WorldWideScience

Sample records for submaximal treadmill walking

  1. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    Science.gov (United States)

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  2. Within- and Between-Day Repeatability and Variability in Children's Physiological Responses during Submaximal Treadmill Exercise

    Science.gov (United States)

    Amorim, Paulo R. S.; Byrne, Nuala Mary; Hills, Andrew P.

    2009-01-01

    The purpose of this study was to verify within- and between-day repeatability and variability in children's oxygen uptake (VO[subscript 2]), gross economy (GE; VO[subscript 2] divided by speed) and heart rate (HR) during treadmill walking based on self-selected speed (SS). Fourteen children (10.1 plus or minus 1.4 years) undertook three testing…

  3. Construction of Gait Adaptation Model in Human Splitbelt Treadmill Walking

    Directory of Open Access Journals (Sweden)

    Yuji Otoda

    2009-01-01

    Full Text Available There are a huge number of studies that measure kinematics, dynamics, the oxygen uptake and so on in human walking on the treadmill. Especially in walking on the splitbelt treadmill where the speed of the right and left belt is different, remarkable differences in kinematics are seen between normal and cerebellar disease subjects. In order to construct the gait adaptation model of such human splitbelt treadmill walking, we proposed a simple control model and made a newly developed 2D biped robot walk on the splitbelt treadmill. We combined the conventional limit-cycle based control consisting of joint PD-control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. We showed that the data of robot (normal subject model and cerebellum disease subject model experiments had high similarities with the data of normal subjects and cerebellum disease subjects experiments carried out by Reisman et al. (2005 and Morton and Bastian (2006 in ratios and patterns. We also showed that P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in splitbelt walking and P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed the gait adaptation model in human splitbelt treadmill walking and confirmed the validity of our hypotheses and the proposed model using the biped robot.

  4. Psychophysical and ergogenic effects of synchronous music during treadmill walking

    OpenAIRE

    Karageorghis, CI; Mouzourides, DA; Priest, DL; Sasso, TA; Morrish, DJ; Walley, CL

    2009-01-01

    The present study examined the impact of motivational music and oudeterous (neutral in terms of motivational qualities) music on endurance and a range of psychophysical indices during a treadmill walking task. Experimental participants (N = 30; mean age = 20.5 years, SD = 1.0 years) selected a program of either pop or rock tracks from artists identified in an earlier survey. They walked to exhaustion, starting at 75% maximal heart rate reserve, under conditions of motivational synchronous mus...

  5. Treadmill walking exercise modulates bone mineral status and ...

    African Journals Online (AJOL)

    Treadmill walking exercise modulates bone mineral status and inflammatory cytokines in ... Methods: Eighty obese asthmatic patients of both sexes, their age ranged from 41 to 53 years. Subjects were divided into two equal groups: training group (group A) received aerobic exercise training on ... OTHER RESOURCES.

  6. Gait coordination after stroke: benefits of acoustically paced treadmill walking.

    NARCIS (Netherlands)

    Roerdink, M.; Lamoth, C.J.; Kwakkel, G.; Wieringen, P.C. van; Beek, P.J.

    2007-01-01

    BACKGROUND AND PURPOSE: Gait coordination often is compromised after stroke. The purpose of this study was to evaluate the efficacy of acoustically paced treadmill walking as a method for improving gait coordination in people after stroke. PARTICIPANTS: Ten people after stroke volunteered for the

  7. Gait Coordination After Stroke: Benefits of Acoustically Paced Treadmill Walking

    NARCIS (Netherlands)

    Roerdink, M.; Lamoth, C.J.C.; Kwakkel, G.; van Wieringen, P.C.W.; Beek, P.J.

    2007-01-01

    Background and Purpose: Gait coordination often is compromised after stroke. The purpose of this study was to evaluate the efficacy of acoustically paced treadmill walking as a method for improving gait coordination in people after stroke. Participants: Ten people after stroke volunteered for the

  8. Balance responses to lateral perturbations in human treadmill walking

    NARCIS (Netherlands)

    Hof, A. L.; Vermerris, S. M.; Gjaltema, W. A.

    2010-01-01

    During walking on a treadmill 10 human subjects (mean age 20 years) were perturbed by 100 ms pushes or pulls to the left or the right, of various magnitudes and in various phases of the gait cycle. Balance was maintained by (1) a stepping strategy (synergy), in which the foot at the next step is

  9. Submaximal cardiopulmonary thresholds on a robotics-assisted tilt table, a cycle and a treadmill: a comparative analysis.

    Science.gov (United States)

    Saengsuwan, Jittima; Nef, Tobias; Laubacher, Marco; Hunt, Kenneth J

    2015-11-10

    The robotics-assisted tilt table (RATT), including actuators for tilting and cyclical leg movement, is used for rehabilitation of severely disabled neurological patients. Following further engineering development of the system, i.e. the addition of force sensors and visual bio-feedback, patients can actively participate in exercise testing and training on the device. Peak cardiopulmonary performance parameters were previously investigated, but it also important to compare submaximal parameters with standard devices. The aim of this study was to evaluate the feasibility of the RATT for estimation of submaximal exercise thresholds by comparison with a cycle ergometer and a treadmill. 17 healthy subjects randomly performed six maximal individualized incremental exercise tests, with two tests on each of the three exercise modalities. The ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) were determined from breath-by-breath data. VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill: oxygen uptake (V'O2) at VAT was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V'O2 at RCP was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001). High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80). VAT and RCP demonstrated excellent test-retest reliability for all three devices (ICC from 0.81 to 0.98). Mean differences between the test and retest values on each device were close to zero. The ventilatory equivalent for O2 at VAT for the RATT and cycle ergometer were similar and both were higher than the treadmill. The ventilatory equivalent for CO2 at RCP was similar for all devices. Ventilatory equivalent parameters demonstrated fair-to-excellent reliability and repeatability. It is feasible to use the RATT for estimation of submaximal exercise thresholds: VAT and RCP on the RATT were lower than the

  10. Negligible Motion Artifacts in Scalp Electroencephalography (EEG) During Treadmill Walking.

    Science.gov (United States)

    Nathan, Kevin; Contreras-Vidal, Jose L

    2015-01-01

    Recent mobile brain/body imaging (MoBI) techniques based on active electrode scalp electroencephalogram (EEG) allow the acquisition and real-time analysis of brain dynamics during active unrestrained motor behavior involving whole body movements such as treadmill walking, over-ground walking and other locomotive and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological and non-physiological artifacts, including motion artifacts that may contaminate the EEG recordings. A few attempts have been made to quantify these artifacts during locomotion tasks but with inconclusive results due in part to methodological pitfalls. In this paper, we investigate the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h) using a wireless 64 channel active EEG system and a wireless inertial sensor attached to the subject's head. The experimental setup was designed according to good measurement practices using state-of-the-art commercially available instruments, and the measurements were analyzed using Fourier analysis and wavelet coherence approaches. Contrary to prior claims, the subjects' motion did not significantly affect their EEG during treadmill walking although precaution should be taken when gait speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.

  11. Negligible motion artifacts in scalp electroencephalography (EEG during treadmill walking

    Directory of Open Access Journals (Sweden)

    Kevin eNathan

    2016-01-01

    Full Text Available Recent Mobile Brain/Body Imaging (MoBI techniques based on active electrode scalp electroencephalogram (EEG allow the acquisition and real-time analysis of brain dynamics during active unrestrained motor behavior involving whole body movements such as treadmill walking, over-ground walking and other locomotive and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological and non-physiological artifacts, including motion artifacts that may contaminate the EEG recordings. A few attempts have been made to quantify these artifacts during locomotion tasks but with inconclusive results due in part to methodological pitfalls. In this paper, we investigate the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h using a wireless 64 channel active EEG system and a wireless inertial sensor attached to the subject’s head. The experimental setup was designed according to good measurement practices using state-of-the-art commercially-available instruments, and the measurements were analyzed using Fourier analysis and wavelet coherence approaches. Contrary to prior claims, the subjects’ motion did not significantly affect their EEG during treadmill walking although precaution should be taken when gait speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.

  12. Walking on an Oscillating Treadmill: Two Paths to Functional Adaptation

    Science.gov (United States)

    Brady, Rachel A.; Peters, Brian T.; Bloomberg, Jacob J.

    2010-01-01

    We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate and characterize locomotor responses produced by healthy adults when introduced to a novel walking condition. Subjects were classified into two groups according to how their stride times were affected by the perturbation. Our data suggest that a person's choice of adaptation strategy is influenced by the relationship between his unique, natural stride frequency and the external frequency imposed by the motion base. Our data suggest that a person's stride time response while walking on a laterally oscillating treadmill is influenced by the relationship between his unique, natural stride frequency and the imposed external frequency of the motion base. This relationship may be useful for checking the efficacy of gait training and rehabilitation programs. Preselecting and manipulating a person's EST could be one way to draw him out of his preferred "entrainment well" during therapy or training.

  13. Strategies of Healthy Adults Walking on a Laterally Oscillating Treadmill

    Science.gov (United States)

    Brady, Rachel A.; Peters, Brian T.; Bloomberg, Jacob J.

    2008-01-01

    We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate locomotor responses produced by healthy adults introduced to a dynamic walking surface. The experiment examined self-selected strategies employed by participants when exposed to continuous, sinusoidal lateral motion of the support surface while walking. Torso translation and step width were used to classify responses used to stabilize gait in a novel, dynamic environment. Two response categories emerged. Participants tended to either fix themselves in space (FIS), allowing the treadbelt to move laterally beneath them, or they fixed themselves to the base (FTB), moving laterally as the motion base oscillated. The degree of fixation in both extremes varied across participants. This finding suggests that normal adults have innate and varied preferences for reacquiring gait stability, some depending more heavily on vision (FIS group) and others on proprioception (FTB group). Keywords: Human locomotion, Unstable surface, Treadmill, Adaptation, Stability

  14. Prognostic value of treadmill stress echocardiography at extremes of exercise performance: submaximal high exercise capacity ≥ 10 metabolic equivalents.

    Science.gov (United States)

    Yao, Siu-Sun; Agarwal, Vikram; Chaudhry, Farooq A

    2014-03-01

    Submaximal stress testing or achieving High exercise capacity (≥ 10 metabolic equivalents, METS) is a predictor of favorable prognosis. The purpose of this study was to evaluate the prognostic value of submaximal or high exercise capacity stress echocardiography. We evaluated 1781 patients (55 ± 13 years; 59% male) undergoing treadmill stress echocardiography divided into 811 patients with submaximal (high exercise capacity (≥ 10 METS). Resting left ventricular ejection fraction and regional wall motion were assessed. The left ventricle was divided into 16 segments and scored on 5-point scale of wall motion. Abnormal stress echocardiography was defined as stress-induced ischemia (wall-motion score of ≥ 1 grade). Follow-up (3.3 ± 1.5 years) for nonfatal myocardial infarction (MI) (n = 40) and cardiac death (n = 52) were obtained. By univariate analysis, echocardiographic variables of ejection fraction, peak wall-motion score index (WMSI) and number of new ischemic wall-motion abnormalities were significant predictors of cardiac events. Cumulative survival was significantly worse in patients with abnormal (ischemic) versus normal (nonischemic) stress echocardiography in submaximal (4.4%/year vs. 1.3%/year, P high exercise capacity (1.5%/year vs. 0.2%/year, P high exercise capacity studies. © 2013, Wiley Periodicals, Inc.

  15. Energetics and biomechanics of inclined treadmill walking in obese adults.

    Science.gov (United States)

    Ehlen, Kellie A; Reiser, Raoul F; Browning, Raymond C

    2011-07-01

    Brisk walking is a recommended form of exercise for obese individuals. However, lower-extremity joint loads and the associated risk of musculoskeletal injury or pathological disease increase with walking speed. Walking uphill at a slower speed is an alternative form of moderate intensity exercise that may reduce joint loading. The purpose of this study was to quantify the energetics and biomechanics of level and uphill walking in obese adults. We hypothesized that compared to brisk level walking, walking slower up a moderate incline would reduce lower-extremity net muscle moments while providing appropriate cardiovascular stimulus. Twelve obese adult volunteers, with mass of 100.5±15.7 kg and body mass index of 33.4±2.6 kg·m (mean±SD), participated in this study. We measured oxygen consumption, ground reaction forces, and three-dimensional lower-extremity kinematics while subjects walked on a dual-belt force-measuring treadmill at several speed (0.50-1.75 m·s) and grade (0°-9°) combinations. We calculated metabolic rate, loading rates, and net muscle moments at the hip, knee, and ankle for each condition. Metabolic rates were similar across trials and were of moderate intensity (48.5%-59.8% of VO2max). Walking slower uphill significantly reduced loading rates and lower-extremity net muscle moments compared with faster level walking. Peak knee extension and adduction moments were reduced by ∼19% and 26%, respectively, when subjects walked up a 6° incline at 0.75 m·s versus level walking at 1.50 m·s. These results suggest that walking at a relatively slow speed up a moderate incline is a potential exercise strategy that may reduce the risk of musculoskeletal injury/pathological disease while providing proper cardiovascular stimulus in obese adults.

  16. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.

    Science.gov (United States)

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    This study evaluated the performance of a walking speed estimation system based on using an inertial measurement unit (IMU), a combination of accelerometers and gyroscopes. The walking speed estimation algorithm segments the walking sequence into individual stride cycles (two steps) based on the inverted pendulum-like behaviour of the stance leg during walking and it integrates the angular velocity and linear accelerations of the shank to determine the displacement of each stride. The evaluation was performed in both treadmill and overground walking experiments with various constraints on walking speed, step length and step frequency to provide a relatively comprehensive assessment of the system. Promising results were obtained in providing accurate and consistent walking speed/step length estimation in different walking conditions. An overall percentage root mean squared error (%RMSE) of 4.2 and 4.0% was achieved in treadmill and overground walking experiments, respectively. With an increasing interest in understanding human walking biomechanics, the IMU-based ambulatory system could provide a useful walking speed/step length measurement/control tool for constrained walking studies.

  17. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial.

    Science.gov (United States)

    Eich, H-J; Mach, H; Werner, C; Hesse, S

    2004-09-01

    To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.

  18. Evaluation of the American College of Sports Medicine submaximal treadmill running test for predicting VO2max.

    Science.gov (United States)

    Marsh, Clare E

    2012-02-01

    The purpose of this study was to assess the validity of the American College of Sports Medicine's (ACSM's) submaximal treadmill running test in predicting VO2max. Twenty-one moderately well-trained men aged 18-34 years performed 1 maximal treadmill test to determine maximal oxygen uptake (M VO2max) and 2 submaximal treadmill tests using 4 stages of continuous submaximal exercise. Estimated VO2max was predicted by extrapolation to age-predicted maximal heart rate (HRmax) and calculated in 2 ways: using data from all submaximal stages between 110 b·min(-1) and 85% HRmax (P VO2max-All), and using data from the last 2 stages only (P VO2max-2). The measured VO2max was overestimated by 3% on average for the group but was not significantly different to predicted VO2max (1-way analysis of variance [ANOVA] p = 0.695; M VO2max = 53.01 ± 5.38; P VO2max-All = 54.27 ± 7.16; P VO2max-2 = 54.99 ± 7.69 ml·kg(-1)·min(-1)), although M VO2max was not overestimated in all the participants--it was underestimated in 30% of observations. Pearson's correlation, standard error of estimate (SEE), and total error (E) between measured and predicted VO2max were r = 0.646, 4.35, 4.08 ml·kg(-1)·min(-1) (P VO2max-All) and r = 0.642, 4.21, 3.98 ml·kg(-1)·min(-1) (P VO2max-2) indicating that the accuracy in prediction (error) was very similar whether using P VO2max-All or P VO2max-2, with up to 70% of the participants predicted scores within 1 SEE (∼4 ml·kg(-1)·min(-1)) of M VO2max. In conclusion, the ACSM equation provides a reasonably good estimation of VO2max with no difference in predictive accuracy between P VO2max-2 and P VO2max-All, and hence, either approach may be equally useful in tracking an individual's aerobic fitness over time. However, if a precise knowledge of VO2max is required, then it is recommended that this be measured directly.

  19. Detection of gait cycles in treadmill walking using a Kinect.

    Science.gov (United States)

    Auvinet, Edouard; Multon, Franck; Aubin, Carl-Eric; Meunier, Jean; Raison, Maxime

    2015-02-01

    Treadmill walking is commonly used to analyze several gait cycles in a limited space. Depth cameras, such as the low-cost and easy-to-use Kinect sensor, look promising for gait analysis on a treadmill for routine outpatient clinics. However, gait analysis is based on accurately detecting gait events (such as heel-strike) by tracking the feet which may be incorrectly recognized with Kinect. Indeed depth images could lead to confusion between the ground and the feet around the contact phase. To tackle this problem we assume that heel-strike events could be indirectly estimated by searching for extreme values of the distance between knee joints along the walking longitudinal axis. To evaluate this assumption, the motion of 11 healthy subjects walking on a treadmill was recorded using both an optoelectronic system and Kinect. The measures were compared to reference heel-strike events obtained with vertical foot velocity. When using the optoelectronic system to assess knee joints, heel-strike estimation errors were very small (29±18ms) leading to small cycle durations errors (0±15ms). To locate knees in depth map (Kinect), we used anthropometrical data to select the body point located at a constant height where the knee should be based on a reference posture. This Kinect approach gave heel-strike errors of 17±24ms (mean cycle duration error: 0±12ms). Using this same anthropometric methodology with optoelectronic data, the heel-strike error was 12±12ms (mean cycle duration error: 0±11ms). Compared to previous studies using Kinect, heel-strike and gait cycles were more accurately estimated, which could improve clinical gait analysis with such sensor. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Walking economy during cued versus non-cued self-selected treadmill walking in persons with Parkinson's disease.

    Science.gov (United States)

    Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing

    2014-01-01

    Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.

  1. Validity of the Omron HJ-112 pedometer during treadmill walking.

    Science.gov (United States)

    Hasson, Rebecca E; Haller, Jeannie; Pober, David M; Staudenmayer, John; Freedson, Patty S

    2009-04-01

    The purpose of this investigation was to examine the validity of step counts measured with the Omron HJ-112 pedometer and to assess the effect of pedometer placement. Ninety-two subjects (44 males and 48 females; 71 with body mass index [BMI] or=30 kg.m) completed three, 12-min bouts of treadmill walking at speeds of 1.12, 1.34, and 1.56 mxs. A subset (21 males and 23 females; 38 BMI or=30 kg.m) completed a variable walking condition. For all conditions, participants wore an Omron HJ-112 pedometer on the hip, in the pants pocket, in the chest shirt pocket, and around the neck. Hip pedometer placement was alternated between right and left sides with the Yamax Digiwalker SW-701. During each walk, an investigator recorded actual steps with a manual hand counter. There was no substantial bias with the Omron in any speed condition (-0.1% to 0.5%). Bias was larger with the Yamax (-3.6% to 2.0%). The largest random error for the Omron was 3.7% in the variable-speed condition for the BMI HJ-112 pedometer validly assesses steps in different BMI groups during constant- and variable-speed walking; other than that in the pants pocket, placement of the pedometer has little effect on validity.

  2. Treadmill vs. overground walking: different response to physical interaction.

    Science.gov (United States)

    Ochoa, Julieth; Sternad, Dagmar; Hogan, Neville

    2017-10-01

    Rehabilitation of human motor function is an issue of growing significance, and human-interactive robots offer promising potential to meet the need. For the lower extremity, however, robot-aided therapy has proven challenging. To inform effective approaches to robotic gait therapy, it is important to better understand unimpaired locomotor control: its sensitivity to different mechanical contexts and its response to perturbations. The present study evaluated the behavior of 14 healthy subjects who walked on a motorized treadmill and overground while wearing an exoskeletal ankle robot. Their response to a periodic series of ankle plantar flexion torque pulses, delivered at periods different from, but sufficiently close to, their preferred stride cadence, was assessed to determine whether gait entrainment occurred, how it differed across conditions, and if the adapted motor behavior persisted after perturbation. Certain aspects of locomotor control were exquisitely sensitive to walking context, while others were not. Gaits entrained more often and more rapidly during overground walking, yet, in all cases, entrained gaits synchronized the torque pulses with ankle push-off, where they provided assistance with propulsion. Furthermore, subjects entrained to perturbation periods that required an adaption toward slower cadence, even though the pulses acted to accelerate gait, indicating a neural adaptation of locomotor control. Lastly, during 15 post-perturbation strides, the entrained gait period was observed to persist more frequently during overground walking. This persistence was correlated with the number of strides walked at the entrained gait period (i.e., longer exposure), which also indicated a neural adaptation.NEW & NOTEWORTHY We show that the response of human locomotion to physical interaction differs between treadmill and overground walking. Subjects entrained to a periodic series of ankle plantar flexion torque pulses that shifted their gait cadence

  3. Psychophysical and ergogenic effects of synchronous music during treadmill walking.

    Science.gov (United States)

    Karageorghis, Costas I; Mouzourides, Denis A; Priest, David-Lee; Sasso, Tariq A; Morrish, Daley J; Walley, Carolyn J

    2009-02-01

    The present study examined the impact of motivational music and oudeterous (neutral in terms of motivational qualities) music on endurance and a range of psychophysical indices during a treadmill walking task. Experimental participants (N=30; mean age=20.5 years, SD=1.0 years) selected a program of either pop or rock tracks from artists identified in an earlier survey. They walked to exhaustion, starting at 75% maximal heart rate reserve, under conditions of motivational synchronous music, oudeterous synchronous music, and a no-music control. Dependent measures included time to exhaustion, ratings of perceived exertion (RPE), and in-task affect (both recorded at 2-min intervals), and exercise-induced feeling states. A one-way repeated measures ANOVA was used to analyze time to exhaustion data. Two-way repeated measures (Music Condition ? Trial Point) ANOVAs were used to analyze in-task measures, whereas a one-way repeated measures MANOVA was used to analyze the exercise-induced feeling states data. Results indicated that endurance was increased in both music conditions and that motivational music had a greater ergogenic effect than did oudeterous music (pmusic when compared with control throughout the trial (p.05) upon RPE or exercise-induced feeling states, although a moderate effect size was recorded for the latter (etap2=.09). The present results indicate that motivational synchronous music can elicit an ergogenic effect and enhance in-task affect during an exhaustive endurance task.

  4. Effect of treadmill walking with ankle stretching orthosis on ankle flexibility and gait

    Science.gov (United States)

    Cho, Young-ki; Kim, Si-hyun; Jeon, In-cheol; Ahn, Sun-hee; Kwon, Oh-yun

    2015-01-01

    [Purpose] The purpose of this study was to evaluate the kinematics of the ankle in the lunge to estabilish effectiveness of an ankle stretching orthosis (ASO) on the ankle dorsiflexion range of motion (ROM) of individuals with limited dorsiflexion ROM. [Subjects and Methods] Forty ankles with decreased dorsiflexion ROM of 20 participants were evaluated in this study. After wearing the ASO, participants walked on a treadmill for 15 minutes. Participants walked on the treadmill at a self-selected comfortable speed. Ankle dorsiflexion ROM, maximum dorsiflexion ROM before heel-off, and time to heel-off during the stance phase of gait were measured before and after 15 minutes of treadmill walking with the ASO. The differences in all variables between before and after treadmill walking with ASO were analyzed using the paired t-test. [Results] Ankle active and passive ROM, and dorsiflexion ROM during lunge increased significantly after treadmill walking with ASO. Treadmill walking with the ASO significantly increased the angle of maximal dorsiflexion before heel-off and time to heel-off during the stance phase. [Conclusion] The results of this study show that treadmill walking with the ASO effectively improved ankle flexibility and restored the normal gait pattern of the ankle joint by increasing dorsiflexion ROM, maximal angle of dorsiflexion, and time to heel-off in the stance phase. PMID:25995601

  5. Comparison of two treadmill training programs on walking ability and endothelial function in intermittent claudication.

    Science.gov (United States)

    Mika, Piotr; Konik, Anita; Januszek, Rafal; Petriczek, Tomasz; Mika, Anna; Nowobilski, Roman; Nizankowski, Rafal; Szczeklik, Andrzej

    2013-09-30

    In this randomized trial we compared two treadmill trainings, based on exercises performed to moderate claudication pain vs pain-free training, with respect to their effects on walking ability and endothelial function. A total of sixty patients with stable intermittent claudication were randomized to the pain-free treadmill training (repetitive intervals to onset of claudication pain) or moderate treadmill training (repetitive intervals to moderate claudication pain). In both groups exercises were performed 3 times a week for 3 months. Changes in flow mediated dilatation (FMD) and treadmill walking performance as well as plasma levels of C-reactive protein (hs-CRP) and fibrinogen were assessed before and after the program. Fifty-two patients completed the training program. Post-training maximal walking time was prolonged by 100% (ptraining group as compared to the pain-free training group, respectively. FMD increased by 56% (ptraining group and by 36% (ptraining group. No significant changes in the levels of hs-CRP and fibrinogen were seen after treadmill program in either group. Both pain-free treadmill training and the moderate treadmill training have similar efficacy on walking ability in patients with claudication. The improvement of post-training FMD indicates systemic effect of both treadmill programs on endothelial function. Both programs appear to be safe therapeutic modes, since none of them escalates the inflammation. Pain-free treadmill training seems useful and effective therapeutic option for patients with claudication. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. The comparison of stepping responses following perturbations applied to pelvis during overground and treadmill walking.

    Science.gov (United States)

    Zadravec, Matjaž; Olenšek, Andrej; Matjačić, Zlatko

    2017-08-09

    Treadmills are used frequently in rehabilitation enabling neurologically impaired subjects to train walking while being assisted by therapists. Numerous studies compared walking on treadmill and overground for unperturbed but not also perturbed conditions. The objective of this study was to compare stepping responses (step length, step width and step time) during overground and treadmill walking in a group of healthy subjects where balance assessment robots applied perturbing pushes to the subject's pelvis in sagittal and frontal planes. During walking in both balance assessment robots (overground and treadmill-based) with applied perturbations the stepping responses of a group of seven healthy subjects were assessed with a motion tracking camera. The results show high degree of similarity of stepping responses between overground and treadmill walking for all perturbation directions. Both devices reproduced similar experimental conditions with relatively small standard deviations in the unperturbed walking as well as in perturbed walking. Based on these results we may conclude that stepping responses following perturbations can be studied on an instrumented treadmill where ground reaction forces can be readily assessed which is not the case during perturbed overground walking.

  7. Evaluation of respiratory dynamics by volumetric capnography during submaximal exercise protocol of six minutes on treadmill in cystic fibrosis patients.

    Science.gov (United States)

    Parazzi, Paloma L F; Marson, Fernando A L; Ribeiro, Maria A G O; Schivinski, Camila I S; Ribeiro, José D

    2017-11-29

    Volumetric capnography provides the standard CO2 elimination by the volume expired per respiratory cycle and is a measure to assess pulmonary involvement. Thus, the objective of this study was to evaluate the respiratory dynamics of healthy control subjects and those with cystic fibrosis in a submaximal exercise protocol for six minutes on the treadmill, using volumetric capnography parameters (slope 3 [Slp3], Slp3/tidal volume [Slp3/TV], and slope 2 [Slp2]). This was a cross-sectional study with 128 subjects (cystic fibrosis, 64 subjects; controls, 64 subjects]. Participants underwent volumetric capnography before, during, and after six minutes on the treadmill. Statistical analysis was performed using the Friedman, Mann-Whitney, and Kruskal-Wallis tests, considering age and sex. An alpha=0.05 was considered. Six minutes on the treadmill evaluation: in cystic fibrosis, volumetric capnography parameters were different before, during, and after six minutes on the treadmill; the same was observed for the controls, except for Slp2. Regarding age, an Slp3 difference was observed in cystic fibrosis patients regardless of age, at all moments, and in controls for age≥12 years; a difference in Slp3/TV was observed in cystic fibrosis and controls, regardless of age; and an Slp2 difference in the cystic fibrosis, regardless of age. Regarding sex, Slp3 and Slp3/TV differences were observed in cystic fibrosis regardless of sex, and in controls in male participants; an Slp2 difference was observed in the cystic fibrosis and female participants. The analysis between groups (cystic fibrosis and controls) indicated that Slp3 and Slp3/TV has identified the CF, regardless of age and sex, while the Slp2 showed the CF considering age. Cystic fibrosis showed greater values of the parameters before, during, and after exercise, even when stratified by age and sex, which may indicate ventilation inhomogeneity in the peripheral pathways in the cystic fibrosis. Copyright © 2017 Sociedade

  8. Interaction effects of time of day and sub-maximal treadmill exercise on the main determinants of blood fluidity.

    Science.gov (United States)

    Ahmadizad, Sajad; Bassami, Minoo

    2010-01-01

    The purpose of this study was to investigate the effects of time of day on responses of the main determinants of blood rheology to acute endurance exercise. Ten healthy male subjects (age, 26.9 +/- 5.5 yr) performed two bouts of running at 65% of VO2peak for 45 min on a motorised treadmill in the morning (08:00 h) and evening (20:00 h), which were followed by 30 min recovery. The two exercise trials were performed in two separate days with 7 days intervening. Haemorheological variables were measured before, immediately after exercise and after recovery. Haematocrit, haemoglobin and RBC count were increased significantly (p evening trials and normalised following recovery, irrespective of time of day. Plasma viscosity increased significantly (F2,18 = 12.4, p exercise in both trials and returned to pre-exercise level at the end of recovery. Baseline values (p exercise were significantly affected by time of day. Neither a significant main effect of exercise nor a significant (p > 0.05) time-of-day effect was found for plasma proteins. It was concluded that sub-maximal running at 08:00 or 20:00 h does not induce different responses in the main determinant of blood rheology.

  9. Treadmill walking with body weight support in subacute non-ambulatory stroke improves walking capacity more than overground walking: a randomised trial.

    Science.gov (United States)

    Dean, Catherine M; Ada, Louise; Bampton, Julie; Morris, Meg E; Katrak, Pesi H; Potts, Stephanie

    2010-01-01

    Is treadmill walking with body weight support during inpatient rehabilitation detrimental to walking quality compared with assisted overground walking? Does it result in better walking capacity, perception of walking or community participation? Analysis of secondary outcomes of a randomised trial with concealed allocation, assessor blinding and intention-to-treat analysis. 126 patients unable to walk within 4 weeks of a stroke who were undergoing inpatient rehabilitation. The experimental group undertook up to 30 minutes of treadmill walking with body weight support via an overhead harness per day while the control group undertook up to 30 minutes of overground walking. The secondary outcomes were walking quality and capacity, walking perception, community participation and falls. Six months after entering the study, there was no difference between the groups of independent walkers in terms of speed (MD 0.10 m/s, 95% CI -0.06 to 0.26) or stride (MD 6 cm, 95% CI -7 to 19). The independent walkers in the experimental group walked 57 m further (95% CI 1 to 113) in the 6 min walk than those in the control group. The experimental group (walkers and non-walkers) rated their walking 1 point out of 10 (95% CI 0.1 to 1.9) higher than the control group. There was no difference between the groups in community participation or number of falls. Treadmill training with body weight support results in better walking capacity and perception of walking compared to overground walking without deleterious effects on walking quality.

  10. Randomized trial of treadmill walking with body weight support to establish walking in subacute stroke: the MOBILISE trial.

    Science.gov (United States)

    Ada, Louise; Dean, Catherine M; Morris, Meg E; Simpson, Judy M; Katrak, Pesi

    2010-06-01

    The main objective of this randomized trial was to determine whether treadmill walking with body weight support was effective at establishing independent walking more often and earlier than current physiotherapy intervention for nonambulatory stroke patients. A randomized trial with concealed allocation, blinded assessment, and intention-to-treat analysis was conducted. One hundred twenty-six stroke patients who were unable to walk were recruited and randomly allocated to an experimental or a control group within 4 weeks of stroke. The experimental group undertook up to 30 minutes per day of treadmill walking with body weight support via an overhead harness whereas the control group undertook up to 30 minutes of overground walking. The primary outcome was the proportion of participants achieving independent walking within 6 months. Kaplan-Meier estimates of the proportion of experimental participants who achieved independent walking were 37% compared with 26% of the control group at 1 month, 66% compared with 55% at 2 months, and 71% compared with 60% at 6 months (P=0.13). The experimental group walked 2 weeks earlier, with a median time to independent walking of 5 weeks compared to 7 weeks for the control group. In addition, 14% (95% CI, -1-28) more of the experimental group were discharged home. Treadmill walking with body weight support is feasible, safe, and tends to result in more people walking independently and earlier after stroke. Trial Registration- ClinicalTrial.gov (NCT00167531).

  11. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Directory of Open Access Journals (Sweden)

    Kristel Knaepen

    Full Text Available In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support. Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  12. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Science.gov (United States)

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  13. Everyday multitasking habits: University students seamlessly text and walk on a split-belt treadmill.

    Science.gov (United States)

    Hinton, Dorelle Clare; Cheng, Yeu-Yao; Paquette, Caroline

    2018-01-01

    With increasing numbers of adults owning a cell phone, walking while texting has become common in daily life. Previous research has shown that walking is not entirely automated and when challenged with a secondary task, normal walking patterns are disrupted. This study investigated the effects of texting on the walking patterns of healthy young adults while walking on a split-belt treadmill. Following full adaptation to the split-belt treadmill, thirteen healthy adults (23±3years) walked on a tied-belt and split-belt treadmill, both with and without a simultaneous texting task. Inertial-based movement monitors recorded spatiotemporal components of gait and stability. Measures of spatial and temporal gait symmetry were calculated to compare gait patterns between treadmill (tied-belt and split-belt) and between texting (absent or present) conditions. Typing speed and accuracy were recorded to monitor texting performance. Similar to previous research, the split-belt treadmill caused an alteration to both spatial and temporal aspects of gait, but not to time spent in dual support or stability. However, all participants successfully maintained balance while walking and were able to perform the texting task with no significant change to accuracy or speed on either treadmill. From this paradigm it is evident that when university students are challenged to text while walking on either a tied-belt or split-belt treadmill, without any other distraction, their gait is minimally affected and they are able to maintain texting performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Yoon Jungwon

    2012-08-01

    Full Text Available Abstract Background Virtual reality (VR technology along with treadmill training (TT can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW to more closely simulate over ground walking (OGW during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW, which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities

  15. Interactive footstep sounds modulate the perceptual-motor aftereffect of treadmill walking

    DEFF Research Database (Denmark)

    Turchet, Luca; Camponogara, Ivan; Cesari, Paola

    2015-01-01

    In this study, we investigated the role of interactive auditory feedback in modulating the inadvertent forward drift experienced while attempting to walk in place with closed eyes following a few minutes of treadmill walking. Simulations of footstep sounds upon surface materials such as concrete...... and snow were provided by means of a system composed of headphones and shoes augmented with sensors. In a control condition, participants could hear their actual footstep sounds. Results showed an overall enhancement of the forward drift after treadmill walking independent of the sound perceived, while...... the strength of the aftereffect, measured as the proportional increase (posttest/pretest) in forward drift, was higher under the influence of snow compared to both concrete and actual sound. In addition, a higher knee angle flexion was found during the snow sound condition both before and after treadmill...

  16. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.

    Science.gov (United States)

    Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae

    2017-12-08

    This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effort-limited treadmill walk test: reliability and validity in subjects with postpolio syndrome.

    Science.gov (United States)

    Finch, Lois E; Venturini, Adriana; Mayo, Nancy E; Trojan, Daria A

    2004-08-01

    To determine the reliability and construct validity of an effort-limited treadmill walk test to measure functional ability in subjects with postpolio syndrome in an outpatient postpolio clinic. Functioning and distance walked on a treadmill to a Borg "hard" effort level were measured three times, a week apart, by two blinded raters in 15 subjects with postpolio syndrome, aged 37-67 yrs, with new weakness, fatigue, and pain but with no other cause of symptomatology or condition-limiting walking. One rater tested them twice. Fatigue activity level, mobility, and health-related quality of life (Medical Outcome Study Short Form Health Survey [SF-36]) defined functioning. Generalizability correlation coefficients determined intrarater, test-retest and interrater reliability. The correlations relating the distance walked and functioning determined construct validity. Reliability for generalizability correlation coefficients were: intrarater, 0.91; test-retest, 0.85; and interrater, 0.58. Interrater reliability improved to 0.91 with adherence to a standardized protocol. Validity was established with correlations between the distance walked and SF-36 physical component score (0.66), physical role (0.60), bodily pain (0.60), and vitality (0.55). The treadmill walk test provides a reproducible and valid measure of ability in persons with postpolio syndrome with a single rater, but a standardized protocol is essential for reliability.

  18. Skeletal muscle metabolism after stroke: A comparative study using treadmill and overground walking test

    Directory of Open Access Journals (Sweden)

    Ana Paula C. Loureiro

    2017-06-01

    Full Text Available Objective: The primary aim of this study was to investigate muscle metabolism in stroke survivors through measurements of the respiratory exchange ratio and rates of fat and carbohydrate oxidation in relation to total energy expenditure at preferred walking speed during treadmill and overground walking. The secondary objective was to investigate whether the energy source used during walking influences the daily physical activity pattern and fatigue of post-stroke individuals. Methods: The sample comprised 28 stroke participants and 10 non-disabled, healthy controls. Measurements of oxygen consumption and carbon dioxide production were recorded. Participants wore a uniaxial accelerometer (activPAL™ over 4 days as an estimate of daily physical activity. Measurements of Human Activity Profile and Neurological Fatigue Index for stroke were documented. Results: Carbohydrate oxidation accounted for the majority of fuel oxidation at preferred walking speed in the stroke group (55.86% vs 47.29% during tread-mill walking and 66.13% vs 50.15% during overground walking. Stroke patients who had higher levels of carbohydrate oxidation reached a lower score in the Human Activity Profile survey, had fewer steps screened by activPAL data (4,422 vs 6,692 steps/day and higher fatigue index. Conclusion: Carbohydrate oxidation accounted for the majority of fuel oxidation at the preferred walking speed in post-stroke individuals. The increased carbohydrate utilization recorded at preferred walking speed may have influenced the physical activity profile.

  19. Skeletal muscle metabolism after stroke: A comparative study using treadmill and overground walking test.

    Science.gov (United States)

    Loureiro, Ana Paula C; Langhammer, Birgitta; Gjøvaag, Terje; Ihle-Hansen, Hege; Guarita-Souza, Luiz César

    2017-07-07

    The primary aim of this study was to investigate muscle metabolism in stroke survivors through measurements of the respiratory exchange ratio and rates of fat and carbohydrate oxidation in relation to total energy expenditure at preferred walking speed during treadmill and overground walking. The secondary objective was to investigate whether the energy source used during walking influences the daily physical activity pattern and fatigue of post-stroke individuals. The sample comprised 28 stroke participants and 10 non-disabled, healthy controls. Measurements of oxygen consumption and carbon dioxide production were recorded. Participants wore a uniaxial accelerometer (activPAL™) over 4 days as an estimate of daily physical activity. Measurements of Human Activity Profile and Neurological Fatigue Index for stroke were documented. Carbohydrate oxidation accounted for the majority of fuel oxidation at preferred walking speed in the stroke group (55.86% vs 47.29% during tread-mill walking and 66.13% vs 50.15% during overground walking). Stroke patients who had higher levels of carbohydrate oxidation reached a lower score in the Human Activity Profile survey, had fewer steps screened by activPAL data (4,422 vs 6,692 steps/day) and higher fatigue index. Carbohydrate oxidation accounted for the majority of fuel oxidation at the preferred walking speed in post-stroke individuals. The increased carbohydrate utilization recorded at preferred walking speed may have influenced the physical activity profile.

  20. Sounding better: fast audio cues increase walk speed in treadmill-mediated virtual rehabilitation environments.

    Science.gov (United States)

    Powell, Wendy; Stevens, Brett; Hand, Steve; Simmonds, Maureen

    2010-01-01

    Music or sound effects are often used to enhance Virtual Environments, but it is not known how this audio may influence gait speed. This study investigated the influence of audio cue tempo on treadmill walking with and without visual flow. The walking speeds of 11 individuals were recorded during exposure to a range of audio cue rates. There was a significant effect of audio tempo without visual flow, with a 16% increase in walk speed with faster audio cue tempos. Audio with visual flow resulted in a smaller but still significant increase in walking speed (8%). The results suggest that the inclusion of faster rate audio cues may be of benefit in improving walk speed in virtual rehabilitation.

  1. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.

    Science.gov (United States)

    Xu, Xu; McGorry, Raymond W; Chou, Li-Shan; Lin, Jia-Hua; Chang, Chien-Chi

    2015-07-01

    The measurement of gait parameters normally requires motion tracking systems combined with force plates, which limits the measurement to laboratory settings. In some recent studies, the possibility of using the portable, low cost, and marker-less Microsoft Kinect sensor to measure gait parameters on over-ground walking has been examined. The current study further examined the accuracy level of the Kinect sensor for assessment of various gait parameters during treadmill walking under different walking speeds. Twenty healthy participants walked on the treadmill and their full body kinematics data were measured by a Kinect sensor and a motion tracking system, concurrently. Spatiotemporal gait parameters and knee and hip joint angles were extracted from the two devices and were compared. The results showed that the accuracy levels when using the Kinect sensor varied across the gait parameters. Average heel strike frame errors were 0.18 and 0.30 frames for the right and left foot, respectively, while average toe off frame errors were -2.25 and -2.61 frames, respectively, across all participants and all walking speeds. The temporal gait parameters based purely on heel strike have less error than the temporal gait parameters based on toe off. The Kinect sensor can follow the trend of the joint trajectories for the knee and hip joints, though there was substantial error in magnitudes. The walking speed was also found to significantly affect the identified timing of toe off. The results of the study suggest that the Kinect sensor may be used as an alternative device to measure some gait parameters for treadmill walking, depending on the desired accuracy level. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. A synergy perspective on gait – over-ground vs. treadmill walking

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Madeleine, Pascal

    ). Such corrections ensure a straight gait path (the performance variable). AIM: The aim of this study was to apply a synergy approach to gait analysis by comparing over-ground and treadmill walking. The treadmill was hypothesized to demand a less variable walking path resulting in a larger good/bad variability ratio......INTRODUCTION: Increased stride-to-stride time variability is reported among elderly fallers and various patient groups [1]. Variability is therefore often regarded as an indicator of gait deficits. However, movement variability is also a general and natural phenomenon. A synergy perspective...... on movements has proposed that elemental and performance variables may represent good and bad components of variability [2]. We suggest that the gait pattern can be regarded as a movement synergy in which medio-lateral deviation in one stride can be corrected during the next stride (the elemental variables...

  3. Metabolic and clinical comparative analysis of treadmill six-minute walking test and cardiopulmonary exercise testing in obese and eutrophic women

    Directory of Open Access Journals (Sweden)

    Luciana Di Thommazo-Luporini

    Full Text Available BACKGROUND: Impaired exercise tolerance is directly linked to decreased functional capacity as a consequence of obesity. OBJECTIVES: To analyze and compare the cardiopulmonary, metabolic, and perceptual responses during a cardiopulmonary exercise test (CPX and a treadmill six-minute walking test (tread6MWT in obese and eutrophic women. METHOD: Twenty-nine female participants, aged 20-45 years were included. Fourteen were allocated to the obese group and 15 to the eutrophic group. Anthropometric measurements and body composition assessment were performed. RESULTS: In both tests, obese women presented with significantly higher absolute oxygen uptake, minute ventilation, and systolic and diastolic blood pressure; they also presented with lower speed, distance walked, and oxygen uptake corrected by the weight compared to eutrophics. During the maximal exercise test, perceived dyspnea was greater and the respiratory exchange ratio was lower in obese subjects compared to eutrophics. During the submaximal test, carbon dioxide production, tidal volume, and heart rate were higher in obese subjects compared to eutrophic women. When analyzing possible correlations between the CPX and the tread6MWT at peak, there was a strong correlation for the variable heart rate and a moderate correlation for the variable oxygen uptake. The heart rate obtained in the submaximal test was able to predict the one obtained in the maximal test. Bland-Altman plots demonstrated the agreement between both tests to identify metabolic and physiological parameters at peak exercise. CONCLUSIONS: The six-minute walking test induced ventilatory, metabolic, and cardiovascular responses in agreement with the maximal testing. Thus, the six-minute walking test proves to be important for functional evaluation in the physical therapy routine.

  4. Effect of backward walking training using an underwater treadmill on muscle strength, proprioception and gait ability in persons with stroke

    National Research Council Canada - National Science Library

    Dong-min Kum; ; Won-seob Shin

    2017-01-01

    Objective: The purpose of this study was to investigate the effects of backward treadmill gait training between underwater and ground environments on strength, proprioception, and walking ability in persons with stroke. Design...

  5. Cognitive function during low-intensity walking: a test of the treadmill workstation.

    Science.gov (United States)

    Alderman, Brandon L; Olson, Ryan L; Mattina, Diana M

    2014-05-01

    The purpose of this study was to examine the effects of walking at self-selected speed on an active workstation on cognitive performance. Sixty-six participants (n = 27 males, 39 females; mean age = 21.06 ± 1.6 years) completed a treadmill-desk walking and a seated control condition, separated by 48 hours. During each condition, participants completed computerized versions of the Stroop test, a modified flanker task, and a test of reading comprehension. No significant differences in response speed or accuracy were found between walking and sitting conditions for any the cognitive tests. These findings reveal that performance on cognitive tasks, including executive control processes, are not impaired by walking on an active workstation. Implementing active workstations into offices and classrooms may help to decrease sedentariness without impairing task performance.

  6. IMPACT OF BODY WEIGHT SUPPORTED BACKWARD TREADMILL TRAINING ON WALKING SPEED IN CHILDREN WITH SPASTIC DIPLEGIA

    Directory of Open Access Journals (Sweden)

    Hamada El Sayed Abd Allah Ayoub

    2016-10-01

    Full Text Available Background: A lot of the ambulating children with spastic diplegia were able to walk with flexed hips, knees and ankles this gait pattern is known as crouch gait. The most needed functional achievement of diplegic children habilitation is to be able to walk appropriately. The development of an independent and efficient walking is one of the main objectives for children with cerebral palsy especially those with spastic diplegia. Method: Twenty children with spastic diplegia enrolled in this study, they were classified into two groups of equal number, eligibility to our study were ages ranged from seven to ten years, were able to ambulate, They had gait problems and abnormal gait kinematics. The control group (A received selected physical therapy program based on neurodevelopmental approach for such cases, while the study group (B received partial body weight supported backward treadmill training in addition to regular exercise program. Gait pattern was assessed using the Biodex Gait Trainer II for each group pre and post three months of the treatment program. Results: There was statistically significant improvement in walking speed in the study group (P<0.05 with significant difference when comparing post treatment results between groups (p<0.05. Conclusion: These findings suggested that partial body weight supported backward treadmill training can be included as a supplementary therapeutic modality to improve walking speed and functional abilities of children with diplegic cerebral palsy.

  7. Adaptation of neuromuscular activation patterns during treadmill walking after long-duration space flight

    Science.gov (United States)

    Layne, C. S.; Lange, G. W.; Pruett, C. J.; McDonald, P. V.; Merkle, L. A.; Mulavara, A. P.; Smith, S. L.; Kozlovskaya, I. B.; Bloomberg, J. J.

    The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to be compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance.

  8. Hysteresis in Center of Mass Velocity Control during the Stance Phase of Treadmill Walking

    Directory of Open Access Journals (Sweden)

    Raymond K. Chong

    2017-04-01

    Full Text Available Achieving a soft landing during walking can be quantified by analyzing changes in the vertical velocity of the body center of mass (CoM just prior to the landing of the swing limb. Previous research suggests that walking speed and step length may predictably influence the extent of this CoM control. Here we ask how stable this control is. We altered treadmill walking speed by systematically increasing or decreasing it at fixed intervals. We then reversed direction. We hypothesized that the control of the CoM vertical velocity during the late stance of the walking gait may serve as an order parameter which has an attribute of hysteresis. The presence of hysteresis implies that the CoM control is not based on simply knowing the current input conditions to predict the output response. Instead, there is also the influence of previous speed conditions on the ongoing responses. We found that the magnitudes of CoM control were different depending on whether the treadmill speed (as the control parameter was ramped up or down. Changes in step length also influenced CoM control. A stronger effect was observed when the treadmill speed was speeded up compared to down. However, the effect of speed direction remained significant after controlling for step length. The hysteresis effect of CoM control as a function of speed history demonstrated in the current study suggests that the regulation of CoM vertical velocity during late stance is influenced by previous external conditions and constraints which combine to influence the desired behavioral outcome.

  9. Effects of virtual reality training using Nintendo Wii and treadmill walking exercise on balance and walking for stroke patients.

    Science.gov (United States)

    Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin

    2016-11-01

    [Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis.

  10. Energy cost of walking measurements in subjects with lower limb amputations: a comparison study between floor and treadmill test.

    Science.gov (United States)

    Traballesi, Marco; Porcacchia, Paolo; Averna, Tiziano; Brunelli, Stefano

    2008-01-01

    Measuring the energy cost of walking (ECW) is a valid way of assessing the walking efficiency of subjects who were prosthetic users following lower limb amputation. The aim of this study was to determine whether, in these subjects, treadmill and floor ECW measurements are comparable. We tested 24 subjects who had undergone unilateral lower limb amputations for vascular diseases as they walked at a self-selected comfortable speed on the floor and on a treadmill. The tests were conducted at the end of rehabilitative treatment to fit prosthesis. Eight subjects underwent transtibial and 16 transfemoral amputation. The measurements were taken with a portable gas analyzer. The self-selected comfortable speed on the treadmill was significantly lower than that on the floor, where the patients adopted the aid they normally used for walking; oxygen consumption was the same in the two tests. Therefore, for both transtibial and transfemoral patients, ECW was greater during walking on the treadmill. Steady-state heart rate did not differ in the two tests. The data show that the ECW values of the amputated subjects obtained on the treadmill at the end of rehabilitation did not correspond with those they obtained on the floor. The floor test is the one that may better reflect walking with prostheses and aids in everyday life, in subjects with dysvascular lower limb amputation, using the prosthesis for a short time.

  11. Effects of shoe type on lower extremity muscle activity during treadmill walking.

    Science.gov (United States)

    Kim, Mi-Kyoung; Kim, Young-Hwan; Yoo, Kyung-Tae

    2015-12-01

    [Purpose] The purpose of this study was to analyze the effects of different shoe types on lower extremity muscle activity in healthy young women by using electromyography. [Subjects and Methods] Fifteen healthy young women in their 20s were included in this single-group repeated measures study. The subjects were divided into three groups: Converse sneakers, rain boots, and combat boots. The subjects walked on a treadmill at 4 km/h for 30 min, during which six muscles were examined using electromyography: the rectus femoris, vastus medialis, semimembranosus, tibialis anterior, peroneus longus, and medial head of the gastrocnemius. Between switching shoe types, a 24-h rest period was instated to prevent the fatigue effect from treadmill walking. [Results] One-way analysis of variance used to compare electromyography results among the three groups showed that the main effect of group differed significantly for the vastus medialis. Vastus medialis activity was higher in the rain boots group than the Converse sneakers group, and it was higher in the combat boots group than rain boots group. [Conclusion] Shoe type affects lower extremity muscle activity. Our findings may help individuals choose the ideal shoes for daily walking.

  12. Assessment of Cardiopulmonary Responses to Treadmill Walking Following Gastric Bypass Surgery.

    Science.gov (United States)

    Browning, Matthew G; Franco, Robert L; Herrick, Jeffrey E; Arrowood, James A; Evans, Ronald K

    2017-01-01

    Studies that have evaluated cardiopulmonary responses to exercise within the first few months of bariatric surgery have utilized cycle ergometry. However, walking is the most commonly reported mode of both pre- and post-operative PA. The divergent cardiopulmonary responses and metabolic costs of weight-bearing (walking) and non-weight-bearing (cycling) exercises warrant examination of the effects of bariatric surgery on cardiopulmonary responses during walking. Nine women completed a maximal cardiopulmonary exercise test on a treadmill 2 weeks before and 3 months after gastric bypass surgery (GBS). Heart rate (HR), oxygen uptake (VO2), oxygen pulse (O2-p), and time to fatigue were compared before and after surgery and between the GBS group and a comparison group of 12 normal-weight (NW) women who completed the same exercise testing protocol. Time to fatigue increased by ~140 s following GBS (p = 0.018). No other parameter improved during maximal exercise from pre- to post-surgery. Body weight- and fat-free mass-corrected VO2 and O2-p at peak exercise differed between the GBS and NW groups before surgery, while only weight-corrected values were different following surgery. These differences disappeared after controlling for body fat percentage. We have demonstrated that weight loss alone was not sufficient to improve select cardiopulmonary fitness measures during treadmill walking in obese females 3 months after GBS. However, we did observe a significant overall improvement in exercise capacity as the GBS group was able to exercise longer, presumably due to significant reductions in body mass and a subsequent reduced metabolic cost of walking.

