  7. Field studies of the thermal plume from the D. C. Cook submerged discharge with comparisons to hydraulic-model results

    International Nuclear Information System (INIS)

    Frigo, A.A.; Paddock, R.A.; McCown, D.L.

    1975-06-01

    The Donald C. Cook Nuclear Plant at Bridgman, Michigan, uses submerged-diffuser discharges as a means of disposing waste heat into Lake Michigan. Preliminary results of temperature surveys of the thermal plume at the D. C. Cook Plant are presented. Indications are that the spatial extent of the plume at the surface is much smaller than previous results for surface shoreline discharges, particularly in the near and intermediate portions of the plume. Comparisons of limited prototype data with hydraulic (tank)-model predictions indicate that the model predictions for centerline temperature decay at the surface are too high for the initial 200 m from the discharge, but are generally correct beyond this point to the limits of the model. In addition, the hydraulic-model results underestimate the areal extent of the near and intermediate portions of the plume at the surface. Because this is the first report of a new field program, several inadequacies in the field-measurement techniques are noted and discussed. New techniques that have been developed to remedy these deficiencies, and which will be implemented for future field work, are also described. (auth)

  8. Turbulent structure of thermal plume. Velocity field

    International Nuclear Information System (INIS)

    Guillou, B.; Brahimi, M.; Doan-kim-son

    1986-01-01

    An experimental investigation and a numerical study of the dynamics of a turbulent plume rising from a strongly heated source are described. This type of flow is met in thermal effluents (air, vapor) from, e.g., cooling towers of thermal power plants. The mean and fluctuating values of the vertical component of the velocity were determined using a Laser-Doppler anemometer. The measurements allow us to distinguish three regions in the plume-a developing region near the source, an intermediate region, and a self-preserving region. The characteristics of each zone have been determined. In the self-preserving zone, especially, the turbulence level on the axis and the entrainment coefficient are almost twice of the values observed in jets. The numerical model proposed takes into account an important phenomenon, the intermittency, observed in the plume. This model, established with the self-preserving hypothesis, brings out analytical laws. These laws and the predicted velocity profile are in agreement with the experimental evolutions [fr

  9. Modelling thermal plume impacts - Kalpakkam approach

    International Nuclear Information System (INIS)

    Rao, T.S.; Anup Kumar, B.; Narasimhan, S.V.

    2002-01-01

    A good understanding of temperature patterns in the receiving waters is essential to know the heat dissipation from thermal plumes originating from coastal power plants. The seasonal temperature profiles of the Kalpakkam coast near Madras Atomic Power Station (MAPS) thermal out fall site are determined and analysed. It is observed that the seasonal current reversal in the near shore zone is one of the major mechanisms for the transport of effluents away from the point of mixing. To further refine our understanding of the mixing and dilution processes, it is necessary to numerically simulate the coastal ocean processes by parameterising the key factors concerned. In this paper, we outline the experimental approach to achieve this objective. (author)

  10. New method for calculation of integral characteristics of thermal plumes

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2008-01-01

    A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...... of the directional velocity (upward component of the mean velocity). The method is applied for determination of the characteristics of an asymmetric thermal plume generated by a sitting person. The method was validated in full-scale experiments in a climatic chamber with a thermal manikin as a simulator of a sitting...

  11. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  12. Thermal radiation from large bolides and impact plumes

    Science.gov (United States)

    Svetsov, V.; Shuvalov, V.

    2017-09-01

    Numerical simulations of the impacts of asteroids and comets from 20 m to 3 km in diameter have been carried out and thermal radiation fluxes on the ground and luminous efficiencies of the impacts have been calculated. It was assumed that the cosmic objects have no strength, deform, fragment, and vaporize in the atmosphere. After the impact on the ground, formation of craters and plumes was simulated taking into account internal friction of destroyed rocks and a wake formed in the atmosphere. The equations of radiative transfer, added to the equations of gas dynamics, were used in the approximation of radiative heat diffusion or, if the Rosseland optical depth of a radiating volume of gas and vapor was less than unity, in the approximation of volume emission. Radiation fluxes on the Earth's surface were calculated by integrating the equation of radiative transfer along rays passing through a luminous area. Direct thermal radiation from fireballs and impact plumes produced by asteroids and comets larger than 50 m in diameter is dangerous for people, animals, plants, economic objects. Forest fires can be ignited on the ground within a radius of roughly 1000 times the body's diameter (for diameters of the order or smaller than 1 km), 50-m-diameter bodies can ignite forest fires within a radius of up to 40 km and 3-km asteroids - within 1700 km.

  13. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  14. Nuclear thermal rocket plume interactions with spacecraft. Final report

    International Nuclear Information System (INIS)

    Mauk, B.H.; Gatsonis, N.A.; Buzby, J.; Yin, X.

    1997-01-01

    This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions

  15. Thermally-Driven Mantle Plumes Reconcile Hot-spot Observations

    Science.gov (United States)

    Davies, D.; Davies, J.

    2008-12-01

    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth.

  16. Organic contaminants in thermal plume resident brown trout

    International Nuclear Information System (INIS)

    Romberg, G.P.; Bourne, S.

    1978-01-01

    A pilot study was conducted to identify possible contaminants accumulated by thermal plume-resident fish in Lake Michigan. Brown trout were maintained in tanks receiving intake and discharge (less than or equal to 21 0 C) water from a power plant and were fed a diet of frozen alewife. Fish were sampled over a period of 127 days in order to estimate uptake rates and equilibrium levels for toxic organic and inorganic materials occurring in Lake Michigan fish and water. Experimental fish and natural samples were analyzed to determine the distribution of contaminants in various tissues and the corresponding pollutant levels in similar size brown trout from Lake Michigan. The quantitative analyses for the major organic contaminants are summarized. Without exception, the pyloric caecum of brown trout contained the highest concentration of lipids, PCB's, and chlorinated pesticides. Gill and kidney samples contained lower concentrations of contaminants than the caecum, while liver and muscle values were lowest

  17. The Thermal Plume above a Standing Human Body Exposed to Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter V.; Li, Yuguo

    2009-01-01

    This study compares the impact of air distribution on the thermal plume above a human body in indoor environment. Three sets of measurements are conducted in a full-scale test room with different ventilation conditions. One breathing thermal manikin standing in the room is used to simulate...... the human body. Long-time average air velocity profiles at locations closely above the manikin are taken to identify the wandering thermal plume....

  18. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  19. Thermal turbulent convection: thermal plumes and fluctuations; Convection thermique turbulente: panaches et fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, M

    2007-10-15

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  20. Modelling of coastal current and thermal plume dispersion - A case study off Nagapattinam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Vethamony, P.; Suryanarayana, A.; Gouveia, A.D.

    representing the monsoons and the transition periods are selected to study the seasonal variability of simulated currents and thermal plumes. The plume showed northward spreading during March and July and southward during December. During October the spreading...

  1. Thermal plume above a simulated sitting person with different complexity of body geometry

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.

    2007-01-01

    Occupants are one of the main heat sources in rooms. They generate thermal plumes with characteristics, which depend on geometry, surface temperature and area of the human body in contact with the surrounding air as well as temperature, velocity and turbulence intensity distribution in the room....... The characteristics of the thermal plume generated by a sitting person were studied using four human body simulators with different complexity of geometry but equal surface area: a vertical cylinder, a rectangular box, a dummy, and a thermal manikin. The results show that the dummy and the thermal manikin generate...

  2. Periodic large-amplitude thermal oscillations occurring in a buoyant plume

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1983-01-01

    Reactor events such as N-1 loop operation in conjunction with a leaky check valve in the down loop can cause flow to be convected back into the reactor outlet nozzle/piping region and to be back-flushed into the reactor outlet plenum. The preceding results in a temperature difference between pipe inflow and plenum. This temperature difference causes buoyancy forces which if large enough can cause: a pipe backflow and recirculation loop; and a thermal plume in the plenum. Both phenomena are being studied because they can produce undesirable pipe, nozzle and plenum wall thermal distributions, and hence undesirable thermal stresses. This paper discusses some features of the plume

  3. Impact of boundary conditions on the development of the thermal plume above a sitting human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor

    2010-01-01

    a sitting occupant. CFD predictions were performed to explain the reason for a skewness in the thermal plume above a sitting thermal manikin with realistic body shape, size, and surface temperature distribution, measured in a climate chamber with mean radiant temperature equal to the room air temperature...

  4. Impact of personal factors and furniture arrangement on the thermal plume above a human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor

    2007-01-01

    . The results reveal that the convective heat loss from the body changes inverse proportionally to the clothing thermal insulation and affects the enthalpy excess in the plume. Chair design changes the ratio between convection and radiation heat losses from the body and has significant impact on the thermal...

  5. Thermal plume residence and temperature exposure of salmonid fishes

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Romberg, G.P.; Thommes, M.M.; Prepejchal, W.

    1976-01-01

    A nondestructive echo-location technique was used to estimate the density-distribution patterns of fish and to determine the influence of discharge design and location on fish attraction. Studies were conducted between 1972 and 1975 at the Point Beach and Zion nulcear power plants and Waukegan fossil-fuel power plant on Lake Michigan. Preliminary inspection of results indicates seasonal attraction of abundant species, such as alewife, trout, and salmon. In general, fish densities in the plume area tend to be elevated relative to unheated areas during spring and early summer. Power plant location and discharge type apparently affect the magnitude and timing of attraction to discharges. Fish in plume areas generally are observed at elevated temperatures or near temperature interfaces. Data analyses include conventional approaches to detect differences in mean densities over time and space and recent developments in time-series analysis. Predictability of fish responses will depend on the identification of temporal and spatial distribution patterns

  6. N Reactor thermal plume characterization during Pu-only mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  7. ALMA Thermal Observations of a Proposed Plume Source Region on Europa

    Energy Technology Data Exchange (ETDEWEB)

    Trumbo, Samantha K.; Brown, Michael E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Butler, Bryan J. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2017-10-01

    We present a daytime thermal image of Europa taken with the Atacama Large Millimeter Array. The imaged region includes the area northwest of Pwyll Crater, which is associated with a nighttime thermal excess seen by the Galileo Photopolarimeter Radiometer and with two potential plume detections. We develop a global thermal model of Europa and simulate both the daytime and nighttime thermal emission to determine if the nighttime thermal anomaly is caused by excess endogenic heat flow, as might be expected from a plume source region. We find that the nighttime and daytime brightness temperatures near Pwyll Crater cannot be matched by including excess heat flow at that location. Rather, we can successfully model both measurements by increasing the local thermal inertia of the surface.

  8. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data

    Science.gov (United States)

    Zoran, M. A.; Nicolae, D. N.; Talianu, C. L.; Ciobanu, M.; Ciuciu, J. G.

    2005-10-01

    The synergistic use of multi-temporal and multi-spectral remote sensing data offers the possibility of monitoring of environment quality in the vicinity of nuclear power plants (NPP). Advanced digital processing techniques applied to several LANDSAT, MODIS and ASTER data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air for NPP Cernavoda , Romania . Cernavoda Unit 1 power plant, using CANDU technology, having 706.5 MW power, is successfully in operation since 1996. Cernavoda Unit 2 which is currently under construction will be operational in 2007. Thermal discharge from nuclear reactor cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube river. Water temperature distributions captured in thermal IR imagery are correlated with meteorological parameters. Additional information regarding flooding events and earthquake risks is considered . During the winter, the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall, there is a larger thermal plume extending 5-6 km far along Danube Black Sea Canal, and the temperature change is about 1.0 oC. Variation of surface water temperature in the thermal plume is analyzed. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Hydrodynamic simulation leads to better understanding of the mechanisms by which waste heat from NPP Cernavoda is dissipated in the environment.

  9. Distribution of zooplankton populations within and adjacent to a thermal plume

    International Nuclear Information System (INIS)

    Evans, M.S.

    1981-01-01

    Zooplankton distributions in the 1-m stratum differed between ambient waters and the thermal plume of the Donald C. Cook Nuclear Power Plant. Zooplankton were most abundant in the warmest waters of the plume with the region of high densities extending over an approximate area of 0.2 to 0.3 km 2 . Water temperature was not a reliable indicator of alterations in zooplankton populations. Alterations were primarily due to upward vertical displacment of deep-living zooplankton. Large horizontal variability in zooplankton densities and use of conventional sampling procedures (vertically hauled nets, widely spaced stations) prevent traditionally designed monitoring programs from detecting such alterations. Zooplankton may experience indirect mortality losses in the plume if transfer of deep-living zooplankton to the surface layers makes them more visible to visual-feeding fish predators, and turbulences in the plume reduce zooplankters' ability to detect and avoid such predators. (auth)

  10. Flaw evaluation of Nd:YAG laser welding based plume shape by infrared thermal camera

    International Nuclear Information System (INIS)

    Kim, Jae Yeol; Yoo, Young Tae; Yang, Dong Jo; Song, Kyung Seol; Ro, Kyoung Bo

    2003-01-01

    In Nd:YAG laser welding evaluation methods of welding flaw are various. But, the method due to plume shape is difficult to classification od welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of plume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, plume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipment. Here, two results are composed of measurement results of plume quantities due to plume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  11. PIV and LIF study of flow and thermal fields of twine plumes in water

    Science.gov (United States)

    Broučková, Zuzana; Trávníček, Zdeněk

    Flow and thermal fields of a pair of plane plumes in water are investigated by means of PIV and LIF experiments. The plumes are generated from thermal line sources, which are made out of electrically heated cylinders with a diameter of D = 1.21 mm. A cylinder-to-cylinder distance was 17.9 D. Either continuous or pulsating heating were used with the same heating input power. Because the cylinder-to-cylinder distance is moderately small, deflections of plumes from a vertical direction occur and the plumes are inclined together. This behavior is caused by a confined entrainment from a space between the both plumes. For a continuous heating, low frequency oscillations were identified and the natural frequency was evaluated as 0.5 Hz. Based on this finding, pulsating heating was used at the subharmonic frequency of 0.25 Hz. The maximum time-mean velocity magnitude at the continuous and pulsating heating were commensurable, approximately 0.007 m/s. On the other hand, pulsating heating achieves by 36 % higher velocity peaks. A very strong velocity oscillations were generated by pulsating heating at the distance approximately 8.3 D above the cylinders, where the velocity maxima oscillate along the time-mean value of 0.0057 m/s from -30% to +70 %. Temperature fields reasonably agree with this findings, despite a relatively fast equalization of the temperature field was concluded. The results demonstrate enhancement effects of pulsations in flow/thermal fields.

  12. Remote sensing of thermal plumes at the Savannah River Plant in Aiken, South Carolina

    International Nuclear Information System (INIS)

    Jensen, J.R.; Christensen, E.J.

    1983-01-01

    The report describes a study undertaken to evaluate the utility of a remote sensing technique for measurement of thermal plumes in bodies of water such as the Savannah River. This relatively new technique, which involves aerial infrared sensing and computer analysis of the resulting data, has the potential for delineating thermal plume boundaries and determining compliance with regulatory limits for thermal discharges. Two sets of aerial infrared data were used in the evaluation. One set was taken from an elevation of 1220 meters at 5:44 a.m. on March 28, 1981; the other set of data was taken from an altitude of 3500 meters on April 3, 1981. The study shows that computer analysis of data taken at the lower altitude can yield useful information on thermal plumes in bodies of water. Data taken at the higher altitude did not have sufficient resolution for accurate analysis. This study shows clearly that thermal plumes in the Savannah River from SRP operations can be measured by remote sensing

  13. Thermal particle image velocity estimation of fire plume flow

    Science.gov (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise

    2003-01-01

    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  14. Remote sensing analysis of thermal plumes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Doak, E.L.

    1985-01-01

    The nuclear reactors of the Savannah River Plant (SRP) in Aiken, South Carolina, use cold water diverted from the Savannah River to dissipate unused thermal energy. This water is heated by heat exchangers of the reactors during the materials production process, and then returned to the natural drainage system. Thermal effluents were monitored by an airborne thermal infrared scanner during predawn overlights. Images were generated to show the surface temperature distribution of the thermal outfall plumes into the Savannah River. The thermal analysis provides information related to compliance with permit requirements of the regulatory agencies

  15. Prediction of the volume flux of the thermal plume above a sitting person

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor

    2009-01-01

    The paper presents a verification of a relatively simple method of volume flux calculation applied to the asymmetrical thermal plume generated by a sitting person in a condition of an upward piston flow. The method is based on a model of a thermal plume above a point heat source in an unbounded...... space. The plume volume flux, V, can be calculated based on the following equation: V = kv*Qexp(1/3)*(zt-zv)exp(5/3). In the equation zt is the distance from the measuring plane to the top of the heat source and Qc is the convective part of the heat loss. A value of the entrainment coefficient, kv...

  16. A modified Gaussian model for the thermal plume from a ground-based heat source in a cross-wind

    International Nuclear Information System (INIS)

    Selander, W.N.; Barry, P.J.; Robertson, E.

    1990-06-01

    An array of propane burners operating at ground level in a cross-wind was used as a heat source to establish a blown-over thermal plume. A three-dimensional array of thermocouples was used to continuously measure the plume temperature downwind from the source. The resulting data were used to correlate the parameters of a modified Gaussian model for plume rise and dispersion with source strength, wind speed, and atmospheric dispersion parameters

  17. PIV and LIF study of flow and thermal fields of twine plumes in water

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2017-01-01

    Full Text Available Flow and thermal fields of a pair of plane plumes in water are investigated by means of PIV and LIF experiments. The plumes are generated from thermal line sources, which are made out of electrically heated cylinders with a diameter of D = 1.21 mm. A cylinder-to-cylinder distance was 17.9 D. Either continuous or pulsating heating were used with the same heating input power. Because the cylinder-to-cylinder distance is moderately small, deflections of plumes from a vertical direction occur and the plumes are inclined together. This behavior is caused by a confined entrainment from a space between the both plumes. For a continuous heating, low frequency oscillations were identified and the natural frequency was evaluated as 0.5 Hz. Based on this finding, pulsating heating was used at the subharmonic frequency of 0.25 Hz. The maximum time-mean velocity magnitude at the continuous and pulsating heating were commensurable, approximately 0.007 m/s. On the other hand, pulsating heating achieves by 36 % higher velocity peaks. A very strong velocity oscillations were generated by pulsating heating at the distance approximately 8.3 D above the cylinders, where the velocity maxima oscillate along the time-mean value of 0.0057 m/s from −30% to +70 %. Temperature fields reasonably agree with this findings, despite a relatively fast equalization of the temperature field was concluded. The results demonstrate enhancement effects of pulsations in flow/thermal fields.

  18. Mathematical modelling of thermal-plume interaction at Waterford Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsai, S.Y.H.

    1981-01-01

    The Waldrop plume model was used to analyze the mixing and interaction of thermal effluents in the Mississippi River resulting from heated-water discharges from the Waterford Nuclear Power Station Unit 3 and from two nearby fossil-fueled power stations. The computer program of the model was modified and expanded to accommodate the multiple intake and discharge boundary conditions at the Waterford site. Numerical results of thermal-plume temperatures for individual and combined operation of the three power stations were obtained for typical low river flow (200,000 cfs) and maximum station operating conditions. The predicted temperature distributions indicated that the surface jet discharge from Waterford Unit 3 would interact with the thermal plumes produced by the two fossil-fueled stations. The results also showed that heat recirculation between the discharge of an upstream fossil-fueled plant and the intake of Waterford Unit 3 is to be expected. However, the resulting combined temperature distributions were found to be well within the thermal standards established by the state of Louisiana

  19. Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2018-02-01

    We present 2D simulations using the Lattice Boltzmann Method (LBM) of a fluid in a rectangular box being heated from below, and cooled from above. We observe plumes, hot narrow upwellings from the base, and down-going cold chutes from the top. We have varied both the Rayleigh numbers and the Prandtl numbers respectively from Ra = 1000 to Ra =1010 , and Pr = 1 through Pr = 5 ×104 , leading to Rayleigh-Bénard convection cells at low Rayleigh numbers through to vigorous convection and unstable plumes with pronounced vortices and eddies at high Rayleigh numbers. We conduct simulations with high Prandtl numbers up to Pr = 50, 000 to simulate in the inertial regime. We find for cases when Pr ⩾ 100 that we obtain a series of narrow plumes of upwelling fluid with mushroom heads and chutes of downwelling fluid. We also present simulations at a Prandtl number of 0.7 for Rayleigh numbers varying from Ra =104 through Ra =107.5 . We demonstrate that the Nusselt number follows power law scaling of form Nu ∼Raγ where γ = 0.279 ± 0.002 , which is consistent with published results of γ = 0.281 in the literature. These results show that the LBM is capable of reproducing results obtained with classical macroscopic methods such as spectral methods, and demonstrate the great potential of the LBM for studying thermal convection and plume dynamics relevant to geodynamics.

  20. Impact of breathing on the thermal plume above a human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2011-01-01

    The characteristics of the thermal plume above a human body should be well-defined in order to properly design the indoor environment and allow correct simulation of the indoor conditions by CFD or experimentally. The objective of the presented study was to investigate the influence of breathing....... A thermal manikin with female body shape equipped with an artificial lung was used to simulate the dry heat loss and breathing process of a sitting occupant. Three cases were examined: non-breathing, exhalation through nose, and exhalation through mouth. Measurements of the air temperature and speed...

  1. A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit

    Science.gov (United States)

    Acharya, P. K.; Berk, A.; Guiang, C.; Kennett, R.; Perkins, T.; Realmuto, V. J.

    2013-12-01

    Real-time quantification of volcanic gaseous and particulate releases is important for (1) recognizing rapid increases in SO2 gaseous emissions which may signal an impending eruption; (2) characterizing ash clouds to enable safe and efficient commercial aviation; and (3) quantifying the impact of volcanic aerosols on climate forcing. The Jet Propulsion Laboratory (JPL) has developed state-of-the-art algorithms, embedded in their analyst-driven Plume Tracker toolkit, for performing SO2, NH3, and CH4 retrievals from remotely sensed multi-spectral Thermal InfraRed spectral imagery. While Plume Tracker provides accurate results, it typically requires extensive analyst time. A major bottleneck in this processing is the relatively slow but accurate FORTRAN-based MODTRAN atmospheric and plume radiance model, developed by Spectral Sciences, Inc. (SSI). To overcome this bottleneck, SSI in collaboration with JPL, is porting these slow thermal radiance algorithms onto massively parallel, relatively inexpensive and commercially-available GPUs. This paper discusses SSI's efforts to accelerate the MODTRAN thermal emission algorithms used by Plume Tracker. Specifically, we are developing a GPU implementation of the Curtis-Godson averaging and the Voigt in-band transmittances from near line center molecular absorption, which comprise the major computational bottleneck. The transmittance calculations were decomposed into separate functions, individually implemented as GPU kernels, and tested for accuracy and performance relative to the original CPU code. Speedup factors of 14 to 30× were realized for individual processing components on an NVIDIA GeForce GTX 295 graphics card with no loss of accuracy. Due to the separate host (CPU) and device (GPU) memory spaces, a redesign of the MODTRAN architecture was required to ensure efficient data transfer between host and device, and to facilitate high parallel throughput. Currently, we are incorporating the separate GPU kernels into a

  2. On the transport, segregation, and dispersion of heavy and light particles interacting with rising thermal plumes

    Science.gov (United States)

    Lappa, Marcello

    2018-03-01

    A systematic numerical analysis is carried out on the multiplicity of patterns produced by inertial particles dispersed in a fluid and localized gravitational convection developing in the form of a rising thermal plume. In particular, specific numerical examples are presented to provide inputs for an increased understanding of the underlying flow-particle interaction mechanisms and cause-and-effect relationships. A rich spectrum of convective dynamics is obtained at the relatively high value of the considered Rayleigh number (Ra = 108), which naturally allows the investigation of several intriguing effects (including, but not limited to, particle interaction with plume jet, associated vortices, shear instabilities, and symmetry breaking phenomena). An important degree of freedom is introduced in the problem by changing the particle viscous drag through proper tuning of the related Stokes number (St). Similarly, inertia and weight of solid matter are varied parametrically by performing numerical simulations for both light and heavy particles at different values of the Froude number. This framework lets us identify the average behavior of particles by revealing the mean evolution. We connect such statistics to the behavior of the temporally evolving thermal plume, giving deeper insights into the particle transport mechanisms and associated dissipative dynamics.

  3. Simultaneous fingering, double-diffusive convection, and thermal plumes derived from autocatalytic exothermic reaction fronts

    Science.gov (United States)

    Eskew, Matthew W.; Harrison, Jason; Simoyi, Reuben H.

    2016-11-01

    Oxidation reactions of thiourea by chlorite in a Hele-Shaw cell are excitable, autocatalytic, exothermic, and generate a lateral instability upon being triggered by the autocatalyst. Reagent concentrations used to develop convective instabilities delivered a temperature jump at the wave front of 2.1 K. The reaction zone was 2 mm and due to normal cooling after the wave front, this generated a spike rather than the standard well-studied front propagation. The reaction front has solutal and thermal contributions to density changes that act in opposite directions due to the existence of a positive isothermal density change in the reaction. The competition between these effects generates thermal plumes. The fascinating feature of this system is the coexistence of plumes and fingering in the same solution which alternate in frequency as the front propagates, generating hot and cold spots within the Hele-Shaw cell, and subsequently spatiotemporal inhomogeneities. The small ΔT at the wave front generated thermocapillary convection which competed effectively with thermogravitational forces at low Eötvös Numbers. A simplified reaction-diffusion-convection model was derived for the system. Plume formation is heavily dependent on boundary effects from the cell dimensions. This work was supported by Grant No. CHE-1056366 from the NSF and a Research Professor Grant from the University of KwaZulu-Natal.

  4. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon

    Science.gov (United States)

    Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.

    1989-01-01

    The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.

  5. 3D simulation of the thermal and chemical plumes using open source software

    International Nuclear Information System (INIS)

    Saenz Temino, J. L.; Lerones Martin, J.; Gonzalez Delgado, J.

    2013-01-01

    The interaction of thermal and chemical plumes in the region of the Irish Sea near the site has been simulated using a finite element model representative of the local hydrodynamic regime, concluding how the method of selected cooling, open cycle, is physically and environmentally feasible. Furthermore, tunnel lengths required for each scenario under discussion have been preliminarily defined, varying in a range from 1800 to 2300 meters for a unit (1 tunnel), 4400-6300 meters of two units (2 tunnels) and 8000 meters to three units (2 tunnels), depending on the chosen technology.

  6. Determination of the integral characteristics of an asymmetrical thermal plume from air speed/velocity and temperature measurements

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2010-01-01

    , generated by a thermal manikin resembling the complex body shape and heat generated by a sitting person, were measured. Using the measured data, the integral characteristics of the generated asymmetrical thermal plume were calculated by the ADI-method, and the uncertainty in determination...

  7. Impact of facially applied air movement on the development of the thermal plume above a sitting occupant

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.

    2011-01-01

    implemented in practice. In this study the impact of locally applied airflow on the thermal plume generated by a sitting human body was investigated. The experiment was performed in a climate chamber with upward piston flow. A thermal manikin was sitting on a computer chair behind a table. The air speed...

  8. Heat transfer along the route to chaos of a swaying thermal plume

    International Nuclear Information System (INIS)

    Angeli, D; Corticelli, M A; Fichera, A; Pagano, A

    2015-01-01

    Detailed analyses have been recently reported on the low order dynamics of a thermal plume arising from a horizontal cylindrical heat source concentric to an air-filled isothermally cooled square enclosure, together with those of the related flow structures, in the limit of the 2D approximation. In particular, within the range of 0 < Ra < 3Ra cr , with Ra cr corresponding to the loss of stability of the stationary buoyant plume, the entire evolution from a periodic limit cycle (P 1 ) to the birth of chaos through a period-doubling cascade has been fully explored. With this respect, special attention has been given to the window of quasiperiodic dynamics onto a T 2 -torus that is observed to separate the monoperiodic dynamics from the biperiodic dynamics onto a P 1 and a P 2 -limit cycle, respectively. The results of these analyses hint at the bimodal nature of the overall dynamics, in general, and of the subharmonic cascade, in particular, which are still under investigation. Although relevant on a dynamical perspective, a with a main reflection on the laminar-turbulent transition, the observed oscillations appear to be characterised by comparable amplitudes and to be determined by similar evolutions of the flow pattern evolutions, so that their role on the overall heat transfer rate is expected to be marginal. Within this frame, the present study aims at reporting the influence played by the observed dynamics of the thermal plume and of the flow structures on the global heat transfer rate. In particular, the aim is the assessment of the correlation between the Rayleigh number and the average Nusselt number on the cylinder surface, as well as the effect on the latter of the observed series of bifurcations. (paper)

  9. Experimental Study Abour How the Thermal Plume Affects the Air Quality a Person Breathes

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Ruiz de Adana, Manuel

    2011-01-01

    of this research is to increase the knowledge of how the thermal plume generated by a person affects the PME and therefore the concentration of contaminants in the inhalation area. An experimental study in a displacement ventilation room was carried out. Experiments were developed in a full scale test chamber 4.......10 m (length), 3.2 m (width), 2.7 m (height). The incoming air is distributed through a wall-mounted displacement diffuser. A breathing thermal manikin exhaling through the mouth and inhaling through the nose was used. A tracer gas, N2O, was used to simulate the gaseous substances, which might...... be considered as biological contaminants, exhaled by the manikin. The manikin was operated in three different heat fluxes with a value of: 0W, 94 W and 120 W. During the experiments six concentration probes were situated in the room. Three concentration tubes were fixed on the surface of the manikin at three...

  10. Numerical study of the structure of thermal plume in a vertical channel: Effect of the height of canal

    Directory of Open Access Journals (Sweden)

    Jouini Belgacem

    2016-01-01

    Full Text Available In this paper we propose to study numerically, by means of a software Named Calculation FDS, a thermal plume evolve from a source at the entrance to of a vertical channel. In the literature, there are researchers who interested in the interaction of plume with his the confinement medium. These studies are based on the determination of the global structure of plume confined. They found that this plume consists of three distinct zones. A first zone near source (instability zone followed by a second zone, such as the development of plume, and a third zone which is the zone of turbulence, Comparing the overall structure of the plume confined to that of the free plume, we can identify the presence of a third zone (zone of instability. The aim is firstly to determine the height of the instability zone located above of source, and secondly, to make a spectral study frequencies exhaust. Thus, effects of the geometrical parameters on frequencies of these escapements and the height an instability zone. The final aim is to establish correlations between the dimensionless numbers of Strouhal and Grashof.

  11. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  12. The thermal interaction of a buoyant plume from a calandria tube with an oblique jet

    Energy Technology Data Exchange (ETDEWEB)

    Rossouw, D.J.; Atkins, M.D.; Beharie, K. [Nuclear Science Division, School of Mechanical & Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Kim, T., E-mail: tong.kim@wits.ac.za [Nuclear Science Division, School of Mechanical & Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Rhee, B.W.; Kim, H.T. [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejun (Korea, Republic of)

    2016-12-15

    Highlights: • A crucial role of relative orientation between mixed convection modes is observed. • The extent of thermal interaction strongly depends on the relative orientation. • Coolant flow is substantially diffused by a buoyant plume if counter-acting. • Slightly oblique coolant flow to the gravitational axis provides the best cooling. - Abstract: Severe reactor core damage may occur from fuel channel failure as a consequence of excessive heat emitted from calandria tubes (CTs) in a pressurised heavy water (D{sub 2}O) reactor (CANDU). The heating of the CTs is caused by creep deformation of the pressure tubes (PTs), which may be ballooning or sagging depending on the internal pressure of the PTs. The deformation of the pressure tube is due to overheating as a result of a loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) failure. To prevent the exacerbation of the LOCA, circulating D{sub 2}O in the moderator tank may be utilized by forming a secondary jet that externally cools the individual CTs. The buoyant plume develops around the CTs and interacts with the secondary jet at a certain oblique angle with respect to the gravitational axis, depending on the spatial location of the hot calandria tubes (or the hot reactor core region). This study reports on how the local and overall heat transfer characteristics on a calandria tube where the buoyant plume develops, are altered by the obliqueness of the external secondary jet (from a co-current jet to a counter-current jet) in a simplified configuration at the jet Reynolds number of Re{sub j} = 1500 for the Archimedes number of Ar{sub D} = 0.11 and Rayleigh number of Ra{sub D} = 1.6 × 10{sup 6} (modified Rayleigh number of 3.0 × 10{sup 7}).

  13. Observation of thermal plumes from submerged discharges in the Great Lakes and their implications for modeling and monitoring

    International Nuclear Information System (INIS)

    Ditmars, J.D.; Paddock, R.A.; Frigo, A.A.

    1977-01-01

    Measurements of thermal plumes from submerged discharges of power plant cooling waters into the Great Lakes provide the opportunity to view the mixing processes at prototype scales and to observe the effects of the ambient environment on those processes. Examples of thermal plume behavior in Great Lakes' ambient environments are presented to demonstrate the importance of measurements of the detailed structure of the ambient environment, as well as of the plumes, for interpretation of prototype data for modeling and monitoring purposes. The examples are drawn from studies by Argonne National Laboratory (ANL) at the Zion Nuclear PowerStation and the D. C. Cook Nuclear Plant on Lake Michigan and at the J. A. FitzPatrick Nuclear Power Plant on Lake Ontario. These studies included measurements of water temperatures from a moving boat which provide a quasi-synoptic view of the three-dimensional temperature structure of the thermal plume and ambient water environment. Additional measurements of water velocities, which are made with continuously recording, moored, and profiling current meters, and of wind provide data on the detailed structure of the ambient environment. The detailed structure of the ambient environment, in terms of current, current shear, variable winds, and temperature stratification, often influence greatly thermal plume behavior. Although predictive model techniques and monitoring objectives often ignore the detailed aspects of the ambient environment, useful interpretation of prototype data for model evaluation or calibration and monitoring purposes requires detailed measurement of the ambient environment. Examination of prototype thermal plume data indicates that, in several instances, attention to only the gross characteristics of the ambient environment can be misleading and could result in significant errors in model calibration and extrapolation of data bases gathered in monitoring observations

  14. On Fluid and Thermal Dynamics in a Heterogeneous CO2 Plume Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Tianfu Xu

    2017-01-01

    Full Text Available CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve both the energy exploitation and CO2 geological sequestration. The migration pathway and the process of fluid flow within the reservoirs affect significantly a CO2 plume geothermal (CPG system. In this study, we built three-dimensional wellbore-reservoir coupled models using geological and geothermal conditions of Qingshankou Formation in Songliao Basin, China. The performance of the CPG system is evaluated in terms of the temperature, CO2 plume distribution, flow rate of production fluid, heat extraction rate, and storage of CO2. For obtaining a deeper understanding of CO2-geothermal system under realistic conditions, heterogeneity of reservoir’s hydrological properties (in terms of permeability and porosity is taken into account. Due to the fortissimo mobility of CO2, as long as a highly permeable zone exists between the two wells, it is more likely to flow through the highly permeable zone to reach the production well, even though the flow path is longer. The preferential flow shortens circulation time and reduces heat-exchange area, probably leading to early thermal breakthrough, which makes the production fluid temperature decrease rapidly. The analyses of flow dynamics of CO2-water fluid and heat may be useful for future design of a CO2-based geothermal development system.

  15. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    Science.gov (United States)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  16. Impact of Thermal Plumes Generated by Occupant Simulators with Different Complexity of Body Geometry on Airflow Pattern in Rooms

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2008-01-01

    The impact of thermal plumes generated by human body simulators with different geometry on the airflow pattern in a full scale room with displacement ventilation (supply air temperature 21.6°C, total flow rate 80 L/s) was studied when two seated occupants were simulated first by two thermal...... manikins resembling accurately human body shape and then by two heated cylinders. The manikins and the cylinders had the same surface area of 1.63 m2 and the same heat generation of 73 W. CO2 supplied from the top of the heat sources was used for simulating bio-effluents. CO2 concentration was measured...

  17. Thermal History of CBb Chondrules and Cooling Rate Distributions of Ejecta Plumes

    Science.gov (United States)

    Hewins, R. H.; Condie, C.; Morris, M.; Richardson, M. L. A.; Ouellette, N.; Metcalf, M.

    2018-03-01

    It has been proposed that some meteorites, CB and CH chondrites, contain material formed as a result of a protoplanetary collision during accretion. Their melt droplets (chondrules) and FeNi metal are proposed to have formed by evaporation and condensation in the resulting impact plume. We observe that the skeletal olivine (SO) chondrules in CBb chondrites have a blebby texture and an enrichment in refractory elements not found in normal chondrules. Because the texture requires complete melting, their maximum liquidus temperature of 1928 K represents a minimum temperature for the putative plume. Dynamic crystallization experiments show that the SO texture can be created only by brief reheating episodes during crystallization, giving a partial dissolution of olivine. The ejecta plume formed in a smoothed particle hydrodynamics simulation served as the basis for 3D modeling with the adaptive mesh refinement code FLASH4.3. Tracer particles that move with the fluid cells are used to measure the in situ cooling rates. Their cooling rates are ∼10,000 K hr‑1 briefly at peak temperature and, in the densest regions of the plume, ∼100 K hr‑1 for 1400–1600 K. A small fraction of cells is seen to be heating at any one time, with heating spikes explained by the compression of parcels of gas in a heterogeneous patchy plume. These temperature fluctuations are comparable to those required in crystallization experiments. For the first time, we find an agreement between experiments and models that supports the plume model specifically for the formation of CBb chondrules.

  18. Background Radiance Estimation for Gas Plume Quantification for Airborne Hyperspectral Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Ramzi Idoughi

    2016-01-01

    Full Text Available Hyperspectral imaging in the long-wave infrared (LWIR is a mean that is proving its worth in the characterization of gaseous effluent. Indeed the spectral and spatial resolution of acquisition instruments is steadily decreasing, making the gases characterization increasingly easy in the LWIR domain. The majority of literature algorithms exploit the plume contribution to the radiance corresponding to the difference of radiance between the plume-present and plume-absent pixels. Nevertheless, the off-plume radiance is unobservable using a single image. In this paper, we propose a new method to retrieve trace gas concentration from airborne infrared hyperspectral data. More particularly the outlined method improves the existing background radiance estimation approach to deal with heterogeneous scenes corresponding to industrial scenes. It consists in performing a classification of the scene and then applying a principal components analysis based method to estimate the background radiance on each cluster stemming from the classification. In order to determine the contribution of the classification to the background radiance estimation, we compared the two approaches on synthetic data and Telops Fourier Transform Spectrometer (FTS Imaging Hyper-Cam LW airborne acquisition above ethylene release. We finally show ethylene retrieved concentration map and estimate flow rate of the ethylene release.

  19. Thermal plume behaviour and dispersion in the vicinity of Madras Atomic Power Station (east coast of India)

    International Nuclear Information System (INIS)

    Anup Kumar, B.; Rao, T.S.; Narasimhan, S.V.

    2002-01-01

    Thermal ecology studies were carried out in the vicinity of Madras Atomic Power Station (MAPS). During the course of the investigations (monthly cruises) both vertical and spatial distribution of temperature in the vicinity of the power plant out fall and mixing zone were measured using temperature probes (Accuracy ± 0.05 deg C.) The boat cruises covered an sea of 2.5 km 2 and in this region the sea surface temperature ranged from 28 to 34 deg C. At a depth of 2 m and below the temperature reaches ambient sea temperature levels (27-28 deg C). During the majority of cruises carried out, the sea current was towards north; hence most the sampling points were fixed towards north of the MAPS. The area occupied by the thermal plume was 1.3 sq. km. The sea surface temperature was found to be dependent on the seasonal current variations. (author)

  20. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring

    Science.gov (United States)

    Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose

    2018-02-01

    Methane (CH4) is the main constituent of natural gas. Fugitive CH4 emissions partially stem from geological reservoirs (seepages) and leaks in pipelines and petroleum production plants. Airborne hyperspectral sensors with enough spectral and spatial resolution and high signal-to-noise ratio can potentially detect these emissions. Here, a field experiment performed with controlled release CH4 sources was conducted in the Rocky Mountain Oilfield Testing Center (RMOTC), Casper, WY (USA). These sources were configured to deliver diverse emission types (surface and subsurface) and rates (20-1450 scf/hr), simulating natural (seepages) and anthropogenic (pipeline) CH4 leaks. The Aerospace Corporation's SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) sensor acquired hyperspectral thermal infrared data over the experimental site with 128 bands spanning the 7.6 μm-13.5 μm range. The data was acquired with a spatial resolution of 0.5 m at 1500 ft and 0.84 m at 2500 ft above ground level. Radiance images were pre-processed with an adaptation of the In-Scene Atmospheric Compensation algorithm and converted to emissivity through the Emissivity Normalization algorithm. The data was processed with a Matched Filter. Results allowed the separation between endmembers related to the spectral signature of CH4 from the background. Pixels containing CH4 signatures (absorption bands at 7.69 μm and 7.88 μm) were highlighted and the gas plumes mapped with high definition in the imagery. The dispersion of the mapped plumes is consistent with the wind direction measured independently during the experiment. Variations in the dimension of mapped gas plumes were proportional to the emission rate of each CH4 source. Spectral analysis of the signatures within the plumes shows that CH4 spectral absorption features are sharper and deeper in pixels located near the emitting source, revealing regions with higher gas density and assisting in locating CH4 sources in the field

  1. Comparison of pulsed Nd : YAG laser welding qualitative features with plasma plume thermal characteristics

    International Nuclear Information System (INIS)

    Sabbaghzadeh, J; Dadras, S; Torkamany, M J

    2007-01-01

    A spectroscopic approach was used to study the effects of different operating parameters on st14 sheet metal welding with a 400 W maximum average power pulsed Nd : YAG laser. The parameters included pulse duration and peak power and type and flow rate of the assist gas and welding speed. Weld quality, including penetration depth and melt width, has been compared with the FeI electron temperature obtained from spectroscopic observations of a plasma plume. A correlation between the standard deviation of the electron temperature and the quality of welding has also been found

  2. Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.

    2007-06-13

    This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.

  3. Impact of personal factors and furniture arrangement on the thermal plume above a sitting occupant

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2012-01-01

    heat loss increases with thermal insulation of a chair, and may be important in detailed CFD predictions. A wig on the manikin head appears to be important because a bald head decreases volume flux by 15%. Positioning the table tightly in front of the body affects air temperature and velocity...

  4. Water Resources Research Program. Surface thermal plumes: evaluation of mathematical models for the near and complete field

    International Nuclear Information System (INIS)

    Dunn, W.E.; Policastro, A.J.; Paddock, R.A.

    1975-05-01

    This report evaluates mathematical models that may be used to predict the flow and temperature distributions resulting from heated surface discharges from power-plant outfalls. Part One discusses the basic physics of surface-plume dispersion and provides a critical review of 11 of the most popular and promising plume models developed to predict the near- and complete-field plume. The principal conclusion of the report is that the available models, in their present stage of development, may be used to give only general estimates of plume characteristics; precise predictions are not currently possible. The Shirazi-Davis and Pritchard (No. 1) models appear superior to the others tested and are capable of correctly predicting general plume characteristics. (The predictions show roughly factor-of-two accuracy in centerline distance to a given isotherm, factor-of-two accuracy in plume width, and factor-of-five accuracy in isotherm areas.) The state of the art can best be improved by pursuing basic laboratory studies of plume dispersion along with further development of numerical-modeling techniques

  5. Water Resources Research Program. Surface thermal plumes: evaluation of mathematical models for the near and complete field

    International Nuclear Information System (INIS)

    Dunn, W.E.; Policastro, A.J.; Paddock, R.A.

    1975-08-01

    This report evaluates mathematical models that may be used to predict the flow and temperature distributions resulting from heated surface discharges from power-plant outfalls. Part One discusses the basic physics of surface-plume dispersion and provides a critical review of 11 of the most popular and promising plume models developed to predict the near- and complete-field plume. Part Two compares predictions from the models to prototype data, laboratory data, or both. Part Two also provides a generic discussion of the issues surrounding near- and complete-field modeling. The principal conclusion of the report is that the available models, in their present stage of development, may be used to give only general estimates of plume characteristics; precise predictions are not currently possible. The Shirazi-Davis and Pritchard (No. 1) models appear superior to the others tested and are capable of correctly predicting general plume characteristics. (The predictions show roughly factor-of-two accuracy in centerline distance to a given isotherm, factor-of-two accuracy in plume width, and factor-of-five accuracy in isotherm areas.) The state of the art can best be improved by pursuing basic laboratory studies of plume dispersion along with further development of numerical-modeling techniques

  6. Thermal plumes and micro-contaminants release from power plants in water bodies. Development of innovative software tools to support plant management and real case applications

    International Nuclear Information System (INIS)

    Guandalini, R.

    2007-01-01

    Environmental issues are a fundamental aspect of energy generation by thermal power plants. Numerical modeling can be used to develop innovative software tools to support plant management and to analyze critical scenarios also considering meteorology forecasts. Compliance with regulatory obligations of thermal/contaminant plumes and prediction of water body physical properties at the intake/discharge location can be performed by real time systems, in order to optimize plant operations and to evaluate the amount of energy that will be generated. A procedure coupling hydrodynamic and water quality modeling for the prediction of possible areas of accumulation of micro-contaminants in a short, medium and long period is also presented. Finally, applications of thermal/pollutant prediction systems and numerical modeling of particular environmental aspects of energy production and transport are shown (e.g. chlorine diffusion from a HVDC marine anode, impact on aquatic ecosystems in coastal regions). (author)

  7. 3D simulation of the thermal and chemical plumes using open source software; Simulacion 3D de las plumas termica y quimica mediante software de codigo libre

    Energy Technology Data Exchange (ETDEWEB)

    Saenz Temino, J. L.; Lerones Martin, J.; Gonzalez Delgado, J.

    2013-07-01

    The interaction of thermal and chemical plumes in the region of the Irish Sea near the site has been simulated using a finite element model representative of the local hydrodynamic regime, concluding how the method of selected cooling, open cycle, is physically and environmentally feasible. Furthermore, tunnel lengths required for each scenario under discussion have been preliminarily defined, varying in a range from 1800 to 2300 meters for a unit (1 tunnel), 4400-6300 meters of two units (2 tunnels) and 8000 meters to three units (2 tunnels), depending on the chosen technology.

  8. Novel plume deflection concept testing

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will explore the feasibility and effectiveness of utilizing an electrically driven thermal shield for use as part of rocket plume deflectors. To...

  9. Seismic Imaging of Mantle Plumes

    Science.gov (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  10. Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    Combined diagnostic measurements of deposition rates and ion time-of-flight signals have been employed to study the expansion of a laser ablation plume into a background gas. With increasing gas pressure the angular distribution of the collected ablated atoms becomes broader, while the total...

  11. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.

    2016-01-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were...... documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE...... is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more...

  12. Integrated characterization of natural attenuation of a PCE plume after thermal remediation of the source zone - incl. dual isotope and microbial techniques

    DEFF Research Database (Denmark)

    Broholm, Mette Martina

    dechlorination 1-1.5 km downstream the source area, where the plume descends into more reduced groundwater. The objective of the new (2014) study is to evaluate how the source remediation has impacted the plume and in particular the natural attenuation within the plume. A large monitoring campaign including...... down-gradient which co-inside with the reduction in redox conditions. The findings document a significant increase in cDCE degradation without accumulation of VC. This reduces the risk posed by the contaminant plume to the drinking water resource. This project is unique in the integrated...... area, resulted in the release of dissolved organic matter and some geochemical changes. This has had an effect on redox conditions and biodegradation by reductive dechlorination particularly in the near source area. However, also in the further downstream area of the plume redox and contaminant levels...

  13. Are splash plumes the origin of minor hotspots?

    Science.gov (United States)

    Davies, J. H.; Bunge, H.-P.

    2006-05-01

    It has been claimed that focused hot cylindrical upwelling plumes cause many of the surface volcanic hotspots on Earth. It has also been argued that they must originate from thermal boundary layers. In this paper, we present spherical simulations of mantle circulation at close to Earth-like vigor with significant internal heating. These show, in addition to thermal boundary layer plumes, a new class of plumes that are not rooted in thermal boundary layers. These plumes develop as instabilities from the edge of bowls of hot mantle, which are produced by cold downwelling material deforming hot sheets of mantle. The resulting bowl and plume structure can look a bit like the “splash” of a water droplet. These splash plumes might provide an explanation for some hotspots that are not underlain by thermal boundary layer sourced plumes and not initiated by large igneous provinces. We suggest that in Earth's mantle, lithospheric instabilities or small pieces of subducting slab could play the role of the model downwelling material in initiating splash plumes. Splash plumes would have implications for interpreting ocean-island basalt geochemistry, plume fixity, excess plume temperature, and estimating core heat flux. Improved seismic imaging will ultimately test this hypothesis.

  14. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  15. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  16. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    Ventilation systems with vertical displacement flow have been used in industrial areas with extensive heat loads for many years. Hot and contaminant air is carried directly from the occupied zone towards the ceiling by hot processes and other activities which create a natural convection flow....

  17. Constraints on the coupled thermal evolution of the Earth's core and mantle, the age of the inner core, and the origin of the 186Os/188Os “core signal” in plume-derived lavas

    Science.gov (United States)

    Lassiter, J. C.

    2006-10-01

    The possibility that some mantle plumes may carry a geochemical signature of core/mantle interaction has rightly generated considerable interest and attention in recent years. Correlated 186Os- 187Os enrichments in some plume-derived lavas (Hawaii, Gorgona, Kostomuksha) have been interpreted as deriving from an outer core with elevated Pt/Os and Re/Os ratios due to the solidification of the Earth's inner core (c.f., [A.D. Brandon, R.J. Walker, The debate over core-mantle interaction, Earth Planet. Sci. Lett. 232 (2005) 211-225.] and references therein). Conclusive identification of a "core signal" in plume-derived lavas would profoundly influence our understanding of mantle convection and evolution. This paper reevaluates the Os-isotope evidence for core/mantle interaction by examining other geochemical constraints on core/mantle interaction, geophysical constraints on the thermal evolution of the outer core, and geochemical and cosmochemical constraints on the abundance of heat-producing elements in the core. Additional study of metal/silicate and sulfide/silicate partitioning of K, Pb, and other trace elements is needed to more tightly constrain the likely starting composition of the Earth's core. However, available data suggest that the observed 186Os enrichments in Hawaiian and other plume-derived lavas are unlikely to derive from core/mantle interaction. 1) Core/mantle interaction sufficient to produce the observed 186Os enrichments would likely have significant effects on other tracers such as Pb- and W-isotopes that are not observed. 2) Significant partitioning of K or other heat-producing elements into the core would produce a "core depletion" pattern in the Silicate Earth very different from that observed. 3) In the absence of heat-producing elements in the core, core/mantle heat flow of ˜ 6-15 TW estimated from several independent geophysical constraints suggests an inner core age (< ˜ 2.5 Ga) too young for the outer core to have developed a significant

  18. Constraints on The Coupled Thermal Evolution of the Earth's Core and Mantle, The Age of The Inner Core, And The Origin of the 186Os/188Os Core(?) Signal in Plume-Derived Lavas

    Science.gov (United States)

    Lassiter, J. C.

    2005-12-01

    Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5

  19. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.

    2016-01-01

    -Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation...... reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined...

  20. Entrainment by turbulent plumes

    Science.gov (United States)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2017-11-01

    Plumes are of relevance to nature and real consequence to industry. While the Morton, Taylor & Turner (1956) plume model is able to estimate the mean physical flux parameters, the process of entrainment is only parametrised in a time-averaged sense and a deeper understanding is key to understanding how they evolve. Various flow configurations, resulting in different entrainment values, are considered; we perform simultaneous PIV and plume-edge detection on saline plumes in water resulting from a point source, a line source and a line source where a vertical wall is placed immediately adjacent. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume the significance of this large scale engulfment is quantified. It is found that significant mass is transported outside the plumes, in particular in regions where large scale structures are absent creating regions of relatively high-momentum ambient fluid. This suggests that the large scale processes, whereby ambient fluid is engulfed into the plume, contribute significantly to the entrainment.

  1. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  2. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  3. Radioactive Plumes Monitoring Simulator

    International Nuclear Information System (INIS)

    Kapelushnik, I.; Sheinfeld, M.; Avida, R.; Kadmon, Y.; Ellenbogen, M.; Tirosh, D.

    1999-01-01

    The Airborne Radiation Monitoring System (ARMS) monitors air or ground radioactive contamination. The contamination source can be a radioactive plume or an area contaminated with radionuclides. The system is based on two major parts, an airborne unit carried by a helicopter and a ground station carried by a truck. The system enables real time measurement and analysis of radioactive plumes as well as post flight processing. The Radioactive Plumes Monitoring Simulator purpose is to create a virtual space where the trained operators experience full radiation field conditions, without real radiation hazard. The ARMS is based on a flying platform and hence the simulator allows a significant reduction of flight time costs

  4. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A G; Stordal, F; Knudsen, S [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  5. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    Science.gov (United States)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  6. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  7. Io Pele plume

    Science.gov (United States)

    2000-01-01

    Voyager 1 took this narrow-angle camera image on 5 March 1979 from a distance of 450,000 kilometers. At this geometry, the camera looks straight down through a volcanic plume at one of Io's most active volcanos, Pele. The large heart-shaped feature is the region where Pele's plume falls to the surface. At the center of the 'heart' is the small dark fissure that is the source of the eruption. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  8. Dilution in Transition Zone between Rising Plumes and Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben

    2004-01-01

    The papers presents some physical experiments with the dilution of sea outfall plumes with emphasize on the transition zone where the relative fast flowing vertical plume turns to a horizontal surface plume following the slow sea surface currents. The experiments show that a considerable dilution...

  9. On predicting mantle mushroom plumes

    Directory of Open Access Journals (Sweden)

    Ka-Kheng Tan

    2011-04-01

    Top cooling may produce plunging plumes of diameter of 585 km and at least 195 Myr old. The number of cold plumes is estimated to be 569, which has not been observed by seismic tomography or as cold spots. The cold plunging plumes may overwhelm and entrap some of the hot rising plumes from CMB, so that together they may settle in the transition zone.

  10. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  11. PLUME and research sotware

    Science.gov (United States)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  12. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  13. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  14. Response of mantle transition zone thickness to plume buoyancy flux

    Science.gov (United States)

    Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.

    2010-01-01

    The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).

  15. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    Science.gov (United States)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    An intriguing spatial pattern of variations in shear-wave arrival times has been mapped in the PLUME ocean bottom experiment (Wolfe et al., 2009) around Hawaii. The pattern consists of a halo of fast travel times surrounding a disk of slow arrivals from waves traveling up though the plume. We think it is directly sensing the pattern of dynamic uplift of the base of a buoyant asthenosphere - the buoyancy of the plume conduit lifting a 'rim' of the cooler, denser mantle that the plume rises through. The PLUME analysis inverted for lateral shear velocity variations beneath the lithosphere, after removing the assumed 1-D model velocity structure IASP91. They found that a slow plume-conduit extends to at least 1200 km below the Hawaiian hotspot. In this inversion the slow plume conduit is — quite surprisingly - surrounded by a fast wavespeed halo. A fast halo is impossible to explain as a thermal halo around the plume; this should lead to a slow wavespeed halo, not a fast one. Plume-related shearwave anisotropy also cannot simply explain this pattern — simple vertical strain around the plume conduit would result in an anisotropic slow shear-wavespeed halo, not a fast one. (Note the PLUME experiment’s uniform ‘fast-halo’ structure from 50-400km is likely to have strong vertical streaking in the seismic image; Pacific Plate-driven shear across a low-viscosity asthenosphere would be expected to disrupt and distort any cold sheet of vertical downwelling structure between 50-400km depths so that it would no longer be vertical as it is in the 2009 PLUME image with its extremely poor vertical depth control.) If the asthenosphere is plume-fed, hence more buoyant than underlying mantle, then there can be a simple explanation for this pattern. The anomaly would be due to faster traveltimes resulting from dynamic relief at the asthenosphere-mesosphere interface; uplift of the denser mesosphere by the buoyancy of the rising plume increases the distance a wave travels

  16. Growth of plume ''resident'' fishes in Lake Michigan

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Smith, D.W.

    1974-01-01

    Brown trout, rainbow trout, and chinook salmon were collected from the Point Beach thermal discharge area, tagged with commercial dart tags and temperature-sensitive tags, and released back into the discharge area. RNA and DNA analyses were performed on epaxial muscle samples taken from each tagged fish recaptured in the plume area and from control fish. A table is presented to show mean weights, condition factors, and RNA-DNA ratios for each group of fish. Results indicated that the fish did not experience any severe growth abnormalities as a result of their residence in the thermal plume area

  17. Investigation of Balcony Plume Entrainment

    OpenAIRE

    Liu, F.; Nielsen, Peter V.; Heiselberg, Per; Brohus, Henrik; Li, B. Z.

    2009-01-01

    An investigation on the scenarios of the spill plume and its equation was presented in this paper. The study includes two aspects, i.e., the small-scale experiment and the numerical simulation. Two balcony spill plume models are assessed by comparing with the FDS (Fire Dynamic Simulation) and small scale model experiment results. Besides validating the spill model by experiments, the effect of different fire location on balcony plume is also discussed.The results show that the balcony equatio...

  18. The planet beyond the plume hypothesis

    Science.gov (United States)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    but not counterflow, though convergent margin geometry may still induce propagating fractures which set up melting anomalies. Lateral migration of asthenospheric domains allows the sources of Pacific intraplate volcanism to be traced back to continental mantle eroded during the breakup of Gondwana and the amalgamation of Asia in the Paleozoic. Intraplate volcanism in the South Pacific therefore has a common Gondwanan origin to intraplate volcanism in the South Atlantic and Indian Oceans, hence the DUPAL anomaly is entirely of shallow origin. Such domains constitute a second order geochemical heterogeneity superimposed on a streaky/marble-cake structure arising from remixing of subducted crust with the convecting mantle. During the Proterozoic and Phanerozoic, remixing of slabs has buffered the evolution of the depleted mantle to a rate of 2.2 ɛNd units Ga -1, with fractionation of Lu from Hf in the sediment component imparting the large range in 176Hf/ 177Hf relative to 143Nd/ 144Nd observed in MORB. Only the high ɛNd values of some Archean komatiites are compatible with derivation from unbuffered mantle. The existence of a very depleted reservoir is attributed to stabilisation of a large early continental crust through either obduction tectonics or slab melting regimes which reduced the efficiency of crustal recycling back into the mantle. Generation of komatiite is therefore a consequence of mantle composition, and is permitted in ocean ridge environments and/or under hydrous melting conditions. Correspondingly, as intraplate volcanism depends on survival of volatile-bearing sources, its appearance in the Middle Proterozoic corresponds to the time in the Earth's thermal evolution at which minerals such as phlogopite and amphibole could survive in off-ridge environments in the shallow asthenosphere. The geodynamic evolution of the Earth was thus determined at convergent margins, not by plumes and hotspots, with the decline in thermal regime causing both a reduction

  19. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  20. Solar Coronal Plumes and the Fast Solar Wind Bhola N. Dwivedi1 ...

    Indian Academy of Sciences (India)

    Is there any contribution of plume plasma to the fast SW streams at all? ..... but to a slow diminution of the reconnection activity, presumably with the effect ... might think, even if the thermal energy could be dumped at the base of the plume,.

  1. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  2. Plume rise from multiple sources

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1975-01-01

    A simple enhancement factor for plume rise from multiple sources is proposed and tested against plume-rise observations. For bent-over buoyant plumes, this results in the recommendation that multiple-source rise be calculated as [(N + S)/(1 + S)]/sup 1/3/ times the single-source rise, Δh 1 , where N is the number of sources and S = 6 (total width of source configuration/N/sup 1/3/ Δh 1 )/sup 3/2/. For calm conditions a crude but simple method is suggested for predicting the height of plume merger and subsequent behavior which is based on the geometry and velocity variations of a single buoyant plume. Finally, it is suggested that large clusters of buoyant sources might occasionally give rise to concentrated vortices either within the source configuration or just downwind of it

  3. A Plume Scale Model of Chlorinated Ethene Degradation

    DEFF Research Database (Denmark)

    Murray, Alexandra Marie; Broholm, Mette Martina; Badin, Alice

    leaked from a dry cleaning facility, and a 2 km plume extends from the source in an unconfined aquifer of homogenous fluvio-glacial sand. The area has significant iron deposits, most notably pyrite, which can abiotically degrade chlorinated ethenes. The source zone underwent thermal (steam) remediation...

  4. Plume rise predictions

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1976-01-01

    Anyone involved with diffusion calculations becomes well aware of the strong dependence of maximum ground concentrations on the effective stack height, h/sub e/. For most conditions chi/sub max/ is approximately proportional to h/sub e/ -2 , as has been recognized at least since 1936 (Bosanquet and Pearson). Making allowance for the gradual decrease in the ratio of vertical to lateral diffusion at increasing heights, the exponent is slightly larger, say chi/sub max/ approximately h/sub e/ - 2 . 3 . In inversion breakup fumigation, the exponent is somewhat smaller; very crudely, chi/sub max/ approximately h/sub e/ -1 . 5 . In any case, for an elevated emission the dependence of chi/sub max/ on h/sub e/ is substantial. It is postulated that a really clever ignorant theoretician can disguise his ignorance with dimensionless constants. For most sources the effective stack height is considerably larger than the actual source height, h/sub s/. For instance, for power plants with no downwash problems, h/sub e/ is more than twice h/sub s/ whenever the wind is less than 10 m/sec, which is most of the time. This is unfortunate for anyone who has to predict ground concentrations, for he is likely to have to calculate the plume rise, Δh. Especially when using h/sub e/ = h/sub s/ + Δh instead of h/sub s/ may reduce chi/sub max/ by a factor of anywhere from 4 to infinity. Factors to be considered in making plume rise predictions are discussed

  5. Variations of starting conditions contribution to cooling tower plume predictions; Uticaj promene polaznih uslova na predvidjanje rasprostiranja perjanica rashladnih tornjeva nuklearne elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A; Zaric, Z [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1977-07-01

    The paper deals with quantitative contribution of variations of starting conditions to cooling tower plume predictions. The starting conditions are: plume velocity and temperature and concentration of water drops in the plume at the cooling tower outlet. For the same thermal discharge and meteorological conditions, starting conditions are given by characteristics of cooling towers. (author)

  6. Small rocket exhaust plume data

    Science.gov (United States)

    Chirivella, J. E.; Moynihan, P. I.; Simon, W.

    1972-01-01

    During recent cryodeposit tests with an 0.18-N thruster, the mass flux in the plume back field was measured for the first time for nitrogen, carbon dioxide, and a mixture of nitrogen, hydrogen, and ammonia at various inlet pressures. This mixture simulated gases that would be generated by a hydrazine plenum attitude propulsion system. The measurements furnish a base upon which to build a mathematical model of plume back flow that will be used in predicting the mass distribution in the boundary region of other plumes. The results are analyzed and compared with existing analytical predictions.

  7. Rise of a cold plume

    International Nuclear Information System (INIS)

    Kakuta, Michio

    1977-06-01

    The rise of smoke from the stacks of two research reactors in normal operation was measured by photogrametric method. The temperature of effluent gas is less than 20 0 C higher than that of the ambient air (heat emission of the order 10 4 cal s -1 ), and the efflux velocity divided by the wind speed is between 0.5 and 2.8 in all 16 smoke runs. The field data obtained within downwind distance of 150m are compared with those by plume rise formulas presently available. Considering the shape of bending-over plume, the Briggs' formula for 'jet' gives a reasonable explanation of the observed plume rise. (auth.)

  8. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  9. Plume rise measurements at Turbigo

    Energy Technology Data Exchange (ETDEWEB)

    Anfossi, D

    1982-01-01

    This paper presents analyses of plume measurements obtained during that campaign by the ENEL ground-based Lidar. The five stacks of Turbigo Power Plant have different heights and emission parameters and their plumes usually combine, so a model for multiple sources was used to predict the plume rises. These predictions are compared with the observations. Measurements of sigma/sub v/ and sigma/sub z/ over the first 1000 m are compared with the curves derived from other observations in the Po Valley, using the no-lift balloon technique over the same range of downwind distance. Skewness and kurtosis distributions are shown, both along the vertical and the horizontal directions. In order to show the plume structure in more detail, we present two examples of Lidar-derived cross sections and the corresponding vertically and horizontally integrated concentration profiles.

  10. Smoke plumes: Emissions and effects

    Science.gov (United States)

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  11. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  12. Wind tunnel experiments on cooling tower plumes. Pt. 2

    International Nuclear Information System (INIS)

    Andreopoulos, J.

    1986-01-01

    The basic characteristics of plumes issuing into a boundary layer type of cross flow are reported. The flow can be considered as an interaction between two vorticity fields with different length scales and turbulence intensities. The large eddies of the oncoming boundary layer are responsible for the observed sudden changes in the plume direction. The type of structures emanating the tower depends on the instantaneous velocity ratio. Mean velocities and normal velocity gradients are smaller than in the case of uniform cross-flow (Andreopoulos, 1986) and therefore the measured turbulence intensities were lower too. The cross-stream turbulence brings high momentum fluid into the wake region and the velocity defect decays very rapidly. Dilution of the plumes takes place faster in the presence of external turbulence than in the case with uniform cross-flow. The spreading rate is increased dramatically by the external turbulence which causes different effects on the hydrodynamic and thermal fields. (orig.) [de

  13. Thermography of the New River Inlet plume and nearshore currents

    Science.gov (United States)

    Chickadel, C.; Jessup, A.

    2012-12-01

    As part of the DARLA and RIVET experiments, thermal imaging systems mounted on a tower and in an airplane captured water flow in the New River Inlet, NC, USA. Kilometer-scale, airborne thermal imagery of the inlet details the ebb flow of the estuarine plume water mixing with ocean water. Multiple fronts, corresponding to the preferred channels through the ebb tidal delta, are imaged in the aerial data. A series of internal fronts suggest discreet sources of the tidal plume that vary with time. Focused thermal measurements made from a tower on the south side of the inlet viewed an area within a radius of a few hundred meters. Sub-meter resolution video from the tower revealed fine-scale flow features and the interaction of tidal exchange and wave-forced surfzone currents. Using the tower and airborne thermal image data we plan to provide geophysical information to compare with numerical models and in situ measurements made by other investigators. From the overflights, we will map the spatial and temporal extent of the estuarine plume to correlate with tidal phase and local wind conditions. From the tower data, we will investigate the structure of the nearshore flow using a thermal particle image velocimetry (PIV) technique, which is based on tracking motion of the surface temperature patterns. Long term variability of the mean and turbulent two-dimensional PIV currents will be correlated to local wave, tidal, and wind forcing parameters.

  14. Tracing Mantle Plumes: Quantifying their Morphology and Behavior from Seismic Tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jones, T. D.; Garcia, E.; Robson, A.; Mittal, T.; Lithgow-Bertelloni, C. R.; Jackson, M. G.; Lekic, V.; Rudolph, M. L.

    2016-12-01

    Hotspot volcanism provides a direct link between the deep mantle and the surface, but the location, depth and source of the mantle plumes that feed hotspots are highly controversial. In order to address this issue it is important to understand the journey along which plumes have travelled through the mantle. The general behavior of plumes in the mantle also has the potential to tell us about the vigor of mantle convection, net rotation of the mantle, the role of thermal versus chemical anomalies, and important bulk physical properties of the mantle such as the viscosity profile. To address these questions we developed an algorithm to trace plume-like features in shear-wave (Vs) seismic tomographic models based on picking local minima in velocity and searching for continuous features with depth. We apply this method to several of the latest tomographic models and can recover 30 or more continuous plume conduits that are >750 km long. Around half of these can be associated with a known hotspot at the surface. We study the morphology of these plume chains and find that the largest lateral deflections occur near the base of the lower mantle and in the upper mantle. We analyze the preferred orientation of the plume deflections and their gradient to infer large scale mantle flow patterns and the depth of viscosity contrasts in the mantle respectively. We also retrieve Vs profiles for our traced plumes and compare with velocity profiles predicted for different mantle adiabat temperatures. We use this to constrain the thermal anomaly associated with these plumes. This thermal anomaly is then converted to a density anomaly and an upwelling velocity is derived. We compare this to buoyancy fluxes calculated at the surface and use this in conjunction with our measured plume tilts/deflections to estimate the strength of the "mantle wind".

  15. A cold plasma plume with a highly conductive liquid electrode

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Wenxing; Chen Shihua; Yang Size

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 10 11 /cm 3 , respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O * , O 3 ) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O 2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively. (fluids, plasmas and electric discharges)

  16. Waves generated in the plasma plume of helicon magnetic nozzle

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-01-01

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  17. Waves generated in the plasma plume of helicon magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  18. Seismic Evidence for Lower Mantle Plume Under the Yellowstone Hotspot

    Science.gov (United States)

    Nelson, P.; Grand, S.

    2017-12-01

    The mantle plume hypothesis for the origin of intraplate volcanism has been controversial since its inception in the 1970s. The hypothesis proposes hot narrow upwelling of rock rooted at the core mantle boundary (CMB) rise through the mantle and interact with the base of the lithosphere forming linear volcanic systems such as Hawaii and Yellowstone. Recently, broad lower mantle (>500 km in diameter) slow velocity conduits, most likely thermochemical in origin, have been associated with some intraplate volcanic provinces (French and Romanowicz, 2015). However, the direct detection of a classical thin thermal plume in the lower mantle using travel time tomography has remained elusive (Anderson and Natland, 2014). Here we present a new shear wave tomography model for the mantle beneath the western United States that is optimized to find short wavelength, sub-vertical structures in the lower mantle. Our approach uses carefully measured SKS and SKKS travel times recorded by dense North American seismic networks in conjunction with finite frequency kernels to build on existing tomography models. We find the presence of a narrow ( 300 km diameter) well isolated cylindrically shaped slow anomaly in the lower most mantle which we associate with the Yellowstone Hotspot. The conduit has a 2% reduction in shear velocity and is rooted at the CMB near the California/Arizona/Nevada border. A cross sectional view through the anomaly shows that it is slightly tilted toward the north until about 1300 km depth where it appears to weaken and deflect toward the surficial positon of the hotspot. Given the anomaly's strength, proximity to the Yellowstone Hotspot, and morphology we argue that a thermal plume interpretation is the most reasonable. Our results provide strong support for a lower mantle plume origin of the Yellowstone hotspot and more importantly the existence of deep thermal plumes.

  19. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  20. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...... to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption...

  1. Mobile Bay turbidity plume study

    Science.gov (United States)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  2. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be

  3. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  4. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  5. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  6. Liquid Booster Module (LBM) plume flowfield model

    Science.gov (United States)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  7. Teaching the Mantle Plumes Debate

    Science.gov (United States)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  8. Plume residence and toxic material accumulation

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Holpuch, R.

    1975-01-01

    Increased growth rates and 137 Cs concentrations in plume resident trout are thought to be the result of increased metabolism, food consumption, and activity caused by exposure to increased water temperature and flow in thermal discharges. These exposure conditions could contribute to increased accumulation of biologically active, toxic substances by primary forage and predator fish species in the Great Lakes. Uptake and retention of various toxic substances by predators depend on concentrations in forage species (trophic transfer), ambient water, and point source effluents (direct uptake). Contaminants of immediate concern in Great Lakes systems (e.g., chlorinated hydrocarbons) accumulate in adipose tissue, and body concentrations have been correlated with total lipid content in fish. In addition to direct toxic effects on fish, many lipophilic contaminants are known to cause severe human health problems when ingested at concentrations commonly found in Lake Michigan salmonids. Although power plants may or may not be the direct source of a toxic substance, the thermal discharge environment may contribute to the accumulation of toxic substances in fish and the transfer of these materials to man

  9. Mantle plumes on Venus revisited

    Science.gov (United States)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  10. Simulation of plume dynamics by the Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2017-09-01

    The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.

  11. The timescales of plume generation caused by continental aggregation

    Science.gov (United States)

    Honda, Satoru; Yoshida, Masaki; Ootorii, Sakie; Iwase, Yasuyuki

    2000-02-01

    To understand the thermal evolution of the mantle following the aggregation of non-subductable thick continental lithosphere, we study a numerical model in which a supercontinent, simulated by high viscosity raft, HVR, covers a part of the top surface of a convection layer. We model infinite Prandtl number convection either in a three-dimensional (3D) spherical shell, 3D rectangular box (aspect ratios: 8 and 4) or two-dimensional (2D) rectangular box (aspect ratio: 8) and except for the HVR, we specify a constant viscosity. The HVR, which has a viscosity higher than that of its surrounding, is instantaneously placed on the top surface of a well-developed convection layer and its position is fixed. Our results from 3D spherical shell cases with and without phase transitions show the emergence of a large plume characterized by a long wavelength thermal anomaly (a degree one pattern) for a Pangea-like geometry. We analyze the volume averaged temperature under the HVR (=) the remaining (oceanic) area (=) and total area (=) to determine the timescale of plume generation. The difference between and (=Δ TCO) and show the existence of two characteristic timescales.Δ TCO exhibits an initial rapid increase and may become constant or continue to gradually increase. Meanwhile, shows a similar behavior but with a longer timescale. We find that these timescales associated with the increase of Δ TCO and can be attributed to the formation of large scale flow (i.e. plume) and response of the whole system to the emplacement of the HVR, respectively. For 3D spherical cases, we find that the timescale of plume generation is 1-2 Gyr, if the Rayleigh number is 10 6. To determine the effects of the viscosity of the HVR, 2D versus 3D modeling and the effects of the internal heating, we have also studied 2D and 3D rectangular box cases. A factor of about two variation exists in the timescale of plume generation. It appears that the timescale becomes greater for a smaller amount of

  12. Particle Simulation of Pulsed Plasma Thruster Plumes

    National Research Council Canada - National Science Library

    Boyd, Ian

    2002-01-01

    .... Our modeling had made progress in al aspects of simulating these complex devices including Teflon ablation, plasma formation, electro-magnetic acceleration, plume expansion, and particulate transport...

  13. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  14. Lidar measurements of plume statistics

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.

    1993-01-01

    of measured crosswind concentration profiles, the following statistics were obtained: 1) Mean profile, 2) Root mean square profile, 3) Fluctuation intensities,and 4)Intermittency factors. Furthermore, some experimentally determined probability density functions (pdf's) of the fluctuations are presented. All...... the measured statistics are referred to a fixed and a 'moving' frame of reference, the latter being defined as a frame of reference from which the (low frequency) plume meander is removed. Finally, the measured statistics are compared with statistics on concentration fluctuations obtained with a simple puff...

  15. Fractal analysis: A new tool in transient volcanic ash plume characterization.

    Science.gov (United States)

    Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn

    2017-04-01

    Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at

  16. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  17. Simulation of plume rise: Study the effect of stably stratified turbulence layer on the rise of a buoyant plume from a continuous source by observing the plume centroid

    Science.gov (United States)

    Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran

    2016-11-01

    Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.

  18. Quantifying mantle structure and dynamics using plume tracing in seismic tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.

    2017-12-01

    Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat

  19. Proceedings of plumes, plates and mineralisation symposium: an introduction

    CSIR Research Space (South Africa)

    Hatton, CJ

    1997-12-01

    Full Text Available of plume-theory. Mechanisms of magma formation are identified and plume positions and distances to their surface expression considered. Mantle plumes are considered as a heat and fluid source for the Witwatersrand gold deposits....

  20. Io with Loki Plume on Bright Limb

    Science.gov (United States)

    1990-01-01

    Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles).

  1. The Alberta smoke plume observation study

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2018-02-01

    Full Text Available A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS. Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018 at http://cwfis.cfs.nrcan.gc.ca/datamart.

  2. The Alberta smoke plume observation study

    Science.gov (United States)

    Anderson, Kerry; Pankratz, Al; Mooney, Curtis; Fleetham, Kelly

    2018-02-01

    A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS). Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018) at http://cwfis.cfs.nrcan.gc.ca/datamart.

  3. Measurements on cooling tower plumes. Pt. 3

    International Nuclear Information System (INIS)

    Fortak, H.

    1975-11-01

    In this paper an extended field experiment is described in which cooling tower plumes were investigated by means of three-dimensional in situ measurements. The goal of this program was to obtain input data for numerical models of cooling tower plumes. Data for testing or developing assumptions for sub-grid parametrizations were of special interest. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station at Neurath and also two (1975) at the single cooling tower of the RWE power station at Meppen. Because of the broad spectrum of weather situations, it can be assumed that the results are representative with regard to the interrelationship between the structure of cooling tower plumes and the large-scale meteorological situation. A large number of flights with a powered glider ASK 16 (more than 100 flight hours) crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapour pressure. Therefore a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the plumes boundaries, which could be defined by the mentioned jumps of temperature and vapour pressure, a maximum of downward vertical motion was observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. The discontinuities of temperature and vapour pressure show that the plume fills the space below the visible plume down to the ground. However, all effects decrease rapidly towards the ground. It turned out that high

  4. Follow the plume: the habitability of Enceladus.

    Science.gov (United States)

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  5. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  6. Formation of mantle "lone plumes" in the global downwelling zone - A multiscale modelling of subduction-controlled plume generation beneath the South China Sea

    Science.gov (United States)

    Zhang, Nan; Li, Zheng-Xiang

    2018-01-01

    It has been established that almost all known mantle plumes since the Mesozoic formed above the two lower mantle large low shear velocity provinces (LLSVPs). The Hainan plume is one of the rare exceptions in that instead of rising above the LLSVPs, it is located within the broad global mantle downwelling zone, therefore classified as a "lone plume". Here, we use the Hainan plume example to investigate the feasibility of such lone plumes being generated by subducting slabs in the mantle downwelling zone using 3D geodynamic modelling. Our geodynamic model has a high-resolution regional domain embedded in a relatively low resolution global domain, which is set up in an adaptive-mesh-refined, 3D mantle convection code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). We use a recently published plate motion model to define the top mechanical boundary condition. Our modelling results suggest that cold slabs under the present-day Eurasia, formed from the Mesozoic subduction and closure of the Tethys oceans, have prevented deep mantle hot materials from moving to the South China Sea from regions north or west of the South China Sea. From the east side, the Western Pacific subduction systems started to promote the formation of a lower-mantle thermal-chemical pile in the vicinity of the future South China Sea region since 70 Ma ago. As the top of this lower-mantle thermal-chemical pile rises, it first moved to the west, and finally rested beneath the South China Sea. The presence of a thermochemical layer (possible the D″ layer) in the model helps stabilizing the plume root. Our modelling is the first implementation of multi-scale mesh in the regional model. It has been proved to be an effective way of modelling regional dynamics within a global plate motion and mantle dynamics background.