  13. Effects of shoe type on lower extremity muscle activity during treadmill walking

    OpenAIRE

    Kim, Mi-Kyoung; Kim, Young-Hwan; Yoo, Kyung-Tae

    2015-01-01

    [Purpose] The purpose of this study was to analyze the effects of different shoe types on lower extremity muscle activity in healthy young women by using electromyography. [Subjects and Methods] Fifteen healthy young women in their 20s were included in this single-group repeated measures study. The subjects were divided into three groups: Converse sneakers, rain boots, and combat boots. The subjects walked on a treadmill at 4?km/h for 30?min, during which six muscles were examined using elect...

  14. The Activation Pattern of Trunk and Lower Limb Muscles in an Electromyographic Assessment; Comparison Between Ground and Treadmill Walking.

    Science.gov (United States)

    Mazaheri, Reza; Sanjari, Mohammad Ali; Radmehr, Gelareh; Halabchi, Farzin; Angoorani, Hooman

    2016-09-01

    Due to biomechanical differences, various patterns of muscle contraction are expected to occur while walking over ground versus when walking on a treadmill. This study aimed to compare amplitude and duration of activation of selected trunk and lower extremity muscles during over-ground and treadmill walking. Through a simple sampling method, 19 sedentary healthy men within the age range of 20 - 40 were selected. Surface electromyography of rectus abdominis, external oblique, longissimus and multifidus muscles as the selected trunk muscles and vastus medialis, vastus lateralis and hamstrings as the selected lower limb muscles were recorded. In each gait cycle, there were no statistically significant differences in duration of selected trunk as well as lower limb muscles activity between treadmill and over-ground walking. However the mean amplitude of rectus abdominis (P = 0.005), longissimus (P = 0.018) and multifidus (P = 0.044) as the selected trunk muscles as well as the mean amplitude of vastus lateralis (P = 0.005) and vastus medialis (P lower limb muscles was greater on treadmill compared with over ground. Due to the stabilizing role of trunk and lower limb muscles during walking, these muscles seem to be active throughout the entire gait cycle. The increased muscle amplitude on treadmill can demonstrate that more motor units may be recruited during the contraction, which can be helpful in prescribing the appropriate type of exercise especially for patients with core muscle weakness.

  15. The influence of step frequency on the range of perceptually natural visual walking speeds during walking-in-place and treadmill locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    and virtual walking speeds. This paper details a study investigating the effects of movement type (treadmill walking and WIP) and step frequency (1.4, 1.8 and 2.2 steps per second) on the range of perceptually natural visual walking speeds. The results suggests statistically significant main effects of both...... movement type and step frequency but no significant interaction between the two variables....

  16. Effects of an attention demanding task on dynamic stability during treadmill walking

    Directory of Open Access Journals (Sweden)

    Troy Karen L

    2008-04-01

    Full Text Available Abstract Background People exhibit increased difficulty balancing when they perform secondary attention-distracting tasks while walking. However, a previous study by Grabiner and Troy (J. Neuroengineering Rehabil., 2005 found that young healthy subjects performing a concurrent Stroop task while walking on a motorized treadmill exhibited decreased step width variability. However, measures of variability do not directly quantify how a system responds to perturbations. This study re-analyzed data from Grabiner and Troy 2005 to determine if performing the concurrent Stroop task directly affected the dynamic stability of walking in these same subjects. Methods Thirteen healthy volunteers walked on a motorized treadmill at their self-selected constant speed for 10 minutes both while performing the Stroop test and during undisturbed walking. This Stroop test consisted of projecting images of the name of one color, printed in text of a different color, onto a wall and asking subjects to verbally identify the color of the text. Three-dimensional motions of a marker attached to the base of the neck (C5/T1 were recorded. Marker velocities were calculated over 3 equal intervals of 200 sec each in each direction. Mean variability was calculated for each time series as the average standard deviation across all strides. Both "local" and "orbital" dynamic stability were quantified for each time series using previously established methods. These measures directly quantify how quickly small perturbations grow or decay, either continuously in real time (local or discretely from one cycle to the next (orbital. Differences between Stroop and Control trials were evaluated using a 2-factor repeated measures ANOVA. Results Mean variability of trunk movements was significantly reduced during the Stroop tests compared to normal walking. Conversely, local and orbital stability results were mixed: some measures showed slight increases, while others showed slight decreases

  17. Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy

    Science.gov (United States)

    Kim, Janis; Arora, Pooja; Zhang, Yunhui

    2016-01-01

    Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance. PMID:27651955

  18. Maximum walking speeds obtained using treadmill and overground robot system in persons with post-stroke hemiplegia

    Science.gov (United States)

    2012-01-01

    Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500

  19. Physiological responses during treadmill walking at a self-selected pace: comparison between genders

    Directory of Open Access Journals (Sweden)

    Ricardo W. Coelho

    2009-06-01

    Full Text Available The objective of this study was to compare % O2Max, %HRMax, %HRR, % O2R, and MET between genders during walking at a self-selected pace and to determine whether the self-selected pace was physiologically effective in maintaining and improving cardiorespiratory fitness. Seventeen men (age: 24.05 ± 3.3 years and 17 women (age > 22.58 ± 2.67 years were submitted to two experimental sessions: (I anthropometric assessment and incremental exhaustion test, and (II 20-min treadmill walking bouts at a self-selected pace. The independent Student t-test was used to determine differences between genders, at an alpha level of 0.05. No significant differences in %HRMax (58.38 ± 8.86 for men and 62.12 ± 5.91 for women, % O2Max (37.54 ± 10.75 for men and 40.34 ± 7.27 for women, %HRR (36.83 ± 11.77 for men and 38.46 ± 8.33 for women, or % O2R (31.88 ± 11.17 for men and 34.70 ± 7.74 for women were observed between genders. However, the walking speed selected (km.h-1 was higher in men (5.96 ± 0.66, p < 0.001 than women, a finding that probably resulted in higher MET values for men (6.07 ± 1.57, p < 0.05 compared to women (5.23 ± 0.77. In conclusion, both genders selected a walking pace that was not effective in maintaining or improving cardiorespiratory fitness, but MET values were within the range indicated for the maintenance and reduction of body weight. The differences in METs observed between genders might be due to differences in walking speed and anthropometric characteristics.

  20. EFFECTS OF UNSTABLE SHOES ON ENERGY COST DURING TREADMILL WALKING AT VARIOUS SPEEDS

    Directory of Open Access Journals (Sweden)

    Keiji Koyama

    2012-12-01

    Full Text Available In recent years, shoes having rounded soles in the anterior- posterior direction have been commercially introduced, which are commonly known as unstable shoes (US. However, physiological responses during walking in US, particularly at various speeds, have not been extensively studied to date. The purpose of this study was to investigate the effect of wearing unstable shoes while walking at low to high speeds on the rate of perceived exertion (RPE, muscle activation, oxygen consumption (VO2, and optimum speed. Healthy male adults wore US or normal walking shoes (WS, and walked at various speeds on a treadmill with no inclination. In experiment 1, subjects walked at 3, 4, 5, 6, and 7 km·h-1 (duration, 3 min for all speeds and were recorded on video from the right sagittal plane to calculate the step length and cadence. Simultaneously, electromyogram (EMG was recorded from six different thigh and calf muscles, and the integrated EMG (iEMG was calculated. In experiment 2, RPE, heart rate and VO2 were measured with the walking speed being increased from 3.6 to 7.2 km·h-1 incrementally by 0.9 km·h-1 every 6 min. The optimum speed, defined by the least oxygen cost, was calculated from the fitted quadratic relationship between walking speed and oxygen cost. Wearing US resulted in significantly longer step length and lower cadence compared with WS condition at any given speed. For all speeds, iEMG in the medial gastrocnemius and soleus muscles, heart rate, and VO2 were significantly higher in US than WS. However, RPE and optimum speed (US, 4.75 ± 0.32 km·h-1; WS, 4. 79 ± 0.18 km·h-1 did not differ significantly between the two conditions. These results suggest that unstable shoes can increase muscle activity of lower legs and energy cost without influencing RPE and optimum speed during walking at various speeds

  1. EEG Single-Trial Detection of Gait Speed Changes during Treadmill Walk.

    Directory of Open Access Journals (Sweden)

    Giuseppe Lisi

    Full Text Available In this study, we analyse the electroencephalography (EEG signal associated with gait speed changes (i.e. acceleration or deceleration. For data acquisition, healthy subjects were asked to perform volitional speed changes between 0, 1, and 2 Km/h, during treadmill walk. Simultaneously, the treadmill controller modified the speed of the belt according to the subject's linear speed. A classifier is trained to distinguish between the EEG signal associated with constant speed gait and with gait speed changes, respectively. Results indicate that the classification performance is fair to good for the majority of the subjects, with accuracies always above chance level, in both batch and pseudo-online approaches. Feature visualisation and equivalent dipole localisation suggest that the information used by the classifier is associated with increased activity in parietal areas, where mu and beta rhythms are suppressed during gait speed changes. Specifically, the parietal cortex may be involved in motor planning and visuomotor transformations throughout the online gait adaptation, which is in agreement with previous research. The findings of this study may help to shed light on the cortical involvement in human gait control, and represent a step towards a BMI for applications in post-stroke gait rehabilitation.

  2. Estimated V(O2)max from the rockport walk test on a nonmotorized curved treadmill.

    Science.gov (United States)

    Seneli, Rhiannon M; Ebersole, Kyle T; OʼConnor, Kristian M; Snyder, Ann C

    2013-12-01

    The Rockport Walk Test (RWT) is a 1-mile walk used to estimate the maximal volume of oxygen uptake (V(O2)max). The purpose of this study was to validate the RWT on a nonmotorized curved treadmill (CT). Twenty-three healthy adults (10 females; 19-44 years old) participated. One trial of the RWT was performed on a measured indoor track (RWTO) and another on the CT (RWTC) on different days in randomized order. Heart rate (HR) and completion time were used to calculate V(O2)max using 6 different general and gender specific equations from previous research. Subjects also performed a treadmill graded exercise test (GXT), which was used as the criterion measure for V(O2)max. Completion times and HR between the 2 RWT were compared using dependent t-tests. Estimated V(O2)max values were compared between the RWTC, RWTO, and GXT through repeated measures analysis of variance, Pearson's correlations (r), and Bland-Altman's plots. There was no difference between completion times for the RWTO and RWTC but HRs were significantly higher with RWTC. When the same equation was applied to the RWTO and RWTC, there were no similar results. All V(O2)max estimations were different from observed V(O2)max except for the estimation from the relative general Kline et al. equation on the RWTO. Despite high correlations (r = 0.75-0.91), the RWTC underestimated V(O2)max. The RWTC underestimates V(O2)max but may be beneficial if a new equation were created specifically for the CT. With appropriate equations for the CT, the RWTC would provide an alternate form of V(O2)max testing.

  3. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    Science.gov (United States)

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob

    2014-01-01

    Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302

  4. Similarity of muscle synergies extracted from the lower limb including the deep muscles between level and uphill treadmill walking.

    Science.gov (United States)

    Saito, Akira; Tomita, Aya; Ando, Ryosuke; Watanabe, Kohei; Akima, Hiroshi

    2018-01-01

    This study aimed to examine muscle synergies involving the deeper muscles of the lower limb during level and uphill treadmill walking. Seven men and five women walked on a treadmill at three speeds (60, 80, and 100m/min) and two grades (level and 10% grade). Surface electromyographic (EMG) signals were recorded from 10 muscles of the lower limb, including vastus intermedius, adductor magnus, and adductor longus. Muscle synergies were extracted applying non-negative matrix factorization, and the relative co-activation across muscles and the temporal information of synergy recruitment were identified by the muscle synergy vector and synergy activation coefficient, respectively. Correlation coefficients between a pair of synergy vectors during level and uphill walking were analyzed as a similarity index, with the similarity criterion at r=0.76. Changes in synergy activation coefficients between the walking conditions were evaluated by cross-correlation analysis. The mean number of synergies ranged from 3.8 to 4.0 across all conditions, and they were not significantly different between level and uphill walking conditions. Similarity between walking conditions was high (r>0.76) for three muscle synergies, but not for one synergy that mainly consisted of the quadriceps femoris. The inter-condition similarity of the synergy activation coefficients was high for the four synergies, and a significant lag time for synergy 2, which consisted mainly of the activity of medial gastrocnemius, was found at 60 and 80m/min. The muscle synergies extracted from the lower limb involving the deeper muscles appear to be consistent during level and uphill treadmill walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Validity of treadmill- and track-based individual calibration methods for estimating free-living walking speed and VO2 using the Actigraph accelerometer.

    Science.gov (United States)

    Barnett, Anthony; Cerin, Ester; Vandelanotte, Corneel; Matsumoto, Aya; Jenkins, David

    2015-01-01

    For many patients clinical prescription of walking will be beneficial to health and accelerometers can be used to monitor their walking intensity, frequency and duration over many days. Walking intensity should include establishment of individual specific accelerometer count, walking speed and energy expenditure (VO2) relationships and this can be achieved using a walking protocol on a treadmill or overground. However, differences in gait mechanics during treadmill compared to overground walking may result in inaccurate estimations of free-living walking speed and VO2. The aims of this study were to compare the validity of track- and treadmill-based calibration methods for estimating free-living level walking speed and VO2 and to explain between-method differences in accuracy of estimation. Fifty healthy adults [32 women and 18 men; mean (SD): 40 (13) years] walked at four pre-determined speeds on an outdoor track and a treadmill, and completed three 1-km self-paced level walks while wearing an Actigraph monitor and a mobile oxygen analyser. Speed- and VO2-to-Actigraph count individual calibration equations were computed for each calibration method. Between-method differences in calibration equation parameters, prediction errors, and relationships of walking speed with VO2 and Actigraph counts were assessed. The treadmill-calibration equation overestimated free-living walking speed (on average, by 0.7 km · h(-1)) and VO2 (by 4.99 ml · kg(-1) · min(-1)), while the track-calibration equation did not. This was because treadmill walking, from which the calibration equation was derived, produced lower Actigraph counts and higher VO2 for a given walking speed compared to walking on a track. The prediction error associated with the use of the treadmill-calibration method increased with free-living walking speed. This issue was not observed when using the track-calibration method. The proposed track-based individual accelerometer calibration method can

  6. Characterizing Patients with Unilateral Vestibular Hypofunction Using Kinematic Variability and Local Dynamic Stability during Treadmill Walking

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2017-01-01

    Full Text Available Here, we aimed to compare the unstable gait caused by unilateral vestibular hypofunction (UVH with the normal gait. Twelve patients with UVH and twelve age-matched control subjects were enrolled in the study. Thirty-four markers were attached to anatomical positions of each participant, and a three-dimensional (3D motion analysis system was used to capture marker coordinates as the participants walked on a treadmill. The mean standard deviation of the rotation angles was used to represent gait variability. To explore gait stability, local dynamic stability was calculated from the trunk trajectory. The UVH group had wider step width and greater variability of roll rotation at the hip than the control group (P<0.05. Also, the UVH group had lower local dynamic stability in the medial-lateral (ML direction than the control group (P<0.05. By linear regression analysis, we identified a linear relationship between the short-term Lyapunov exponent and vestibular functional asymmetry. The result implies that UVH-induced asymmetry can increase posture variability and gait instability. This study demonstrates the potential for using kinematic parameters to quantitatively evaluate the severity of vestibular functional asymmetry. Further studies will be needed to explore the clinical effectiveness of such approaches.

  7. Local dynamic stability during treadmill walking can detect children with developmental coordination disorder

    DEFF Research Database (Denmark)

    Speedtsberg, Merete Brink; Christensen, Sofie Bouschinger; Stenum, Jan

    2018-01-01

    and the sensitivity and specificity of this measure to discriminate children with DCD from typically developing children. METHOD: Eight children with DCD and ten age- and gender-matched typically developing children (TD) walked four minutes on a treadmill. Trunk accelerations in vertical, medio-lateral and anterior...... to discriminate between groups based on short term local dynamic stability. RESULTS: λs was significantly greater in children with DCD in the main movement direction (AP) (DCD: 1.69±0.17 λs; TD:1.41±0.17 λs; p=0.005), indicating reduced local dynamic stability. RMS and RMSR accelerations showed no difference...... between children with DCD and TD children in any direction. The ROC analysis of λs in separate directions and in two dimensions showed an excellent accuracy of discriminating between children with DCD and TD children. Anterior-posterior direction in combination with medio-lateral or vertical showed best...

  8. Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men.

    Science.gov (United States)

    Dominelli, Paolo B; Sheel, A William; Foster, Glen E

    2012-06-01

    Weighted backpacks are used extensively in recreational and occupational settings, yet their effects on lung mechanics during acute exercise is poorly understood. The purpose of this study was to determine the effects of different backpack weights on lung mechanics and breathing patterns during treadmill walking. Subjects (n = 7, age = 28 ± 6 years), completed two 2.5-min exercise stages for each backpack condition [no backpack (NP), an un-weighted backpack (NW) or a backpack weighing 15, 25 or 35 kg]. A maximal expiratory flow volume curve was generated for each backpack condition and an oesophageal balloon catheter was used to estimate pleural pressure. The 15, 25 and 35 kg backpacks caused a 3, 5 and 8% (P ventilation, end-expiratory lung volume decreased as backpack weight increased. As backpack weight increased, there was a concomitant decline in calculated maximal ventilation, a rise in minute ventilation, and a resultant greater utilization of maximal available ventilation. In conclusion, wearing a weighted backpack during an acute bout of exercise altered operational lung volumes; however, adaptive changes in breathing mechanics may have minimized changes in the required POB such that at an iso-ventilation, wearing a backpack weighing up to 35 kg does not increase the POB requirement.

  9. In vivo six-degree-of-freedom knee-joint kinematics in overground and treadmill walking following total knee arthroplasty.

    Science.gov (United States)

    Guan, Shanyuanye; Gray, Hans A; Schache, Anthony G; Feller, Julian; de Steiger, Richard; Pandy, Marcus G

    2017-08-01

    No data are available to describe six-degree-of-freedom (6-DOF) knee-joint kinematics for one complete cycle of overground walking following total knee arthroplasty (TKA). The aims of this study were firstly, to measure 6-DOF knee-joint kinematics and condylar motion for overground walking following TKA; and secondly, to determine whether such data differed between overground and treadmill gait when participants walked at the same speed during both tasks. A unique mobile biplane X-ray imaging system enabled accurate measurement of 6-DOF TKA knee kinematics during overground walking by simultaneously tracking and imaging the joint. The largest rotations occurred for flexion-extension and internal-external rotation whereas the largest translations were associated with joint distraction and anterior-posterior drawer. Strong associations were found between flexion-extension and adduction-abduction (R 2  = 0.92), joint distraction (R 2  = 1.00), and anterior-posterior translation (R 2  = 0.77), providing evidence of kinematic coupling in the TKA knee. Although the measured kinematic profiles for overground walking were grossly similar to those for treadmill walking, several statistically significant differences were observed between the two conditions with respect to temporo-spatial parameters, 6-DOF knee-joint kinematics, and condylar contact locations and sliding. Thus, caution is advised when making recommendations regarding knee implant performance based on treadmill-measured knee-joint kinematic data. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1634-1643, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Effects of acupuncture, core-stability exercises, and treadmill walking exercises in treating a patient with postsurgical lumbar disc herniation: a clinical case report

    National Research Council Canada - National Science Library

    Ganiyu, Sokunbi Oluwaleke; Gujba, Kachalla Fatimah

    2015-01-01

    The objective of this study is to investigate the effects of acupuncture, core-stability exercises, and treadmill 12-minute walking exercises in treating patients with postsurgical lumbar disc herniation...

  11. Effects of Inclined Treadmill Walking on Pelvic Anterior Tilt Angle, Hamstring Muscle Length, and Trunk Muscle Endurance of Seated Workers with Flat-back Syndrome

    National Research Council Canada - National Science Library

    Kim, Min-hee; Yoo, Won-gyu

    2014-01-01

    [Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects...

  12. Assessment of the effects of carbon fiber and bionic foot during overground and treadmill walking in transtibial amputees.

    Science.gov (United States)

    Delussu, Anna Sofia; Brunelli, Stefano; Paradisi, Francesco; Iosa, Marco; Pellegrini, Roberto; Zenardi, Daniele; Traballesi, Marco

    2013-09-01

    To determine the energy cost of walking (ECW) of a bionic foot (Proprio-Foot®) during ambulation on floor and on treadmill (at different slopes) compared to walking with a dynamic carbon fiber foot (DCF). We evaluated transtibial amputees (TTAs) perceived mobility with the prosthesis and their walking ability on stairs and ramps. TTAs were enrolled. The ECW tests were conducted on a regular floor surface and on treadmill with -5%, 0% and 12% slopes. In all conditions, TTAs were asked to walk at their own self-selected speed. Metabolic and cardiac data were collected using a portable gas analyzer. Tests were performed at six data collection points: first with a standard suction system (SSS) and the DCF; second, with the DCF after 7 weeks of using a hypobaric suspension system (HSS) with the DCF; third, after 1 h of Proprio-Foot® use together with the HSS; three more testing sessions were carried out at 30-day intervals, i.e., after 30, 60 and 90 days of Proprio-Foot® use together with the HSS. TTAs perceived mobility using the prosthesis and walking ability on stairs and ramps were assessed. Ten TTAs completed the measurements. ECW with the Proprio-Foot® obtained in the final floor-walking test was significantly lower than ECW with the DCF (p=0.002). No significant improvements were observed for perceived mobility or walking ability. Results suggest that use of the Proprio-Foot® can lower the ECW for TTAs in spite of its added weight compared to DCF. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effect of Treadmill Exercise Using 80% Intensity of Six Minute Walk Test on Walking Distance and Quality of Life in Moderate Stage Chronic Obstructive Pulmonary Disease Patients

    Directory of Open Access Journals (Sweden)

    Farida Arisanti

    2016-06-01

    Full Text Available Skeletal muscle dysfunction poses as one of the systemic manifestation of chronic obstructive pulmonary disease (COPD in the impact of inactivity and deconditioning from early fatigue to the end of declining quality of life (QoL. Giving pulmonary rehabilitation program of treadmill exercise will overcome the problem, but standard method for moderate stage of COPD is not yet available. This study aimed to evaluate the effect of treadmill exercise using 80% intensity of six minute walk test on walking distance and QoL in moderate stage COPD in order to overcome muscle dysfunction. Samples were taken from Physical Medicine and Rehabilitation and Respirology subdivision of Internal Medicine outpatient clinic of Dr. Hasan Sadikin General Hospital Bandung, from March 2012–April 2013. Data analysis was tested using t-test for comparison of two independent mean data. Otherwise, non parametric test of Mann Whitney and Wilcoxon Match Pair test. Thirty three subjects of moderate stage COPD were divided into 2 groups (intervention and control. Intervention group received treadmill exercise with 80% intensity from preliminary 6MWT for 30–60 minutes/session, 3 session/week for 6 weeks. Significant increase on walking distance was found in intervention group (70.66 m compared to control group (7.43 m after 6 weeks (p≤0.05. QoL using St. George Respiratory Questionnaire (SGRQ showed significant decrease in intervention group for all components in the end of 6 weeks (total p=0.0038, symptoms p=0.0162, activities p=0.0043 and impact p=0.0057, p≤0.05. Eighty percent intensity of 6MWT in treadmill exercise for 6 weeks was well tolerated and could overcome skeletal muscle dysfunction in moderate stage COPD. It also revealed higher values in aerobic capacity and QoL compared to previous studies. In conclusion, treadmill exercise using 80% intensity of 6MWT provides further walking distance and higher QoL compared to control in moderate stage COPD.

  14. Treadmill Interface for Virtual Reality vs. Overground Walking: A Comparison of Gait in Individuals with and without Pain.

    Science.gov (United States)

    Powell, Wendy; Stevens, Brett; Simmonds, Maureen

    2009-01-01

    A treadmill (TR) interfaced with a virtual reality (VR) system can provide an engaging environment that could improve activity adherence and walking function for individuals with pain. Furthermore, inclusion of discrete visual and auditory cues into the VR environment (e.g. manipulation of optic flow speed or audio beat frequency) could improve walking. This study compared gait characteristics (speed and cadence) of a baseline over ground walk (OVR) with a TR walk as part of a project to develop gait referenced visual and auditory frequency cues. Thirty-six participants aged between 22 and 80 years, with pain (n=19) and without pain (n=17) took part. A 2 x 2 MANOVA conducted on the speed and cadence for all participants showed a significant difference between pain and control groups for speed (F1,34=9.56, p1,34=5.75, p1,34=81.39, p1,34=25.46, p<0.01). Differences between OVR and TR walking indicate that visual or auditory cues for VR walk training should be referenced according to TR baseline measures.

  15. Treadmill Adaptation and Verification of Self-Selected Walking Speed: A Protocol for Children

    Science.gov (United States)

    Amorim, Paulo Roberto S.; Hills, Andrew; Byrne, Nuala

    2009-01-01

    Walking is a common activity of daily life and researchers have used the range 3-6 km.h[superscript -1] as reference for walking speeds habitually used for transportation. The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature and is identified as the most efficient walking speed, with…

  16. Exercise-ankle brachial pressure index with one-minute treadmill walking in patients on maintenance hemodialysis.

    Science.gov (United States)

    Tsuyuki, Kazuo; Kohno, Kenji; Ebine, Kunio; Obara, Takehiro; Aoki, Toshiyuki; Muto, Atsuhiko; Ninomiya, Kenji; Kumagai, Kenta; Yokouchi, Itaru; Yazaki, Yoshiyuki; Watanabe, Shinichi

    2013-01-01

    The ankle-brachial pressure index (ABI) is widely used as a standard screening method for arterial occlusive lesion above the knee. However, the sensitivity of ABI is low in hemodialysis (HD) patients. Exercise stress (Ex-ABI) may reduce the false negative results. After measuring resting ABI and toe-brachial pressure index (TBI), ankle pressure and ABI immediately after walking (Post-AP, Post-ABI) were measured using one-minute treadmill walking in 52 lower limbs of 26 HD patients. The definition of peripheral arterial occlusive disease (PAD) required an ABI value of less than 0.90, TBI value of less than 0.60, and decrease of more than 15% of the Post-ABI value and 20 mmHg of Post-AP in Ex-ABI. Computed tomographic angiography (CTA) was performed in 32 lower limbs of 16 HD patients. PAD is defined as presence of stenosis of more than 75% in the case of lesions from an iliac artery to knee on CTA. The accuracy of Ex-ABI (Sensitivity, 85.7%; Specificity, 77.7%) was higher than those of ABI (Sensitivity, 42.9%; Specificity, 83.3%) or TBI (Sensitivity, 78.6%; Specificity, 61.1%). Ex-ABI with one-minute treadmill walking is the most useful tool for the screening of arterial occlusive lesions above the knee in maintenance HD patients.

  17. Minimum toe clearance events in divided attention treadmill walking in older and young adults: a cross-sectional study.

    Science.gov (United States)

    Santhiranayagam, Braveena K; Lai, Daniel T H; Sparrow, W A; Begg, Rezaul K

    2015-07-12

    Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided attention on tripping risk by investigating the gait cycle event Minimum Toe Clearance (MTC). Fifteen older adults (mean 73.1 years) and 15 young controls (mean 26.1 years) performed three walking tasks on motorized treadmill: (i) at preferred walking speed (preferred walking), (ii) while carrying a glass of water at a comfortable walking speed (dual task walking), and (iii) speed-matched control walking without the glass of water (control walking). Position-time coordinates of the toe were acquired using a 3 dimensional motion capture system (Optotrak NDI, Canada). When MTC was present, toe height at MTC (MTC_Height) and MTC timing (MTC_Time) were calculated. The proportion of non-MTC gait cycles was computed and for non-MTC gait cycles, toe-height was extracted at the mean MTC_Time. Both groups maintained mean MTC_Height across all three conditions. Despite greater MTC_Height SD in preferred gait, the older group reduced their variability to match the young group in dual task walking. Compared to preferred speed walking, both groups attained MTC earlier in dual task and control conditions. The older group's MTC_Time SD was greater across all conditions; in dual task walking, however, they approximated the young group's SD. Non-MTC gait cycles were more frequent in the older group across walking conditions (for example, in preferred walking: young - 2.9 %; older - 18.7 %). In response to increased attention demands older adults preserve MTC_Height but exercise greater control of the critical MTC event by reducing variability in both MTC_Height and MTC_Time. A further adaptive locomotor control strategy to reduce

  18. Oxygen uptake, heart rate, perceived exertion, and integrated electromyogram of the lower and upper extremities during level and Nordic walking on a treadmill

    OpenAIRE

    Sugiyama, Koji; Kawamura, Mami; Tomita, Hisato; Katamoto, Shizuo

    2013-01-01

    The purpose of this study was to characterize responses in oxygen uptake ( V ? O 2 ), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60?m/min for 3?minutes, with incremen...

  19. Arm and leg coordination during treadmill walking in individuals with motor incomplete spinal cord injury: A preliminary study

    Science.gov (United States)

    Barbeau, Hugues; Howland, Dena R.; Cantrell, Amy; Behrman, Andrea L.

    2012-01-01

    Arm and leg coordination naturally emerges during walking, but can be affected by stroke or Parkinson’s disease. The purpose of this preliminary study was to characterize arm and leg coordination during treadmill walking at self-selected comfortable walking speeds (CWSs) in individuals using arm swing with motor incomplete spinal cord injury (iSCI). Hip and shoulder angle cycle durations and amplitudes, strength of peak correlations between contralateral hip and shoulder joint angle time series, the time shifts at which these peak correlations occur, and associated variability were quantified. Outcomes in individuals with iSCI selecting fast CWSs (range, 1.0–1.3 m/s) and speed-matched individuals without neurological injuries are similar. Differences, however, are detected in individuals with iSCI selecting slow CWSs (range, 0.25–0.65 m/s) and may represent compensatory strategies to improve walking balance or forward propulsion. These individuals elicit a 1:1, arm: leg frequency ratio versus the 2:1 ratio observed in non-injured individuals. Shoulder and hip movement patterns, however, are highly reproducible (coordinated) in participants with iSCI, regardless of CWS. This high degree of inter-extremity coordination could reflect an inability to modify a single movement pattern post-iSCI. Combined, these data suggest inter-extremity walking coordination may be altered, but is present after iSCI, and therefore may be regulated, in part, by neural control. PMID:22341058

  20. Treadmill workstations: the effects of walking while working on physical activity and work performance.

    Directory of Open Access Journals (Sweden)

    Avner Ben-Ner

    Full Text Available We conducted a 12-month-long experiment in a financial services company to study how the availability of treadmill workstations affects employees' physical activity and work performance. We enlisted sedentary volunteers, half of whom received treadmill workstations during the first two months of the study and the rest in the seventh month of the study. Participants could operate the treadmills at speeds of 0-2 mph and could use a standard chair-desk arrangement at will. (a Weekly online performance surveys were administered to participants and their supervisors, as well as to all other sedentary employees and their supervisors. Using within-person statistical analyses, we find that overall work performance, quality and quantity of performance, and interactions with coworkers improved as a result of adoption of treadmill workstations. (b Participants were outfitted with accelerometers at the start of the study. We find that daily total physical activity increased as a result of the adoption of treadmill workstations.

  1. Effects of the Integration of Dynamic Weight Shifting Training Into Treadmill Training on Walking Function of Children with Cerebral Palsy: A Randomized Controlled Study.

    Science.gov (United States)

    Wu, Ming; Kim, Janis; Arora, Pooja; Gaebler-Spira, Deborah J; Zhang, Yunhui

    2017-11-01

    The aim of the study was to determine whether applying an assistance force to the pelvis and legs during treadmill training can improve walking function in children with cerebral palsy. Twenty-three children with cerebral palsy were randomly assigned to the robotic or treadmill only group. For participants who were assigned to the robotic group, a controlled force was applied to the pelvis and legs during treadmill walking. For participants who were assigned to the treadmill only group, manual assistance was provided as needed. Each participant trained 3 times/wk for 6 wks. Outcome measures included walking speed, 6-min walking distance, and clinical assessment of motor function, which were evaluated before, after training, and 8 wks after the end of training, and were compared between two groups. Significant increases in walking speed and 6-min walking distance were observed after robotic training (P = 0.03), but no significant change was observed after treadmill training only. A greater increase in 6-min walking distance was observed after robotic training than that after treadmill only training (P = 0.01). Applying a controlled force to the pelvis and legs, for facilitating weight-shift and leg swing, respectively, during treadmill training may improve walking speed and endurance in children with cerebral palsy. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss the importance of physical activity at the participation level (sports programs) for children with cerebral palsy; (2) contrast the changes in walking ability and endurance for children in GMFCS level I, II and III following sports programs; and (3) identify the impact of higher frequency of sports program attendance over time on walking ability. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing

  2. Functional Data Analysis of Spaceflight-Induced Changes in Coordination and Phase in Head Pitch Acceleration During Treadmill Walking

    Science.gov (United States)

    Miller, Christopher; Peters, Brian; Feiveson, Alan; Bloomberg, Jacob

    2011-01-01

    Astronauts returning from spaceflight experience neurovestibular disturbances during head movements and attempt to mitigate them by limiting head motion. Analyses to date of the head movements made during walking have concentrated on amplitude and variability measures extracted from ensemble averages of individual gait cycles. Phase shifts within each gait cycle can be determined by functional data analysis through the computation of time-warping functions. Large, localized variations in the timing of peaks in head kinematics may indicate changes in coordination. The purpose of this study was to determine timing changes in head pitch acceleration of astronauts during treadmill walking before and after flight. Six astronauts (5M/1F; age = 43.5+/-6.4yr) participated in the study. Subjects walked at 1.8 m/sec (4 mph) on a motorized treadmill while reading optotypes displayed on a computer screen 4 m in front of their eyes. Three-dimensional motion of the subject s head was recorded with an Inertial Measurement Unit (IMU) device. Data were recorded twice before flight and four times after landing. The head pitch acceleration was calculated by taking the time derivative of the pitch velocity data from the IMU. Data for each session with each subject were time-normalized into gait cycles, then registered to align significant features and create a mean curve. The mean curves of each postflight session for each subject were re-registered based on their preflight mean curve to create time-warping functions. The root mean squares (RMS) of these warping functions were calculated to assess the deviation of head pitch acceleration mean curves in each postflight session from the preflight mean curve. After landing, most crewmembers exhibited localized shifts within their head pitch acceleration regimes, with the greatest deviations in RMS occurring on landing day or 1 day after landing. These results show that the alteration of head pitch coordination due to spaceflight may be

  3. Decoding sensorimotor rhythms during robotic-assisted treadmill walking for brain computer interface (BCI) applications

    NARCIS (Netherlands)

    Garcia Cossio, E.; Severens, M.; Nienhuis, B.; Duysens, J.; Desain, P.; Keijsers, N.; Farquhar, J.

    2015-01-01

    Locomotor malfunction represents a major problem in some neurological disorders like stroke and spinal cord injury. Robot-assisted walking devices have been used during rehabilitation of patients with these ailments for regaining and improving walking ability. Previous studies showed the advantage

  4. Interlimb communication following unexpected changes in treadmill velocity during human walking

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Geertsen, Svend Sparre; Sinkjær, Thomas

    2015-01-01

    Interlimb reflexes play an important role in human walking, particularly when dynamic stability is threatened by external perturbations or changes in the walking surface. Interlimb reflexes have recently been demonstrated in the contralateral biceps femoris (cBF) following knee joint rotations...

  5. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running.

    Science.gov (United States)

    Gagnon, Dominique D; Rintamäki, Hannu; Gagnon, Sheila S; Cheung, Stephen S; Herzig, Karl-Heinz; Porvari, Katja; Kyröläinen, Heikki

    2013-01-01

    Cold exposure modulates the use of carbohydrates (CHOs) and fat during exercise. This phenomenon has mostly been observed in controlled cycling studies, but not during walking and running when core temperature and oxygen consumption are controlled, as both may alter energy metabolism. This study aimed at examining energy substrate availability and utilization during walking and running in the cold when core temperature and oxygen consumption are maintained. Ten lightly clothed male subjects walked or ran for 60-min, at 50% and 70% of maximal oxygen consumption, respectively, in a climatic chamber set at 0°C or 22°C. Thermal, cardiovascular, and oxidative responses were measured every 15-min during exercise. Blood samples for serum non-esterified fatty acids (NEFAs), glycerol, glucose, beta-hydroxybutyrate (BHB), plasma catecholamines, and serum lipids were collected immediately prior, and at 30- and 60-min of exercise. Skin temperature strongly decreased while core temperature did not change during cold trials. Heart rate (HR) was also lower in cold trials. A rise in fat utilization in the cold was seen through lower respiratory quotient (RQ) (-0.03 ± 0.02), greater fat oxidation (+0.14 ± 0.13 g · min(-1)) and contribution of fat to total energy expenditure (+1.62 ± 1.99 kcal · min(-1)). No differences from cold exposure were observed in blood parameters. During submaximal walking and running, a greater reliance on derived fat sources occurs in the cold, despite the absence of concurrent alterations in NEFAs, glycerol, or catecholamine concentrations. This disparity may suggest a greater reliance on intra-muscular energy sources such as triglycerides during both walking and running.

  6. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running

    Directory of Open Access Journals (Sweden)

    Dominique Daniel Gagnon

    2013-05-01

    Full Text Available Cold exposure modulates the use of carbohydrates and fat during exercise. This phenomenon has mostly been observed in controlled cycling studies, but not during walking and running when core temperature and oxygen consumption are controlled, as both may alter energy metabolism. This study aimed at examining energy substrate availability and utilization during walking and running in the cold when core temperature and oxygen consumption are maintained. Ten lightly clothed male subjects walked or ran for 60-min, at 50% and 70% of maximal oxygen consumption, respectively, in a climatic chamber set at 0°C or 22°C. Thermal, cardiovascular, and oxidative responses were measured every 15-min during exercise. Blood samples for serum non-esterified fatty acids, glycerol, glucose, beta-hydroxybutyrate, plasma catecholamines, and serum lipids were collected immediately prior, and at 30- and 60-min of exercise. Skin temperature strongly decreased while core temperature did not change during cold trials. Heart rate was also lower in cold trials. A rise in fat utilization in the cold was seen through lower respiratory quotient (-0.03 ± 0.02, greater fat oxidation (+0.14 ± 0.13 g•min-1 and contribution of fat to total energy expenditure (+1.62 ± 1.99 kcal•min-1. No differences from cold exposure were observed in blood parameters. During submaximal walking and running, a greater reliance on derived fat sources occurs in the cold, despite the absence of concurrent alterations in non-esterified fatty acids, glycerol, or catecholamine concentrations. This disparity may suggest a greater reliance on intra-muscular energy sources such as triglycerides during both walking and running.

  7. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI Applications.

    Directory of Open Access Journals (Sweden)

    Eliana García-Cossio

    Full Text Available Locomotor malfunction represents a major problem in some neurological disorders like stroke and spinal cord injury. Robot-assisted walking devices have been used during rehabilitation of patients with these ailments for regaining and improving walking ability. Previous studies showed the advantage of brain-computer interface (BCI based robot-assisted training combined with physical therapy in the rehabilitation of the upper limb after stroke. Therefore, stroke patients with walking disorders might also benefit from using BCI robot-assisted training protocols. In order to develop such BCI, it is necessary to evaluate the feasibility to decode walking intention from cortical patterns during robot-assisted gait training. Spectral patterns in the electroencephalogram (EEG related to robot-assisted active and passive walking were investigated in 10 healthy volunteers (mean age 32.3±10.8, six female and in three acute stroke patients (all male, mean age 46.7±16.9, Berg Balance Scale 20±12.8. A logistic regression classifier was used to distinguish walking from baseline in these spectral EEG patterns. Mean classification accuracies of 94.0±5.4% and 93.1±7.9%, respectively, were reached when active and passive walking were compared against baseline. The classification performance between passive and active walking was 83.4±7.4%. A classification accuracy of 89.9±5.7% was achieved in the stroke patients when comparing walking and baseline. Furthermore, in the healthy volunteers modulation of low gamma activity in central midline areas was found to be associated with the gait cycle phases, but not in the stroke patients. Our results demonstrate the feasibility of BCI-based robotic-assisted training devices for gait rehabilitation.

  8. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications.

    Science.gov (United States)

    García-Cossio, Eliana; Severens, Marianne; Nienhuis, Bart; Duysens, Jacques; Desain, Peter; Keijsers, Nöel; Farquhar, Jason

    2015-01-01

    Locomotor malfunction represents a major problem in some neurological disorders like stroke and spinal cord injury. Robot-assisted walking devices have been used during rehabilitation of patients with these ailments for regaining and improving walking ability. Previous studies showed the advantage of brain-computer interface (BCI) based robot-assisted training combined with physical therapy in the rehabilitation of the upper limb after stroke. Therefore, stroke patients with walking disorders might also benefit from using BCI robot-assisted training protocols. In order to develop such BCI, it is necessary to evaluate the feasibility to decode walking intention from cortical patterns during robot-assisted gait training. Spectral patterns in the electroencephalogram (EEG) related to robot-assisted active and passive walking were investigated in 10 healthy volunteers (mean age 32.3±10.8, six female) and in three acute stroke patients (all male, mean age 46.7±16.9, Berg Balance Scale 20±12.8). A logistic regression classifier was used to distinguish walking from baseline in these spectral EEG patterns. Mean classification accuracies of 94.0±5.4% and 93.1±7.9%, respectively, were reached when active and passive walking were compared against baseline. The classification performance between passive and active walking was 83.4±7.4%. A classification accuracy of 89.9±5.7% was achieved in the stroke patients when comparing walking and baseline. Furthermore, in the healthy volunteers modulation of low gamma activity in central midline areas was found to be associated with the gait cycle phases, but not in the stroke patients. Our results demonstrate the feasibility of BCI-based robotic-assisted training devices for gait rehabilitation.

  9. Changes of oxidative/antioxidative parameters and DNA damage in firefighters wearing personal protective equipment during treadmill walking training.

    Science.gov (United States)

    Park, Eunju; Lee, Yun-Jeong; Lee, Sun-Woo; Bang, Chang-Hoon; Lee, GyuChang; Lee, Jun-Kyoung; Kwan, Jung-Suk; Huh, Yu-Sub

    2016-11-01

    [Purpose] The purpose of this study was to investigate the influence of personal protective equipment on the oxidant/antioxidant parameters and DNA damage in firefighters during training and recovery. [Subjects and Methods] Twelve male nonsmoking volunteer firefighters (35.1 ± 7.2 years) underwent two maximal treadmill training (9 METs, 6 km/h), within 2 weeks, one in regular clothes and one in personal protective equipment weighing 22.1 kg. Blood samples were obtained before, right after, and 40 min after training. Plasma conjugated dienes, total radical trapping antioxidant potential, erythrocytes antioxidant enzymes activities, and leukocyte DNA damage were measured. [Results] Wearing personal protective equipment during treadmill walking training resulted in increases of plasma conjugated dienes, total radical trapping antioxidant potential, and leukocyte DNA resistance to oxidative stress, which were recovered after in 40 min of rest. Erythrocyte antioxidant enzymes activities remained unchanged during the training either with regular clothes or personal protective equipment. [Conclusion] These results suggest that wearing personal protective equipment during firefighting work could induce oxidative stress, which was enough to produce DNA damage in leukocytes.

  10. High failure rates when avoiding obstacles during treadmill walking in patients with a transtibial amputation.

    NARCIS (Netherlands)

    Hofstad, C.J.; Linde, H. van der; Nienhuis, B.; Weerdesteyn, V.G.M.; Duysens, J.E.J.; Geurts, A.C.H.

    2006-01-01

    OBJECTIVE: To investigate if and to what extent patients with a transtibial amputation are less successful in avoiding unexpected obstacles while walking than healthy adults. DESIGN: Experimental 2-group design. SETTING: Dutch rehabilitation center. PARTICIPANTS: Eleven patients with a transtibial

  11. Stability and variability of acoustically specified coordination patterns while walking side-by-side on a treadmill : Does the seagull effect hold?

    NARCIS (Netherlands)

    van Ulzen, Niek R.; Lamoth, Claudine J. C.; Daffertshofer, Andreas; Semin, Guen R.; Beek, Peter J.

    2010-01-01

    To examine whether the Haken-Kelso-Bunz model for rhythmic interlimb coordination applies to walking side-by-side on a treadmill, we invited six pairs of participants to coordinate their stepping movements at seven prescribed relative phases (between 0 degrees and 180 degrees) to scan the attractor

  12. Effects of interventions on normalizing step width during self-paced dual-belt treadmill walking with virtual reality, a randomised controlled trial

    NARCIS (Netherlands)

    Lansink, I. L. B. Oude; van Kouwenhove, L.; Dijkstra, P. U.; Postema, K.; Hijmans, J. M.

    2017-01-01

    Background: Step width is increased during dual-belt treadmill walking, in self-paced mode with virtual reality. Generally a familiarization period is thought to be necessary to normalize step width. Aim: The aim of this randomised study was to analyze the effects of two interventions on step width,

  13. Impact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking.

    Science.gov (United States)

    Layne, Charles S; Chelette, Amber M; Pourmoghaddam, Amir

    2015-01-01

    It has been proposed that proprioceptive input is essential to the development of a locomotor body schema that is used to guide the assembly of successful walking. Proprioceptive information is used to signal the need for, and promotion of, locomotor adaptation in response to environmental or internal modifications. The purpose of this investigation was to determine if tendon vibration applied to either the hamstrings or quadriceps of participants experiencing split-belt treadmill walking modified lower limb kinematics during the early adaptation period. Modifications in the adaptive process in response to vibration would suggest that the sensory-motor system had been unsuccessful in down weighting the disruptive proprioceptive input resulting from vibration. Ten participants experienced split-belt walking, with and without vibration, while gait kinematics were obtained with a 12-camera collection system. Bilateral hip, knee, and ankle joint angles were calculated and the first five strides after the split were averaged for each subject to create joint angle waveforms for each of the assessed joints, for each experimental condition. The intralimb variables of stride length, percent stance time, and relative timing between various combinations of peak joint angles were assessed using repeated measures MANOVA. Results indicate that vibration had very little impact on the split-belt walking adaptive process, although quadriceps vibration did significantly reduce percent stance time by 1.78% relative to the no vibration condition. The data suggest that the perceptual-motor system was able to down weight the disrupted proprioceptive input such that the locomotor body schema was able to effectively manage the lower limb patterns of motion necessary to adapt to the changing belt speed. Complementary explanations for the current findings are also discussed.

  14. Comparison of two-hand kettlebell exercise and graded treadmill walking: effectiveness as a stimulus for cardiorespiratory fitness.

    Science.gov (United States)

    Thomas, James F; Larson, Kurtis L; Hollander, Daniel B; Kraemer, Robert R

    2014-04-01

    Prevailing interest in the use of kettlebell (KB) exercises for rehabilitation and improvement of muscular strength has led to several recent studies, some suggesting that KB exercise may be useful for improvement of cardiorespiratory fitness. The purpose of this study was to determine whether KB exercise would produce similar cardiovascular stress to that of walking and thus provide an additional exercise mode for the improvement of cardiorespiratory fitness. It was hypothesized that a moderate-intensity, continuous KB protocol, would produce similar metabolic and cardiorespiratory responses as a brisk bout of graded treadmill (TM) walking, but greater rating of perceived exertion (RPE). Ten novice volunteers (5 men, 5 women) completed a preliminary session to determine body composition and VO2max and to familiarize participants with standardized KB exercise technique. Subsequently, they completed a 30-minute KB session that included 3 continuous 10-minute sets of 10 KB swings followed by 10 sumo deadlifts, with 3-minute rests between 10-minute exercise periods. The third session was a 30-minute TM regimen that began at the walking speed and 4% grade that matched the VO2 from the KB session and included 3-minute rest intervals after 10-minute TM exercise periods. VO2, respiratory exchange ratio, kcal·min, and blood pressure were similar for KB and moderate-intensity TM exercise, but RPE and heart rate were greater during KB exercise. Data indicate that a KB routine consisting of 2-hand swings and sumo deadlifts with 3-minute rest periods produces similar metabolic responses to those of a moderate-intensity TM walking protocol designed for the improvement of aerobic fitness.

  15. Pelvic step: the contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill.

    Science.gov (United States)

    Liang, Bo Wei; Wu, Wen Hua; Meijer, Onno G; Lin, Jian Hua; Lv, Go Rong; Lin, Xiao Cong; Prins, Maarten R; Hu, Hai; van Dieën, Jaap H; Bruijn, Sjoerd M

    2014-01-01

    Transverse plane pelvis rotations during walking may be regarded as the "first determinant of gait". This would assume that pelvis rotations increase step length, and thereby reduce the vertical movements of the centre of mass-"the pelvic step". We analysed the pelvic step using 20 healthy young male subjects, walking on a treadmill at 1-5 km/h, with normal or big steps. Step length, pelvis rotation amplitude, leg-pelvis relative phase, and the contribution of pelvis rotation to step length were calculated. When speed increased in normal walking, pelvis rotation changed from more out-of-phase to in-phase with the upper leg. Consequently, the contribution of pelvis rotation to step length was negative at lower speeds, switching to positive at 3 km/h. With big steps, leg and pelvis were more in-phase, and the contribution of pelvis rotation to step length was always positive, and relatively large. Still, the overall contribution of pelvis rotations to step length was small, less than 3%. Regression analysis revealed that leg-pelvis relative phase predicted about 60% of the variance of this contribution. The results of the present study suggest that, during normal slow walking, pelvis rotations increase, rather than decrease, the vertical movements of the centre of mass. With large steps, this does not happen, because leg and pelvis are in-phase at all speeds. Finally, it has been suggested that patients with hip flexion limitation may use larger pelvis rotations to increase step length. This, however, may only work as long as the pelvis rotates in-phase with the leg. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effects of acute caffeinated coffee consumption on energy utilization related to glucose and lipid oxidation from short submaximal treadmill exercise in sedentary men.

    Science.gov (United States)

    Leelarungrayub, Donrawee; Sallepan, Maliwan; Charoenwattana, Sukanya

    2011-01-01

    Aim of this study was to evaluate the short term effect of coffee drinking on energy utilization in sedentary men. This study was performed in healthy sedentary men, who were randomized into three groups, control (n = 6), decaffeinated (n = 10), and caffeine (n = 10). The caffeine dose in coffee was rechecked and calculated for individual volunteers at 5 mg/kg. Baseline before drinking, complete blood count (CBC), glucose, antioxidant capacity, lipid peroxide, and caffeine in blood was evaluated. After drinking coffee for 1 hr, the submaximal exercise test with a modified Bruce protocol was carried out, and the VO2 and RER were analyzed individually at 80% maximal heart rate, then the blood was repeat evaluated. Three groups showed a nonsignificant difference in CBC results and physical characteristics. The caffeine group showed significant changes in all parameters; higher VO2 levels, (P = 0.037) and lower RER (P = 0.047), when compared to the baseline. Furthermore, the glucose level after exercise test increased significantly (P = 0.033) as well as lipid peroxide levels (P = 0.005), whereas antioxidant capacity did not change significantly (P = 0.759), when compared to the before exercise testing. In addition, the blood caffeine level also increased only in the caffeine group (P = 0.008). Short consumption of caffeinated coffee (5 mg/kg of caffeine), improves energy utilization and relates to glucose derivation and lipid oxidation.