  7. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  8. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  9. Io's Active Eruption Plumes: Insights from HST

    Science.gov (United States)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  10. A numerical study of the Magellan Plume

    Science.gov (United States)

    Palma, Elbio D.; Matano, Ricardo P.

    2012-05-01

    In this modeling study we investigate the dynamical mechanisms controlling the spreading of the Magellan Plume, which is a low-salinity tongue that extends along the Patagonian Shelf. Our results indicate that the overall characteristics of the plume (width, depth, spreading rate, etc.) are primarily influenced by tidal forcing, which manifests through tidal mixing and tidal residual currents. Tidal forcing produces a homogenization of the plume's waters and an offshore displacement of its salinity front. The interaction between tidal and wind-forcing reinforces the downstream and upstream buoyancy transports of the plume. The influence of the Malvinas Current on the Magellan Plume is more dominant north of 50°S, where it increases the along-shelf velocities and generates intrusions of saltier waters from the outer shelf, thus causing a reduction of the downstream buoyancy transport. Our experiments also indicate that the northern limit of the Magellan Plume is set by a high salinity discharge from the San Matias Gulf. Sensitivity experiments show that increments of the wind stress cause a decrease of the downstream buoyancy transport and an increase of the upstream buoyancy transport. Variations of the magnitude of the discharge produce substantial modifications in the downstream penetration of the plume and buoyancy transport. The Magellan discharge generates a northeastward current in the middle shelf, a recirculation gyre south of the inlet and a region of weak currents father north.

  11. Fossil plume head beneath the Arabian lithosphere?

    Science.gov (United States)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are

  12. Simplified scheme or radioactive plume calculations

    International Nuclear Information System (INIS)

    Gibson, T.A.; Montan, D.N.

    1976-01-01

    A simplified mathematical scheme to estimate external whole-body γ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and γ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred

  13. DSMC Simulations of Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, D.; Varghese, P.; Trafton, L.

    2012-10-01

    Io’s Pele plume rises over 300km in altitude and leaves a deposition ring 1200km across on the surface of the moon. Material emerges from an irregularly-shaped vent, and this geometry gives rise to complex 3D flow features. The Direct Simulation Monte Carlo method is used to model the gas flow in the rarefied plume, demonstrating how the geometry of the source region is responsible for the asymmetric structure of the deposition ring and illustrating the importance of very small-scale vent geometry in explaining large observed features of interest. Simulations of small particles in the plume and comparisons to the black “butterfly wings” seen at Pele are used to constrain particle sizes and entrainment mechanisms. Preliminary results for the effects of plasma energy and momentum transfer to the plume will also be presented.

  14. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  15. Atmospheric ice nuclei: No detectable effects from a coal-fired powerplant plume

    International Nuclear Information System (INIS)

    Schnell, R.C.; Van Valin, C.C.; Pueschel, R.F.

    1976-01-01

    Atmospheric ice nuclei were measured upwind and within the effluent plume of a coalfired powerplant during February 1976. Aerosol particles were captured on two types of membrane filters (Nuclepore and Millipore) and processed in two different thermal diffusion chambers, one calibrated to produce a 100% saturation relative to water and the other to produce a slight supersaturation relative to water. Consequently, the ice nuclei measured were active in the modes that are dominant in diffusion chambers, viz., deposition nucleation and condensation-followed-by-freezing nucleation. Results indicate that plume particles do not act as ice nuclei between the temperatures of -10 and -20degreeC, nor do combustion gases in the plume deactivate natural ice nuclei

  16. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    Science.gov (United States)

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Plume Tracker: Interactive mapping of volcanic sulfur dioxide emissions with high-performance radiative transfer modeling

    Science.gov (United States)

    Realmuto, Vincent J.; Berk, Alexander

    2016-11-01

    We describe the development of Plume Tracker, an interactive toolkit for the analysis of multispectral thermal infrared observations of volcanic plumes and clouds. Plume Tracker is the successor to MAP_SO2, and together these flexible and comprehensive tools have enabled investigators to map sulfur dioxide (SO2) emissions from a number of volcanoes with TIR data from a variety of airborne and satellite instruments. Our objective for the development of Plume Tracker was to improve the computational performance of the retrieval procedures while retaining the accuracy of the retrievals. We have achieved a 300 × improvement in the benchmark performance of the retrieval procedures through the introduction of innovative data binning and signal reconstruction strategies, and improved the accuracy of the retrievals with a new method for evaluating the misfit between model and observed radiance spectra. We evaluated the accuracy of Plume Tracker retrievals with case studies based on MODIS and AIRS data acquired over Sarychev Peak Volcano, and ASTER data acquired over Kilauea and Turrialba Volcanoes. In the Sarychev Peak study, the AIRS-based estimate of total SO2 mass was 40% lower than the MODIS-based estimate. This result was consistent with a 45% reduction in the AIRS-based estimate of plume area relative to the corresponding MODIS-based estimate. In addition, we found that our AIRS-based estimate agreed with an independent estimate, based on a competing retrieval technique, within a margin of ± 20%. In the Kilauea study, the ASTER-based concentration estimates from 21 May 2012 were within ± 50% of concurrent ground-level concentration measurements. In the Turrialba study, the ASTER-based concentration estimates on 21 January 2012 were in exact agreement with SO2 concentrations measured at plume altitude on 1 February 2012.

  18. Measurements at cooling tower plumes. Part 3. Three-dimensional measurements at cooling tower plumes

    International Nuclear Information System (INIS)

    Fortak, H.

    An extended field experiment is described in which cooling tower plumes were studied by means of three-dimensional in situ measurements. The goal was to obtain input data for numerical models of cooling tower plumes. Of special interest were data for testing or developing assumptions for sub-grid parametrizations. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station Neurath and also two (1975) at the single cooling tower of the RWE power station Meppen. Because of the broad spectrum of weather situations it can be assumed that the results are representative with regard to the interrelationship between structure of cooling tower plume and large-scale meteorological situation. A large number of flights with a powered glider crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapor pressure. Therefore, a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the boundary, which could be defined by the mentioned jumps of temperature and vapor pressure, a maximum of downward vertical motion could be observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. High-resolution aerology is necessary in order to explain the structure and behavior of such plumes. This is especially the case in investigations regarding the dynamic break-through of temperature inversions. Such cases were observed frequently under various meteorological conditions and are described

  19. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  20. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  1. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    Science.gov (United States)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-05-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  2. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    Science.gov (United States)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-06-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  3. Pele Plume Deposit on Io

    Science.gov (United States)

    1997-01-01

    The varied effects of Ionian volcanism can be seen in this false color infrared composite image of Io's trailing hemisphere. Low resolution color data from Galileo's first orbit (June, 1996) have been combined with a higher resolution clear filter picture taken on the third orbit (November, 1996) of the spacecraft around Jupiter.A diffuse ring of bright red material encircles Pele, the site of an ongoing, high velocity volcanic eruption. Pele's plume is nearly invisible, except in back-lit photographs, but its deposits indicate energetic ejection of sulfurous materials out to distances more than 600 kilometers from the central vent. Another bright red deposit lies adjacent to Marduk, also a currently active ediface. High temperature hot spots have been detected at both these locations, due to the eruption of molten material in lava flows or lava lakes. Bright red deposits on Io darken and disappear within years or decades of deposition, so the presence of bright red materials marks the sites of recent volcanism.This composite was created from data obtained by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The region imaged is centered on 15 degrees South, 224 degrees West, and is almost 2400 kilometers across. The finest details that can be discerned in this picture are about 3 kilometers across. North is towards the top of the picture and the sun illuminates the surface from the west.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  4. Microbial populations in contaminant plumes

    Science.gov (United States)

    Haack, Sheridan K.; Bekins, Barbara A.

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les

  5. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots.

    Science.gov (United States)

    French, Scott W; Romanowicz, Barbara

    2015-09-03

    Plumes of hot upwelling rock rooted in the deep mantle have been proposed as a possible origin of hotspot volcanoes, but this idea is the subject of vigorous debate. On the basis of geodynamic computations, plumes of purely thermal origin should comprise thin tails, only several hundred kilometres wide, and be difficult to detect using standard seismic tomography techniques. Here we describe the use of a whole-mantle seismic imaging technique--combining accurate wavefield computations with information contained in whole seismic waveforms--that reveals the presence of broad (not thin), quasi-vertical conduits beneath many prominent hotspots. These conduits extend from the core-mantle boundary to about 1,000 kilometres below Earth's surface, where some are deflected horizontally, as though entrained into more vigorous upper-mantle circulation. At the base of the mantle, these conduits are rooted in patches of greatly reduced shear velocity that, in the case of Hawaii, Iceland and Samoa, correspond to the locations of known large ultralow-velocity zones. This correspondence clearly establishes a continuous connection between such zones and mantle plumes. We also show that the imaged conduits are robustly broader than classical thermal plume tails, suggesting that they are long-lived, and may have a thermochemical origin. Their vertical orientation suggests very sluggish background circulation below depths of 1,000 kilometres. Our results should provide constraints on studies of viscosity layering of Earth's mantle and guide further research into thermochemical convection.

  6. Simulating Irregular Source Geometries for Ionian Plumes

    Science.gov (United States)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  7. Simulating Irregular Source Geometries for Ionian Plumes

    International Nuclear Information System (INIS)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-01-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  8. Thermal imaging experiments on ANACONDA ion beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka University of Technology (Japan). Lab. of Beam Technology; Olson, C J; Davis, H A [Los Alamos National Laboratory, Los Alamos, NM (United States)

    1997-12-31

    The thermal imaging technique was used in two experimental measurements. First, the ion intensity distribution on the anode surface was observed from different angles by using a multi-pinhole camera. Second, the plume from a target intercepting the beam was visualized by observing the distribution of temperature increase on a thin plate hit by the plume. (author). 6 figs., 4 refs.

  9. Kinetic electron model for plasma thruster plumes

    Science.gov (United States)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  10. Measurements at cooling tower plumes. Pt. 1

    International Nuclear Information System (INIS)

    Gassmann, F.; Haschke, D.; Solfrian, W.

    1976-04-01

    Referring to the present status of knowledge model conceptions, assumptions and approaches are summarized, which can lead to mathematical models for the simulation of dry or wet cooling tower plumes. By developing a one-dimensional plume model (FOG) the most important problems are considered in detail. It is shown that for the calibration of the necessary parameters as well as for the development of models full scale measurements are of decisive importance. After a discussion of different possibilities of measurement the organisation of a campaign of measurement is described. (orig.) [de

  11. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    Science.gov (United States)

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  12. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    Science.gov (United States)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  13. The evolution of photochemical smog in a power plant plume

    Science.gov (United States)

    Luria, Menachem; Valente, Ralph J.; Tanner, Roger L.; Gillani, Noor V.; Imhoff, Robert E.; Mueller, Stephen F.; Olszyna, Kenneth J.; Meagher, James F. Present address: Aeronomy Laboratory, NOAA, 325 Broadway, Boulder CO 80303, USA.)

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.

  14. The evolution of photochemical smog in a power plant plume

    International Nuclear Information System (INIS)

    Luria, M.; The Hebrew University, Jerusalem; Valente, R.J.; Tanner, R.L.; Imhoff, R.E.; Mueller, S.F.; Olszyna, K.J.; Meagher, J.F.; Gillani, N.V.; University of Alabama, Huntsville, AL

    1999-01-01

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z ) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism. (author)

  15. Wet plume atop of the flattening slab: Insight into intraplate volcanism in East Asia

    Science.gov (United States)

    He, Lijuan

    2017-08-01

    Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of slab downgoing, flattening and stagnation. Equation of water transfer is included, and water effects on density and viscosity are considered. Model results indicate the warming of slab by surrounding mantle is rather slow. Water could be successfully dragged into the transition zone if the reference viscosity of the hydrous layer (with initial water of 2 wt%) is higher than 1017 Pa s and that of mantle is 1021 Pa s. Wet plumes could then originate in the flat-lying part of the slab, relatively far from the trench. Generally, the viscosity of the hydrous layer governs the initiation of wet plume, whereas the viscosity of the overlying mantle wedge controls the activity of the ascending wet plumes - they are more active in the weaker wedge. The complex fluid flow superposed by corner flow and free thermal convection influences greatly the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab under some specific thermo-rheological conditions, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of the flattening slab warmed by surrounding mantle, and 3) water spreads over the big mantle wedge. Wet plume from the flattening Pacific Plate arrives at the lithospheric base and induces melting, which can explain the intraplate Cenozoic volcanoes in East Asia.

  16. Smoke plume behavior - what the data say

    Science.gov (United States)

    Gary L. Achtemeier; Luke Naeher

    2005-01-01

    a comprehensive smoke project, now ongoing for four years, is designed in part to investigate plume behavior from southern prescribed burns with respect to atmospheric stability and to document ground-level smoke concentrations with PM2.5 data from a network of samplers specially constructed for the project. Project management goals are to find ways to increase the...

  17. Dispersion of Chernobyl radioactive plume over Europe

    International Nuclear Information System (INIS)

    Albergel, A.

    1988-01-01

    A long-range pollutant transport and removal model, is used to analyse the Chernobyl radioactive plume dispersion over the Europe Continent. Model predictions are compared to field measurements of Cs-137 activity in the air from April 26th, to May 5th 1986 [fr

  18. Reed Watkins: A Passion for Plume Moths

    Science.gov (United States)

    Reed Watkins has curated the nationl Pterophordiae or plume moth collection at the National Museum of Natural History, Smithsonian Institution, for the past 13 years. He has decreased the number of specimens of unsorted and unidentified material and has expanded the collection from 3 to 6 cabinets....

  19. Ablation plume dynamics in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during the expa......The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during...... the expansion. The model also leads to an insightful treatment of the stopping behavior in dimensionless units for plumes and background gases of different atomic/molecular masses. The energetics of the plume dynamics can also be treated with this model. Experimental time-of-flight data of silver ions in a neon...... background gas show a fair agreement with predictions from the PM-model. Finally we discuss the validity of the model, if the work done by the pressure of the background gas is neglected....

  20. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS

    Directory of Open Access Journals (Sweden)

    Anthony DeMario

    2017-02-01

    Full Text Available We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS, for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  1. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    Science.gov (United States)

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  2. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume

    Science.gov (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2018-01-01

    The Emeishan large igneous province (ELIP) is widely considered to be a consequence of a mantle plume. The supporting evidence includes rapid emplacement, voluminous flood basalt eruptions, and high mantle potential temperature estimates. Several studies have suggested that there was surface uplift prior to the eruption of the Emeishan flood basalts. Additionally, the plume's lateral extent is hard to constrain and has been variously estimated to be 800-1400 km in diameter. In this study, we analyzed present-day heat flow data and reconstructed the Permian paleo-heat flow using vitrinite reflectance and zircon (U-Th)/He thermochronology data in the ELIP region and discussed implications for the geodynamics of the Emeishan mantle plume. The present-day heat flow is higher in the inner and intermediate zones than in the outer zone, with a decrease of average heat flow from 76 mW/m2 to 51 mW/m2. Thermal history modeling results show that an abnormal high paleo-heat flow of 90-110 mW/m2 was caused by the Emeishan mantle plume activity. Based on the present-day heat flow data, we can calculate that there is lithospheric thinning in the central ELIP region, which may be due to the destruction of the lithosphere by mantle plume upwelling and magmatic underplating. The Permian paleo-heat flow anomaly implies that there was a temperature anomaly in the mantle. The ascending high-temperature mantle plume and the thinned lithosphere may have induced the large-scale uplift in the ELIP region. According to the range of the surface heat flow anomaly, it can be estimated that the diameter of the flattened head of the Emeishan mantle plume could have reached 1600-1800 km. Our research provides new insights into the geodynamics of the Emeishan mantle plume through study of heat flow.

  3. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  4. Geothermal constraints on Emeishan mantle plume magmatism: paleotemperature reconstruction of the Sichuan Basin, SW China

    Science.gov (United States)

    Zhu, Chuanqing; Hu, Shengbiao; Qiu, Nansheng; Jiang, Qiang; Rao, Song; Liu, Shuai

    2018-01-01

    The Middle-Late Permian Emeishan Large Igneous Province (ELIP) in southwestern China represents a classic example of a mantle plume origin. To constrain the thermal regime of the ELIP and contemporaneous magmatic activity in the northeastern Sichuan Basin, maximum paleotemperature profiles of deep boreholes were reconstructed using vitrinite reflectance (Ro) and apatite fission track data. Two heating patterns were identified: (1) heating of the overlying lithosphere by magma storage regions and/or magmatic activity related to the mantle plume, which resulted in a relatively strong geothermal field and (2) direct heating of country rock by stock or basalt. Borehole Ro data and reconstructed maximum paleotemperature profiles near the ELIP exhibit abrupt tectonothermal unconformities between the Middle and Late Permian. The profiles in the lower subsections (i.e., pre-Middle Permian) exhibited significantly higher gradients than those in the upper subsections. Distal to the basalt province, high paleo-geotemperatures (hereafter, paleotemperatures) were inferred, despite deformation of the paleogeothermal curve due to deep faults and igneous rocks within the boreholes. In contrast, Ro profiles from boreholes without igneous rocks (i.e., Late Permian) contained no break at the unconformity. Paleotemperature gradients of the upper and the lower subsections and erosion at the Middle/Late Permian unconformity revealed variations in the thermal regime. The inferred spatial distribution of the paleothermal regime and the erosion magnitudes record the magmatic and tectonic-thermal response to the Emeishan mantle plume.

  5. Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region

    International Nuclear Information System (INIS)

    Xu Xinhua; Wang Shengwei; Ma Zhenjun

    2008-01-01

    Hong Kong is a typical subtropical region with frequently high humidity in late spring and summer seasons. Plume from evaporative cooling towers, which service air-conditioning systems of civil buildings, has aroused public concerns since 2000 when the fresh water evaporative cooling towers were allowed to be used for high energy efficiency and environmental issues. This paper presents the evaluation of the plume potential and its effect on the sizing of the plume abatement system in a large commercial office building in Hong Kong for practical application. This evaluation was conducted based on a dynamic simulation platform using the typical meteorological year of Hong Kong since the occurrence of the plume heavily depends on the state conditions of the exhaust air from cooling towers and the ambient air, while the state condition of the exhaust air is determined by the total building cooling load and the control strategies of cooling towers employed mainly for improving energy efficiency. The results show that the control strategies have a significant effect on the plume potential and further affect the system design and sizing of the plume abatement system

  6. An Overview of Plume Tracker: Mapping Volcanic Emissions with Interactive Radiative Transfer Modeling

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Guiang, C.

    2014-12-01

    Infrared remote sensing is a vital tool for the study of volcanic plumes, and radiative transfer (RT) modeling is required to derive quantitative estimation of the sulfur dioxide (SO2), sulfate aerosol (SO4), and silicate ash (pulverized rock) content of these plumes. In the thermal infrared, we must account for the temperature, emissivity, and elevation of the surface beneath the plume, plume altitude and thickness, and local atmospheric temperature and humidity. Our knowledge of these parameters is never perfect, and interactive mapping allows us to evaluate the impact of these uncertainties on our estimates of plume composition. To enable interactive mapping, the Jet Propulsion Laboratory is collaborating with Spectral Sciences, Inc., (SSI) to develop the Plume Tracker toolkit. This project is funded by a NASA AIST Program Grant (AIST-11-0053) to SSI. Plume Tracker integrates (1) retrieval procedures for surface temperature and emissivity, SO2, NH3, or CH4 column abundance, and scaling factors for H2O vapor and O3 profiles, (2) a RT modeling engine based on MODTRAN, and (3) interactive visualization and analysis utilities under a single graphics user interface. The principal obstacle to interactive mapping is the computational overhead of the RT modeling engine. Under AIST-11-0053 we have achieved a 300-fold increase in the performance of the retrieval procedures through the use of indexed caches of model spectra, optimization of the minimization procedures, and scaling of the effects of surface temperature and emissivity on model radiance spectra. In the final year of AIST-11-0053 we will implement parallel processing to exploit multi-core CPUs and cluster computing, and optimize the RT engine to eliminate redundant calculations when iterating over a range of gas concentrations. These enhancements will result in an additional 8 - 12X increase in performance. In addition to the improvements in performance, we have improved the accuracy of the Plume Tracker

  7. (HBCU) Thermal-Electric Propulsion With Magnetoplasmadynamic Acceleration

    National Research Council Canada - National Science Library

    Tabibi, Bagher

    1998-01-01

    .... An insitu technique, Pitot tube method, was used to measure the total and static pressures of the core flow of the thermal plume in steady state operation in order to characterize and benchmark...

  8. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  9. Environmental characterization to assess potential impacts of thermal discharge to the Columbia River

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Dauble, D.D.; Page, T.L.; Greager, E.M.

    1990-01-01

    Laboratory and field studies were conducted to assess the potential impact of the N-Reactor thermal plume on fish from the Hanford Reach of the Columbia River. Discharge water temperatures were measured over a range of river flows and reactor operating conditions. Data were mathematically modeled to define spatial and thermal characteristics of the plume. Four species of Columbia River fish were exposed to thermal conditions expected in the plume. Exposed fish were subjected to predators and disease organisms to test for secondary effects from thermal stress. Spatial and temporal distribution of anadromous fish in the river near N-Reactor were also evaluated to define location relative to the plume. Potential thermal exposures were insufficient to kill or injure fish during operation of N-Reactor. These studies demonstrate that characterization of hydrological conditions and thermal tolerance can adequately assess potential impacts of a thermal discharge to fish

  10. Plume meander and dispersion in a stable boundary layer

    Science.gov (United States)

    Hiscox, April L.; Miller, David R.; Nappo, Carmen J.

    2010-11-01

    Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.

  11. Modeling of plasma plume induced during laser welding

    International Nuclear Information System (INIS)

    Moscicki, T.; Hoffman, J.; Szymanski, Z.

    2005-01-01

    During laser welding, the interaction of intense laser radiation with a work-piece leads to the formation of a long, thin, cylindrical cavity in a metal, called a keyhole. Generation of a keyhole enables the laser beam to penetrate into the work-piece and is essential for deep welding. The keyhole contains ionized metal vapour and is surrounded by molten material called the weld pool. The metal vapour, which flows from the keyhole mixes with the shielding gas flowing from the opposite direction and forms a plasma plume over the keyhole mouth. The plasma plume has considerable influence on the processing conditions. Plasma strongly absorbs laser radiation and significantly changes energy transfer from the laser beam to a material. In this paper the results of theoretical modelling of plasma plume induced during welding with CO 2 laser are presented. The set of equations consists of equation of conservation of mass, energy, momentum and the diffusion equation: ∂ρ/∂t + ∇·(ρ ρ ν =0; ∂(ρE)/∂t + ∇·( ρ ν (ρE + p)) = ∇ (k eff ∇T - Σ j h j ρ J j + (τ eff · ρ ν )) + Σ i κ i I i - R; ∂/∂t(ρ ρ ν ) + ∇· (ρ ρ ν ρ ν ) = - ∇p + ∇(τ) + ρ ρ g + ρ F, where τ is viscous tensor τ = μ[(∇ ρ ν + ∇ ρT ν )-2/3∇· ρ ν I]; ∂/∂t(ρY i ) + ∇·(ρ ρ ν Y i ) = ∇·ρD i,m ∇T i ; where μ ν denotes velocity vector, E - energy, ρ mass density; k - thermal conductivity, T- temperature, κ - absorption coefficient, I i local laser intensity, R - radiation loss function, p - pressure, h j enthalpy, J j - diffusion flux of j component, ν g - gravity, μ F - external force, μ - dynamic viscosity, I - unit tensor, Y i - mass fraction of iron vapor in the gas mixture, D i,m - mass diffusion coefficient. The terms k eff and τ eff contain the turbulent component of the thermal conductivity and the viscosity, respectively. All the material functions are functions of the temperature and mass fraction only. The equations

  12. Chernobyl plume: commentary about a discharge

    International Nuclear Information System (INIS)

    Anon

    2011-01-01

    The Paris appeal court has dismissed the charges against P. Pellerin who was the head of the SCIRP (service of protection against the ionizing radiations) at the time of the Chernobyl accident. The appeal court confirms that P.Pellerin never said that the Chernobyl plume stopped at the French border but instead he said that the Chernobyl plume entered the French territory but the radioactivity level was so low that it was unnecessary to take sanitary steps. P.Pellerin based his decision on the results of 6500 controls performed by the SCIRP in May and June 1986. Seven other European countries recommended not to take sanitary measures. The increase of thyroid cancers that has happened in all industrialized countries and that affect only adults, can not due to Chernobyl contamination because child's thyroid is far more sensitive than adult's. The increase of thyroid cancer is mainly due to a better detection of the tumors. (A.C.)

  13. A multidisciplinary system for monitoring and forecasting Etna volcanic plumes

    Science.gov (United States)

    Coltelli, Mauro; Prestifilippo, Michele; Spata, Gaetano; Scollo, Simona; Andronico, Daniele

    2010-05-01

    One of the most active volcanoes in the world is Mt. Etna, in Italy, characterized by frequent explosive activity from the central craters and from fractures opened along the volcano flanks which, during the last years, caused several damages to aviation and forced the closure of the Catania International Airport. To give precise warning to the aviation authorities and air traffic controller and to assist the work of VAACs, a novel system for monitoring and forecasting Etna volcanic plumes, was developed at the Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania, the managing institution for the surveillance of Etna volcano. Monitoring is carried out using multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation geosynchronous satellite able to track the volcanic plume with a high time resolution, visual and thermal cameras used to monitor the explosive activity, three continuous wave X-band disdrometers which detect ash dispersal and fallout, sounding balloons used to evaluate the atmospheric fields, and finally field data collected after the end of the eruptive event needed to extrapolate important features of explosive activity. Forecasting is carried out daily using automatic procedures which download weather forecast data obtained by meteorological mesoscale models from the Italian Air Force national Meteorological Office and from the hydrometeorological service of ARPA-SIM; run four different tephra dispersal models using input parameters obtained by the analysis of the deposits collected after few hours since the eruptive event similar to 22 July 1998, 21-24 July 2001 and 2002-03 Etna eruptions; plot hazard maps on ground and in air and finally publish them on a web-site dedicated to the Italian Civil Protection. The system has been already tested successfully during several explosive events occurring at Etna in 2006, 2007 and 2008. These events produced eruption

  14. River Plumes in Sunglint, Sarawak, Borneo

    Science.gov (United States)

    1991-01-01

    The sunglint pattern along the coast of Sarawak (3.0N, 111.5E) delineates the boundry of fresh water river plumes as they flow into the South China Sea. The fresh water lens (boundry between fresh and sea water) overides the saline and more dense sea water and oils, both natural and man made, collect along the convergence zones and dampen wave action. As a result, the smoother sea surface appears bright in the sunglint pattern.

  15. Density Driven Removal of Sediment from a Buoyant Muddy Plume

    Science.gov (United States)

    Rouhnia, M.; Strom, K.

    2014-12-01

    Experiments were conducted to study the effect of settling driven instabilities on sediment removal from hypopycnal plumes. Traditional approaches scale removal rates with particle settling velocity however, it has been suggested that the removal from buoyant suspensions happens at higher rates. The enhancement of removal is likely due to gravitational instabilities, such as fingering, at two-fluid interface. Previous studies have all sought to suppress flocculation, and no simple model exists to predict the removal rates under the effect of such instabilities. This study examines whether or not flocculation hampers instability formation and presents a simple removal rate model accounting for gravitational instabilities. A buoyant suspension of flocculated Kaolinite overlying a base of clear saltwater was investigated in a laboratory tank. Concentration was continuously measured in both layers with a pair of OBS sensors, and interface was monitored with digital cameras. Snapshots from the video were used to measure finger velocity. Samples of flocculated particles at the interface were extracted to retrieve floc size data using a floc camera. Flocculation did not stop creation of settling-driven fingers. A simple cylinder-based force balance model was capable of predicting finger velocity. Analogy of fingering process of fine grained suspensions to thermal plume formation and the concept of Grashof number enabled us to model finger spacing as a function of initial concentration. Finally, from geometry, the effective cross-sectional area was correlated to finger spacing. Reformulating the outward flux expression was done by substitution of finger velocity, rather than particle settling velocity, and finger area instead of total area. A box model along with the proposed outward flux was used to predict the SSC in buoyant layer. The model quantifies removal flux based on the initial SSC and is in good agreement with the experimental data.

  16. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  17. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    Science.gov (United States)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the

  18. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves

    Science.gov (United States)

    Nelson, Peter L.; Grand, Stephen P.

    2018-04-01

    The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core-mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.

  19. Seismic structure of the lithosphere beneath NW Namibia: Impact of the Tristan da Cunha mantle plume

    Science.gov (United States)

    Yuan, Xiaohui; Heit, Benjamin; Brune, Sascha; Steinberger, Bernhard; Geissler, Wolfram H.; Jokat, Wilfried; Weber, Michael

    2017-01-01

    Northwestern Namibia, at the landfall of the Walvis Ridge, was affected by the Tristan da Cunha mantle plume during continental rupture between Africa and South America, as evidenced by the presence of the Etendeka continental flood basalts. Here we use data from a passive-source seismological network to investigate the upper mantle structure and to elucidate the Cretaceous mantle plume-lithosphere interaction. Receiver functions reveal an interface associated with a negative velocity contrast within the lithosphere at an average depth of 80 km. We interpret this interface as the relic of the lithosphere-asthenosphere boundary (LAB) formed during the Mesozoic by interaction of the Tristan da Cunha plume head with the pre-existing lithosphere. The velocity contrast might be explained by stagnated and "frozen" melts beneath an intensively depleted and dehydrated peridotitic mantle. The present-day LAB is poorly visible with converted waves, indicating a gradual impedance contrast. Beneath much of the study area, converted phases of the 410 and 660 km mantle transition zone discontinuities arrive 1.5 s earlier than in the landward plume-unaffected continental interior, suggesting high velocities in the upper mantle caused by a thick lithosphere. This indicates that after lithospheric thinning during continental breakup, the lithosphere has increased in thickness during the last 132 Myr. Thermal cooling of the continental lithosphere alone cannot produce the lithospheric thickness required here. We propose that the remnant plume material, which has a higher seismic velocity than the ambient mantle due to melt depletion and dehydration, significantly contributed to the thickening of the mantle lithosphere.

  20. Impact of biomass burning emission on total peroxy nitrates: fire plume identification during the BORTAS campaign

    Directory of Open Access Journals (Sweden)

    E. Aruffo

    2016-11-01

    Full Text Available Total peroxy nitrate ( ∑ PN concentrations have been measured using a thermal dissociation laser-induced fluorescence (TD-LIF instrument during the BORTAS campaign, which focused on the impact of boreal biomass burning (BB emissions on air quality in the Northern Hemisphere. The strong correlation observed between the  ∑ PN concentrations and those of carbon monoxide (CO, a well-known pyrogenic tracer, suggests the possible use of the  ∑ PN concentrations as marker of the BB plumes. Two methods for the identification of BB plumes have been applied: (1  ∑ PN concentrations higher than 6 times the standard deviation above the background and (2  ∑ PN concentrations higher than the 99th percentile of the  ∑ PNs measured during a background flight (B625; then we compared the percentage of BB plume selected using these methods with the percentage evaluated, applying the approaches usually used in literature. Moreover, adding the pressure threshold ( ∼  750 hPa as ancillary parameter to  ∑ PNs, hydrogen cyanide (HCN and CO, the BB plume identification is improved. A recurrent artificial neural network (ANN model was adapted to simulate the concentrations of  ∑ PNs and HCN, including nitrogen oxide (NO, acetonitrile (CH3CN, CO, ozone (O3 and atmospheric pressure as input parameters, to verify the specific role of these input data to better identify BB plumes.

  1. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at

  2. Comparison study of exhaust plume impingement effects of small mono- and bipropellant thrusters using parallelized DSMC method.

    Directory of Open Access Journals (Sweden)

    Kyun Ho Lee

    Full Text Available A space propulsion system is important for the normal mission operations of a spacecraft by adjusting its attitude and maneuver. Generally, a mono- and a bipropellant thruster have been mainly used for low thrust liquid rocket engines. But as the plume gas expelled from these small thrusters diffuses freely in a vacuum space along all directions, unwanted effects due to the plume collision onto the spacecraft surfaces can dramatically cause a deterioration of the function and performance of a spacecraft. Thus, aim of the present study is to investigate and compare the major differences of the plume gas impingement effects quantitatively between the small mono- and bipropellant thrusters using the computational fluid dynamics (CFD. For an efficiency of the numerical calculations, the whole calculation domain is divided into two different flow regimes depending on the flow characteristics, and then Navier-Stokes equations and parallelized Direct Simulation Monte Carlo (DSMC method are adopted for each flow regime. From the present analysis, thermal and mass influences of the plume gas impingements on the spacecraft were analyzed for the mono- and the bipropellant thrusters. As a result, it is concluded that a careful understanding on the plume impingement effects depending on the chemical characteristics of different propellants are necessary for the efficient design of the spacecraft.

  3. Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, S R

    1976-01-01

    A one-dimensional numerical cloud growth model and several empirical models for plume rise and cloud growth are compared with twenty-seven sets of observations of cooling tower plumes from the 2900 MW John E. Amos power plant in West Virginia. The three natural draft cooling towers are 200 m apart. In a cross wind, the plumes begin to merge at a distance of about 500 m downwind. In calm conditions, with reduced entrainment, the plumes often do not merge until heights of 1000 m. The average plume rise, 750 m, is predicted well by the models, but day-to-day variations are simulated with a correlation coefficient of about 0.5. Model predictions of visible plume length agree, on the average, with observations for visible plumes of short to moderate length (less than about 1 km). The prediction of longer plumes is hampered by our lack of knowledge of plume spreading after the plumes level off. Cloud water concentrations predicted by the numerical model agree with those measured in natural cumulus clouds (about 0.1 to 1 g kg/sup -1/).

  4. Experimental study of plume induced by nanosecond repetitively pulsed spark microdischarges in air at atmospheric pressure

    Science.gov (United States)

    Orriere, Thomas; Benard, Nicolas; Moreau, Eric; Pai, David

    2016-09-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been widely studied due to their high chemical reactivity, low gas temperature, and high ionization efficiency. They are useful in many research areas: nanomaterials synthesis, combustion, and aerodynamic flow control. In all of these fields, particular attention has been devoted to chemical species transport and/or hydrodynamic and thermal effects for applications. The aim of this study is to generate an electro-thermal plume by combining an NRP spark microdischarge in a pin-to-pin configuration with a third DC-biased electrode placed a few centimeters away. First, electrical characterization and optical emission spectroscopy were performed to reveal important plasma processes. Second, particle image velocimetry was combined with schlieren photography to investigate the main characteristics of the generated flow. Heating processes are measured by using the N2(C ->B) (0,2) and (1,3) vibrational bands, and effects due to the confinement of the discharge are described. Moreover, the presence of atomic ions N+ and O+ is discussed. Finally, the electro-thermal plume structure is characterized by a flow velocity around 1.8 m.s-1, and the thermal kernel has a spheroidal shape.

  5. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    Science.gov (United States)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle

  6. Abnormal high surface heat flow caused by the Emeishan mantle plume

    Science.gov (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  7. An integral model of plume rise from high explosive detonations

    International Nuclear Information System (INIS)

    Boughton, B.A.; De Laurentis, J.M.

    1987-01-01

    A numerical model has been developed which provides a complete description of the time evolution of both the physical and thermodynamic properties of the cloud formed when a high explosive is detonated. This simulation employs the integral technique. The model equations are derived by integrating the three-dimensional conservation equations of mass, momentum and energy over the plume cross section. Assumptions are made regarding (a) plume symmetry; (b) the shape of profiles of velocity, temperature, etc. across the plume; and (c) the methodology for simulating entrainment and the effects of the crossflow induced pressure drag force on the plume. With these assumptions, the integral equations can be reduced to a set of ordinary differential equations on the plume centerline variables. Only the macroscopic plume characteristics, e.g., plume radius, centerline height, temperature and density, are predicted; details of the plume intrastructure are ignored. The model explicitly takes into account existing meteorology and has been expanded to consider the alterations in plume behavior which occur when aqueous foam is used as a dispersal mitigating material. The simulation was tested by comparison with field measurements of cloud top height and diameter. Predictions were within 25% of field observations over a wide range of explosive yield and atmospheric stability

  8. Studies of the environmental impact of evaporative cooling tower plumes

    International Nuclear Information System (INIS)

    Thomson, D.W.

    1978-01-01

    This ongoing research program of the environmental impact of natural-draft evaporative cooling tower plumes consists principally of a comprehensive series of airborne measurements of a variety of the physical characteristics of the plumes and, to a lesser extent, of preliminary studies of remote sodar plume probing techniques and the development of simplified dynamical numerical models suitable for use in conducting field measurement programs. The PSU Doppler sodar was used at the Keystone Power Plant in southwestern Pennsylvania for an extended series of remote measurements of the characteristics of plume turbulent temperature and velocity fluctuations and results are discussed

  9. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    International Nuclear Information System (INIS)

    Laase, A.D.; Clausen, J.L.

    1998-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 microg/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields

  10. Cooling tower plume - model and experiment

    Science.gov (United States)

    Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri

    The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  11. Cooling tower plume - model and experiment

    Directory of Open Access Journals (Sweden)

    Cizek Jan

    2017-01-01

    Full Text Available The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  12. Paleogeothermal record of the Emeishan mantle plume: evidences from borehole Ro data in the Sichuan basin, SW China

    Science.gov (United States)

    Hu, S.

    2013-12-01

    The Emeishan basalt province located in the southwest of China is widely accepted to be a result of the eruption of a mantle plume at the time of middle-late Permian. If it was a mantle plume, the ambient sedimentary rocks must be heated up during the development of the mantle plume and this thermal effect must be recorded by some geothermometers in the country rocks. The vitrinite reflectance (Ro) data as a maximum paleotemperature recorder from boreholes in Sichuan basin was employed to expose the thermal regime related to the proposed Emeishan mantle plume. The Ro profiles from boreholes which drilled close to the Emeishan basalts shows a ';dog-leg' (break) style at the unconformity between the middle and the upper Permian, and the Ro profiles in the lower subsection (pre-middle Permian) shows a significantly higher slopes (gradients) than those in the upper subsection. In contrast, those Ro profiles from boreholes far away from the center of the basalt province have no break at the uncomformity. Based on the chemical kinetic model of Ro, the paleo-temperature gradients for the upper and the lower subsections in different boreholes, as well as the erosion at the unconformity between the middle and the upper Permian, were reconstructed to reveal the variations of the temperature gradients and erosion thickness with geological time and space. Both the thermal regime and the erosion thickness together with their spatial variation (structure) provide strong geothermal evidence for the existence of the Emeishan mantle plume in the middle-late Permian.

  13. Birth, life, and death of a solar coronal plume

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Stefano; Romoli, Marco [Department of Physics and Astronomy, University of Firenze, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Poletto, Giannina [INAF-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Sterling, Alphonse C., E-mail: stpucci@arcetri.astro.it [Space Science Office, NASA/MSFC, Huntsville, AL 35812 (United States)

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflow speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.

  14. River plume patterns and dynamics within the Southern California Bight

    Science.gov (United States)

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  15. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  16. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... model. The paper concludes with recommendations on how to identify and employ suitable models to advance the conceptual understanding and as decision support tools for risk assessment and the planning of remedial actions....... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  17. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M.  C.; Hewitt, I. J.; Wells, A. J.

    2015-01-01

    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  18. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M. C.

    2015-11-11

    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  19. Avoidance of thermal effluent by juvenile chinook salmon (Oncorhynchus tshowytscha) and its implications in waste heat management

    International Nuclear Information System (INIS)

    Gray, R.H.

    1977-03-01

    Knowledge of behavioral responses of aquatic organisms to thermal discharges at power plants is essential to evaluate thermal exposure and subsequent effects on survival and ecological success. Instantaneous responses of juvenile salmon that encountered a simulated river-thermal plume interface were assessed in a model raceway with a thermal discharge. Fish movement and response to the discharge were recorded on videotape. Juvenile chinook salmon (Oncorhynchus tshawytscha) tested under three discharge conditions (no plume, ambient plume and heated plume) avoided plume temperatures greater than 9 to 11 0 C above ambient. Fish occasionally oriented to the discharge current, but were not attracted to the thermal component of the plume when plume ΔT's were below the avoidance level of 11 0 C. Fish did not pass to the lower end of the raceway when plume ΔT exceeded 9 to 11 0 C. The responses noted in our experiments suggest organismic behavior may prevent juvenile salmon in nature from experiencing lethal conditions from thermal discharges and have application in waste heat management and utilization

  20. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  1. Plume Splitting in a Two-layer Stratified Ambient Fluid

    Science.gov (United States)

    Ma, Yongxing; Flynn, Morris; Sutherland, Bruce

    2017-11-01

    A line-source plume descending into a two-layer stratified ambient fluid in a finite sized tank is studied experimentally. Although the total volume of ambient fluid is fixed, lower- and upper-layer fluids are respectively removed and added at a constant rate mimicking marine outfall through diffusers and natural and hybrid ventilated buildings. The influence of the plume on the ambient depends on the value of λ, defined as the ratio of the plume buoyancy to the buoyancy loss of the plume as it crosses the ambient interface. Similar to classical filling-box experiments, the plume can always reach the bottom of the tank if λ > 1 . By contrast, if λ < 1 , an intermediate layer eventually forms as a result of plume splitting. Eventually all of the plume fluid spreads within the intermediate layer. The starting time, tv, and the ending time, tt, of the transition process measured from experiments correlate with the value of λ. A three-layer ambient fluid is observed after transition, and the mean value of the measured densities of the intermediate layer fluid is well predicted using plume theory. Acknowledgments: Funding for this study was provided by NSERC.

  2. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  3. Morphology of the Zambezi River plume in the Sofala Bank ...

    African Journals Online (AJOL)

    In this paper, hydrographic data collected in the vicinity of the Zambezi River plume between 2004-2007 is discussed alongside historical data to infer the plume morphology. The sampling plan called for 73 CTD stations that were interspersed with sampling of shrimp recruitment. Satellite-derived wind speed and river ...

  4. Airborne Gamma-ray Measurements in the Chernobyl Plume

    DEFF Research Database (Denmark)

    Grasty, R. L.; Hovgaard, Jens; Multala, J.

    1997-01-01

    On 29 April 1986, the Geological Survey of Finland (GSF) survey aircraft with a gamma ray spectrometer flew through a radioactive plume from the Chernobyl nuclear accident. The aircraft became contaminated and the gamma spectrometer measured radioactivity in the plume as well as radioactivity...

  5. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  6. The mantle-plume model, its feasibility and consequences

    NARCIS (Netherlands)

    Calsteren, van P.W.C.

    1981-01-01

    High beat-flow foci on the Earth have been named ‘hot-spots’ and are commonly correlated with ‘mantle-plumes’ in the deep. A mantle plume may be described as a portion of mantle material with a higher heat content than its surroundings. The intrusion of a mantle-plume is inferred to be similar to

  7. Multiphase CFD modeling of nearfield fate of sediment plumes

    DEFF Research Database (Denmark)

    Saremi, Sina; Hjelmager Jensen, Jacob

    2014-01-01

    Disposal of dredged material and the overflow discharge during the dredging activities is a matter of concern due to the potential risks imposed by the plumes on surrounding marine environment. This gives rise to accurately prediction of the fate of the sediment plumes released in ambient waters...

  8. A study of space shuttle plumes in the lower thermosphere

    Science.gov (United States)

    Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.

    2011-12-01

    During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.

  9. Prominence Bubbles and Plumes: Thermo-magnetic Buoyancy in Coronal Cavity Systems

    Science.gov (United States)

    Berger, Thomas; Hurlburt, N.

    2009-05-01

    The Hinode/Solar Optical Telescope continues to produce high spatial and temporal resolution images of solar prominences in both the Ca II 396.8 nm H-line and the H-alpha 656.3 nm line. Time series of these images show that many quiescent prominences produce large scale (50 Mm) dark "bubbles" that "inflate" into, and sometimes burst through, the prominence material. In addition, small-scale (2--5 Mm) dark plumes are seen rising into many quiescent prominences. We show typical examples of both phenomena and argue that they originate from the same mechanism: concentrated and heated magnetic flux that rises due to thermal and magnetic buoyancy to equilibrium heights in the prominence/coronal-cavity system. More generally, these bubbles and upflows offer a source of both magnetic flux and mass to the overlying coronal cavity, supporting B.C. Low's theory of CME initiation via steadily increasing magnetic buoyancy breaking through the overlying helmut streamer tension forces. Quiescent prominences are thus seen as the lowermost parts of the larger coronal cavity system, revealing through thermal effects both the cooled downflowing "drainage" from the cavity and the heated upflowing magnetic "plasmoids" supplying the cavity. We compare SOT movies to new 3D compressible MHD simulations that reproduce the dark turbulent plume dynamics to establish the magnetic and thermal character of these buoyancy-driven flows into the corona.

  10. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  11. Characterization of redox conditions in groundwater contaminant plumes

    Science.gov (United States)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  12. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

    KAUST Repository

    Chertock, A.; Fellner, K.; Kurganov, A.; Lorz, A.; Markowich, P. A.

    2012-01-01

    examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface

  13. Towards LES Models of Jets and Plumes

    Science.gov (United States)

    Webb, A. T.; Mansour, N. N.

    2000-01-01

    As pointed out by Rodi standard integral solutions for jets and plumes developed for discharge into infinite, quiescent ambient are difficult to extend to complex situations, particularly in the presence of boundaries such as the sea floor or ocean surface. In such cases the assumption of similarity breaks down and it is impossible to find a suitable entrainment coefficient. The models are also incapable of describing any but the most slowly varying unsteady motions. There is therefore a need for full time-dependent modeling of the flow field for which there are three main approaches: (1) Reynolds averaged numerical simulation (RANS), (2) large eddy simulation (LES), and (3) direct numerical simulation (DNS). Rodi applied RANS modeling to both jets and plumes with considerable success, the test being a match with experimental data for time-averaged velocity and temperature profiles as well as turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still relies on empirical constants, some eleven in the case of the buoyant jet, and so would not be applicable to a partly laminar plume, may have limited use in the presence of boundaries, and would also be unsuitable if one is after details of the unsteady component of the flow (the turbulent eddies). At the other end of the scale DNS modeling includes all motions down to the viscous scales. Boersma et al. have built such a model for the non-buoyant case which also compares well with measured data for mean and turbulent velocity components. The model demonstrates its versatility by application to a laminar flow case. As its name implies, DNS directly models the Navier-Stokes equations without recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re) the cost can be prohibitive - the number of required grid points scaling with Re(exp 9/4) and the number of time steps with Re(exp 3/4). The middle road is provided by LES whereby the Navier-Stokes equations are formally

  14. Fine particles in the Soufriere eruption plume

    Science.gov (United States)

    Woods, D. C.; Chuan, R. L.

    1982-01-01

    The size distributions of fine particles measured at tropospheric altitudes in the periphery of the eruption plume formed during the April 17, 1979 eruption of Soufriere Volcano and in the low-level effluents on May 15, 1979 were found to be bimodal, having peak concentrations at geometric mean diameters of 1.1 and 0.23 micrometers. Scanning electron microscopy and energy-dispersive X-ray analysis of the samples revealed an abundance of aluminum and silicon and traces of sodium, magnesium, chlorine, potassium, calcium, and iron in the large-particle mode. The submicrometer-sized particles were covered with liquid containing sulfur, assumed to be in the form of liquid sulfuric acid.

  15. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  16. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  17. Pressurized-thermal-shock technology

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1991-01-01

    It was recognized at the time the original Issues on Pressurized Thermal Shock (IPTS) studies were conducted that distinct vertical plumes of cooling water form beneath the cold leg inlet nozzles during those particular transients that exhibit fluid/thermal stratification. The formation of these plumes (referred to as thermal streaming) induces a time-dependent circumferential temperature variation on the inner surface of the Reactor Pressure Vessel (RPV) wall that creates an axial stress component. This axial stress component is in addition to the axial stress components induced by time-dependent radial temperature variation through the wall thickness and the time-dependent pressure transient. This additional axial stress component will result in a larger axial stress resultant that results in a larger stress-intensity factor acting on circumferential flaws, thus reducing the fracture margin for circumferential flaws. Although this was recognized at the time of the original IPTS study, the contribution appeared to be relatively small; therefore, it was neglected. The original IPTS studies were performed with OCA-P, a computer program developed at ORNL to analyze the cleavage fracture response of a nuclear RPV subjected to PTS loading. OCA-P is a one-dimensional (1-D) finite-element code that analyzes the stresses and stress-intensity factors (axial and tangential) resulting from the pressure and the radial temperature variation through the wall thickness only. The HSST Program is investigating the potential effects of thermal-streaming-induced stresses in circumferential welds on the reactor vessel PTS analyses. The initial phase of this investigation focused on an evaluation of the available thermal-hydraulic data and analyses results. The objective for the initial phase of the investigation is to evaluate thermal-streaming behavior under conditions relevant to the operation of U.S. PWRs and chracterize any predicted thermal-streaming plumes

  18. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and RAIA.co projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  19. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations

    Directory of Open Access Journals (Sweden)

    F. Darrouzet

    2006-07-01

    Full Text Available Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles have been derived from the electron plasma frequency identified by the WHISPER sounder supplemented, in-between soundings, by relative variations of the spacecraft potential measured by the electric field instrument EFW; ion velocity is also measured onboard these satellites. The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 min; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations of three plume events and compare CLUSTER in-situ data with global images of the plasmasphere obtained by IMAGE. In particular, we study the geometry and the orientation of plasmaspheric plumes by using four-point analysis methods. We compare several aspects of plume motion as determined by different methods: (i inner and outer plume boundary velocity calculated from time delays of this boundary as observed by the wave experiment WHISPER on the four spacecraft, (ii drift velocity measured by the electron drift instrument EDI onboard CLUSTER and (iii global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  20. Aircraft measurements over Europe of an air pollution plume from Southeast Asia – aerosol and chemical characterization

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2007-01-01

    .70 Mm−1, as was the fraction of non-volatile Aitken particles. This indicates that black carbon (BC was an important aerosol component. During the flight on 25 March, which took place on the rear of a trough located over Europe, a mixture of Asian pollution and stratospheric air was found. Asian pollution was mixing into the lower stratosphere, and stratospheric air was mixing into the pollution plume in the troposphere. Turbulence was encountered by the aircraft in the mixing regions, where the thermal stability was low and Richardson numbers were below 0.2. The result of the mixing can clearly be seen in the trace gas data, which are following mixing lines in correlation plots. This mixing with stratospheric air is likely very typical of Asian air pollution, which is often lifted to the upper troposphere and, thus, transported in the vicinity of stratospheric air.

  1. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    Science.gov (United States)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  2. Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control

    Science.gov (United States)

    Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.

    2014-12-01

    Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and

  3. The controversy over plumes: Who is actually right?

    Science.gov (United States)

    Puchkov, V. N.

    2009-01-01

    The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes’ advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle-core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-isotope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow. In the author’s opinion, the crisis may be overcome by returning to the beginnings of the plume concept and by providing an adequate specification of plume attributes. Only mantle flows with sources situated below the asthenosphere should be referred to as plumes. These flows are not directly related to such plate-tectonic mechanisms as passive rifting and decompression melting in the upper asthenosphere and are marked by time-progressive volcanic chains; their subasthenospheric roots are detected in seismic tomographic images. Such plumes are mostly located at the margins of superswells, regions of attenuation of seismic waves at the

  4. Saharan dust plume charging observed over the UK

    Science.gov (United States)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  5. Experiments on Plume Spreading by Engineered Injection and Extraction

    Science.gov (United States)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered

  6. EM Modelling of RF Propagation Through Plasma Plumes

    Science.gov (United States)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  7. Submarine Alkalic Lavas Around the Hawaiian Hotspot; Plume and Non-Plume Signatures Determined by Noble Gases

    Science.gov (United States)

    Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.

    2004-12-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.

  8. Modeling of Interactions of Ablated Plumes

    National Research Council Canada - National Science Library

    Povitsky, Alex

    2008-01-01

    Heat transfer modulation between the gas flow and the Thermal Protection Shield (TPS) that occurs because of ejection of under-expanded pyrolysis gases through the cracks in the TPS is studied by numerical modeling...

  9. PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-08-01

    In this paper a new integral mathematical model for volcanic plumes, named PLUME-MoM, is presented. The model describes the steady-state dynamics of a plume in a 3-D coordinate system, accounting for continuous variability in particle size distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. A proper description of such a multi-particle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows for a description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of parameters of the continuous size distribution of the particles. This is achieved by formulation of fundamental transport equations for the multi-particle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows for the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables the investigation of the response of four key output variables (mean and standard deviation of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and standard deviation) characterizing the

  10. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke

    Science.gov (United States)

    G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman

    2011-01-01

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...

  11. Satellite Remote Sensing Detection of Coastal Pollution in Southern California: Stormwater Runoff and Wastewater Plumes

    Science.gov (United States)

    Trinh, R. C.; Holt, B.; Gierach, M.

    2016-02-01

    Coastal pollution poses a major health and environmental hazard, not only for beach goers and coastal communities but for marine organisms as well. Stormwater runoff is the largest source of environmental pollution in coastal waters of the Southern California Bight (SCB) and is of great concern in increasingly urbanized areas. Buoyant wastewater plumes also pose a marine environmental risk. In this study we provide a comprehensive overview of satellite remote sensing capabilities in detecting buoyant coastal pollutants in the form of stormwater runoff and wastewater effluent. The SCB is the final destination of four major urban rivers that act as channels for runoff and pollution during and after rainstorms. We analyzed and compared sea surface roughness data from various Synthetic Aperture Radar (SAR) instruments to ocean color data from the Moderate Imaging System (MODIS) sensor on board the Aqua satellite and correlated the results with existing environmental data in order to create a climatology of naturally occurring stormwater plumes in coastal waters after rain events, from 1992 to 2014 from four major rivers in the area. Heat maps of the primary extent of stormwater plumes were constructed to specify areas that may be subject to the greatest risk of coastal contamination. In conjunction with our efforts to monitor coastal pollution and validate the abilities of satellite remote sensing, a recent Fall 2015 wastewater diversion from the City of Los Angeles Hyperion Treatment Plant (HTP) provided the opportunity to apply these remote sensing methodologies of plume detection to wastewater. During maintenance of their 5-mile long outfall pipe, wastewater is diverted to a shorter outfall pipe that terminates 1-mile offshore and in shallower waters. Sea surface temperature (SST), chlorophyll-a (chl-a) fluorescence, remote sensing reflectance and particulate backscatter signatures were analyzed from MODIS. Terra-ASTER and Landsat-8 thermal infrared data were also

  12. Numerical Speadsheet Modeling of Natural Attenuation for Groundwater Contaminant Plumes

    National Research Council Canada - National Science Library

    Twesme, Troy

    1999-01-01

    .... The model was used to evaluate natural attenuation for removal of a trichloroethylene (TCE) plume from a surficial aquifer containing three regions with distinctly different processes for degradation of TCE...

  13. Dispersion under low wind speed conditions using Gaussian Plume approach

    International Nuclear Information System (INIS)

    Rakesh, P.T.; Srinivas, C.V.; Baskaran, R.; Venkatesan, R.; Venkatraman, B.

    2018-01-01

    For radioactive dose computation due to atmospheric releases, dispersion models are essential requirement. For this purpose, Gaussian plume model (GPM) is used in the short range and advanced particle dispersion models are used in all ranges. In dispersion models, other than wind speed the most influential parameter which determines the fate of the pollutant is the turbulence diffusivity. In GPM the diffusivity is represented using empirical approach. Studies show that under low wind speed conditions, the existing diffusivity relationships are not adequate in estimating the diffusion. An important phenomenon that occurs during the low wind speed is the meandering motions. It is found that under meandering motions the extent of plume dispersion is more than the estimated value using conventional GPM and particle transport models. In this work a set of new turbulence parameters for the horizontal diffusion of the plume is suggested and using them in GPM, the plume is simulated and is compared against observation available from Hanford tracer release experiment

  14. Field experimental observations of highly graded sediment plumes

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Saremi, Sina; Jimenez, Carlos

    2015-01-01

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes......-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages...... are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model....

  15. Can molecular diffusion explain Space Shuttle plume spreading?

    Science.gov (United States)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  16. Site characterization and petroleum hydrocarbon plume mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, K. [Harding Lawson Associates, Houston, TX (United States)

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  17. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  18. Analysis of plume rise data from five TVA steam plants

    International Nuclear Information System (INIS)

    Anfossi, D.

    1985-01-01

    A large data set containing the measurements of the rise of plumes emitted by five TVA steam plants was examined. Particular attention was paid to the problem of the merging of the plumes emitted by adjacent stacks and to the role played by the wind angle in this respect. It was demonstrated that there is a noticeable rise enhancement of merged plumes with respect to single emissions, both in neutral and in stable conditions, as far as transversal and parallel plumes are concerned. For plumes advected normal to the row of the stacks the enhancement is noticeable only in the final stage of rise. The existence of a critical angle for merging suggested enhancement is noticeable only in the final stage of rise. The existence of a critical angle for merging suggested by Briggs was examined. Finally, a formula to describe plume rise in the transitional and in the final phase, both in neutral and stable conditions, is proposed; it was obtained by interpolation of two familiar Brigg's equations

  19. Spectrum Diagnosis for Fuchsia Plume of Hall Effect Thruster with Xenon as Propellant

    International Nuclear Information System (INIS)

    Yu Daren; Ding Jiapeng; Dai Jingmin

    2006-01-01

    The colour of the Hall effect thruster's plume is often light-green, and sometimes a fuchsia plume appears during experiments. Based on a spectrum and colour analysis, and a comparison with normal plumes, a conclusion is made that the density of the Xe ions and the temperature of electrons are low when the plume appears fuchsia. In this condition, most of the components of the plume are Xe atoms, and the ionization rate of the propellant is low

  20. Simulating Fine-Scale Marine Pollution Plumes for Autonomous Robotic Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad Fahad

    2018-05-01

    Full Text Available Marine plumes exhibit characteristics such as intermittency, sinuous structure, shape and flow field coherency, and a time varying concentration profile. Due to the lack of experimental quantification of these characteristics for marine plumes, existing work often assumes marine plumes exhibit behavior similar to aerial plumes and are commonly modeled by filament based Lagrangian models. Our previous field experiments with Rhodamine dye plumes at Makai Research Pier at Oahu, Hawaii revealed that marine plumes show similar characteristics to aerial plumes qualitatively, but quantitatively they are disparate. Based on the field data collected, this paper presents a calibrated Eulerian plume model that exhibits the qualitative and quantitative characteristics exhibited by experimentally generated marine plumes. We propose a modified model with an intermittent source, and implement it in a Robot Operating System (ROS based simulator. Concentration time series of stationary sampling points and dynamic sampling points across cross-sections and plume fronts are collected and analyzed for statistical parameters of the simulated plume. These parameters are then compared with statistical parameters from experimentally generated plumes. The comparison validates that the simulated plumes exhibit fine-scale qualitative and quantitative characteristics similar to experimental plumes. The ROS plume simulator facilitates future evaluations of environmental monitoring strategies by marine robots, and is made available for community use.

  1. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    Science.gov (United States)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  2. Modelling the possible interaction between edge-driven convection and the Canary Islands mantle plume

    Science.gov (United States)

    Negredo, A. M.; Rodríguez-González, J.; Fullea, J.; Van Hunen, J.

    2017-12-01

    The close location between many hotspots and the edges of cratonic lithosphere has led to the hypothesis that these hotspots could be explained by small-scale mantle convection at the edge of cratons (Edge Driven Convection, EDC). The Canary Volcanic Province hotspot represents a paradigmatic example of this situation due to its close location to the NW edge of the African Craton. Geochemical evidence, prominent low seismic velocity anomalies in the upper and lower mantle, and the rough NE-SW age-progression of volcanic centers consistently point out to a deep-seated mantle plume as the origin of the Canary Volcanic Province. It has been hypothesized that the plume material could be affected by upper mantle convection caused by the thermal contrast between thin oceanic lithosphere and thick (cold) African craton. Deflection of upwelling blobs due to convection currents would be responsible for the broader and more irregular pattern of volcanism in the Canary Province compared to the Madeira Province. In this study we design a model setup inspired on this scenario to investigate the consequences of possible interaction between ascending mantle plumes and EDC. The Finite Element code ASPECT is used to solve convection in a 2D box. The compositional field and melt fraction distribution are also computed. Free slip along all boundaries and constant temperature at top and bottom boundaries are assumed. The initial temperature distribution assumes a small long-wavelength perturbation. The viscosity structure is based on a thick cratonic lithosphere progressively varying to a thin, or initially inexistent, oceanic lithosphere. The effects of assuming different rheologies, as well as steep or gradual changes in lithospheric thickness are tested. Modelling results show that a very thin oceanic lithosphere (models assuming temperature-dependent viscosity and large viscosity variations evolve to large-scale (upper mantle) convection cells, with upwelling of hot material being

  3. Crust-Lithosphere-Asthenosphere Dynamics in Mantle Plume Provinces with Emphasis on the Galapagos =

    Science.gov (United States)

    Orellana, Felipe

    Hotspot tracks, which most geoscientists attribute to the effects of mantle plumes on the overlying lithospheric plates, are characterized by distinct bathymetry, gravity signatures, structural geology, volcanology, petrology, and geochemistry; motivating us to try to understand the dynamics behind the space-time-histories of these systems. Making use of classical geodynamic paradigms, such as highly-viscous fluids (Stokes flow, for the mantle and/or lithosphere), elastic plate behavior, and heat flow, we develop conceptual frameworks to explain a number of distinct hotspot track features, and present quantitative models aimed at elucidating their origins. There is much diversity among the population of mantle plume hotspot tracks on the Earth's oceanic crust. For example, there are marked differences in the style of their bathymetry, as well as in their gravimetric signals, and also in the isotopic signature of extruded lavas. At the same time, important underlying differences are given by the age of the lithospheric plates under which the mantle plumes are impinging, lithospheric elastic thickness, the heat (or buoyancy) flux of individual mantle plumes, their melt production, crustal thickening, the proximity of spreading centers, etc. In the first chapter of this dissertation, making use of scaling theory, we show that for most oceanic hotspot tracks, the character of bathymetric expression (primarily rough vs. smooth topography) can be explained by three independent primary underlying factors - plate thickness, or equivalently plate age; plate speed; and plume buoyancy flux - combined into a single parameter, R, the ratio of plume heat flux to the effective thermal capacity of the moving plate overlying the plume. The Galapagos archipelago (off the west coast of equatorial South America), part of a >20 Ma old hotspot track formed by the underlying Galapagos mantle plume, currently exhibits a broad geographic distribution of volcanic centers of surprisingly

  4. CALIOP-based Biomass Burning Smoke Plume Injection Height

    Science.gov (United States)

    Soja, A. J.; Choi, H. D.; Fairlie, T. D.; Pouliot, G.; Baker, K. R.; Winker, D. M.; Trepte, C. R.; Szykman, J.

    2017-12-01

    Carbon and aerosols are cycled between terrestrial and atmosphere environments during fire events, and these emissions have strong feedbacks to near-field weather, air quality, and longer-term climate systems. Fire severity and burned area are under the control of weather and climate, and fire emissions have the potential to alter numerous land and atmospheric processes that, in turn, feedback to and interact with climate systems (e.g., changes in patterns of precipitation, black/brown carbon deposition on ice/snow, alteration in landscape and atmospheric/cloud albedo). If plume injection height is incorrectly estimated, then the transport and deposition of those emissions will also be incorrect. The heights to which smoke is injected governs short- or long-range transport, which influences surface pollution, cloud interaction (altered albedo), and modifies patterns of precipitation (cloud condensation nuclei). We are working with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) science team and other stakeholder agencies, primarily the Environmental Protection Agency and regional partners, to generate a biomass burning (BB) plume injection height database using multiple platforms, sensors and models (CALIOP, MODIS, NOAA HMS, Langley Trajectory Model). These data have the capacity to provide enhanced smoke plume injection height parameterization in regional, national and international scientific and air quality models. Statistics that link fire behavior and weather to plume rise are crucial for verifying and enhancing plume rise parameterization in local-, regional- and global-scale models used for air quality, chemical transport and climate. Specifically, we will present: (1) a methodology that links BB injection height and CALIOP air parcels to specific fires; (2) the daily evolution of smoke plumes for specific fires; (3) plumes transport and deposited on the Greenland Ice Sheet; and (4) compare CALIOP-derived smoke plume injection

  5. The Entrainment Rate for Buoyant Plumes in a Crossflow

    Science.gov (United States)

    Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.

    2010-03-01

    We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.

  6. Integrating wildfire plume rises within atmospheric transport models

    Science.gov (United States)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  7. Field experimental observations of highly graded sediment plumes.

    Science.gov (United States)

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-06-15

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Plant odour plumes as mediators of plant-insect interactions.

    Science.gov (United States)

    Beyaert, Ivo; Hilker, Monika

    2014-02-01

    Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a 'POP concept' for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory-mediated plant-insect interactions. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  9. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    Science.gov (United States)

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  10. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  11. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  12. Timing of water plume eruptions on Enceladus explained by interior viscosity structure

    Science.gov (United States)

    Běhounková, Marie; Tobie, Gabriel; Čadek, Ondřej; Choblet, Gaël; Porco, Carolyn; Nimmo, Francis

    2015-08-01

    At the south pole of Saturn's icy moon Enceladus, eruptions of water vapour and ice emanate from warm tectonic ridges. Observations in the infrared and visible spectra have shown an orbital modulation of the plume brightness, which suggests that the eruption activity is influenced by tidal forces. However, the observed activity seems to be delayed by several hours with respect to predictions based on simple tidal models. Here we simulate the viscoelastic tidal response of Enceladus with a full three-dimensional numerical model and show that the delay in eruption activity may be a natural consequence of the viscosity structure in the south-polar region and the size of the putative subsurface ocean. By systematically comparing simulations of variations in normal stress along faults with plume brightness data, we show that the observed activity is reproduced for two classes of interior models with contrasting thermal histories: a low-viscosity convective region above a polar sea extending about 45°-60° from the south pole at a depth below the surface as small as 30 km, or a convecting ice shell of 60-70 km in thickness above a global ocean. Our analysis further shows that the eruption activity is controlled by the average normal stress applied across the cracks, thus providing a constraint on the eruption mechanism.

  13. Analysis of plume backflow around a nozzle lip in a nuclear rocket

    International Nuclear Information System (INIS)

    Chung, C.H.; Kim, S.C.; Stubbs, R.M.; De Witt, K.J.

    1993-06-01

    The structure of the flow around a nuclear thermal rocket nozzle lip has been investigated using the direct simulation Monte Carlo method. Special attention has been paid to the behavior of a small amount of harmful particles that may be present in the rocket exhaust gas. The harmful fission product particles are modeled by four inert gases whose molecular weights are in a range of 4 131. Atomic hydrogen, which exists in the flow due to the extremely high nuclear fuel temperature in the reactor, is also included. It is shown that the plume backflow is primarily determined by the thin subsonic fluid layer adjacent to the surface of the nozzle lip, and that the inflow boundary in the plume region has negligible effect on the backflow. It is also shown that a relatively large amount of the lighter species is scattered into the backflow region while the amount of the heavier species becomes negligible in this region due to extreme separation between the species. Results indicate that the backscattered molecules are very energetic and are fast-moving along the surface in the backflow region near the nozzle lip. 22 refs

  14. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

    Science.gov (United States)

    Takahashi, F.

    2011-12-01

    Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

  15. Subsurface oil release field experiment - observations and modelling of subsurface plume behaviour

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Reed, M.

    1996-01-01

    An experiment was conducted at sea, in which oil was released from 107 metres depth, in order to study plume behaviour. The objective of the underwater release was to simulate a pipeline leakage without gas and high pressure and to study the behaviour of the rising plume. A numerical model for the underwater plume behaviour was used for comparison with field data. The expected path of the plume, the time expected for the plume to reach the sea surface and the width of the plume was modelled. Field data and the numerical model were in good agreement. 10 refs., 2 tabs., 9 figs

  16. Merits of a Scenario Approach in Dredge Plume Modelling

    DEFF Research Database (Denmark)

    Pedersen, Claus; Chu, Amy Ling Chu; Hjelmager Jensen, Jacob

    2011-01-01

    Dredge plume modelling is a key tool for quantification of potential impacts to inform the EIA process. There are, however, significant uncertainties associated with the modelling at the EIA stage when both dredging methodology and schedule are likely to be a guess at best as the dredging...... contractor would rarely have been appointed. Simulation of a few variations of an assumed full dredge period programme will generally not provide a good representation of the overall environmental risks associated with the programme. An alternative dredge plume modelling strategy that attempts to encapsulate...... uncertainties associated with preliminary dredging programmes by using a scenario-based modelling approach is presented. The approach establishes a set of representative and conservative scenarios for key factors controlling the spill and plume dispersion and simulates all combinations of e.g. dredge, climatic...

  17. Using satellite imagery for qualitative evaluation of plume transport in modeling the effects of the Kuwait oil fire smoke plumes

    International Nuclear Information System (INIS)

    Bass, A.; Janota, P.

    1992-01-01

    To forecast the behavior of the Kuwait oil fire smoke plumes and their possible acute or chronic health effects over the Arabian Gulf region, TASC created a comprehensive health and environmental impacts modeling system. A specially-adapted Lagrangian puff transport model was used to create (a) short-term (multiday) forecasts of plume transport and ground-level concentrations of soot and SO 2 ; and (b) long-term (seasonal and longer) estimates of average surface concentrations and depositions. EPA-approved algorithms were used to transform exposures to SO 2 and soot (as PAH/BaP) into morbidity, mortality and crop damage risks. Absent any ground truth, satellite imagery from the NOAA Polar Orbiter and the ESA Geostationary Meteosat offered the only opportunity for timely qualitative evaluation of the long-range plume transport and diffusion predictions. This paper shows the use of actual satellite images (including animated loops of hourly Meteosat images) to evaluate plume forecasts in near-real-time, and to sanity-check the meso- and long-range plume transport projections for the long-term estimates. Example modeled concentrations, depositions and health effects are shown

  18. The Robustness of Tomographically Imaged Broad Plumes in the Deep Mantle: Constraints on Mantle Dynamics

    Science.gov (United States)

    Romanowicz, B. A.; Jiménez-Pérez, H.; Adourian, S.; Karaoglu, H.; French, S.

    2016-12-01

    the Pacific ocean. We argue that the plumes can be better resolved than in models developed using classical approaches, due to the particular combination of theory and dataset. We discuss the geodynamical consequences of their attributes, which contrast with those of purely thermal plumes in a medium with simple temperature and pressure dependent rheology.

  19. Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    Science.gov (United States)

    Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.

  20. Tidally induced lateral dispersion of the Storfjorden overflow plume

    Directory of Open Access Journals (Sweden)

    F. Wobus

    2013-10-01

    Full Text Available We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.

  1. IASI measurements of reactive trace species in biomass burning plumes

    Directory of Open Access Journals (Sweden)

    P.-F. Coheur

    2009-08-01

    Full Text Available This work presents observations of a series of short-lived species in biomass burning plumes from the Infrared Atmospheric Sounding Interferometer (IASI, launched onboard the MetOp-A platform in October 2006. The strong fires that have occurred in the Mediterranean Basin – and particularly Greece – in August 2007, and those in Southern Siberia and Eastern Mongolia in the early spring of 2008 are selected to support the analyses. We show that the IASI infrared spectra in these fire plumes contain distinctive signatures of ammonia (NH3, ethene (C2H4, methanol (CH3OH and formic acid (HCOOH in the atmospheric window between 800 and 1200 cm−1, with some noticeable differences between the plumes. Peroxyacetyl nitrate (CH3COOONO2, abbreviated as PAN was also observed with good confidence in some plumes and a tentative assignment of a broadband absorption spectral feature to acetic acid (CH3COOH is made. For several of these species these are the first reported measurements made from space in nadir geometry. The IASI measurements are analyzed for plume height and concentration distributions of NH3, C2H4 and CH3OH. The Greek fires are studied in greater detail for the days associated with the largest emissions. In addition to providing information on the spatial extent of the plume, the IASI retrievals allow an estimate of the total mass emissions for NH3, C2H4 and CH3OH. Enhancement ratios are calculated for the latter relative to carbon monoxide (CO, giving insight in the chemical processes occurring during the transport, the first day after the emission.

  2. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    Science.gov (United States)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  3. Naval Weapons Center Plume Radar Frequency Interference Code

    Science.gov (United States)

    1982-10-01

    ppm sodium. Both equilibrium and finite rate chemistry during the expansion from the chamber were tried as initial conditions for the plume. In...was too large. The difference between the.e two sets of initial conditions diminished downstream as the chemistry in the plume mixing region began to...Rerkirre Arvliral I Comirlnrnde!- ir.C h ic 1. tVS. Pacific Hice ((Code 3251 1 Corimu tinde r. ’n, r-d I leer. Pearl I atar I Coimniaide r. Sevent

  4. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Science.gov (United States)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  5. Dynamic Data-Driven UAV Network for Plume Characterization

    Science.gov (United States)

    2016-05-23

    AFRL-AFOSR-VA-TR-2016-0203 Dynamic Data-Driven UAV Network for Plume Characterization Kamran Mohseni UNIVERSITY OF FLORIDA Final Report 05/23/2016...AND SUBTITLE Dynamic Data-Driven UAV Network for Plume Characterization 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0090 5c.  PROGRAM ELEMENT...studied a dynamic data driven (DDD) approach to operation of a heterogeneous team of unmanned aerial vehicles ( UAVs ) or micro/miniature aerial

  6. Calculation of cooling tower plumes for high pressure wintry situations

    International Nuclear Information System (INIS)

    Gassmann, F.; Tinguely, M.; Haschke, D.

    1982-12-01

    The diffusion of the plumes of the projected nuclear power plants at Kaiseraugst and Schwoerstadt, during high pressure wintry conditions, has been examined using a mathematical model to simulate the plumes. For these calculations, microaerological measurements were made in the proximity of Kaiseraugst and Schwoerstadt. These give a typical image of the weather during high pressure wintry conditions, which is normally associated with an inversion, sometimes strong, at a low height. Dry cooling towers with natural draught, which offer an alternative solution to the wet cooling towers proposed for Kasieraugst, are examined equally. (Auth./G.T.H.)

  7. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2008-01-01

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment

  8. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    Science.gov (United States)

    Hintze, Paul E.

    2014-01-01

    Kennedy Space Center (KSC) has led the efforts for lunar and Martian landing site preparation, including excavation, soil stabilization, and plume damage prediction. There has been much discussion of sintering but until our team recently demonstrated it for the lunar case there was little understanding of the serious challenges. Simplistic sintering creates a crumbly, brittle, weak surface unsuitable for a rocket exhaust plume. The goal of this project is to solve those problems and make it possible to land a human class lander on Mars, making terminal landing of humans on Mars possible for the first time.

  9. Atmospheric cooling tower with reduced plume

    International Nuclear Information System (INIS)

    Gautier, D.M.; Lagoutte, A.

    1985-01-01

    The cooling tower, usable in thermal-electric power plants, has a vertical chimney having a central water tower fed with water to be cooled, a pipe network distributing water coming from the water tower and dispersing it in flows streaming down on a packing, and a basin to receive the water cooled by contact with an air flow passing through apertures at the lower part of the chimney and flowing up through the chimney. The cooling tower has inlet air pipes for the said apertures to a zone of the chimney situated beyond the streaming zone, the said pipes being arranged such their surface is swept by water to be cooled [fr

  10. A new conceptual model for whole mantle convection and the origin of hotspot plumes

    Science.gov (United States)

    Yoshida, Masaki

    2014-08-01

    A new conceptual model of mantle convection is constructed for consideration of the origin of hotspot plumes, using recent evidence from seismology, high-pressure experiments, geodynamic modeling, geoid inversion studies, and post-glacial rebound analyses. This conceptual model delivers several key points. Firstly, some of the small-scale mantle upwellings observed as hotspots on the Earth's surface originate at the base of the mantle transition zone (MTZ), in which the Archean granitic continental material crust (TTG; tonalite-trondhjemite-granodiorite) with abundant radiogenic elements is accumulated. Secondly, the TTG crust and the subducted oceanic crust that have accumulated at the base of MTZ could act as thermal or mechanical insulators, leading to the formation of a hot and less viscous layer just beneath the MTZ; which may enhance the instability of plume generation at the base of the MTZ. Thirdly, the origin of some hotspot plumes is isolated from the large low shear-wave velocity provinces (LLSVPs) under Africa and the South Pacific. I consider that the conceptual model explains why almost all the hotspots around Africa are located above the margins of the African LLSVP. Because a planetary-scale trench system surrounding a “Pangean cell” has been spatially stable throughout the Phanerozoic, a large amount of the oceanic crustal layer is likely to be trapped in the MTZ under the Pangean cell. Therefore, under Africa, almost all of the hotspot plumes originate from the base of the MTZ, where a large amount of TTG and/or oceanic crusts has accumulated. This conceptual model may explain the fact that almost all the hotspots around Africa are located on margins above the African LLSVP. It is also considered that some of the hotspot plumes under the South Pacific thread through the TTG/oceanic crusts accumulated around the bottom of the MTZ, and some have their roots in the South Pacific LLSVP while others originate from the MTZ. The numerical simulations

  11. Follow the Plume: Organic Molecules and Habitable Conditions in the Subsurface Ocean of Enceladus

    Science.gov (United States)

    Davila, Alfonso; McKay, Christopher P.; Willson, David; Eigenbrode, Jennifer; Hurford, Terry

    2018-01-01

    This white paper describes the astrobiological significance of the Enceladus plume, and makes a series of scientific and technological recommendations that would lead to a future mission that samples and analyzes plume materials, and searches for evidence of life.