  17. Estimate of the 3,5 MMOL.L-¹ lactate threshold by maximal and submaximal variables during treadmill incremental test

    Directory of Open Access Journals (Sweden)

    Maria Kiss

    2006-03-01

    Full Text Available In predictive models, there is a lack of studies that have associated maximal and submaximal variables to attain lactate threshold (LT. Therefore, the purpose of this paper was to investigate the possibility for predicting 3.5 mmol.l-1 LT velocity (V3.5 using maximal and submaximal variables. The heart rate (HR corresponding to 12 km.h-1 velocity (HR12, the peak heart rate (HRPEAK, the velocity corresponding to HR of 170 bpm (V170 and the peak velocity (VPEAK were the independent variables used. Forty-six runners underwent to progressive test with initial velocity between 6 and 10.8 km.h-1, and increments of 1.2 km.h-1 every three minutes. The subjects were randomly assigned to validation group (n= 30 or cross-validation group (n= 16. Multiple regression analysis (Enter selection resulted in the following predictive equation (p RESUMO Em modelos preditivos, há uma ausência de estudos que tenham associado variáveis máximas e submáximas para a obtenção dos limiares de lactato. Desta maneira, o objetivo deste estudo foi verificar a possibilidade de estimativa do limiar de lactato, referente à concentração de lactato sangüíneo de 3,5 mmol.l-1 (LL3,5, a partir de variáveis máximas e submáximas obtidas em protocolo progressivo, em esteira rolante. Como variáveis preditoras, foram utilizadas a freqüência cardíaca (FC referente à velocidade de 12 km.h-1 (FC12, a FC de pico (FCPICO, a velocidade correspondente à FC de 170 bpm (VEL170 e a velocidade de pico (VELPICO. Após executar protocolo progressivo, com velocidade inicial entre 6,0 e 10,8 km.h-1, e incrementos de 1,2 km.h-1 a cada estágio de 3 minutos 5, 46 atletas aeróbios foram divididos aleatoriamente em grupo de validação (n= 30 e grupo de validação cruzada (n= 16. A análise de regressão múltipla (método Enter resultou na seguinte equação de predição (p< 0,05: LL3,5 (km.h1= -3,650 + (1,042 x VELPICO, com EPE de 1,2 km.h1 (7,7% e R² de 0,74. Não houve diferen

  18. The impact of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with cerebral palsy.

    Science.gov (United States)

    Azizi, Sh; Marzbani, H; Raminfard, S; Birgani, P M; Rasooli, A H; Mirbagheri, M M

    2017-07-01

    We studied the effects of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with Cerebral Palsy (CP). AlterG can help CP children walk on the treadmill by reducing their weights up to 80% and maintain their balance during locomotion. AlterG training thus has the potential to improve walking capacity permanently as it can provide systematic and intense locomotor training for sufficiently long period of time and produce brain neuroplasticity. AlterG training was given for 45 minutes, three times a week for two months. The neuroplasticity of corticospinal tract was evaluated using Diffusion Tensor Imaging (DTI). The fractional Anisotropy (FA) feature was extracted to quantify structural changes of the corticospinal tract. Walking capacity was evaluated using popular clinical measurements of gait; i.e., walking speed, mobility and balance. The evaluations were done before and after training. Our results revealed that AlterG training resulted in an increase in average FA value of the corticospinal tract following the training. The outcome measures of clinical assessments of gait presented enhanced walking capacity of the CP subjects. Our findings indicated that the improved walking capacity was concurrent with the enhancement of the corticospinal tract structure. The clinical implication is that AlterG training may be considered as a therapeutic tool for permanent gait improvement in CP children.

  19. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation.

    Science.gov (United States)

    Selgrade, Brian P; Toney, Megan E; Chang, Young-Hui

    2017-02-28

    Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement

    Science.gov (United States)

    2013-01-01

    Background Robot-assisted gait training and treadmill training can complement conventional physical therapy in children with neuro-orthopedic movement disorders. The aim of this study was to investigate surface electromyography (sEMG) activity patterns during robot-assisted gait training (with and without motivating instructions from a therapist) and unassisted treadmill walking and to compare these with physiological sEMG patterns. Methods Nine children with motor impairments and eight healthy children walked in various conditions: (a) on a treadmill in the driven gait orthosis Lokomat®, (b) same condition, with additional motivational instructions from a therapist, and (c) on the treadmill without assistance. sEMG recordings were made of the tibialis anterior, gastrocnemius lateralis, vastus medialis, and biceps femoris muscles. Differences in sEMG amplitudes between the three conditions were analyzed for the duration of stance and swing phase (for each group and muscle separately) using non-parametric tests. Spearman’s correlation coefficients illustrated similarity of muscle activation patterns between conditions, between groups, and with published reference trajectories. Results The relative duration of stance and swing phase differed between patients and controls, and between driven gait orthosis conditions and treadmill walking. While sEMG amplitudes were higher when being encouraged by a therapist compared to robot-assisted gait training without instructions (0.008 ≤ p-value ≤ 0.015), muscle activation patterns were highly comparable (0.648 ≤ Spearman correlation coefficients ≤ 0.969). In general, comparisons of the sEMG patterns with published reference data of over-ground walking revealed that walking in the driven gait orthosis could induce more physiological muscle activation patterns compared to unsupported treadmill walking. Conclusions Our results suggest that robotic-assisted gait training with therapeutic encouragement

  1. The effect of treadmill-based and track-based walking training on physical fitness in ankle-sprain experienced young people

    Science.gov (United States)

    Sung, Eunsook

    2017-01-01

    The purpose of this study was to evaluate the effects of 12-week treadmill-based (MT) and track-based (TT) walking program on maximal oxygen consumption (VO2max), muscular endurance, muscle strength, and ankle range of motion (ROM) in ankle sprain experienced young people. Twenty subjects (12 males, 8 females) volunteered to participate in this study and divided into two groups (MT and TT). All subjects completed MT and TT 4 times per week with each session of 60 min with 65% from maximum heart rate. Incremental test on treadmill and 20-m shuttle run test for endurance capacity (VO2max), 2-km walking test for muscular endurance, vertical jump for strength, and ankle ROM for flexibility were analyzed before and after the training intervention. We found significant increase in incremental, 2-km walking and 20-m shuttle run after both MT and TT. Just after TT were significant increased vertical jump and ankle ROM. In conclusion, TT seems to induce a more positive effect on muscle strength in lower extremity and ankle ROM than treadmill-based walking training in ankle sprain experienced young people. PMID:28349038

  2. Development and validation of a one-mile treadmill walk test to predict peak oxygen uptake in healthy adults ages 40 to 79 years.

    Science.gov (United States)

    Pober, David M; Freedson, Patty S; Kline, Gregory M; McInnis, Kyle J; Rippe, James M

    2002-12-01

    The purpose of this investigation was to determine whether the Rockport one-mile walk test equation to predict maximal oxygen uptake was valid for application to treadmill walking. When the Rockport model was found to be inappropriate, a new regression model was developed for predicting peak oxygen uptake (VO2peak) from a one-mile treadmill walk. 304 healthy volunteers ages 40 to 79 years (mean age = 57.6 years, 154 men and 150 women) completed a VO2peak test and a one-mile treadmill walk. Stepwise regression was used to build a model for the relationship between VO2peak and a variety of predictor variables in a sub-sample development group (n = 154). This new model was then applied to a sub-sample validation group (n = 150). The new equation produced a correlation of 0.87, SEE = 4.7 ml x kg (-1) x min (-1) with a mean residual of 0.96 ml x kg (-1) x min (-1). The equation for predicting VO2peak developed in this investigation provides a means of assessing VO2peak that is easy to administer, allows for careful supervision of subjects, and can be completed at a low financial and temporal cost.

  3. Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: A functional near-infrared spectroscopy neuroimaging study.

    Science.gov (United States)

    Kim, Ha Yeon; Yang, Sung Phil; Park, Gyu Lee; Kim, Eun Joo; You, Joshua Sung Hyun

    2016-01-01

    Robot-assisted and treadmill-gait training are promising neurorehabilitation techniques, with advantages over conventional gait training, but the neural substrates underpinning locomotor control remain unknown particularly during different gait training modes and speeds. The present optical imaging study compared cortical activities during conventional stepping walking (SW), treadmill walking (TW), and robot-assisted walking (RW) at different speeds. Fourteen healthy subjects (6 women, mean age 30.06, years ± 4.53) completed three walking training modes (SW, TW, and RW) at various speeds (self-selected, 1.5, 2.0, 2.5, and 3.0  km/h). A functional near-infrared spectroscopy (fNIRS) system determined cerebral hemodynamic changes associated with cortical locomotor network areas in the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). There was increased cortical activation in the SMC, PMC, and SMA during different walking training modes. More global locomotor network activation was observed during RW than TW or SW. As walking speed increased, multiple locomotor network activations were observed, and increased activation power spectrum. This is the first empirical evidence highlighting the neural substrates mediating dynamic locomotion for different gait training modes and speeds. Fast, robot-assisted gait training best facilitated cortical activation associated with locomotor control.

  4. Determining the best percent-predicted equation for estimated VO2 peak by a 1-km moderate perceptually-regulated treadmill walk to predict mortality in outpatients with cardiovascular disease.

    Science.gov (United States)

    Grazzi, Giovanni; Mazzoni, Gianni; Myers, Jonathan; Codecà, Luciano; Pasanisi, Giovanni; Mandini, Simona; Piepoli, Massimo; Volpato, Stefano; Conconi, Francesco; Chiaranda, Giorgio

    2017-06-08

    To determine the prognostic ability of established percent-predicted equations of peak oxygen consumption (%PRED) estimated by a moderate submaximal walking test in a large cohort of outpatients with cardiovascular disease (CVD). Population-based prospective study. A total of 1442 male patients aged 25-85 years at baseline, underwent a moderate perceptually-regulated (11-13 on the 6-20 Borg scale) treadmill walk (1k-TWT) for peak oxygen consumption estimation (VO2 peak). %PRED was derived from ACSM, Ades et al, Morris et al, and the Wasserman/Hansen equations, and their prognostic performance was assessed. Overall mortality was the end point. Participants were divided into quartiles of %PRED, and mortality risk was estimated using a Cox regression model. During a median 8.2year follow-up, 167 all-cause deaths occurred. The Wasserman/Hansen equation provided the highest prognostic value. Mortality rate was lower across increasing quartiles of %PRED. Compared to the first quartile, after adjustment for confounders, the mortality risk decreased for the second, third, and fourth quartiles, with HRs of 0.75 (95% CI 0.44-1.29, p=0.29), 0.67 (95% CI 0.38-1.18, p=0.17), and 0.37 (95% CI 0.10-0.78, p=0.009), respectively (p for trend TWT is inversely and significantly related to survival in cardiac outpatients. The 1k-TWT is a simple and useful tool for stratifying mortality risk in patients participating in secondary prevention programs. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. The association between submaximal quadriceps force steadiness and the knee adduction moment during walking in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Sørensen, Tina Juul; Langberg, Henning; Aaboe, Jens

    2011-01-01

    STUDY DESIGN: Cross-sectional study. OBJECTIVES: To investigate the relationship between quadriceps force steadiness and knee adduction moment during walking in patients with knee osteoarthritis (OA). BACKGROUND: Studies have shown that quadriceps force steadiness is impaired in patients with knee......, and knee pain was assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) pain subscale and a visual analog scale. RESULTS: Regression analyses showed that quadriceps force steadiness did not predict the peak knee adduction moment (adjusted R2 = 0.05, P = .41). Inclusion of covariates did...

  6. Exploratory study on oxygen consumption on-kinetics during treadmill walking in women with systemic lupus erythematosus.

    Science.gov (United States)

    Keyser, Randall E; Rus, Violeta; Mikdashi, Jamal A; Handwerger, Barry S

    2010-09-01

    To determine whether oxygen consumption (V o(2)) on-kinetics differed between groups of women with systemic lupus erythematosus (SLE) and sedentary but otherwise healthy controls. Exploratory case-control study. Medical school exercise physiology laboratory. Convenience samples of women with SLE (n=12) and sedentary but otherwise healthy controls (n=10). None. V o(2) on-kinetics indices including time to steady state, rate constant, mean response time (MRT), transition constant, and oxygen deficit measured during bouts of treadmill walking at intensities of 3 and 5 metabolic equivalents (METs). Time to steady state and oxygen deficit were increased and rate constant was decreased in the women with SLE compared with controls. At the 5-MET energy demand, the transition constant was lower and MRT was longer in the women with SLE than in controls. For a similar relative energy expenditure that was slightly lower than the anaerobic threshold, the transition constant was higher in controls than in women with SLE. V o(2) on-kinetics was prolonged in women with SLE. The prolongation was concomitant with an increase in oxygen deficit and may underlie performance fatigability in women with SLE.

  7. Effects of a 6-Week Aquatic Treadmill Exercise Program on Cardiorespiratory Fitness and Walking Endurance in Subacute Stroke Patients: A PILOT TRIAL.

    Science.gov (United States)

    Han, Eun Young; Im, Sang Hee

    2017-03-15

    To assess the feasibility and safety of a 6-week course of water walking performed using a motorized aquatic treadmill in individuals with subacute stroke for cardiorespiratory fitness, walking endurance, and activities of daily living. Twenty subacute stroke patents were randomly assigned to aquatic treadmill exercise (ATE) or land-based exercise (LBE). The ATE group (n = 10) performed water-based aerobic exercise on a motorized aquatic treadmill, and the LBE group (n = 10) performed land-based aerobic exercise on a cycle ergometer. Both groups performed aerobic exercise for 30 minutes, 5 times per week for 6 weeks. Primary outcome measures were 6-minute walk test for walking endurance and cardiopulmonary fitness parameters of a symptom-limited exercise tolerance test, and secondary measures were Korean version of the Modified Barthel Index (K-MBI) for activities of daily living. All variables were assessed at baseline and at the end of the intervention. The ATE group showed significant improvements in 6-minute walk test (P = .005), peak oxygen uptake (V·o2peak; P = .005), peak heart rate (P = .007), exercise tolerance test duration (P = .005), and K-MBI (P = .008). The LBE group showed a significant improvement only in K-MBI (P = .012). In addition, improvement in V·o2peak was greater in the ATE than in the LBE group. This preliminary study showed that a 6-week ATE program improved peak aerobic capacity and walking endurance in patients with subacute stroke. The improvement in V·o2peak after an ATE exercise program was greater than that observed after an LBE program. Therefore, ATE effectively improves cardiopulmonary fitness in patients with subacute stroke.

  8. Comparison of energy cost between genders during treadmill walking at a self-selected pace - doi 10.4025/actascihealthsci.v34i2.9333

    Directory of Open Access Journals (Sweden)

    Sergio Gregorio da Silva

    2012-09-01

    Full Text Available The purpose of this study was to compare the energy cost between genders during treadmill walking at self-selected pace; and to verify if the energy cost achieve the values recommended for weight maintenance or loss proposed by the American College of Sports Medicine (ACSM. Seventeen men and seventeen women, mean age of 23.32 ± 3.06 years, undertaken two experimental sessions: (I anthropometric measurements and a load-incremental maximum test; and, (II a 20-min walking test at self-selected pace on treadmill. Men showed a greater energy cost than women (146.18 ± 47.66 and 100.86 ± 17.04 kcal, respectively. This difference was maintained after adjust by body weight (2.2 ± 0.5 and 1.7 ± 0.2 kcal kg-1, respectively. The greater energy cost found in men can be explained by the self-selected treadmill speed that lead to a greater O2 in men. However, the exercise intensity selected by both genders did not elicit an effective energy cost that can promote weight maintenance or loss. Nonetheless, if participants performed a longer walking (> 20 minutes, they probably would achieve the energy cost recommended by the ACSM guidelines.  

  9. Effects of acupuncture, core-stability exercises, and treadmill walking exercises in treating a patient with postsurgical lumbar disc herniation: a clinical case report.

    Science.gov (United States)

    Ganiyu, Sokunbi Oluwaleke; Gujba, Kachalla Fatimah

    2015-02-01

    The objective of this study is to investigate the effects of acupuncture, core-stability exercises, and treadmill 12-minute walking exercises in treating patients with postsurgical lumbar disc herniation. A 34-year-old woman with a history lumbar disc prolapse who had undergone lumbar disc surgery on two different occasions was treated using acupuncture, core-stability exercises, and treadmill walking exercises three times per week for 12 weeks. The outcome measures used in this study were pain intensity, spinal range of movement, and general health. After 12 weeks of treatment, the patient had made improvement in terms of pain, which was reduced from 9/10 to 1/10. In a similar vein, the patient's general health showed improvement of >100% after 12 weeks of treatment. Pre-treatment scores of spinal flexion and left-side flexion, which measured 20 cm and 12 cm, respectively, increased to 25 cm and 16 cm after 12 weeks of treatment. This study showed that acupuncture, core-stability exercises, and treadmill walking exercises were useful in relieving pain, increasing spinal range of movement, and improving the health of a patient with postsurgical lumbar disc herniation. Copyright © 2015. Published by Elsevier B.V.

  10. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.

    Science.gov (United States)

    Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo

    2015-09-06

    Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the

  11. The effects of arm crank ergometry, cycle ergometry and treadmill walking on postural sway in healthy older females.

    Science.gov (United States)

    Hill, M W; Oxford, S W; Duncan, M J; Price, M J

    2015-01-01

    Older adults are increasingly being encouraged to exercise but this may lead to muscle fatigue, which can adversely affect postural stability. Few studies have investigated the effects of upper body exercise on postural sway in groups at risk of falling, such as the elderly. The purpose of this study was to compare the effects arm crank ergometry (ACE), cycle ergometry (CE) and treadmill walking (TM) on postural sway in healthy older females. In addition, this study sought to determine the time necessary to recover postural control after exercise. A total of nine healthy older females participated in this study. Participants stood on a force platform to assess postural sway which was measured by displacement of the centre of pressure before and after six separate exercise trials. Each participant completed three incremental exercise tests to 85% of individual's theoretical maximal heart rate (HRMAX) for ACE, CE and TM. Subsequent tests involved 20-min of ACE, CE and TM exercise at a relative workload corresponding to 50% of each individual's predetermined heart rate reserve (HRE). Post fatigue effects and postural control recovery were measured at different times after exercise (1, 3, 5, 10, 15 and 30-min). None of the participants exhibited impaired postural stability after ACE. In contrast, CE and TM elicited significant post exercise balance impairments, which lasted for ∼ 10 min post exercise. We provide evidence of an exercise mode which does not elicit post exercise balance impairments. Older adults should exercise caution immediately following exercise engaging the lower limbs to avoid fall risk. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.

    Science.gov (United States)

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon

    2015-03-01

    Techniques that could be used to monitor human motion precisely are helpful in various applications such as rehabilitation, gait analysis, and athletic performance analysis. This paper focuses on the 3-D foot trajectory measurements based on a wearable wireless ultrasonic sensor network. The system consists of an ultrasonic transmitter (mobile) and several receivers (anchors) with fixed known positions. In order not to restrict the movement of subjects, a radio frequency (RF) module is used for wireless data transmission. The RF module also provides the synchronization clock between mobile and anchors. The proposed system measures the time-of-arrival (TOA) of the ultrasonic signal from mobile to anchors. Together with the knowledge of the anchor's position, the absolute distance that the signal travels can be computed. Then, the range information defines a circle centered at this anchor with radius equal to the measured distance, and the mobile resides within the intersections of several such circles. Based on the TOA-based tracking technique, the 3-D foot trajectories are validated against a camera-based motion capture system for ten healthy subjects walking on a treadmill at slow, normal, and fast speeds. The experimental results have shown that the ultrasonic system has sufficient accuracy of net root-mean-square error ( 4.2 cm) for 3-D displacement, especially for foot clearance with accuracy and standard deviation ( 0.62 ±7.48 mm) compared to the camera-based motion capture system. The small form factor and lightweight feature of the proposed system make it easy to use. Such a system is also much lower in cost compared to the camera-based tracking system.

  13. Effect of water depth on amount of flexion and extension of joints of the distal aspects of the limbs in healthy horses walking on an underwater treadmill.

    Science.gov (United States)

    Mendez-Angulo, Jose L; Firshman, Anna M; Groschen, Donna M; Kieffer, Philip J; Trumble, Troy N

    2013-04-01

    To determine the maximum amount of flexion and extension of the carpal, tarsal, metacarpophalangeal, and metatarsophalangeal joints and the percentage duration of the stance and swing phases of the stride for horses walking on an underwater treadmill in various water depths. 9 healthy adult horses. Zinc oxide markers were placed on the forelimbs and hind limbs of the horses. Video was recorded of horses walking (0.9 m/s) on an underwater treadmill during baseline conditions (joints). Maximum amount of joint flexion and extension, range of motion (ROM), and the percentage durations of the stance and swing phases of the stride were determined with 2-D motion analysis software. The ROM was greater for all evaluated joints in any amount of water versus ROM for joints in baseline conditions (primarily because of increases in amount of joint flexion). The greatest ROM for carpal joints was detected in a tarsal joint water depth, for tarsal joints in a stifle joint water depth, and for metacarpophalangeal and metatarsophalangeal joints in metatarsophalangeal and tarsal joint water depths. As water depth increased, the percentage durations of the stance and swing phases of the stride significantly decreased and increased, respectively. Results of this study suggested that exercise on an underwater treadmill is useful for increasing the ROM of various joints of horses during rehabilitation and that the depth of water affects the amount of flexion and extension of joints.

  14. Effects of interventions on normalizing step width during self-paced dual-belt treadmill walking with virtual reality, a randomised controlled trial.

    Science.gov (United States)

    Oude Lansink, I L B; van Kouwenhove, L; Dijkstra, P U; Postema, K; Hijmans, J M

    2017-10-01

    Step width is increased during dual-belt treadmill walking, in self-paced mode with virtual reality. Generally a familiarization period is thought to be necessary to normalize step width. The aim of this randomised study was to analyze the effects of two interventions on step width, to reduce the familiarization period. We used the GRAIL (Gait Real-time Analysis Interactive Lab), a dual-belt treadmill with virtual reality in the self-paced mode. Thirty healthy young adults were randomly allocated to three groups and asked to walk at their preferred speed for 5min. In the first session, the control-group received no intervention, the 'walk-on-the-line'-group was instructed to walk on a line, projected on the between-belt gap of the treadmill and the feedback-group received feedback about their current step width and were asked to reduce it. Interventions started after 1min and lasted 1min. During the second session, 7-10days later, no interventions were given. Linear mixed modeling showed that interventions did not have an effect on step width after the intervention period in session 1. Initial step width (second 30s) of session 1 was larger than initial step width of session 2. Step width normalized after 2min and variation in step width stabilized after 1min. Interventions do not reduce step width after intervention period. A 2-min familiarization period is sufficient to normalize and stabilize step width, in healthy young adults, regardless of interventions. A standardized intervention to normalize step width is not necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparison of forward versus backward walking using body weight supported treadmill training in an individual with a spinal cord injury: a single subject design.

    Science.gov (United States)

    Moriello, Gabriele; Pathare, Neeti; Cirone, Cono; Pastore, Danielle; Shears, Dacia; Sulehri, Sahira

    2014-01-01

    Body weight supported treadmill training (BWSTT) is a task-specific intervention that promotes functional locomotion. There is no research evaluating the effect of backward walking (BW) using BWSTT in individuals with spinal cord injury (SCI). The purpose of this single subject design was to examine the differences between forward walking (FW) and BW training using BWSTT in an individual with quadriparesis. The participant was a 57-year-old male with incomplete C3-C6 SCI. An ABABAB design (A = BW; B = FW; each phase = 3 weeks of biweekly sessions) was utilized. Outcome measures included: gait parameters; a timed 4-meter walk; the 5-repetition sit-to-stand test (STST); tandem stance time; and 6-minute walk test (6MWT). Data was analyzed with split level method of trend estimation. Improvements in gait parameters, on the timed 4-meter walk, 6MWT, tandem balance and aerobic endurance were similar with FW and BW training. The only difference between FW and BW training was that BW training resulted in greater improvements in the STST. The results of this study suggest that in this individual backward walking training was advantageous, resulting in improved ability to perform the 5-repetition STST. It is suspected that these changes can be attributed to the differences in muscle activation and task difficulty between FW and BW.

  16. Oxygen uptake, heart rate, perceived exertion, and integrated electromyogram of the lower and upper extremities during level and Nordic walking on a treadmill.

    Science.gov (United States)

    Sugiyama, Koji; Kawamura, Mami; Tomita, Hisato; Katamoto, Shizuo

    2013-02-13

    The purpose of this study was to characterize responses in oxygen uptake ( V·O(2)), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60 m/min for 3 minutes, with incremental increases of 10 m/min every 2 minutes up to 120 m/min V·O(2), V·(E) and HR were measured every 30 seconds, and the OMNI scale was used during the final 15 seconds of each exercise. EMG readings were recorded from the triceps brachii, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior muscles. V·O(2) was significantly higher during NW than during LW, with the exception of the speed of 70 m/min (P reading for the VL was lower during NW than during LW at all walking speeds, while the iEMG reading for the BF and GA muscles were significantly lower during NW than LW at some speeds. These data suggest that the use of poles in NW attenuates muscle activity in the lower extremities during the stance and push-off phases, and decreases that of the lower extremities and increase energy expenditure of the upper body and respiratory system at certain walking speeds.

  17. Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking.

    Science.gov (United States)

    Luu, Trieu Phat; Nakagome, Sho; He, Yongtian; Contreras-Vidal, Jose L

    2017-08-21

    Recent advances in non-invasive brain-computer interface (BCI) technologies have shown the feasibility of neural decoding for both users' gait intent and continuous kinematics. However, the dynamics of cortical involvement in human upright walking with a closed-loop BCI has not been investigated. This study aims to investigate the changes of cortical involvement in human treadmill walking with and without BCI control of a walking avatar. Source localization revealed significant differences in cortical network activity between walking with and without closed-loop BCI control. Our results showed sustained α/µ suppression in the Posterior Parietal Cortex and Inferior Parietal Lobe, indicating increases of cortical involvement during walking with BCI control. We also observed significant increased activity of the Anterior Cingulate Cortex (ACC) in the low frequency band suggesting the presence of a cortical network involved in error monitoring and motor learning. Additionally, the presence of low γ modulations in the ACC and Superior Temporal Gyrus may associate with increases of voluntary control of human gait. This work is a further step toward the development of a novel training paradigm for improving the efficacy of rehabilitation in a top-down approach.

  18. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running.

    Science.gov (United States)

    Price, Kym; Bird, Stephen R; Lythgo, Noel; Raj, Isaac S; Wong, Jason Y L; Lynch, Chris

    2017-04-01

    To determine the validity of energy expenditure estimation made by the Fitbit One, Garmin Vivofit and Jawbone UP activity trackers during treadmill walking and running. Determining validity of such trackers will inform the interpretation of the data they generate. Cross-sectional study. Fourteen adults walked at 0.70, 1.25, 1.80 ms-1 and ran at 2.22, 2.78, 3.33 ms-1 on a treadmill wearing a Fitbit One, Garmin Vivofit and Jawbone UP. Estimation of energy expenditure from each tracker was compared to measurement from indirect calorimetry (criterion). Paired t-tests, correlation coefficients and Bland-Altman plots assessed agreement and proportional bias. Mean percentage difference assessed magnitude of difference between estimated and criterion energy expenditure for each speed. Energy expenditure estimates from the Fitbit One and Garmin Vivofit correlated significantly (pGarmin Vivofit and Jawbone UP correlated significantly (p Garmin Vivofit correlated significantly (pGarmin Vivofit. Energy expenditure estimations of single speeds were overestimated by the Fitbit One and underestimated by the Garmin Vivofit. Energy expenditure reported by the devices distinguished between walking and running, with a general increase as exercise intensity increased. However, the reported energy expenditure from these devices should be interpreted with caution, given their potential bias and error. Practical implications Although devices report the same outcome of EE estimation, they are not equivalent to each other and differ from criterion measurements during walking and running. These devices are not suitable as research measurement tools for recording precise and accurate EE estimates but may be suitable for use in interventions of behaviour change as they provide feedback to user on trends in energy expenditure. If intending to use these devices in studies where precise measurements of energy expenditure are required, researchers need to undertake specific validation and

  19. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system.

    Science.gov (United States)

    Nüesch, Corina; Roos, Elena; Pagenstert, Geert; Mündermann, Annegret

    2017-05-24

    Inertial sensor systems are becoming increasingly popular for gait analysis because their use is simple and time efficient. This study aimed to compare joint kinematics measured by the inertial sensor system RehaGait® with those of an optoelectronic system (Vicon®) for treadmill walking and running. Additionally, the test re-test repeatability of kinematic waveforms and discrete parameters for the RehaGait® was investigated. Twenty healthy runners participated in this study. Inertial sensors and reflective markers (PlugIn Gait) were attached according to respective guidelines. The two systems were started manually at the same time. Twenty consecutive strides for walking and running were recorded and each software calculated sagittal plane ankle, knee and hip kinematics. Measurements were repeated after 20min. Ensemble means were analyzed calculating coefficients of multiple correlation for waveforms and root mean square errors (RMSE) for waveforms and discrete parameters. After correcting the offset between waveforms, the two systems/models showed good agreement with coefficients of multiple correlation above 0.950 for walking and running. RMSE of the waveforms were below 5° for walking and below 8° for running. RMSE for ranges of motion were between 4° and 9° for walking and running. Repeatability analysis of waveforms showed very good to excellent coefficients of multiple correlation (>0.937) and RMSE of 3° for walking and 3-7° for running. These results indicate that in healthy subjects sagittal plane joint kinematics measured with the RehaGait® are comparable to those using a Vicon® system/model and that the measured kinematics have a good repeatability, especially for walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.

    Science.gov (United States)

    Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-10-01

    To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  1. The effect of bridge exercise method on the strength of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels.

    Science.gov (United States)

    Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook

    2017-04-01

    [Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.

  2. Post-exercise hypotensive responses following an acute bout of aquatic and overground treadmill walking in people post-stroke: a pilot study.

    Science.gov (United States)

    Lai, Byron; Jeng, Brenda; Vrongistinos, Konstantinos; Jung, Taeyou

    2015-06-01

    The purpose of this study is to investigate the effects of a single-bout of aquatic treadmill walking (ATW) and overground treadmill walking (OTW) on the magnitude and duration of post-exercise ambulatory blood pressure (BP) in people post-stroke. Seven people post-stroke participated in a cross-sectional comparative study. BP was monitored for up to 9 hours after a 15-minute bout of ATW and OTW at approximately 70% of maximal oxygen consumption (VO2max), performed on separate days. Mean systolic and diastolic BP values were compared between both exercise conditions and a day without exercise (control). Three hours after OTW, mean SBP increased by 9% from pre-exercise baseline compared to a 3% decrease during the control day (P exercise compared to a 1% DBP increase of the control day (P exercise (P exercise. Also, these data suggest that ATW can elicit clinically meaningful reductions in DBP and night-time SBP. Thus, it is recommended for clinicians to consider ATW as a non-pharmaceutical means to regulate DBP and promote nighttime dipping of SBP in people post-stroke. However, caution is advised during the immediate hours after exercise, a period of possible BP inflation.

  3. Varied overground walking-task practice versus body-weight-supported treadmill training in ambulatory adults within one year of stroke: a randomized controlled trial protocol

    Directory of Open Access Journals (Sweden)

    DePaul Vincent G

    2011-10-01

    Full Text Available Abstract Background Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP, a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT in community-dwelling, ambulatory, adults within 1 year of stroke. Methods/Design A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1 using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. Discussion In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that

  4. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    Science.gov (United States)

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  5. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson’s Disease: A Proof of Concept

    Science.gov (United States)

    Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco

    2017-01-01

    Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson’s disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking. PMID:28293213

  6. Metabolic and physiological effects of ingesting extracts of bitter orange, green tea and guarana at rest and during treadmill walking in overweight males.

    Science.gov (United States)

    Sale, C; Harris, R C; Delves, S; Corbett, J

    2006-05-01

    This study examined the acute effects of ingesting a widely used commercial formula containing extracts of bitter orange, green tea and guarana (Gx) on the metabolic rate and substrate utilisation in overweight, adult males at rest (study 1) and during treadmill walking (study 2). Two different groups of 10 sedentary males with more than 20% body fat participated in studies 1 and 2. In each study, subjects participated in two experimental trials during which they were given two 500 mg capsules containing either Gx or a placebo (P) in a counterbalanced double-blind manner. Doses of the main active ingredients were 6 mg of synephrine, 150 mg caffeine and 150 mg catechin polyphenols. In study 1, subjects completed 7 h supine rest with baseline measures taken during the first hour, with expired gases, blood pressure, heart rate and venous blood being collected every 30 min for the remaining 6 h following ingestion of Gx or P. In study 2, subjects exercised for 60 min at 60% heart rate reserve following ingestion of Gx or P 1 h previously. Venous blood samples were collected twice at rest and at 5, 10, 15, 20, 30, 40, 50 and 60 min, with expired gas measurements taken at 4, 9, 14, 19, 29, 39, 49 and 59 min. In both studies, venous blood was analysed for NEFA, glycerol, glucose and lactate concentrations, while expired gases were used to calculate ATP production from carbohydrate and NEFA, as well as the total substrate utilised. The results did not show any significant effect of Gx ingestion on total ATP utilisation during 6 h rest or during 60 min treadmill walking. Changes were observed in the relative contributions of CHO and NEFA oxidation to ATP production in both studies, such that there was an increase in ATP production from CHO and a decrease from NEFA. The increase in CHO oxidation was shown to be as high as 30% at rest.

  7. Comparing VO2max determined by using the relation between heart rate and accelerometry with submaximal estimated VO2max.

    Science.gov (United States)

    Tönis, T M; Gorter, K; Vollenbroek-Hutten, M M R; Hermens, H

    2012-08-01

    An exploratory study to identify parameters that can be used for estimating a subject's cardio-respiratory physical fitness level, expressed as VO2max, from a combination of heart rate and 3D accelerometer data. Data were gathered from 41 healthy subjects (23 male, 18 female) aged between 20 and 29 years. The measurement protocol consisted of a sub-maximal single stage treadmill walking test for VO2max estimation followed by a walking test at two different speeds (4 and 5.5 kmh-1) for parameter determination. The relation between measured heart rate and accelerometer output at different walking speeds was used to get an indication of exercise intensity and the corresponding heart rate at that intensity. Regression analysis was performed using general subject measures (age, gender, weight, length, BMI) and intercept and slope of the relation between heart rate and accelerometer output during walking as independent variables to estimate the VO2max. A linear regression model using a combination of the slope and intercept parameters, together with gender revealed the highest percentage of explained variance (R2 = 0.90) and had a standard error of the estimate (SEE) of 2.052 mL O2kg-1min-1 with VO2max. Results are comparable with current commonly used sub-maximal laboratory tests to estimate VO2max. The combination of heart rate and accelerometer data seems promising for ambulant estimation of VO2max-.

  8. Pelvic step: The contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill

    NARCIS (Netherlands)

    Liang, B.W.; Wu, W.H.; Meijer, O.G.; Lin, J.H.; Lv, G.R.; Lin, X.C.; Prins, M.R.; Hu, H.; van Dieen, J.H.; Bruijn, S.M.

    2014-01-01

    Transverse plane pelvis rotations during walking may be regarded as the "first determinant of gait". This would assume that pelvis rotations increase step length, and thereby reduce the vertical movements of the centre of mass-"the pelvic step". We analysed the pelvic step using 20 healthy young

  9. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers

    NARCIS (Netherlands)

    van Kammen, Klaske; Boonstra, Anne M.; van der Woude, Lucas H. V.; Reinders-Messelink, Heelen; Otter, den Rob

    2017-01-01

    Background: The Lokomat is a robotic exoskeleton that can be used to train gait function in hemiparetic stroke. To purposefully employ the Lokomat for training, it is important to understand (1) how Lokomat guided walking affects muscle activity following stroke and how these effects differ between

  10. Raising heels of hind hooves changes the equine coffin, fetlock and hock joint angle: a kinematic evaluation on the treadmill at walk and trot.

    Science.gov (United States)

    Peham, C; Girtler, D; Kicker, C; Licka, T

    2006-08-01

    Raised heels are commonly recommended for various equine orthopaedic conditions. However, the simultaneous effect of raised heels on the different joint angles of the equine hindlimb throughout the motion cycle has not been previously evaluated. To document the simultaneous effect of raised heels on the joint angles of the equine hindlimb coffin, fetlock and hock joints. Eight sound, adult, Warmblood horses were evaluated barefoot and with a heel wedge of 8 or 16 degrees, walking and trotting on a horizontal treadmill. Markers placed on the dorsal and cranial aspect of the hindlimb were traced using a 3D high speed video system and joint angles calculated. The effects of raising the hindlimb heels by 8 or 16 degrees on the angles of the hindlimb during the stance phase are a reduction of the plantar combined coffin joint and pastern joint angle, a reduction of maximum extension in the fetlock joint, and an increase in maximum hock flexion. The relation between angles did not change significantly during the course of the stance phase in the three measurement situations, with only small differences in time of occurrence of each joint angle maxima and minima. Raising the heels of hind hooves increases flexion of the coffin and hock joints during the stance phases of walk and trot, and a doubling of the angle of the raised heels also doubles the effect on the joint angles investigated. Raised heels reduce the maximum extension of the fetlock joint during the the stance phase at walk and trot. This study provides evidence for the therapeutic use of raised shoes with heels in horses with pain on maximum hock extension, e.g. spavin.

  11. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects.

    Science.gov (United States)

    Wagner, Johanna; Solis-Escalante, Teodoro; Grieshofer, Peter; Neuper, Christa; Müller-Putz, Gernot; Scherer, Reinhold

    2012-11-15

    In robot assisted gait training, a pattern of human locomotion is executed repetitively with the intention to restore the motor programs associated with walking. Several studies showed that active contribution to the movement is critical for the encoding of motor memory. We propose to use brain monitoring techniques during gait training to encourage active participation in the movement. We investigated the spectral patterns in the electroencephalogram (EEG) that are related to active and passive robot assisted gait. Fourteen healthy participants were considered. Infomax independent component analysis separated the EEG into independent components representing brain, muscle, and eye movement activity, as well as other artifacts. An equivalent current dipole was calculated for each independent component. Independent components were clustered across participants based on their anatomical position and frequency spectra. Four clusters were identified in the sensorimotor cortices that accounted for differences between active and passive walking or showed activity related to the gait cycle. We show that in central midline areas the mu (8-12 Hz) and beta (18-21 Hz) rhythms are suppressed during active compared to passive walking. These changes are statistically significant: mu (F(1, 13)=11.2 p ≤ 0.01) and beta (F(1, 13)=7.7, p ≤ 0.05). We also show that these differences depend on the gait cycle phases. We provide first evidence of modulations of the gamma rhythm in the band 25 to 40 Hz, localized in central midline areas related to the phases of the gait cycle. We observed a trend (F(1, 8)=11.03, p ≤ 0.06) for suppressed low gamma rhythm when comparing active and passive walking. Additionally we found significant suppressions of the mu (F(1, 11)=20.1 p ≤ 0.01), beta (F(1, 11)=11.3 p ≤ 0.05) and gamma (F(1, 11)=4.9 p ≤ 0.05) rhythms near C3 (in the right hand area of the primary motor cortex) during phases of active vs. passive robot assisted walking. To our

  12. Robot-assisted hindlimb extension increases the probability of swing initiation during treadmill walking by spinal cord contused rats.

    Science.gov (United States)

    Nessler, Jeff A; Minakata, Koyiro; Sharp, Kelli; Reinkensmeyer, David J

    2007-01-15

    Training and evaluation of locomotion in animals with spinal cord injury will likely be improved with the development of techniques that increase stepping activity. We hypothesized that robot-assisted extension of the hindlimbs of spinal cord injured rats during stance would increase the probability that the swing phase of gait would be initiated. Thirty-three adult, Sprague-Dawley rats received a contusion injury to the mid-thoracic spinal cord. The animals' hindlimbs were pulled into extension using small robotic arms to pull at the ankle, as the rat stepped on either a reciprocating, robotic paw platform or a conventional treadmill belt. The animals demonstrated an increase in the probability of swing initiation with spontaneous recovery during the first 4 weeks following injury (p probability of swing initiation was found to be greater with the use of robot-assisted extension versus no extension force at the ankle (75+/-16.9% versus 38.9+/-16.6%, p robot-assisted extension, thereby providing possible benefits to evaluation and training of gait following SCI.

  13. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.

    Science.gov (United States)

    Silver-Thorn, Barbara; Current, Thomas; Kuhse, Benjamin

    2012-12-01

    Novel powered prosthetic ankles currently incorporate finite state control, using kinematic and kinetic sensors to differentiate stance and swing phases/sub-phases and control joint impedance and position or torque. For more intuitive control, myoelectric control of the ankle using the remnant residual limb dorsiflexors and plantarflexors, perhaps in concert with kinetic and kinematic sensors, may be possible. The specific research objective was to assess the feasibility of using myoelectric control of future active or powered prosthetic ankle joints for trans-tibial amputees. The project involved human subject trials to determine whether current techniques of myoelectric control of upper extremity prostheses might be readily adapted for lower extremity prosthetic control. Gait analysis was conducted for three unilateral trans-tibial amputee subjects during ambulation on an instrumented split belt treadmill. Data included ankle plantarflexor and dorsiflexor activity for the residual limb, as well as lower limb kinematics and ground reaction forces and moments of both the sound and prosthetic limbs. These data indicate that: 1) trans-tibial amputees retain some independent ankle plantarflexor and dorsiflexor muscle activity of their residual limb; 2) it is possible to position surface electromyographic electrodes within a trans-tibial socket that maintain contact during ambulation; 3) both the plantarflexors and dorsiflexors of the residual limb are active during gait; 4) plantarflexor and dorsiflexor activity is consistent during multiple gait cycles; and 5) with minimal training, trans-tibial amputees may be able to activate their plantarflexors during push-off. These observations demonstrate the potential for future myoelectric control of active prosthetic ankles. Clinical relevance This study demonstrated the feasibility of applying upper extremity prosthetic myoelectric signal acquisition, processing and control techniques to future myoelectric control of

  14. Feasibility of visual instrumented movement feedback therapy in individuals with motor incomplete spinal cord injury walking on a treadmill

    Directory of Open Access Journals (Sweden)

    Daniel eSchließmann

    2014-06-01

    Full Text Available Background: Incomplete spinal cord injury (iSCI leads to motor and sensory deficits. Even in ambulatory persons with good motor function an impaired proprioception may result in an insecure gait. Limited internal afferent feedback (FB can be compensated by provision of external FB by therapists or technical systems. Progress in computational power of motion analysis systems allows for implementation of instrumented real-time FB. The aim of this study was to test if individuals with iSCI can normalize their gait kinematics during FB and more importantly maintain an improvement after therapy. Methods: Individuals with chronic iSCI had to complete 6 days (one day per week of treadmill-based FB training with a 2 weeks pause after 3 days of training. Each day consists of an initial gait analysis followed by 2 blocks with FB/no-FB. During FB the deviation of the mean knee angle during swing from a speed matched reference (norm distance, ND is visualized as a number. The task consists of lowering the ND, which was updated after every stride. Prior to the tests in patients the in-house developed FB implementation was tested in healthy subjects with an artificial movement task. Results: 4 of 5 study participants benefited from FB in the short and medium term. Decrease of mean ND was highest during the first 3 sessions (from 3.93±1.54 to 2.18±1.04. After the pause mean ND stayed in the same range than before. In the last 3 sessions the mean ND decreased slower (2.40±1.18 to 2.20±0.90. Direct influences of FB ranged from 60% to 15% of reduction in mean ND compared to initial gait analysis and from 20% to 1% compared to no-FB sessions. Conclusions: Instrumented kinematic real-time FB may serve as an effective adjunct to established gait therapies in normalizing the gait pattern after incomplete spinal cord injury. Further studies with larger patient groups need to prove long term learning and the successful transfer of newly acquired skills to

  15. Effects of a 6-month exercise program pilot study on walking economy, peak physiological characteristics, and walking performance in patients with peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Crowther RG

    2012-04-01

    Full Text Available Robert G Crowther1, Anthony S Leicht1, Warwick L Spinks1, Kunwarjit Sangla2, Frank Quigley2, Jonathan Golledge2,31Institute of Sport and Exercise Science, James Cook University, Townsville, Queensland, Australia; 2Townsville Hospital, Townsville, Queensland, Australia; 3The Vascular Biology Unit, James Cook University, Townsville, Queensland, AustraliaAbstract : The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC. Participants (n = 16 were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6 which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10 which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal–Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs.Keywords: vascular disease, peripheral vascular disease, walking economy

  16. Coxofemoral joint kinematics using video fluoroscopic images of treadmill-walking cats: development of a technique to assess osteoarthritis-associated disability.

    Science.gov (United States)

    Guillot, Martin; Gravel, Pierre; Gauthier, Marie-Lou; Leblond, Hugues; Tremblay, Maurice; Rossignol, Serge; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; de Guise, Jacques A; Troncy, Eric

    2015-02-01

    The objectives of this pilot study were to develop a video fluoroscopy kinematics method for the assessment of the coxofemoral joint in cats with and without osteoarthritis (OA)-associated disability. Two non-OA cats and four cats affected by coxofemoral OA were evaluated by video fluoroscopy. Video fluoroscopic images of the coxofemoral joints were captured at 120 frames/s using a customized C-arm X-ray system while cats walked freely on a treadmill at 0.4 m/s. The angle patterns over time of the coxofemoral joints were extracted using a graphic user interface following four steps: (i) correction for image distortion; (ii) image denoising and contrast enhancement; (iii) frame-to-frame anatomical marker identification; and (iv) statistical gait analysis. Reliability analysis was performed. The cats with OA presented greater intra-subject stride and gait cycle variability. Three cats with OA presented a left-right asymmetry in the range of movement of the coxofemoral joint angle in the sagittal plane (two with no overlap of the 95% confidence interval, and one with only a slight overlap) consistent with their painful OA joint, and a longer gait cycle duration. Reliability analysis revealed an absolute variation in the coxofemoral joint angle of 2º-6º, indicating that the two-dimensional video fluoroscopy technique provided reliable data. Improvement of this method is recommended: variability would likely be reduced if a larger field of view could be recorded, allowing the identification and tracking of each femoral axis, rather than the trochanter landmarks. The range of movement of the coxofemoral joint has the potential to be an objective marker of OA-associated disability. © ISFM and AAFP 2014.

  17. Cardiovascular responses in older adults with total knee arthroplasty at rest and with exercise on a positive pressure treadmill.

    Science.gov (United States)

    Webber, Sandra C; Horvey, Karla J; Yurach Pikaluk, Madison T; Butcher, Scott J

    2014-03-01

    We investigated cardiovascular responses at rest and during submaximal exercise on a lower body positive pressure treadmill in older adults with total knee arthroplasty (TKA). Twenty-four adults (mean age 64.6 ± 7.9 SD) with unilateral TKA participated (median time since surgery 8.0 weeks). Heart rate and blood pressure responses were measured at rest standing on the positive pressure treadmill with 0, 10, 20, and 30 mmHg applied. Heart rate, blood pressure, oxygen consumption, minute ventilation, knee pain and perceived exertion were measured during submaximal exercise tests (0 and 40% body weight support) conducted 1 week apart. At rest there were no differences in blood pressure across different treadmill pressures, but heart rate was significantly lower when 30 mmHg was applied compared to ambient pressure conditions (P exercise test stages with 0% body weight support (maximum speed 2.5 mph, 0% incline) and 6.4 stages with 40% body weight support (maximum speed 3.0 mph, 10% incline). During exercise, heart rate, systolic blood pressure, oxygen consumption, and minute ventilation were lower when 40% body weight support was provided for a given test stage (P exercise test stages (P < 0.05). Provision of body weight support allowed TKA patients to walk at faster speeds and/or to tolerate greater incline with relatively lower levels of heart rate, blood pressure, and oxygen consumption.

  18. An Investigation into Submaximal Endurance in Children with Motor ...

    African Journals Online (AJOL)

    This study investigated the submaximal endurance levels of children with motor difficulties, using the six-minute walk test (6MWT). A prospective, cross-sectional study was conducted. Forty-eight children between ages seven and ten years were enrolled. They came from similar socio-economic backgrounds and attended ...

  19. [Treadmills in rehabilitation medicine: technical characteristics and selection criteria].

    Science.gov (United States)

    Capodaglio, P; Vercelli, S; Colombo, R; Capodaglio, E M; del Moro, V Mattai; Franchignoni, F

    2008-01-01

    The treadmill is a commonly used means of testing and training patients with cardiopulmonary diseases. There is growing interest in the use of the treadmill also for rehabilitation of patients with orthopaedic and neurological diseases. Commercially available treadmills show wide differences in terms of structure and function that have a direct impact on the specific rehabilitation protocols. The aims of this paper are: a) to briefly review the physiology and biomechanics of treadmill exercise as compared to overground walking; b) to point out the technical specifications of treadmills suitable for rehabilitation settings; c) to provide guidelines for treadmill selection in the different categories of rehabilitation patients. First, the different physiological and biomechanical characteristics of walking on a treadmill and overground are discussed. Uphill and downhill walking as well as backward walking are also presented together with the spin-offs for rehabilitation practice. Then, the technical features of treadmills (treadbelt, frame, bars, deck, rollers, shock absorption, elevation motor, drive motor, flywheel, display) are described and the specific requisites for the different patient categories undergoing rehabilitation are discussed in detail. Finally, guidelines and a flow-chart for identifying the main technical requisites for appropriate treadmill selection in the different disabilities are provided. A summary table of the technical specifications of the commercially available rehabilitation treadmills is also included.

  20. Metabolic and clinical comparative analysis of treadmill six-minute walking test and cardiopulmonary exercise testing in obese and eutrophic women Análise clínica e metabólica comparativa entre o teste de caminhada de seis minutos e o teste de exercício cardiopulmonar em mulheres obesas e eutróficas

    Directory of Open Access Journals (Sweden)

    Luciana Di Thommazo-Luporini

    2012-01-01

    Full Text Available BACKGROUND: Impaired exercise tolerance is directly linked to decreased functional capacity as a consequence of obesity. OBJECTIVES: To analyze and compare the cardiopulmonary, metabolic, and perceptual responses during a cardiopulmonary exercise test (CPX and a treadmill six-minute walking test (tread6MWT in obese and eutrophic women. METHOD: Twenty-nine female participants, aged 20-45 years were included. Fourteen were allocated to the obese group and 15 to the eutrophic group. Anthropometric measurements and body composition assessment were performed. RESULTS: In both tests, obese women presented with significantly higher absolute oxygen uptake, minute ventilation, and systolic and diastolic blood pressure; they also presented with lower speed, distance walked, and oxygen uptake corrected by the weight compared to eutrophics. During the maximal exercise test, perceived dyspnea was greater and the respiratory exchange ratio was lower in obese subjects compared to eutrophics. During the submaximal test, carbon dioxide production, tidal volume, and heart rate were higher in obese subjects compared to eutrophic women. When analyzing possible correlations between the CPX and the tread6MWT at peak, there was a strong correlation for the variable heart rate and a moderate correlation for the variable oxygen uptake. The heart rate obtained in the submaximal test was able to predict the one obtained in the maximal test. Bland-Altman plots demonstrated the agreement between both tests to identify metabolic and physiological parameters at peak exercise. CONCLUSIONS: The six-minute walking test induced ventilatory, metabolic, and cardiovascular responses in agreement with the maximal testing. Thus, the six-minute walking test proves to be important for functional evaluation in the physical therapy routine.CONTEXTUALIZAÇÃO: A reduzida tolerância ao exercício está relacionada à diminuída capacidade funcional consequente da obesidade. Objetivos

  1. Metabolic and clinical comparative analysis of treadmill six-minute walking test and cardiopulmonary exercise testing in obese and eutrophic women Análise clínica e metabólica comparativa entre o teste de caminhada de seis minutos e o teste de exercício cardiopulmonar em mulheres obesas e eutróficas

    Directory of Open Access Journals (Sweden)

    Luciana Di Thommazo-Luporini

    2012-12-01

    Full Text Available BACKGROUND: Impaired exercise tolerance is directly linked to decreased functional capacity as a consequence of obesity. OBJECTIVES: To analyze and compare the cardiopulmonary, metabolic, and perceptual responses during a cardiopulmonary exercise test (CPX and a treadmill six-minute walking test (tread6MWT in obese and eutrophic women. METHOD: Twenty-nine female participants, aged 20-45 years were included. Fourteen were allocated to the obese group and 15 to the eutrophic group. Anthropometric measurements and body composition assessment were performed. RESULTS: In both tests, obese women presented with significantly higher absolute oxygen uptake, minute ventilation, and systolic and diastolic blood pressure; they also presented with lower speed, distance walked, and oxygen uptake corrected by the weight compared to eutrophics. During the maximal exercise test, perceived dyspnea was greater and the respiratory exchange ratio was lower in obese subjects compared to eutrophics. During the submaximal test, carbon dioxide production, tidal volume, and heart rate were higher in obese subjects compared to eutrophic women. When analyzing possible correlations between the CPX and the tread6MWT at peak, there was a strong correlation for the variable heart rate and a moderate correlation for the variable oxygen uptake. The heart rate obtained in the submaximal test was able to predict the one obtained in the maximal test. Bland-Altman plots demonstrated the agreement between both tests to identify metabolic and physiological parameters at peak exercise. CONCLUSIONS: The six-minute walking test induced ventilatory, metabolic, and cardiovascular responses in agreement with the maximal testing. Thus, the six-minute walking test proves to be important for functional evaluation in the physical therapy routine.CONTEXTUALIZAÇÃO: A reduzida tolerância ao exercício está relacionada à diminuída capacidade funcional consequente da obesidade. Objetivos

  2. Reproducibility of the self-controlled six-minute walking test in heart failure patients

    Directory of Open Access Journals (Sweden)

    Guilherme Veiga Guimarães

    2008-01-01

    Full Text Available INTRODUCTION: The six-minute walk test (6WT has been proposed to be a submaximal test, but could actually demand a high level of exercise intensity from the patient, expressed by a respiratory quotient >1.0, following the guideline recommendations. Standardizing the 6WT using the Borg scale was proposed to make sure that all patients undergo a submaximal walking test. PURPOSE: To test the reproducibility of the six-minute treadmill cardiopulmonary walk test (6CWT using the Borg scale and to make sure that all patients undergo a submaximal test. METHODS: Twenty-three male heart failure patients (50±9 years were included; these patients had both ischemic (5 and non-ischemic (18 heart failure with a left ventricle ejection fraction of 23±7%, were diagnosed as functional class NYHA II-III and were undergoing optimized drug therapy. Patients were guided to walk at a pace between "relatively easy and slightly tiring" (11 and 13 on Borg scale. The 6CWT using the Borg scale was performed two times on a treadmill with zero inclination and patient control of speed with an interval of 24 hours. During the sixth minute, we analyzed ventilation (VE, L/min, respiratory quotient, Oxygen consumption (VO2, ml/kg/min, VE/VCO2 slope, heart rate (HR, bpm, systolic blood pressure (SBP, mmHg, diastolic (DBP, mmHg blood pressure and distance. RESULTS: The intraclass correlation coefficients at the sixth minute were: HR (r i=0.96, p<0.0001, VE (r i=0.84, p<0.0001, SBP (r i=0.72, p=0.001, distance (r i=0.88, p<0.0001, VO2 (r i=0.92, p<0.0001, SlopeVE/VCO2 (r i=0.86, p<0.0001 and RQ<1 (r i=0.6, p=0.004. CONCLUSION: Using the 6CWT with the Borg scale was reproducible, and it seems to be an appropriate method to evaluate the functional capacity of heart failure patients while making sure that they undergo a submaximal walking test.