  12. Plume rise from stacks with scrubbers: a state-of-the-art review

    International Nuclear Information System (INIS)

    Schatzmann, M.; Policastro, A.J.

    1984-01-01

    The state of the art of predicting plume rise from stacks with scrubbers is evaluated critically. The significant moisture content of the scrubbed plume upon exit leads to important thermodynamic effects during plume rise that are unaccounted for in the usual dry plume rise theories. For example, under conditionally unstable atmospheres, a wet scrubbed plume treated as completely dry acts as if the atmosphere were stable, whereas in reality the scrubbed plume behaves instead as if the atmosphere were unstable. Even the use of moist plume models developed for application to cooling tower plume rise is not valid since these models 1) employ the Boussinesq approximation, 2) use a number of additional simplifying approximations that require small exit temperature differences between tower exit and ambient temperatures, and 3) are not calibrated to stack data

  13. Microimpact phenomena on Australasian microtektites: Implications for ejecta plume characteristics and lunar surface processes

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Sudhakar, M.

    . The microimpacts are a consequence of interparticle collisions within the ejecta plume (as suggested by their chemistry) subsequent to a major impact and, therefore, reveal processes inherent in an impact-generated plume. All the impact phenomena observed here have...

  14. History of the incipient Icelandic plume: Observations from ancient buried landscapes

    Science.gov (United States)

    Stucky de Quay, Gaia; Roberts, Gareth G.; Watson, Jonathan S.; Jackson, Christopher A.-L.

    2017-04-01

    Ancient buried terrestrial landscapes contain records of vertical motions which can be used to probe histories of geodynamical processes. In the North Atlantic Ocean, sedimentary basins contain excellent evidence that the continental shelf experienced staged subaerial exposure. For example, now buried landscapes were uplifted, rapidly eroded, and drowned close to the Paleocene-Eocene boundary. We use commercial wells and three-dimensional seismic data to reconstruct a 57-55 Ma landscape now buried 1.5 km beneath the seabed in the Bressay area of the northern North Sea. Geochemical analyses of organic matter from core samples intersecting the erosional landscape indicate the presence of angiosperm (flowering plant) debris. Combined with the presence of coarse clastic material, mapped beach ridges, and dendritic drainage patterns, these observations indicate that this landscape was of terrestrial origin. Longitudinal profiles of ancient rivers were extracted and inverted for an uplift rate history. The best-fitting uplift rate history has three phases and total cumulative uplift of 350 m. Biostratigraphic data from surrounding marine stratigraphy indicate that this landscape formed within 1-1.5 Ma. This uplift history is similar to that of a slightly older buried landscape in the Faeroe-Shetland basin 400 km to the west. These records of vertical motion can explained by pulses of anomalously hot asthenosphere spreading out from the incipient Icelandic plume. Using simple isostatic calculations we estimate that the maximum thermal anomaly beneath Bressay was 50˚. Our observations suggest that a thermal anomaly departed the Icelandic plume as early as 58.5 Ma and had highest average temperatures at 55.6 Ma.

  15. Are terrestrial plumes from motionless plates analogues to Martian plumes feeding the giant shield volcanoes?

    Science.gov (United States)

    Meyzen, Christine; Massironi, Matteo; Pozzobon, Riccardo; Dal Zilio, Luca

    2014-05-01

    The near "one-plate" planet evolution of Mars has led to the edification of long-lasting giant shied volcanoes. Unlike the Earth, Mars would have been a transient convecting planet, where plate tectonic would have possibly acted only during the first hundreds of million years of its history. On Earth, where plate tectonic is active, most of them are regenerated and recycled through convection. However, the Nubian and Antarctic plates could be considered as poorly mobile surfaces of various thicknesses that are acting as conductive lids on top of Earth's deeper convective system. In these environments, volcanoes do not show any linear age progression at least for the last 30 Ma, but constitute the sites of persistent, focused long-term magmatic activity, rather than a chain of volcanoes as observed in fast-moving plate plume environments. Here, the near stationary absolute plate motion probably exerts a primary control on volcanic processes, and more specifically, on the melting ones. The residual depleted mantle, that is left behind by the melting processes, cannot be swept away from the melting locus. Over time, the thickening of this near-stationary depleted layer progressively forces the termination of melting to higher depths, reducing the melt production rate. Such a process gradually leads both to decreasing efficient melt extraction and increasing mantle lithospheric-melt interactions. The accumulation of this refractory material also causes long-term fluctuations of the volcanic activity, in generating long periods of quiescence. The presence of this residual mantle keel induces over time a lateral flow deflection, which translates into a shift of future melting sites around it. This process gives rise to the horseshoe-like shape of some volcanic islands on slow-moving plates (e.g. Cape Verde, Crozet). Finally, the pronounced topographic swells/bulges observed in this environments may also be supported both by large scale mantle upwelling and their residual

  16. Time-space distribution of laser-induced plasma parameters and its influence on emission spectra of the laser plumes

    International Nuclear Information System (INIS)

    Ershov-Pavlov, E.A.; Katsalap, K.Yu.; Stepanov, K.L.; Stankevich, Yu.A.

    2008-01-01

    A physical model is developed accounting for dynamics and radiation of plasma plumes induced by nanosecond laser pulses on surface of solid samples. The model has been applied to simulate emission spectra of the laser erosion plasma at the elemental analysis of metals using single- and double-pulse excitation modes. Dynamics of the sample heating and expansion of the erosion products are accounted for by the thermal conductivity and gas dynamic equations, respectively, supposing axial symmetry. Using the resulting time-space distributions of the plasma parameters, emission spectra of the laser plumes are evaluated by solving the radiation transfer equation. Particle concentration in consecutive ionization stages is described by the Saha equation in the Debye approximation. The population of excited levels is determined according to Boltzmann distribution. Local characteristics determining spectral emission and absorption coefficients are obtained point-by-point along an observation line. Voigt spectral line profiles are considered with main broadening mechanisms taken into account. The plasma dynamics and plume emission spectra have been studied experimentally and by the model. A Q-switched Nd:YAG laser at 1064 nm wavelength has been used to irradiate Al sample with the pulses of 15 ns and 50 mJ duration and energy, respectively. It has resulted in maximum power density of 0.8 MW/cm 2 on the sample surface. The laser plume emission spectra have been recorded at a side-on observation. Problems of the spectra contrast and of the elemental analysis efficiency are considered relying on a comparative study of the measurement and simulation results at the both excitation modes

  17. Destratification induced by bubble plumes as a means to reduce ...

    African Journals Online (AJOL)

    Qw = energy advected by evaporated water. ΔQ = change in reservoir energy. From the analysis performed by Hughes et al. (1975) 2 of the 9 parameters emerged as being dominant; these are Qe (evapora- tion latent heat) and Qv (the outflow component). Artificial destratification. To destratify a reservoir a bubble plume ...

  18. Contaminant plumes containment and remediation focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs

  19. Fallugia paradoxa (D. Don) Endl. ex Torr.: Apache-plume

    Science.gov (United States)

    Susan E. Meyer

    2008-01-01

    The genus Fallugia contains a single species - Apache-plume, F. paradoxa (D. Don) Endl. ex Torr. - found throughout the southwestern United States and northern Mexico. It occurs mostly on coarse soils on benches and especially along washes and canyons in both warm and cool desert shrub communities and up into the pinyon-juniper vegetation type. It is a sprawling, much-...

  20. Laboratory Study of Dispersion of Buoyant Surface Plumes

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1990-01-01

    -differences. Other methods as infra-red sensing are used for visualizing purpose. The results are used to calibrate an integral model of the dispersion. Conclusions are that the dispersion of a buoyant surface plume can be treated the superposition of a buoyancy induced stretching and turbulent diffusion, reduced...

  1. The EUV Spectrum of Sunspot Plumes Observed by SUMER on ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. We present results from sunspot observations obtained by. SUMER on SOHO. In sunspot plumes the EUV spectrum differs from the quiet Sun; continua are observed with different slopes and intensities; emission lines from molecular hydrogen and many unidentified species indicate unique plasma conditions ...

  2. PHYTOREMEDIATION POTENTIAL OF A CHLORINATED SOLVENTS PLUME IN CENTRAL FLORIDA

    Science.gov (United States)

    The potential for phytoremediation of a shallow chlorinated solvent plume was assessed by application of ground water flow and evapotranspiration (ET) models for a site in Orlando, Florida. The focus of the work was on the hydrologic and hydraulic factors that influence phytoreme...

  3. Sulfur balance in power plant plumes: a critical review

    Science.gov (United States)

    William E. Wilson

    1976-01-01

    Numerous attempts have been made to measure the rate of loss of SO2 in power plant plumes. If SO2 decreases more rapidly than an inert pollutant, the control measures necessary to meet SO2 standards would be eased. More recently, Swedish studies of acid rain, thought to be due to long range transport...

  4. Base flow and exhaust plume interaction. Part 1 : Experimental study

    NARCIS (Netherlands)

    Schoones, M.M.J.; Bannink, W.J.

    1998-01-01

    An experimental study of the flow field along an axi-symmetric body with a single operating exhaust nozzle has been performed in the scope of an investigation on base flow-jet plume interactions. The structure of under-expanded jets in a co-flowing supersonic free stream was described using

  5. Apollo Video Photogrammetry Estimation Of Plume Impingement Effects

    Science.gov (United States)

    Immer, Christopher; Lane, John; Metzger, Philip T.; Clements, Sandra

    2008-01-01

    The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing in order to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modem photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1-3 degrees. The lofted particle density is estimated at 10(exp 8)- 10(exp 13) particles per cubic meter. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

  6. Atmospheric ventilation corridors and coefficients for pollution plume ...

    African Journals Online (AJOL)

    This study presents a comparative investigation of atmospheric ventilation corridors and coefficients for gaseous pollution plume released from an isolated industrial facility into the ambient air of the host community in Ile-Ife suburb, southwest Nigeria. For the months of September to December in the year 2012 and 2013, ...

  7. Plume dynamics in TiC laser ablation

    International Nuclear Information System (INIS)

    D'Alessio, L.; Galasso, A.; Santagata, A.; Teghil, R.; Villani, A.R.; Villani, P.; Zaccagnino, M.

    2003-01-01

    In this work, the analysis of the gaseous phase, produced by pulsed laser ablation of a TiC target and performed by emission spectroscopy and intensified charge coupled device (ICCD) imaging is reported. In the case of laser fluence higher than 3 J/cm 2 , the front of the emitting plume is identified with the presence of Ti 2+ ions, while the presence of a double maximum is due to the neutral and ionized titanium particles traveling with different velocities. At a laser fluence lower than 3 J/cm 2 , the front is marked by C + emission and only one maximum is present. The results, compared with those obtained for other carbides of group 4, evidence that only in the plume produced from TiC targets there is the presence of a large amount of ions with high kinetic energy. In particular, the highly energetic M 2+ ions (M=Ti, Zr, Hf) are present only in the TiC plume. The different energy and concentration of ions in the different carbide plumes confirm the importance of the ionized part of the gaseous phase in the film growth mechanism. In fact only in the TiC films, we find a layered structure in contrast with the columnar structure found in the other carbides of the same group

  8. Characterization of ablated species in laser-induced plasma plume

    International Nuclear Information System (INIS)

    Furusawa, Hideki; Sakka, Tetsuo; Ogata, Yukio H.

    2004-01-01

    Plasma electron density and atomic population densities in the plasma plume produced by a laser ablation of aluminum metal were determined in various ambient gases at relatively high pressures. The method is based on the fit of a spectral line profile of Al(I) 2 P (convolutionsign) - 2 S emission to the theoretical spectrum obtained by one-dimensional radiative transfer calculation. The electron density was higher for a higher ambient gas pressure, suggesting the confinement of the plume by an ambient gas. The electron density also depends on the type of ambient gases, i.e., it increased in the order He 4 2 4 , while the atomic population density is almost independent of the type of ambient species and pressure. The population densities of the upper and lower levels of the transition were compared, and the ratio between their spatial distribution widths was calculated. These results provide valuable information regarding the confinement of the plume by the ambient gas and give insight into the time evolution of the plume

  9. The growth and decay of equatorial backscatter plumes

    Science.gov (United States)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  10. Contaminant plumes containment and remediation focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  11. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  12. Multiscale Approach to Small River Plumes off California

    Science.gov (United States)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  13. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  14. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  15. Sulfate Reduction Remediation of a Metals Plume Through Organic Injection

    International Nuclear Information System (INIS)

    Phifer, M.A.

    2003-01-01

    Laboratory testing and a field-scale demonstration for the sulfate reduction remediation of an acidic/metals/sulfate groundwater plume at the Savannah River Site has been conducted. The laboratory testing consisted of the use of anaerobic microcosms to test the viability of three organic substrates to promote microbially mediated sulfate reduction. Based upon the laboratory testing, soybean oil and sodium lactate were selected for injection during the subsequent field-scale demonstration. The field-scale demonstration is currently ongoing. Approximately 825 gallons (3,123 L) of soybean oil and 225 gallons (852 L) of 60 percent sodium lactate have been injected into an existing well system within the plume. Since the injections, sulfate concentrations in the injection zone have significantly decreased, sulfate-reducing bacteria concentrations have significantly increased, the pH has increased, the Eh has decreased, and the concentrations of many metals have decreased. Microbially mediated sulfate reduction has been successfully promoted for the remediation of the acidic/metals/sulfate plume by the injection of soybean oil and sodium lactate within the plume

  16. THE QUANTIFYING OF FLUE QUALITY IN OSTRICH PLUMES ...

    African Journals Online (AJOL)

    portant economic traits in the fashion plume industry to the general belief among ostrich farm€rs and featier. (Swa , 1979). The quality ofthe flue is determined main- dealers, that the fatty appearance ofthe flue is one ofthe ly by subjective traits such as handling, fatty appeannce, most important single components of flue ...

  17. CFD investigation of balcony spill plumes in atria

    International Nuclear Information System (INIS)

    McCartney, C.J.; Lougheed, G.D.; Weckman, E.J.

    2004-01-01

    Smoke management in buildings during fire events often uses mechanical ventilation systems to maintain smoke layer elevation above a safe evacuation path. Design of these systems requires accurate correlations for the smoke production rate of the buoyant fire plume. One design issue is the smoke production rate of fire plumes which spill out from a fire compartment, under a balcony and up through an atrium or other large volume. Current engineering correlations for these balcony spill plumes are based on a combination of one-tenth scale test data and theoretical analysis. Questions have arisen over the suitability of these correlations for real-scale designs. A combined program of full-scale experimentation and CFD modeling is being conducted to analyze the accuracy of these correlations. A full-scale experimental facility was constructed with a 5 m by 5 m by 15 m fire compartment connected to a four-story atrium. Propane fires in the compartment produce balcony spill plumes which form steady-state smoke layers in the atrium. Experimental variables include fire size, compartment opening width, balcony depth and compartment fascia depth. A variable exhaust system was used to achieve various smoke layer heights for each of 100 compartment configurations. Temperature, smoke obscuration and gas concentrations were measured in the compartment, atrium and exhaust system. The experimental data was used to determine the atrium smoke layer elevation and balcony spill plume smoke production rate for each configuration and fire size. Comparison of this data with zone model results and design correlations for atrium smoke management systems will be performed to evaluate their accuracy. A CFD model of the experimental facility was implemented using the Fire Dynamics Simulator software (Version 3). Large-eddy simulations of the flow were performed with a constant radiative fraction and an infinitely fast mixture fraction combustion model. A grid sensitivity analysis was

  18. Heat and mass transfer in the mushroom-shaped head of mantle plume

    Directory of Open Access Journals (Sweden)

    Kirdyashkin Anatoly

    2017-01-01

    Full Text Available The results of experimental and theoretical modeling of free-convection flows in the melt of the plume conduit and in the mushroom-shaped head are presented. It was shown that the plumes with the mushroom-shaped heads can be responsible for the batholith formation. The main parameters of such plumes are estimated.

  19. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G.de

    2006-01-01

    Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically

  20. Appearance property and mechanism of plume produced by pulsed ultraviolet laser ablating copper

    International Nuclear Information System (INIS)

    Huang Qingju; Li Fuquan; Wang Honghua

    2008-01-01

    Time-resolved measurements of plume emission spectra by pulsed ultraviolet laser ablating copper in neon were analyzed, and the photographs of plume from laser ablating copper were taken. The experimental results show that plume has different colours in different ranges. At low pressure the centre layer and middle layer colours of plume are mixed colour, and the outer layer colours of plume are yellow and green. At middle pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is pea green. At high pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is faintness green. The plume range is pressed with the rising of ambient gas pressure, and the range colour gets thin with the rising of ambient gas pressure. The plume excitation radiation mechanism in pulsed ultraviolet laser ablating copper was discussed. The primary excitation radiation mechanism in plume is electron collision energy transfer and atom collision energy transfer at low pressure and middle pressure, and it is electrons Bremsstrahlung and recombination excitation radiation of electron and ion at high pressure. The model can be used to explain the experimental result qualitatively. (authors)

  1. Large-eddy simulation study of oil/gas plumes in stratified fluid with cross current

    Science.gov (United States)

    Yang, Di; Xiao, Shuolin; Chen, Bicheng; Chamecki, Marcelo; Meneveau, Charles

    2017-11-01

    Dynamics of the oil/gas plume from a subsea blowout are strongly affected by the seawater stratification and cross current. The buoyant plume entrains ambient seawater and lifts it up to higher elevations. During the rising process, the continuously increasing density difference between the entrained and ambient seawater caused by the stable stratification eventually results in a detrainment of the entrained seawater and small oil droplets at a height of maximum rise (peel height), forming a downward plume outside the rising inner plume. The presence of a cross current breaks the plume's axisymmetry and causes the outer plume to fall along the downstream side of the inner plume. The detrained seawater and oil eventually fall to a neutral buoyancy level (trap height), and disperse horizontally to form an intrusion layer. In this study, the complex plume dynamics is investigated using large-eddy simulation (LES). Various laboratory and field scale cases are simulated to explore the effect of cross current and stratification on the plume dynamics. Based on the LES data, various turbulence statistics of the plume are systematically quantified, leading to some useful insights for modeling the mean plume dynamics using integral plume models. This research is made possible by a RFP-V Grant from The Gulf of Mexico Research Initiative.

  2. DSMC Simulations of Irregular Source Geometries for Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2010-10-01

    Volcanic plumes on Io represent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D rarefied gas dynamics method (DSMC) is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. These deposition patterns, such as the deposition ring's shape and orientation, as well as the presence and shape of ash deposits around the vent, are linked to the shape of the vent from which the plume material arises. We will present three-dimensional simulations for a variety of possible vent geometries for Pele based on observations of the volcano's caldera. One is a curved line source corresponding to a Galileo IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire lava lake at the center of the plume. The curvature of the former is seen to be sufficient to produce the features seen in observations of Pele's deposition pattern, but the particular orientation of the source is found to be such that it cannot match the orientation of these features on Io's surface. The latter corrects the error in orientation while losing some of the structure, suggesting that the actual source may correspond well with part of the shore of the lava lake. In addition, we are collaborating with a group at the University of Illinois at Urbana-Champaign to develop a hybrid method to link the continuum flow beneath Io's surface and very close to the vent to the more rarefied flow in the large volcanic plumes. This work was funded by NASA-PATM grant NNX08AE72G.

  3. Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs: Rigorous vs. Simplified Models

    Directory of Open Access Journals (Sweden)

    Bruno Piga

    2017-09-01

    Full Text Available Groundwater Heat Pumps (GWHPs are increasingly adopted for air conditioning in urban areas, thus reducing CO2 emissions, and this growth needs to be managed to ensure the sustainability of the thermal alteration of aquifers. However, few studies have addressed the propagation of thermal plumes from open-loop geothermal systems from a long-term perspective. We provide a comprehensive sensitivity analysis, performed with numerical finite-element simulations, to assess how the size of the thermally affected zone is driven by hydrodynamic and thermal subsurface properties, the vadose zone and aquifer thickness, and plant setup. In particular, we focus the analysis on the length and width of thermal plumes, and on their time evolution. Numerical simulations are compared with two simplified methods, namely (i replacing the time-varying thermal load with its yearly average and (ii analytical formulae for advective heat transport in the aquifer. The former proves acceptable for the assessment of plume length, while the latter can be used to estimate the width of the thermally affected zone. The results highlight the strong influence of groundwater velocity on the plume size and, especially for its long-term evolution, of ground thermal properties and of subsurface geometrical parameters.

  4. Observed rise of visible plumes from hyperbolic natural draft cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, P T [Smith-Singer Meteorologists, Inc., Amityville, NY; Seymour, D E; Butler, M J; Kramer, M L; Smith, M E; Frankenberg, T T

    1976-01-01

    The behavior of natural draft cooling tower plumes and related meteorological variables have been measured from aircraft near three major plants of the American Electric Power System. The rise of those plumes which persisted long enough to reach a stabilized height depended primarily upon the height of the capping inversion aloft. All such plumes rose to elevations of 425 m or more above grade. No significant relationships between plume rise and wind speed, plant load, or ambient temperature were found. We conclude that simple temperature humidity soundings in the vicinity of the towers would serve as effective predictors of plume rise and persistence.

  5. Numerical modeling of plasma plume evolution against ambient background gas in laser blow off experiments

    International Nuclear Information System (INIS)

    Patel, Bhavesh G.; Das, Amita; Kaw, Predhiman; Singh, Rajesh; Kumar, Ajai

    2012-01-01

    Two dimensional numerical modelling based on simplified hydrodynamic evolution for an expanding plasma plume (created by laser blow off) against an ambient background gas has been carried out. A comparison with experimental observations shows that these simulations capture most features of the plasma plume expansion. The plume location and other gross features are reproduced as per the experimental observation in quantitative detail. The plume shape evolution and its dependence on the ambient background gas are in good qualitative agreement with the experiment. This suggests that a simplified hydrodynamic expansion model is adequate for the description of plasma plume expansion.

  6. The role of plumes in mantle helium fluxes

    International Nuclear Information System (INIS)

    Kellogg, L.H.; Wasserburg, G.J.

    1990-01-01

    We present a simple model of 3 He and 4 He transport in the mantle using the appropriate rates of mass and species transfer and 4 He production. Previous workers have shown the presence of excess 3 He in hotspots such as Hawaii and Iceland and inferred that these hotspots tap a source with a higher 3 He/ 4 He ratio than the source region of mid-ocean ridge basalts (MORB). Hotspot ocean islands probably originate over upwelling plumes which carry material from the lower mantle to the upper mantle. Melting at hotspots and at mid-ocean ridges degasses the mantle of volatiles such as helium. The upper mantle is outgassed largely of helium due to melting at mid-ocean ridges and hotspots. We postulate that the excess 3 He seen in MORB originates in material that was carried from the lower mantle in plumes but not completely outgassed at hotspots. This helium is incoporated into the depleted upper mantle. Assuming that the upper mantle is in a quasi-steady-state with respect to helium, a simple model balancing 3 He and 4 He fluxes in the upper mantle indicates that the hotspots significantly outgas the lower mantle of 3 He. The concentration of 4 He in the plume source reservoir is 2-3 orders of magnitude lower than the concentration in carbonaceous chondrites. The residence time of helium in the upper mantle depends on the outgassing efficiency at hotspots, since the hotspots may outgas some upper mantle material which has been entrained in the plumes. The residence time of He in the upper mantle is about 1.4x10 9 yr. We conclude that the efficiency of outgassing of He from plumes is high and that the plumes dominate the present 3 He loss to the atmosphere. The 4 He in the less depleted layer of the mantle is not trapped ''primordial'' but is predominantly from in situ decay of U and Th in the depleted layer over ≅ 1.4x10 9 yr. The 4 He in the lower mantle is dominantly from in situ decay of U and Th over 4.4x10 9 yr. (orig./WL)

  7. SAMI3 Simulations of the Persistent May 1994 Plasmasphere Plume

    Science.gov (United States)

    Krall, J.; Huba, J.; Borovsky, J.

    2017-12-01

    We use the Naval Research Laboratory SAMI3 ionosphere/plasmasphere model[1] to explore the physics of a long-lived plasmasphere plume. A plasmasphere plume is a storm feature that extends the cold plasma that is normally trapped by the geomagnetic field (the plasmasphere) outward towards the bow shock. In the case of the May 1994 storm, the storm and the plume continued for 12 days. For the model storm, we imposed a Kp-driven Volland/Stern-Maynard/Chen potential [2-4]. Results are compared to measurements of the cold ion density from the 1989-046 spacecraft in geosynchronous orbit [5]. We find that many details of the observed plume are reproduced by SAMI3, but only if a background magnetosphere density is included as a boundary condition. We also find that high-speed, field aligned plasma flows contribute significantly to the observed plume density. [1] Huba, J. and J. Krall (2013), Modeling the plasmasphere with SAMI3, Geophys. Res. Lett., 40, 6-10, doi:10.1029/2012GL054300 [2] Volland, H. (1973), A semiempirical model of large-scale magnetospheric electric fields, Journal of Geophysical Research, 78, 171-180, doi:10.1029/JA078i001p00171 [3] Stern, D.P. (1975), The motion of a proton in the equatorial magnetosphere, Journal of Geophysical Research, 80, 595-599, doi:10.1029/JA080i004p00595 [4] Maynard, N.C., and A.J. Chen (1975), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, Journal of Geophysical Research, 80, 1009-1013, doi:10.1029/JA080i007p01009 [5] Borovsky, J.E., D.T. Welling, M.F. Thomsen, and M.H. Denton (2014), Long-lived plasmaspheric drainage plumes: Where does the plasma come from?, Journal of Geophysical Research: Space Physics, 119, 6496-6520, doi:10.1002/2014JA020228 Research supported by NRL base funds.

  8. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  9. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  10. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    Science.gov (United States)

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.

    2010-11-01

    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  11. Tracking of smokestack and cooling tower plumes using wind measurements at different levels

    International Nuclear Information System (INIS)

    Miller, R.L.; Patrinos, A.A.N.

    1980-08-01

    Relationships between cooling tower and smokestack plumes at the Bowen Electric Generating Plant in northwestern Georgia and wind direction measurements at levels from the surface at 850 mb (approx. 1.5 km) are examined. The wind measurements play an important role in estimating plume directions which in turn are utilized to establish control and target (upwind and downwind) areas for a study of plant-induced precipitation modification. Fifty-two plume observations were made during a three week period in December 1979. Results indicate that a windset (4.5 km from the plant) mounted at a level approximating that of the cooling tower plume is a better predictor of plume direction than surface windsets (1.0 km from the plant) or 850 mb level winds. However, an apparent topographical influence on the wind direction measurements at the plume-level windset site somewhat limits its plume tracking capability, at least for ambient winds from the SW quadrant

  12. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

    DEFF Research Database (Denmark)

    Chu, Vena W.; Smith, Laurence C; Rennermalm, Asa K.

    2009-01-01

    ) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided...... the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume...... area. We conclude that remote sensing of sediment plume behavior offers a novel tool for detecting the presence, timing and interannual variability of meltwater release from the ice sheet....

  13. Calculation of doses received while crossing a plume of radioactive material

    International Nuclear Information System (INIS)

    Scherpelz, R.I.; Desrosiers, A.E.

    1981-04-01

    A method has been developed for determining the dose received by a person while crossing a plume of radioactive material. The method uses a Gaussian plume model to arrive at a dose rate on the plume centerline at the position of the plume crossing. This dose rate may be due to any external or internal dose pathway. An algebraic formula can then be used to convert the plume centerline dose rate to a total dose integrated over the total time of plume crossing. Correction factors are presented for dose pathways in which the dose rate is not normally distributed about the plume centerline. The method is illustrated by a study done at the Pacific Northwest Laboratory, and results of this study are presented

  14. On the relative motions of long-lived Pacific mantle plumes.

    Science.gov (United States)

    Konrad, Kevin; Koppers, Anthony A P; Steinberger, Bernhard; Finlayson, Valerie A; Konter, Jasper G; Jackson, Matthew G

    2018-02-27

    Mantle plumes upwelling beneath moving tectonic plates generate age-progressive chains of volcanos (hotspot chains) used to reconstruct plate motion. However, these hotspots appear to move relative to each other, implying that plumes are not laterally fixed. The lack of age constraints on long-lived, coeval hotspot chains hinders attempts to reconstruct plate motion and quantify relative plume motions. Here we provide 40 Ar/ 39 Ar ages for a newly identified long-lived mantle plume, which formed the Rurutu hotspot chain. By comparing the inter-hotspot distances between three Pacific hotspots, we show that Hawaii is unique in its strong, rapid southward motion from 60 to 50 Myrs ago, consistent with paleomagnetic observations. Conversely, the Rurutu and Louisville chains show little motion. Current geodynamic plume motion models can reproduce the first-order motions for these plumes, but only when each plume is rooted in the lowermost mantle.

  15. Hydrogen production by thermal water splitting using a thermal plasma

    International Nuclear Information System (INIS)

    Boudesocque, N.; Lafon, C.; Girold, C.; Vandensteendam, C.; Baronnet, J.M.

    2006-01-01

    CEA has been working for more than 10 years in plasma technologies devoted to waste treatment: incineration, vitrification, gases and liquid treatment. Based on this experience, CEA experiments since several years an innovative route for hydrogen production by thermal water splitting, using a plasma as heat source. This new approach could be considered as an alternative to electrolysis for massive hydrogen production from water and electricity. This paper presents a brief state of the art of water thermal plasmas, showing the temperatures and quench velocity ranges technologically achievable today. Thermodynamic properties of a water plasma are presented and discussed. A kinetic computational model is presented, describing the behavior of splitted products during the quench in a plasma plume for various parameters, such as the quench rate. The model results are compared to gas analysis in the plasma plume obtained with in-situ sampling probe. The plasma composition measurements are issued from an Optical Emission Spectroscopic method (OES). The prediction of 30 % H 2 recovery with a 108 K.s -1 quench rate has been verified. A second experimentation has been performed: mass gas analysis, flowrate measurement and OES to study the 'behavior' and species in underwater electrical arc stricken between graphite electrodes. With this quench, a synthesis gas was produced with a content 55 % of hydrogen. (authors)

  16. Plasma plume induced during laser welding of Magnesium alloys

    International Nuclear Information System (INIS)

    Hoffman, J.; Szymanski, Z.; Azharonok, V.

    2005-01-01

    The laser welding process is influenced by the plasma produced by laser irradiation. When the pressure of the metal vapour reaches 1 atm and the plasma temperature is 10-15 kK then the electron density is about 2-3x10 23 m -3 . Under these conditions the absorption coefficient can reach several cm -1 . This means that dense plasma over the keyhole can block the laser radiation within the path of a few millimetres. Knowledge of plasma parameters helps to control technological process. The emission spectra were registered during laser welding of magnesium alloy using of a CCD camera connected to a spectrograph of focal length 1.3 m. The entrance slit of the spectrograph was perpendicular to the metal surface, so that successive tracks of the detector recorded the radiation from the plasma slices situated at different distances (heights) from the metal surface. The space-averaged electron densities are determined from the Stark broadening of the 5528.41 A Mg I spectral line and 4481.16 A Mg II line. The Stark widths of magnesium lines are taken from other paper. It has been found that the plasma density reaches 1x10 23 m -3 . Experimentally measured line broadening is obtained from the profiles of the spectral lines integrated along the line of sight (plasma diameter) and does not correspond to the maximum plasma density. Since the plasma is non-uniform, both the electron densities and temperatures obtained from spatially integrated line profiles are lower than their maximum values in the plasma centre. This effect is much stronger for the atomic line because its intensity reaches the maximum on the plasma periphery while the maximum intensity of the ionic line originates from the plasma centre. Therefore, the absorption of the laser beam evaluated from the space-averaged plasma parameters is underestimated. To find the maximum plasma density and temperature the radial temperature distribution in the plasma plume has to be reproduced. This has been done numerically by

  17. Modeling of the near field plume of a Hall thruster

    International Nuclear Information System (INIS)

    Boyd, Iain D.; Yim, John T.

    2004-01-01

    In this study, a detailed numerical model is developed to simulate the xenon plasma near-field plume from a Hall thruster. The model uses a detailed fluid model to describe the electrons and a particle-based kinetic approach is used to model the heavy xenon ions and atoms. The detailed model is applied to compute the near field plume of a small, 200 W Hall thruster. Results from the detailed model are compared with the standard modeling approach that employs the Boltzmann model. The usefulness of the model detailed is assessed through direct comparisons with a number of different measured data sets. The comparisons illustrate that the detailed model accurately predicts a number of features of the measured data not captured by the simpler Boltzmann approach

  18. Discovery of gaseous S2 in Io's Pele plume.

    Science.gov (United States)

    Spencer, J R; Jessup, K L; McGrath, M A; Ballester, G E; Yelle, R

    2000-05-19

    Spectroscopy of Io's Pele plume against Jupiter by the Hubble Space Telescope in October 1999 revealed absorption due to S2 gas, with a column density of 1.0 +/- 0.2 x 10(16) per square centimeter, and probably also SO(2) gas with a column density of 7 +/- 3 x 10(16) per square centimeter. This SO2/S2 ratio (3 to 12) is expected from equilibration with silicate magmas near the quartz-fayalite-magnetite or wüstite-magnetite buffers. Condensed S3 and S4, probable coloring agents in Pele's red plume deposits, may form by polymerization of the S2, which is unstable to ultraviolet photolysis. Diffuse red deposits near other Io volcanoes suggest that venting and polymerization of S2 gas is a widespread feature of Io volcanism.

  19. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  20. The use of sparge curtains for contaminant plume control

    International Nuclear Information System (INIS)

    Molnaa, B.; Dablow, J.

    1994-01-01

    Contamination by petroleum hydrocarbons and organic solvents represents a major impact to soil and groundwater. Following recent research and development, several technologies have evolved to treat saturated zone adsorbed- and dissolved-phase contaminants in situ. These technologies include bioremediation and air sparging. Funnel and gate approaches have been developed at the Waterloo Center for Groundwater Research to control contaminant plume migration and treat dissolved-phase contaminants before allowing migration downgradient and off site. The process consists of using low hydraulic conductivity cutoff walls to funnel groundwater flow through gates that contain in situ bioreactors. These systems can maintain hydraulic control and treat dissolved-phase contaminants at the downgradient margins of plumes, while minimizing, or in some cases eliminating, the need for groundwater pumping. Sparge curtains can be applied to treat dissolved-phase contaminants and prevent downgradient, off-site migration of contaminated groundwater

  1. Experimental Investigation of Large-Scale Bubbly Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, R.; Simiano, M.; De Cachard, F

    2004-03-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  2. Similarity scaling of surface-released smoke plumes

    DEFF Research Database (Denmark)

    Mikkelsen, T.; Ejsing Jørgensen, Hans; Nielsen, M.

    2002-01-01

    Concentration fluctuation data from surface-layer released smoke plumes have been investigated with the purpose of finding suitable scaling parameters for the corresponding two-particle, relative diffusion process. Dispersion properties have been measured at downwind ranges between 0.1 and 1 km...... from a continuous, neutrally buoyant ground level source. A combination of SF6 and chemical smoke (aerosols) was used as tracer. Instantaneous crosswind concentration profiles of high temporal (up to 55 Hz) and spatial resolution (down to 0.375 m) were obtained from aerosol-backscatter Lidar detection...... and duration statistics. The diffusion experiments were accompanied by detailed in-situ micrometeorological mean and turbulence measurements. In this paper, a new distance-neighbour function for surface-released smoke plumes is proposed, accompanied by experimental evidence in its support. The new distance...

  3. Experimental Investigation of Large-Scale Bubbly Plumes

    International Nuclear Information System (INIS)

    Zboray, R.; Simiano, M.; De Cachard, F.

    2004-01-01

    Carefully planned and instrumented experiments under well-defined boundary conditions have been carried out on large-scale, isothermal, bubbly plumes. The data obtained is meant to validate newly developed, high-resolution numerical tools for 3D transient, two-phase flow modelling. Several measurement techniques have been utilised to collect data from the experiments: particle image velocimetry, optical probes, electromagnetic probes, and visualisation. Bubble and liquid velocity fields, void-fraction distributions, bubble size and interfacial-area-concentration distributions have all been measured in the plume region, as well as recirculation velocities in the surrounding pool. The results obtained from the different measurement techniques have been compared. In general, the two-phase flow data obtained from the different techniques are found to be consistent, and of high enough quality for validating numerical simulation tools for 3D bubbly flows. (author)

  4. A numerical model for buoyant oil jets and smoke plumes

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P. D.

    1997-01-01

    Development of a 3-D numerical model to simulate the behaviour of buoyant oil jets from underwater accidents and smoke plumes from oil burning was described. These jets/plumes can be oil-in-water, oil/gas mixture in water, gas in water, or gas in air. The ambient can have a 3-D flow structure, and spatially/temporally varying flow conditions. The model is based on the Lagrangian integral technique. The model formulation of oil jet includes the diffusion and dissolution of oil from the jet to the ambient environment. It is suitable to simulate well blowout accidents that can occur in deep waters, including that of the North Sea. The model has been thoroughly tested against a variety of data, including data from both laboratory and field experiments. In all cases the simulation data compared very well with experimental data. 26 refs., 10 figs

  5. Turbulent structure of concentration plumes through application of video imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dabberdt, W.F.; Martin, C. [National Center for Atmospheric Research, Boulder, CO (United States); Hoydysh, W.G.; Holynskyj, O. [Environmental Science & Services Corp., Long Island City, NY (United States)

    1994-12-31

    Turbulent flows and dispersion in the presence of building wakes and terrain-induced local circulations are particularly difficult to simulate with numerical models or measure with conventional fluid modeling and ambient measurement techniques. The problem stems from the complexity of the kinematics and the difficulty in making representative concentration measurements. New laboratory video imaging techniques are able to overcome many of these limitations and are being applied to study a range of difficult problems. Here the authors apply {open_quotes}tomographic{close_quotes} video imaging techniques to the study of the turbulent structure of an ideal elevated plume and the relationship of short-period peak concentrations to long-period average values. A companion paper extends application of the technique to characterization of turbulent plume-concentration fields in the wake of a complex building configuration.

  6. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  7. IR sensor design insight from missile-plume prediction models

    Science.gov (United States)

    Rapanotti, John L.; Gilbert, Bruno; Richer, Guy; Stowe, Robert

    2002-08-01

    Modern anti-tank missiles and the requirement of rapid deployment have significantly reduced the use of passive armour in protecting land vehicles. Vehicle survivability is becoming more dependent on sensors, computers and countermeasures to detect and avoid threats. An analysis of missile propellants suggests that missile detection based on plume characteristics alone may be more difficult than anticipated. Currently, the passive detection of missiles depends on signatures with a significant ultraviolet component. This approach is effective in detecting anti-aircraft missiles that rely on powerful motors to pursue high-speed aircraft. The high temperature exhaust from these missiles contains significant levels of carbon dioxide, water and, often, metal oxides such as alumina. The plumes emits strongest in the infrared, 1 to 5micrometers , regions with a significant component of the signature extending into the ultraviolet domain. Many anti-tank missiles do not need the same level of propulsion and radiate significantly less. These low velocity missiles, relying on the destructive force of shaped-charge warhead, are more difficult to detect. There is virtually no ultraviolet component and detection based on UV sensors is impractical. The transition in missile detection from UV to IR is reasonable, based on trends in imaging technology, but from the analysis presented in this paper even IR imagers may have difficulty in detecting missile plumes. This suggests that the emphasis should be placed in the detection of the missile hard body in the longer wavelengths of 8 to 12micrometers . The analysis described in this paper is based on solution of the governing equations of plume physics and chemistry. These models will be used to develop better sensors and threat detection algorithms.

  8. Aquatic dispersion modelling of a tritium plume in Lake Ontario

    International Nuclear Information System (INIS)

    Klukas, M.H.; Moltyaner, G.L.

    1996-05-01

    Approximately 2900 kg of tritiated water, containing 2.3E+15 Bq of tritium, were released to Lake Ontario via the cooling water discharge when a leak developed in a moderator heat exchanger in Unit 1 at the Pickering Nuclear Generating Station (PNGS) on 1992 August 2. The release provided the opportunity to study the dispersion of a tritium plume in the coastal zone of Lake Ontario. Current direction over the two-week period following the release was predominantly parallel to the shore, and elevated tritium concentrations were observed up to 20 km east and 85 km west of the PNGS. Predictions of the tritium plume movement were made using current velocity measurements taken at 8-m depth, 2.5 km offshore from Darlington and using a empirical relationship where alongshore current speed is assumed to be proportional to the alongshore component of the wind speed. The tritium migration was best described using current velocity measurements. The tritium plume dispersion is modelled using the one-dimensional advection-dispersion equation. Transport parameters are the alongshore current speed and longitudinal dispersion coefficient. Longitudinal dispersion coefficients, estimated by fitting the solution of the advection-dispersion equation to measured concentration distance profiles ranged from 3.75 to 10.57 m 2 s -1 . Simulations using the fitted values of the dispersion coefficient were able to describe maximum tritium concentrations measured at water supply plants located within 25 km of Pickering to within a factor of 3. The dispersion coefficient is a function of spatial and temporal variability in current velocity and the fitted dispersion coefficients estimated here may not be suitable for predicting tritium plume dispersion under different current conditions. The sensitivity of the dispersion coefficient to variability in current conditions should be evaluated in further field experiments. (author). 13 refs., 7 tabs., 12 figs

  9. Velocity Plume Profiles for Hall Thrusters Using Laser Diagnostic

    Science.gov (United States)

    2010-06-01

    multiple ionization of the propellant or momentum imparted by neutral xenon. Beam divergence is the angular measurement of the plume as the diameter...A3200 can manually move the stages or operate from a script to automate movement. The program also allows the user to define a local coordinate...primer/ java /lasers/diodelasers/index.html [68] Shore Laser (n.d.) Laser Operation [Online]. http://www.shorelaser.com/Laser_Operation.html [69

  10. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    Science.gov (United States)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  11. Frontal dynamics at the edge of the Columbia River plume

    Science.gov (United States)

    Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba

    2018-02-01

    In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.

  12. Coorbital Collision as the Energy Source for Enceladus' Plumes

    Science.gov (United States)

    Peale, Stanton J.; Greenberg, R.

    2009-09-01

    A collision of a coorbiting satellite with Enceladus is proposed as the source of energy to power the observed plumes emanating from the south pole of the satellite. A coorbital would have impacted at a velocity only slightly above the escape velocity of Enceladus, which would likely be necessary to keep the collision gentle enough not to disrupt the old cratered terrain nearby. If the mass were 1% of Enceladus', the energy deposited can sustain the plumes for approximately 80,000 to 200,000 years at the estimated observed power of 6 to 15 GW, so the impact would have been quite recent. The collision at an arbitrary point would leave Enceladus with non-synchronous, non-principal-axis rotation and a significant obliquity. After subsuming the impactor's volume, the region around the impact point will have expanded in a manner consistent with the observed tectonic pattern. The ring-like expansion implied by the radial cracks suggests that the new principal axis of maximum moment of inertia could have passed through the impact point. Internal dissipation from precession of the spin axis about the axis of maximum moment of inertia in the body frame of reference and from tides raised on Enceladus cause the axes of spin and of maximum moment to converge as the spin is brought to a zero obliquity and synchronous rotation on a time scale that is extremely short compared to the lifetime of the plumes. Hence, the region of collision, which is hot, ends up at one of the poles where we find the plumes.

  13. Automatic recognition of smoke-plume signatures in lidar signal

    Science.gov (United States)

    Utkin, Andrei B.; Lavrov, Alexander; Vilar, Rui

    2008-10-01

    A simple and robust algorithm for lidar-signal classification based on the fast extraction of sufficiently pronounced peaks and their recognition with a perceptron, whose efficiency is enhanced by a fast nonlinear preprocessing that increases the signal dimension, is reported. The method allows smoke-plume recognition with an error rate as small as 0.31% (19 misdetections and 4 false alarms in analyzing a test set of 7409 peaks).

  14. Modelling the fate of the Tijuana River discharge plume

    Science.gov (United States)

    van Ormondt, M.; Terrill, E.; Hibler, L. F.; van Dongeren, A. R.

    2010-12-01

    After rainfall events, the Tijuana River discharges excess runoff into the ocean in a highly turbid plume. The runoff waters contain large suspended solids concentrations, as well as high levels of toxic contaminants, bacteria, and hepatitis and enteroviruses. Public health hazards posed by the effluent often result in beach closures for several kilometers northward along the U.S. shoreline. A Delft3D model has been set up to predict the fate of the Tijuana River plume. The model takes into account the effects of tides, wind, waves, salinity, and temperature stratification. Heat exchange with the atmosphere is also included. The model consists of a relatively coarse outer domain and a high-resolution surf zone domain that are coupled with Domain Decomposition. The offshore boundary conditions are obtained from the larger NCOM SoCal model (operated by the US Navy) that spans the entire Southern California Bight. A number of discharge events are investigated, in which model results are validated against a wide range of field measurements in the San Diego Bight. These include HF Radar surface currents, REMUS tracks, drifter deployments, satellite imagery, as well as current and temperature profile measurements at a number of locations. The model is able to reproduce the observed current and temperature patterns reasonably well. Under calm conditions, the model results suggest that the hydrodynamics in the San Diego Bight are largely governed by internal waves. During rainfall events, which are typically accompanied by strong winds and high waves, wind and wave driven currents become dominant. An analysis will be made of what conditions determine the trapping and mixing of the plume inside the surfzone and/or the propagation of the plume through the breakers and onto the coastal shelf. The model is now also running in operational mode. Three day forecasts are made every 24 hours. This study was funded by the Office of Naval Research.

  15. Study of Plume Impingement Effects in the Lunar Lander Environment

    Science.gov (United States)

    Marichalar, Jeremiah; Prisbell, A.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects from the descent and ascent engine firings of the Lunar Lander were analyzed in support of the Lunar Architecture Team under the Constellation Program. The descent stage analysis was performed to obtain shear and pressure forces on the lunar surface as well as velocity and density profiles in the flow field in an effort to understand lunar soil erosion and ejected soil impact damage which was analyzed as part of a separate study. A CFD/DSMC decoupled methodology was used with the Bird continuum breakdown parameter to distinguish the continuum flow from the rarefied flow. The ascent stage analysis was performed to ascertain the forces and moments acting on the Lunar Lander Ascent Module due to the firing of the main engine on take-off. The Reacting and Multiphase Program (RAMP) method of characteristics (MOC) code was used to model the continuum region of the nozzle plume, and the Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) was used to model the impingement results in the rarefied region. The ascent module (AM) was analyzed for various pitch and yaw rotations and for various heights in relation to the descent module (DM). For the ascent stage analysis, the plume inflow boundary was located near the nozzle exit plane in a region where the flow number density was large enough to make the DSMC solution computationally expensive. Therefore, a scaling coefficient was used to make the DSMC solution more computationally manageable. An analysis of the effectiveness of this scaling technique was performed by investigating various scaling parameters for a single height and rotation of the AM. Because the inflow boundary was near the nozzle exit plane, another analysis was performed investigating three different inflow contours to determine the effects of the flow expansion around the nozzle lip on the final plume impingement results.

  16. Aerosols from the Soufriere eruption plume of 17 April 1979

    Science.gov (United States)

    Sedlacek, W. A.; Heiken, G.; Zoller, W. H.; Germani, M. S.

    1982-01-01

    Aerosol samples collected from the April 17, 1979 eruption plume of Soufriere, St. Vincent, at altitudes between 1.8 and 5.5 kilometers were physically and chemically very similar to the ash that fell on the island. Higher altitude samples (7.3 and 9.5 kilometers) had a much lower ash content but comparable concentrations of sulfate, which were above the background concentration found at these altitudes.

  17. Multi-Pulse DARHT Machine-Plasma Plume Problem

    International Nuclear Information System (INIS)

    Lauer, E J

    2004-01-01

    The plasma current decay time constant is predicted to be short compared to the pulse length and so self-focusing is predicted for most of the beam pulse. Four- pulse beam envelopes for a high dose case require mitigation, those for a low dose case do not. Methods of mitigation are summarized. Hose instability growth in the plume length is predicted to be minimal

  18. Sediment plume monitoring in the Clarion-Clipperton Zone

    OpenAIRE

    Van den Eynde, D.; Baeye, M.; Fettweis, M.; Francken, F.; Naudts, L.; Van Lancker, V.

    2014-01-01

    OD Nature has a vast experience in monitoring and modelling Suspended Particulate Matter concentration in shelf areas. In the framework of the JPI-Oceans cruise with the RV Sonne in the Belgian, French and German concession zones for deep-sea mining in the Clarion-Clipperton Zone, this experience will be used to monitor sediments plumes, caused by deep-sea mning exploration activities.

  19. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  20. Exploration Method Development for hydrothermal plume hunting by XCTD

    Science.gov (United States)

    Kitagawa, Y.; Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Nakano, J.; Asakawa, E.; Sumi, T.

    2017-12-01

    J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed hydrothermal plume hunting by XCTD (eXpendables Conductivity, Temperature and Depth). We applied this method to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. Generally, hydrothermal plume exploration has been by ship mounted with MBES (Multi Beam Echo Sounder) or AUV with sound anomaly observation. However, these methods have to charter the sophisticated ship costly. On the other hand, throw-in type water quality meters (eg. XCTD and XBT) can be low-cost and easily operable. Moreover, that can make a quick look at seawater temperature and conductivity even in rough waters.Firstly, we confirmed XCTD probes position on the seafloor by ROV mounted deep-sea high vision camera. As a result of the test, probes swept downstream about 40 m in horizontal distance from throwing positions with about 1,600m in water depth. Following the previous test results, we had performed to the next test that confirmed detection range of hydrothermal plume at the chimney of North Mound in Izena Cauldron, so we had caught anomaly of seawater temperature and conductivity successfully which could be possibly derived from hydrothermal activities. Although averaged seawater temperature at a depth of 1500 m or more was about 3.95 degrees C, near the chimney was about 4.93 degrees C. The temperature anomalies originated from the hydrothermal plumes could be distributed at most 30m in horizontal distance and became smaller away from the chimney. Moreover, temperature anomaly mass of sea water tended to move upward in depth with distance away from the

  1. The airborne lava-seawater interaction plume at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.

    2006-01-01

    Lava flows into the sea at Kīlauea Volcano, Hawaiʻi, and generates an airborne gas and aerosol plume. Water (H2O), hydrogen chloride (HCl), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulphur dioxide (SO2) gases were quantified in the plume in 2004–2005, using Open Path Fourier Transform infra-red Spectroscopy. The molar abundances of these species and thermodynamic modelling are used to discuss their generation. The range in molar HCl / H2O confirms that HCl is generated when seawater is boiled dry and magnesium salts are hydrolysed (as proposed by [T.M. Gerlach, J.L. Krumhansl, R.O. Fournier, J. Kjargaard, Acid rain from the heating and evaporation of seawater by molten lava: a new volcanic hazard, EOS (Trans. Am. Geophys. Un.) 70 (1989) 1421–1422]), in contrast to models of Na-metasomatism. Airborne droplets of boiled seawater brine form nucleii for subsequent H2O and HCl condensation, which acidifies the droplets and liberates CO2 gas from bicarbonate and carbonate. NO2 is derived from the thermal decomposition of nitrates in coastal seawater, which takes place as the lava heats droplets of boiled seawater brine to 350–400 °C. SO2 is derived from the degassing of subaerial lava flows on the coastal plain. The calculated mass flux of HCl from a moderate-sized ocean entry significantly increases the total HCl emission at Kīlauea (including magmatic sources) and is comparable to industrial HCl emitters in the United States. For larger lava ocean entries, the flux of HCl will cause intense local environmental hazards, such as high localised HCl concentrations and acid rain.

  2. Salem 98: A post-plume phase, federal participation exercise

    International Nuclear Information System (INIS)

    1999-01-01

    Salem 98 was the largest nuclear power plant post-plume phase exercise since the 1993 FRMAC-93 exercise at the Fort Calhoun Nuclear Power Plant in Nebraska. Salem 98 was a 3 Day exercise, held on May 5--7, 1998, involving participation by the States of New Jersey and Delaware and associated State and county agencies. Public Service Electric and Gas was the host utility and Salem County the host county. Federal participation included the Nuclear Regulatory Commission, Federal Emergency Management Agency, Department of Energy, Environmental Protection Agency, US department of Agriculture and Department of Health and Human Services. In addition, the American Nuclear Insurers participated, adding a dimension to the exercise not experienced often enough. This was a stand-alone post-plume phase exercise, which took place 2 months after the evaluated plume phase exercise held on March 3, 1998, also including participation by various Federal agencies. This exercise demonstrated the positive working relationship among utility, State, county, and Federal responders in response to a postulated major nuclear power plant emergency with significant offsite consequences

  3. A mantle plume model for the Equatorial Highlands of Venus

    Science.gov (United States)

    Kiefer, Walter S.; Hager, Bradford H.

    1991-01-01

    The possibility that the Equatorial Highlands are the surface expressions of hot upwelling mantle plumes is considered via a series of mantle plume models developed using a cylindrical axisymmetric finite element code and depth-dependent Newtonian rheology. The results are scaled by assuming whole mantle convection and that Venus and the earth have similar mantle heat flows. The best model fits are for Beta and Atla. The common feature of the allowed viscosity models is that they lack a pronounced low-viscosity zone in the upper mantle. The shape of Venus's long-wavelength admittance spectrum and the slope of its geoid spectrum are also consistent with the lack of a low-viscosity zone. It is argued that the lack of an asthenosphere on Venus is due to the mantle of Venus being drier than the earth's mantle. Mantle plumes may also have contributed to the formation of some smaller highland swells, such as the Bell and Eistla regions and the Hathor/Innini/Ushas region.

  4. Numerical simulation of helicopter engine plume in forward flight

    Science.gov (United States)

    Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.

    1994-01-01

    Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.

  5. Salem 98: A post-plume phase, federal participation exercise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    Salem 98 was the largest nuclear power plant post-plume phase exercise since the 1993 FRMAC-93 exercise at the Fort Calhoun Nuclear Power Plant in Nebraska. Salem 98 was a 3 Day exercise, held on May 5--7, 1998, involving participation by the States of New Jersey and Delaware and associated State and county agencies. Public Service Electric and Gas was the host utility and Salem County the host county. Federal participation included the Nuclear Regulatory Commission, Federal Emergency Management Agency, Department of Energy, Environmental Protection Agency, US department of Agriculture and Department of Health and Human Services. In addition, the American Nuclear Insurers participated, adding a dimension to the exercise not experienced often enough. This was a stand-alone post-plume phase exercise, which took place 2 months after the evaluated plume phase exercise held on March 3, 1998, also including participation by various Federal agencies. This exercise demonstrated the positive working relationship among utility, State, county, and Federal responders in response to a postulated major nuclear power plant emergency with significant offsite consequences.

  6. Methane Emission Estimates from Landfills Obtained with Dynamic Plume Measurements

    International Nuclear Information System (INIS)

    Hensen, A.; Scharff, H.

    2001-01-01

    Methane emissions from 3 different landfills in the Netherlands were estimated using a mobile Tuneable Diode Laser system (TDL). The methane concentration in the cross section of the plume is measured downwind of the source on a transect perpendicular to the wind direction. A gaussian plume model was used to simulate the concentration levels at the transect. The emission from the source is calculated from the measured and modelled concentration levels.Calibration of the plume dispersion model is done using a tracer (N 2 O) that is released from the landfill and measured simultaneously with the TDL system. The emission estimates for the different locations ranged from 3.6 to 16 m 3 ha -1 hr -1 for the different sites. The emission levels were compared to emission estimates based on the landfill gas production models. This comparison suggests oxidation rates that are up to 50% in spring and negligible in November. At one of the three sites measurements were performed in campaigns in 3 consecutive years. Comparison of the emission levels in the first and second year showed a reduction of the methane emission of about 50% due to implementation of a gas extraction system. From the second to the third year emissions increased by a factor of 4 due to new land filling. Furthermore measurements were performed in winter when oxidation efficiency was reduced. This paper describes the measurement technique used, and discusses the results of the experimental sessions that were performed

  7. ''Stenungsund-77'': smoke plume measurements with a pulsed dye laser

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, G; Hartmann, B; Spangstedt, G; Steinvall, O

    1977-12-01

    This report describes some of the results obtained in a field experiment at Stenungsund in May 1977, under the support and coordination of the Swedish Space Corporation. We made lidar measurements with a pulsed tunable dye laser working at wavelengths in the uv and visible part of the spectrum. The study concerned SO/sub 2/-absorption, NO/sub 2/-absorption, and particle scattering in the smoke plume of an oil fuel electric power plant. The SO/sub 2/-burden in the plume, near the smoke stack exit, as estimated from our lidar measurements, is compatible with in situ measurements and calculated values. The NO/sub 2/-concentration proved to be lower than the sensitivity limit of our lidar system. The particle scattering experiments led to qualitative results, and only permitted order of magnitude estimates of particle concentrations. They show, however, that a low power, eye safe uv lidar was capable of tracking plumes undiscernible to the eye, out to a distance of 2 to 3 km.

  8. Evolution of plasma double layers in laser-ablation plumes

    International Nuclear Information System (INIS)

    Gurlui, S.; Sanduloviciu, M.; Mihesan, C.; Ziskind, M.; Focsa, C.

    2005-01-01

    The double layers (DLs) are one of the most complex problems of the plasma physics. These layers are apparently important not only in laboratory plasmas and laser-ablation plasma plumes but also in natural phenomena, e.g. the aurora and fire balls.This work studies the dynamics of the double layers in a laser ablation plume from different targets irradiated by a Nd: YAG 10 ns pulsed laser. The plasma formation was studied by means of both Langmuir probe and mass spectrometry methods using an experimental set-up developed for the study of environmental or technological interest samples. The ionic current distribution in plasma plume formation was recorded in different experimental conditions. We have found that it depends on the laser energy, the pressure of the buffer gas and the probe position. The periodical oscillations recorded in different experimental conditions prove that these plasma formations (DLs) are local physical systems able to accumulate and release energy. Acting as storing and releasing energy elements, the DLs can sustain periodical or non-periodical variations of the current or of the other global parameters of the plasma. (author)

  9. 3D Density Structure of Oceanic Lithosphere Affected by A Plume: A Case Study from the Greater Jan Mayen-East Greenland Region (NE Atlantic)

    Science.gov (United States)

    Tan, P.; Sippel, J.; Breivik, A. J.; Scheck-Wenderoth, M.; Meeßen, C.

    2017-12-01

    Unraveling the density structure of the oceanic lithosphere north of Iceland is key for understanding the effects of the Iceland Plume on the mid-ocean ridges of the greater Jan Mayen-East Greenland Region. We use a data-integrative approach for 3D gravity modeling to develop new insights into the crust and upper mantle density structure of this region. First, we obtain the 3D density structure of the sediments and crust from interpretations of regional reflection and refraction seismic lines. Then, the temperature and density structure of the mantle between 50 and 250 km are derived from a published shear-wave velocity (Vs) tomography model. To assess the density configuration between the Moho and 50 km depth, we follow a combined forward and inverse 3D gravity modeling approach. The Vs tomography and derived density of the deeper mantle (>50 km depth) reveal that the low-density anomaly related to the Iceland plume gets weaker with increasing distance from the plume, i.e. from the strongly influenced Middle Kolbeinsey Ridge (MKR) to the Mohn's Ridge. The West Jan Mayen Fracture Zone is identified as a main mantle density contrast, indicative of differences in the thermal evolution of the ridge systems it separates. Beneath the MKR region, the low-density anomaly at depths of >50 km continues upwards into the uppermost mantle, where its lateral dimensions narrow considerably. This elongated density anomaly is consistent with a basement high and indicates a channelization of the Iceland plume effects. The NE-SW elongated mantle anomaly does not, however, coincide with the topographical NNE-SSW striking ridge axis. Thus, the modelled plume-affected oceanic lithosphere reveals discrepancies with the half-space cooling model. We discuss the 3D density model in terms of such spatial relations between deeper mantle anomalies and the shallow crustal structure.

  10. INVESTIGATION OF THE FATE OF MERCURY IN A COAL COMBUSTION PLUME USING A STATIC PLUME DILUTION CHAMBER

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2001-11-01

    The overall goal of the project was to further develop and then verify SPDC's ability to determine the physical and chemical transformations of mercury in combustion stack plumes. Specific objectives of the project were to perform controlled tests at the pilot scale using dynamic spiking of known mercury compounds (i.e., Hg{sup 0} and HgCl{sub 2}) to prove the ability of the SPDC to determine the following: whether mercury condenses onto particulate matter in a cooling plume; whether there is reduction of Hg{sup 2+} to Hg{sup 0} occurring in hygroscopic aerosols; whether condensed Hg{sup 2+} on particles is photochemically reduced to Hg{sup 0}; and whether or not the Solid Ontario Hydro mercury speciation method (SOH) provides the same results as the Ontario Hydro (OH) mercury speciation method.

  11. The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  12. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  13. On the Color of the Orinoco River Plume

    Science.gov (United States)

    Odriozola, A.; Muller-Karger, F.; Carder, K.; Hu, C.; Varela, R.

    2005-05-01

    In situ measurements were used to study the bio-optical properties of marine waters within the Gulf of Paria (GOP, Venezuela) and in the Southeastern Caribbean Sea (SEC) as they are affected by the seasonal discharge of the Orinoco River plume. The main purpose of this study was to determine the impact of colored dissolved organic matter (CDOM) (also known as Gelbstoff), phytoplankton, and total suspended matter (TSM) in the color of the Orinoco River plume. This information is essential for regional ocean color algorithms development. Salinity and silica values indicate that the GOP and SEC waters were under the influence of the Orinoco River plume during both seasons. This riverine influence resulted in high values of Gelbstoff absorption, ag(λ), which contributed to up to 90% of the total absorption at 440 nm in both the GOP and SEC regardless of the season. Phytoplankton absorption contributions were normally around 5%, but during the dry season these values reached 20% in the SEC. Ratios of ag(440) to ph(440) were extremely large, with most of the values ranging from 10 to 50. Due to the strong absorption by Gelbstoff, light at the blue wavelengths (412 nm, 440 nm and 490 nm) was attenuated to 1% of the subsurface irradiance in the first 5 m of the water column within the GOP, and in the first 10 m of the water column in the SEC. Furthermore, the absorption by Gelbstoff significantly decreased the water leaving radiance (Lw(λ)) in the blue wavelengths along the Orinoco River plume. As ag(λ) relatively decreased from the GOP to the SEC (mean ~1.6 m-1 and mean ~0.9 m-1, respectively), a shift in the maximum peak of Rrs(λ) spectra (Rrsmax(λ)), towards shorter wavelengths (from ~ 580 nm to ~500 nm) was observed. Similar to Gelbstoff, concentrations of TSM normally decreased from the stations near the Delta to the stations in the SEC. The impact of TSM on the color of the Orinoco plume was represented by a reduction in the magnitude of Rrsmax(λ) of ~50% going

  14. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  15. Enceladus Plume Morphology and Variability from UVIS Measurements

    Science.gov (United States)

    Hansen, Candice; Esposito, Larry; Colwell, Josh; Hendrix, Amanda; Portyankina, Ganna

    2017-10-01

    The Ultraviolet Imaging Spectrograph (UVIS) on the Cassini spacecraft has been observing Enceladus’ plume and its effect on the Saturnian environment since 2004. One solar and 7 stellar occultations have been observed between 2005 and 2017. On 27 March 2017 epsilon Canis Majoris (CMa) passed behind the plume of water vapor spewing from Enceladus’ tiger stripe fissures. With this occultation we have 6 cuts through the plume at a variety of orientations over 12 years. Following our standard procedure the column density along the line of sight from Enceladus to the star was determined and the water flux calculated [1]. The mean anomaly was 131, well away from the dust flux peak associated with Enceladus at an orbital longitude near apoapsis [2]. We find that the water vapor flux was ~160 kg/sec (this number will be refined when the final reconstructed trajectory is available). That puts it “in family” with the other occultations, with values that cluster around 200 kg/sec. It is at the low end, which may be consistent with the drop in particle output observed over the last decade [3]. UVIS results show that the supersonic collimated gas jets imbedded in the plume are the likely source of the variability in dust output [4], rather than overall flux from the tiger stripes. An occultation of epsilon Orionis was observed on 11 March 2016 when Enceladus was at a mean anomaly of 208. Although the bulk flux changed little the amount of water vapor coming from the Baghdad I supersonic jet increased by 25% relative to 2011. The Baghdad I jet was observed again in the 2017 epsilon CMa occultation, and the column density is half that of 2016, further bolstering the conclusion that the gas jets change output as a function of orbital longitude. UVIS results describing gas flux, jets, and general structure of the plume, the observables above the surface, are key to testing hypotheses for what is driving Enceladus’ eruptive activity below the surface. [1] Hansen, C. J. et

  16. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    Science.gov (United States)

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  18. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  19. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    Science.gov (United States)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and

  20. Resolving superimposed ground-water contaminant plumes characterized by chromium, nitrate, uranium, and technetium--99

    International Nuclear Information System (INIS)

    Hall, S.H.

    1990-02-01

    Leakage from a liquid waste storage and solar evaporation basin at the Hanford Site in southeastern Washington State has resulted in a ground-water contaminant plume characterized by nitrate, hexavalent chromium, uranium, and technetium-99. The plume is superimposed on a larger, pre-existing plume extending from upgradient sites and having the same suite of contaminants. However, the relative abundance of contaminant species is quite different for each plume source. Thus, characteristic concentration ratios, rather than concentrations of individual species, are used as geochemical tracers, with emphasis on graphical analysis. Accordingly, it has been possible to resolve the boundaries of the smaller plume and to estimate the contribution of each plume to the observed contamination downgradient from the storage basin. 11 refs., 7 figs

  1. Plume expansion dynamics during laser ablation of manganates in oxygen atmosphere

    International Nuclear Information System (INIS)

    Amoruso, S.; Sambri, A.; Wang, X.

    2007-01-01

    The effect of ambient gas on the expansion dynamics of the plasma plume generated by excimer laser ablation of a LaMnO 3 target is investigated by using fast photography and optical emission spectroscopy. The plume propagation in an oxygen environment is examined with pressure ranging from vacuum to few hundreds Pa. Imaging analysis of the plume emission has allowed following the changes in the plume front dynamics as a function of time and pressure. The expansion dynamics of the plume front is examined by means of a theoretical description of plume evolution and shock-wave propagation in dimensionless variables. Optical emission spectroscopy analysis showed that the oxides are mainly formed in the gas-phase through reaction of the ablated atomic species with ambient oxygen. Moreover, we observed that the formation of oxides is strongly favoured at a pressure level where the formation of a shock-wave occurs

  2. The effect of sediments on turbulent plume dynamics in a stratified fluid

    Science.gov (United States)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  3. NASA's nuclear thermal propulsion technology project

    International Nuclear Information System (INIS)

    Peecook, K.M.; Stone, J.R.

    1992-07-01

    The nonnuclear subsystem technologies required for incorporating nuclear thermal propulsion (NTP) into space-exploration missions are discussed. Of particular interest to planned missions are such technologies as materials, instrumentation and controls, turbomachinery, CFD modeling, nozzle extension designs and models, and analyses of exhaust plumes. NASA studies are described and/or proposed for refractory metals and alloys, robotic NTP controls, and turbopump materials candidates. Alternative nozzle concepts such as aerospikes and truncated plugs are proposed, and numerical simulations are set forth for studying heavy molecules and the backstreaming of highly reactive free-radical hydrogen in the exhaust plume. The critical technologies described in the paper are central to the development of NTP, and NTP has the potential to facilitate a range of space exploration activities. 3 refs

  4. Multi-scale Modeling of Power Plant Plume Emissions and Comparisons with Observations

    Science.gov (United States)

    Costigan, K. R.; Lee, S.; Reisner, J.; Dubey, M. K.; Love, S. P.; Henderson, B. G.; Chylek, P.

    2011-12-01

    The Remote Sensing Verification Project (RSVP) test-bed located in the Four Corners region of Arizona, Utah, Colorado, and New Mexico offers a unique opportunity to develop new approaches for estimating emissions of CO2. Two major power plants located in this area produce very large signals of co-emitted CO2 and NO2 in this rural region. In addition to the Environmental Protection Agency (EPA) maintaining Continuous Emissions Monitoring Systems (CEMS) on each of the power plant stacks, the RSVP program has deployed an array of in-situ and remote sensing instruments, which provide both point and integrated measurements. To aid in the synthesis and interpretation of the measurements, a multi-scale atmospheric modeling approach is implemented, using two atmospheric numerical models: the Weather Research and Forecasting Model with chemistry (WRF-Chem; Grell et al., 2005) and the HIGRAD model (Reisner et al., 2003). The high fidelity HIGRAD model incorporates a multi-phase Lagrangian particle based approach to track individual chemical species of stack plumes at ultra-high resolution, using an adaptive mesh. It is particularly suited to model buoyancy effects and entrainment processes at the edges of the power plant plumes. WRF-Chem is a community model that has been applied to a number of air quality problems and offers several physical and chemical schemes that can be used to model the transport and chemical transformation of the anthropogenic plumes out of the local region. Multiple nested grids employed in this study allow the model to incorporate atmospheric variability ranging from synoptic scales to micro-scales (~200 m), while including locally developed flows influenced by the nearby complex terrain of the San Juan Mountains. The simulated local atmospheric dynamics are provided to force the HIGRAD model, which links mesoscale atmospheric variability to the small-scale simulation of the power plant plumes. We will discuss how these two models are applied and

  5. Natural attenuation: A feasible approach to remediation of landfill leachate plumes?

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2000-01-01

    Natural attenuation has been implemented for petroleum hydrocarbons plumes and recently also for chlorinated solvent plumes, primarily in the USA, but natural attenuation has not yet gained a foothold with respect to leachate plumes. Based on the experiences gained from ten years of research on two...... Danish landfills, it is suggested that natural attenuation is a feasible approach, but much more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent....

  6. Dynamics of Mantle Plume Controlled by both Post-spinel and Post-garnet Phase Transitions

    Science.gov (United States)

    Liu, H.; Leng, W.

    2017-12-01

    Mineralogical studies indicate that two major phase transitions occur near 660 km depth in the Earth's pyrolitic mantle: the ringwoodite (Rw) to perovskite (Pv) + magnesiowüstite (Mw) and majorite (Mj) to perovskite (Pv) phase transitions. Seismological results also show a complicated phase boundary structure for plume regions at this depth, including broad pulse, double reflections and depressed 660 km discontinuity beneath hot regions etc… These observations have been attributed to the co-existence of these two phase transformations. However, previous geodynamical modeling mainly focused on the effects of Rw-Pv+Mw phase transition on the plume dynamics and largely neglected the effects of Mj-Pv phase transition. Here we develop a 3-D regional spherical geodynamic model to study the influence of the combination of Rw - Pv+Mw and Mj - Pv phase transitions on plume dynamics, including the topography fluctuation of 660 km discontinuity, plume shape and penetration capability of plume. Our results show that (1) a double phase boundary occurs at the hot center area of plume while for other regions with relatively lower temperature the phase boundary is single and flat, which respectively corresponds to the double reflections in the seismic observations and a high velocity prism-like structure at the top of 660 km discontinuity; (2) a large amount of low temperature plume materials could be trapped to form a complex trapezoid overlying the 660 km depth; (3) Mj - Pv phase change strongly enhances the plume penetration capability at 660 km depth, which significantly increases the plume mass flux due to the increased plume radius, but significantly reduces plume heat flux due to the decreased plume temperature in the upper mantle. Our model results provide new enlightenments for better constraining seismic structure and mineral reactions at 660 km phase boundaries.

  7. Numerical prediction of Plume Induced Flow Separation (PIFS) on launch vehicles

    International Nuclear Information System (INIS)

    Jeffries, D.K.; Ferguson, F.; Chandra, S.

    2002-01-01

    Lockheed Martin Astronautics designs and operates launch vehicles that deliver payloads into specific geosynchronous orbits for the government and the commercial market place. Lockheed's family Atlas Launch Vehicles are an industry leader in this very competitive business and remain in this position by continuously optimizing the Atlas design to increase its performance. However, the unknown overall effects of a phenomenon that occurs when aircraft operate at high altitudes is hindering the advancement of the vehicle. Engineers have known for years through observations and calculations that the exhaust plume from an aircraft's engine undergoes changes in shape and increases in size as the aircraft gains altitude and speed. The change in exhaust plum configuration typically leads to interaction between the exhaust gases and freestream air, which is the cause of the phenomenon know as Plume Induced Flow Separation (PIFS). PIFS separates the external flow from the surface of the vehicle allowing the hot exhaust gases to climb forward from the engines toward the aircraft's leading end. Long believed to harmlessly climb the outside surfaces of aircraft, the mostly unknown phenomenon in now feared to hamper the performance of today's launch vehicles. Lockheed Martin has contracted the research study of PIFS to better understand the flowfield and then use that information to optimize the design of their launch vehicles and mitigate ifs effects. A study of the phenomenon, its resulting flowfield and thermal environment, is greatly needed to add to the knowledge of bases of PIFS and aerospace flight. The study presented outlines the development of a numerical model, which was used to investigate the effects of PIFS on an Atlas IIIA Launch Vehicle by simulating the vehicle operating under flight conditions where PIFS is most likely to occur. The model was validated by comparing numerical results with experimental data and verified by reviewing the flow physics captured. The

  8. 3D Thermo-Mechanical Models of Plume-Lithosphere Interactions: Implications for the Kenya rift

    Science.gov (United States)

    Scheck-Wenderoth, M.; Koptev, A.; Sippel, J.

    2017-12-01

    We present three-dimensional (3D) thermo-mechanical models aiming to explore the interaction of an active mantle plume with heterogeneous pre-stressed lithosphere in the Kenya rift region. As shown by the recent data-driven 3D gravity and thermal modeling (Sippel et al., 2017), the integrated strength of the lithosphere for the region of Kenya and northern Tanzania appears to be strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localization and propagation of rifting. In order to test this hypothesis, we have performed a series of ultra-high resolution 3D numerical experiments that include a coupled mantle/lithosphere system in a dynamically and rheologically consistent framework. In contrast to our previous studies assuming a simple and quasi-symmetrical initial condition (Koptev et al., 2015, 2016, 2017), the complex 3D distribution of rock physical properties inferred from geological and geophysical observations (Sippel et al., 2017) has been incorporated into the model setup that comprises a stratified three-layer continental lithosphere composed of an upper and lower crust and lithospheric mantle overlaying the upper mantle. Following the evidence of the presence of a broad low-velocity seismic anomaly under the central parts of the East African Rift system (e.g. Nyblade et al, 2000; Chang et al., 2015), a 200-km radius mantle plume has been seeded at the bottom of a 635 km-depth model box representing a thermal anomaly of 300°C temperature excess. In all model runs, results show that the spatial distribution of surface deformation is indeed strongly controlled by crustal structure: within the southern part of the model box, a localized narrow zone stretched in NS direction (i.e. perpendicularly to applied far-field extension) is aligned along a structural boundary within the lower crust, whereas in the northern part of the model domain, deformation is more diffused and its eastern limit coincides with

  9. Assessment of Turbulence-Chemistry Interactions in Missile Exhaust Plume Signature Analysis

    National Research Council Canada - National Science Library

    Calhoon, W

    2002-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulence chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  10. Flowfield and Radiation Analysis of Missile Exhaust Plumes Using a Turbulent-Chemistry Interaction Model

    National Research Council Canada - National Science Library

    Calhoon, W. H; Kenzakowski, D. C

    2000-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulent-chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  11. A Monte Carlo simulation method for assessing biotransformation effects on groundwater fuel hydrocarbon plume lengths

    International Nuclear Information System (INIS)

    McNab, W.W. Jr.

    2000-01-01

    Biotransformation of dissolved groundwater hydrocarbon plumes emanating from leaking underground fuel tanks should, in principle, result in plume length stabilization over relatively short distances, thus diminishing the environmental risk. However, because the behavior of hydrocarbon plumes is usually poorly constrained at most leaking underground fuel tank sites in terms of release history, groundwater velocity, dispersion, as well as the biotransformation rate, demonstrating such a limitation in plume length is problematic. Biotransformation signatures in the aquifer geochemistry, most notably elevated bicarbonate, may offer a means of constraining the relationship between plume length and the mean biotransformation rate. In this study, modeled plume lengths and spatial bicarbonate differences among a population of synthetic hydrocarbon plumes, generated through Monte Carlo simulation of an analytical solute transport model, are compared to field observations from six underground storage tank (UST) sites at military bases in California. Simulation results indicate that the relationship between plume length and the distribution of bicarbonate is best explained by biotransformation rates that are consistent with ranges commonly reported in the literature. This finding suggests that bicarbonate can indeed provide an independent means for evaluating limitations in hydrocarbon plume length resulting from biotransformation. (Author)

  12. Loire and Gironde turbid plumes: Characterization and influence on thermohaline properties

    Science.gov (United States)

    Costoya, X.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, M.

    2017-12-01

    Knowledge and predictability of turbid river plumes is of great importance because they modulate the properties of the seawater adjacent to river mouths. The Loire and Gironde Rivers form the most important plumes in the Bay of Biscay, as they provide > 75% of total runoff. The development of the turbid plume under the influence of its main drivers was analyzed using Moderate Resolution Imaging Spectroradiometer satellite data from the period 2003-2015. River discharge was found to be the main driver, followed by wind, which also had an important effect in modulating the turbid plume during periods of high river discharge. Seaward and upwelling favorable winds enhanced the dispersion of plumes on seawater, whereas landward and downwelling favorable winds limited mixing with the adjacent ocean water. The maximum extension of the turbid plume was reached under landward winds. In addition, the spatio-temporal evolution of the East Atlantic pattern and the North Atlantic Oscillation was observed to affect the dynamics of plumes: positive values of both indices favored a greater extension of the plume. Thermohaline properties differed inside and outside the area affected by both rivers. In particular, these rivers maintain winter stratification inside the turbid plume, which results in a different warming ratio when compared with the adjacent ocean.

  13. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  14. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  15. Strategic Map for Enceladus Plume Biosignature Sample Return

    Science.gov (United States)

    Sherwood, B.