  3. Comparison of energy cost between genders during treadmill walking at a self-selected pace = Comparação do gasto energético entre os gêneros durante a caminhada na esteira em ritmo autosselecionado

    Directory of Open Access Journals (Sweden)

    Sergio Gregorio da Silva

    2012-07-01

    Full Text Available The purpose of this study was to compare the energy cost between genders during treadmill walking at self-selected pace; and to verify if the energy cost achieve the values recommended for weight maintenance or loss proposed by the American College of Sports Medicine (ACSM. Seventeen men and seventeen women, mean age of 23.32 ± 3.06 years, undertaken two experimental sessions: (I anthropometric measurements and a load-incremental maximum test; and, (II a 20-min walking test at self-selected pace on treadmill. Men showed a greater energy cost than women (146.18 ± 47.66 and 100.86 ± 17.04 kcal, respectively. This difference was maintained after adjust by body weight (2.2 ± 0.5 and 1.7 ± 0.2 kcal kg-1, respectively. The greater energy cost found in men can be explained by the self-selected treadmill speed that lead to a greater O2 in men. However, the exercise intensity selected by both genders did not elicit an effective energy cost that can promote weight maintenance or loss. Nonetheless, if participants performed a longer walking (> 20 minutes, they probably would achieve the energy cost recommended by the ACSM guidelines.O objetivo do presente estudo foi comparar o gasto energético entre os gêneros durante a caminhada na esteira em ritmo auto-selecionado e verificar se a intensidade que os sujeitos buscam caminhar promove um dispêndio energético dentro do recomendado para a manutenção e/ou redução do peso corporal conforme proposto pelas diretrizes do ACSM. Participaram 17 homens e 17 mulheres com média de idade de 23,32 ± 3,06 anos, submetidos a duas sessões experimentais: (I avaliação antropométrica e teste incremental máximo, e (II um teste de 20 minutos de caminhada na esteira em ritmo auto-selecionado. Os homens apresentaram um gasto energético superior ao das mulheres (146,18 ± 47,66 e 100,86 ± 17,04 kcal, respectivamente. Essas diferenças persistiram após correção da massa corporal (2,2 ± 0,5 e 1,7 ± 0,2 kcal

  4. A comparison of the effects of visual deprivation and regular body weight support treadmill training on improving over-ground walking of stroke patients: a multiple baseline single subject design.

    Science.gov (United States)

    Kim, Jeong-Soo; Kang, Sun-Young; Jeon, Hye-Seon

    2015-01-01

    The body-weight-support treadmill (BWST) is commonly used for gait rehabilitation, but other forms of BWST are in development, such as visual-deprivation BWST (VDBWST). In this study, we compare the effect of VDBWST training and conventional BWST training on spatiotemporal gait parameters for three individuals who had hemiparetic strokes. We used a single-subject experimental design, alternating multiple baselines across the individuals. We recruited three individuals with hemiparesis from stroke; two on the left side and one on the right. For the main outcome measures we assessed spatiotemporal gait parameters using GAITRite, including: gait velocity; cadence; step time of the affected side (STA); step time of the non-affected side (STN); step length of the affected side (SLA); step length of the non-affected side (SLN); step-time asymmetry (ST-asymmetry); and step-length asymmetry (SL-asymmetry). Gait velocity, cadence, SLA, and SLN increased from baseline after both interventions, but STA, ST-asymmetry, and SL-asymmetry decreased from the baseline after the interventions. The VDBWST was significantly more effective than the BWST for increasing gait velocity and cadence and for decreasing ST-asymmetry. VDBWST is more effective than BWST for improving gait performance during the rehabilitation for ground walking.

  5. Treadmill Desks at LANL - Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, Samara Kia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-28

    It is well established that sedentariness is the largest, preventable contributor to premature death, eclipsing smoking in recent years. One approach to reduce sedentariness is by using a treadmill desk to perform office work while walking at a low speed.We found an increased interest level when the treadmill desks were first introduced to LANL, but after a few months interest appeared to drop. It is possible that treadmill desk use was occurring, but subjects did not record their use. The treadmill desks will not be readily available for purchase by employees due to the study outcome. Additionally, conclusive changes in body measurements could not be performed due to lack of follow up by 58% of the participants.

  6. Comparação das respostas fisiológicas e perceptuais obtidas durante caminhada na esteira em ritmo autosselecionado entre os sexos Physiological and perception responses comparison during treadmill walking at self-selected pace between genders

    Directory of Open Access Journals (Sweden)

    Kleverton Krinski

    2010-08-01

    Full Text Available O objetivo do presente estudo foi comparar as respostas fisiológicas e perceptuais entre os sexos durante a caminhada na esteira em ritmo autosselecionado. Participaram 17 homens e 17 mulheres, fisicamente ativos, com média de idade de 23,32 ± 3,06 anos, submetidos a duas sessões experimentais: (I avaliação antropométrica e teste incremental máximo, e (II um teste de 20 minutos de caminhada na esteira em ritmo autosselecionado. Para a análise estatística, empregou-se teste t de Student para medidas independentes no intuito de verificar as possíveis diferenças entre os sexos, adotando p O2 absoluto nos homens comparado às mulheres (21,2 ± 5,5 e 18,3 ± 2,7, respectivamente. No entanto, ambos os sexos buscaram caminhar em mesma intensidade relativa % O2máx, (37,5 ± 10,7 homens e 40,3 ± 7,2 mulheres. Em relação à percepção subjetiva de esforço (PSE, podemos verificar que ambos os sexos não demonstraram diferenças significativas (10,2 ± 1,0 homens e 9,8 ± 1,2 mulheres. Os achados do presente estudo demonstram que, independente do sexo, jovens adultos fisicamente ativos autosselecionaram similar intensidade relativa que refletiu em similar PSE. Além disso, a caminhada em intensidade autosselecionada demonstra-se como estímulo insuficiente para proporcionar melhora no condicionamento cardiorrespiratório nesta população.The aim of this study was to compare physiological and perception responses between genders during treadmill walking at self-selected pace. 17 men and 17 women aged 23.32 ± 3.06 yr were investigated: (I anthropometric assessment and incremental exhaustion test, (II a 20-minute walking bout on treadmill at their self-selected pace. The independent t test was utilized to verify any gender differences, with a level of p O2 for men compared to women (21.2 ± 5.5 and 18.3 ± 2.7, respectively. However, both genders self-selected a similar relative exercise intensity %O2max (37.5 ± 10.7 and 40.3 ± 7.2 for

  7. Anti-gravity treadmills are effective in reducing knee forces.

    Science.gov (United States)

    Patil, Shantanu; Steklov, Nikolai; Bugbee, William D; Goldberg, Timothy; Colwell, Clifford W; D'Lima, Darryl D

    2013-05-01

    Lower body positive pressure (LBPP) treadmills permit significant unweighting of patients and have the potential to enhance recovery following lower limb surgery. We determined the efficacy of an LBPP treadmill in reducing knee forces in vivo. Subjects, implanted with custom electronic tibial prostheses to measure forces in the knee, were tested on a treadmill housed within a LBPP chamber. Tibiofemoral forces were monitored at treadmill speeds from 1.5 mph (0.67 m/s) to 4.5 mph (2.01 m/s), treadmill incline from -10° to +10°, and four treadmill chamber pressure settings adjusted to decrease net treadmill reaction force from 100% to 25% of the subject's body weight (BW). The peak axial tibiofemoral force ranged from 5.1 times BW at a treadmill speed of 4.5 mph (2.01 m/s) and a pressure setting of 100% BW to 0.8 times BW at 1.5 mph (0.67 m/s) and a pressure setting of 25% BW. Peak knee forces were significantly correlated with walking speed and treadmill reaction force (R(2)  = 0.77, p = 0.04). The LBPP treadmill might be an effective tool in the rehabilitation of patients following lower-extremity surgery. The strong correlation between tibiofemoral force and walking speed and treadmill reaction forces allows for more precisely achieving the target knee forces desired during early rehabilitation. Copyright © 2012 Orthopaedic Research Society.

  8. Eight weeks of intermittent hypoxic training improves submaximal physiological variables in highly trained runners.

    Science.gov (United States)

    Holliss, Ben A; Burden, Richard J; Jones, Andrew M; Pedlar, Charles R

    2014-08-01

    It is unclear whether intermittent hypoxic training (IHT) results in improvements in physiological variables associated with endurance running. Twelve highly trained runners (VO2peak 70.0 ± 3.5 ml·kg-1·min-1) performed incremental treadmill tests to exhaustion in normobaric normoxia and hypoxia (16.0% FIO2) to assess submaximal and maximal physiological variables and the limit of tolerance (T-Lim). Participants then completed 8 weeks of moderate to heavy intensity normoxic training (control [CONT]) or IHT (twice weekly 40 minutes runs, in combination with habitual training), in a single blinded manner, before repeating the treadmill tests. Submaximal heart rate decreased significantly more after IHT (-5 ± 5 b·min-1; p = 0.001) than after CONT ( -1 ± 5 b·min-1; p = 0.021). Changes in submaximal V[Combining Dot Above]O2 were significantly different between groups (p ≤ 0.05); decreasing in the IHT group in hypoxia (-2.6 ± 1.7 ml·kg-1·min-1; p = 0.001) and increasing in the CONT group in normoxia (+1.1 ± 2.1 ml·kg-1·min-1; p = 0.012). There were no VO2peak changes within either group, and while T-Lim improved post-IHT in hypoxia (p = 0.031), there were no significant differences between groups. Intermittent hypoxic training resulted in a degree of enhanced cardiovascular fitness that was evident during submaximal, but not maximal intensity exercise. These results suggest that moderate to heavy intensity IHT provides a mean of improving the capacity for submaximal exercise and may be useful for pre-acclimatization for subsequent exercise in hypoxia, but additional research is required to establish its efficacy for athletic performance at sea level.

  9. Effects of pentoxifylline on hemorheologic alterations induced by incremental treadmill exercise in thoroughbreds.

    Science.gov (United States)

    Weiss, D J; Geor, R J; Burger, K

    1996-09-01

    To determine whether pentoxifylline treatment altered hematologic, rheologic, electrolyte, or blood gas test results of Thoroughbreds during submaximal treadmill exercise. 5 healthy Thoroughbreds that had raced within the past year and had no history of exercise-induced pulmonary hemorrhage. Mixed venous blood samples were obtained before exercise, at treadmill speeds of 9 and 13 m/s, and 20 minutes after exercise; hematologic, rheologic, electrolyte, and blood gas test results were determined. Pentoxifylline treatment resulted in a 45% reduction in RBC filtration pressures for horses at rest. The improved RBC filterability persisted during treadmill exercise. Horses treated with pentoxifylline had a greater decrease in Po2 values and a lesser increase in plasma lactate concentration during treadmill exercise. Administration of pentoxifylline improved RBC deformability of horses at rest and during treadmill exercise. Improved RBC deformability resulting from pentoxifylline treatment may reduce exercise-associated shear stress in pulmonary capillaries, thereby attenuating exercise-induced pulmonary hemorrhage.

  10. Influence of shoes increasing dorsiflexion and decreasing metatarsus flexion on lower limb muscular activity during fitness exercises, walking, and running.

    Science.gov (United States)

    Bourgit, David; Millet, Guillaume Y; Fuchslocher, Jörg

    2008-05-01

    The aim of the present study was to compare electromyographic activity during fitness exercises, walking, and running among 3 different dorsiflexion shoes (+2 degrees , +4 degrees , and +10 degrees ) and standard shoes (-4 degrees ). The 3 different dorsiflexion shoes tested in this study have a curvature placed in the middle of the sole. This design was specially projected to decrease the metatarsus flexion. Electromyographic activity of 9 lower limb muscles was measured on 12 healthy female subjects during 5 fitness exercises (unload squat, side and front step, submaximal ballistic plantar flexion, and lunge exercise), and during running (10 km x h(-1)) and walking (4.5 km x h(-1)) on a treadmill. EMG signal was analyzed with the root mean square (RMS) and integrated EMG. All RMS data measured during these exercises were expressed as percentages of maximum voluntary isometric contraction. The results show that dorsiflexion affects muscle recruitment and reorganizes the motor pattern. The general tendency was that the tibialis anterior activity increased with dorsiflexion. However, an optimal dorsiflexion existed for various exercises. It is concluded that shoes with moderate dorsiflexion can activate lower limb muscles differently compared with both standard shoes and shoes with large dorsiflexion during submaximal exercises and locomotion.

  11. Effects of walking and strength training on resting and exercise cardiovascular responses in patients with intermittent claudication.

    Science.gov (United States)

    Grizzo Cucato, G; de Moraes Forjaz, C L; Kanegusuku, H; da Rocha Chehuen, M; Riani Costa, L A; Wolosker, N; Kalil Filho, R; de Fátima Nunes Marucci, M; Mendes Ritti-Dias, R

    2011-09-01

    Exercise training is recommended as the first-line therapy for intermittent claudication patients. However, the effects of exercise therapy on cardiovascular function of these patients have been poorly studied. The aim of this study is to compare the effects of walking and strength training on cardiovascular responses assessed at rest and during exercise in patients with intermittent claudication. Thirty-four patients with stable symptoms of intermittent claudication were randomized into two groups: strength training (ST) consisting of eight exercises, three sets of 10 repetitions, intensity of 11 - 13 on 15-grade Borg scale, 2-min interval between sets; and walking training (WT) consisting of walking on a treadmill, 15 bouts of 2-min, intensity of 11 - 13 on 15-grade Borg scale, with a 2-min interval between bouts. Before and after 12 weeks, blood pressure, heart rate and rate pressure product were measured at rest and during a progressive treadmill test until maximal claudication pain. Fifteen patients in each group completed the training program. After the training programs, resting systolic blood pressure (ST:-6 ± 13 mmHg and WT:-3 ± 18 mmHg, P = .04), heart rate (ST: -6 ± 10 bpm and WT:-2 ± 9 bpm, P = .03), and rate pressure product (ST:-1485 ± 1442 mmHg*bpm and WT:- 605 ± 2145 mmHg*bpm, P = .01) decreased significantly and similarly in both groups. Submaximal systolic blood pressure (ST: -14 ± 23 mmHg and WT:-6 ± 23 mmHg, P = .02), and rate pressure product (ST:-1579 ± 3444 mmHg*bpm and WT: -1264 ± 3005 mmHg*bpm, P = .04) decreased significantly and similarly in both groups. There were no changes in submaximal heart rate after ST and WT. Maximal systolic blood pressure, heart rate, and rate pressure product did not change in either group, although maximal exercise time increased similarly in the ST and WT groups (+31 ± 19 %, and +31 ± 32 %, respectively, P trainings promoted similar increases in walking capacity and decreases in resting and

  12. [Sub-maximal aerobic capacity and quality of life of patients with rheumatoid arthritis].

    Science.gov (United States)

    Lataoui, S; Belghali, S; Zeglaoui, H; Bouajina, E; Ben Saad, H

    2017-01-01

    Studies about sub-maximal aerobic capacity of patients with rheumatoid arthritis are scarce. To assess the sub-maximal aerobic capacity of these patients through the 6-min walk test, estimated age of the "muscular and cardiorespiratory" chain. Thirty-seven consecutive patients (aged 20 to 60 years) with newly diagnosed rheumatoid arthritis will be included. Non-inclusion criteria will be: use of drugs (e.g.; methotrexate, beta-blockers), orthopaedic or rheumatologic conditions (other than rheumatoid arthritis) that may alter walking ability and recent infections. Exclusion criteria will be: 6-min walking test contra-indications and imperfect performance of the required lung function and walking maneuvers. Signs of walking intolerance will be: test interruption, distance ≤lower limit of normal, dyspnea score ≥5/10 (visual analogue scale) at the end of the test, haemoglobin oxygen saturation (SpO2) drop ≥5%, cardiac frequency at the end of the test ≤60% of maximum predicted. An estimated "muscular and cardiorespiratory chain" age higher than the chronological one will be considered as a sign of accelerated ageing. A high percentage of patients suffering from rheumatoid arthritis would show evidences of walking limitation and accelerated "muscular and cardiorespiratory chain" ageing. There would be a significant correlation between the walking test and clinical, biological, radiological and pulmonary function data and the patients' quality-of-life status. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  13. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.

    Science.gov (United States)

    Mason, Barry S; Van Der Woude, Lucas H V; Tolfrey, Keith; Lenton, John P; Goosey-Tolfrey, Victoria L

    2012-01-01

    This study aimed to investigate the effects of fixed gear ratio wheel sizes on the physiological and biomechanical responses to submaximal wheelchair propulsion. Highly trained wheelchair basketball players (N = 13) propelled an adjustable sports wheelchair in three different wheel sizes (24, 25, and 26 inches) on a motor-driven treadmill. Each wheel was equipped with force-sensing hand-rims (SMARTWheel), which collected kinetic and temporal data. Oxygen uptake (V˙O2) and HR responses were measured with high-speed video footage collected to determine three-dimensional upper body joint kinematics. Mean power output and work per cycle decreased progressively with increasing wheel size (P wheelchair propulsion.

  14. Life Comparison of kinematic variables of gait on a treadmill and on soil of individuals with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Késia Maísa Amaral-Felipe

    2017-11-01

    Full Text Available The treadmill has been used for gait analysis in many studies, however, it is necessary to check whether the treadmill gait can reproduce similarly to gait on soil. The aim of this study was to compare gait kinematic variables on a treadmill and on soil in patients with Parkinson's disease. The sample consisted of seven individuals of both genders, diagnosed with idiopathic Parkinsonism who performed independent walking. Gait biomechanical analysis on soil with preferred speed for five consecutive times was performed. Participants walked on a circuit to ensure continuous walk. Gait analysis on the treadmill was realized for 30 minutes after familiarization protocol. No significant differences were found on the variables between gait on soil and on the treadmill of the participants. The gait in soil is similar, in relation to the kinematic variables analyzed, to the treadmill gait after familiarization period.

  15. Does an instrumented treadmill correctly measure the ground reaction forces?

    Science.gov (United States)

    Willems, Patrick A.; Gosseye, Thierry P.

    2013-01-01

    Summary Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor) is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1) that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2) that all internal forces – including friction – between the parts of the treadmill are cancelling each other. PMID:24285705

  16. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems

    2013-11-01

    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  17. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    NARCIS (Netherlands)

    Sloot, L.H.; van den Noort, J.C.; van der Krogt, M.M.; Bruijn, S.M.; Harlaar, J.

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles,

  18. Red blood cell deformability in patients with claudication after pain-free treadmill training.

    Science.gov (United States)

    Mika, Piotr; Spodaryk, Krzysztof; Cencora, Andrzej; Mika, Anna

    2006-07-01

    To assess the effect of pain-free treadmill training on red blood cell deformability and walking distance in patients with claudication. Randomized-controlled trial of exercise training. Patients were recruited from the primary care, vascular outpatient clinic. A total of 60 patients with peripheral arterial occlusive disease (stage II according to Leriche-Fontaine) were randomized into the treadmill program or a control group. Fifty-five patients completed the study (27 in the exercising group and 28 in the control group). Patients in the exercising group were walking on the treadmill 3 times a week for 3 months. Each session consisted of 1 hour repetitive walking [performed to 85% of the pain-free walking time (PFWT)] was supervised by a qualified physiotherapist. Changes in erythrocyte deformability and treadmill walking performance (PFWT, maximal walking time) were assessed in both groups before the study and after 3 months. After 3 months of treadmill training, red blood cell deformability in the exercising group significantly increased (Ppain-free treadmill training is associated with a significant increase in red cell deformability in patients with claudication.

  19. Walking for health and fitness.

    Science.gov (United States)

    Rippe, J M; Ward, A; Porcari, J P; Freedson, P S

    1988-05-13

    Recent studies have linked regular physical activity with reduced likelihood of developing coronary heart disease. Even low- and moderate-intensity exercise such as walking, when carried out consistently, is associated with important cardiovascular health benefits. Walking has also been shown to reduce anxiety and tension and aid in weight loss. Regular walking may help improve cholesterol profile, help control hypertension, and slow the process of osteoporosis. Recent physiological studies have demonstrated that brisk walking provides strenuous enough exercise for cardiovascular training in most adults. A recently developed submaximal 1-mile walk test provides a simple and accurate means for estimating aerobic capacity and guiding exercise prescription. These new insights and tools will assist the clinician in the prescription of safe and effective walking programs.

  20. Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill

    Directory of Open Access Journals (Sweden)

    Jonghyun Kim

    2015-09-01

    Full Text Available Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject’s intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping.

  1. Iron Status in Chronic Heart Failure: Impact on Symptoms, Functional Class and Submaximal Exercise Capacity.

    Science.gov (United States)

    Enjuanes, Cristina; Bruguera, Jordi; Grau, María; Cladellas, Mercé; Gonzalez, Gina; Meroño, Oona; Moliner-Borja, Pedro; Verdú, José M; Farré, Nuria; Comín-Colet, Josep

    2016-03-01

    To evaluate the effect of iron deficiency and anemia on submaximal exercise capacity in patients with chronic heart failure. We undertook a single-center cross-sectional study in a group of stable patients with chronic heart failure. At recruitment, patients provided baseline information and completed a 6-minute walk test to evaluate submaximal exercise capacity and exercise-induced symptoms. At the same time, blood samples were taken for serological evaluation. Iron deficiency was defined as ferritin < 100 ng/mL or transferrin saturation < 20% when ferritin is < 800 ng/mL. Additional markers of iron status were also measured. A total of 538 heart failure patients were eligible for inclusion, with an average age of 71 years and 33% were in New York Heart Association class III/IV. The mean distance walked in the test was 285 ± 101 meters among those with impaired iron status, vs 322 ± 113 meters (P=.002). Symptoms during the test were more frequent in iron deficiency patients (35% vs 27%; P=.028) and the most common symptom reported was fatigue. Multivariate logistic regression analyses showed that increased levels of soluble transferrin receptor indicating abnormal iron status were independently associated with advanced New York Heart Association class (P < .05). Multivariable analysis using generalized additive models, soluble transferrin receptor and ferritin index, both biomarkers measuring iron status, showed a significant, independent and linear association with submaximal exercise capacity (P=.03 for both). In contrast, hemoglobin levels were not significantly associated with 6-minute walk test distance in the multivariable analysis. In patients with chronic heart failure, iron deficiency but not anemia was associated with impaired submaximal exercise capacity and symptomatic functional limitation. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients.

    Science.gov (United States)

    Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo

    2017-08-01

    [Purpose] The anti-gravity treadmill (Alter-G®) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy.

  3. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  4. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics.

    Science.gov (United States)

    Swinnen, Eva; Baeyens, Jean-Pierre; Knaepen, Kristel; Michielsen, Marc; Clijsen, Ron; Beckwée, David; Kerckhofs, Eric

    2015-03-01

    Little attention has been devoted to the thorax and pelvis movements during gait. The aim of this study is to compare differences in the thorax and pelvis kinematics during unassisted walking on a treadmill and during walking with robot assistance (Lokomat-system (Hocoma, Volketswil, Switzerland)). 18 healthy persons walked on a treadmill with and without the Lokomat system at 2kmph. Three different conditions of guidance force (30%, 60% and 100%) were used during robot-assisted treadmill walking (30% body weight support). The maximal movement amplitudes of the thorax and pelvis were measured (Polhemus Liberty™ (Polhemus, Colchester, Vermont, USA) (240/16)). A repeated measurement ANOVA was conducted. Robot-assisted treadmill walking with different levels of guidance force showed significantly smaller maximal movement amplitudes for thorax and pelvis, compared to treadmill walking. Only the antero-posterior tilting of the pelvis was significantly increased during robot-assisted treadmill walking compared to treadmill walking. No significant changes of kinematic parameters were found between the different levels of guidance force. With regard to the thorax and pelvis movements, robot-assisted treadmill walking is significantly different compared to treadmill walking. It can be concluded that when using robot assistance, the thorax is stimulated in a different way than during walking without robot assistance, influencing the balance training during gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of treadmill-walking training with additional body load on quality of life in subjects with Parkinson's disease Efeitos do treino da marcha em esteira com aumento da carga corporal sobre a qualidade de vida de sujeitos com doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Nadiesca T. Filippin

    2010-08-01

    Full Text Available BACKGROUND: Parkinson's disease (PD causes motor and non-motor impairments that affect the subject's quality of life. OBJECTIVE: To assess the effects of treadmill-walking training with additional body load on the quality of life and motor function of subjects with PD. METHODS: Nine subjects with PD, Hoehn and Yahr stages 2-3, not demented and with capability to ambulate independently took part in this study. The training program was divided into three phases (A1-B-A2: treadmill training with additional body load (A1, control condition (conventional physical therapy group; B and a second period of treadmill training with load (A2. Each phase lasted six weeks. Quality of life and motor function were assessed by the PDQ-39 and the motor score of the Unified Parkinson's Disease Rating Scale (UPDRS, respectively. The evaluations and the training were performed during the on-phase of the medication cycle. RESULTS: There was improvement in the total PDQ-39 score across the training period. The subscores mobility, activities of daily living and cognition subscores significantly improved after the training period. The improvement in the total score was associated with motor and non-motor factors in all of the training phases. The UPDRS motor score also improved, however it did not present any association with the improvement in quality of life. CONCLUSIONS: The results showed that the treadmill-walking training with additional body load allowed an improvement in motor and non-motor aspects related to quality of life and motor function in subjects with PD.CONTEXTUALIZAÇÃO: A doença de Parkinson (DP causa prejuízos motores e não-motores que afetam a qualidade de vida dos sujeitos. OBJETIVO: Avaliar os efeitos de um treino de marcha em esteira, com aumento da carga corporal, sobre a qualidade de vida e a função motora de sujeitos com DP. MÉTODOS: Nove sujeitos com DP idiopática, estágio 2 a 3 da escala de Hoehn & Yahr, sem demência e com

  6. The effect of submaximal exercise on fibrinolysis.

    Science.gov (United States)

    Fras, Zlatko; Keber, Dusan; Chandler, Wayne L

    2004-04-01

    We studied the relationship between sustained submaximal exercise, increased tissue plasminogen activator (t-PA) levels and decreased hepatic clearance of t-PA. Six healthy male volunteers exercised for 35 min while receiving constant rate infusions of either saline or two different doses of recombinant t-PA for 90 min (40 min before, 35 min during and 15 min after exercise). Liver blood flow was estimated simultaneously by constant rate indocyanine green infusion. Since t-PA is cleared rapidly by the liver in direct proportion to liver blood flow, it was expected that a significant decrease in liver blood flow during sustained submaximal exercise would be associated with a proportional increase in plasma t-PA. During submaximal exercise with a saline (placebo) infusion, steady-state t-PA antigen increased from a resting baseline of 6.3 +/- 3.1 to 15.1 +/- 5.1 ng/ml; with a 20 microg/min t-PA infusion, t-PA antigen increased from 33 +/- 12 to 84 +/- 25 ng/ml during exercise; and with a 40 microg/min t-PA infusion, t-PA antigen increased from 77 +/- 38 to 166 +/- 42 ng/ml during exercise. During submaximal exercise, liver blood flow fell on average 71, 68 and 70%, respectively, during the three procedures, while calculated t-PA clearance decreased on average 59, 59 and 53%. t-PA concentration versus time curves, displayed in proportional units, were similar. The comparable relative increases in endogenous and exogenous t-PA with simultaneous proportional decreases in liver blood flow suggests that diminished hepatic t-PA clearance is the major cause of increased t-PA concentration and blood fibrinolytic activity enhancement during sustained submaximal exercise.

  7. Sex differences in the oxygen delivery, extraction, and uptake during moderate-walking exercise transition.

    Science.gov (United States)

    Beltrame, Thomas; Villar, Rodrigo; Hughson, Richard L

    2017-09-01

    Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O2) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O2, deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O2 difference (a-vO2diff) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O2, a-vO2diff, HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.

  8. The Effects of Walking or Walking-with-Poles Training on Tissue Oxygenation in Patients with Peripheral Arterial Disease

    Directory of Open Access Journals (Sweden)

    Eileen G. Collins

    2012-01-01

    Full Text Available This randomized trial proposed to determine if there were differences in calf muscle StO2 parameters in patients before and after 12 weeks of a traditional walking or walking-with-poles exercise program. Data were collected on 85 patients who were randomized to a traditional walking program ( or walking-with-poles program ( of exercise training. Patients walked for 3 times weekly for 12 weeks. Seventy-one patients completed both the baseline and the 12-week follow-up progressive treadmill tests ( traditional walking and walking-with-poles. Using the near-infrared spectroscopy measures, StO2 was measured prior to, during, and after exercise. At baseline, calf muscle oxygenation decreased from % prior to the treadmill test to % at peak exercise. The time elapsed prior to reaching nadir StO2 values increased more in the traditional walking group when compared to the walking-with-poles group. Likewise, absolute walking time increased more in the traditional walking group than in the walking-with-poles group. Tissue oxygenation decline during treadmill testing was less for patients assigned to a 12-week traditional walking program when compared to those assigned to a 12-week walking-with-poles program. In conclusion, the 12-week traditional walking program was superior to walking-with-poles in improving tissue deoxygenation in patients with PAD.

  9. An Extreme Mountain Ultra-Marathon Decreases the Cost of Uphill Walking and Running.

    Science.gov (United States)

    Vernillo, Gianluca; Savoldelli, Aldo; Skafidas, Spyros; Zignoli, Andrea; La Torre, Antonio; Pellegrini, Barbara; Giardini, Guido; Trabucchi, Pietro; Millet, Grégoire P; Schena, Federico

    2016-01-01

    Purpose: To examine the effects of the world's most challenging mountain ultramarathon (MUM, 330 km, cumulative elevation gain of +24,000 m) on the energy cost and kinematics of different uphill gaits. Methods: Before (PRE) and immediately after (POST) the competition, 19 male athletes performed three submaximal 5-min treadmill exercise trials in a randomized order: walking at 5 km·h(-1), +20%; running at 6 km·h(-1), +15%; and running at 8 km·h(-1), +10%. During the three trials, energy cost was assessed using an indirect calorimetry system and spatiotemporal gait parameters were acquired with a floor-level high-density photoelectric cells system. Results: The average time of the study participants to complete the MUM was 129 h 43 min 48 s (range: 107 h 29 min 24 s to 144 h 21 min 0 s). Energy costs in walking (-11.5 ± 5.5%, P running condition decreased between PRE and POST, with a reduction both in the heart rate (-11.3, -10.0, and -9.3%, respectively) and oxygen uptake only for the walking condition (-6.5%). No consistent and significant changes in the kinematics variables were detected (P-values from 0.10 to 0.96). Conclusion: Though fatigued after completing the MUM, the subjects were still able to maintain their uphill locomotion patterns noted at PRE. The decrease (improvement) in the energy costs was likely due to the prolonged and repetitive walking/running, reflecting a generic improvement in the mechanical efficiency of locomotion after ~130 h of uphill locomotion rather than constraints imposed by the activity on the musculoskeletal structure and function.

  10. An extreme mountain ultra-marathon decreases the cost of uphill walking and running

    Directory of Open Access Journals (Sweden)

    Gianluca Vernillo

    2016-11-01

    Full Text Available Purpose: To examine the effects of the world’s most challenging mountain ultramarathon (MUM, 330 km, cumulative elevation gain of +24000 m on the energy cost and kinematics of different uphill gaits. Methods: Before (PRE and immediately after (POST the competition, 19 male athletes performed three submaximal 5-min treadmill exercise trials in a randomized order: walking at 5 km·h-1, +20%; running at 6 km·h-1, +15%; and running at 8 km·h-1, +10%. During the three trials, energy cost was assessed using an indirect calorimetry system and spatiotemporal gait parameters were acquired with a floor-level high-density photoelectric cells system. Results: The average time of the study participants to complete the MUM was 129 h 43 min 48 s (range: 107 h 29 min 24 s to 144 h 21 min 0 s. Energy costs in walking (-11.5 ± 5.5%, P < 0.001, as well as in the first (-7.2 ± 3.1%, P = 0.01 and second (-7.0 ± 3.9%, P = 0.02 running condition decreased between PRE and POST, with a reduction both in the heart rate (-11.3%, -10.0%, and -9.3%, respectively and oxygen uptake only for the walking condition (-6.5%. No consistent and significant changes in the kinematics variables were detected (P values from 0.10 to 0.96. Conclusion: Though fatigued after completing the MUM, the subjects were still able to maintain their uphill locomotion patterns noted at PRE. The decrease (improvement in the energy costs was likely due to the prolonged and repetitive walking/running, reflecting a generic improvement in the mechanical efficiency of locomotion after ~130 h of uphill locomotion rather than constraints imposed by the activity on the musculoskeletal structure and function.

  11. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.

    Science.gov (United States)

    Hollman, John H; Watkins, Molly K; Imhoff, Angela C; Braun, Carly E; Akervik, Kristen A; Ness, Debra K

    2016-08-01

    Reduced inter-stride complexity during ambulation may represent a pathologic state. Evidence is emerging that treadmill training for rehabilitative purposes may constrain the locomotor system and alter gait dynamics in a way that mimics pathological states. The purpose of this study was to examine the dynamical system components of gait complexity, fractal dynamics and determinism during treadmill ambulation. Twenty healthy participants aged 23.8 (1.2) years walked at preferred walking speeds for 6min on a motorized treadmill and overground while wearing APDM 6 Opal inertial monitors. Stride times, stride lengths and peak sagittal plane trunk velocities were measured. Mean values and estimates of complexity, fractal dynamics and determinism were calculated for each parameter. Data were compared between overground and treadmill walking conditions. Mean values for each gait parameter were statistically equivalent between overground and treadmill ambulation (P>0.05). Through nonlinear analyses, however, we found that complexity in stride time signals (P<0.001), and long-range correlations in stride time and stride length signals (P=0.005 and P=0.024, respectively), were reduced on the treadmill. Treadmill ambulation induces more predictable inter-stride time dynamics and constrains fluctuations in stride times and stride lengths, which may alter feedback from destabilizing perturbations normally experienced by the locomotor control system during overground ambulation. Treadmill ambulation, therefore, may provide less opportunity for experiencing the adaptability necessary to successfully ambulate overground. Investigators and clinicians should be aware that treadmill ambulation will alter dynamic gait characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Usefulness of Submaximal Exercise Gas Exchange in Pulmonary Arterial Hypertension: A Case Series

    Directory of Open Access Journals (Sweden)

    Paul R. Woods

    2010-04-01

    Full Text Available Introduction Submaximal exercise gas exchange may be a useful tool to track responses to therapy in pulmonary arterial hypertension (PAH patients. Methods Three patients diagnosed with idiopathic PAH, on differing therapies, were included. Standard clinical tests (echocardiography; 6 minute walk were performed pre and 3-5 months after treatment. Gas exchange was measured during 3 minutes of step exercise at both time points. Results Gas exchange variables, end tidal CO 2 (P ET CO 2 and the ratio of ventilation to CO 2 production (V E /VCO 2 , during submaximal exercise were able to track patient responses to therapy over a 3-5 month period. Two patients demonstrated positive improvements, with an increased P ET CO 2 and decreased V E /VCO 2 during light exercise, in response to an altered therapeutic regime. The third patient had a worsening of gas exchange (decreased P ET CO 2 and increased V E /VCO 2 following no changes in the medical regime from the baseline visit. Conclusion Gas exchange variables measured during light submaximal exercise, such as P ET CO 2 and V E /VCO 2 , may be able to better detect small changes in functional status following treatment and could, therefore, be a useful tool to track disease severity in PAH patients. Further study is required to determine the clinical usefulness of these gas exchange variables.

  13. Brief note about plasma catecholamines kinetics and submaximal exercise in untrained standardbreds

    Directory of Open Access Journals (Sweden)

    Paolo Baragli

    2010-03-01

    Full Text Available Four untrained standardbred horses performed a standardized exercise test on the treadmill and an automated blood collection system programmed to obtain blood samples every 15 s was used for blood collection in order to evaluate the kinetics of adrenaline and noradrenaline. The highest average values obtained for adrenaline and noradrenaline were 15.0 ± 3.0 and 15.8 ± 2.8 nmol/l respectively, with exponential accumulation of adrenaline (r = 0.977 and noradrenaline (r = 0.976 during the test. Analysis of the correlation between noradrenaline and adrenaline for each phase of the test shows that correlation coefficient decreases as the intensity of exercise increases (from r = 0.909 to r = 0.788. This suggests that during submaximal exercise, the process for release, distribution and clearance of adrenaline into blood circulation differs from that of noradrenaline.

  14. The effect of pain-free treadmill training on fibrinogen, haematocrit, and lipid profile in patients with claudication.

    Science.gov (United States)

    Mika, Piotr; Wilk, Boguslaw; Mika, Anna; Marchewka, Anna; Nizankowski, Rafał

    2011-10-01

    To assess the effect of pain-free treadmill training on changes of plasma fibrinogen, haematocrit, lipid profile, and walking ability in patients with claudication. Randomized control trial. Sixty-eight patients with peripheral obstructive arterial disease and intermittent claudication (Fontaine stage II) were randomly assigned into the treadmill training (repetitive intervals to onset of claudication pain, three times a week) or a control group (no change in physical activity) over 3 months. Both groups performed treadmill test to assess pain-free walking time (PFWT) and maximal walking time (MWT) and had blood analyses [for haematocrit, fibrinogen, triglycerides, and cholesterol: total, high-density lipoprotein (HDL) and low-density lipoprotein (LDL)] done at baseline and after 6 and 12 weeks of the study. Total and LDL cholesterol levels in the training group decreased (p pain-free treadmill training parallels with progressive normalization of lipid profiles in patients with claudication.

  15. A freely-moving monkey treadmill model

    Science.gov (United States)

    Foster, Justin D.; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; Ryu, Stephen I.; Meng, Teresa H.; Murmann, Boris; Black, Michael J.; Shenoy, Krishna V.

    2014-08-01

    Objective. Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic

  16. Prediction of walk-to-run transition using stride frequency

    DEFF Research Database (Denmark)

    Hansen, Ernst Albin; Nielsen, Andreas Møller; Kristensen, Lasse Andreas Risgaard

    2018-01-01

    The transition from walking to running has previously been predicted to occur at a point where the stride frequency starts getting closer to the running attractor than to the walking attractor. The two behavioural attractors were considered to be represented by the freely chosen stride frequencies...... during unrestricted treadmill walking and running. The aim of the present study was to determine the relative and absolute test-retest reliability of the predicted walk-to-run transition stride frequency. Healthy individuals (n=25) performed walking and running on a treadmill in a day-to-day test......-retest design. The two behavioral attractors were determined during walking and running at freely chosen velocities and stride frequencies. Subsequently, the walk-to-run transition stride frequency was predicted using camera recordings and a previously reported equation for prediction. The walk...

  17. Implementation and adherence issues in a workplace treadmill desk intervention.

    Science.gov (United States)

    Tudor-Locke, Catrine; Hendrick, Chelsea A; Duet, Megan T; Swift, Damon L; Schuna, John M; Martin, Corby K; Johnson, William D; Church, Timothy S

    2014-10-01

    We report experiences, observations, and general lessons learned, specifically with regards to participant recruitment and adherence, while implementing a 6-month randomized controlled treadmill desk intervention (the WorkStation Pilot Study) in a real-world office-based health insurance workplace. Despite support from the company's upper administration, relatively few employees responded to the company-generated e-mail to participate in the study. Ultimately only 41 overweight/obese participants were deemed eligible and enrolled from a recruitment pool of 728 workers. Participants allocated to the Treadmill Desk Group found the treadmill desk difficult to use for 45 min twice a day as scheduled. Overall attendance averaged 45%-50% of all possible scheduled sessions. The most frequently reported reasons for missing sessions included work conflict (35%), out of office (30%), and illness/injury/drop-out (20%). Although focus groups indicated consistently positive comments about treadmill desks, an apparent challenge was fitting a rigid schedule of shared use to an equally rigid and demanding work schedule punctuated with numerous tasks and obligations that could not easily be interrupted. Regardless, we documented that sedentary office workers average ∼43 min of light-intensity (∼2 METs) treadmill walking daily in response to a scheduled, facilitated, and shared access workplace intervention. Workstation alternatives that combine computer-based work with light-intensity physical activity are a potential solution to health problems associated with excessive sedentary behavior; however, there are numerous administrative, capital, and human resource challenges confronting employers considering providing treadmill desks to workers in a cost-effective and equitable manner.

  18. Walking tests during the exercise training: Specific use for the cardiac rehabilitation

    OpenAIRE

    Casillas, J.-M.; Hannequin, A.; Besson, D.; Benaïm, S.; Krawcow, C.; Laurent, Y.; Gremeaux, V.

    2013-01-01

    International audience; Walk tests, principally the six-minute walk test (6mWT), constitute a safe, useful submaximal tool for exercise tolerance testing in cardiac rehabilitation (CR). The 6mWT result reflects functional status, walking autonomy and efficacy of CR on walking endurance, which is more pronounced in patients with low functional capacity (heart failure - cardiac surgery). The 6mWT result is a strong predictor of mortality. However, clinically significant changes and reliability ...

  19. [Submaximal exercise capacity and quality of life in exclusive water-pipe smokers].

    Science.gov (United States)

    Ben Saad, H; Babba, M; Boukamcha, R; Latiri, I; Knani, J; Slama, R; Bougmiza, I; Zbidi, A; Tabka, Z

    2010-05-01

    It is well known that oxidative stress is increased significantly by regular water-pipe smoking (WPS). This could lead to muscle dysfunction and thus to impairments of exercise and quality of life (QOL). Considering the impressive number of WP smokers, we intend to investigate the potential effect of WPS on submaximal exercise capacity and QOL. (1). To evaluate the submaximal exercise capacity by the 6-minutes walking test (6-MWT). (2). To compare the deficiency, incapacity and QOL data of exclusive WPS with those of two control groups (never smokers and exclusive cigarette smokers). (3). To determine the factors influencing the 6-minutes walk distance (6-MWD) of WPS subjects. A multicentre study including 180 exclusive WPS [> or =5 WP-year] men aged > or =40 years. Cigar or cigarette smoking, contraindications to the 6-MWT or cortico-steroid therapy will be exclusion criteria. QOL evaluation, spirometry, electrocardiogram and two 6-MWT will be performed. Signs of exercise impairment will be: 6-MWD or =5/10, haemoglobin saturation fall > or =5 points. Data from WPS subjects will be compared with those from 90 never smoking subjects and 90 exclusives cigarettes smokers. (1). WPS will affect significantly the submaximal exercise capacity. (2). Resting spirometric, 6-MWT and QOL data of exclusive WPS subjects will be significantly reduced compared to never smoking subjects. (3). The 6-MWD's of exclusive WPS subjects will be significantly influenced by cumulative WP consumption, by resting spirometric data, by obesity and by physical activity score. Copyright 2010 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  20. Comparing the Effects of Rest and Massage on Return to Homeostasis Following Submaximal Aerobic Exercise: a Case Study.

    Science.gov (United States)

    Resnick, Portia B

    2016-03-01

    Postexercise massage can be used to help promote recovery from exercise on the cellular level, as well as systemically by increasing parasympathetic activity. No studies to date have been done to assess the effects of massage on postexercise metabolic changes, including excess postexercise oxygen consumption (EPOC). The purpose of this study was to compare the effects of massage recovery and resting recovery on a subject's heart rate variability and selected metabolic effects following a submaximal treadmill exercise session. One healthy 24-year-old female subject performed 30 minutes of submaximal treadmill exercise prior to resting or massage recovery sessions. Metabolic data were collected throughout the exercise sessions and at three 10 minute intervals postexercise. Heart rate variability was evaluated for 10 minutes after each of two 30-minute recovery sessions, either resting or massage. Heart rate returned to below resting levels (73 bpm) with 30 and 60 minutes of massage recovery (72 bpm and 63 bpm, respectively) compared to 30 and 60 minutes of resting recovery (77 bpm and 74 bpm, respectively). Heart rate variability data showed a more immediate shift to the parasympathetic state following 30 minutes of massage (1.152 LF/HF ratio) versus the 30-minute resting recovery (6.91 LF/HF ratio). It took 60 minutes of resting recovery to reach similar heart rate variability levels (1.216 LF/HF) found after 30 minutes of massage. Ventilations after 30 minutes of massage recovery averaged 7.1 bpm compared to 17.9 bpm after 30 minutes of resting recovery. No differences in EPOC were observed through either the resting or massage recovery based on the metabolic data collected. Massage was used to help the subject shift into parasympathetic activity more quickly than rest alone following a submaximal exercise session.

  1. Comparing the Effects of Rest and Massage on Return to Homeostasis Following Submaximal Aerobic Exercise: a Case Study

    Science.gov (United States)

    Resnick, Portia B.

    2016-01-01

    Introduction Postexercise massage can be used to help promote recovery from exercise on the cellular level, as well as systemically by increasing parasympathetic activity. No studies to date have been done to assess the effects of massage on postexercise metabolic changes, including excess postexercise oxygen consumption (EPOC). The purpose of this study was to compare the effects of massage recovery and resting recovery on a subject’s heart rate variability and selected metabolic effects following a submaximal treadmill exercise session. Methods One healthy 24-year-old female subject performed 30 minutes of submaximal treadmill exercise prior to resting or massage recovery sessions. Metabolic data were collected throughout the exercise sessions and at three 10 minute intervals postexercise. Heart rate variability was evaluated for 10 minutes after each of two 30-minute recovery sessions, either resting or massage. Results Heart rate returned to below resting levels (73 bpm) with 30 and 60 minutes of massage recovery (72 bpm and 63 bpm, respectively) compared to 30 and 60 minutes of resting recovery (77 bpm and 74 bpm, respectively). Heart rate variability data showed a more immediate shift to the parasympathetic state following 30 minutes of massage (1.152 LF/HF ratio) versus the 30-minute resting recovery (6.91 LF/HF ratio). It took 60 minutes of resting recovery to reach similar heart rate variability levels (1.216 LF/HF) found after 30 minutes of massage. Ventilations after 30 minutes of massage recovery averaged 7.1 bpm compared to 17.9 bpm after 30 minutes of resting recovery. Conclusions No differences in EPOC were observed through either the resting or massage recovery based on the metabolic data collected. Massage was used to help the subject shift into parasympathetic activity more quickly than rest alone following a submaximal exercise session. PMID:26977215

  2. Accuracy of unloading with the anti-gravity treadmill.

    Science.gov (United States)

    McNeill, David K P; de Heer, Hendrik D; Bounds, Roger G; Coast, J Richard

    2015-03-01

    Body weight (BW)-supported treadmill training has become increasingly popular in professional sports and rehabilitation. To date, little is known about the accuracy of the lower-body positive pressure treadmill. This study evaluated the accuracy of the BW support reported on the AlterG "Anti-Gravity" Treadmill across the spectrum of unloading, from full BW (100%) to 20% BW. Thirty-one adults (15 men and 16 women) with a mean age of 29.3 years (SD = 10.9), and a mean weight of 66.55 kg (SD = 12.68) were recruited. Participants were weighed outside the machine and then inside at 100-20% BW in 10% increments. Predicted BW, as presented by the AlterG equipment, was compared with measured BW. Significant differences between predicted and measured BW were found at all but 90% through 70% of BW. Differences were small (Anti-Gravity Treadmill®, with the largest differences (>5%) found at 100% BW and the greatest BW support (30 and 20% BW). These differences may be associated with changes in metabolic demand and maximum speed during walking or running and should be taken into consideration when using these devices for training and research purposes.

  3. Is the ventilatory threshold coincident with maximal fat oxidation during submaximal exercise in women?

    Science.gov (United States)

    Astorino, T A

    2000-09-01

    The purpose of this study was to detect the fraction of peak oxygen consumption (VO2peak) that elicits maximal rates of fat oxidation during submaximal treadmill exercise. It was hypothesized that this point would appear at a work rate just below the ventilatory threshold. subjects completed a protocol requiring them to exercise for 15 min on a treadmill at six different workloads, 25, 40, 55, 65, 75, and 85% VO2peak, over two separate visits. nine healthy, moderately-trained eumenorrheic females (age = 28.8+/-5.99 yrs, VO2peak = 47.20 +/-2.57 ml x kg(-1) x min(-1)) volunteered for the study. a one-way ANOVA with repeated measures was used to test for differences across exercise intensities in the metabolic variables (i.e. substrate oxidation, blood lactate concentration ([La-]), RER, and the contribution of fat to total energy expenditure). Following significant F ratios, post-hoc tests were used to detect differences between the means for various exercise intensities. Exercise at 75% VO2peak elicited the greatest rate of fat oxidation (4.75+/-0.49 kcal x min(-1)), and this intensity was coincident with the ventilatory threshold (76+/-7.41% VO2peak). Moreover, a significant difference (t(8) = -3.98, ppopulation has application in exercise prescription and refutes the belief that low-intensity exercise is preferred for fat metabolism.

  4. Anxiety sensitivity predicts increased perceived exertion during a 1-mile walk test among treatment-seeking smokers.

    Science.gov (United States)

    Farris, Samantha G; Uebelacker, Lisa A; Brown, Richard A; Price, Lawrence H; Desaulniers, Julie; Abrantes, Ana M

    2017-12-01

    Smoking increases risk of early morbidity and mortality, and risk is compounded by physical inactivity. Anxiety sensitivity (fear of anxiety-relevant somatic sensations) is a cognitive factor that may amplify the subjective experience of exertion (effort) during exercise, subsequently resulting in lower engagement in physical activity. We examined the effect of anxiety sensitivity on ratings of perceived exertion (RPE) and physiological arousal (heart rate) during a bout of exercise among low-active treatment-seeking smokers. Adult daily smokers (n = 157; M age  = 44.9, SD = 11.13; 69.4% female) completed the Rockport 1.0 mile submaximal treadmill walk test. RPE and heart rate were assessed during the walk test. Multi-level modeling was used to examine the interactive effect of anxiety sensitivity × time on RPE and on heart rate at five time points during the walk test. There were significant linear and cubic time × anxiety sensitivity effects for RPE. High anxiety sensitivity was associated with greater initial increases in RPE during the walk test, with stabilized ratings towards the last 5 min, whereas low anxiety sensitivity was associated with lower initial increase in RPE which stabilized more quickly. The linear time × anxiety sensitivity effect for heart rate was not significant. Anxiety sensitivity is associated with increasing RPE during moderate-intensity exercise. Persistently rising RPE observed for smokers with high anxiety sensitivity may contribute to the negative experience of exercise, resulting in early termination of bouts of prolonged activity and/or decreased likelihood of future engagement in physical activity.

  5. The effects of treadmill type on heart rate and pain threshold velocity in individuals with lower-extremity musculoskeletal pain.

    Science.gov (United States)

    Langford, Brian J; Jones, Evan M; Cowan, James E; Hollingsworth, Danny J; Deyle, Gail D; Douglas, S Christie; Allison, Stephen C

    2003-09-01

    This study utilized a quasi-experimental design in which subjects served as their own controls. To determine whether heart rate, pain threshold velocity, and pain perception varied in patients running on a soft-belt treadmill versus a standard hard-belt treadmill. According to promotional literature, the relatively new Orbiter soft-belt tread produces a greater increase in heart rate at a given velocity as well as a higher velocity tolerance while walking or running. The manufacturer also asserts that decreased forces transmitted through the lower extremity should decrease pain levels while exercising on the soft-belt treadmill. Twenty-seven subjects walked or ran on each of 2 treadmills at incrementally increasing velocities until they experienced either the onset of pain or an increase in pain from baseline levels. Locomotion continued for 2 minutes after that, during which time heart rate and pain level on a visual analog scale (VAS) were recorded. Two univariate paired t tests and a Wilcoxon's signed rank test revealed a greater heart rate and pain threshold velocity when using the soft-belt treadmill with no statistical difference in the pain reported between the 2 treadmills. Our study revealed a 10% higher heart rate and a 14.5% higher pain threshold velocity with the soft-belt treadmill compared to a hard-belt treadmill. These differences are considered clinically meaningful.

  6. Effect of treadmill testing and exercise training on self-efficacy in patients with heart failure.

    Science.gov (United States)

    Oka, Roberta K; DeMarco, Teresa; Haskell, William L

    2005-09-01

    Self-efficacy is a person's confidence in being able to successfully perform a specific activity or behavior. Self-efficacy has been shown to influence exercise capacity in patients post myocardial infarction, but has not been fully explored in patients with heart failure (HF). This study examined the impact of performance of a single treadmill exercise test and participation in a 3-month program of walking and resistance exercise on self-efficacy in HF patients. 24 patients were randomized to either a home-based walking and resistance exercise program or usual care for 3 months. Prior to enrollment into the exercise program all participants performed a single treadmill exercise test with respiratory gas analysis. Self-efficacy questionnaires were completed at 3 time points, 1) prior to performance of an exercise treadmill test; 2) immediately after completing an exercise test; and 3) at the end of a 3-month exercise program. Self-efficacy for walking (p=0.07), climbing (p=0.17), lifting (p=0.73) and general activity (p=0.15) did not improve after performance of a single treadmill exercise test and usual care. However, self-efficacy for walking increased after 3 months of a walking and resistance exercise program. (p=0.04). The findings from this study suggest that in patients with stable mild to moderate heart failure, self-efficacy is improved with participation in a home-based walking and endurance exercise program. Self-efficacy is not enhanced by performance of a single treadmill exercise test and usual care.

  7. Reference value for the 6-minute walk test in children and adolescents : a systematic review

    NARCIS (Netherlands)

    Mylius, C. F.; Paap, D.; Takken, T.

    2016-01-01

    Introduction: The 6-minute walk test is a submaximal exercise test used to quantify the functional exercise capacity in clinical populations. It measures the distance walked within a period of 6-minutes. Obtaining reference values in the pediatric population is especially demanding due to factors as

  8. Metabolic cost of running is greater on a treadmill with a stiffer running platform.

    Science.gov (United States)

    Smith, James A H; McKerrow, Alexander D; Kohn, Tertius A

    2017-08-01

    Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75-81% VO 2max ). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg -1 · min -1 ), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min -1 ), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min -1 ), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min -1 ) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min -1 ) (all analysis of variance treadmill comparisons P running depending on the running platform stiffness.

  9. Comparison of two 6-minute walk tests to assess walking capacity in polio survivors.

    Science.gov (United States)

    Brehm, Merel-Anne; Verduijn, Suzan; Bon, Jurgen; Bredt, Nicoline; Nollet, Frans

    2017-11-21

    To compare walking dynamics and test-retest reliability for 2 frequently applied walk tests in polio survivors: the 6-minute walk test (6MWT) to walk as far as possible; and the 6-minute walking energy cost test (WECT) at comfortable speed. Observational study. Thirty-three polio survivors, able to walk ≥ 150 m. On the same day participants performed a 6MWT and a WECT, which were repeated 1-3 weeks later. For each test, distance walked, heart rate and reduction in speed were assessed. The mean distance walked and mean heart rate were significantly higher in the 6MWT (441 m (standard deviation) (SD 79.7); 118 bpm (SD 19.2)) compared with the WECT (366 m (SD 67.3); 103 bpm (SD 14.3)); pwalked distance was 42 m (9.7% change from the mean) and 50 m (13.7%) on the 6MWT and WECT, respectively. Both the 6MWT and the WECT are reliable to assess walking capacity in polio survivors, with slightly superior sensitivity to detect change for the 6MWT. Differences in walking dynamics confirm that the tests cannot be used interchangeably. The 6MWT is recommended for measuring maximal walking capacity and the WECT for measuring submaximal walking capacity.

  10. Nordic walking versus walking without poles for rehabilitation with cardiovascular disease: Randomized controlled trial.

    Science.gov (United States)

    Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline

    2017-07-01

    With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (Pwalk distance than the WG (Pwalking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.

  11. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    Science.gov (United States)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  12. Treadmill walking exercise modulates bone mineral status and ...

    African Journals Online (AJOL)

    Background: Obesity and asthma are an important public health problem in Saudi Arabia. An increasing body of data supports the hypothesis that obesity is a risk factor for asthma. Asthma appears to be associated with low bone mineral density (BMD) due to long-term use of corticosteroids. Studies recently showed that ...

  13. Does long-distance walking improve or deteriorate walking stability of transtibial amputees?

    Science.gov (United States)

    Wong, Duo Wai-Chi; Lam, Wing Kai; Yeung, L F; Lee, Winson C C

    2015-10-01

    Falls are common in transtibial amputees which are linked to their poor stability. While amputees are encouraged to walk more, they are more vulnerable to fatigue which leads to even poorer walking stability. The objective of this study was to evaluate the dynamic stability of amputees after long-distance walking. Six male unilateral transtibial amputees (age: 53 (SD: 8.8); height: 170cm (SD: 3.4); weight: 75kg (SD: 4.7)) performed two sessions (30minutes each) of treadmill walking, separated by a short period of gait tests. Gait tests were performed before the walking (baseline) and after each session of treadmill walking. Gait parameters and their variability across repeated steps at each of the three conditions were computed. There were no significant differences in walking speed, step length, stance time, time of occurrence, and magnitude of peak angular velocities of the knee and hip joint (P>0.05). However, variability of knee and hip angular velocity after 30-minute walking was significantly higher than the baseline (Pamputees to restore their walking stability after further continuous walking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Impact of a Submaximal Level of Exercise on Balance Performance in Older Persons

    Science.gov (United States)

    2014-01-01

    Objective. The purpose of this study was to determine the impact of a submaximal level of exercise on balance performance under a variety of conditions. Material and Method. Thirteen community-dwelling older persons with intact foot sensation (age = 66.69 ± 8.17 years, BMI = 24.65 ± 4.08 kg/m2, female, n = 6) volunteered to participate. Subjects' balance performances were measured using the Modified Clinical Test of Sensory Integration of Balance (mCTSIB) at baseline and after test, under four conditions of stance: (1) eyes-opened firm-surface (EOF), (2) eyes-closed firm-surface (ECF), (3) eyes-opened soft-surface (EOS), and (4) eyes-closed soft-surface (ECS). The 6-minute walk test (6MWT) protocol was used to induce the submaximal level of exercise. Data was analyzed using the Wilcoxon Signed-Rank Test. Results. Balance changes during EOF (z = 0.00, P = 1.00) and ECF (z = −1.342, P = 0.180) were not significant. However, balance changes during EOS (z = −2.314, P = 0.021) and ECS (z = −3.089, P = 0.02) were significantly dropped after the 6MWT. Conclusion. A submaximal level of exercise may influence sensory integration that in turn affects balance performance, particularly on an unstable surface. Rehabilitation should focus on designing intervention that may improve sensory integration among older individuals with balance deterioration in order to encourage functional activities. PMID:25383386

  15. Effects of walking trainings on walking function among stroke survivors: a systematic review.

    Science.gov (United States)

    Ilunga Tshiswaka, Daudet; Bennett, Crystal; Franklin, Cheyanne

    2018-03-01

    Physical function is often compromised as a result of stroke event. Although interventions propose different strategies that seek to improve stroke survivors' physical function, a need remains to evaluate walking training studies aimed at improving such physical function. The aim of this review was to assess the available literature that highlights the impact of walking training on enhancing walking for stroke survivors. We performed a systematic literature review of online databases - Google Scholar, PubMed, CINHAL, Cochrane Library, Scopus, and EBSCO - with the following inclusion criteria: manuscript published from 2005 to 2016, written in English, with treatment and control groups, for walking training studies aimed at improving physical function among stroke survivors. Findings indicated that walking speed, walking distance, and gait speed were the most used outcome variables for measuring improved physical function among stroke survivors. Importantly, proposed interventions involved either overground or treadmill walking trainings, if not both. Preserved locomotor improvements were not noted in all interventions at follow-up. Some interventions that used walking treadmill training augmented by auditory stimulations reported significant improvements in physical function compared with overground walking training augmented by auditory stimulations. The imperative to improve physical function among stroke survivors with physical impairment is paramount, as it allows survivors to be socially, emotionally, and physically more independent. In general, we note an insufficiency of research on the interaction between physical function and socialization among stroke survivors.

  16. Evaluation of motion platform embedded with dual belt treadmill instrumented with two force plates.

    Science.gov (United States)

    Sinitski, Emily H; Lemaire, Edward D; Baddour, Natalie

    2015-01-01

    Motek Medical's Computer Aided Rehabilitation Environment (CAREN)-Extended system is a virtual environment primarily used in physical rehabilitation and biomechanical research. This virtual environment consists of a 180 degree projection screen used to display a virtual scene, a 12-camera motion capture system, and a six degree of freedom actuated platform equipped with a dual-belt treadmill and two force plates. The goal of this article was to investigate the performance characteristics associated with a "treadmill-motion platform" configuration and how system operation can affect the data collected. Platform static and dynamic characteristics were evaluated by translating or rotating the platform over progressively larger distances and comparing input and measured values. Treadmill belt speed was assessed with and without a person walking on the platform and at different orientations. Force plate measurements were examined when the treadmill was in operation, during ambulation, and over time to observe the baseline drift. Platform acceleration was dependent on the distance travelled and system settings. Treadmill speed variability was greatest at faster speeds. Force plate measurements were affected by platform and treadmill operation, contralateral impact forces during gait, and baseline drift. Knowledge of performance characteristics and their effect on outcome data is crucial for effective design of CAREN research protocols and rehabilitation scenarios.

  17. Treadmill interventions with partial body weight support in children under six years of age at risk of neuromotor delay.

    Science.gov (United States)

    Valentin-Gudiol, Marta; Mattern-Baxter, Katrin; Girabent-Farrés, Montserrat; Bagur-Calafat, Caritat; Hadders-Algra, Mijna; Angulo-Barroso, Rosa Maria

    2011-12-07

    Delayed motor development may occur in children with Down syndrome, cerebral palsy or children born preterm, which in turn may limit the child's opportunities to explore the environment. Neurophysiologic and early intervention literature suggests that task-specific training facilitates motor development. Treadmill intervention is a good example of locomotor task-specific training. To assess the effectiveness of treadmill intervention on locomotor motor development in pre-ambulatory infants and children under six years of age who are at risk for neuromotor delay. In March 2011 we searched CENTRAL (The Cochrane Library 2011, Issue 1), MEDLINE (1948 to March Week 2, 2011), EMBASE (1980 to Week 11, 2011), PsycINFO (1887 to current), CINAHL (1937 to current), Science Citation Index (1970 to 19 March 2011), PEDro (until 7 March 2011), CPCI-S (1990 to 19 March 2011) and LILACS (until March 2011). We also searched ICTRP, ClinicalTrials.gov, mRCT and CenterWatch. We included randomised controlled trials, quasi-randomised controlled trials and controlled clinical trials that evaluated the effect of treadmill intervention in children up to six years of age with delays in gait development or the attainment of independent walking or who were at risk of neuromotor delay. Four authors independently extracted the data using standardised forms. Outcome parameters were structured according to the "Body functions" and "Activity and Participation" components of the International Classification of Functioning, Disability and Health, Children & Youth version (ICFCY), which was developed by the World Health Organization. We included five studies, which reported on treadmill intervention in 139 children. Of the 139 children, 73 were allocated to treadmill intervention groups, with the other children serving as controls. The studies varied in the type of population studied (children with Down syndrome, cerebral palsy or who were at risk for neuromotor delay); the type of comparison (for

  18. Reduced peripheral arterial blood flow with preserved cardiac output during submaximal bicycle exercise in elderly heart failure

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2009-11-01

    Full Text Available Abstract Background Older heart failure (HF patients exhibit exercise intolerance during activities of daily living. We hypothesized that reduced lower extremity blood flow (LBF due to reduced forward cardiac output would contribute to submaximal exercise intolerance in older HF patients. Methods and Results Twelve HF patients both with preserved and reduced left ventricular ejection fraction (LVEF (aged 68 ± 10 years without large (aorta or medium sized (iliac or femoral artery vessel atherosclerosis, and 13 age and gender matched healthy volunteers underwent a sophisticated battery of assessments including a peak exercise oxygen consumption (peak VO2, b physical function, c cardiovascular magnetic resonance (CMR submaximal exercise measures of aortic and femoral arterial blood flow, and d determination of thigh muscle area. Peak VO2 was reduced in HF subjects (14 ± 3 ml/kg/min compared to healthy elderly subjects (20 ± 6 ml/kg/min (p = 0.01. Four-meter walk speed was 1.35 ± 0.24 m/sec in healthy elderly verses 0.98 ± 0.15 m/sec in HF subjects (p p ≤ 0.03. Conclusion During CMR submaximal bike exercise in the elderly with heart failure, mechanisms other than low cardiac output are responsible for reduced lower extremity blood flow.

  19. Dichloroacetate therapy attenuates the blood lactate response to submaximal exercise in patients with defects in mitochondrial energy metabolism.

    Science.gov (United States)

    Duncan, G E; Perkins, L A; Theriaque, D W; Neiberger, R E; Stacpoole, P W

    2004-04-01

    We determined acute and chronic effects of dichloroacetate (DCA) on maximal (MAX) and submaximal (SUB) exercise responses in patients with abnormal mitochondrial energetics. Subjects (n = 9) completed a MAX treadmill bout 1 h after ingesting 25 mg/kg DCA or placebo (PL). A 15-min SUB bout was completed the next day while receiving the same treatment. After a 1-d washout, MAX and SUB were repeated while receiving the alternate treatment (acute). Gas exchange and heart rate were measured throughout all tests. Blood lactate (Bla) was measured 0, 3, and 10 min after MAX, and 5, 10, and 15 min during SUB. MAX and SUB were repeated after 3 months of daily DCA or PL. After a 2-wk washout, a final MAX and SUB were completed after 3 months of alternate treatment (chronic). Average Bla during SUB was lower (P abnormal mitochondrial energetics.

  20. Effects of a Flexibility and Relaxation Programme, Walking, and Nordic Walking on Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    I. Reuter

    2011-01-01

    Full Text Available Symptoms of Parkinson's disease (PD progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS, and health-related quality of life (PDQ 39. 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study.

  1. Modulation of recurrent inhibition from knee extensors to ankle motoneurones during human walking

    National Research Council Canada - National Science Library

    Jean-Charles Lamy; Caroline Iglesias; Alexandra Lackmy; Jens Bo Nielsen; Rose Katz; Véronique Marchand-Pauvert

    2008-01-01

    ...) muscle activity overlaps that in tibialis anterior (TA) and soleus (Sol). The effects of femoral nerve stimulation on ankle motoneurones were investigated during treadmill walking and during tonic co-contraction of Quad and TA/Sol while standing...

  2. A new proposal to guide velocity and inclination in the ramp protocol for the treadmill ergometer

    Directory of Open Access Journals (Sweden)

    Silva Odwaldo Barbosa e

    2003-01-01

    Full Text Available OBJECTIVE: To suggest criteria to guide protocol prescription in ramp treadmill testing, according to sex and age, based on velocity, inclination, and max VO2 reached by the population studied. METHODS: Prospective study describing heart rate (HR, time, velocity, inclination, and VO2 estimated at maximum effort of 1840 individuals from 4 to 79 years old, who performed a treadmill test (TT according to the ramp protocol. A paired Student t test was used to assess the difference between predicted and reached max VO2, calculated according to the formulas of the "American College of Sports Medicine". RESULTS: Submaximal HR was surpassed in 90.1% of the examinations, with a mean time of 10.0±2.0 minute. Initial and peak inclination velocity of the exercise and max VO2 were inversely proportional to age and were greater in male patients. Predicted Max VO2 was significantly lower than that reached in all patients, except for female children and adolescents (age < 20 years old. CONCLUSION: Use of velocity, inclination, and maximum VO2 actually reached, as a criterion in prescribing the ramp protocol may help in the performance of exercise in treadmill testing. The ramp protocol was well accepted in all age groups and sexes with exercise time within the programmed 8 to 12 minutes.

  3. Mini-Treadmill for Musculoskeletal Health Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZIN Technologies, Inc. proposes a novel Miniature Treadmill with resistive exercise capability for use in spaceflight exercise countermeasures and broad terrestrial...

  4. Mini-Treadmill for Musculoskeletal Health Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZIN Technologies, Inc. is developing a novel Miniature Treadmill with resistive exercise capability for use in spaceflight exercise countermeasures and broad...

  5. F-door spaces and F-submaximal spaces

    Directory of Open Access Journals (Sweden)

    Lobna Dridi

    2013-04-01

    Full Text Available Submaximal spaces and door spaces play an enigmatic role in topology. In this paper, reinforcing this role, we are concerned with reaching two main goals: The first one is to characterize topological spaces X such that F(X is a submaximal space (resp., door space for some covariant functor Ff rom the category Top to itself. T0, and FH functors are completely studied. Secondly, our interest is directed towards the characterization of maps f given by a flow (X, f in the category Set, such that (X,P(f is submaximal (resp., door where P(f is a topology on X whose closed sets are exactly the f-invariant sets.

  6. Validity and Reproducibility of a New Treadmill Protocol: The Fitkids Treadmill Test

    NARCIS (Netherlands)

    Elle M.W. Kotte; Tim Takken; Bart C. Bongers; Janke de Groot; Alexander M.F. Winkler

    2015-01-01

    Validity and Reproducibility of a New Treadmill Protocol: The Fitkids Treadmill Test. Med. Sci. Sports Exerc., Vol. 47, No. 10, pp. 2241–2247, 2015. Purpose: This study aimed to investigate the validity and reproducibility of a new treadmill protocol in healthy children and adolescents: the Fitkids

  7. Effects of Submaximal Endurance Training and Vitamin D3 Supplementation on Pain Threshold in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    S. Jalal Taherabadi

    2013-07-01

    Full Text Available Background: According to beneficial effects of endurance training and vitamin D3 in diabetes mellitus, purpose of this study is effects submaximal endurance training and vitamin D3 supplementation on pain threshold in streptozotocin induced diabetic rats.Materials and Methods: Male Wistar rats (250±20 g, N=40 were made diabetic by streptozotocin (60 mg/kg, subcutaneously. 72 h after injection diabetes induction was confirmed by tail vein blood glucose concentration (>300 mg/dl. Then animals were divided to five groups: diabetic control (DC, diabetic trained (DT, diabetic -vitamin D (DD, diabetic trained and vitamin D (DTD, and control (C. Animals were submitted to endurance training by treadmill and vitamin D3 treatment (twice aweek, intrapretonally for 4 weeks. 48 h after at the end of exercise and treatment protocol, we used tail-flick to assess the effects of training and vitamin D3 on thermal pain threshold. We used one way ANOVA statistical analysis to compare differences between groups, significance level of p<0.05 was considered.Results: Diabetic induced hyperalgesia were decreased significantly by vitamin D but not 4 weeks endurance exercise training. Concurrent effects of training and vitamin D on thermal pain threshold were not significantly higher than vitamin D effects alone.Conclusion: It is concluded that vitamin D administration given at the time of diabetes induction may be able to restore thermal hyperalgesia. But effects of endurance exercise training needs to more investigation in diabetic rats.

  8. Influence of Different Kinds of Music on Walking in Children.

    Science.gov (United States)

    Reychler, Gregory; Fabre, Justine; Lux, Amandine; Caty, Gilles; Pieters, Thierry; Liistro, Giuseppe

    2016-10-25

    The aim of this study was to evaluate the effect of different kinds of music on submaximal performance and exercise tolerance in healthy children by means of the 6-minute walking test (6MWT) and to explore the influence of gender. Cross-over study. Ninety-seven children performed 6MWT in four conditions (without music, with their preferred music, with slow and with fast music). Distance, cardio-respiratory parameters, perceived exertion rate, and amount of dyspnea were measured. Walked distance depended on the kind of music (p = .022). To listen to fast music promoted a longer distance when compared with slow music. Walked distance was not influenced by gender (p = .721) and there was no interaction between music and gender for walked distances (p = .069). The other parameters were not modified by music and gender. Music influences submaximal performances without modifying exercise tolerance in healthy children. Music does modify submaximal performance in children. © 2016 Association of Rehabilitation Nurses.

  9. The reliability and minimal detectable change of the cardiovascular response and self-selected exercise intensity during forward and backward treadmill exercise in individuals with Parkinson disease.

    Science.gov (United States)

    Nelson, Reid; Petersen, Cheryl

    2017-01-01

    This study examined test-retest relative (intraclass correlation coefficient) and absolute (minimum detectable change) reliabilities for heart rate, blood pressure, rate of perceived exertion, and the cerebral oxygen response during both forward and backward treadmill walking in clients with Parkinson disease. In addition, the intensity of exercise based on the individual's heart rate response during forward and backward walking treadmill work was assessed. Test-retest reliability study. A total of 22 clients with Parkinson disease (Hoehn and Yahr stages 1-3). Outcome measures of heart rate, blood pressure, and cerebral oxygen response were assessed during forward and backward walking on a treadmill for a total of 20 minutes up to an intensity based on the clients' prior treadmill work and their rate of perceived exertion. Good to excellent 6-8 day test-retest findings for both forward (intraclass correlation coefficient (2,1) , 0.89-0.99) and backward (intraclass correlation coefficient (2,1) , 0.82-0.99) treadmill walking were found for heart rate, blood pressure, cerebral oxygen response, and the participants' rate of perceived exertion. Low minimum detectable change (MDC) 95 values were found for heart rate (4.9 and 4.8), rate of perceived exertion (1.0 and 1.6), and cerebral oxygen response (1.2 and 0.92), during forward and backward walking, respectively. All treadmill exercise heart rates attained by participants were within an intensity of 54%-87% of the client's predicted maximal heart rate. Treadmill exercise training can be included in Parkinson disease exercise programs with relative confidence in test-retest reliability of cardiovascular response. It was also demonstrated that individuals with Parkinson disease previously involved with exercise consistently self-select walking speeds which induce heart rates within recommended guidelines for positive cardiovascular adaptation.

  10. The Effect of Head Mounted Display Weight and Locomotion Method on the Perceived Naturalness of Virtual Walking Speeds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    This poster details a study investigating the effect of Head Mounted Display (HMD) weight and locomotion method (Walking-In-Place and treadmill walking) on the perceived naturalness of virtual walking speeds. The results revealed significant main effects of movement type, but no significant effects...

  11. Does treadmill training improve lower-extremity tasks in Parkinson disease? A randomized controlled trial.

    Science.gov (United States)

    Kurtais, Yesim; Kutlay, Sehim; Tur, Birkan Sonel; Gok, Haydar; Akbostanci, Cenk

    2008-05-01

    To investigate whether gait training with treadmill improves functional tasks of lower extremities in patients with Parkinson disease (PD). Randomized controlled trial including two groups, the treadmill training group and the nonintervention group. University hospital. Thirty consecutive patients diagnosed with idiopathic PD, who were on stable regimens of antiparkinsonian medication, able to walk independently, and had not participated in a rehabilitation program in the previous 3 months. Patients with severe cognitive impairments or severe musculoskeletal, cardiopulmonary, neurologic, or other systemic disorders were excluded. Twenty-four patients completed the study. Group I attended a training program on a treadmill for 6 weeks, and group II served as the control group. Both groups were instructed in home mobility exercises. The primary study outcome measures were timed functional lower-extremity tasks (walking at a corridor, U-turn, turning around a chair, stairs, standing on one foot, standing from a chair), and secondary outcome measures were exercise test and patient's global assessment. Assessments were performed at baseline and at the end of the study. There were significant improvements in functional lower-extremity tests, exercise test parameters, and patients' global assessment in group I, whereas no significant improvements were observed in group II. Even though long-term effects remain unknown and the study sample was small, it was concluded that treadmill training in PD patients led to improvements in lower-extremity tasks, thus improving patients' physical well-being in daily life.

  12. Recruitment of single muscle fibers during submaximal cycling exercise

    NARCIS (Netherlands)

    Altenburg, T.M.; Degens, H.; van Mechelen, W.; Sargeant, A.J.; de Haan, A.

    2007-01-01

    In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which

  13. Differential contributions of ankle plantarflexors during submaximal isometric muscle action

    DEFF Research Database (Denmark)

    Masood, Tahir; Bojsen-Møller, Jens; Kalliokoski, Kari K

    2014-01-01

    The objective of this study was to investigate the relative contributions of superficial and deep ankle plantarflexors during repetitive submaximal isometric contractions using surface electromyography (SEMG) and positron emission tomography (PET). Myoelectric signals were obtained from twelve....... The findings of this study provide valuable reference for studies where individual muscle contributions are estimated using models and simulations....

  14. Myocardial oxygen consumption at rest and during submaximal ...

    African Journals Online (AJOL)

    olayemitoyin

    2008-11-26

    Nov 26, 2008 ... Department of Physiology, JSS Medical College, Constituent College of JSS University, Mysore – 570015, ... determine the effect of increased adiposity on myocardial oxygen consumption at rest and during submaximal exercise in ... during exercise suggesting higher hemodynamic stress to the heart.

  15. Myocardial oxygen consumption at rest and during submaximal ...

    African Journals Online (AJOL)

    Overweight and obesity are major risk factors for cardiovascular diseases. The objective of this study was to determine the effect of increased adiposity on myocardial oxygen consumption at rest and during submaximal exercise in young adults. The study consisted of 85 young adults (18-22years) grouped into 3 based on ...

  16. Influence of menstrual phase on ventilatory response to submaximal ...

    African Journals Online (AJOL)

    Objectives. To determine whether an increase in respiratory drive, due to elevated progesterone and oestrogen concentration during various menstrual phases, persists throughout prolonged submaximal exercise and potentially contributes to fatigue. Furthermore, to determine whether the difference in the ventilatory ...

  17. Myocardial oxygen consumption at rest and during submaximal ...

    African Journals Online (AJOL)

    olayemitoyin

    2008-11-26

    Nov 26, 2008 ... and myocardial fatty acid utilization has been showed to decrease after weight loss from gastric bypass surgery or diet in obese persons (Fei ho et al., 1995,). During submaximal exercise and immediately after exercise, all three groups showed an increase in. RPP. The percentage increase in RPP was.

  18. Developing new VO2max prediction models from maximal, submaximal and questionnaire variables using support vector machines combined with feature selection.

    Science.gov (United States)

    Abut, Fatih; Akay, Mehmet Fatih; George, James

    2016-12-01

    Maximal oxygen uptake (VO2max) is an essential part of health and physical fitness, and refers to the highest rate of oxygen consumption an individual can attain during exhaustive exercise. In this study, for the first time in the literature, we combine the triple of maximal, submaximal and questionnaire variables to propose new VO2max prediction models using Support Vector Machines (SVM's) combined with the Relief-F feature selector to predict and reveal the distinct predictors of VO2max. For comparison purposes, hybrid models based on double combinations of maximal, submaximal and questionnaire variables have also been developed. By utilizing 10-fold cross-validation, the performance of the models has been calculated using multiple correlation coefficient (R) and root mean square error (RMSE). The results show that the best values of R and RMSE, with 0.94 and 2.92mLkg-1min-1 respectively, have been obtained by combining the triple of relevantly identified maximal, submaximal and questionnaire variables. Compared with the results of the rest of hybrid models in this study and the other prediction models in literature, the reported values of R and RMSE have been found to be considerably more accurate. The predictor variables gender, age, maximal heart rate (MX-HR), submaximal ending speed (SM-ES) of the treadmill and Perceived Functional Ability (Q-PFA) questionnaire have been found to be the most relevant variables in predicting VO2max. The results have also been compared with that of Multilayer Perceptron (MLP) and Tree Boost (TB), and it is seen that SVM significantly outperforms other regression methods for prediction of VO2max. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Overspeed HIIT in Lower-Body Positive Pressure Treadmill Improves Running Performance.

    Science.gov (United States)

    Gojanovic, Boris; Shultz, Rebecca; Feihl, Francois; Matheson, Gordon

    2015-12-01

    Optimal high-intensity interval training (HIIT) regimens for running performance are unknown, although most protocols result in some benefit to key performance factors (running economy (RE), anaerobic threshold (AT), or maximal oxygen uptake (VO2max)). Lower-body positive pressure (LBPP) treadmills offer the unique possibility to partially unload runners and reach supramaximal speeds. We studied the use of LBPP to test an overspeed HIIT protocol in trained runners. Eleven trained runners (35 ± 8 yr, VO2max, 55.7 ± 6.4 mL·kg⁻¹·min⁻¹) were randomized to an LBPP (n = 6) or a regular treadmill (CON, n = 5), eight sessions over 4 wk of HIIT program. Four to five intervals were run at 100% of velocity at VO2max (vVO2max) during 60% of time to exhaustion at vVO2max (Tlim) with a 1:1 work:recovery ratio. Performance outcomes were 2-mile track time trial, VO2max, vVO2max, vAT, Tlim, and RE. LBPP sessions were carried out at 90% body weight. Group-time effects were present for vVO2max (CON, 17.5 vs. 18.3, P = 0.03; LBPP, 19.7 vs. 22.3 km·h⁻¹; P HIIT protocol at 100% vVO2max improves field performance, vVO2max, VO2max and submaximal HR in trained runners. Improvements are similar if intervals are run on a regular treadmill or at higher speeds on a LPBB treadmill with 10% body weight reduction. LBPP could provide an alternative for taxing HIIT sessions.

  20. Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN in individuals with and without transtibial amputation

    Directory of Open Access Journals (Sweden)

    Gates Deanna H

    2012-11-01

    Full Text Available Abstract Background Due to increased interest in treadmill gait training, recent research has focused on the similarities and differences between treadmill and overground walking. Most of these studies have tested healthy, young subjects rather than impaired populations that might benefit from such training. These studies also do not include optic flow, which may change how the individuals integrate sensory information when walking on a treadmill. This study compared overground walking to treadmill walking in a computer assisted virtual reality environment (CAREN in individuals with and without transtibial amputations (TTA. Methods Seven individuals with traumatic TTA and 27 unimpaired controls participated. Subjects walked overground and on a treadmill in a CAREN at a normalized speed. The CAREN applied optic flow at the same speed that the subject walked. Temporal-spatial parameters, full body kinematics, and kinematic variability were collected during all trials. Results Both subject groups decreased step time and control subjects decreased step length when walking in the CAREN. Differences in lower extremity kinematics were small (○ and did not exceed the minimal detectable change values for these measures. Control subjects exhibited decreased transverse and frontal plane range of motion of the pelvis and trunk when walking in the CAREN, while patients with TTA did not. Both groups exhibited increased step width variability during treadmill walking in the CAREN, but only minor changes in kinematic variability. Conclusions The results of this study suggest that treadmill training in a virtual environment should be similar enough to overground that changes should carry over. Caution should be made when comparing step width variability and step time results from studies utilizing a treadmill to those overground.

  1. Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN) in individuals with and without transtibial amputation.

    Science.gov (United States)

    Gates, Deanna H; Darter, Benjamin J; Dingwell, Jonathan B; Wilken, Jason M

    2012-11-14

    Due to increased interest in treadmill gait training, recent research has focused on the similarities and differences between treadmill and overground walking. Most of these studies have tested healthy, young subjects rather than impaired populations that might benefit from such training. These studies also do not include optic flow, which may change how the individuals integrate sensory information when walking on a treadmill. This study compared overground walking to treadmill walking in a computer assisted virtual reality environment (CAREN) in individuals with and without transtibial amputations (TTA). Seven individuals with traumatic TTA and 27 unimpaired controls participated. Subjects walked overground and on a treadmill in a CAREN at a normalized speed. The CAREN applied optic flow at the same speed that the subject walked. Temporal-spatial parameters, full body kinematics, and kinematic variability were collected during all trials. Both subject groups decreased step time and control subjects decreased step length when walking in the CAREN. Differences in lower extremity kinematics were small (< 2.5(○)) and did not exceed the minimal detectable change values for these measures. Control subjects exhibited decreased transverse and frontal plane range of motion of the pelvis and trunk when walking in the CAREN, while patients with TTA did not. Both groups exhibited increased step width variability during treadmill walking in the CAREN, but only minor changes in kinematic variability. The results of this study suggest that treadmill training in a virtual environment should be similar enough to overground that changes should carry over. Caution should be made when comparing step width variability and step time results from studies utilizing a treadmill to those overground.

  2. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    Science.gov (United States)

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  3. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.

    Science.gov (United States)

    Donath, Lars; Faude, Oliver; Lichtenstein, Eric; Nüesch, Corina; Mündermann, Annegret

    2016-01-20

    Gait analysis serves as an important tool for clinicians and other health professionals to assess gait patterns related to functional limitations due to neurological or orthopedic conditions. The purpose of this study was to assess the validity of a body-worn inertial sensor system (RehaGait®) for measuring spatiotemporal gait characteristics compared to a stationary treadmill (Zebris) and the reliability of both systems at different walking speeds and slopes. Gait analysis was performed during treadmill walking at different speeds (habitual walking speed (normal speed); 15 % above normal walking speed; 15 % below normal walking speed) and slopes (0 % slope; 15 % slope) in 22 healthy participants twice 1 week apart. Walking speed, stride length, cadence and stride time were computed from the inertial sensor system and the stationary treadmill and compared using repeated measures analysis of variance. Effect sizes of differences between systems were assessed using Cohen's d, and limits of agreement and systematic bias were computed. The RehaGait® system slightly overestimated stride length (+2.7 %) and stride time (+0.8 %) and underestimate cadence (-1.5 %) with small effect sizes for all speeds and slopes (Cohen's d ≤ 0.44) except slow speed at 15 % slope (Cohen's d > 0.80). Walking speed obtained with the RehaGait® system closely matched the speed set on the treadmill tachometer. Intraclass correlation coefficients (ICC) were excellent for speed, cadence and stride time and for stride length at normal and fast speed at 0 % slope (ICC: .91-1.00). Good ICC values were found for stride length at slow speed at 0 % slope and all speeds at 15 % slope (ICC: .73-.90). Both devices had excellent reliability for most gait characteristics (ICC: .91-1.00) except good reliability for the RehaGait® for stride length at normal and fast speed at 0 % slope and at slow speed at 15 % slope (ICC: .80-.87). Larger limits of agreement for walking at 15

  4. The Impact of Firefighter Personal Protective Equipment and Treadmill Protocol on Maximal Oxygen Uptake

    Science.gov (United States)

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2015-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854

  5. Treadmill training for patients with Parkinson Disease. An abridged version of a Cochrane Review.

    Science.gov (United States)

    Mehrholz, Jan; Kugler, Joachim; Storch, Alexander; Pohl, Marcus; Hirsch, Kathleen; Elsner, Bernhard

    2016-10-01

    Treadmill training is used in rehabilitation might improve gait parameters of patients with Parkinson Disease. Aim of this study was to assess the effectiveness of treadmill training in improving the gait of patients with Parkinson Disease and the acceptability and safety of this type of therapy. We searched the Cochrane Movement Disorders Group Specialized Register (last searched September 2014), Cochrane Central Register of Controlled Trials (The Cochrane Library 2014, Issue 10), MEDLINE (1950 to September 2014), and EMBASE (1980 to September 2014). We also handsearched relevant conference proceedings, searched trials and research registers, and checked reference lists (last searched September 2014). We contacted trialists, experts and researchers in the field and manufacturers of commercial devices. We included all randomized controlled trials comparing treadmill training with no treadmill training in patients with Parkinson Disease. Two review authors independently selected trials for inclusion, assessed trial quality and extracted data. Treadmill training improved gait speed (MD=0.09 m/s; 95% confidence interval (CI) 0.03 to 0.14; P=0.001; I2=24%; moderate quality of evidence), stride length (MD=0.05 meters; 95% CI 0.01 to 0.09; P=0.01; I2=0%; low quality of evidence), but walking distance (MD=48.9 meters; 95% CI -1.32 to 99.14; P=0.06; I2=91%; very low quality of evidence) and cadence did not improve (MD=2.16 steps/minute; 95% CI -0.13 to 4.46; P=0.07; I2=28%; low quality of evidence) at the end of study. Treadmill training did not increase the risk of patients dropping out from intervention (RD=-0.02; 95% CI -0.06 to 0.02; P=0.32; I2=13%; moderate quality of evidence) and adverse events were not reported. This systematic review provides evidence from eighteen trials with moderate to low risk of bias that the use of treadmill training in patients with PD may improve clinically relevant gait parameters such as gait speed and stride length. This apparent

  6. Locomotion Strategy and Magnitude of Ground Reaction Forces During Treadmill Training on ISS.

    Science.gov (United States)

    Fomina, Elena; Savinkina, Alexandra

    2017-09-01

    Creation of the cosmonaut in-flight physical training process is currently based on the leading role of support afferents in the development of hypogravity changes in the motor system. We assume that the strength of support afferents is related to the magnitude of the ground reaction forces (GRF). For this purpose it was necessary to compare the GRF magnitude on the Russian BD-2 treadmill for different locomotion types (walking and running), modes (active and passive), and subjects. Relative GRF values were analyzed while subjects performed walking and running during active and passive modes of treadmill belt movement under 1 G (N = 6) and 0 G (N = 4) conditions. For different BD-2 modes and both types of locomotion, maximum GRF values varied in both 0 G and 1 G. Considerable individual variations were also found in the locomotion strategies, as well as in maximum GRF values. In 0 G, the smallest GRF values were observed for walking in active mode, and the largest during running in passive mode. In 1 G, GRF values were higher during running than while walking, but the difference between active and passive modes was not observed; we assume this was due to the uniqueness of the GRF profile. The maximum GRF recorded during walking and running in active and passive modes depended on the individual pattern of locomotion. The maximum GRF values that we recorded on BD-2 were close to values found by other researchers. The observations from this study could guide individualized countermeasures prescriptions for microgravity.Fomina E, Savinkina A. Locomotion strategy and magnitude of ground reaction forces during treadmill training on ISS. Aerosp Med Hum Perform. 2017; 88(9):841-849.

  7. Efeito da intervenção em esteira motorizada na aquisição da marcha independente e desenvolvimento motor em bebês de risco para atraso desenvolvimental Efecto de la intervención en caminadora automática en la adquisición de la marcha independiente y desarrollo motor en bebés de riesgo para retraso de desarrollo Treadmill training effects on walking acquisition and motor development in infants at risk of developmental delay

    Directory of Open Access Journals (Sweden)

    Diana Xavier C. Schlittler

    2011-03-01

    ática para el grupo experimental. Todos los bebés fueron evaluados mensualmente por la Alberta Infant Motor Scale y los del grupo experimental fueron filmados realizando los pasos en la caminadora. Comparaciones entre los grupos a lo largo del tiempo fueron realizadas utilizando análisis de variancia (ANOVA y de multivariancia (MANOVA. RESULTADOS: Los bebés del grupo experimental adquirieron la marcha independiente a los 12,8 y los del grupo control de riesgo a los 13,8 meses de edad corregida, siendo que la adquisición del grupo control de riesgo ocurrió más tarde que en el grupo control típico (1,1 meses; pOBJECTIVE: To examine the effect of motorized treadmill intervention on independent walking acquisition and other motor milestones in infants at risk of developmental delay. METHODS: Experimental study with 15 infants, observed since the 5th month of age: five infants at risk of developmental delay submitted to both physiotherapy sessions and intervention in motorized treadmill (Experimental Group; five infants at risk of developmental delay submitted to physiotherapy sessions only (Risk Control Group; and five infants without risks of developmental delay (Typical Control Group. Physiotherapy sessions occurred twice a week, followed by motorized treadmill intervention for the Experimental Group. Motorized treadmill intervention began when infants acquired cephalic control and was interrupted by independent walking or at 14 months post-conceptual age. All babies were monthly assessed with Alberta Infant Motor Scale and the Experimental Group was filmed during the exercise on the motorized treadmill. Comparisons among groups and months were performed using analysis of variance (ANOVA and multivariance (MANOVA. RESULTS: Experimental Group infants acquired independent walking at 12.8 months and the Risk Control Group infants at 13.8 months of corrected age, which was delayed compared to the Typical Control Group (1.1 months; p<0.05. Experimental Group of infants

  8. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea J. M.; Krijnen, Wim P.; Van der Schans, Cees P.; De Groot, Martijn

    Purpose: To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  9. Displacement of the pelvis during human walking : experimental data and model predictions

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    1997-01-01

    Displacements of the pelvis during treadmill walking were studied in dependence of walking speed, stride frequency and stride length. Displacement curves per stride cycle were described by means of harmonic analysis. Simple mechanical, or geometrical models of the body's center of mass (COM)

  10. Test-retest reliability of the soleus H-reflex excitability measured during human walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Dyhre-Poulsen, Poul

    2010-01-01

    The purpose of the study was to investigate with what accuracy the soleus H-reflex modulation and excitability could be measured during human walking on two occasions separated by days. The maximal M-wave (Mmax) was measured at rest in the standing position. During treadmill walking every stimulu...

  11. Effects of synchronous music on treadmill running among elite triathletes.

    Science.gov (United States)

    Terry, Peter C; Karageorghis, Costas I; Saha, Alessandra Mecozzi; D'Auria, Shaun

    2012-01-01

    Music can provide ergogenic, psychological, and psychophysical benefits during physical activity, especially when movements are performed synchronously with music. The present study developed the train of research on synchronous music and extended it to elite athletes. Repeated-measures laboratory experiment. Elite triathletes (n=11) ran in time to self-selected motivational music, a neutral equivalent and a no-music control during submaximal and exhaustive treadmill running. Measured variables were time-to-exhaustion, mood responses, feeling states, RPE, blood lactate concentration, oxygen consumption and running economy. Time-to-exhaustion was 18.1% and 19.7% longer, respectively, when running in time to motivational and neutral music, compared to no music. Mood responses and feeling states were more positive with motivational music compared to either neutral music or no music. RPE was lowest for neutral music and highest for the no-music control. Blood lactate concentrations were lowest for motivational music. Oxygen consumption was lower with music by 1.0%-.7%. Both music conditions were associated with better running economy than the no-music control. Although neutral music did not produce the same level of psychological benefits as motivational music, it proved equally beneficial in terms of time-to-exhaustion and oxygen consumption. In functional terms, the motivational qualities of music may be less important than the prominence of its beat and the degree to which participants are able to synchronise their movements to its tempo. Music provided ergogenic, psychological and physiological benefits in a laboratory study and its judicious use during triathlon training should be considered. Copyright © 2011 Sports Medicine Australia. All rights reserved.

  12. Robotic Resistance Treadmill Training Improves Locomotor Function in Children With Cerebral Palsy: A Randomized Controlled Pilot Study.

    Science.gov (United States)

    Wu, Ming; Kim, Janis; Gaebler-Spira, Deborah J; Schmit, Brian D; Arora, Pooja

    2017-11-01

    To determine whether applying controlled resistance forces to the legs during the swing phase of gait may improve the efficacy of treadmill training as compared with applying controlled assistance forces in children with cerebral palsy (CP). Randomized controlled study. Research unit of a rehabilitation hospital. Children with spastic CP (N=23; mean age, 10.6y; range, 6-14y; Gross Motor Function Classification System levels, I-IV). Participants were randomly assigned to receive controlled assistance (n=11) or resistance (n=12) loads applied to the legs at the ankle. Participants underwent robotic treadmill training 3 times a week for 6 weeks (18 sessions). A controlled swing assistance/resistance load was applied to both legs starting from the toe-off to mid-swing phase of gait during training. Outcome measures consisted of overground walking speed, 6-minute walk distance, and Gross Motor Function Measure scores and were assessed pre and post 6 weeks of training and 8 weeks after the end of training. After 6 weeks of treadmill training in participants from the resistance training group, fast walking speed and 6-minute walk distance significantly improved (18% and 30% increases, respectively), and 6-minute walk distance was still significantly greater than that at baseline (35% increase) 8 weeks after the end of training. In contrast, overground gait speed and 6-minute walk distance had no significant changes after robotic assistance training. The results of the present study indicated that robotic resistance treadmill training is more effective than assistance training in improving locomotor function in children with CP. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Factors predicting walking intolerance in patients with peripheral ...

    African Journals Online (AJOL)

    Objective. To determine which physiological variables conduce to walking intolerance in patients with peripheral arterial disease (PAD). Design. The physiological response to a graded treadmill exercise test (GTT) in patients with PAD was characterised. Setting. Patients were recruited from the Department of. Vascular ...

  14. Impact of Mild versus Moderate Intensity Aerobic Walking Exercise ...

    African Journals Online (AJOL)

    Background: Patients with hemophilia A have low bone density than healthy controls. It is now widely recognized that physical activity and sports are beneficial for patients with hemophilia. Objective: The aim of this study was to compare the effects of mild and moderate intensity treadmill walking exercises on markers of ...

  15. Does the six-minute walk test measure walking performance or physical fitness in persons with multiple sclerosis?

    Science.gov (United States)

    Sandroff, Brian M; Pilutti, Lara A; Motl, Robert W

    2015-01-01

    There is psychometric evidence that supports the six-minute walk (6MW) as a measure of walking performance, whereas other psychometric data support it as a submaximal measure of physical fitness in persons with MS. The current cross-sectional study compared measures of walking performance and physical fitness as head-to-head predictors of 6MW distance in a sample of persons with MS across the disability spectrum. All participants completed the 6MW test, as well as other measures of walking performance (i.e., timed-25 foot walk, gait velocity captured by a GaitRite electronic walkway) and physical fitness (i.e., peak aerobic capacity, lower limb muscular strength). 6MW distance was strongly associated with measures of walking performance and physical fitness, though the correlations were significantly stronger for measures of walking performance than physical fitness (z >  4.04, p Walking performance explained a large portion of variance in 6MW distance (R2 >  0.85), and measures of physical fitness explained minimal variance in 6MW distance over-and-above that of measures of walking performance (ΔR2 walking performance rather than aerobic and muscular fitness in MS.

  16. Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise

    Science.gov (United States)

    Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.

    2010-01-01

    PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.

  17. Walking Problems

    Science.gov (United States)

    ... your legs or feet Movement disorders such as Parkinson's disease Diseases such as arthritis or multiple sclerosis Vision or balance problems Treatment of walking problems depends on the cause. Physical therapy, surgery, or mobility aids may help.

  18. Validity and Reproducibility of a New Treadmill Protocol : The Fitkids Treadmill Test

    NARCIS (Netherlands)

    Kotte, Elles M W; De Groot, Janke F.; Bongers, Bart C.; Winkler, Alexander M F; Takken, Tim

    2015-01-01

    Purpose This study aimed to investigate the validity and reproducibility of a new treadmill protocol in healthy children and adolescents: the Fitkids Treadmill Test (FTT). Methods Sixty-eight healthy children and adolescents (6-18 yr) were randomly divided into a validity group (14 boys and 20

  19. Treadmill training for ataxic patients: a single-subject experimental design.

    Science.gov (United States)

    Vaz, Daniela Virgínia; Schettino, Renata de Carvalho; Rolla de Castro, Teresa Regina; Teixeira, Valéria Reis; Cavalcanti Furtado, Sheyla Rossana; de Mello Figueiredo, Elyonara

    2008-03-01

    To investigate changes in gait quality, balance and mobility associated with treadmill training for ataxic individuals. Single-subject ABA design. Baseline phases (A) lasted three weeks and intervention (B) lasted four weeks. University rehabilitation clinic. A woman (25 years) and a man (53 years) with chronic ataxia due to head trauma. Three 20-minute treadmill training sessions each week with progression in velocity and step length. Rivermead Visual Gait Assessment, Timed Up and Go, time to complete a balance task, walking speed, cadence, and stride length assessments three times a week during the 10 weeks. Data were analysed with the celeration line technique and two standard deviation band. Both individuals demonstrated gains in all parameters over initial baseline and subsequent phases, with performance increases ranging from 26% to 233% when first and last assessments were compared. Significantly superior effects of treadmill training over baseline conditions on cadence were detected (Psubject 2 (Psubject 1. Results suggest that the association between repeated testing and treadmill training might have been responsible for the observed gains in the two ataxic patients.

  20. Pain-free treadmill exercise for patients with intermittent claudication: Are there gender differences?

    Science.gov (United States)

    Dipnarine, Krishna; Barak, Sharon; Martinez, Coleen A; Carmeli, Eliezer; Stopka, Christine B

    2016-06-01

    Intermittent claudication, a common symptom of peripheral arterial disease, results in insufficient blood flow and oxygen supply to lower extremity muscles. Compared to men, women with peripheral arterial disease have a higher rate of mobility loss with peripheral arterial disease due to poorer lower extremity functioning. This study evaluates the effect of supervised pain-free treadmill exercise on improving performance in women with intermittent claudication due to peripheral arterial disease in comparison to men. A total of 26 participants (women, n = 9, 34.62%; mean age = 67.58 ± 5.59 years; averaging 23.46 ± 3.91 visits and 10.46 ± 0.99 weeks in the program) diagnosed with peripheral arterial disease, with symptoms of intermittent claudication, partook in a 45 min treadmill walk, twice per week, below the participant's minimal pain threshold. Female participants' change scores showed 752%, 278% and 115% improvement in mean walking distance, duration and rate, respectively. Men improved 334%, 149% and 80%, respectively. Significant differences (p  0.80). Our results suggest that women reap similar benefits from this low-intensity treadmill program in comparison to men. © The Author(s) 2015.