    2014-12-01

    The discovery of jets emitting salty water from the interior of Saturn's small moon Enceladus is one of the most astounding results of the Cassini mission to date. The measured presence of organic species in the resulting plume, the finding that the jet activity is valved by tidal stretching at apocrone, the modeled lifetime of E-ring particles, and gravitational inference of a long-lived, deep, large water reservoir all indicate that the textbook conditions for habitability are met at Enceladus today: liquid water, biologically available elements, source of energy, and longevity of conducive conditions. Enceladus may be the best place in our solar system to search for direct evidence of biomarkers, and the plume provides a way to sample, analyze, and even return them to Earth for detailed analysis. For example, it is straightforward to define a Stardust-like, fly-through, plume ice-particle, dust, and gas collection mission. Concept engineering and evaluation indicate that the associated technical, programmatic, regulatory, and cost issues are quite unlike the Stardust precedent however, not least because of such a mission's Category-V, Restricted Earth Return, classification. The poster presents a strategic framework for systematic integration of the enabling issues: cultivation of science advocacy, resolution of diverse stakeholder concerns, development of verifiable and affordable technical solutions, validation of cost estimation methods, alignment with other candidate astrobiology missions, complementarity of international agency goals, and finally the identification of appropriate research and flight-mission opportunities. A strategic approach is essential if we are to know the astrobiological state of Enceladus in our lifetime, and two international teams are already dedicated to implementing key steps on this roadmap.

  16. Comparing plume characteristics inferred from cross-borehole geophysical data

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Binley, Andrew; Zibar, Majken Caroline Looms

    2012-01-01

    significantly influences results of the moment analysis. We compare results of three cross-borehole geophysical approaches for imaging tracer migration arising from a point injection of water in the unsaturated zone: three-dimensional electrical resistivity tomography (ERT), two-dimensional ground......-penetrating radar (GPR) tomography and quasi-three-dimensional GPR tomography. In the studied field experiment, a tracer was injected for a period of 5 d and was monitored both during injection and for 5 d during the subsequent redistribution. The three methods show similar characteristics of the plume development...

  17. The propagation of GPS signals through electrically charged plumes

    Science.gov (United States)

    Méndez Harper, J.; Steffes, P. G.; Dufek, J.

    2017-12-01

    Probing the interior dynamics of eruptive columns using electrostatic processes generated within the flows themselves has garnered much interest in the recent years. Indeed, large eruptions are often accompanied by brilliant displays of lightning, testifying to the high potentials that can be accumulated by a diverse set of electrification mechanisms. Unfortunately, lightning on its own cannot be used as a general remote sensing tool because not all volcanic eruptions produce spark discharges. As pointed out by McNutt and Williams, 2010, only 30-35% of volcanoes maintain lightning storms. The absence of lightning in two thirds of all eruptions indicates that most volcanoes produce flows with 1) inefficient or limited granular charging processes or 2) dynamics that do not promote the charge separation that sets up coherent electric fields needed for lightning. Yet, even if the prerequisites for spark discharges are not met, it is difficult to argue for plumes which are completely electrostatically neutral. The problems permeating passive electromagnetic sensing may be overcome through the use of active methods which involve interrogating charged volcanic plumes with electromagnetic radiation. The scattering of electromagnetic waves has been a common method to retrieve the physical properties of collections of particles, specifically those which cannot be accessed directly. By modifying the standard Mie formulation, Klavcka et al., 2007 showed that surface charge may influence the extinction properties of grains if such particles are much smaller than the wavelength of the incident radiation. Based on this model, we posit that the properties of charged clouds of particles can be readily assessed using robust, existing infrastructure-the Global Positioning System. In the present work, we numerically explore the manner in which electrostatic charge on particles affect the propagation of electromagnetic waves through volcanic plumes. We show that, for the range of

  18. Turbulent Boyant Jets and Plumes in Flowing Ambient Environments

    DEFF Research Database (Denmark)

    Chen, Hai-Bo

    and the stage of plume. The stability criteria for the upstream wedge created by the submerged turbulent buoyant jet were established by applying the Bernoulli equations for a two-dimensional problem and by considering the front velocity driven by the buoyancy force for a three-dimensional problem....... The integral model was developed on the basis of the volume control method ( for jets with two-dimensional trajectories ) and the differential method ( for jets with three-dimensional trajectories ). The turbulence model adopted here was the k - ε model based on Launder and Spalding. The mathematical models...

  19. Aging of plumes from emission sources based on chamber simulation

    Science.gov (United States)

    Wang, X.; Deng, W.; Fang, Z.; Bernard, F.; Zhang, Y.; Yu, J.; Mellouki, A.; George, C.

    2017-12-01

    Study on atmospheric aging of plumes from emission sources is essential to understand their contribution to both secondary and primary pollutants occurring in the ambient air. Here we directly introduced vehicle exhaust, biomass burning plume, industrial solvents and cooking plumes into a smog chamber with 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure, for characterizing primarily emitted air pollutants and for investigating secondarily formed products during photo-oxidation. Moreover, we also initiated study on the formation of secondary aerosols when gasoline vehicle exhaust is mixed with typical coal combustion pollutant SO2 or typical agricultural-related pollutant NH3. Formation of secondary organic aerosols (SOA) from typical solvent toluene was also investigated in ambient air matrix in comparison with purified air matrix. Main findings include: 1) Except for exhaust from idling gasoline vehicles, traditional precursor volatile organic compounds could only explain a very small fraction of SOA formed from vehicle exhaust, biomass burning or cooking plumes, suggesting knowledge gap in SOA precursors; 2) There is the need to re-think vehicle emission standards with a combined primary and/or secondary contribution of vehicle exhaust to PM2.5 or other secondary pollutants such as ozone; 3) When mixed with SO2, the gasoline vehicle exhaust revealed an increase of SOA production factor by 60-200% and meanwhile SO2 oxidation rates increased about a factor of 2.7; when the aged gasoline vehicle exhaust were mixing with NH3, both particle number and mass concentrations were increasing explosively. These phenomenons implied the complex interaction during aging of co-existing source emissions. 4) For typical combination of "tolune+SO2+NOx", when compared to chamber simulation with purified air as matrix, both SOA formation and SO2 oxidation were greatly enhanced under ambient air matrix, and the enhancement

  20. Anisotropic Signature of the Afar plume in the Upper Mantle.

    Science.gov (United States)

    Sicilia, D.; Montagner, J.; Debayle, E.; Leveque, J.; Cara, M.; Lepine, J.

    2002-12-01

    Plumes remain enigmatic geological objects and it is still unclear how they are formed and whether they act independently from plate tectonics. The role of plumes in mantle dynamics can be investigated by studying their interaction with lithosphere and crust and their perturbations on flow pattern in the mantle. The flow pattern can be derived from seismic anisotropy. An anisotropic surface wave tomography in the Horn of Africa was performed. The choice of the experiment in the Horn of Africa is motivated by the the presence of the Afar hotspot, one of the biggest continental hotspot. In the framework of the mantle degree 2 pattern, the Afar hotspot is the antipode of the Pacific superswell, but its origin at depth and its geodynamic importance are still debated. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We completed our data base with a French deployment of portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained by using a method based on a least-squares minimization (Beucler et al.,2002). A correction of the data is applied according to the a priori 3SMAC model (Nataf and Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. Down to 250km, low velocities are found beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Afar hotspot. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the isotropic model of Debayle et al. (2002). The anisotropy model beneath Afar displays a complex pattern. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. Deeper in the asthenosphere, a wide stem of positive radial anisotropy (VSH > VSV) comes up, where we might expect the reverse sign. The same observation was made below Iceland (Gaherty, 2001) and Hawaii (Montagner

  1. Optical Thomson scatter from laser-ablated plumes

    International Nuclear Information System (INIS)

    Delserieys, A.; Khattak, F. Y.; Lewis, C. L. S.; Riley, D.; Pedregosa Gutierrez, J.

    2008-01-01

    We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected T e ∝t -1 dependence. However, we have found the electron density to have a time dependence n e ∝t -4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3 P 0 term in Mg I

  2. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  3. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  4. Experimental investigation of the hydrodynamics of confined bubble plumes in water and viscous media

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Alexandr Zaruba; Eckhard Krepper; Horst-Michael Prasser

    2005-01-01

    Wire-mesh tomography measurements of void fraction and bubble size distribution in a rectangular bubble column 10 cm wide and 2 cm deep have been conducted. Experiments were performed in an air-water and ethylene glycol system with the column operating in the dispersed bubbly flow regime.Experiments were conducted for plumes with different aspect ratios between 2.2 to 13. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. The behaviour of the long plumes (larger aspect ratio) was found to be significantly different than that of the short plumes (aspect ratios 2 to 4). The oscillating nature of the bubble plume is preserved over the entire height of the water column for the short plumes. The longer plumes are characterized by two distinct regions, the near injector oscillating region and a further downstream region where the bubbles rise in a string like motion. The void fraction distribution in the oscillating region of the plume exhibits a center-peak profile. A 'wall peak' has been observed in the measured void fraction profiles (for higher gas flow rates) in the downstream string-like region. The effect of column height and superficial gas velocity on the void distribution has been investigated. This paper presents the measurement principle and the experimental results for short and long plumes in an air-water system and for short plumes rising in viscous media. The results of the visualization experiment characterizing the structure of the bubble plume and the oscillation frequency of the bubble plumes are reported. (authors)

  5. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  6. PLUME DEVELOPMENT OF THE SHOEMAKER-LEVY 9 COMET IMPACT

    International Nuclear Information System (INIS)

    Palotai, Csaba; Harrington, Joseph; Rebeli, Noemi; Gabriel, Travis; Korycansky, Donald G.

    2011-01-01

    We have studied the plume formation after a Jovian comet impact using the ZEUS-MP 2 hydrodynamics code. The three-dimensional models followed objects with 500, 750, and 1000 m diameters. Our simulations show the development of a fast, upward-moving component of the plume in the wake of the impacting comet that 'pinches off' from the bulk of the cometary material ∼50 km below the 1 bar pressure level, ∼100 km above the depth of the greatest mass and energy deposition. The fast-moving component contains about twice the mass of the initial comet, but consists almost entirely (>99.9%) of Jovian atmosphere rather than cometary material. The ejecta rise mainly along the impact trajectory, but an additional vertical velocity component due to buoyancy establishes itself within seconds of impact, leading to an asymmetry in the ejecta with respect to the entry trajectory. The mass of the upward-moving component follows a velocity distribution M(>v) approximately proportional to v -1.4 (v -1.6 for the 750 m and 500 m cases) in the velocity range 0.1 km s -1 -1 .

  7. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  8. PLUMED 2: New feathers for an old bird

    Science.gov (United States)

    Tribello, Gareth A.; Bonomi, Massimiliano; Branduardi, Davide; Camilloni, Carlo; Bussi, Giovanni

    2014-02-01

    Enhancing sampling and analyzing simulations are central issues in molecular simulation. Recently, we introduced PLUMED, an open-source plug-in that provides some of the most popular molecular dynamics (MD) codes with implementations of a variety of different enhanced sampling algorithms and collective variables (CVs). The rapid changes in this field, in particular new directions in enhanced sampling and dimensionality reduction together with new hardware, require a code that is more flexible and more efficient. We therefore present PLUMED 2 here—a complete rewrite of the code in an object-oriented programming language (C++). This new version introduces greater flexibility and greater modularity, which both extends its core capabilities and makes it far easier to add new methods and CVs. It also has a simpler interface with the MD engines and provides a single software library containing both tools and core facilities. Ultimately, the new code better serves the ever-growing community of users and contributors in coping with the new challenges arising in the field.

  9. PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST /STIS

    International Nuclear Information System (INIS)

    Sparks, W. B.; Bergeron, E.; Cracraft, M.; Deustua, S. E.; Hand, K. P.; McGrath, M. A.

    2016-01-01

    Roth et al. (2014a) reported evidence for plumes of water venting from a southern high latitude region on Europa: spectroscopic detection of off-limb line emission from the dissociation products of water. Here, we present Hubble Space Telescope direct images of Europa in the far-ultraviolet (FUV) as it transited the smooth face of Jupiter to measure absorption from gas or aerosols beyond the Europa limb. Out of 10 observations, we found 3 in which plume activity could be implicated. Two observations showed statistically significant features at latitudes similar to Roth et al., and the third at a more equatorial location. We consider potential systematic effects that might influence the statistical analysis and create artifacts, and are unable to find any that can definitively explain the features, although there are reasons to be cautious. If the apparent absorption features are real, the magnitude of implied outgassing is similar to that of the Roth et al. feature; however, the apparent activity appears more frequently in our data.

  10. Unveiling CO2 heterogeneous freezing plumes during champagne cork popping.

    Science.gov (United States)

    Liger-Belair, Gérard; Cordier, Daniel; Honvault, Jacques; Cilindre, Clara

    2017-09-14

    Cork popping from clear transparent bottles of champagne stored at different temperatures (namely, 6, 12, and 20 °C) was filmed through high-speed video imaging in the visible light spectrum. During the cork popping process, a plume mainly composed of gaseous CO 2 with traces of water vapour freely expands out of the bottleneck through ambient air. Most interestingly, for the bottles stored at 20 °C, the characteristic grey-white cloud of fog classically observed above the bottlenecks of champagne stored at lower temperatures simply disappeared. It is replaced by a more evanescent plume, surprisingly blue, starting from the bottleneck. We suggest that heterogeneous freezing of CO 2 occurs on ice water clusters homogeneously nucleated in the bottlenecks, depending on the saturation ratio experienced by gas-phase CO 2 after adiabatic expansion (indeed highly bottle temperature dependent). Moreover, and as observed for the bottles stored at 20 °C, we show that the freezing of only a small portion of all the available CO 2 is able to pump the energy released through adiabatic expansion, thus completely inhibiting the condensation of water vapour found in air packages adjacent to the gas volume gushing out of the bottleneck.

  11. Thermal-Chemical Model Of Subduction: Results And Tests

    Science.gov (United States)

    Gorczyk, W.; Gerya, T. V.; Connolly, J. A.; Yuen, D. A.; Rudolph, M.

    2005-12-01

    Seismic structures with strong positive and negative velocity anomalies in the mantle wedge above subduction zones have been interpreted as thermally and/or chemically induced phenomena. We have developed a thermal-chemical model of subduction, which constrains the dynamics of seismic velocity structure beneath volcanic arcs. Our simulations have been calculated over a finite-difference grid with (201×101) to (201×401) regularly spaced Eulerian points, using 0.5 million to 10 billion markers. The model couples numerical thermo-mechanical solution with Gibbs energy minimization to investigate the dynamic behavior of partially molten upwellings from slabs (cold plumes) and structures associated with their development. The model demonstrates two chemically distinct types of plumes (mixed and unmixed), and various rigid body rotation phenomena in the wedge (subduction wheel, fore-arc spin, wedge pin-ball). These thermal-chemical features strongly perturb seismic structure. Their occurrence is dependent on the age of subducting slab and the rate of subduction.The model has been validated through a series of test cases and its results are consistent with a variety of geological and geophysical data. In contrast to models that attribute a purely thermal origin for mantle wedge seismic anomalies, the thermal-chemical model is able to simulate the strong variations of seismic velocity existing beneath volcanic arcs which are associated with development of cold plumes. In particular, molten regions that form beneath volcanic arcs as a consequence of vigorous cold wet plumes are manifest by > 20% variations in the local Poisson ratio, as compared to variations of ~ 2% expected as a consequence of temperature variation within the mantle wedge.

  12. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  13. Environmental impact from wet plumes in combined-cycle power plants

    International Nuclear Information System (INIS)

    Corti, A.; Carnevale, E.

    1998-01-01

    In the present study, we have carried out an investigation into some of the environmental effects of high energy efficiency power generation plants that produce electrical and thermal energy. The use of natural gas fuels may represent a success for the replacement of liquid or solid fuels, because of drastic reductions of sulphur oxides, carbon dioxide and particulates. An additional problem involves the study of the effects of vapour emissions from the combustion of fuels and from the cooling towers of the condenser device. Particularly, the problem of the analysis of vapour and drift diffusion, because of emissions from the wet cooling devices, is faced in terms of modelling the plume rise and mass loss of drift in the atmosphere, because of evaporation, in order to predict the increment of rain and the humidity effect. The results obtained show that the amount of water emitted in the forms of vapour and drift, in terms of local scale diffusion, do not create problems of high increments of relative humidity or dangerous rainfall phenomena; while the effects of vapour emission are shown as insignificant problems because of the deposition of a sensible amount of drift, correlated with the type of of separator devices chosen can appear, but only on very limited areas. (author)

  14. Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation

    International Nuclear Information System (INIS)

    Clyne, John; Mininni, Pablo; Norton, Alan; Rast, Mark

    2007-01-01

    The ever increasing processing capabilities of the supercomputers available to computational scientists today, combined with the need for higher and higher resolution computational grids, has resulted in deluges of simulation data. Yet the computational resources and tools required to make sense of these vast numerical outputs through subsequent analysis are often far from adequate, making such analysis of the data a painstaking, if not a hopeless, task. In this paper, we describe a new tool for the scientific investigation of massive computational datasets. This tool (VAPOR) employs data reduction, advanced visualization, and quantitative analysis operations to permit the interactive exploration of vast datasets using only a desktop PC equipped with a commodity graphics card. We describe VAPORs use in the study of two problems. The first, motivated by stellar envelope convection, investigates the hydrodynamic stability of compressible thermal starting plumes as they descend through a stratified layer of increasing density with depth. The second looks at current sheet formation in an incompressible helical magnetohydrodynamic flow to understand the early spontaneous development of quasi two-dimensional (2D) structures embedded within the 3D solution. Both of the problems were studied at sufficiently high spatial resolution, a grid of 504 2 by 2048 points for the first and 1536 3 points for the second, to overwhelm the interactive capabilities of typically available analysis resources

  15. Simulation of the plume emitted by a municipal waste incinerator located in the Madeira island

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, M.; Ribeiro, C.; Pereira, M.; Borrego, C. [Campus Univ., AVEIRO (Portugal). IDAD - Inst. of Environment and Development

    2004-07-01

    The study of meteorological circulations in small islands has been quite limited with the majority of the research published concerning the analysis of the eolic potential for energy production. Other researchers focused on the description of the dispersion of gases emitted by volcanic activity. In this paper, a mesoscale meteorological and dispersion model was applied to simulate the behaviour of the plume of a municipal waste incinerator (MSW) that was constructed in the southern slope of the Madeira island at an altitude of 1380 m. Madeira is a Portuguese island located in the Atlantic Ocean at approximately 32 40'N and 16 52'W with a clear east-west development. The island is relatively small (60 x 20 km{sup 2}) but is characterized by very complex orography with maximum peaks reaching 1800 m. The fact that the orography has the same east-west development creates a very strong distinction between the northern and the southern slopes. The northern slope is strongly exposed to the prevalent synoptic flows and the southern slope is much warmer, quiet and where the majority of the population lives. The climate is very mild with small thermal amplitudes and maximum temperatures between 18 to 28 C. Sea temperature during summer rises to 22-23 C. (orig.)

  16. PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-05-01

    In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume

  17. FOOTPRINT: A New Tool to Predict the Potential Impact of Biofuels on BTEX Plumes

    Science.gov (United States)

    Ahsanuzzaman et al. (2008) used the Deeb et al. (2002) conceptual model to construct a simple screening model to estimate the area of a plume of benzene produced from a release of gasoline containing ethanol. The screening model estimates the plume area, or footprint of the plum...

  18. Io's UV-V Eclipse Emission: Implications for Pele-type Plumes

    Science.gov (United States)

    Moore, C. H.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2010-03-01

    Simulations of Io's NUV-V emission in eclipse show that S2-rich giant plumes' S2 concentrations and activity levels effect the absolute brightness and the east/west intensity ratio across Io allowing for plume activity to be determined from observed spectra.

  19. Cross shore transport by wind-driven turbidity plumes in western Lake Superior*

    Science.gov (United States)

    Turbidity plumes frequently occur in the western arm of Lake Superior and may represent a significant cross shelf transport mechanism for sediment, nutrient and biota. We characterize a plume that formed in late April 2016 using observations from in situ sensors and remote sensin...

  20. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    Science.gov (United States)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  1. Remote Sensing and Underwater Glider Observations of a Springtime Plume in Western Lake Superior

    Science.gov (United States)

    Plumes are commonly observed in satellite imagery of western Lake Superior following storm events, and represent a significant cross-shelf pathway for sediment and other constituents. However, their subsurface extent is poorly understood. This study reports results from plume ob...

  2. Lithosphere erosion and continental breakup : Interaction of extension, plume upwelling and melting

    NARCIS (Netherlands)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-01-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by

  3. Biological Ocean Margins Program. Active Microbes Responding to Inputs from the Orinoco River Plume. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jorge E. Corredor

    2013-01-28

    The overall goal of the proposed work is to identify the active members of the heterotrophic community involved in C and N cycling in the perimeter of the Orinoco River Plume (ORP), assess their spatial distribution, quantify their metabolic activity, and correlate these parameters to plume properties such as salinity, organic matter content and phytoplankton biomass.

  4. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  5. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    Science.gov (United States)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  6. Laser-generated plasma plume expansion: Combined continuous-microscopic modeling

    Science.gov (United States)

    Itina, Tatiana E.; Hermann, Jörg; Delaporte, Philippe; Sentis, Marc

    2002-12-01

    The physical phenomena involved in the interaction of a laser-generated plasma plume with a background gas are studied numerically. A three-dimensional combined model is developed to describe the plasma plume formation and its expansion in vacuum or into a background gas. The proposed approach takes advantages of both continuous and microscopic descriptions. The simulation technique is suitable for the simulation of high-rate laser ablation for a wide range of background pressure. The model takes into account the mass diffusion and the energy exchange between the ablated and background species, as well as the collective motion of the ablated species and the background-gas particles. The developed approach is used to investigate the influence of the background gas on the expansion dynamics of the plume obtained during the laser ablation of aluminum. At moderate pressures, both plume and gas compressions are weak and the process is mainly governed by the diffusive mixing. At higher pressures, the interaction is determined by the plume-gas pressure interplay, the plume front is strongly compressed, and its center exhibits oscillations. In this case, the snowplough effect takes place, leading to the formation of a compressed gas layer in front of the plume. The background pressure needed for the beginning of the snowplough effect is determined from the plume and gas density profiles obtained at various pressures. Simulation results are compared with experimentally measured density distributions. It is shown that the calculations suggest localized formation of molecules during reactive laser ablation.

  7. Laser-generated plasma plume expansion: Combined continuous-microscopic modeling

    International Nuclear Information System (INIS)

    Itina, Tatiana E.; Hermann, Joerg; Delaporte, Philippe; Sentis, Marc

    2002-01-01

    The physical phenomena involved in the interaction of a laser-generated plasma plume with a background gas are studied numerically. A three-dimensional combined model is developed to describe the plasma plume formation and its expansion in vacuum or into a background gas. The proposed approach takes advantages of both continuous and microscopic descriptions. The simulation technique is suitable for the simulation of high-rate laser ablation for a wide range of background pressure. The model takes into account the mass diffusion and the energy exchange between the ablated and background species, as well as the collective motion of the ablated species and the background-gas particles. The developed approach is used to investigate the influence of the background gas on the expansion dynamics of the plume obtained during the laser ablation of aluminum. At moderate pressures, both plume and gas compressions are weak and the process is mainly governed by the diffusive mixing. At higher pressures, the interaction is determined by the plume-gas pressure interplay, the plume front is strongly compressed, and its center exhibits oscillations. In this case, the snowplough effect takes place, leading to the formation of a compressed gas layer in front of the plume. The background pressure needed for the beginning of the snowplough effect is determined from the plume and gas density profiles obtained at various pressures. Simulation results are compared with experimentally measured density distributions. It is shown that the calculations suggest localized formation of molecules during reactive laser ablation

  8. Simulations of the Effects of Jupiter's Plasma Torus on Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2014-11-01

    Io’s plumes rise hundreds of kilometers above its surface and sublimation atmosphere, presenting large targets for incoming ions from Jupiter’s plasma torus. The direct simulation Monte Carlo method is used to model the gas plume at Pele and its interaction with the Jovian plasma torus. Chemical reactions resulting from ion impacts in a plume change its composition and energy from the impacts changes the plume’s structure (asymmetrically). The presence of non-condensible daughter species in a warmer plume canopy produces a more diffuse deposition ring on Io’s surface, compared to simulations without plasma. Energized molecules also escape from the plume, forming a diffuse cloud of fast particles above the plume’s canopy, which may function to resupply the plasma torus and which suggests a mechanism for lofting other species to very high altitudes.

  9. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    Science.gov (United States)

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in areas of high-velocity tidal currents, and by turbulence from vessels passing over fine material deposited in shallow areas. Where turbidity barriers were not used, turbidity plumes visible at the surface were good indicators of the location of turbid water at depth. Where turbidity barriers were used, turbid bottom water was found at locations having no visible surface plumes. A region of rapidly accelerating then decelerating flow

  10. Morphological changes in ultrafast laser ablation plumes with varying spot size.

    Science.gov (United States)

    Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C

    2015-06-15

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.

  11. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    Science.gov (United States)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  12. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    Science.gov (United States)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  13. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    Science.gov (United States)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  14. Martian methane plume models for defining Mars rover methane source search strategies

    Science.gov (United States)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  15. Modelling tools for integrating geological, geophysical and contamination data for characterization of groundwater plumes

    DEFF Research Database (Denmark)

    Balbarini, Nicola

    the contaminant plume in a shallow and a deep plume. These plumes have different chemical characteristics and different migration paths to the stream. This has implications for the risk assessment of the stream and groundwater in the area. The difficulty of determining groundwater flow paths means that it is also...... receptors, including streams. Key risk assessment parameters, such as contaminant mass discharge estimates, and tools are then used to evaluate the risk. The cost of drilling often makes investigations of large and/or deep contaminant plumes unfeasible. For this reason, it is important to develop cost...... organic compounds, including pharmaceutical compounds and chlorinated ethenes. The correlation between DCIP and organic compounds is indirect and depends on the chemical composition of the contaminant plume and the transport processes. Thus, the correlations are site specific and may change between...

  16. Model Intercomparison Study to Investigate a Dense Contaminant Plume in a Complex Hydrogeologic System

    International Nuclear Information System (INIS)

    Williams, Mark D.; Cole, Charles R.; Foley, Michael G.; Zinina, Galina A.; Zinin, Alexander I.; Vasil'Kova, Nelly A.; Samsonova, Lilia M.

    2001-01-01

    A joint Russian and U.S. model intercomparison study was undertaken for developing more realistic contaminant transport models of the Mayak Site, Southern Urals. The test problems were developed by the Russian Team based on their experience modeling contaminant migration near Lake Karachai. The intercomparison problems were designed to address lake and contaminant plume interactions, as well as river interactions and plume density effects. Different numerical codes were used. Overall there is good agreement between the results of both models. Features shown by both models include (1) the sinking of the plume below the lake, (2) the raising of the water table in the fresh water adjacent to the lake in response to the increased pressure from the dense plume, and (3) the formation of a second sinking plume in an area where evapotranspiration exceeded infiltration, thus increasing the solute concentrations above the source (i.e., lake) values

  17. Utilization of a hydraulic barrier to control migration of a uranium plume

    International Nuclear Information System (INIS)

    Brettschneider, D.J.; Simmons, R.A. Jr.; Kappa, J.D.; Stover, J.A.

    1995-01-01

    A uranium plume emanating from the U.S. Department of Energy's Fernald Environmental Management Project (FEMP) in Fernald, Ohio had migrated off site and the leading edge of the plume had already mixed with an organic and inorganic plume emanating from two industries south of the FEMP. A method was needed to prevent the further southern migration of the plume, minimize any impacts to the geometry, concentrations, distribution or flow patterns of the organic and inorganic plumes emanating from the off-site industries, while meeting the ultimate cleanup goals for the FEMP. This paper discusses the use of a hydraulic barrier created to meet these goals by pumping a five well recovery system and the problems associated with the disposition of over 2 million gallons per day of water with low concentrations of uranium

  18. ALOFT-PC a smoke plume trajectory model for personal computers

    International Nuclear Information System (INIS)

    Walton, W.D.; McGrattan, K.B.; Mullin, J.V.

    1996-01-01

    A computer model, named ALOFT-PC, was developed for use during in-situ burning of oil spills to predict smoke plume trajectory. The downwind distribution of smoke particulate is a complex function of fire parameters, meteorological conditions, and topographic features. Experimental burns have shown that the downwind distribution of smoke is not Gaussian and simple smoke plume models do not capture the observed plume features. ALOFT-PC consists of the Navier-Stokes equations using an eddy viscosity over a uniform grid that spans the smoke plume and its surroundings. The model inputs are wind speed and variability, atmospheric temperature profile, and fire parameters and the output is the average of the plume. 7 refs., 3 tabs

  19. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-01-01

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity

  20. The uniquely high-temperature character of Cullinan diamonds: A signature of the Bushveld mantle plume?

    Science.gov (United States)

    Korolev, N. M.; Kopylova, M.; Bussweiler, Y.; Pearson, D. G.; Gurney, J.; Davidson, J.

    2018-04-01

    The mantle beneath the Cullinan kimberlite (formerly known as "Premier") is a unique occurrence of diamondiferous cratonic mantle where diamonds were generated contemporaneously and shortly following a mantle upwelling that led to the formation of a Large Igneous Province that produced the world's largest igneous intrusion - the 2056 Ma Bushveld Igneous Complex (BIC). We studied 332 diamond inclusions from 202 Cullinan diamonds to investigate mantle thermal effects imposed by the formation of the BIC. The overwhelming majority of diamonds come from three parageneses: (1) lithospheric eclogitic (69%), (2) lithospheric peridotitic (21%), and (3) sublithospheric mafic (9%). The lithospheric eclogitic paragenesis is represented by clinopyroxene, garnet, coesite and kyanite. Main minerals of the lithospheric peridotitic paragenesis are forsterite, enstatite, Cr-pyrope, Cr-augite and spinel; the sublithospheric mafic association includes majorite, CaSiO3 phases and omphacite. Diamond formation conditions were calculated using an Al-in-olivine thermometer, a garnet-clinopyroxene thermometer, as well as majorite and Raman barometers. The Cullinan diamonds may be unique on the global stage in recording a cold geotherm of 40 mW/m2 in cratonic lithosphere that was in contact with underlying convecting mantle at temperatures of 1450-1550 °C. The studied Cullinan diamonds contain a high proportion of inclusions equilibrated at temperatures exceeding the ambient 1327 °C adiabat, i.e. 54% of eclogitic diamonds and 41% of peridotitic diamonds. By contrast, ≤ 1% of peridotitic diamond inclusions globally yield equally high temperatures. We propose that the Cullinan diamond inclusions recorded transient, slow-dissipating thermal perturbations associated with the plume-related formation of the 2 Ga Bushveld igneous province. The presence of inclusions in diamond from the mantle transition zone at 300-650 km supports this view. Cullinan xenoliths indicative of the thermal state of

  1. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  2. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    Science.gov (United States)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  3. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  4. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    Science.gov (United States)

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  5. Heat transfer from thermal effluent

    International Nuclear Information System (INIS)

    Czapski, U.H.; Mumford, W.

    1975-01-01

    Measurements of the turbulent fluxes of sensible heat and momentum, together with profiles of horizontal wind, temperature, and humidity (wet bulb) have been conducted above the thermal plume of the Nine Mile Point Nuclear plant near Oswego, New York on Lake Ontario. The spectral analysis of the data, obtained with sonic anemometer and ultrafast thermocouples, reveals the importance of microthermals and similar features for the transport of heat. Temperature variance spectra and the cospectra wT and uw show distinct deviations from the -5/3 Kolmogorov law in the inertial subrange, suggesting a high input of energy in the eddy frequency range between 0.01 and 1 Hz. It is shown that microthermals in this frequency range are also responsible for a large portion of the momentum transport. 46 refs

  6. Characterizing Io’s Pele, Tvashtar and Pillan plumes: Lessons learned from Hubble

    Science.gov (United States)

    Jessup, Kandis Lea; Spencer, John R.

    2012-03-01

    Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ∼0.035-0.12 μm for the 1997 Pillan eruption, ∼0.05-0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ∼0.05-0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is Pele eruption released ∼109 g of SO2 dust, the 1997 Pillan eruption released ∼1010 g of SO2 dust, and the 1995 Pele plume may have released ∼1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24-0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is

  7. Schlieren image velocimetry measurements in a rocket engine exhaust plume

    Science.gov (United States)

    Morales, Rudy; Peguero, Julio; Hargather, Michael

    2017-11-01

    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  8. Next-generation marine instruments to join plume debate

    Science.gov (United States)

    Simons, F. J.; Nolet, G.; Babcock, J.

    2003-12-01

    Whether hot spot volcanism is the consequence of plate tectonics or has a deep origin in a mantle plume is debated. G.~Foulger (Geol.~Soc.~London Lett.~Online, accessed 9/3/2003), writes that carefully truncated cross sections, with color scales cranked up, give noisy images the illusion of strong anomalies traversing the mantle. Don Anderson, the big daddy of non-plume hypotheses (R.~Kent, Geol.~Soc.~London Lett.~Online, accessed 9/3/2003) has written that the resolution of regional tomography experiments must be improved in order to successfully determine whether (...) the deep mantle is the controlling factor in the formation of proposed hot spots (Keller et al., GRL 27 (24), 2000). In particular for Iceland, at issue is the inherently limited aperture of any land-based seismometer array on the island: (...) the resolution of such images could be increased (...) by using ocean bottom seismometers (...) (ibidem). These problems are not unique to the plume debate. Coverage, resolution and robustness of models of the wave speed distribution in the interior of the Earth obtained by seismic tomographic inversions are limited by the areal distribution of seismic stations. Two thirds of Earth's surface are virtually inaccessible to passive-source seismometry, save indeed for expensive ocean-bottom seismometers or moored hydrophones. Elsewhere at this meeting, Montelli et al. describe how an improved theoretical treatment of the generation and survival of travel-time anomalies and sophisticated parameterization techniques yield unprecedented resolution of the seismic expression of a variety of ``plumes'' coming from all depths within the mantle. On the other hand, the improved resolution required to settling the debate on the depth to the seismic origin of various hot spots will also result from the collection of previously inaccessable data. Here, we show our progress in the development of an independent hydro-acoustical recording device mounted on SOLO floats. Our

  9. Evolution of a chemically reacting plume in a ventilated room

    Science.gov (United States)

    Conroy, D. T.; Smith, Stefan G. Llewellyn; Caulfield, C. P.

    2005-08-01

    The dynamics of a second-order chemical reaction in an enclosed space driven by the mixing produced by a turbulent buoyant plume are studied theoretically, numerically and experimentally. An isolated turbulent buoyant plume source is located in an enclosure with a single external opening. Both the source and the opening are located at the bottom of the enclosure. The enclosure is filled with a fluid of a given density with a fixed initial concentration of a chemical. The source supplies a constant volume flux of fluid of different density containing a different chemical of known and constant concentration. These two chemicals undergo a second-order non-reversible reaction, leading to the creation of a third product chemical. For simplicity, we restrict attention to the situation where the reaction process does not affect the density of the fluids involved. Because of the natural constraint of volume conservation, fluid from the enclosure is continually vented. We study the evolution of the various chemical species as they are advected by the developing ventilated filling box process within the room that is driven by the plume dynamics. In particular, we study both the mean and vertical distributions of the chemical species as a function of time within the room. We compare the results of analogue laboratory experiments with theoretical predictions derived from reduced numerical models, and find excellent agreement. Important parameters for the behaviour of the system are associated with the source volume flux and specific momentum flux relative to the source specific buoyancy flux, the ratio of the initial concentrations of the reacting chemical input in the plume and the reacting chemical in the enclosed space, the reaction rate of the chemicals and the aspect ratio of the room. Although the behaviour of the system depends on all these parameters in a non-trivial way, in general the concentration within the room of the chemical input at the isolated source passes

  10. Les plumes du Mexique et de la mondialisation des arts

    OpenAIRE

    Gruzinski, Serge

    2006-01-01

    Au XVIe siècle, les arts européens se diffusent en Amérique, en Afrique et en Asie dans le sillage de la monarchie catholique. Simultanément, des objets exotiques quittent l’Afrique, l’Asie et l’Amérique pour enrichir les collections des princes de l’Europe de la Renaissance. Les mosaïques des plumes réalisées au Mexique font partie de cette histoire qui est à la fois planétaire des arts de l’Europe, celle des métissages et celle de la domination ibérique. Nous essaierons de replacer ces chef...

  11. Consolidation of the landfill stabilization and contaminant plumes focus areas

    International Nuclear Information System (INIS)

    Brown, J.P.; Wright, J.; Chamberlain, G.S.

    1996-01-01

    The Assistant Secretary of the Office of Environmental Management (EM) on January 25, 1994, formally established five focus areas to implement A New Approach to Environmental Research and Technology Development at the U. S. Department of Energy (DOE) - Action Plan. The goal of this new approach was to conduct a research and technology development program that is focused on overcoming the major obstacles to cleaning up DOE sites and ensuring that the best talent within the Department and the national science communities is used. Two of the five focus areas established were Landfill Stabilization Focus Area (LSFA) and Contaminant Plumes Containment and Remediation Focus Area (PFA), which were located at the Savannah River Operations Office (SR)

  12. Imaging subsurface geology and volatile organic compound plumes

    International Nuclear Information System (INIS)

    Qualheim, B.J.; Daley, P.F.; Johnson, V.; McPherrin, R.V.; Laguna, G.

    1992-03-01

    Lawrence Livermore National Laboratory (LLNL) (Fig. 1) is in the final stages of the Superfund decisionmaking process for site remediation and restoration. In the process of characterizing the subsurface of the LLNL site, we have developed unique methods of collecting, storing, retrieving, and imaging geologic and chemical data from more than 350 drill holes. The lateral and vertical continuity of subsurface paleostream channels were mapped for the entire LLNL site using geologic descriptions from core samples, cuttings, and interpretations from geophysical logs. A computer-aided design and drafting program, SLICE, written at LLNL, was used to create two-dimensional maps of subsurface sediments, and state-of-the-art software produced three-dimensional images of the volatile organic compound (VOC) plumes using data from water and core fluid analyses

  13. Ash production by attrition in volcanic conduits and plumes.

    Science.gov (United States)

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  14. ARCON96, Radioactive Plume Concentration in Reactor Control Rooms

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Simonen, C.A.

    2003-01-01

    1 - Description of program or function: ARCON96 was developed to calculate relative concentrations in plumes from nuclear power plants at control room air intakes in the vicinity of the release point. 2 - Methods: ARCON96 implements a straight-line Gaussian dispersion model with dispersion coefficients that are modified to account for low wind meander and building wake effects. Hourly, normalized concentrations (X/Q) are calculated from hourly meteorological data. The hourly values are averaged to form X/Qs for periods ranging from 2 to 720 hours in duration. The calculated values for each period are used to form cumulative frequency distributions. 3 - Restriction on the complexity of the problem: ARCON96 is a single user program. If expanded output is selected by the user, the file includes the hourly input and X/Qs and the intermediate computational results. The output file may exceed a megabyte size

  15. AUV-Based Plume Tracking: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Awantha Jayasiri

    2016-01-01

    Full Text Available This paper presents a simulation study of an autonomous underwater vehicle (AUV navigation system operating in a GPS-denied environment. The AUV navigation method makes use of underwater transponder positioning and requires only one transponder. A multirate unscented Kalman filter is used to determine the AUV orientation and position by fusing high-rate sensor data and low-rate information. The paper also proposes a gradient-based, efficient, and adaptive novel algorithm for plume boundary tracking missions. The algorithm follows a centralized approach and it includes path optimization features based on gradient information. The proposed algorithm is implemented in simulation on the AUV-based navigation system and successful boundary tracking results are obtained.