  1. Effectiveness of Treadmill Training on Balance Control in Elderly People: A Randomized Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Soraya Pirouzi

    2014-11-01

    Full Text Available Physical exercise would improve postural stability, which is an essential factor in preventing accidental fall among the elderly population. The aim of this study is to examine the effectiveness of treadmill walking on balance improvement among the elderly people. A total of 30 community dwelling older adults with a Berg Balance Scale score of 36-48 and the ability to walk without aid were considered and divided into control (n=15 and experimental (n=15 groups. Individuals in the experimental group participated in 30 minutes of forward and backward treadmill training based on three times a week interval for a period of four weeks. Individuals in the control group were instructed to continue with their daily routine activity. Before and after training, gait speed was measured by six-minute walk test and balance ability was evaluated by Fullerton Advanced Balance Scale (FABS and Berg Balance Scale (BBS tests. Postural sway items such as the Center of Pressure (COP, average displacement and velocity were evaluated by using a force platform system. Data were collected in quiet standing, tandem position and standing on foam pads before and after intervention. After intervention, balance variables in the experimental group indicated a significant improvement in quiet standing on firm and foam surfaces, but no considerable improvement was shown in tandem position. A between-group comparison showed a significant reduction in COP velocity in the sagittal plane (P=0.030 during quiet standing and in the frontal plane (P=0.001 during standing on foam, whereas no significant reduction in COP parameters during tandem position was found. It is recommended that twelve sessions of forward and backward treadmill walk are effective in balance improvement in elderly people. Trial Registration Number: IRCT201209199440N2

  2. Kinematics and muscle activity of individuals with incomplete spinal cord injury during treadmill stepping with and without manual assistance

    Directory of Open Access Journals (Sweden)

    Sawicki Gregory S

    2007-08-01

    Full Text Available Abstract Background Treadmill training with bodyweight support and manual assistance improves walking ability of patients with neurological injury. The purpose of this study was to determine how manual assistance changes muscle activation and kinematic patterns during treadmill training in individuals with incomplete spinal cord injury. Methods We tested six volunteers with incomplete spinal cord injury and six volunteers with intact nervous systems. Subjects with spinal cord injury walked on a treadmill at six speeds (0.18–1.07 m/s with body weight support with and without manual assistance. Healthy subjects walked at the same speeds only with body weight support. We measured electromyographic (EMG and kinematics in the lower extremities and calculated EMG root mean square (RMS amplitudes and joint excursions. We performed cross-correlation analyses to compare EMG and kinematic profiles. Results Normalized muscle activation amplitudes and profiles in subjects with spinal cord injury were similar for stepping with and without manual assistance (ANOVA, p > 0.05. Muscle activation amplitudes increased with increasing speed (ANOVA, p Conclusion Providing manual assistance does not lower EMG amplitudes or alter muscle activation profiles in relatively higher functioning spinal cord injury subjects. One advantage of manual assistance is that it allows spinal cord injury subjects to walk at faster speeds than they could without assistance. Concerns that manual assistance will promote passivity in subjects are unsupported by our findings.

  3. How to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill?

    Directory of Open Access Journals (Sweden)

    Melvyn Roerdink

    Full Text Available In rehabilitation, rhythmic acoustic cues are often used to improve gait. However, stride-time fluctuations become anti-persistent with such pacing, thereby deviating from the characteristic persistent long-range correlations in stride times of self-paced walking healthy adults. Recent studies therefore experimented with metronomes with persistence in interbeat intervals and successfully evoked persistent stride-time fluctuations. The objective of this study was to examine how participants couple their gait to a persistent metronome, evoking persistently longer or shorter stride times over multiple consecutive strides, without wandering off the treadmill. Twelve healthy participants walked on a treadmill in self-paced, isochronously paced and non-isochronously paced conditions, the latter with anti-persistent, uncorrelated and persistent correlations in interbeat intervals. Stride-to-stride fluctuations of stride times, stride lengths and stride speeds were assessed with detrended fluctuation analysis, in conjunction with an examination of the coupling between stride times and stride lengths. Stride-speed fluctuations were anti-persistent for all conditions. Stride-time and stride-length fluctuations were persistent for self-paced walking and anti-persistent for isochronous pacing. Both stride times and stride lengths changed from anti-persistence to persistence over the four non-isochronous metronome conditions, accompanied by an increasingly stronger coupling between these gait parameters, with peak values for the persistent metronomes. These results revealed that participants were able to follow the beat of a persistent metronome without falling off the treadmill by strongly coupling stride-length fluctuations to the stride-time fluctuations elicited by persistent metronomes, so as to prevent large positional displacements along the treadmill. For self-paced walking, in contrast, this coupling was very weak. In combination, these results

  4. Treadmill training and overground gait: decision making for a toddler with spina bifida.

    Science.gov (United States)

    Moerchen, Victoria A; Habibi, Mohammad; Lynett, Kelly A; Konrad, Jeffrey D; Hoefakker, Heather L

    2011-01-01

    This case report describes a decision-making process that was used to progress a home-based intervention that coupled treadmill and walker stepping for a preambulatory toddler with spina bifida. The toddler in this report had an L4-L5 level lesion, and began this home-based intervention at 18 months of age when she was pulling to stand. The intervention included parameters for treadmill stepping that prepared this toddler for gait with orthotics and was progressed to overground walking with a walker using a decision-making algorithm based on data obtained from a parent log and coded video. This toddler progressed from not stepping at the start of the study to ambulating 150 m with a walker at age 23 months, after 18 weeks of this intervention. The intervention and decision-making process used in this study were family centered and may be applicable to gait intervention with other populations.

  5. Treadmill training as an augmentation treatment for Alzheimer?s disease: a pilot randomized controlled study

    Directory of Open Access Journals (Sweden)

    Cynthia Arcoverde

    2014-03-01

    Full Text Available Objective To assess the effect of aerobic exercise on the cognition and functional capacity in Alzheimer’s disease (AD patients. Method Elderly (n=20 with mild dementia (NINCDS-ADRDA/CDR1 were randomly assigned to an exercise group (EG on a treadmill (30 minutes, twice a week and moderate intensity of 60% VO2max and control group (GC 10 patients. The primary outcome measure was the cognitive function using Cambridge Cognitive Examination (CAMCOG. Specifics instruments were also applied to evaluate executive function, memory, attention and concentration, cognitive flexibility, inhibitory control and functional capacity. Results After 16 weeks, the EG showed improvement in cognition CAMCOG whereas the CG declined. Compared to the CG, the EG presented significant improvement on the functional capacity. The analysis of the effect size has shown a favorable response to the physical exercise in all dependent variables. Conclusion Walking on treadmill may be recommended as an augmentation treatment for patients with AD.

  6. Development of a method to determine abnormal joint torque coupling patterns during walking in chronic hemiparetic stroke

    NARCIS (Netherlands)

    Fricke, S.S.; Dragunas, A.C.; Gordon, Keith E.; van der Kooij, H.; van Asseldonk, E.H.F.; Dewald, Julius P. A.

    Abnormal joint torque coupling between (sub)maximal isometric hip extension and hip adduction torques was found in individuals with chronic hemiparetic stroke in a previous study, however, it is unclear how this coupling affects dynamic tasks like walking. Especially during stance phase of gait, in

  7. Development of a method to determine abnormal joint torque coupling patterns during walking in chronic hemiparetic stroke

    NARCIS (Netherlands)

    Fricke, S.S.; Dragunas, A.C.; Gordon, K.E.; van der Kooij, H.; van Asseldonk, E.H.F.; Dewald, Julius P. A.

    Abnormal joint torque coupling between (sub)maximal isometric hip extension and hip adduction torques previously reported under isometric conditions might lead to instability during walking in chronic hemiparetic stroke. Since this coupling has not been evaluated during a dynamic task, the aim of

  8. RIVERSIDE WALK

    Directory of Open Access Journals (Sweden)

    Pablo Fernández Marmisole

    2015-06-01

    Full Text Available Since 2009, and as part of the Neighborhood Law (Ley de Barrios of Catalonia there is a strategic plan to integrate neighborhoods Baró de Viver and Bon Pastor in the city of Barcelona. The guidelines of the plan are to improve public space and to better connect neighborhoods to each other and the adjoining districts and municipalities. Within the strategy includes opening the Besos River to the urban territory through green corridors and installation of equipment. In this sense, the argument is to provide qualified public space to encourage the urban cohesiveness of the neighborhoods through the creation of a new Riverside Walk. The project consists in converting an urban highway into a pacified walk. The stroll also attempts to pacify the area by removing the visual and acoustic pollution caused by the Ronda Litoral (Highway next to the Besos River. In response to this problem the project consists in covering the Ronda Litoral, creating 1.5km of qualified public space, where a set of vegetation and the generation of sun areas will create different spaces that invigorate the territory and connect the neighborhoods. The platform covering the Ronda Litoral includes peaceful meetings with each and every one of the streets that are right with it. The Riverside Walk will be found within less than 400m from 4 metro stations and will have three pedestrian walkways as an access to Barcelona from the neighboring municipality of Santa Coloma. The installation of common equipment, to be shared by the two neighborhoods in the central part of the Riverside Walk is a guiding principle of the integrated strategy. Within the guidelines of the plan for the area of Ley de Barrios lies the importance of public participation; in that sense it is contemplated a participatory process from the initial design phase of the stroll, where subject for debate, reflection and proposal neighbors will design the walk and their equipment. The process will contemplate since the

  9. Effect of the treadmill training factors on the locomotor ability after space flight

    Science.gov (United States)

    Lysova, Nataliya; Fomina, Elena

    Training on the treadmill constitutes the central component of the Russian system of countermeasures against the negative effects of microgravity. Effectiveness of the treadmill training is influenced by three main factors. Namely, these are intensity (velocity and regularity), axial loading with the use of elastic bungee cords and percentage of time for training on the non-motorized treadmill within the overall training program. Previously we have demonstrated the significance of each factor separately: intensity (Kozlovskaya I.B. et al., 2011), passive mode (Fomina E.V. et al., 2012) and axial loading (Fomina E.V. et al., 2013). The Russian system of in-flight countermeasures gives preference to interval training sessions in which walking alternates with short episodes of intensive running. Locomotion on the non-motorized treadmill should make approx. 30% of the total time of locomotor training. The ISS RS treadmill can be utilized with the motor in motion (active mode) or out of motion so that the cosmonaut has to push the belt with his feet (passive mode). Axial loading of the cosmonaut must be 60-70% of his body weight. However, there is a huge variety of strategies cosmonauts choose of when they exercise on the treadmill in the course of long-duration ISS missions. Purpose of the investigation was comparative analysis of different locomotion training regimens from the standpoint of their effectiveness in microgravity. Criteria of effectiveness evaluation were the results of the locomotion test that includes walking along the fixed support at the preset rate of 90 steps/min. Peak amplitude on the m. soleus electromyogram was analyzed. The experiment was performed with participation of 18 Russian members of extended ISS missions. Each locomotion training factors was rated using the score scale from 0 to 10: Intensity (0 to 10), Percentage of passive mode training (recommended 30% was taken as 10 and could go down to 0 if the passive mode was not applied) and

  10. Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body

  11. Cardiovascular responses to treadmill exercise in Nigerian ...

    African Journals Online (AJOL)

    Background: Left ventricular hypertrophy (LVH) is an independent risk factor for adverse cardiac outcomes in hypertensive patients. Objective: This study is designed to assess the cardiovascular responses to treadmill exercise among Nigerian hypertensives with echocardiographically proven LVH. Materials and Methods: ...

  12. Gait improvement after treadmill training in ischemic stroke survivors: A critical review of functional MRI studies ☆

    OpenAIRE

    Xiao, Xiang; Huang, Dongfeng; O’Young, Bryan

    2012-01-01

    Stroke survivors often present with abnormal gait, movement training can improve the walking performance post-stroke, and functional MRI can objectively evaluate the brain functions before and after movement training. This paper analyzes the functional MRI changes in patients with ischemic stroke after treadmill training with voluntary and passive ankle dorsiflexion. Functional MRI showed that there are some changes in some regions of patients with ischemic stroke including primary sensorimot...

  13. Is energy expenditure taken into account in human sub-maximal jumping? - a simulation study

    NARCIS (Netherlands)

    Vanrenterghem, J.; Bobbert, M.F.; Casius, L.J.R.; de Clercq, D.

    2008-01-01

    This paper presents a simulation study that was conducted to investigate whether the stereotyped motion pattern observed in human sub-maximal jumping can be interpreted from the perspective of energy expenditure. Human sub-maximal vertical countermovement jumps were compared to jumps simulated with

  14. A New Submaximal Rowing Test to Predict 2,000-m Rowing Ergometer Performance

    NARCIS (Netherlands)

    Otter, Ruby T. A.; Brink, Michel S.; Lamberts, Robert P.; Lemmink, Koen A. P. M.

    Otter, RTA, Brink, MS, Lamberts, RP, and Lemmink, KAPM. A new submaximal rowing test to predict 2,000-m rowing ergometer performance. J Strength Cond Res 29(9): 2426-2433, 2015-The purpose of this study was to assess predictive value of a new submaximal rowing test (SmRT) on 2,000-m ergometer rowing

  15. Effect of the Canadian Air Force training programme on a submaximal exercise test.

    Science.gov (United States)

    Kappagoda, C T; Linden, R J; Newell, J P

    1979-07-01

    Validation of the submaximal heart rate/oxygen consumption relationship as an index of 'cardiorespiratory fitness' requires the demonstration of systematic alterations in this relationship concomitant with interventions designed to alter physical fitness. To fulfil those criteria a longitudinal training/de-training study was undertaken. Previously sedentary adult subjects undertook the Canadian Airforce 5BX-XBX exercise programme. Submaximal exercise tests were performed before and after training, and following several weeks cessation of training. A regression line of submaximal heart rate on submaximal oxygen consumption was calculated from the data of each submaximal exercise test. Alterations in the regression lines were examined for each subject individually by testing statistically for difference in slope and elevation between any pair of lines. Subjects who undertook the training/de-training study demonstrated significant systematic alterations in the elevation of the regression lines concomitant with periods of training and de-training. The reproducibility of the submaximal heart rate/oxygen consumption relationship was examined in two additional groups of subjects. Group A repeated a submaximal test on 3 or 4 successive days; Group B were tested before and after 16 weeks of normal activity. Subjects in Group A demonstrated non significant, random alterations in the regression lines on repeated testing and subjects in Group B demonstrated random, though on occasion significant, alterations in the regression lines. The elevation of the submaximal heart rate/oxygen consumption relationship is therefore a valid index for detecting sequential changes in 'cardiorespiratory fitness' in individual subjects.

  16. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    Science.gov (United States)

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Optimal walking speed following changes in limb geometry.

    Science.gov (United States)

    Leurs, Françoise; Ivanenko, Yuri P; Bengoetxea, Ana; Cebolla, Ana-Maria; Dan, Bernard; Lacquaniti, Francesco; Cheron, Guy A

    2011-07-01

    The principle of dynamic similarity states that the optimal walking speeds of geometrically similar animals are independent of size when speed is normalized to the dimensionless Froude number (Fr). Furthermore, various studies have shown similar dimensionless optimal speed (Fr ∼0.25) for animals with quite different limb geometries. Here, we wondered whether the optimal walking speed of humans depends solely on total limb length or whether limb segment proportions play an essential role. If optimal walking speed solely depends on the limb length then, when subjects walk on stilts, they should consume less metabolic energy at a faster optimal speed than when they walk without stilts. To test this prediction, we compared kinematics, electromyographic activity and oxygen consumption in adults walking on a treadmill at different speeds with and without articulated stilts that artificially elongated the shank segment by 40 cm. Walking on stilts involved a non-linear reorganization of kinematic and electromyography patterns. In particular, we found a significant increase in the alternating activity of proximal flexors-extensors during the swing phase, despite significantly shorter normalized stride lengths. The minimal metabolic cost per unit distance walked with stilts occurred at roughly the same absolute speed, corresponding to a lower Fr number (Fr ∼0.17) than in normal walking (Fr ∼0.25). These findings are consistent with an important role of limb geometry optimization and kinematic coordination strategies in minimizing the energy expenditure of human walking.

  18. Energy Expenditure in Vinyasa Yoga Versus Walking.

    Science.gov (United States)

    Sherman, Sally A; Rogers, Renee J; Davis, Kelliann K; Minster, Ryan L; Creasy, Seth A; Mullarkey, Nicole C; O'Dell, Matthew; Donahue, Patrick; Jakicic, John M

    2017-08-01

    Whether the energy cost of vinyasa yoga meets the criteria for moderate-to-vigorous physical activity has not been established. To compare energy expenditure during acute bouts of vinyasa yoga and 2 walking protocols. Participants (20 males, 18 females) performed 60-minute sessions of vinyasa yoga (YOGA), treadmill walking at a self-selected brisk pace (SELF), and treadmill walking at a pace that matched the heart rate of the YOGA session (HR-Match). Energy expenditure was assessed via indirect calorimetry. Energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 79.5 ± 44.3 kcal; P YOGA = 3.6 ± 0.6; P YOGA, showed energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 68.0 ± 40.1 kcal; P YOGA meets the criteria for moderate-intensity physical activity. Thus, YOGA may be a viable form of physical activity to achieve public health guidelines and to elicit health benefits.

  19. Effects of flunixin on cardiorespiratory, plasma lactate and stride length responses to intense treadmill exercise in Standardbred trotters.

    Science.gov (United States)

    Kallings, P; Persson, S G B; Essén-Gustavsson, B

    2010-11-01

    Since nonsteroidal anti-inflammatory drugs, such as flunixin, on account of their anti-inflammatory and analgesic properties, are used in both racing and equestrian sport horses, the question has been raised as to whether these drugs affect the physiological responses to exercise and thus performance potential. The aims of this investigation were to study the effects of flunixin on cardiorespiratory, metabolic and locomotor parameters in horses during intense treadmill exercise. Six Standardbred trotters underwent an incremental treadmill exercise test to fatigue, without drug and then after administration of flunixin meglumine (1.1 mg/kg bwt i.m.). Heart rate (HR), oxygen uptake and stride length were measured and venous blood samples drawn repeatedly during the test. Heart rates were found to be significantly higher at submaximal speeds, while the velocity causing a HR of 200 beats/min was significantly decreased after treatment with flunixin. Maximal HR and plasma lactate concentration 5 min after exercise were unchanged after medication. Flunixin caused higher plasma lactate concentrations at all speeds and the lactate threshold was decreased, compared with baseline values. Oxygen uptake levelled off at the highest velocities and did not change after flunixin treatment. Stride length was increased after treatment, although not at the highest velocities. The increased HR and lactate responses to exercise after flunixin treatment indicate that it does influence physiological responses, but does not improve the performance potential of clinically healthy horses. However, the lengthened stride during submaximal exercise after medication could imply undetected subclinical lameness, masked in some of the horses, i.e. they have performed with a longer stride at the cost of a higher heart rate and an increased lactate concentration. © 2010 EVJ Ltd.

  20. Treadmill Training with HAL Exoskeleton—A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy—Preliminary Study

    Directory of Open Access Journals (Sweden)

    Matthias Sczesny-Kaiser

    2017-08-01

    Full Text Available Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD.Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT, 6-minute walk test, and timed-up-and-go test (TUG. Parameters were assessed pre and post training and 6 weeks later (follow-up.Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up.Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies.

  1. Treadmill Training with HAL Exoskeleton-A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy-Preliminary Study.

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin

    2017-01-01

    Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies.

  2. Treadmill Training with HAL Exoskeleton—A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy—Preliminary Study

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A.; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin

    2017-01-01

    Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies. PMID:28848377

  3. Reliability of oscillometric central blood pressure responses to submaximal exercise.

    Science.gov (United States)

    Lim, Weijie; Faulkner, James; Lambrick, Danielle; Stoner, Lee

    2016-06-01

    Central blood pressure responses to exercise may provide clinicians with a superior diagnostic and prognostic tool. However, to be of value in a clinical setting these assessments must be simple to conduct and reliable. Using oscillometric pulse wave analysis (PWA), determine the upper limit for between-day reliability of central SBP (cSBP) and central pressure augmentation (AIx) responses to three progressive stages of submaximal exercise in a cohort of young, healthy participants. Fifteen healthy males [25.8 years (SD 5.7), 23.9 kg/m (SD 2.5)] were tested on three different mornings in a fasted state, separated by a maximum of 14 days. Central hemodynamic variables were assessed on the left upper arm. Participants underwent three progressive stages of submaximal cycling at 50 W (low), 100 W (moderate) and 150 W (moderate-hard). During low and moderate-intensity exercise the intra-class correlation coefficient (ICC) values for cSBP (0.79-0.80) and AIx (0.81-0.85) indicated excellent reliability (ICC > 0.75). For the moderate-hard intensity AIx could not be computed, and the ICC for cSBP was adequate (0.72). Findings from this study suggest that, at least in a young, healthy cohort, oscillometric PWA can be used to reliably assess central blood pressure measurements during exercise, up to a moderate intensity. Although further work is required to verify these findings in clinical cohorts, these measurements may potentially provide clinicians with a practical option for obtaining important hemodynamic information beyond that provided by resting peripheral blood pressure.

  4. Which factors determine the freely chosen cadence during submaximal cycling?

    Science.gov (United States)

    Vercruyssen, Fabrice; Brisswalter, Jeanick

    2010-03-01

    The present review of cycling science focuses on the identification of criteria that affect the freely chosen cadence (FCC) during submaximal exercise of short and prolonged durations. Cadence selection during submaximal cycling constitutes a potential parameter affecting the endurance performance in subjects of varying aerobic fitness level and experience. The activity constraints such as specificity (e.g. cycle bout of triathlon) and exercise duration may play an important role in the selection of cadence and must be taken into consideration in the task description. The 'holistic' approach of this review is based on a multifactorial analysis considering the cycling constraints, and the physiological and biomechanical factors of cadence selection so as to establish any interrelationships between these factors. During cycle bouts of short duration (<15 min), it has been well argued that experienced cyclists, trained runners and triathletes adopt high cadences (80-100 rpm) systematically above the energetically optimal cadence (EOC) at which the oxygen uptake is minimal (55-65 rpm). The choice of a high cadence has been shown to be dependent upon several factors, such as the aerobic fitness level, the reduction in forces applied to the cranks, the lower extremity net joint moments and minimal neuromuscular fatigue. However, with increasing exercise duration the FCC has been reported to be close to the EOC exclusively in endurance athletes practising a variety of activities, suggesting an impact of training mode on the muscular adaptations and the organisation of the movement pattern. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    Science.gov (United States)

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s-1, as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. "Anti-Gravity" Treadmills Speed Rehabilitation

    Science.gov (United States)

    2009-01-01

    A former Ames Research Center engineer, Dr. Robert Whalen, invented a treadmill that he licensed to a Menlo Park, California company, Alter-G Inc. The company s G-Trainer is an enclosed treadmill that uses air pressure to help patients feel up to 80 percent lighter, easing discomfort during rehabilitation. A patient desiring more weightlessness during a workout can simply press a button and the air pressure increases, lifting the body and reducing strain and impact. The U.S. Food and Drug Administration cleared the G-Trainer for medical use in January 2008, and researchers are now assessing the G-Trainer s effectiveness in aiding patients with various neurological or musculoskeletal conditions.

  7. The amplitude of interlimb cutaneous reflexes in the leg is influenced by fingertip touch and vision during treadmill locomotion.

    Science.gov (United States)

    Forero, Juan; Misiaszek, John E

    2015-06-01

    Light touch at the fingertip has been shown to influence postural control during standing and walking. Interlimb cutaneous reflexes have been proposed to provide a neural link between the upper and lower limbs to assist in interlimb coordination during activities such as walking. In this study, we tested the hypothesis that cutaneous sensory pathways linking the arm and leg will be facilitated if subjects use light touch to assist with postural control during treadmill walking. To test this, interlimb cutaneous reflexes from the median nerve, serving the skin contact region, and radial nerve, serving an irrelevant sensory territory, were tested in the legs of subjects walking on treadmill in an unstable environment. Interlimb cutaneous reflexes were tested while subjects (a) touched or (b) did not touch a stable contact with their fingertip, and while the eyes were either (c) open or (d) closed. Reflexes arising from both nerves were facilitated when vision was removed that was then ameliorated when touch was provided. These changes in reflex amplitude during the eyes closed conditions were mirrored by changes in background muscle activity. We suggest that this facilitation of interlimb reflexes from both nerves arises from a generalized increase in excitability related to the postural anxiety of walking on a treadmill with the eyes closed, which is then restored by the provision of light touch. However, the influence of touch when the eyes were open differed depending upon the nerve stimulated. Radial nerve reflexes in the legs were suppressed when touch was provided, mirroring a suppression in the background muscle activity. In contrast, median nerve reflexes in the leg were larger when touch was provided with the eyes open, despite a suppression of background muscle activity. This nerve-specific effect of touch on the amplitude of the interlimb cutaneous reflexes suggests that touch sensory information from the median nerve was facilitated when that input was

  8. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects.

    Science.gov (United States)

    Walker, Martha L; Ringleb, Stacie I; Maihafer, George C; Walker, Robert; Crouch, Jessica R; Van Lunen, Bonnie; Morrison, Steven

    2010-01-01

    Walker ML, Ringleb SI, Maihafer GC, Walker R, Crouch JR, Van Lunen B, Morrison S. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. To determine whether the use of a low-cost virtual reality (VR) system used in conjunction with partial body weight-supported treadmill training (BWSTT) was feasible and effective in improving the walking and balance abilities of patients poststroke. A before-after comparison of a single group with BWSTT intervention. University research laboratory. A convenience sample of 7 adults who were within 1 year poststroke and who had completed traditional rehabilitation but still exhibited gait deficits. Six participants completed the study. Twelve treatment sessions of BWSTT with VR. The VR system generated a virtual environment that showed on a television screen in front of the treadmill to give participants the sensation of walking down a city street. A head-mounted position sensor provided postural feedback. Functional Gait Assessment (FGA) score, Berg Balance Scale (BBS) score, and overground walking speed. One subject dropped out of the study. All other participants made significant improvements in their ability to walk. FGA scores increased from mean of 13.8 to 18. BBS scores increased from mean of 43.8 to 48.8, although a ceiling effect was seen for this test. Overground walking speed increased from mean of .49m/s to .68m/s. A low-cost VR system combined with BWSTT is feasible for improved gait and balance of patients poststroke. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Modular Control of Treadmill vs Overground Running

    Science.gov (United States)

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  10. Metabolic Rate and Perceived Exertion of Walking in Older Adults With Idiopathic Chronic Fatigue.

    Science.gov (United States)

    Valiani, Vincenzo; Corbett, Duane B; Knaggs, Jeffrey D; Manini, Todd M

    2016-11-01

    Fatigue is a common complaint in older adults, often not associated with underlying medical conditions. The purpose of this study was to investigate metabolic rate (MR) of walking, walking performance, and perception-based exertion during walking in older adults with and without idiopathic chronic fatigue (ICF). 20 older adults (aged 70.8±4.9 years), reporting 2 SD above normative values of the Functional Assessment of Chronic Illness Therapy-Fatigue scale and without overt health conditions that explained their symptoms, were compared with 25 age-matched older adults (73.2±5.1 years) without fatigue symptoms. Participants walked 400 m at a rapid pace on a 20-m course. On a separate visit, oxygen consumption was measured during treadmill test at standard (40.2 m/min), preferred paces (40-83 m/min) and peak capacity. Ratings of perceived exertion (RPE) were measured at each treadmill stage and after each lap of the 400-m walk test. During the 400-m walk test, individuals with ICF showed lower overall walking speed and reported a steady increase in RPE with no change observed in non-fatigued group (1.63±1.72 vs 0.27±0.68, p < .01). Similar findings on RPE were noted on treadmill test. Gross MR, mass-specific MR, mass-specific net MR, and MR as a percent of peak oxygen consumption of walking were similar between groups during standard, preferred paces and peak capacity on treadmill. This study suggests that ICF in older adults is not related to elevated metabolic cost of walking. Higher RPE without concomitant decreases in performance indicate a potential disconnect between metabolic output and sensations during movement. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Reliability and Seasonal Changes of Submaximal Variables to Evaluate Professional Cyclists.

    Science.gov (United States)

    Rodríguez-Marroyo, Jose A; Pernía, Raúl; Villa, José G; Foster, Carl

    2017-11-01

    The aim of this study was to determine the reliability and validity of several submaximal variables that can be easily obtained by monitoring cyclists' performances. Eighteen professional cyclists participated in this study. In a first part (n = 15) the test-retest reliability of heart rate (HR) and rating of perceived exertion (RPE) during a progressive maximal test was measured. Derived submaximal variables based on HR, RPE, and power output (PO) responses were analyzed. In a second part (n = 7) the pattern of the submaximal variables according to cyclists' training status was analyzed. Cyclists were assessed 3 times during the season: at the beginning of the season, before the Vuelta a España, and the day after this Grand Tour. Part 1: No significant differences in maximal and submaximal variables between test-retest were found. Excellent ICCs (0.81-0.98) were obtained in all variables. Part 2: The HR and RPE showed a rightward shift from early to peak season. In addition, RPE showed a left shift after the Vuelta a España. Submaximal variables based on RPE had the best relationship with both performance and changes in performance. The present study showed the reliability of different maximal and submaximal variables used to assess cyclists' performances. Submaximal variables based on RPE seem to be the best to monitor changes in training status over a season.

  12. A Systematic Review of Submaximal Cycle Tests to Predict, Monitor, and Optimize Cycling Performance.

    Science.gov (United States)

    Capostagno, Benoit; Lambert, Michael I; Lamberts, Robert P

    2016-09-01

    Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.

  13. Biomechanical responses of the back of riding horses to water treadmill exercise.

    Science.gov (United States)

    Mooij, M J W; Jans, W; den Heijer, G J L; de Pater, M; Back, W

    2013-12-01

    There is a lack of evidence for the presumed beneficial effects of water treadmills on the movement of the horse's back. The aim of the study was to evaluate the effects of water treadmill exercise on axial rotation (AR), lateral bending (LB) and pelvic flexion (PF) in horses. The back kinematics of a group of riding horses were studied at the walk in a water treadmill at different depths of water (hoof, fetlock, carpus, elbow and shoulder joint levels) over a period of 10 days. Skin markers were placed at anatomical locations on the back. AR, LB and PF were measured on days 1 and 10 using two high-speed video cameras. There was a significant increase in AR compared to baseline at the level of the carpus and at higher water levels, whereas LB was significantly lower than baseline values at water levels that reached the elbow and shoulder joints. PF was significantly higher than baseline values at each water depth other than hoof water depth. At increasing water depths, there were significant increases in flexion and rotation of the back. At the highest water levels, there was reduced bending of the back. After 10 days, horses exhibited more bending of the back. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Walking adaptability therapy after stroke: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Timmermans, Celine; Roerdink, Melvyn; van Ooijen, Marielle W; Meskers, Carel G; Janssen, Thomas W; Beek, Peter J

    2016-08-26

    Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will

  15. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2009-02-01

    Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.

  16. Talking about walking: Biomechanics and the language of locomotion

    OpenAIRE

    Malt, Barbara; Gennari, Sylvia; Imai, Mutsumi; Ameel, Eef; Tsuda, Naoaki; Majid, Asifa

    2008-01-01

    What drives humans around the world to converge in certain ways in their naming while diverging dramatically in others? We studied how naming patterns are constrained by investigating whether labeling of human locomotion reflects the biomechanical discontinuity between walking and running gaits. Similarity judgments of a student locomoting on a treadmill at different slopes and speeds revealed perception of this discontinuity. Naming judgments of the same clips by speakers of English, Japanes...

  17. Acclimatization improves submaximal exercise economy at 5533 m.

    Science.gov (United States)

    Latshang, T D; Turk, A J; Hess, T; Schoch, O D; Bosch, M M; Barthelmes, D; Merz, T M; Hefti, U; Hefti, J Pichler; Maggiorini, M; Bloch, K E

    2013-08-01

    We tested whether the better subjective exercise tolerance perceived by mountaineers after altitude acclimatization relates to enhanced exercise economy. Thirty-two mountaineers performed progressive bicycle exercise to exhaustion at 490 m and twice at 5533 m (days 6-7 and day 11), respectively, during an expedition to Mt. Muztagh Ata. Maximal work rate (W(max)) decreased from mean ± SD 356 ± 73 watts at 490 m to 191 ± 49 watts and 193 ± 45 watts at 5533 m, days 6-7 and day 11, respectively; corresponding maximal oxygen uptakes (VO2max ) were 50.7 ± 9.5, 26.3 ± 5.6, 24.7 ± 7.0 mL/min/kg (P = 0.0001 5533 m vs 490 m). On days 6-7 (5533 m), VO(2) at 75% W(max) (152 ± 37 watts) was 1.75 ± 0.45 L/min, oxygen saturation 68 ± 8%. On day 11 (5533 m), at the same submaximal work rate, VO(2) was lower (1.61 ± 0.47 L/min, P scale 50 ± 15 vs 57 ± 20, P = 0.006) and reduced symptoms of acute mountain sickness. We conclude that the better performance and subjective exercise tolerance after acclimatization were related to regression of acute mountain sickness and improved submaximal exercise economy because of lower metabolic demands for non-external work-performing functions. © 2011 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Head pitch affects muscle activity in the decerebrate cat hindlimb during walking.

    Science.gov (United States)

    Gottschall, Jinger S; Nichols, T Richard

    2007-09-01

    Our purpose was to quantify the effects of head pitch on muscle activity patterns of the decerebrate cat hindlimb during walking. Five decerebrate cats walked at 0.7 m/s on a treadmill positioned level with the head pitch either parallel to the treadmill, 50% nose down or 50% nose up. We collected electromyography data from six hindlimb muscles. During level walking, after we manipulated head pitch, our results were surprisingly equivalent to the research on slope walking. For instance, muscle activity during level walking with a 50% head pitch nose down mimicked uphill walking. The muscle activity of the iliopsoas and semitendinosus significantly increased. Muscle activity during level walking with a 50% head pitch nose up mimicked downhill walking. Specifically, the biceps femoris and semimembranosus were inactive during the entire step. These alterations in muscle activity occurred within one step of altering head pitch but dissipated as level walking continued. In conclusion, the time course of muscle activity patterns due to modifications in head pitch is immediate and transitory.

  19. Cardiovascular responses during a submaximal exercise test in patients with Parkinson's disease.

    Science.gov (United States)

    Speelman, Arlène D; Groothuis, Jan T; van Nimwegen, Marlies; van der Scheer, Ellis S; Borm, George F; Bloem, Bastiaan R; Hopman, Maria T E; Munneke, Marten

    2012-01-01

    Patients with Parkinson's disease (PD) are physically less active than controls, and autonomic dysfunction may contribute to this sedentary lifestyle. Specifically, an altered cardiovascular response to physical effort may restrict physical activities. To assess the cardiovascular responses to a submaximal exercise test in PD patients and controls, 546 sedentary PD patients and 29 sedentary healthy controls performed the Åstrand-Rhyming submaximal cycle exercise test. Average heart rate was used to estimate maximal oxygen consumption (VO2max). Variables that may affect submaximal activity in PD patients, including disease severity, fatigue, and level of physical activity in daily life, were recorded. Fewer PD patients (46%) completed the submaximal exercise test successfully than the controls (86%). The estimated VO2max of patients with a successful test was 34% lower than the controls (p physical activities further.

  20. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    Science.gov (United States)

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  1. Nonlinear time series analysis of normal and pathological human walking

    Science.gov (United States)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the

  2. Intensive cycle ergometer training improves gait speed and endurance in patients with Parkinson's disease: A comparison with treadmill training.

    Science.gov (United States)

    Arcolin, Ilaria; Pisano, Fabrizio; Delconte, Carmen; Godi, Marco; Schieppati, Marco; Mezzani, Alessandro; Picco, Daniele; Grasso, Margherita; Nardone, Antonio

    2015-01-01

    Cycle ergometer training improves gait in the elderly, but its effect in patients with Parkinson's disease (PD) is not completely known. Twenty-nine PD inpatients were randomized to treadmill (n = 13, PD-T) or cycle ergometer (n = 16, PD-C) training for 3 weeks, 1 hour/day. Outcome measures were distance travelled during the 6-min walking test (6MWT), spatio-temporal variables of gait assessed by baropodometry, the Timed Up and Go (TUG) duration, the balance score through the Mini-BESTest, and the score of the Unified Parkinson's Disease Rating Scale (UPDRS). Sex, age, body mass index, disease duration, Hoehn-Yahr staging, comorbidity and medication did not differ between groups. At end of training, ANCOVA showed significant improvement, of similar degree, in both groups for 6MWT, speed, step length and cadence of gait, TUG, Mini-BESTest and UPDRS. This pilot study shows that cycle ergometer training improves walking parameters and reduces clinical signs of PD, as much as treadmill training does. Gait velocity is accompanied by step lengthening, making the gait pattern close to that of healthy subjects. Cycle ergometer is a valid alternative to treadmill for improving gait in short term in patients with PD.

  3. COMPARISON OF TRUNK AND LOWER EXTREMITY MUSCLE ACTIVITY AMONG FOUR STATIONARY EQUIPMENT DEVICES: UPRIGHT BIKE, RECUMBENT BIKE, TREADMILL, AND ELLIPTIGO®.

    Science.gov (United States)

    Bouillon, Lucinda; Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy

    2016-04-01

    Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Cohort, repeated measures. Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking

  4. BACKWARD WALKING TRAINING IMPROVES KNEE PROPRIOCEPTION IN NON ATHLETIC MALES

    Directory of Open Access Journals (Sweden)

    Magda Gaid Sedhom

    2017-09-01

    Full Text Available Background: Walking is a popular, convenient, and relatively safe form of exercise. Humans generally learn walking in forward direction with little difficulty, while walking in backward direction is necessary for normal activities of daily living and accommodates the body with different tasks. This study was conducted to compare between forward and backward walking training on peak torque of Quadriceps and Hamstring muscles and their effect on knee proprioception. Methods: Forty non athletic males, with mean age (21.87±1.76 years participated in this study, and were classified into two equal groups. Group (A walked forward on treadmill while group (B walked backward three times/week for a total six weeks. They were assessed by using Biodex system 3 to measure the concentric peak torque of Quadriceps and Hamstring muscles at angular velocities 60 and 180°/sec and the knee joint proprioception. The assessment was done twice for every subject (pre-study and after six weeks of gait training. Results: t-test revealed statistical significant increase in peak torque of Quadriceps and Hamstrings muscles in both groups after training at 60 and 180°/sec (p-value < 0.05. There was statistical significant improvement in knee proprioception in group B only p-value was (0.000. Conclusion: Both forward backward walking training improving the peak torque of quadriceps and hamstring muscles, while backward walking is better in improving knee proprioception accuracy.

  5. Celestial Walk: A Terminating Oblivious Walk for Convex Subdivisions

    OpenAIRE

    Kuijper, Wouter; Ermolaev, Victor; Devillers, Olivier

    2017-01-01

    We present a new oblivious walking strategy for convex subdivisions. Our walk is faster than the straight walk and more generally applicable than the visibility walk. To prove termination of our walk we use a novel monotonically decreasing distance measure.

  6. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement.

    Directory of Open Access Journals (Sweden)

    George A Tsianos

    2016-06-01

    Full Text Available Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2 were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms.

  7. Effects of music tempo upon submaximal cycling performance.

    Science.gov (United States)

    Waterhouse, J; Hudson, P; Edwards, B

    2010-08-01

    In an in vivo laboratory controlled study, 12 healthy male students cycled at self-chosen work-rates while listening to a program of six popular music tracks of different tempi. The program lasted about 25 min and was performed on three occasions--unknown to the participants, its tempo was normal, increased by 10% or decreased by 10%. Work done, distance covered and cadence were measured at the end of each track, as were heart rate and subjective measures of exertion, thermal comfort and how much the music was liked. Speeding up the music program increased distance covered/unit time, power and pedal cadence by 2.1%, 3.5% and 0.7%, respectively; slowing the program produced falls of 3.8%, 9.8% and 5.9%. Average heart rate changes were +0.1% (faster program) and -2.2% (slower program). Perceived exertion and how much the music was liked increased (faster program) by 2.4% and 1.3%, respectively, and decreased (slower program) by 3.6% and 35.4%. That is, healthy individuals performing submaximal exercise not only worked harder with faster music but also chose to do so and enjoyed the music more when it was played at a faster tempo. Implications of these findings for improving training regimens are discussed.

  8. Neuromuscular function of the quadriceps muscle during isometric maximal, submaximal and submaximal fatiguing voluntary contractions in knee osteoarthrosis patients.

    Directory of Open Access Journals (Sweden)

    Anett Mau-Moeller

    and neuromuscular activation, but also with an impaired position and torque control at submaximal torque levels, an altered EMG-torque relationship and a higher performance fatigability of the quadriceps muscle. It is recommended that the rehabilitation includes strengthening and fatiguing exercises at maximal and submaximal force levels.

  9. A botanical compound, Padma 28, increases walking distance in stable intermittent claudication

    DEFF Research Database (Denmark)

    Drabaek, H; Mehlsen, J; Himmelstrup, H

    1993-01-01

    and by measurements of the pain-free and the maximal walking distance on a treadmill. The ankle pressure index (ankle systolic pressure/arm systolic pressure) was calculated. The group randomized to active treatment received two tablets bid containing 340 mg of a dried herbal mixture composed according to an ancient...

  10. Energy Cost of Walking in Boys Who Differ in Adiposity but Are Matched For Body Mass.

    Science.gov (United States)

    Ayub, Beatriz Volpe; Bar-Or, Oded

    2003-01-01

    Compared the energy cost of treadmill walking in pairs of obese and lean adolescent boys matched for total body mass. Results found no intergroup differences in the net energy cost at the two lower speeds, but obese boys expended more energy at a higher speed. Heart rate was considerably higher in obese boys. Body mass, rather than adiposity, was…

  11. Responses of human hip abductor muscles to lateral balance perturbations during walking

    NARCIS (Netherlands)

    Hof, A. L.; Duysens, J.

    2013-01-01

    Lateral stability during gait is of utmost importance to maintain balance. This was studied on human subjects walking on a treadmill who were given 100-ms perturbations of known magnitude and timing with respect to the gait cycle by means of a computer-controlled pneumatic device. This method has

  12. Motivators for treadmill exercise after stroke.

    Science.gov (United States)

    Resnick, Barbara; Michael, Kathleen; Shaughnessy, Marianne; Kopunek, Susan; Nahm, Eun Shim; Macko, Richard F

    2008-01-01

    The purpose of this qualitative study was to explore factors that motivated older adults with ischemic stroke to engage in a task-oriented treadmill aerobic exercise (T-AEX) intervention study. Participants included community-dwelling individuals post stroke with mild-to-moderate hemiparetic gait deficits who completed a 6-month T-AEX study. A total of 29 participants attended focus groups or individual telephone interviews. Thirty-nine codes were identified and were reduced to 8 themes: personal goals supported by 7 codes, psychological benefits supported by 8 codes, physical benefits supported by 10 codes, research-associated supervised treadmill exercise benefits supported by 5 codes, objective and verbal encouragement received supported by 4 codes, social support related to exercise supported by 2 codes, improvement in instrumental activities of daily living supported by 2 codes, and self-determination supported by 1 code. All themes reflected factors that influenced subjects' willingness to participate in the study and adhere to the exercise intervention. Of the themes identified, personal goals, physical benefits, and psychological benefits occurred most frequently. This qualitative study provides information that may be used to enhance motivation to exercise in individuals with stroke and promote carryover and integration of exercise behaviors into everyday life.

  13. Pediatric Treadmill Burns: Assessing the effectiveness of prevention strategies.

    Science.gov (United States)

    Goltsman, David; Li, Zhe; Connolly, Siobhan; Meyerowitz-Katz, Daniel; Allan, James; Maitz, Peter K M

    2016-11-01

    Legislative changes in 2008 in Australia mandated that all new treadmills display a warning sticker about the risk of friction burns in children. This was accompanied by a health promotion campaign advising of the risks of treadmills to children. Analyses of pediatric burns data identified all cases of treadmill burns occurring between 2005 and 2014. The incidence of treadmill burns, associations with age and gender, characteristics of the burns and the adequacy of first aid provided immediately after the burn was examined. There were 298 cases of treadmill burns over the 10-year period (3.5% of all pediatric burns). The incidence rose until the introduction of legislation and health promotion in 2008, and then declined over the remaining study period. The majority of treadmill burns in children were inflicted on the upper limbs (91%), and 93% involved the hands. Most burns were full thickness (62%, n=182) and 49% (n=148) required skin grafts. Approximately one-third of treadmill burns (35%, n=105) occurred while someone else was using the treadmill. In the vast majority of treadmill burn injuries (74%, n=223), there was either no first aid or inadequate first aid provided immediately after the injury. A significant number of treadmill burns occur in children, and these often result in serious injuries that are not treated with appropriate first aid. A reduction in the incidence of these burns was associated with the introduction of legislation and health promotion targeted at child safety around treadmills. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  14. A Dual Track Treadmill in a Virtual Reality Environment as a Countermeasure for Neurovestibular Adaptations in Microgravity

    Science.gov (United States)

    DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.

    2004-01-01

    While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to giant and postural instabilities when returning to a gravity environment and may create serious problems in future mission to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running a treadmill can help to read just the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality, VR, displays.

  15. A Dual Track Treadmill in a Virtual Reality Environment as a Countermeasure for Neurovestibular Adaptations in Microgravity

    Science.gov (United States)

    DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.

    2004-01-01

    While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to gait and postural instabilities when returning to a gravity environment and may create serious problems in future missions to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running, a treadmill can help to readjust the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality,

  16. Kinematics of treadmill locomotion in mice raised in hypergravity.

    Science.gov (United States)

    Bojados, Mickael; Herbin, Marc; Jamon, Marc

    2013-05-01

    The study compared the motor performance of adult C57Bl/6J mice previously exposed to a 2G gravity environment during different periods of their development. 12 mice were housed in a large diameter centrifuge from the conception to Postnatal day 10 (P10). Another group of 10 mice was centrifuged form P10 to P30, and a third group of 9 mice was centrifuged from conception to P30. Their gait parameters, and kinematics of joint excursions were compared with 11 control mice, at the age of 2 months using a video-radiographic apparatus connected to a motorized treadmill. The mice that returned to Earth gravity level at the age of P10 showed a motor pattern similar to control mice. At variance the two groups that were centrifuged from P10 to P30 showed a different motor pattern with smaller and faster strides to walk at the same velocity as controls. On the other hand all the centrifuged mice showed significant postural changes, particularly with a more extended ankle joint, but the mice centrifuged during the whole experimental period differed even more. Our results showed that the exposure to hypergravity before P10 sufficed to modify the posture, suggesting that postural control starts before the onset of locomotion, whereas the gravity constraint perceived between P10 and P30 conditioned the tuning of quadruped locomotion with long term consequences. These results support the existence of a critical period in the acquisition of locomotion in mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Six-minute walk test closely correlates to "real-life" outdoor walking capacity and quality of life in patients with intermittent claudication.

    Science.gov (United States)

    Nordanstig, Joakim; Broeren, Monica; Hensäter, Marlene; Perlander, Angelica; Osterberg, Klas; Jivegård, Lennart

    2014-08-01

    We used outdoor walking distance measured during 40 minutes as "real-life" outdoor walking capacity in 49 patients with intermittent claudication (IC). The outdoor walking distance was measured by a global positioning system application for a smartphone. The relationships of self-reported maximum walking distance (SR-MWD), the MWD on a graded treadmill test, and the 6-minute maximum walk distance (6MWD) vs outdoors walking capacity were investigated. Also studied were the associations of SR-MWD, MWD, and 6MWD with health-related quality of life assessed with the disease-specific instrument the Vascular Quality of Life Questionnaire (VascuQoL). In this prospective observational cohort study, 49 IC patients underwent an outdoor walking capacity test for 40 minutes, and MWD and 6MWD were measured. SR-MWD was recorded, and all subjects completed the VascuQoL questionnaire. Associations between the different walk estimates and outdoor walking capacity and health-related quality of life were investigated by correlation analysis (Spearman ρ). Outdoor walking distance during 40 minutes was a median 2495 m (range, 1110-3300 m). SR-MWD correlated moderately and MWD correlated strongly to outdoor walking capacity (r = 0.56 and r = 0.65; P walking capacity (r = 0.78; P walked during the 6-minute walk test is closely correlated to outdoor walking capacity and health-related quality of life in IC patients. Our data support the use of 6MWD for routine clinical evaluation of walking capacity in IC patients. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  18. Slope walking causes short-term changes in soleus H-reflex excitability

    Science.gov (United States)

    Sabatier, Manning J; Wedewer, Wesley; Barton, Ben; Henderson, Eric; Murphy, John T; Ou, Kar

    2015-01-01

    The purpose of this study was to test the hypothesis that downslope treadmill walking decreases spinal excitability. Soleus H-reflexes were measured in sixteen adults on 3 days. Measurements were taken before and twice after 20 min of treadmill walking at 2.5 mph (starting at 10 and 45 min post). Participants walked on a different slope each day [level (Lv), upslope (Us) or downslope (Ds)]. The tibial nerve was electrically stimulated with a range of intensities to construct the M-response and H-reflex curves. Maximum evoked responses (Hmax and Mmax) and slopes of the ascending limbs (Hslp and Mslp) of the curves were evaluated. Rate-dependent depression (RDD) was measured as the % depression of the H-reflex when measured at a rate of 1.0 Hz versus 0.1 Hz. Heart rate (HR), blood pressure (BP), and ratings of perceived exertion (RPE) were measured during walking. Ds and Lv walking reduced the Hmax/Mmax ratio (P = 0.001 & P = 0.02), although the reduction was larger for Ds walking (29.3 ± 6.2% vs. 6.8 ± 5.2%, P = 0.02). The reduction associated with Ds walking was correlated with physical activity level as measured via questionnaire (r = −0.52, P = 0.04). Us walking caused an increase in the Hslp/Mslp ratio (P = 0.03) and a decrease in RDD (P = 0.04). These changes recovered by 45 min. Exercise HR and BP were highest during Us walking. RPE was greater during Ds and Us walking compared to Lv walking, but did not exceed “Fairly light” for Ds walking. In conclusion, in healthy adults treadmill walking has a short-term effect on soleus H-reflex excitability that is determined by the slope of the treadmill surface. PMID:25742955

  19. Pressure distribution at the stump/socket interface in transtibial amputees during walking on stairs, slope and non-flat road.

    Science.gov (United States)

    Dou, Peng; Jia, Xiaohong; Suo, Shuangfu; Wang, Rencheng; Zhang, Ming

    2006-12-01

    Studies examining the stump/socket interface stresses have been restricted to unsupported stance and natural gait, i.e. walking at a comfortable speed on flat and straight walkway. However, the pressure behaviour as to the interface in unilateral transtibial amputees during walking on stairs, slope and non-flat road is unclear. Pressure distribution changes at multiple points, expressed as mean peak stump/socket interface pressure, mean pressure level over 90% of peak pressure, time in which pressure exceeded 90% of peak pressure and time-pressure integral at the period of sustained sub-maximal load, were measured during natural ambulating and walking on stairs, slope and non-flat road. Compared with natural gait, the mean peak pressure and sustained sub-maximal load increase notably over the patellar tendon during walking on stairs and non-flat road, and however decrease or change insignificantly at the patellar tendon on slope and over other measured areas in all conditions; moreover the time period of sustained sub-maximal load changes remarkably, except over the patellar tendon during walking up slope and over the popliteal area on non-flat road; finally, the time-pressure integral in the time period of sustained sub-maximal load changes considerably, except at the patellar tendon during walking up slope. The pressure characteristics during natural ambulating seem not to be highly predictive of what occurs in the conditions of walking on stairs, slope and non-flat road, which leads to significant increase in amplitude domain of tissue loading only at the patellar tendon, and however to remarkable changes in temporal sequences of tissue (un-)loading almost in all measured regions.

  20. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  1. Relative Therapeutic Efficacy of the Treadmill and Step Bench in ...

    African Journals Online (AJOL)

    umar

    Summary. The aim of this research is to compare the efficacy of treadmill and step bench exercises in hemiparetic gait rehabilitation. Previous studies have supported the use of treadmill and step bench exercises in gait rehabilitation. Nineteen patients were recruited for an 8-week, 2-group quasi-experimental study which ...

  2. Relative Therapeutic Efficacy of the Treadmill and Step Bench in ...

    African Journals Online (AJOL)

    The aim of this research is to compare the efficacy of treadmill and step bench exercises in hemiparetic gait rehabilitation. Previous studies have supported the use of treadmill and step bench exercises in gait rehabilitation. Nineteen patients were recruited for an 8-week, 2-group quasi-experimental study which was ...

  3. Actual Versus Predicted Cardiovascular Demands in Submaximal Cycle Ergometer Testing.

    Science.gov (United States)

    Hoehn, Amanda M; Mullenbach, Megan J; Fountaine, Charles J

    The Astrand-Rhyming cycle ergometer test (ARCET) is a commonly administered submaximal test for estimating aerobic capacity. Whereas typically utilized in clinical populations, the validity of the ARCET to predict VO 2max in a non-clinical population, especially female, is less clear. Therefore, the purpose of this study was to determine the accuracy of the ARCET in a sample of healthy and physically active college students. Subjects (13 females, 10 males) performed a maximal cycle ergometer test to volitional exhaustion to determine VO 2max . At least 48 hours later, subjects performed the ARCET protocol. Predicted VO 2max was calculated following the ARCET format using the age corrected factor. There was no significant difference (p=.045) between actual (41.0±7.97 ml/kg/min) and predicted VO 2max (40.3±7.58 ml/kg/min). When split for gender there was a significant difference between actual and predicted VO 2 for males, (45.1±7.74 vs. 42.7±8.26 ml/kg/min, p=0.029) but no significant difference observed for females, (37.9±6.9 vs. 38.5±6.77 ml/kg/min, p=0.675). The correlation between actual and predicted VO 2 was r=0.84, phealthy college population of both male and female subjects. Implications of this study suggest the ARCET can be used to assess aerobic capacity in both fitness and clinical settings where measurement via open-circuit spirometry is either unavailable or impractical.

  4. Energy expenditure during walking in subjects with tibial rotationplasty, above-knee amputation, or hip disarticulation.

    Science.gov (United States)

    van der Windt, D A; Pieterson, I; van der Eijken, J W; Hollander, A P; Dahmen, R; de Jong, B A

    1992-12-01

    The surgical treatment of osteosarcoma with a tibial rotationplasty seems to offer functional advantages in comparison with an above-knee amputation. It has not been established whether the functional advantages are accompanied by a lower rate of energy expenditure during walking. In children with a tibial rotationplasty (n = 15), an above-knee amputation (n = 6), or a hip disarticulation (n = 5), energy expenditure was measured during treadmill walking at various walking velocities. The subjects with a tibial rotationplasty were able to walk faster, but there were no differences between the groups in energy expenditure per unit time or per unit distance. Correction for confounding variables including age, sex, height, time since operation, level of activity, and support during walking in a multiple linear regression model did not reveal any significant differences in energy expenditure during walking between groups. 1992 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation.

  5. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions.

    Science.gov (United States)

    Höchsmann, Christoph; Knaier, Raphael; Eymann, Jennifer; Hintermann, Jonas; Infanger, Denis; Schmidt-Trucksäss, Arno

    2018-02-20

    To examine the validity of popular smartphone accelerometer applications and a consumer activity wristband compared to a widely-used research accelerometer while assessing the impact of the phone's position on the accuracy of step detection. Twenty volunteers from two different age groups (Group A: 18-25 years, n=10; Group B 45-70 years, n=10) were equipped with three iPhone SE smartphones (placed in pants pocket, shoulder bag, and backpack), one Samsung Galaxy S6 Edge (pants pocket), one Garmin Vivofit 2 wristband, and two ActiGraph wGTX+ devices (worn at wrist and hip) while walking on a treadmill (1.6, 3.2, 4.8, and 6.0 km/h) and completing a walking course. All smartphones included six accelerometer applications. Video observation was used as gold standard. Validity was evaluated by comparing each device with the gold standard using mean absolute percentage errors (MAPE). The MAPE of the iPhone SE (all positions) and the Garmin Vivofit was small (< 3) for treadmill walking ≥ 3.2 km/h and for free walking. The Samsung Galaxy and hip-worn ActiGraph showed small MAPE only for treadmill walking at 4.8 and 6.0 km/h and for free walking. The wrist-worn ActiGraph showed high MAPE (17-47) for all walking conditions. The iPhone SE the Garmin Vivofit 2 are accurate tools for step counting in different age groups and during various walking conditions, even during slow walking. The phone's position does not impact the accuracy of step detection, which substantially improves the versatility for physical activity assessment in clinical and research settings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Does walking improve disability status, function, or quality of life in adults with chronic low back pain? A systematic review.

    Science.gov (United States)

    Lawford, Belinda J; Walters, Julie; Ferrar, Katia

    2016-06-01

    To establish the effectiveness of walking alone and walking compared to other non-pharmacological management methods to improve disability, quality of life, or function in adults with chronic low back pain. A systematic search of the following databases was undertaken: Medline, Embase, CINAHL, Scopus, Pedro, SportDiscus, Cochrane Central Register of Controlled Trials. The following keywords were used: 'back pain' or 'low back pain' or 'chronic low back pain' and 'walk*' or 'ambulation' or 'treadmill*' or 'pedometer*' or 'acceleromet*' or 'recreational' and 'disability' or 'quality of life' or 'function*'. Primary research studies with an intervention focus that investigated walking as the primary intervention compared to no intervention or any other non-pharmacological method in adults with chronic low back pain (duration >3 months). Seven randomised controlled trials involving 869 participants were included in the review. There was no evidence that walking was more effective than other management methods such as usual care, specific strength exercises, medical exercise therapy, or supervised exercise classes. One study found over-ground walking to be superior to treadmill walking, and another found internet-mediated walking to be more beneficial than non-internet-mediated walking in the short term. There is low quality evidence to suggest that walking is as effective as other non-pharmacological management methods at improving disability, function, and quality of life in adults with chronic low back pain. © The Author(s) 2015.

  7. The Effect of Visual Display Properties and Gain Presentation Mode on the Perceived Naturalness of Virtual Walking Speeds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2015-01-01

    Individuals tend to find realistic walking speeds too slow when relying on treadmill walking or Walking-In-Place (WIP) techniques for virtual travel. This paper details three studies investigating the effects of visual display properties and gain presentation mode on the perceived naturalness...... of virtual walking speeds: The first study compared three different degrees of peripheral occlusion; the second study compared three different degrees of perceptual distortion produced by varying the geometric field of view (GFOV); and the third study compared three different ways of presenting visual gains...

  8. Assessment of cardiorespiratory fitness using submaximal protocol in older adults with mood disorder and Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Natacha Alves de Oliveira

    2013-01-01

    Full Text Available BACKGROUND: Evidence has shown benefits for mental health through aerobic training oriented in percentage of VO2max, indicating the importance of this variable for clinical practice. OBJECTIVE: To validate a method for estimating VO2max using a submaximal protocol in elderly patients with clinically diagnosis as major depressive disorder (MDD and Parkinson's disease (PD. METHODS: The sample comprised 18 patients (64.22 ± 9.92 years with MDD (n = 7 and with PD (n = 11. Three evaluations were performed: I disease staging, II direct measurement of VO2max and III submaximal exercise test. Linear regression was performed to verify the accuracy of estimation in VO2max established in ergospirometry and the predicted VO2max from the submaximal test measurement. We also analyzed the correlation between the Bland-Altman procedures. RESULTS: The regression analysis showed that VO2max values estimated by submaximal protocol associated with the VO2max measured, both in absolute values (R² = 0.65; SEE = 0.26; p < 0.001 and the relative (R² = 0.56; SEE = 3.70; p < 0.001. The Bland-Altman plots for analysis of agreement of showed a good correlation between the two measures. DISCUSSION: The VO2max predicted by submaximal protocol demonstrated satisfactory criterion validity and simple execution compared to ergospirometry.

  9. Effectiveness of an innovative hip energy storage walking orthosis for improving paraplegic walking: A pilot randomized controlled study.

    Science.gov (United States)

    Yang, Mingliang; Li, Jianjun; Guan, Xinyu; Gao, Lianjun; Gao, Feng; Du, Liangjie; Zhao, Hongmei; Yang, Degang; Yu, Yan; Wang, Qimin; Wang, Rencheng; Ji, Linhong

    2017-09-01

    The high energy cost of paraplegic walking using a reciprocating gait orthosis (RGO) is attributed to limited hip motion and excessive upper limb loading for support. To address the limitation, we designed the hip energy storage walking orthosis (HESWO) which uses a spring assembly on the pelvic shell to store energy from the movements of the healthy upper limbs and flexion-extension of the lumbar spine and hip and returns this energy to lift the pelvis and lower limb to assist with the swing and stance components of a stride. Our aim was to evaluate gait and energy cost indices for the HESWO compared to the RGO in patients with paraplegia. The cross-over design was used in the pilot study. Twelve patients with a complete T4-L5 chronic spinal cord injury underwent gait training using the HESWO and RGO. Gait performance (continuous walking distance, as well as the maximum and comfortable walking speeds) and energy expenditure (at a walking speed of 3.3m/min on a treadmill) were measured at the end of the 4-week training session. Compared to the RGO, the HESWO increased continuous walking distance by 24.7% (Penergy expenditure by 13.9% (P<0.05). Our preliminary results provide support for the use of the HESWO as an alternative support for paraplegic walking. Copyright © 2017. Published by Elsevier B.V.

  10. Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking.

    Science.gov (United States)

    Umberger, Brian R

    2008-08-07

    Human walking is characterized by pronounced arm movement, yet computer simulation models of walking usually lump the mass of the arms with the head and torso. The implications of this simplification have not been thoroughly documented in the literature. Thus, the purpose of this study was to establish the dependence of several biomechanical and energetic variables on suppressing arm swing (AS) in walking. Eight healthy adult subjects walked with and without normal AS, with speed and stride frequency/length matched between trials. Metabolic data were collected during walking on a treadmill, while kinematic and kinetic data were collected during overground walking. Gross and net energy expenditure were significantly higher during walking without AS, with the mean differences being less than 10%. Joint angles, angular velocities, and ground reaction forces were nearly identical for walking with and without AS. Most joint moments and powers were also similar between AS conditions; however, some kinetic variables (e.g., knee joint power) exhibited larger differences, primarily during the stance phase. The variable that differed most between walking with and without AS was the free vertical moment between the foot and ground. In summary, most variables differed by less than 10% and were highly correlated (r0.90) between walking with and without normal AS. Thus, researchers may be justified in using walking models without articulated arms. However, a few variables exhibited larger differences, which might be of relevance based on the specific research question being addressed.

  11. Running for exercise mitigates age-related deterioration of walking economy.

    Science.gov (United States)

    Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger

    2014-01-01

    Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461) and ∼ 26% worse walking economy than young adults (peconomy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  12. Exploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke

    Directory of Open Access Journals (Sweden)

    Taryn Klarner

    2016-01-01

    Full Text Available Rhythmic arm and leg (A&L movements share common elements of neural control. The extent to which A&L cycling training can lead to training adaptations which transfer to improved walking function remains untested. The purpose of this study was to test the efficacy of A&L cycling training as a modality to improve locomotor function after stroke. Nineteen chronic stroke (>six months participants were recruited and performed 30 minutes of A&L cycling training three times a week for five weeks. Changes in walking function were assessed with (1 clinical tests; (2 strength during isometric contractions; and (3 treadmill walking performance and cutaneous reflex modulation. A multiple baseline (3 pretests within-subject control design was used. Data show that A&L cycling training improved clinical walking status increased strength by ~25%, improved modulation of muscle activity by ~25%, increased range of motion by ~20%, decreased stride duration, increased frequency, and improved modulation of cutaneous reflexes during treadmill walking. On most variables, the majority of participants showed a significant improvement in walking ability. These results suggest that exploiting arm and leg connections with A&L cycling training, an accessible and cost-effective training modality, could be used to improve walking ability after stroke.

  13. Walking speed estimation using a shank-mounted inertial measurement unit.

    Science.gov (United States)

    Li, Q; Young, M; Naing, V; Donelan, J M

    2010-05-28

    We studied the feasibility of estimating walking speed using a shank-mounted inertial measurement unit. Our approach took advantage of the inverted pendulum-like behavior of the stance leg during walking to identify a new method for dividing up walking into individual stride cycles and estimating the initial conditions for the direct integration of the accelerometer and gyroscope signals. To test its accuracy, we compared speed estimates to known values during walking overground and on a treadmill. The speed estimation method worked well across treadmill speeds and slopes yielding a root mean square speed estimation error of only 7%. It also worked well during overground walking with a 4% error in the estimated travel distance. This accuracy is comparable to that achieved from foot-mounted sensors, providing an alternative in sensor positioning for walking speed estimation. Shank mounted sensors may be of great benefit for estimating speed in walking with abnormal foot motion and for the embedded control of knee-mounted devices such as prostheses and energy harvesters. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Proximal tibia fracture in a patient with incomplete spinal cord injury associated with robotic treadmill training.

    Science.gov (United States)

    Filippo, T R M; De Carvalho, M C L; Carvalho, L B; de Souza, D R; Imamura, M; Battistella, L R

    2015-12-01

    One case report of proximal tibia fracture in a patient with incomplete spinal cord injury (SCI) associated with robotic treadmill training. To raise the awareness that bone densitometry may be recommended before starting the robotic treadmill therapy, as well as the active vigilance of symptoms after therapy. Institute of Physical and Rehabilitation Medicine, Lucy Montoro Institute for Rehabilitation, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil. The patient, female gender, with a fracture of vertebra T12 and arthrodesis from T9 to L1 (American Spinal Injury Association Classification (ASIA-C)). Training on Lokomat consisted of five 30-min weekly sessions, under the supervision of a qualified professional. At the beginning of the 19th session, the patient complained of pain in the anterior region of the left knee. Lokomat and any other body support therapy were discontinued. Magnetic resonance imaging (MRI) evidenced a transverse, oblique, metaphyseal proximal anterior and medial tibial fracture. Fractures are among the chronic complications of a SCI, affecting 34% and many times arising from minimal traumas. Lokomat resembles physiological walking, and more studies show its benefits. Many studies encourage the use of robotic devices for the rehabilitation of lower limbs, but there are still several unanswered questions. However, there are not enough studies to show whether there is a higher risk of fracture incidence in patients with osteopenia or osteoporosis who trained on the Lokomat.

  15. A multi-channel biomimetic neuroprosthesis to support treadmill gait training in stroke patients.

    Science.gov (United States)

    Chia, Noelia; Ambrosini, Emilia; Baccinelli, Walter; Nardone, Antonio; Monticone, Marco; Ferrigno, Giancarlo; Pedrocchi, Alessandra; Ferrante, Simona

    2015-01-01

    This study presents an innovative multi-channel neuroprosthesis that induces a biomimetic activation of the main lower-limb muscles during treadmill gait training to be used in the rehabilitation of stroke patients. The electrostimulation strategy replicates the physiological muscle synergies used by healthy subjects to walk on a treadmill at their self-selected speed. This strategy is mapped to the current gait sub-phases, which are identified in real time by a custom algorithm. This algorithm divides the gait cycle into six sub-phases, based on two inertial sensors placed laterally on the shanks. Therefore, the pre-defined stimulation profiles are expanded or stretched based on the actual gait pattern of each single subject. A preliminary experimental protocol, involving 10 healthy volunteers, was carried out to extract the muscle synergies and validate the gait-detection algorithm, which were afterwards used in the development of the neuroprosthesis. The feasibility of the neuroprosthesis was tested on one healthy subject who simulated different gait patterns, and a chronic stroke patient. The results showed the correct functioning of the system. A pilot study of the neurorehabilitation treatment for stroke patients is currently being carried out.

  16. What Is Walking Pneumonia?

    Science.gov (United States)

    ... pneumonia: What does it mean? What is walking pneumonia? How is it different from regular pneumonia? Answers from Eric J. Olson, M.D. Walking pneumonia is an informal term for pneumonia that isn' ...

  17. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.

    Science.gov (United States)

    Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn

    2017-04-01

    To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.

  18. Neck Flexion Angle Estimation during Walking

    Directory of Open Access Journals (Sweden)

    Duc Cong Dang

    2017-01-01

    Full Text Available Neck pain is recently known as the fourth leading cause of disability and the number of patients is apparently increasing. By analyzing the effect of gravitational force on inertial sensor attached to the neck, this study aims to investigate the head flexion posture during walking. The estimated angle is compared with the craniovertebral angle which is measured with an optical tracker. A total of twenty subjects with no history of neck pain or discomfort were examined by walking on the treadmill inside the working range of an optical tracker. In our laboratory settings, the neck flexion angle (NFA may have a linear relationship with the craniovertebral angle (CVA in both static case and constant speed walking case. Therefore, inertial sensor, which is lightweight, low cost, and especially free in movement, can be used instead of a camera system. Our proposed estimation method shows its flexibility and gives a result with the mean of absolute error of estimated neck angle varying from 0.48 to 0.58 degrees, which is small enough to use in applications.

  19. Visual evoked responses during standing and walking

    Directory of Open Access Journals (Sweden)

    Klaus Gramann

    2010-10-01

    Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.

  20. THE INFLUENCE OF OBESITY AND AMBIENT TEMPERATURE ON PHYSIOLOGICAL AND OXIDATIVE RESPONSES TO SUBMAXIMAL EXERCISE

    OpenAIRE

    Ahn, N.; Kim, K.

    2014-01-01

    This study investigated the effects of obesity and ambient temperature on physiological responses and markers of oxidative stress to submaximal exercise in obese and lean people. Sixteen healthy males were divided into an obese group (n=8, %fat: 27.00±3.00%) and a lean group (n=8, %fat: 13.85±2.45%). Study variables were measured during a 60 min submaximal exercise test at 60% VO2max in a neutral (21±1°C) and a cold (4±1°C) environment. Heart rate, blood lactate, rectal temperature, serum lev...

  1. The Energy Cost and Heart Rate Response of Trained and Untrained Subjects Walking and Running in Shoes and Boots,

    Science.gov (United States)

    1983-01-01

    footwear , athletic shoes of the S subjects’ choice (average weight per pair = 616g), and leather military boots 1 (average weight per pair = 17 76g) at 3...V O2) measured while walking and running on a treadmill. They wore each type of footwear , athletic shoes of the subjects’ choice (average weight per...Also, both these studies demonstrated trends toward increasing energy costs for subjects walking (3.9 km * h- I or more) in footwear of increasing

  2. Submaximal arm crank ergometry : Effects of crank axis positioning on mechanical efficiency, physiological strain and perceived discomfort

    NARCIS (Netherlands)

    van Drongelen, S; Maas, J C; Scheel-Sailer, A; Van Der Woude, L H V

    2009-01-01

    PURPOSE: To evaluate the effect of the spatial orientation of the crank axis on mechanical efficiency, physiological strain and perceived discomfort in submaximal synchronous arm crank ergometry. METHODS: Twelve able-bodied individuals performed 12 submaximal exercise bouts of 3 minutes (women: 20

  3. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency.

    Science.gov (United States)

    Kapadia, Naaz; Masani, Kei; Catharine Craven, B; Giangregorio, Lora M; Hitzig, Sander L; Richards, Kieva; Popovic, Milos R

    2014-09-01

    Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training.

  4. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Science.gov (United States)

    Tang, Xuan; Zhuang, Jingjing; Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  5. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    Full Text Available Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK and serine/threonine kinase 11(LKB1-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  6. Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Science.gov (United States)

    Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385

  7. Multicomponent Fitness Training Improves Walking Economy in Older Adults.

    Science.gov (United States)

    Valenti, Giulio; Bonomi, Alberto Giovanni; Westerterp, Klaas Roelof

    2016-07-01

    Walking economy declines with increasing age, possibly leading to mobility limitation in older adults. Multicomponent fitness training could delay the decline in walking economy. This study aimed to determine the effect of multicomponent fitness training on walking economy in older adults. Participants were untrained adults, age 50 to 83 yr (N = 26, 10 males, age = 63 ± 6 yr, BMI = 25.6 ± 2.1 kg·m, mean ± SD). A control group was also recruited (N = 16, 9 males, age = 66 ± 10 yr, BMI = 25.4 ± 3.0 kg·m), matching the intervention group for age, weight, body composition, and fitness. The intervention group followed a multicomponent fitness program of 1 h, twice per week during 1 yr. The control group did not take part in any physical training. Fat-free mass, walking economy, and maximal oxygen uptake (V˙O2max) were measured in both groups before and after the year. Walking economy was measured with indirect calorimetry as the lowest energy needed to displace 1 kg of body mass for 1 m while walking on a treadmill. The data were compared between the two groups with repeated-measures ANOVA. Thirty-two subjects completed all measurements. There was an interaction between the effects of time and group on V˙O2max (P economy (P economy. Thus, training programs could delay mobility limitation with increasing age.

  8. Integration of Human Walking Gyroscopic Data Using Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Vincent Bonnet

    2013-12-01

    Full Text Available The present study was aimed at evaluating the Empirical Mode Decomposition (EMD method to estimate the 3D orientation of the lower trunk during walking using the angular velocity signals generated by a wearable inertial measurement unit (IMU and notably flawed by drift. The IMU was mounted on the lower trunk (L4-L5 with its active axes aligned with the relevant anatomical axes. The proposed method performs an offline analysis, but has the advantage of not requiring any parameter tuning. The method was validated in two groups of 15 subjects, one during overground walking, with 180° turns, and the other during treadmill walking, both for steady-state and transient speeds, using stereophotogrammetric data. Comparative analysis of the results showed that the IMU/EMD method is able to successfully detrend the integrated angular velocities and estimate lateral bending, flexion-extension as well as axial rotations of the lower trunk during walking with RMS errors of 1 deg for straight walking and lower than 2.5 deg for walking with turns.

  9. Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking

    DEFF Research Database (Denmark)

    af Klint, Richard; Mazzaro, Nazarena; Nielsen, Jens Bo

    2010-01-01

    .045), but no significant difference was observed for the SLR (P = 0.13). Similarly, the effect of the BWS was measured on the unload response, i.e., the depression in soleus activity following a plantar-flexion perturbation ( approximately 5.6 degrees, 203-247 degrees/s), quantified over a 50 ms analysis window....... The unload response decreased with decreased load (P > 0.001), but was not significantly affected (P = 0.45) by tizanidine induced depression of the MLR (P = 0.039, n = 6). Since tizanidine is believed to depress the group II afferent pathway, these results are consistent with the idea that force...

  10. A quantification of the treadmill 6-min walk test using the MyWellness Key™ accelerometer

    Directory of Open Access Journals (Sweden)

    S. Andy Sparks

    2015-06-01

    Conclusion: Estimated energy expenditure provided by the MWK was strongly correlated to 6MWW; however, MWK underestimated energy expenditure as measured by gas analysis. The MWK may provide outcome data that supplement those currently provided by the 6MWD for functional capacity assessment during the t-6MWT.

  11. Effects of attentional focus on walking stability in elderly.

    Science.gov (United States)

    de Melker Worms, Jonathan L A; Stins, John F; van Wegen, Erwin E H; Verschueren, Sabine M P; Beek, Peter J; Loram, Ian D

    2017-06-01

    Balance performance in the elderly is related to psychological factors such as attentional focus. We investigated the effects of internal vs. external focus of attention and fall history on walking stability in healthy older adults. Walking stability of twenty-eight healthy older adults was assessed by applying random unilateral decelerations on a split-belt treadmill and analysing the resulting balance recovery movements. The internal focus instruction was: concentrate on the movement of your legs, whereas the external focus instruction was: concentrate on the movement of the treadmill. In both conditions participants were asked to look ahead at a screen. Outcome measures were coefficient of variation of step length and step width, and characteristics of the centre of mass velocity time-series as analysed using statistical parametric mapping. Fall history was assessed using a questionnaire. After each perturbation participants required two to three strides to regain a normal gait pattern, as determined by the centre of mass velocity response. No effects were found of internal and external focus of attention instructions and fall history on any of the outcome measures. We conclude that, compared to an internal focus of attention instruction, external focus to the walking surface does not lead to improved balance recovery responses to gait perturbations in the elderly. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Intensity-dependent EMG response for the biceps brachii during sustained maximal and submaximal isometric contractions.

    Science.gov (United States)

    Carr, Joshua C; Beck, Travis W; Ye, Xin; Wages, Nathan P

    2016-09-01

    There have been recent attempts to characterize the mechanisms associated with fatigue-induced task failure. We compared the time to failure and the corresponding changes in the surface electromyogram (EMG) during sustained maximal and submaximal isometric force tasks. EMG activity was measured from the biceps brachii of 18 male participants as they sustained either a maximal or submaximal (60 % MVC) isometric contraction of the dominant elbow flexors until force could not be maintained above 55 % MVC. Intensity-dependent patterns of change were observed for EMG amplitude and mean power frequency (MNF) between the two force tasks. Interestingly, the only significant predictor of failure time was the rate of change in EMG MNF during the submaximal task (r (2) = 0.304). In addition, EMG amplitude at submaximal failure was significantly lower (p EMG response emphasize the basis of neuromuscular fatigue and task dependency. Additionally, our data suggest that the EMG MNF should be used when monitoring the progression of local muscle fatigue.

  13. Variation in heart rate during submaximal exercise: Implications for monitoring training : Implications for monitoring training

    NARCIS (Netherlands)

    Lamberts, R.P.; Lemmink, K.A.P.M.; Durandt, J.J.; Lambert, M.I.

    2004-01-01

    A change in heart rate at a controlled submaximal exercise intensity is used as a marker of training status. However, the standard error of measurement has not been studied systematically, and therefore a change in heart rate, which can be considered relevant, has not been determined. Forty-four

  14. THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY

    Science.gov (United States)

    THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY. William F. McDonnell Human Studies Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC 27711. Short-term exposure to ozone results in a neurally-mediated decrease in the ab...

  15. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions

    NARCIS (Netherlands)

    Doorenbosch, C.A.M.; Joosten, A.; Harlaar, J.

    2005-01-01

    Purpose: In this study, the influence of using submaximal isokinetic contractions about the knee compared to maximal voluntary contractions as input to obtain the calibration of an EMG-force model for knee muscles is investigated. Methods: Isokinetic knee flexion and extension contractions were

  16. Variability of Respiration and Metabolism: Responses to Submaximal Cycling and Running.

    Science.gov (United States)

    Armstrong, Lawrence E.; Costill, David L.

    1985-01-01

    This investigation examined day-to-day variations in metabolic measurements during submaximal running and cycling. Significant differences were found in the oxygen uptake (VO2) of runners and cyclists and the minute ventilation (VE) of cyclists while running, but blood lactic acid (HLA) did not differ day to day. (Author/MT)

  17. Is an elevated submaximal heart rate associated with psychomotor slowness in young elite soccer players?

    NARCIS (Netherlands)

    Brink, Michel S.; Visscher, Chris; Schmikli, Sandor L.; Nederhof, E.; Lemmink, Koen A. P. M.

    2013-01-01

    The aim of the present study was to find early markers for overreaching that are applicable in sport practice. In a group of elite soccer players aged 1518, the stressrecovery balance and reaction times before and after exercise were assessed. Overreaching was indicated by an elevated submaximal

  18. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    Science.gov (United States)

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  19. Validation of the Hexoskin wearable vest during lying, sitting, standing, and walking activities.

    Science.gov (United States)

    Villar, Rodrigo; Beltrame, Thomas; Hughson, Richard L

    2015-10-01

    We tested the validity of the Hexoskin wearable vest to monitor heart rate (HR), breathing rate (BR), tidal volume (VT), minute ventilation, and hip motion intensity (HMI) in comparison with laboratory standard devices during lying, sitting, standing, and walking. Twenty healthy young volunteers participated in this study. First, participants walked 6 min on a treadmill at speeds of 1, 3, and 4.5 km/h followed by increasing treadmill grades until 80% of their predicted maximal heart rate. Second, lying, sitting, and standing tasks were performed (5 min each) followed by 6 min of treadmill walking at 80% of their ventilatory threshold. Analysis of each individual's mean values under each resting or exercise condition by the 2 measurement systems revealed low coefficient of variation and high intraclass correlation values for HR, BR, and HMI. The Bland-Altman results from HR, BR, and HMI indicated no deviation of the mean value from zero and relatively small variability about the mean. VT and minute ventilation were provided in arbitrary units by the Hexoskin device; however, relative magnitude of change from Hexoskin closely tracked the laboratory standard method. Hexoskin presented low variability, good agreement, and consistency. The Hexoskin wearable vest was a valid and consistent tool to monitor activities typical of daily living such as different body positions (lying, sitting, and standing) and various walking speeds.

  20. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics.

    Science.gov (United States)

    Swinnen, Eva; Baeyens, Jean-Pierre; Knaepen, Kristel; Michielsen, Marc; Hens, Gerrit; Clijsen, Ron; Goossens, Maggie; Buyl, Ronald; Meeusen, Romain; Kerckhofs, Eric

    2015-05-01

    The goal was to assess in healthy participants the three-dimensional kinematics of the pelvis and the trunk during robot-assisted treadmill walking (RATW) at 0%, 30% and 50% body weight support (BWS), compared with treadmill walking (TW). 18 healthy participants walked (2 kmph) on a treadmill with and without robot assistance (Lokomat; 60% guidance force; 0%, 30% and 50% BWS). After an acclimatisation period (four minutes), trunk and pelvis kinematics were registered in each condition (Polhemus Liberty [240 Hz]). The results were analysed using a repeated measures analysis of variance with Bonferroni correction, with the level of suspension as within-subject factor. During RATW with BWS, there were significantly (1) smaller antero-posterior and lateral translations of the trunk and the pelvis; (2) smaller antero-posterior flexion and axial rotation of the trunk; (3) larger lateral flexion of the trunk; and (4) larger antero-posterior tilting of the pelvis compared with TW. There are significant differences in trunk and pelvis kinematics in healthy persons during TW with and without robot assistance. These data are relevant in gait rehabilitation, relating to normal balance regulation. Additional research is recommended to further assess the influence of robot assistance on human gait. The trunk and pelvis moves in a different way during walking with robot assistance. The data suggest that the change in movement is due to the robot device and the harness of the suspension system more than due to the level of suspension itself.

  1. Treadmill training with tilt sensor functional electrical stimulation for improving balance, gait, and muscle architecture of tibialis anterior of survivors with chronic stroke: A randomized controlled trial.

    Science.gov (United States)

    Hwang, Dal-Yeon; Lee, Hwang-Jae; Lee, Gyu-Chang; Lee, Suk-Min

    2015-01-01

    Gait training is important for stroke rehabilitation, such as using the treadmill training with functional electrical stimulation (FES). This study was to investigate the effects of the treadmill training with tilt sensor FES on the balance, gait, and muscle architecture of the tibialis anterior in stroke survivors. The study was a randomized controlled trial. Thirty-four stroke survivors were recruited and screened eligibility criteria. Thirty-two participants were randomly allocated to two groups using random allocation software: Treadmill training with Tilt Sensor FES (TTSF) group (n= 16) and Treadmill training with Placebo Tilt Sensor FES (TPTSF) group (n= 16). TTSF group performed gait training on treadmill with tilt sensor FES, and TPTSF group performed gait training on treadmill with placebo tilt sensor FES. Two participants were dropped during this study, and 30 participants were included at post-test. Balance and gait were measured using the timed up and go (TUG) test, berg balance scale (BBS), and 10 m walk test (10 mWT). Ultrasound imaging was used to measure the muscle architecture of the tibialis anterior. After intervention, there were significant improvements in the TUG, BBS, and 10 mWT compared to baseline in both groups (p< 0.05). At follow-up, the TUG, BBS, 10 mWT, and muscle architecture of tibialis anterior on the paretic side showed significant improvements in the TTSF group compared to TPTSF group (p< 0.05). The findings of this study suggest that TTSF can be an effective intervention for improving balance, gait ability, and muscle architecture of tibialis anterior of stroke survivors.

  2. Comparison of the cardiovascular effects of unoprostone 0.15%, timolol 0.5% and placebo in healthy adults during exercise using a treadmill test.

    Science.gov (United States)

    Stewart, William C; Stewart, Jeanette A; Crockett, Steve; Kubilus, Christine; Brown, Alison; Shams, Naveed

    2002-06-01

    To compare the cardiovascular effects of unoprostone 0.15%, timolol 0.5% and placebo in healthy adults during exercise using a treadmill test. Thirty subjects aged 18-37 years (mean age = 24.1 years) were randomized to one of six treatment sequences in a three-treatment, three-period crossover study (William's design). Study medication was instilled b.i.d. for 5 days before visits 2, 3, and 4. Between treatments, study medication was washed out for 9-10 days. Each subject underwent a submaximal treadmill test at visits 2 through 4, 15 min after dosing. After 15 min of exercise, average heart rates were 143.1 +/- 21.2, 134.5 +/- 20.0 and 145.4 +/- 20.8 bpm for the unoprostone, timolol and placebo treatments, respectively. At no timepoint was there a statistically significant difference between the unoprostone and placebo treatments (p > 0.05). Beginning with the second minute of exercise, timolol produced a greater decrease in heart rate at all timepoints from placebo than unoprostone (p 0.05). Unlike timolol, unoprostone 0.15% does not reduce exercise-induced heart rate, indicating a lack of clinical effect on systemic beta-adrenergic receptors in young and healthy subjects.

  3. Effects of Walking with Blood Flow Restriction on Excess Post-exercise Oxygen Consumption.

    Science.gov (United States)

    Mendonca, G V; Vaz, J R; Pezarat-Correia, P; Fernhall, B

    2015-02-09

    This study determined the influence of walking with blood flow restriction (BFR) on the excess post-exercise oxygen consumption (EPOC) of healthy young men. 17 healthy young men (22.1±2.9 years) performed graded treadmill exercise to assess VO2peak. In a randomized fashion, each participant performed 5 sets of 3-min treadmill exercise at their optimal walking speed with 1-min interval either with or without BFR. Participants were then seated in a chair and remained there for 30 min of recovery. Expired gases were continuously monitored during exercise and recovery. BFR increased the O2 cost of walking as well as its relative intensity and cumulative O2 deficit (pEPOC magnitude after walking with BFR was greater than in the non-BFR condition (pEPOC. The EPOC magnitude was no longer different between conditions after controlling for the differences in relative intensity and in the cumulative O2 deficit (p>0.05). These data indicate that walking with BFR increases the magnitude of EPOC. Moreover, they also demonstrate that such increment in EPOC is likely explained by the effects of BFR on walking relative intensity and cumulative O2 deficit. © Georg Thieme Verlag KG Stuttgart · New York.

  4. COMPARATIVE KINEMATIC MEASURES OF TREADMILL RUNNING WITH OR WITHOUT BODY WEIGHT SUPPORT IN RUNNERS

    Directory of Open Access Journals (Sweden)

    Duane Millslagle

    2005-12-01

    Full Text Available Treadmill walking and running using a supportive harness has been used as a training method to rehabilitate injured patients' walking or running gait. Comparison of full weight support (FWS and body weight support (BWS kinematic measures in competitive runners has received little attention. The purpose of this study was to compare selected FWS to BWS kinematic measures in healthy competitive runners. Ten male runners (age = 21.4 ± 1.5 years with a training regimen averaging 64 km per week at 3.8 m·s-1 participated. All participants ran three 3-minute trials. The randomized trial conditions were: FWS, 20% BWS, and 40% BWS. All conditions were videotaped with 2 cameras and a 21-point, 3-D model was generated for analysis. From the position-time data, cycle length (CL, cycle frequency (CF, time of contact (TC, hip-, knee-, ankle- range of motion in degrees (H-ROM, K-ROM, and A-ROM, respectively, and vertical displacement of the center of mass (COM were derived and compared. With increasing support conditions, cycle length increased. Cycle frequency, hip and ankle angle ranges, and COM vertical displacement decreased (p 0.05. BWS running produced significant changes in selected kinematic measures. These changes may provide insight into runners' behavior when using BWS in training or recovery from competition. Additional investigation of BWS training affect with competitive runners would be recommended

  5. Restricted vision increases sensorimotor cortex involvement in human walking.

    Science.gov (United States)

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P

    2017-10-01

    This study aimed to determine whether there is electrocortical evidence of augmented participation of sensory brain areas in walking modulation during walking with eyes closed. Healthy subjects (n = 10) walked on a treadmill at 1 m/s while alternating 5 min of walking with the eyes open or closed while we recorded ground reaction forces (GRFs) and high-density scalp electroencephalography (EEG). We applied independent component analysis to parse EEG signals into maximally independent component (IC) processes and then computed equivalent current dipoles for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Our results indicated that walking with eyes closed reduced the first peak of the vertical GRFs and induced shorter stride duration. Regarding the EEG, we found that walking with eyes closed induced significantly increased relative theta desynchronization in the frontal and premotor cortex during stance, as well as greater desynchronization from theta to beta bands during transition to single support for both left and right somatosensory cortex. These results suggest a phase-specific increased participation of brain areas dedicated to sensory processing and integration when vision is not available for locomotor guidance. Furthermore, the lack of vision demands higher neural processing related to motor planning and execution. Our findings provide evidence supporting the use of eyes-closed tasks in clinical practice, such as gait rehabilitation and improvements in balance control, as there is higher demand for additional sensory integration for achieving postural control.NEW & NOTEWORTHY We measured electrocortical dynamics in sighted individuals while walking with eyes open and eyes closed to induce the participation of other sensory systems in postural control. Our findings show that walking with visual restriction increases the participation of brain areas dedicated to sensory processing

  6. Effects of walking in water on gut hormone concentrations and appetite: comparison with walking on land.

    Science.gov (United States)

    Ueda, Shin-Ya; Nakahara, Hidehiro; Kawai, Eriko; Usui, Tatsuya; Tsuji, Shintaro; Miyamoto, Tadayoshi

    2018-01-01

    The effects of water exercise on gut hormone concentrations and appetite currently remain unclear. The aim of the present study was to investigate the effects of treadmill walking in water on gut hormone concentrations and appetite. Thirteen men (mean ± s.d. age: 21.6 ± 2.2 years, body mass index: 22.7 ± 2.8 kg/m2, peak oxygen uptake (VO2peak): 49.8 ± 7.8 mL/kg per min) participated in the walking in water and on land challenge. During the study period, ratings of subjective feelings of hunger, fullness, satiety and motivation to eat were reported on a 100-mm visual analog scale. A test meal was presented after walking, and energy intake (EI) was calculated. Blood samples were obtained during both trials to measure glucagon-like peptide-1 (GLP-1), peptide YY (PYY) and acylated ghrelin (AG) concentrations. Hunger scores (How hungry do you feel?) were significantly lower during the water trial than during the land trial (P land trials. GLP-1 concentrations were significantly higher in the water trial than in the land trial (P land trials. AG concentrations were significantly lower in the water trial than in the land trial (P < 0.01). In conclusion, changes in gut hormone concentrations during walking in water contribute to the exercise-induced suppression of appetite and provide novel information on the influence of walking in water on the acute regulation of appetite. © 2018 The authors.

  7. Walk Leader certificate

    OpenAIRE

    Public Health Agency

    2015-01-01

    The Walking for Health programme was established in 2001 and continues to be an integral part of Government policy to address the health and wellbeing of the population in Northern Ireland. The programme is delivered through HSC Trusts across Northern Ireland and is supported by the Public Health Agency. Walking for Health aims to encourage inactive people to increase their level of physical activity by participating in local led health walks.

  8. The effects of exergaming and treadmill training on gait, balance, and cognition in a person with Parkinson's disease: A case study.

    Science.gov (United States)

    Vallabhajosula, Srikant; McMillion, Amy K; Freund, Jane E

    2017-12-01

    Parkinson's disease (PD) commonly impairs posture, gait, and cognition. Exercise in the form of aerobic activity as well as exergaming may improve motor ability and cognition in persons with PD. Exergaming and treadmill training can be a practical form of exercise within the home; however, there is minimal research on this combined multimodal intervention for persons with PD. We investigated the effects of this combined intervention on cognition, balance, and gait in a person with PD through supervised lab sessions augmented by home-based sessions. This case study utilized an ABA single subject experimental design with 4 weeks of pre-intervention, followed by 8 weeks of intervention, and 4 weeks of post-intervention. The intervention consisted of treadmill walking and Xbox Kinect exergaming, 30 minutes each, performed unsupervised at home and at supervised lab sessions. The two standard deviation band method was used to determine significance. MiniBEST test, 2-minute walk distance, sway area, endurance test, and a few parameters of gait initiation and gait improved significantly throughout the intervention period. Only a few measures sustained the improvement 4 weeks after completion of intervention. Eight weeks of treadmill and exergaming intervention with a person with PD improved static and dynamic postural control measures, but not gait, cognition, endurance, and clinical measures of balance. Longer and more intense multimodal intervention may be warranted.

  9. Comparison of body weight-supported treadmill training versus body weight-supported overground training in people with incomplete tetraplegia: a pilot randomized trial.

    Science.gov (United States)

    Senthilvelkumar, Thangavelu; Magimairaj, Henry; Fletcher, Jebaraj; Tharion, George; George, Jacob

    2015-01-01

    To compare the effectiveness of body weight-supported treadmill training and body weight-supported overground training for improving gait and strength in people with traumatic incomplete tetraplegia. Assessor blinded randomized trial. Rehabilitation institute of a tertiary care teaching hospital in India. Sixteen participants with traumatic motor incomplete tetraplegia and within two years of injury. Participants were randomised to one of two groups: body weight-supported overground training on level ground and body weight-supported treadmill training. Both groups received 30 minutes of gait training per day, five days a week for eight weeks. In addition, both groups received regular rehabilitation which included flexibility, strength, balance, self care and functional training. The primary outcome measure was the Walking Index for Spinal Cord Injury (/20 points) and the secondary outcome was the Lower Extremity Muscle Score (/50 points). There was no statistically significant between group differences in the Walking Index for Spinal Cord Injury [mean difference=0.3points; 95% CI (-4.8 to 5.4); p=0.748] or the Lower Extremity Muscle Score [mean difference=0.2 points; 95% CI (-3.8 to 5.1); p=0.749]. Gait training with body weight-supported overground training is comparable to treadmill training for improving locomotion in people with traumatic incomplete tetraplegia. © The Author(s) 2014.

  10. Comparing handrim biomechanics for treadmill and overground wheelchair propulsion

    Science.gov (United States)

    Kwarciak, Andrew M.; Turner, Jeffrey T.; Guo, Liyun; Richter, W. Mark

    2010-01-01

    Study design Cross-sectional study. Objectives To compare handrim biomechanics recorded during overground propulsion to those recorded during propulsion on a motor-driven treadmill. Setting Biomechanics laboratory. Methods Twenty-eight manual wheelchair users propelled their own wheelchairs, at a self-selected speed, on a low-pile carpet and on a wheelchair accessible treadmill. Handrim biomechanics were recorded with an OptiPush instrumented wheelchair wheel. Results Across the two conditions, all handrim biomechanics were found to be similar and highly correlated (r > 0.85). Contact angle, peak force, average force, and peak axle moment differed by 1.6% or less across the two conditions. While not significant, power output and cadence tended to be slightly higher for the treadmill condition (3.5% and 3.6%, respectively), due to limitations in adjusting the treadmill grade. Conclusion Based on the results of this study, a motor-driven treadmill can serve as a valid surrogate for overground studies of wheelchair propulsion. PMID:21042332

  11. Autonomous exoskeleton reduces metabolic cost of human walking.

    Science.gov (United States)

    Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

    2014-11-03

    Passive exoskeletons that assist with human locomotion are often lightweight and compact, but are unable to provide net mechanical power to the exoskeletal wearer. In contrast, powered exoskeletons often provide biologically appropriate levels of mechanical power, but the size and mass of their actuator/power source designs often lead to heavy and unwieldy devices. In this study, we extend the design and evaluation of a lightweight and powerful autonomous exoskeleton evaluated for loaded walking in (J Neuroeng Rehab 11:80, 2014) to the case of unloaded walking conditions. The metabolic energy consumption of seven study participants (85 ± 12 kg body mass) was measured while walking on a level treadmill at 1.4 m/s. Testing conditions included not wearing the exoskeleton and wearing the exoskeleton, in both powered and unpowered modes. When averaged across the gait cycle, the autonomous exoskeleton applied a mean positive mechanical power of 26 ± 1 W (13 W per ankle) with 2.12 kg of added exoskeletal foot-shank mass (1.06 kg per leg). Use of the leg exoskeleton significantly reduced the metabolic cost of walking by 35 ± 13 W, which was an improvement of 10 ± 3% (p = 0.023) relative to the control condition of not wearing the exoskeleton. The results of this study highlight the advantages of developing lightweight and powerful exoskeletons that can comfortably assist the body during walking.

  12. Effects of obesity on the biomechanics of walking at different speeds.

    Science.gov (United States)

    Browning, Raymond C; Kram, Rodger

    2007-09-01

    Walking is a recommended form of exercise for the treatment of obesity, but walking may be a critical source of biomechanical loads that link obesity and musculoskeletal pathology, particularly knee osteoarthritis. We hypothesized that compared with normal-weight adults 1) obese adults would have greater absolute ground-reaction forces (GRF) during walking, but their GRF would be reduced at slower walking speeds; and 2) obese adults would have greater sagittal-plane absolute leg-joint moments at a given walking speed, but these moments would be reduced at slower walking speeds. We measured GRF and recorded sagittal-plane kinematics of 20 adults (10 obese and 10 normal weight) as they walked on a level, force-measuring treadmill at six speeds (0.5-1.75 m.s(-1)). We calculated sagittal-plane net muscle moments at the hip, knee, and ankle. Compared with their normal-weight peers, obese adults had much greater absolute GRF (N), stance-phase sagittal-plane net muscle moments (N.m) and step width (m). Greater sagittal-plane knee moments in the obese subjects suggest that they walked with greater knee-joint loads than normal-weight adults. Walking slower reduced GRF and net muscle moments and may be a risk-lowering strategy for obese adults who wish to walk for exercise. When obese subjects walked at 1.0 versus 1.5 m.s(-1), peak sagittal-plane knee moments were 45% less. Obese subjects walking at approximately 1.1 m.s(-1) would have the same absolute peak sagittal-plane knee net muscle moment as normal-weight subjects when they walk at their typical preferred speed of 1.4 m.s(-1).

  13. More Adults Are Walking

    Centers for Disease Control (CDC) Podcasts

    2012-07-31

    This podcast is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.  Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/7/2012.

  14. Learning-Walk Continuum

    Science.gov (United States)

    Finch, Peter Dallas

    2010-01-01

    The continuum of learning walks can be viewed in stages with various dimensions including frequency, participants, purpose and the presence of an instructional framework within which the instructional practice is viewed. Steps in the continuum progress as the learning walks are conducted more frequently. One way to ensure this is accomplished is…

  15. walk in CAIRO

    DEFF Research Database (Denmark)

    2011-01-01

    Research-baseret audio walk om revolutionen i Cairo med start på Teater Grob (første version, 2011) og Helsingør Teater (anden version, 2012).......Research-baseret audio walk om revolutionen i Cairo med start på Teater Grob (første version, 2011) og Helsingør Teater (anden version, 2012)....

  16. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    , pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...

  17. Modelling vertical human walking forces using self-sustained oscillator

    Science.gov (United States)

    Kumar, Prakash; Kumar, Anil; Racic, Vitomir; Erlicher, Silvano

    2018-01-01

    This paper proposes a model of a self-sustained oscillator which can generate reliably the vertical contact force between the feet of a healthy pedestrian and the supporting flat rigid surface. The model is motivated by the self-sustained nature of the walking process, i.e. a pedestrian generates the required inner energy to sustain its repetitive body motion. The derived model is a fusion of the well-known Rayleigh, Van der Pol and Duffing oscillators. Some additional nonlinear terms are added to produce both the odd and even harmonics observed in the experimentally measured force data. The model parameters were derived from force records due to twelve pedestrians walking on an instrumented treadmill at ten speeds using a linear least square technique. The stability analysis was performed using the energy balance method and perturbation method. The results obtained from the model show a good agreement with the experimental results.

  18. Experiencing Nature through Immersive Virtual Environments: Environmental Perceptions, Physical Engagement, and Affective Responses during a Simulated Nature Walk

    Science.gov (United States)

    Calogiuri, Giovanna; Litleskare, Sigbjørn; Fagerheim, Kaia A.; Rydgren, Tore L.; Brambilla, Elena; Thurston, Miranda

    2018-01-01

    By combining physical activity and exposure to nature, green exercise can provide additional health benefits compared to physical activity alone. Immersive Virtual Environments (IVE) have emerged as a potentially valuable supplement to environmental and behavioral research, and might also provide new approaches to green exercise promotion. However, it is unknown to what extent green exercise in IVE can provide psychophysiological responses similar to those experienced in real natural environments. In this study, 26 healthy adults underwent three experimental conditions: nature walk, sitting-IVE, and treadmill-IVE. The nature walk took place on a paved trail along a large river. In the IVE conditions, the participants wore a head-mounted display with headphones reproducing a 360° video and audio of the nature walk, either sitting on a chair or walking on a manually driven treadmill. Measurements included environmental perceptions (presence and perceived environmental restorativeness – PER), physical engagement (walking speed, heart rate, and perceived exertion), and affective responses (enjoyment and affect). Additionally, qualitative information was collected through open-ended questions. The participants rated the IVEs with satisfactory levels of ‘being there’ and ‘sense of reality,’ but also reported discomforts such as ‘flatness,’ ‘movement lag’ and ‘cyber sickness.’ With equivalent heart rate and walking speed, participants reported higher perceived exertion in the IVEs than in the nature walk. The nature walk was associated with high enjoyment and enhanced affect. However, despite equivalent ratings of PER in the nature walk and in the IVEs, the latter were perceived as less enjoyable and gave rise to a poorer affect. Presence and PER did not differ between the two IVEs, although in the treadmill-IVE the negative affective responses had slightly smaller magnitude than in the sitting-IVE. In both the IVEs, the negative affective responses

  19. Experiencing Nature through Immersive Virtual Environments: Environmental Perceptions, Physical Engagement, and Affective Responses during a Simulated Nature Walk

    Directory of Open Access Journals (Sweden)

    Giovanna Calogiuri

    2018-01-01

    Full Text Available By combining physical activity and exposure to nature, green exercise can provide additional health benefits compared to physical activity alone. Immersive Virtual Environments (IVE have emerged as a potentially valuable supplement to environmental and behavioral research, and might also provide new approaches to green exercise promotion. However, it is unknown to what extent green exercise in IVE can provide psychophysiological responses similar to those experienced in real natural environments. In this study, 26 healthy adults underwent three experimental conditions: nature walk, sitting-IVE, and treadmill-IVE. The nature walk took place on a paved trail along a large river. In the IVE conditions, the participants wore a head-mounted display with headphones reproducing a 360° video and audio of the nature walk, either sitting on a chair or walking on a manually driven treadmill. Measurements included environmental perceptions (presence and perceived environmental restorativeness – PER, physical engagement (walking speed, heart rate, and perceived exertion, and affective responses (enjoyment and affect. Additionally, qualitative information was collected through open-ended questions. The participants rated the IVEs with satisfactory levels of ‘being there’ and ‘sense of reality,’ but also reported discomforts such as ‘flatness,’ ‘movement lag’ and ‘cyber sickness.’ With equivalent heart rate and walking speed, participants reported higher perceived exertion in the IVEs than in the nature walk. The nature walk was associated with high enjoyment and enhanced affect. However, despite equivalent ratings of PER in the nature walk and in the IVEs, the latter were perceived as less enjoyable and gave rise to a poorer affect. Presence and PER did not differ between the two IVEs, although in the treadmill-IVE the negative affective responses had slightly smaller magnitude than in the sitting-IVE. In both the IVEs, the negative

  20. Ruolo della fisioterapia nell’evocazione dell’andatura spinale riflessa (spinal reflex walking)

    OpenAIRE

    Tedde, Augusta

    2010-01-01

    The study was done to highlight the role that the rehabilitation treatment may have evocation of spinal reflex walking. The sample consists of 13 dogs with spinal injuries resulting in paraplegia, absence of deep pain and neurogenic bladder. Various rehabilitation techniques have been used: passive range of motion, toe pinch exercise, electrical stimulation, standing exercises, underwater treadmill, has been the recovery of ambulatory capacity reflected in a number equal to half the patients....

  1. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  2. Running on a lower-body positive pressure treadmill

    DEFF Research Database (Denmark)

    Raffalt, Peter C; Hovgaard-Hansen, Line; Jensen, Bente Rona

    2013-01-01

    This study investigated maximal oxygen consumption (VO2max) and time to exhaustion while running on a lower-body positive pressure treadmill (LBPPT) at normal body weight (BW) as well as how BW support affects respiratory responses, ground reaction forces, and stride characteristics.......This study investigated maximal oxygen consumption (VO2max) and time to exhaustion while running on a lower-body positive pressure treadmill (LBPPT) at normal body weight (BW) as well as how BW support affects respiratory responses, ground reaction forces, and stride characteristics....

  3. Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity

    DEFF Research Database (Denmark)

    Thomsen, J J; Rentsch, R L; Robach, P

    2007-01-01

    The effects of recombinant human erythropoietin (rHuEpo) treatment on aerobic power (VO2max) are well documented, but little is known about the effects of rHuEpo on submaximal exercise performance. The present study investigated the effect on performance (ergometer cycling, 20-30 min at 80......HuEpo treatment VO2max increased (PVO2max) was increased by 54.0 and 54.3% (P... week 11), TTE was decreased by 26.8% as compared to pre rHuEpo administration. In conclusion, in healthy non-athlete subjects rHuEpo administration prolongs submaximal exercise performance by about 54% independently of the approximately 12% increase in VO2max....