  16. Constructional types of hybrid tower cells. First plume observations on experimental cells in the Gemeinschaftskernkraftwerk Neckar (GKN)

    International Nuclear Information System (INIS)

    Maeule, R.

    1977-01-01

    First experience with two experimental hybrid-cell cooling towers at the Gemeinschaftkernkraftwerk Neckar (GKN) concerning techniques and plume influence. In dependence of plume-determining parameters coinciding, noticeable plume reductions as well as situations without visible improvements are observed. These results, which are not quite clear, demonstrate that systematical analytical investigations are needed. (orig.) [de

  17. Plume dynamics in quasi-2D turbulent convection

    International Nuclear Information System (INIS)

    Bizon, C.; Werne, J.; Predtechensky, A.A.; Julien, K.; McCormick, W.D.; Swift, J.B.; Swinney, H.L.

    1997-01-01

    We have studied turbulent convection in a vertical thin (Hele-Shaw) cell at very high Rayleigh numbers (up to 7x10 4 times the value for convective onset) through experiment, simulation, and analysis. Experimentally, convection is driven by an imposed concentration gradient in an isothermal cell. Model equations treat the fields in two dimensions, with the reduced dimension exerting its influence through a linear wall friction. Linear stability analysis of these equations demonstrates that as the thickness of the cell tends to zero, the critical Rayleigh number and wave number for convective onset do not depend on the velocity conditions at the top and bottom boundaries (i.e., no-slip or stress-free). At finite cell thickness δ, however, solutions with different boundary conditions behave differently. We simulate the model equations numerically for both types of boundary conditions. Time sequences of the full concentration fields from experiment and simulation display a large number of solutal plumes that are born in thin concentration boundary layers, merge to form vertical channels, and sometimes split at their tips via a Rayleigh-Taylor instability. Power spectra of the concentration field reveal scaling regions with slopes that depend on the Rayleigh number. We examine the scaling of nondimensional heat flux (the Nusselt number, Nu) and rms vertical velocity (the Pacute eclet number, Pe) with the Rayleigh number (Ra * ) for the simulations. Both no-slip and stress-free solutions exhibit the scaling NuRa * ∼Pe 2 that we develop from simple arguments involving dynamics in the interior, away from cell boundaries. In addition, for stress-free solutions a second relation, Nu∼√(nPe), is dictated by stagnation-point flows occurring at the horizontal boundaries; n is the number of plumes per unit length. (Abstract Truncated)

  18. Sample and plume luminescence in fast heavy ion induced desorption

    International Nuclear Information System (INIS)

    Tuszynski, W.; Koch, K.; Hilf, E.R.

    1996-01-01

    The luminescence arising in 252 Cf-fission fragment induced desorption events has been measured using the time-correlated single photon counting technique. Photons emitted from the sample have been guided from a plasma desorption ion source to a photodetector by an optical fibre. Spectra and decay functions have been obtained using thin layers of Coronene or POPOP as samples. The results are strongly dependent on the acceleration field applied for ion extraction. Approximately 10 photons per fission fragment have been produced when applying no accelerating voltage. The results clearly show that these photons come from radiative electronic relaxations of molecules in the solid sample. Considerably more photons per fission fragment have been produced when applying a positive acceleration voltage. The intensity increases almost linearly for acceleration fields below 10 kV/cm and saturates at a nearly 10-fold higher value when compared to no acceleration. The intensity is also affected by the homogeneity of the accelerating field. These additional photons are attributed to radiative electronic relaxations of desorbed neutral molecules in the plume excited by inelastic collisions with accelerated positive ions. No additional photons have been observed when extracting negative ions. The negative ions produced do obviously not hit and/or excite desorbed neutral molecules, presumably due to their specific desorption characteristics. The experimental data have been analyzed by comparing with the cw and time-resolved sample luminescence obtained by optical excitation. The findings demonstrate that valuable information on ion-solid interactions, on specific desorption quantities and on processes in the plume can be obtained by measuring and analyzing the luminescence induced by the impact of high energy primary ions. (orig.)

  19. Guided episodic sampling for capturing and characterizing industrial plumes

    Science.gov (United States)

    Ou-Yang, Chang-Feng; Liao, Wei-Cheng; Chang, Chih-Chung; Hsieh, Hsin-Cheng; Wang, Jia-Lin

    2018-02-01

    An integrated sampling technique, dubbed trigger sampling, was developed to capture characteristic industrial emissions or plumes. In the field experiment, a hydrogen sulfide (H2S) analyzer was used as the triggering instrument at the boundary of a refinery plant due to frequent complaints of foul smell from local residents. Ten episodic samples were captured when the H2S level surpassed the prescribed trigger level of 8.5 ppbv over a three-day period. Three non-episodic (blank) samples and 23 road-side samples were also collected for comparison. All the 36 flask samples were analyzed by gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) for 108 volatile organic compounds (VOCs). The total VOC abundance of the event samples was exceedingly higher than the non-episodic samples by over 80 times in the extreme case. Alkanes were found to be the dominant constituents in the event samples, amounting to over 90% of the total VOC concentrations vs. only 30-40% for the blank and metropolitan samples. In addition, light alkanes in the event samples were highly correlated with the trigger species H2S (R2 = 0.82), implying their common origin. The matrix of chemical composition vs. sample types permitted easy visualization of the dominance of light alkanes for the event samples compared to other types of samples. Principle component analysis (PCA) identified two major contributors to cover 93% of the total variance arising from the 36 samples, further quantifying the distinction of the triggered episodic samples from the contrast samples. The proposed trigger sampling is a coupling of fast-and-slow measurement techniques. In this example, the fast-response H2S analyzer served to "guide" sampling to capture industrial plumes which were then characterized by a relatively slow method of GC-MS/FID for detailed chemical composition representative of the prominent sources.

  20. Emissions lifetimes and ozone formation in power plant plumes

    International Nuclear Information System (INIS)

    Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Huebler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; Roberts, J.M.; Sueper, D.T.; Trainer, M.; Williams, J.; Fehsenfeld, F.C.

    1998-01-01

    The concept of ozone production efficiency (OPE) per unit NO x is based on photochemical models and provides a tool with which to assess potential regional tropospheric ozone control strategies involving NO x emissions reductions. An aircraft study provided data from which power plant emissions removal rates and measurement-based estimates of OPE are estimated. This study was performed as part of the Southern Oxidants Study - 1995 Nashville intensive and focuses on the evolution of NO x , SO 2 , and ozone concentrations in coal-fired power plant plumes during transport. Two approaches are examined. A mass balance approach accounts for mixing effects within the boundary layer and is used to calculate effective boundary layer removal rates for NO x and SO 2 and to estimate net OPE, Net OPE is more directly comparable to photochemical model results than previous measurement-based estimates. Derived net production efficiencies from mass balance range from 1 to 3 molecules of ozone produced per molecule of NO x emitted. A concentration ratio approach provides an estimate of removal rates of primary emissions relative to a tracer species. This approach can be combined with emissions ratio information to provide upper limit estimates of OPE that range from 2 to 7. Both approaches illustrate the dependence of ozone production on NO x source strength in these large point source plumes. The dependence of total ozone production, ozone production efficiency, and the rate of ozone production on NO x source strength is examined. These results are interpreted in light of potential ozone control strategies for the region. 42 refs., 8 figs., 5 tabs

  1. Emissions lifetimes and ozone formation in power plant plumes

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Huebler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; Roberts, J.M.; Sueper, D.T.; Trainer, M.; Williams, J.; Fehsenfeld, F.C. [NOAA Aeronomy Laboratory, Boulder, CO (United States)

    1998-09-20

    The concept of ozone production efficiency (OPE) per unit NO{sub x} is based on photochemical models and provides a tool with which to assess potential regional tropospheric ozone control strategies involving NO{sub x} emissions reductions. An aircraft study provided data from which power plant emissions removal rates and measurement-based estimates of OPE are estimated. This study was performed as part of the Southern Oxidants Study - 1995 Nashville intensive and focuses on the evolution of NO{sub x}, SO{sub 2}, and ozone concentrations in coal-fired power plant plumes during transport. Two approaches are examined. A mass balance approach accounts for mixing effects within the boundary layer and is used to calculate effective boundary layer removal rates for NO{sub x} and SO{sub 2} and to estimate net OPE, Net OPE is more directly comparable to photochemical model results than previous measurement-based estimates. Derived net production efficiencies from mass balance range from 1 to 3 molecules of ozone produced per molecule of NO{sub x} emitted. A concentration ratio approach provides an estimate of removal rates of primary emissions relative to a tracer species. This approach can be combined with emissions ratio information to provide upper limit estimates of OPE that range from 2 to 7. Both approaches illustrate the dependence of ozone production on NO{sub x} source strength in these large point source plumes. The dependence of total ozone production, ozone production efficiency, and the rate of ozone production on NO{sub x} source strength is examined. These results are interpreted in light of potential ozone control strategies for the region. 42 refs., 8 figs., 5 tabs.

  2. A hybrid plume model for local-scale dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Nikmo, J.; Tuovinen, J.P.; Kukkonen, J.; Valkama, I.

    1997-12-31

    The report describes the contribution of the Finnish Meteorological Institute to the project `Dispersion from Strongly Buoyant Sources`, under the `Environment` programme of the European Union. The project addresses the atmospheric dispersion of gases and particles emitted from typical fires in warehouses and chemical stores. In the study only the `passive plume` regime, in which the influence of plume buoyancy is no longer important, is addressed. The mathematical model developed and its numerical testing is discussed. The model is based on atmospheric boundary-layer scaling theory. In the vicinity of the source, Gaussian equations are used in both the horizontal and vertical directions. After a specified transition distance, gradient transfer theory is applied in the vertical direction, while the horizontal dispersion is still assumed to be Gaussian. The dispersion parameters and eddy diffusivity are modelled in a form which facilitates the use of a meteorological pre-processor. Also a new model for the vertical eddy diffusivity (K{sub z}), which is a continuous function of height in the various atmospheric scaling regions is presented. The model includes a treatment of the dry deposition of gases and particulate matter, but wet deposition has been neglected. A numerical solver for the atmospheric diffusion equation (ADE) has been developed. The accuracy of the numerical model was analysed by comparing the model predictions with two analytical solutions of ADE. The numerical deviations of the model predictions from these analytic solutions were less than two per cent for the computational regime. The report gives numerical results for the vertical profiles of the eddy diffusivity and the dispersion parameters, and shows spatial concentration distributions in various atmospheric conditions 39 refs.

  3. Subduction, Extension, and a Mantle Plume in the Pacific Northwest

    Science.gov (United States)

    Hawley, W. B.; Allen, R. M.; Richards, M. A.

    2016-12-01

    Subduction zones are some of the most important systems that control the dynamics and evolution of the earth. The Cascadia Subduction Zone offers a unique natural laboratory for understanding the subduction process, and how subduction interacts with other large-scale geodynamical phenomena. The small size of the Juan de Fuca (JdF) plate and the proximity of the system to the Yellowstone Hotspot and the extensional Basin and Range province allow for detailed study of the effects these important systems have on each other. We present both a P-wave and an S-wave tomographic model of the Pacific Northwestern United States using regional seismic arrays, including the amphibious Cascadia Initiative. These models share important features, such as the Yellowstone plume, the subducting JdF slab, a gap in the subducting slab, and a low-velocity feature beneath the shallowest portions of the slab. But subtle differences in these features between the models—the size of the gap in the subducting JdF slab and the shape of the Yellowstone plume shaft above the transition zone, for example—provide physical insight into the interpretation of these models. The physics that we infer from our seismic tomography and other studies of the region will refine our understanding of subduction zones worldwide, and will help to identify targets for future amphibious seismic array studies. The discovery of a pronounced low-velocity feature beneath the JdF slab as it subducts beneath the coastal Pacific Northwest is, thus far, the most surprising result from our imaging work, and implies a heretofore unanticipated regime of dynamical interaction between the sublithospheric oceanic asthenosphere and the subduction process. Such discoveries are made possible, and rendered interpretable, by ever-increasing resolution that the Cascadia Initiative affords seismic tomography models.

  4. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Shao, Xinyu; Gong, Shuili; Xiao, Jianzhong

    2016-07-01

    In order to better understand the local evaporation phenomena of keyhole wall, vapor plume swing above the keyhole and ambient gas entrapment into the porosity defects, the 3D time-dependent dynamics of the metallic vapor plume in a transient keyhole during fiber laser welding is numerically investigated. The vapor dynamical parameters, including the velocity and pressure, are successfully predicted and obtain good agreements with the experimental and literature data. It is found that the vapor plume flow inside the keyhole has complex multiple directions, and this various directions characteristic of the vapor plume is resulted from the dynamic evaporation phenomena with variable locations and orientations on the keyhole wall. The results also demonstrate that because of this dynamic local evaporation, the ejected vapor plume from the keyhole opening is usually in high frequency swinging. The results further indicate that the oscillation frequency of the plume swing angle is around 2.0-8.0 kHz, which is of the same order of magnitude with that of the keyhole depth (2.0-5.0 kHz). This consistency clearly shows that the swing of the ejected vapor plume is closely associated with the keyhole instability during laser welding. Furthermore, it is learned that there is usually a negative pressure region (several hundred Pa lower than the atmospheric pressure) of the vapor flow around the keyhole opening. This pressure could lead to a strong vortex flow near the rear keyhole wall, especially when the velocity of the ejected metallic vapor from the keyhole opening is high. Under the effect of this flow, the ambient gas is involved into the keyhole, and could finally be entrapped into the bubbles within a very short time (keyhole.

  5. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  6. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    Science.gov (United States)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  7. Measurement of polynuclear aromatic hydrocarbon concentrations in the plume of Kuwait oil well fires

    International Nuclear Information System (INIS)

    Olsen, K.B.; Wright, C.W.; Veverka, C.; Ball, J.C.; Stevens, R.

    1995-03-01

    Following their retreat from Kuwait during February and March of 1991, the Iraqi Army set fire to over 500 oil wells dispersed throughout the Kuwait oil fields. During the period of sampling from July to August 1991, it was estimated that between 3.29 x 10 6 barrels per day of crude oil were combusted. The resulting fires produced several plumes of black and white smoke that coalesced to form a composite ''super'' plume. Because these fires were uncontrolled, significant quantities of organic materials were dispersed into the atmosphere and drifted throughout the Middle East. The organic particulants associated with the plume of the oil well fires had a potential to be rich in polynuclear aromatic hydrocarbon (PAH) compounds. Based on the extreme mutagenic and carcinogenic activities of PAHs found in laboratory testing, a serious health threat to the population of that region potentially existed. Furthermore, the Kuwait oil fire plumes represented a unique opportunity to study the atmospheric chemistry associated with PAHs in the plume. If samples were collected near the plume source and from the plume many kilometers downwind from the source, comparisons could be made to better understand atmospheric reactions associated with particle-bound and gas-phase PAHs. To help answer health-related concerns and to better understand the fate and transport of PAHs in an atmospheric environment, a sampling and analysis program was developed

  8. Dispersal of the Pearl River plume over continental shelf in summer

    Science.gov (United States)

    Chen, Zhaoyun; Gong, Wenping; Cai, Huayang; Chen, Yunzhen; Zhang, Heng

    2017-07-01

    Satellite images of turbidity were used to study the climatological, monthly, and typical snapshot distributions of the Pearl River plume over the shelf in summer from 2003 to 2016. These images show that the plume spreads offshore over the eastern shelf and is trapped near the coast over the western shelf. Eastward extension of the plume retreats from June to August. Monthly spatial variations of the plume are characterized by eastward spreading, westward spreading, or both. Time series of monthly plume area was quantified by applying the K-mean clustering method to identify the turbid plume water. Decomposition of the 14-year monthly turbidity data by the empirical orthogonal function (EOF) analysis isolated the 1st mode in both the eastward and westward spreading pattern as the time series closely related to the Pearl River discharge, and the 2nd mode with out-of-phase turbidity anomalies over the eastern and western shelves that is associated with the prevailing wind direction. Eight typical plume types were detected from the satellite snapshots. They are characterized by coastal jet, eastward offshore spreading, westward spreading, bidirectional spreading, bulge, isolated patch, offshore branch, and offshore filaments, respectively. Their possible mechanisms are discussed.

  9. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Science.gov (United States)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  10. Automated recognition and tracking of aerosol threat plumes with an IR camera pod

    Science.gov (United States)

    Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan

    2012-06-01

    Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.

  11. Plume tracer experiments at Hinkley Point 'A' [Nuclear Power Station] during 1987

    International Nuclear Information System (INIS)

    Foster, P.M.

    1988-11-01

    The results of the first part of a programme of plume dispersion measurements at the Hinkley Point Nuclear Power Station are described. Using SF 6 gas and pyrotechnic smoke tracer techniques developed during an earlier study at Oldbury, measurements of ground level plume behaviour out to about 4 km and elevated plume behaviour out to about 1 km have been made in a series of twelve 1 hour trials and one 15 minute trial. Whereas the Oldbury study considered passive emissions, attention in this study has been focussed on the behaviour of the buoyant shield cooling air emission. Data on plume rise and the degree of plume entrainment by the building wake and on the effects of entrainment and wind meander on plume width and concentration, are presented and discussed in relation to current modelling recommendations. A limited number of 10 minute averaged measurements of plume concentration and 41-Ar decay gamma count were also made at 2 km range and their correlation and variability examined. (author)

  12. Reaction between laser ablation plume and ambient gas studied by laser-induced fluorescence imaging spectroscopy

    International Nuclear Information System (INIS)

    Sasaki, K; Watarai, H

    2007-01-01

    We visualized the density distributions of C 2 (plume), NO (ambient gas), and CN (reaction product) when a graphite target was ablated by irradiating YAG laser pulses at wavelengths of 1064 and 355 nm in ambient gas mixture of NO and He. It has been shown by the density distributions of C 2 and NO that the expansion of the plume removes the ambient gas and the plume and the ambient gas locate exclusively in both the cases at 1064 and 355 nm. A high CN density was observed at the interface between the plume and the ambient gas at 1064 nm, which is reasonable since chemical reactions between the plume and the ambient gas may occur only at their interface. On the other hand, in the case at 355 nm, we observed considerable CN inside the plume, indicating that the chemical reaction processes in the laser ablation at 355 nm is different from that expected from the density distributions of the plume and the ambient gas

  13. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Science.gov (United States)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-11-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  14. Total peroxy nitrates and ozone production : analysis of forest fire plumes during BORTAS campaign

    Science.gov (United States)

    Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Lewis, Ally; Parrington, Mark; Palmer, Paul; Dari Salisburgo, Cesare

    2014-05-01

    The goal of this work is to investigate the connection between PNS and ozone within plumes emitted from boreal forest fires and the possible perturbation to oxidant chemistry in the troposphere. During the Aircraft campaign in Canada called BORTAS (summer 2011 ) were carried out several profiles from ground up to 10 km with the BAe-146 aircraft to observe the atmospheric composition inside and outside fire plumes. The BORTAS flights have been selected based on the preliminary studies of 'Plume identification', selecting those effected by Boreal forest fire emissions (CO > 200 ppbv). The FLAMBE fire counts were used concertedly with back trajectory calculations generated by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to locate the sources of Boreal biomass burning.Profiles measured on board the BAe-146 aircraft are used to calculate the productions of PNs and O3 within the biomass burning plume. By selecting the flights that intercept the biomass burning plume, we evaluate the ratio between the ozone production and the PNs production within the plume. Analyzing this ratio it is possible to determine whether O3 production or PNs production is the dominant process in the biomass burning boreal plume detected during BORTAS campaign.

  15. Mixing systems for wet and dry plumes and cleaning equipment for the heat exchangers of the dry section. Two indispensible components of an effective and safe hybrid cooling tower

    International Nuclear Information System (INIS)

    Alt, W.

    1990-01-01

    At first glance, the hybrid cooling tower seems to be an ingenious combination of the well known components of an evaporative cooling tower and a dry cooling tower. The calculation of the air mass flows for both the wet and dry sections required to achieve an invisible plume does not represent an unsolvable problem to the engineer experienced in thermodynamics. The same also applies to the dimensioning of the heat exchangers and cooling fills. The hybrid cooling tower requires a well designed mixing system in order to ideally mix, the dry plume into the wet plume. If the cooling tower proves its efficiency during commissioning it is important that the ratio of the performance of the wet section to that of the dry section be maintained also in the long term. The performance of the fill in a wet cooling tower is consistently stable. Dirt deposits can form very quickly on the inner and outer surfaces of the heat exchangers of the dry section. In this case the thermal resistance increases rapidly. The respective performance of the wet and dry sections is then no longer balanced and the invisibility of the plume is no longer assured. This can be avoided by providing appropriate cleaning equipment

  16. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    International Nuclear Information System (INIS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-01-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5–6 J/cm 2 ) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis. - Highlights: • Ablated ground-state species accumulated in a thin hemispherical boundary layer • Inside the layer, a cavity containing a small density of ablated species was formed. • The hemispherical layers of atoms and ions appeared at a nearly identical location. • The measured intensity peak variation was in good agreement with a model prediction. • We ascribed the dominant process for forming the layer to a three-body recombination

  17. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N.V.; Popovitcheva, O.B.; Rakhimova, T.V. [Moscow State Univ. (Russian Federation)

    1997-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  18. State of the art atmospheric dispersion modelling. Should the Gaussian plume model still be used?

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)

    2016-11-15

    For regulatory purposes with respect to licensing and supervision of airborne releases of nuclear installations, the Gaussian plume model is still in use in Germany. However, for complex situations the Gaussian plume model is to be replaced by a Lagrangian particle model. Now the new EU basic safety standards for protection against the dangers arising from exposure to ionising radiation (EU BSS) [1] asks for a realistic assessment of doses to the members of the public from authorised practices. This call for a realistic assessment raises the question whether dispersion modelling with the Gaussian plume model is an adequate approach anymore or whether the use of more complex models is mandatory.

  19. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N V; Popovitcheva, O B; Rakhimova, T V [Moscow State Univ. (Russian Federation)

    1998-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  20. Simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume

    International Nuclear Information System (INIS)

    Overcamp, T.J.; Fjeld, R.A.

    1987-01-01

    A simple approximation for estimating the centerline gamma absorbed dose rates due to a continuous Gaussian plume was developed. To simplify the integration of the dose integral, this approach makes use of the Gaussian cloud concentration distribution. The solution is expressed in terms of the I1 and I2 integrals which were developed for estimating long-term dose due to a sector-averaged Gaussian plume. Estimates of tissue absorbed dose rates for the new approach and for the uniform cloud model were compared to numerical integration of the dose integral over a Gaussian plume distribution

  1. Acoustical Survey of Methane Plumes on North Hydrate Ridge: Constraining Temporal and Spatial Characteristics.

    Science.gov (United States)

    Kannberg, P. K.; Trehu, A. M.

    2008-12-01

    While methane plumes associated with hydrate formations have been acoustically imaged before, little is known about their temporal characteristics. Previous acoustic surveys have focused on determining plume location, but as far as we know, multiple, repeated surveys of the same plume have not been done prior to the survey presented here. In July 2008, we acquired sixteen identical surveys within 19 hours over the northern summit of Hydrate Ridge in the Cascadia accretionary complex using the onboard 3.5 and 12 kHz echosounders. As in previous studies, the plumes were invisible to the 3.5 kHz echosounder and clearly imaged with 12 kHz. Seafloor depth in this region is ~600 m. Three distinct plumes were detected close to where plumes were located by Heeschen et al. (2003) a decade ago. Two of the plumes disappeared at ~520 m water depth, which is the depth of the top of the gas hydrate stability as determined from CTD casts obtained during the cruise. This supports the conclusion of Heeschen et al. (2003) that the bubbles are armored by gas hydrate and that they dissolve in the water column when they leave the hydrate stability zone. One of the plumes near the northern summit, however, extended through this boundary to at least 400 m (the shallowest depth recorded). A similar phenomenon was observed in methane plumes in the Gulf of Mexico, where the methane was found to be armored by an oil skin. In addition to the steady plumes, two discrete "burps" were observed. One "burp" occurred approximately 600 m to the SSW of the northern summit. This was followed by a second strong event 300m to the north an hour later. To evaluate temporal and spatial patterns, we summed the power of the backscattered signal in different depth windows for each survey. We present the results as a movie in which the backscatter power is shown in map view as a function of time. The surveys encompassed two complete tidal cycles, but no correlation between plume location or intensity and tides

  2. Mantle roots of the Emeishan plume: an evaluation based on teleseismic P-wave tomography

    Directory of Open Access Journals (Sweden)

    C. He

    2017-11-01

    Full Text Available The voluminous magmatism associated with large igneous provinces (LIPs is commonly correlated to upwelling plumes from the core–mantle boundary (CMB. Here we analyse seismic tomographic data from the Emeishan LIP in southwestern China. Our results reveal vestiges of delaminated crustal and/or lithospheric mantle, with an upwelling in the upper mantle beneath the Emeishan LIP rather than a plume rooted in the CMB. We suggest that the magmatism and the Emeishan LIP formation might be connected with the melting of delaminated lower crustal and/or lithospheric components which resulted in plume-like upwelling from the upper mantle or from the mantle transition zone.

  3. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  4. Sensitivity analysis of alkaline plume modelling: influence of mineralogy

    International Nuclear Information System (INIS)

    Gaboreau, S.; Claret, F.; Marty, N.; Burnol, A.; Tournassat, C.; Gaucher, E.C.; Munier, I.; Michau, N.; Cochepin, B.

    2010-01-01

    Document available in extended abstract form only. In the context of a disposal facility for radioactive waste in clayey geological formation, an important modelling effort has been carried out in order to predict the time evolution of interacting cement based (concrete or cement) and clay (argillites and bentonite) materials. The high number of modelling input parameters associated with non negligible uncertainties makes often difficult the interpretation of modelling results. As a consequence, it is necessary to carry out sensitivity analysis on main modelling parameters. In a recent study, Marty et al. (2009) could demonstrate that numerical mesh refinement and consideration of dissolution/precipitation kinetics have a marked effect on (i) the time necessary to numerically clog the initial porosity and (ii) on the final mineral assemblage at the interface. On the contrary, these input parameters have little effect on the extension of the alkaline pH plume. In the present study, we propose to investigate the effects of the considered initial mineralogy on the principal simulation outputs: (1) the extension of the high pH plume, (2) the time to clog the porosity and (3) the alteration front in the clay barrier (extension and nature of mineralogy changes). This was done through sensitivity analysis on both concrete composition and clay mineralogical assemblies since in most published studies, authors considered either only one composition per materials or simplified mineralogy in order to facilitate or to reduce their calculation times. 1D Cartesian reactive transport models were run in order to point out the importance of (1) the crystallinity of concrete phases, (2) the type of clayey materials and (3) the choice of secondary phases that are allowed to precipitate during calculations. Two concrete materials with either nanocrystalline or crystalline phases were simulated in contact with two clayey materials (smectite MX80 or Callovo- Oxfordian argillites). Both

  5. Investigating the Response and Expansion of Plasma Plumes in a Mesosonic Plasma Using the Situational Awareness Sensor Suite for the ISS (SASSI)

    Science.gov (United States)

    Gilchrist, Brian E.; Hoegy, W. R.; Krause, L. Habash; Minow, J. I.; Coffey, V. N.

    2014-01-01

    To study the complex interactions between the space environment surrounding the International Space Station (ISS) and the ISS space vehicle, we are exploring a specialized suite of plasma sensors, manipulated by the Space Station Remote Manipulator System (SSRMS) to probe the near-ISS mesosonic plasma ionosphere moving past the ISS. It is proposed that SASSI consists of the NASA Marshall Space Flight Center's (MSFC's) Thermal Ion Capped Hemispherical Spectrometer (TICHS), Thermal Electron Capped Hemispherical Spectrometer (TECHS), Charge Analyzer Responsive to Local Oscillations (CARLO), the Collimated PhotoElectron Gun (CPEG), and the University of Michigan Advanced Langmuir Probe (ALP). There are multiple expected applications for SASSI. Here, we will discuss the study of fundamental plasma physics questions associated with how an emitted plasma plume (such as from the ISS Plasma Contactor Unit (PCU)) responds and expands in a mesosonic magnetoplasma as well as emit and collect current. The ISS PCU Xe plasma plume drifts through the ionosphere and across the Earth's magnetic field, resulting in complex dynamics. This is of practical and theoretical interest pertaining to contamination concerns (e.g. energetic ion scattering) and the ability to collect and emit current between the spacecraft and the ambient plasma ionosphere. This impacts, for example, predictions of electrodynamic tether current performance using plasma contactors as well as decisions about placing high-energy electric propulsion thrusters on ISS. We will discuss the required measurements and connection to proposed instruments for this study.

  6. Performance of monitoring networks estimated from a Gaussian plume model

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Hienen, J.F.A.

    1990-10-01

    In support of the ECN study on monitoring strategies after nuclear accidents, the present report describes the analysis of the performance of a monitoring network in a square grid. This network is used to estimate the distribution of the deposition pattern after a release of radioactivity into the atmosphere. The analysis is based upon a single release, a constant wind direction and an atmospheric dispersion according to a simplified Gaussian plume model. A technique is introduced to estimate the parameters in this Gaussian model based upon measurements at specific monitoring locations and linear regression, although this model is intrinsically non-linear. With these estimated parameters and the Gaussian model the distribution of the contamination due to deposition can be estimated. To investigate the relation between the network and the accuracy of the estimates for the deposition, deposition data have been generated by the Gaussian model, including a measurement error by a Monte Carlo simulation and this procedure has been repeated for several grid sizes, dispersion conditions, number of measurements per location, and errors per single measurement. The present technique has also been applied for the mesh sizes of two networks in the Netherlands, viz. the Landelijk Meetnet Radioaciviteit (National Measurement Network on Radioactivity, mesh size approx. 35 km) and the proposed Landelijk Meetnet Nucleaire Incidenten (National Measurement Network on Nuclear Incidents, mesh size approx. 15 km). The results show accuracies of 11 and 7 percent, respectively, if monitoring locations are used more than 10 km away from the postulated accident site. These figures are based upon 3 measurements per location and a dispersion during neutral weather with a wind velocity of 4 m/s. For stable weather conditions and low wind velocities, i.e. a small plume, the calculated accuracies are at least a factor 1.5 worse.The present type of analysis makes a cost-benefit approach to the

  7. Imaging of the Galapagos Plume Using a Network of Mermaids

    Science.gov (United States)

    Nolet, G.; Hello, Y.; Chen, J.; Pazmino, A.; Van der Lee, S.; Bonnieux, S.; Deschamps, A.; Regnier, M. M.; Font, Y.; Simons, F.

    2017-12-01

    A network of nine submarine seismographs (Mermaids) has been floating freely from 2014 to 2016 around the Galapagos islands, with the aim to enhance the resolving power of deep tomographic images of the mantle plume in this region (see poster by Hello et al. in session S002 for technical details).Analysing a total of 1329 triggered signals transmitted by satellite, we were able to pick the onset times of 434 P waves, 95 PKP and 26 pP arrivals. For the events recorded by at least one Mermaid, these data were complemented with hand-picked onsets from stations on the islands, or on the continent nearby, for a total of 3892 onset times of rays crossing the mantle beneath the Galapagos, many of them with a small standard error estimated at 0.3s. These data are used in a local inversion using ray theory, as is appropriate for onset times. To compensate for delays acquired in the rest of the Earth, the local model is embedded in a global inversion of P delays from the EHB data set most recently published by the ISC for 2000-2003. By selecting a strongly redundant subset of more than one million EHB P wave arrivals, we determined an objective standard error for these delays of 0.51s using the method of Voronin et al. (GJI, 2014). Using a combination of (strong) smoothing and (weak) damping, we force the tomographic model to fit the data close to the level of the estimated standard errors.Preliminary images obtained at the time of writing of this abstract indicate a deep reaching plume that is stronger in the lower mantle than near the surface.Most importantly, the experiment shows how even a limited number of Mermaids can contribute a significant gain in resolution. This is a direct consequence of the fact that they float with abyssal currents, thus avoiding redundancy in raypaths even for aftershocks.The final tomographic images and an analysis of their significance will be subject of the presentation.

  8. Numerical modeling of continental lithospheric weak zone over plume

    Science.gov (United States)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of

  9. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  10. The EtnaPlumeLab (EPL research cluster: advance the understanding of Mt. Etna plume, from source characterisation to downwind impact

    Directory of Open Access Journals (Sweden)

    Pasquale Sellitto

    2017-01-01

    Full Text Available In 2013, a multidisciplinary research cluster named EtnaPlumeLab (EPL was established, gathering experts from volcanology and atmospheric science communities. Target of EPL is to advance the understanding of Mt. Etna's gas and aerosol emissions and the related processes, from source to its regional climatic impact in the Mediterranean area. Here, we present the cluster and its three interacting modules: EPL-RADIO (Radioactive Aerosols and other source parameters for better atmospheric Dispersion and Impact estimatiOns, SMED (Sulfur MEditerranean Dispersion and Med-SuV (MEDiterranean SUpersite Volcanoes Work Package 5. Preliminary results have for the first time highlighted the relevance of Mt. Etna's plume impact at the Mediterranean regional scale. These results underline that further efforts need to be made to get insight into a synoptic volcanogenic-atmospheric chemistry/climatic understanding of volcanic plumes impact.

  11. Modeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model

    Science.gov (United States)

    G. L Achtemeier; S. L. Goodrick; Y. Liu

    2012-01-01

    Smoke plume rise is critically dependent on plume updraft structure. Smoke plumes from landscape burns (forest and agricultural burns) are typically structured into “sub-plumes” or multiple-core updrafts with the number of updraft cores depending on characteristics of the landscape, fire, fuels, and weather. The number of updraft cores determines the efficiency of...

  12. Validity of thermally-driven small-scale ventilated filling box models

    Science.gov (United States)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  13. The thermal structure of an air–water interface at low wind speeds

    OpenAIRE

    Handler, R. A.; Smith, G. B.; Leighton, R. I.

    2011-01-01

    High-resolution infrared imagery of an air–water interface at wind speeds of 1 to 4 ms−1 wasobtained. Spectral analysis of the data reveals several important features of the thermal structureof the so-called cool skin. At wind speeds for which wind waves are not generated, the interfacialboundary layer appears to be composed of buoyant plumes that are stretched by the surfaceshear as they reach the interface. The plumes appear to form overlapping laminae with ahead–tail...

  14. Diffuse Volcanism at the Young End of the Walvis Ridge - Tristan - Gough Seamount Province: Geochemical Sampling and Constraints on Plume Dynamics

    Science.gov (United States)

    Class, C.; Koppers, A. A. P.; Sager, W. W.; Schnur, S.

    2014-12-01

    The Walvis Ridge-Tristan/Gough seamount province in the South Atlantic represents 130 Myr of continuous intra-plate volcanism that can be connected to the once conjunct Parana-Etendeka flood basalt province. With this it represents one of the few primary hotspots consistent with the thermal plume model. However, around 60 Ma, the morphological expression of the Walvis Ridge changed drastically from a robust 200 km wide aseismic ridge into a 400 km wide region of diffuse and diminished volcanism. As a result, this part of the plume trail has been described by two subtracks, one ending at Tristan da Cunha and another at Gough Island more than 400 km to the SSE. Where the Walvis Ridge forks into these two tracks there is a center prong. There is also the 39.5°S lineament of seamounts between, but oblique to, the two subtracks, which is parallel to the local fracture zone directions. All these features are at odds with the classical definition of a narrow hotspot track although Rohde et al. (2013) showed that the Tristan and Gough subtracks retain a distinct geochemical signature over 70 Myr and are consistent with a zoned, deep-seated plume. The first Sr-Nd-Hf-Pb isotopic and trace element analyses from the detailed dredge sampling cruise MV1203 show that samples from two prominent seamounts at the western end of the 39.5°S lineament have a Gough-type signature, which makes an upper mantle source for this lineament unlikely but rather indicates that the Gough-type source stretches some 200 km NNW from Gough. Tristan track seamount samples are comparable with published data, however, one new sample has a Gough-type composition suggesting leakage of this component into the Tristan-type plume zone. Seamounts on the middle prong of the Walvis Ridge fork have compositions intermediate to Gough and Tristan domains, suggesting mixing between sources or melts of the two domains. Thus, the Gough-component in the last 60 Myr of plume activity is volumetrically much more

  15. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  16. Plasma Observations During the Mars Atmospheric Plume Event of March-April 2012

    Science.gov (United States)

    Andrews, D. J.; Barabash, S.; Edberg, N. J. T.; Gurnett, D. A.; Hall, B. E. S.; Holmstrom, M.; Lester, M.; Morgan, D. D.; Opgenoorth, H. J.; Ramstad, R.; hide

    2016-01-01

    We present initial analysis and conclusions from plasma observations made during the reported Mars Dust plume event of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude plume over the Martian dawn terminator [Sanchez-Lavega7 et al., Nature, 2015, doi:10.1038nature14162], the origin of which remains to be explained. We report on in-situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the surface region, but at the opposing terminator. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that a similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.

  17. Test data from small solid propellant rocket motor plume measurements (FA-21)

    Science.gov (United States)

    Hair, L. M.; Somers, R. E.

    1976-01-01

    A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

  18. Conditional probability of intense rainfall producing high ground concentrations from radioactive plumes

    International Nuclear Information System (INIS)

    Wayland, J.R.

    1977-03-01

    The overlap of the expanding plume of radioactive material from a hypothetical nuclear accident with rainstorms over dense population areas is considered. The conditional probability of the occurrence of hot spots from intense cellular rainfall is presented

  19. Tracking of Fluid-Advected Odor Plumes: Strategies Inspired by Insect Orientation to Pheromone

    National Research Council Canada - National Science Library

    Li, Wei

    2002-01-01

    .... These strategies are inspired by the maneuvers of moths flying upwind along a pheromone plume. Although moth maneuvers are well documented, the mechanisms underlying sensory perception and navigation are not fully understood...

  20. Long-term bioremediation of a subsurface plume in silty soil

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.

    2000-01-01

    In northern Virginia, a loss from a tank farm has produced two plumes, containing about 200,000 gal of diesel fuel, jet-A fuel, and gasoline. Evidence suggests that the longest part of the contamination plume moved to its present length of 2,500 ft in less than 5 years. Since natural biodegradation would require about 2,500 years to reduce the hydrocarbon contamination to the remediation endpoints, other methods have been considered. Excavation of the plumes would take an estimated 5 years. However, the tank farm is surrounded by commercial buildings and expensive homes, and many of these buildings would have to be removed to reach the plumes. Enhanced natural bioremediation would require about 200 years at a start-up cost of about $1 million dollars and recurring costs of approximately $500,000/year. Infiltration galleries and enhanced subsurface permeability could reduce the remediation time to as little as 20 years