  4. Lévy walks

    Science.gov (United States)

    Zaburdaev, V.; Denisov, S.; Klafter, J.

    2015-04-01

    Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.

  5. Cardiorespiratory strain during walking in snow with boots of different weights.

    Science.gov (United States)

    Smolander, J; Louhevaara, V; Hakola, T; Ahonen, E; Klen, T

    1989-01-01

    In order to assess the physiological strain of different boot weights, seven male and three female subjects walked on a treadmill and a snow-field while wearing three types of boots: winter jogging boots (WJB), rubber boots (RB), and rubber safety boots (RSB), weighing (means +/- s.d.) 0.9 +/- 0.1, 1.9 +/- 0.4 and 2.5 +/- 0.2 kg, respectively During each walk the subjects wore the same clothing ensembles and moved at the same, individually determined speed. The mean (+/- s.e.) depths of the footprint impression in the snow while walking in the WJB, RB, and RSB were 26.1 +/- 1.5, 25.6 +/- 1.4 and 26.1 +/- 1.5 cm (NS), respectively. During walking on the treadmill, the means for oxygen consumption were 0.79 +/- 0.05, 0.81 +/- 0.06 and 0.83 +/- 0.04 l min-1 (NS) and in snow 2.24 +/- 0.18, 2.34 +/- 0.17 and 2.34 +/- 0.19 l min-1 (p less than 0.01) with the WJB, RB and RSB, respectively. The mean oxygen consumption levels observed during the walks averaged 23% and 65% of the subject's maximum oxygen consumption on the treadmill and in the snow-field, respectively. During the walking tests the corresponding mean heart rates were 106 +/- 4, 93 +/- 5, and 95 +/- 5 beats min-1 (p less than 0.05) on the treadmill, and 151 +/- 11, 150 +/- 11 and 151 +/- 12 beats min-1 (NS) in snow. No significant differences in ratings of perceived exertion were observed between the walking tests in snow with the three types of boots. In accordance with earlier studies, walking in snow was found to be strenuous work. In conclusion, the use of the RSB is recommended during logging work in snow, since they are known to provide greater protection than lighter boots and the increase in physiological strain experienced with RSB in this study was not appreciably greater than that with boots of lighter weight.

  6. A botanical compound, Padma 28, increases walking distance in stable intermittent claudication

    DEFF Research Database (Denmark)

    Drabaek, H; Mehlsen, J; Himmelstrup, H

    1993-01-01

    and by measurements of the pain-free and the maximal walking distance on a treadmill. The ankle pressure index (ankle systolic pressure/arm systolic pressure) was calculated. The group randomized to active treatment received two tablets bid containing 340 mg of a dried herbal mixture composed according to an ancient...... lamaistic preparation (Padma 28). After active treatments, administered over a period of four months in a double-blinded, randomized design, the patients allocated to this group attained a significant increase in the pain-free walking distance from 52 m (20-106) to 86 m (24-164; P

  7. Racing Skiers and Swimmers’ Heart Electric Field during Ventricular Depolarization at Recovery Period after Moderate and Submaximal Physical Load

    Directory of Open Access Journals (Sweden)

    Svetlana V. Strelnikova

    2013-01-01

    Full Text Available The article presents the results of cardioelectrotopographic investigation of racing skiers and swimmers’ heart electric activity during ventricular depolarization at recovery period after moderate and submaximal physical load. Changes in ventricular depolarization time and ventricular depolarization phases ratio due to longer duration of the first and second cardioelectric potential inversions on the chest surface in racing skiers and less duration of the depolarization initial phase in swimmers were detected after moderate and submaximal load

  8. A Submaximal Running Test With Postexercise Cardiac Autonomic and Neuromuscular Function in Monitoring Endurance Training Adaptation.

    Science.gov (United States)

    Vesterinen, Ville; Nummela, Ari; Laine, Tanja; Hynynen, Esa; Mikkola, Jussi; Häkkinen, Keijo

    2017-01-01

    Vesterinen, V, Nummela, A, Laine, T, Hynynen, E, Mikkola, J, and Häkkinen, K. A submaximal running test with postexercise cardiac autonomic and neuromuscular function in monitoring endurance training adaptation. J Strength Cond Res 31(1): 233-243, 2017-The aim of this study was to investigate whether a submaximal running test (SRT) with postexercise heart rate recovery (HRR), heart rate variability (HRV), and countermovement jump (CMJ) measurements could be used to monitor endurance training adaptation. Thirty-five endurance-trained men and women completed an 18-week endurance training. Maximal endurance performance and maximal oxygen uptake were measured every 8 weeks. In addition, SRTs with postexercise HRR, HRV, and CMJ measurements were carried out every 4 weeks. Submaximal running test consisted of two 6-minute stages at 70 and 80% of maximum heart rate (HRmax) and a 3-minute stage at 90% HRmax, followed by a 2-minute recovery stage for measuring postexercise HRR, HRV, and CMJ test. The highest responders according to the change of maximal endurance performance showed a significant improvement in running speeds during stages 2 and 3 in SRT, whereas no changes were observed in the lowest responders. The strongest correlation was found between the change of maximal endurance performance and running speed during stage 3, whereas no significant relationships were found between the change of maximal endurance performance and the changes of postexercise HRR, HRV, and CMJ. Running speed at 90% HRmax intensity was the most sensitive variable to monitor adaptation to endurance training. The present submaximal test showed potential to monitor endurance training adaptation. Furthermore, it may serve as a practical tool for athletes and coaches to evaluate weekly the effectiveness of training program without interfering in the normal training habits.

  9. Effect of inspiratory muscle warm-up on submaximal rowing performance.

    Science.gov (United States)

    Arend, Mati; Mäestu, Jarek; Kivastik, Jana; Rämson, Raul; Jürimäe, Jaak

    2015-01-01

    Performing inspiratory muscle warm-up might increase exercise performance. The aim of this study was to investigate the impact of inspiratory muscle warm-up to submaximal rowing performance and to find if there is an effect on lactic acid accumulation and breathing parameters. Ten competitive male rowers aged between 19 and 27 years (age, 23.1 ± 3.8 years; height, 188.1 ± 6.3 cm; body mass, 85.6 ± 6.6 kg) were tested 3 times. During the first visit, maximal inspiratory pressure (MIP) assessment and the incremental rowing test were performed to measure maximal oxygen consumption and maximal aerobic power (Pamax). A submaximal intensity (90% Pamax) rowing test was performed twice with the standard rowing warm-up as test 1 and with the standard rowing warm-up and specific inspiratory muscle warm-up as test 2. During the 2 experimental tests, distance, duration, heart rate, breathing frequency, ventilation, peak oxygen consumption, and blood lactate concentration were measured. The only value that showed a significant difference between the test 1 and test 2 was breathing frequency (52.2 ± 6.8 vs. 53.1 ± 6.8, respectively). Heart rate and ventilation showed a tendency to decrease and increase, respectively, after the inspiratory muscle warm-up (p < 0.1). Despite some changes in respiratory parameters, the use of 40% MIP intensity warm-up is not suggested if the mean intensity of the competition is at submaximal level (at approximately 90% maximal oxygen consumption). In conclusion, the warm-up protocol of the respiratory muscles used in this study does not have a significant influence on submaximal endurance performance in highly trained male rowers.

  10. Walking reduces sensorimotor network connectivity compared to standing

    Science.gov (United States)

    2014-01-01

    Background Considerable effort has been devoted to mapping the functional and effective connectivity of the human brain, but these efforts have largely been limited to tasks involving stationary subjects. Recent advances with high-density electroencephalography (EEG) and Independent Components Analysis (ICA) have enabled study of electrocortical activity during human locomotion. The goal of this work was to measure the effective connectivity of cortical activity during human standing and walking. Methods We recorded 248-channels of EEG as eight young healthy subjects stood and walked on a treadmill both while performing a visual oddball discrimination task and not performing the task. ICA parsed underlying electrocortical, electromyographic, and artifact sources from the EEG signals. Inverse source modeling methods and clustering algorithms localized posterior, anterior, prefrontal, left sensorimotor, and right sensorimotor clusters of electrocortical sources across subjects. We applied a directional measure of connectivity, conditional Granger causality, to determine the effective connectivity between electrocortical sources. Results Connections involving sensorimotor clusters were weaker for walking than standing regardless of whether the subject was performing the simultaneous cognitive task or not. This finding supports the idea that cortical involvement during standing is greater than during walking, possibly because spinal neural networks play a greater role in locomotor control than standing control. Conversely, effective connectivity involving non-sensorimotor areas was stronger for walking than standing when subjects were engaged in the simultaneous cognitive task. Conclusions Our results suggest that standing results in greater functional connectivity between sensorimotor cortical areas than walking does. Greater cognitive attention to standing posture than to walking control could be one interpretation of that finding. These techniques could be applied

  11. Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity.

    Science.gov (United States)

    De Witt, John K; Schaffner, Grant; Ploutz-Snyder, Lori L

    2014-04-01

    Crewmembers performing treadmill exercise on the International Space Station must wear a harness with an external gravity replacement force that is created by elastomer bungees. The quantification of the total external force, displacement, stiffness, and force variation is important for understanding the forces applied to the crewmember during typical exercise. Data were collected during static trials in the laboratory from a single subject and four subjects were tested while walking at 1.34 m x s(-1) and running at 2.24 m x s(-1) and 3.13 m x s(-1) on a treadmill during simulated microgravity in parabolic flight. The external force was provided by bungees and carabiner clips in configurations commonly used by crewmembers. Total external force, displacement, and force variation in the bungee system were measured, from which stiffness was computed. Mean external force ranged from 431 to 804 N (54-131% bodyweight) across subjects and conditions. Mean displacement was 4 to 8 cm depending upon gait speed. Mean stiffness was affected by bungee configuration and ranged from 1.73 to 29.20 N x cm(-1). Force variation for single bungee configurations was 2.61-4.48% of total external force and between 4.30-57.5% total external force for two-bungee configurations. The external force supplied to crewmembers by elastomer bungees provided a range of loading levels with variations that occur throughout the gait cycle. The quantification of bungee-loading characteristics is important to better define the system currently used by crewmembers during exercise.

  12. Characterization of Symmetry Properties of First Integrals for Submaximal Linearizable Third-Order ODEs

    Directory of Open Access Journals (Sweden)

    K. S. Mahomed

    2013-01-01

    Full Text Available The relationship between first integrals of submaximal linearizable third-order ordinary differential equations (ODEs and their symmetries is investigated. We obtain the classifying relations between the symmetries and the first integral for submaximal cases of linear third-order ODEs. It is known that the maximum Lie algebra of the first integral is achieved for the simplest equation and is four-dimensional. We show that for the other two classes they are not unique. We also obtain counting theorems of the symmetry properties of the first integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0, 1, 2, and 3 symmetries, and for the 4 symmetry class of linear third-order ODEs, they are 0, 1, and 2 symmetries, respectively. In the case of submaximal linear higher-order ODEs, we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals.

  13. THE INFLUENCE OF OBESITY AND AMBIENT TEMPERATURE ON PHYSIOLOGICAL AND OXIDATIVE RESPONSES TO SUBMAXIMAL EXERCISE

    Directory of Open Access Journals (Sweden)

    N. Ahn

    2014-07-01

    Full Text Available This study investigated the effects of obesity and ambient temperature on physiological responses and markers of oxidative stress to submaximal exercise in obese and lean people. Sixteen healthy males were divided into an obese group (n=8, %fat: 27.00±3.00% and a lean group (n=8, %fat: 13.85±2.45%. Study variables were measured during a 60 min submaximal exercise test at 60% VO2max in a neutral (21±1°C and a cold (4±1°C environment. Heart rate, blood lactate, rectal temperature, serum levels of malondialdehyde (MDA and superoxide dismutase (SOD were measured at rest, during exercise and in recovery. Heart rate of both groups was significantly lower (P<0.05 in the cold than the warm environment, but there were no significant differences between the two groups. Serum SOD activity increased to a significantly greater extent (P<0.05 in the cold than the neutral environment, and remained elevated for longer during exercise in the obese group than the lean group. Serum MDA level during submaximal exercise was not significantly different between conditions or groups. Cold stress in exercise may challenge antioxidant defence mechanisms in obese subjects, but lipid peroxidation remains unchanged.

  14. Variation in heart rate during submaximal exercise: implications for monitoring training.

    Science.gov (United States)

    Lamberts, Robert P; Lemmink, Koen A P M; Durandt, Justin J; Lambert, Michael I

    2004-08-01

    A change in heart rate at a controlled submaximal exercise intensity is used as a marker of training status. However, the standard error of measurement has not been studied systematically, and therefore a change in heart rate, which can be considered relevant, has not been determined. Forty-four subjects (26.5 +/- 5.4 years; mean +/- standard deviation) participated in a submaximal running test at the same time of day for 5 consecutive days. Heart rates were determined during each of the 4 exercise intensities (2 minutes each) of increasing intensity and during the 1-minute recovery period after each stage. The repeatability of the heart rate on a day-to-day basis during the stages and recovery periods were high (intraclass correlation coefficient: 95% confidence interval R = 0.94- 0.99). The lowest variation in heart rate occurred in the fourth stage ( approximately 90% maximum heart rate) with heart rate varying 5 +/- 2 b.min(-1) (95% confidence interval for coefficient of variation = 1.1-1.4%). In conclusion, the standard error of measurement of submaximal heart rate is 1.1-1.4%. This magnitude of measurement error needs to be considered when heart rate is used as a marker of training status.

  15. Body weight support during robot-assisted walking: influence on the trunk and pelvis kinematics.

    Science.gov (United States)

    Swinnen, Eva; Baeyens, Jean-Pierre; Hens, Gerrit; Knaepen, Kristel; Beckwée, David; Michielsen, Marc; Clijsen, Ron; Kerckhofs, Eric

    2015-01-01

    Efficacy studies concerning robot assisted gait rehabilitation showed limited clinical benefits. A changed kinematic pattern might be responsible for this. Little is known about the kinematics of the trunk and pelvis during robot assisted treadmill walking (RATW). The aim of this study was to assess the trunk and pelvis kinematics of healthy subjects during RATW, with different amounts of body weight support (BWS) compared to regular treadmill walking (TW). Eighteen healthy participants walked on a treadmill, while kinematics were registered by an electromagnetic tracking device. Hereafter, the kinematics of pelvis and trunk were registered during RATW (guidance force 30%) with 0%, 30% and 50% BWS. Compared to TW, RATW showed a decrease in the following trunk movements: axial rotation, anteroposterior flexion, lateral and anteroposterior translation. Besides, a decrease in lateral tilting and all translation of the pelvis was found when comparing RATW with TW. Furthermore, the anteroposterior tilting of the pelvis increased during RATW. In general, there was a decrease in trunk and pelvis movement amplitude during RATW compared with regular TW. Though, it is not known if these changes are responsible for the limited efficacy of robot assisted gait rehabilitation. Further research is indicated.

  16. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  17. Inflight Treadmill Exercise Can Serve as Multi-Disciplinary Countermeasure System

    Science.gov (United States)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions [1]. Therefore, we conclude that providing significant body-support loading during inflight treadmill along with balance training is necessary to mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Data obtained from space flight and bed rest

  18. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial.

    Science.gov (United States)

    Mirelman, Anat; Rochester, Lynn; Reelick, Miriam; Nieuwhof, Freek; Pelosin, Elisa; Abbruzzese, Giovanni; Dockx, Kim; Nieuwboer, Alice; Hausdorff, Jeffrey M

    2013-02-06

    Recent work has demonstrated that fall risk can be attributed to cognitive as well as motor deficits. Indeed, everyday walking in complex environments utilizes executive function, dual tasking, planning and scanning, all while walking forward. Pilot studies suggest that a multi-modal intervention that combines treadmill training to target motor function and a virtual reality obstacle course to address the cognitive components of fall risk may be used to successfully address the motor-cognitive interactions that are fundamental for fall risk reduction. The proposed randomized controlled trial will evaluate the effects of treadmill training augmented with virtual reality on fall risk. Three hundred older adults with a history of falls will be recruited to participate in this study. This will include older adults (n=100), patients with mild cognitive impairment (n=100), and patients with Parkinson's disease (n=100). These three sub-groups will be recruited in order to evaluate the effects of the intervention in people with a range of motor and cognitive deficits. Subjects will be randomly assigned to the intervention group (treadmill training with virtual reality) or to the active-control group (treadmill training without virtual reality). Each person will participate in a training program set in an outpatient setting 3 times per week for 6 weeks. Assessments will take place before, after, and 1 month and 6 months after the completion of the training. A falls calendar will be kept by each participant for 6 months after completing the training to assess fall incidence (i.e., the number of falls, multiple falls and falls rate). In addition, we will measure gait under usual and dual task conditions, balance, community mobility, health related quality of life, user satisfaction and cognitive function. This randomized controlled trial will demonstrate the extent to which an intervention that combines treadmill training augmented by virtual reality reduces fall risk

  19. Alzheimer random walk

    Science.gov (United States)

    Odagaki, Takashi; Kasuya, Keisuke

    2017-09-01

    Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  20. Bicycle ergometer versus treadmill on balance and gait parameters ...

    African Journals Online (AJOL)

    Rasha A. Mohamed

    2014-12-01

    Dec 1, 2014 ... Bicycle ergometer versus treadmill on balance and gait parameters in children with hemophilia. Rasha A. Mohamed *, Abd El-Aziz A. Sherief. Department of Physical Therapy for Disturbance of Growth and Development in Children and its Surgery,. Faculty of Physical Therapy, Cairo University, Cairo, Egypt.

  1. Bicycle ergometer versus treadmill on balance and gait parameters ...

    African Journals Online (AJOL)

    Group A received a designed physical therapy program and aerobic exercise training by bicycle ergometer. While group B received the same physical therapy program in addition to aerobic exercise training by the treadmill. Both groups received treatment sessions three times per week for three successive months. Stability ...

  2. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    So, it is essential to seek an ideal physical therapy program to help in solving such a widespread problem. The present study was conducted to compare between the effect of treadmill training and suspension therapy on balance in children with DS. Subjects and methods: Thirty children born with DS from both sexes ...

  3. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    Gehan H. El-Meniawy

    2011-11-29

    Nov 29, 2011 ... Role of treadmill training versus suspension therapy on balance in children with Down syndrome. Gehan H. El-Meniawy, Hebatallah M. Kamal *, Samah A. Elshemy. Department of Physical Therapy for Growth and Developmental Disorders in Children and its Surgery,. Faculty of Physical Therapy, Cairo ...

  4. Integrated effect of treadmill training combined with dynamic ankle ...

    African Journals Online (AJOL)

    Abd El Aziz Ali Sherief

    2015-01-13

    Jan 13, 2015 ... Both groups received a designed physical therapy program for treatment of hemiplegic cerebral palsy children for 60 min, in addition group B received treadmill training with dynamic ankle foot orthoses for 30 min. Results: Significant improvements were observed in all measuring variables when comparing ...

  5. Integrated effect of treadmill training combined with dynamic ankle ...

    African Journals Online (AJOL)

    Both groups received a designed physical therapy program for treatment of hemiplegic cerebral palsy children for 60 min, in addition group B received treadmill training with dynamic ankle foot orthoses for 30 min. Results: Significant improvements were observed in all measuring variables when comparing the pre and ...

  6. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    Gehan H. El-Meniawy

    2011-11-29

    Nov 29, 2011 ... treadmill training and suspension therapy on balance in children with DS. Subjects .... DS to ensure their comfort with the research team and proto- col. In this ... with sport shoes. For all children, conversation about their interests was done in addition to verbal and visual encourage- ment to motivate them.

  7. Inertial compensation for belt acceleration in an instrumented treadmill.

    Science.gov (United States)

    Hnat, Sandra K; van den Bogert, Antonie J

    2014-11-28

    Instrumented treadmills provide a convenient means for applying horizontal perturbations during gait or standing. However, varying the treadmill belt speed introduces inertial artifacts in the sagittal plane moment component of the ground reaction force. Here we present a compensation method based on a second-order dynamic model that predicts inertial pitch moment from belt acceleration. The method was tested experimentally on an unloaded treadmill at a slow belt speed with small random variations (1.20±0.10m/s) and at a faster belt speed with large random variations (2.00±0.50m/s). Inertial artifacts of up to 12Nm (root-mean-square, RMS) and 30Nm (peak) were observed. Coefficients of the model were calibrated on one trial and then used to predict and compensate the pitch moment of another trial with different random variations. Coefficients of determination (R(2)) were 72.08% and 96.75% for the slow and fast conditions, respectively. After compensation, the root-mean-square (RMS) of the inertial artifact was reduced by 47.37% for the slow speed and 81.98% for fast speed, leaving only 1.5Nm and 2.1Nm of artifact uncorrected, respectively. It was concluded that the compensation technique reduced inertial errors substantially, thereby improving the accuracy in joint moment calculations on an instrumented treadmill with varying belt speed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [Comparison of submaximal front crawl and breast stroke swimming in relation to energy expenditure].

    Science.gov (United States)

    Sugiyama, K; Katamoto, S

    1992-11-01

    The purpose of this study was to compare the energy expenditure during submaximal front crawl (Fr) and breast stroke (Br) swimming. Six male college swimmers performed submaximal and maximal exercise tests in both styles in a swimming flume. In submaximal exercise tests, they swam at the following given velocities for 5 min, Br: 0.3, 0.5 and 0.7 m/sec; Fr: 0.3, 0.5, 0.7 and 0.9 m/sec. In maximal exercise tests, following submaximal swimming at 0.9 m/sec in Br and 1.1 m/sec in Fr, swimming velocity was increased progressively by 0.1 m/sec every 1 min until the subjects reached to voluntary exhaustion. VO2max obtained from the maximal swimming tests in Br and Fr were 4.27 and 4.18 l/min, respectively. And there was no significant difference between these two values. VO2 during Br and Fr swimming at four and five submaximal velocities were 1.06, 1.30, 1.79, 2.65 l/min and 1.17, 1.34, 1.63, 2.04, 3.05 l/min, respectively. And, it was found that VO2 at 0.3 and 0.9 m/sec were significantly different (p styles curvilinearly increased with swimming velocity, and these relationships were well fitted for the regression equation of the second order (Br: y = 3.84625x2 - 1.95914x + 1.310463,r2 = 0.999 (p < 0.05), Fr: y = 3.233446x2 - 2.28136x + 1.611524, r2 = 0.979 (p < 0.05)). It was calculated that the two curves crossed at a point on 0.49 m/sec, and that VO2 at this point was 1.27 l/min. This value equivalented to 30.4% VO2max in Br and 29.7% VO2max in Fr.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Ways of Walking

    DEFF Research Database (Denmark)

    Eslambolchilar, Parisa; Bødker, Mads; Chamberlain, Alan

    2016-01-01

    and their envisaged development, we argue that interaction designers must increasingly consider a multitude of perspectives that relate to walking in order to frame design problems appropriately. In this paper, we consider a number of perspectives on walking, and we discuss how these may inspire the design of mobile...... technologies. Drawing on insights from non-representational theory, we develop a partial vocabulary with which to engage with qualities of pedestrian mobility, and we outline how taking more mindful approaches to walking may enrich and inform the design space of handheld technologies....

  10. Changes in pain-free walking based on time in accommodating pain-free exercise therapy for peripheral arterial disease.

    Science.gov (United States)

    Martinez, Coleen Archer; Carmeli, Eli; Barak, Sharon; Stopka, Christine Boyd

    2009-03-01

    Symptoms of intermittent claudication (IC) can be relieved by lifestyle modification, medications, and walking exercises. The intensity of the walking exercise is still debatable. The goal of this study was to determine the effects of accommodating pain-free walking exercise therapy program length on pain-free walking. A descriptive, longitudinal study with repeated measures of exercise capacity was conducted. An IC questionnaire was administered to assess IC signs, symptoms, and lifestyle. Walking was performed on a treadmill for 30 to 50 minutes below the participant's individualized walking pain threshold. The study included patients diagnosed with IC due to peripheral arterial disease. All participants were randomly assigned to three groups. Group A (n = 28) participated in the walking program for 2-9 weeks, group B (n = 30) for 10-14 weeks, and group C (n = 26) for 15-94 weeks. The main outcome measure of the study was to determine changes in exercise capacity: walking distance (miles), walking duration (minutes), and walking speed (mph). Group A increased the amount of distance, duration, and speed walked from pretest to posttest by 80% (P < .001), 27% (P < .001), and 37% (P < .001), respectively. Group B increased the amount of distance, duration, and speed walked from pretest to posttest by 122% (P < .001), 56% (P < .001), and 43% (P < .001), respectively. Group C increased the amount of distance, duration, and speed walked from pretest to posttest by 26% (P = .002), 22% (P = .002), and 5% (P = .541) respectively. We reached the conclusion that a walking program of 10-14 weeks is optimal for achieving the best improvements in walking distance, duration, and speed.

  11. Walking to health.

    Science.gov (United States)

    Morris, J N; Hardman, A E

    1997-05-01

    Walking is a rhythmic, dynamic, aerobic activity of large skeletal muscles that confers the multifarious benefits of this with minimal adverse effects. Walking, faster than customary, and regularly in sufficient quantity into the 'training zone' of over 70% of maximal heart rate, develops and sustains physical fitness: the cardiovascular capacity and endurance (stamina) for bodily work and movement in everyday life that also provides reserves for meeting exceptional demands. Muscles of the legs, limb girdle and lower trunk are strengthened and the flexibility of their cardinal joints preserved; posture and carriage may improve. Any amount of walking, and at any pace, expends energy. Hence the potential, long term, of walking for weight control. Dynamic aerobic exercise, as in walking, enhances a multitude of bodily processes that are inherent in skeletal muscle activity, including the metabolism of high density lipoproteins and insulin/glucose dynamics. Walking is also the most common weight-bearing activity, and there are indications at all ages of an increase in related bone strength. The pleasurable and therapeutic, psychological and social dimensions of walking, whilst evident, have been surprisingly little studied. Nor has an economic assessment of the benefits and costs of walking been attempted. Walking is beneficial through engendering improved fitness and/or greater physiological activity and energy turnover. Two main modes of such action are distinguished as: (i) acute, short term effects of the exercise; and (ii) chronic, cumulative adaptations depending on habitual activity over weeks and months. Walking is often included in studies of exercise in relation to disease but it has seldom been specifically tested. There is, nevertheless, growing evidence of gains in the prevention of heart attack and reduction of total death rates, in the treatment of hypertension, intermittent claudication and musculoskeletal disorders, and in rehabilitation after heart

  12. Peak Cardiorespiratory Responses of Patients with Subacute Stroke During Land and Aquatic Treadmill Exercise.

    Science.gov (United States)

    Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young

    2017-05-01

    The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P aquatic treadmill: r = 0.99, P Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.

  13. Adaptation to walking with an exoskeleton that assists ankle extension.

    Science.gov (United States)

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Energetic cost of walking with increased step variability.

    Science.gov (United States)

    O'Connor, Shawn M; Xu, Henry Z; Kuo, Arthur D

    2012-05-01

    Step-by-step variations occur during normal human walking, induced in part by imperfect sensorimotor control and naturally occurring random perturbations. These effects might increase energy expenditure during walking, because they differ from the nominal preferred gait, which is typically the most economical, and because of the cost of making active feedback adjustments to maintain gait stability. We tested this hypothesis by artificially inducing greater step variability through visual perturbations from a virtual reality display, and measuring the effect on energy expenditure. Young healthy adult subjects (N=11) walked on a treadmill while viewing a virtual hallway, to which virtual perturbations were applied in fore-aft or medio-lateral directions. The greatest effect on gait was achieved with medio-lateral visual perturbations, which resulted in a 65% increase in step width variability and a 5.9% increase (both Pstep width and (to a lesser degree) step length, and also induced slightly wider and (to a lesser degree) shorter mean steps. Each of these measures was found to correlate significantly with each other, regardless of perturbation direction and magnitude. They also correlated with metabolic rate (Pmeasure), despite explaining only a modest proportion of overall energetic variations (R(2)Step variability increases with some gait disorders and with increasing age. Our results suggest that imperfect sensorimotor control may contribute to the increased metabolic cost of walking observed with such conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures

    Science.gov (United States)

    Long, Leroy L.; Srinivasan, Manoj

    2013-01-01

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk–run mixture at intermediate speeds and a walk–rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients—a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk–run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill. PMID:23365192

  16. Comparison of Level and Graded Treadmill Tests to Evaluate Endurance Mountain Runners

    Directory of Open Access Journals (Sweden)

    Pascal Balducci, Michel Clémençon, Baptiste Morel, Géraud Quiniou, Damien Saboul, Christophe A. Hautier

    2016-03-01

    Full Text Available Mountain endurance running has increased in popularity in recent years. Thus the aim of the present study was to determine if maximal oxygen uptake (VO2max and energy cost of running (Cr measured during level and uphill running are associated. Ten high level male endurance mountain runners performed three maximal oxygen uptake tests at three slope conditions (0, 12.5 and 25%. Metabolic data, step frequency (SF and step length (SL were recorded. No significant differences were found in VO2max (63.29 (±3.84, 63.97 (±3.54 and 63.70 (±3.58 mlO2/kg-1/min-1 or associated metabolic data at 0, 12.5 and 25% slope respectively. High intra-individual correlations were found between metabolic data measured in the three conditions. The energy cost of running was significantly different between slopes (0.192 (±0.01, 0.350 (±0.029 and 0.516 (±0.035 mlO2/kg-1/min-1, p < 0.01, 0, 12.5 and 25% respectively. However, Cr0% was not correlated with either Cr25% or Cr12.5% (rs = 0.09 and rs = 0.10, in contrast, Cr25% and Cr12.5% were correlated (rs = 0.78. Step length was positively correlated with speed under the three slope conditions. Step frequency was significantly lower at 25 compared to 12.5 and 0% slope. We found that the maximum aerobic power did not differ between level and graded treadmill tests. However, the increase in Cr on the inclined versus level conditions varied between subjects. None of the measured anthropometric or kinematic variables could explain the higher increase in Cr of some subjects when running uphill. Thus, a short graded (5min at 12.5% running test should be performed at a submaximal velocity (around 40% of level vVO2max to enhance understanding of an endurance runner’s uphill capability.

  17. Why not walk faster?

    Science.gov (United States)

    Usherwood, James Richard

    2005-09-22

    Bipedal walking following inverted pendulum mechanics is constrained by two requirements: sufficient kinetic energy for the vault over midstance and sufficient gravity to provide the centripetal acceleration required for the arc of the body about the stance foot. While the acceleration condition identifies a maximum walking speed at a Froude number of 1, empirical observation indicates favoured walk-run transition speeds at a Froude number around 0.5 for birds, humans and humans under manipulated gravity conditions. In this study, I demonstrate that the risk of 'take-off' is greatest at the extremes of stance. This is because before and after kinetic energy is converted to potential, velocities (and so required centripetal accelerations) are highest, while concurrently the component of gravity acting in line with the leg is least. Limitations to the range of walking velocity and stride angle are explored. At walking speeds approaching a Froude number of 1, take-off is only avoidable with very small steps. With realistic limitations on swing-leg frequency, a novel explanation for the walk-run transition at a Froude number of 0.5 is shown.

  18. Walking stability during cell phone use in healthy adults.

    Science.gov (United States)

    Kao, Pei-Chun; Higginson, Christopher I; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S

    2015-05-01

    The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Lumbar and abdominal muscle activity during walking in subjects with chronic low back pain: support of the "guarding" hypothesis?

    Science.gov (United States)

    van der Hulst, Marije; Vollenbroek-Hutten, Miriam M; Rietman, Johan S; Hermens, Hermanus J

    2010-02-01

    It has been hypothesized that changes in trunk muscle activity in chronic low back pain (CLBP) reflect an underlying "guarding" mechanism, which will manifest itself as increased superficial abdominal - and lumbar muscle activity. During a functional task like walking, it may be further provoked at higher walking velocities. The purpose of this cross sectional study was to investigate whether subjects with CLBP show increased co-activation of superficial abdominal - and lumbar muscles during walking on a treadmill, when compared to asymptomatic controls. Sixty-three subjects with CLBP and 33 asymptomatic controls walked on a treadmill at different velocities. Surface electromyography data of the erector spinae, rectus abdominis and obliquus abdominis externus muscles were obtained and averaged per stride. Results show that, compared to asymptomatic controls, subjects with CLBP have increased muscle activity of the erector spinae and rectus abdominis, but not of the obliquus abdominis externus. These differences in trunk muscle activity between groups do not increase with higher walking velocities. In conclusion, the observed increased trunk muscle activity in subjects with CLBP during walking supports the guarding hypothesis.

  20. Effects of a short burst of gait training with body weight-supported treadmill training for a person with chronic stroke: a single-subject study.

    Science.gov (United States)

    Combs, Stephanie A; Miller, Ellen Winchell

    2011-04-01

    The purpose of this study was to investigate the effects of a short-burst dose of intense gait training with body weight-supported treadmill training (BWSTT) on walking speed, endurance, and quality of life of a participant with chronic stroke. A single-subject experimental (A-B-A-A) design with immediate and 3-month retention phases was used. The participant was a 66-year-old woman, 1 year after left cerebrovascular accident. Repeated baseline walking performance was established during 2 weeks of testing using the comfortable 10-meter walk test (CWT) and the 6-minute walk test (6MWT). The Stroke Impact Scale (SIS) was measured one time during baseline. Baseline testing was followed by ten 30-minute sessions of BWSTT over a 2-week duration. Retention testing was conducted immediately and 3 months following the intervention. Statistically significant improvements from baseline with the CWT and the 6MWT were achieved and maintained by the participant across all subsequent measurement phases. Improvements considered to be clinically meaningful changes in the SIS domains of strength and mobility achieved immediately after the intervention were not maintained at 3-month retention testing. For the participant in this study, the short-burst dosage of BWSTT provided a feasible and effective means for improving goal-oriented functional walking ability.

  1. Walking the Everyday

    Directory of Open Access Journals (Sweden)

    Matthew Bissen

    2014-11-01

    Full Text Available Since 2010, @matthewalking (Bissen, 2013 has published real-time public texts of walks in the city. This text-based Twitter feed has developed a narrative of a particular everyday life and developed a space of interface with others that represents a centering of perspective within an urban landscape. Walking the city provides a spatial, tactile, social, and embodied knowledge of the environment as each of us emerges into a space, orients ourselves, and determines a path that is highly localized, but is in connection with distant spaces and cultures. According to Ben Jacks in “Walking the City: Manhattan Projects,” “for urban dwellers and designers, walking is a fundamental tool for laying claim to, understanding, and shaping a livable city. Walking yields bodily knowing, recovers place memory, creates narrative, prioritizes human scale, and reconnects people to places” (75. @matthewalking’s walks, at times for as long as 5 hours, attempt to center an experience of an urban existence in a spatial narrative of the city that at once prioritizes a connection to place, but also is projected outward into a mediated relationship with others. The project is a series of unbounded walks, or dérives (drift, through the city that are logged on Twitter and traced to create an archive map of a set of particular urban experiences. The dérive concept as outlined in “The Theory of the Dérive,” by Guy Debord is when “one or more persons during a certain period drop their relations, their work and leisure activities, and all their other usual motives for movement and action, and let themselves be drawn by the attractions of the terrain and the encounters they find there” (62.

  2. Is Walking Capacity in Subjects with Multiple Sclerosis Primarily Related to Muscle Oxidative Capacity or Maximal Muscle Strength? A Pilot Study

    Directory of Open Access Journals (Sweden)

    Dominique Hansen

    2014-01-01

    Full Text Available Background and Purpose. Walking capacity is reduced in subjects with multiple sclerosis (MS. To develop effective exercise interventions to enhance walking capacity, it is important to determine the impact of factors, modifiable by exercise intervention (maximal muscle strength versus muscle oxidative capacity, on walking capacity. The purpose of this pilot study is to discriminate between the impact of maximal muscle strength versus muscle oxidative capacity on walking capacity in subjects with MS. Methods. From 24 patients with MS, muscle oxidative capacity was determined by calculation of exercise-onset oxygen uptake kinetics (mean response time during submaximal exercise bouts. Maximal muscle strength (isometric knee extension and flexion peak torque was assessed on dynamometer. All subjects completed a 6-minute walking test. Relationships between walking capacity (as a percentage of normal value and muscle strength (of knee flexors and extensors versus muscle oxidative capacity were assessed in multivariate regression analyses. Results. The expanded disability status score (EDSS showed a significant univariate correlation (r=-0.70, P<0.004 with walking capacity. In multivariate regression analyses, EDSS and mean response time, but not muscle strength, were independently related to walking capacity (P<0.05. Conclusions. Walking distance is, next to disability level and not taking neurologic symptoms/deficits into account, primarily related to muscle oxidative capacity in subjects with MS. Additional study is needed to further examine/verify these findings.

  3. Cardiovascular drift and Vo2max during cycling and walking in a temperate environment.

    Science.gov (United States)

    Wingo, Jonathan E; Salaga, Laura J; Newlin, Mia K; Cureton, Kirk J

    2012-07-01

    Different muscle recruitment patterns during cycling and walking may influence the magnitude of cardiovascular drift (CV drift) during these respective modes of exercise, but whether this also influences the magnitude of reduced maximal oxygen uptake (Vo2max) associated with CV drift is unknown.This study tested the hypothesis that cycling results in greater CV drift and a greater decrement in Vo2max than walking in a temperate environment. CV drift was measured in nine recreationally active women (ages = 23 +/- 2 yr, Vo2max = 43.0 +/- 5.5 ml x kg(-1) x min(-1)) between 15 and 45 min of cycling or walking at 60% Vo2max on Separate occasions in 22 degrees C, 44% relative humidity. A graded exercise test to measure Vo2max was performed immediately after the submaximal exercise bout with no cessation of exercise. During separate trials involving each exercise mode, Vo2max was measured after 15 min of submaximal exercise so that changes in Vo2max between 15 and 45 min of exercise could be assessed between the same points in time in which CV drift occurred. Across both conditions, heart rate (HR) increased 5.4% and stroke volume (SV) decreased 11% from 15 to 45 min, but Vo2max was not significantly affected (7% reduction; 2.70 +/- 0.5 L min(-1) vs. 2.52 +/- 0.6 L min(-1)). In a temperate environment, a small CV drift corresponds to a small, non-significant decrease in Vo2max, regardless of whether the exercise performed is cycling or walking.

  4. Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling

    Science.gov (United States)

    BARRATT, PAUL RICHARD; MARTIN, JAMES C.; ELMER, STEVE J.; KORFF, THOMAS

    2016-01-01

    ABSTRACT During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. Purpose To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Methods Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s−1 and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Results Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. Conclusions The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system’s attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians. PMID:26559455

  5. Effects of submaximal and supramaximal interval training on determinants of endurance performance in endurance athletes.

    Science.gov (United States)

    Paquette, M; Le Blanc, O; Lucas, S J E; Thibault, G; Bailey, D M; Brassard, P

    2017-03-01

    We compared the effects of submaximal and supramaximal cycling interval training on determinants of exercise performance in moderately endurance-trained men. Maximal oxygen consumption (VO2max ), peak power output (Ppeak ), and peak and mean anaerobic power were measured before and after 6 weeks (3 sessions/week) of submaximal (85% maximal aerobic power [MP], HIIT85 , n = 8) or supramaximal (115% MP, HIIT115 , n = 9) interval training to exhaustion in moderately endurance-trained men. High-intensity training volume was 47% lower in HIIT115 vs HIIT85 (304 ± 77 vs 571 ± 200 min; P training was generally associated with increased VO2max (HIIT85 : +3.3 ± 3.1 mL/kg/min; HIIT115 : +3.3 ± 3.6 ml/kg/min; Time effect P = 0.002; Group effect: P = 0.95), Ppeak (HIIT85 : +18 ± 9 W; HIIT115 : +16 ± 27 W; Time effect P = 0.045; Group effect: P = 0.49), and mean anaerobic power (HIIT85 : +0.42 ± 0.69 W/kg; HIIT115 : +0.55 ± 0.65 W/kg; Time effect P = 0.01; Group effect: P = 0.18). Six weeks of submaximal and supramaximal interval training performed to exhaustion seems to equally improve VO2max and anaerobic power in endurance-trained men, despite half the accumulated time spent at the target intensity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Hypotension and heart rate variability after resistance exercise performed maximal and submaximal order

    Directory of Open Access Journals (Sweden)

    Victor Gonçalves Corrêa Neto

    2017-06-01

    Full Text Available The aim of the study was verified the blood pressure responses and the cardiac autonomic modulation after the strength exercise in two different conditions (maximal and submaximal. The subjects were divided in three groups, such as: maximal repetitions (age: 20.5 ± 0.6 years, weight: 63.7 ± 14.8, height: 1.7 ± 0.1, body mass index: 22.8 ± 4.5 Kilogram per square meter (kg/m², submaximal repetitions (age: 25 ± 4.1 years, weight: 69.1 ± 12.8, height: 1.8 ± 0.1, body mass index: 22.2 ± 1.7 (kg/m²  and a control group (age: 23.7 ± 3.8 years, weight: 64.2 ± 15, height: 1.7 ± 0.1, body mass index: 21.8 ± 1.9 (kg/m². The blood pressure and the Heart Rate R-R intervals were measured before and during one hour after the session, with 10-minutes intervals length between measurements. The analyze of variance did not showed significant differences between experimental protocols to blood pressure (p > 0.05. However, the effect size was able to show that the most intense training caused a reduction in systolic blood pressure at times. Regarding cardiac autonomic response, the group that exercised the submaximal form exhibited a significant increase in LF / HF (p = 0.022 when 20 minutes’ post-exercise. There was a not significant difference in cardiac autonomic modulation between protocols. The high intensity protocol has caused blood pressure reductions in more moments and it was over safer in relation to cardiac autonomic modulation, since it did not cause increased sympathetic activity during recovery.

  7. Acute effects of walking on inflammatory and cardiovascular risk in sedentary post-menopausal women.

    Science.gov (United States)

    Davis, Jillian; Murphy, Marie; Trinick, Tom; Duly, Ellie; Nevill, Alan; Davison, Gareth

    2008-02-01

    Biochemical markers of inflammation are emerging as new predictors of risk of cardiovascular disease (CVD) and may alter acutely with exercise. Few studies have been conducted on the effects of walking on these markers or whether different walking intensities elicit varied effects. As there is growing interest in modifiable lifestyle factors such as walking to reduce CVD risk, these inflammatory responses warrant investigation. The aim of this study was to compare the effects of walking at 50% versus 70% of predicted maximal heart rate on C-reactive protein (CRP), plasma fibrinogen, and triglycerides in sedentary post-menopausal women. Twelve post-menopausal women (mean age 58 years, s +/-6; stature 1.62 m, s+/-0.06; body mass 66.8 kg, s +/-6.2) completed two 30-min treadmill walks in a randomized cross-over design. Fasted blood samples were taken (for the determination of plasma fibrinogen, CRP, and lipids) before, immediately after, and 1 and 24 h after exercise. Triglyceride concentrations decreased from pre-exercise to 24 h post exercise at both walking intensities (time x group interaction, P 0.05). The results of this study suggest that fasting plasma triglycerides are decreased on the morning after 30 min of brisk walking at either 50% or 70% of maximal heart rate (moderate and vigorous intensity).

  8. LEGS AND TRUNK MUSCLE HYPERTROPHY FOLLOWING WALK TRAINING WITH RESTRICTED LEG MUSCLE BLOOD FLOW

    Directory of Open Access Journals (Sweden)

    Mikako Sakamaki

    2011-06-01

    Full Text Available We examined the effect of walk training combined with blood flow restriction (BFR on the size of blood flow-restricted distal muscles, as well as, on the size of non-restricted muscles in the proximal limb and trunk. Nine men performed walk training with BFR and 8 men performed walk training alone. Training was conducted two times a day, 6 days/wk, for 3 wk using five sets of 2-min bouts (treadmill speed at 50 m/min, with a 1-min rest between bouts. After walk training with BFR, MRI-measured upper (3.8%, P < 0.05 and lower leg (3.2%, P < 0. 05 muscle volume increased significantly, whereas the muscle volume of the gluteus maximus (-0.6% and iliopsoas (1.8% and the muscle CSA of the lumber L4-L5 (-1.0 did not change. There was no significant change in muscle volume in the walk training alone. Our results suggest that the combination of leg muscle blood flow restriction with slow walk training elicits hypertrophy only in the distal blood flow restricted leg muscles. Exercise intensity may be too low during BFR walk training to increase muscle mass in the non- blood flow restricted muscles (gluteus maximus and other trunk muscles.

  9. Comparison of the YMCA and a Custom Submaximal Exercise Test for Determining VO2max.

    Science.gov (United States)

    Jamnick, Nicholas A; By, Savanny; Pettitt, Cherie D; Pettitt, Robert W

    2016-02-01

    The maximal oxygen uptake (VO2max) is deemed the highest predictor for all-cause mortality, and therefore, an ability to assess VO2max is important. The YMCA submaximal test is one of the most widely used tests to estimate VO2max; however, it has questionable validity. We validated a customized submaximal test that accounts for the nonlinear rise in VO2 relative to power output and compared its accuracy against the YMCA protocol. Fifty-six men and women performed a graded exercise test with a subsequent exhaustive, square wave bout for the verification of "true" VO2max. In counterbalanced order, subjects then completed the YMCA test and our new Mankato submaximal exercise test (MSET). The MSET consisted of a 3-min stage estimated at 35% VO2max and a second 3-min stage estimated at either 65% or 70% VO2max, where VO2max was estimated with a regression equation using sex, body mass index, age, and self-reported PA-R. VO2 values from the graded exercise test and square wave verification bout did not differ with the highest value used to identify "true" VO2max (45.1 ± 8.89 mL · kg(-1) · min(-1)). The MSET (43.6 ± 8.6 mL · kg(-1) · min(-1)) did not differ from "true" VO2max, whereas the YMCA test (41.1 ± 9.6 mL · kg(-1) · min(-1)) yielded an underestimation (P = 0.002). The MSET was moderately correlated with "true" VO2max (ICC = 0.73, CV of 11.3%). The YMCA test was poorly correlated with "true" VO2max (ICC = 0.29, CV of 15.1%). To our knowledge, this is the first study to examine submaximal exercise protocols versus a verified VO2max protocol. The MSET yielded better estimates of VO2max because of the protocol including a stage exceeding gas exchange threshold.

  10. Low doses of caffeine reduce heart rate during submaximal cycle ergometry

    Directory of Open Access Journals (Sweden)

    Wetter Thomas J

    2007-10-01

    Full Text Available Abstract Background The purpose of this study was to examine the cardiovascular effects of two low-levels of caffeine ingestion in non habitual caffeine users at various submaximal and maximal exercise intensities. Methods Nine male subjects (19–25 yr; 83.3 ± 3.1 kg; 184 ± 2 cm, underwent three testing sessions administered in a randomized and double-blind fashion. During each session, subjects were provided 4 oz of water and a gelatin capsule containing a placebo, 1.5 mg/kg caffeine, or 3.0 mg/kg caffeine. After thirty minutes of rest, a warm-up (30 Watts for 2 min the pedal rate of 60 rpm was maintained at a steady-state output of 60 watts for five minutes; increased to 120 watts for five minutes and to 180 watts for five minutes. After a 2 min rest the workload was 180 watts for one minute and increased by 30 watts every minute until exhaustion. Heart rate (HR was measured during the last 15-seconds of each minute of submaximal exercise. Systolic blood pressure (BP was measured at rest and during each of the three sub-maximal steady state power outputs. Minute ventilation (VE, Tidal volume (VT, Breathing frequency (Bf, Rating of perceived exertion (RPE, Respiratory exchange ratio (RER, and Oxygen consumption (VO2 were measured at rest and during each minute of exercise. Results Caffeine at 1.5 and 3.0 mg/kg body weight significantly lowered (p E, VT, VO2, RPE, maximal power output or time to exhaustion. Conclusion In non habitual caffeine users it appears that consuming a caffeine pill (1.5 & 3.0 mg/kg at a dose comparable to 1–3 cups of coffee lowers heart rate during submaximal exercise but not at near maximal and maximal exercise. In addition, this caffeine dose also only appears to affect systolic blood pressure at rest but not during cycling exercise.

  11. Burning more than calories: treadmill friction injuries in children.

    LENUS (Irish Health Repository)

    Davidson, C C

    2012-02-01

    Treadmill injuries in young children are a serious but little documented problem. Friction burns occur when the hands come into contact with the moving belt resulting in deep burns that often require hospital admission and surgery. The aim of this study was to assess the nature and prevalence of injuries sustained and to highlight treadmill friction burns as a public health issue previously undocumented in Ireland. A retrospective chart review from January 2006 until March 2008 was performed and functional outcome was assessed by the modified Michigan Hand Outcomes Questionnaire. Eight girls and four boys from one year and seven months to seven years and five months were treated. Eight children required admission to hospital and to date three have required surgery for their injuries. This is a new and increasing problem in Ireland which must be highlighted.

  12. Intensive treadmill training in the acute phase after ischemic stroke

    DEFF Research Database (Denmark)

    Strømmen, Anna Maria; Christensen, Thomas; Jensen, Kai

    2016-01-01

    The aim of the study was to (a) assess the feasibility of intensive treadmill training in patients with acute ischemic stroke, (b) test whether physical activity of the legs during training increases with time, and (c) evaluate to what extent training sessions contribute toward the overall physical...... activity of these patients. Twenty hospitalized patients with acute ischemic stroke trained on a treadmill twice daily for 30 min for 5 days and on day 30. Physical activity was measured as activity counts (AC) from accelerometers. A total of 196 of 224 initiated training sessions were completed. Training...... started 41.5±14 h after symptom onset. Only nonserious adverse events occurred in 14.7% of the sessions. An intensity of at least 50% of the individual heart rate reserve was obtained in 31% of training sessions. There was a significant increase in AC/min in the legs during training sessions...

  13. Insect walking and robotics.

    Science.gov (United States)

    Delcomyn, Fred

    2004-01-01

    With the advent of significant collaborations between researchers who study insect walking and robotics engineers interested in constructing adaptive legged robots, insect walking is once again poised to make a more significant scientific contribution than the numbers of participants in the field might suggest. This review outlines current knowledge of the physiological basis of insect walking with an emphasis on recent new developments in biomechanics and genetic dissection of behavior, and the impact this knowledge is having on robotics. Engineers have begun to team with neurobiologists to build walking robots whose physical design and functional control are based on insect biology. Such an approach may have benefits for engineering, by leading to the construction of better-performing robots, and for biology, by allowing real-time and real-world tests of critical hypotheses about how locomotor control is effected. It is argued that in order for the new field of biorobotics to have significant influence it must adopt criteria for performance and an experimental approach to the development of walking robots.

  14. Ground reaction forces during treadmill running in microgravity.

    Science.gov (United States)

    De Witt, John K; Ploutz-Snyder, Lori L

    2014-07-18

    Astronauts perform treadmill exercise during long-duration space missions to counter the harmful effects of microgravity exposure upon bone, muscle, and cardiopulmonary health. When exercising in microgravity, astronauts wear a harness and bungee system that provides forces that maintain attachment to the treadmill. Typical applied forces are less than body weight. The decreased gravity-replacement force could result in differences in ground-reaction force at a given running speed when compared to those achieved in normal gravity, which could influence the adaptive response to the performed exercise. Seven astronauts (6 m/1 f) who completed approximately 6-month missions on the International Space Station (ISS) completed a preflight (1G) and multiple in-flight (0G) data collection sessions. Ground-reaction forces were measured during running at speeds of 8.0 kph and greater on an instrumented treadmill in the lab and on the ISS. Ground-reaction forces in 0G were less than in 1G for a given speed depending upon the gravity-replacement force, but did increase with increased speed and gravity-replacement force. Ground-reaction forces attained in 1G during slower running could be attained by increasing running speed and/or increasing gravity-replacement forces in 0G. Loading rates in 1G, however, could not be replicated in 0G. While current gravity-replacement force devices are limited in load delivery magnitude, we recommend increasing running speeds to increase the mechanical loads applied to the musculoskeletal system during 0G treadmill exercise, and to potentially increase exercise session efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Caren Bernardi

    2013-01-01

    Full Text Available Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP, glutamate uptake and glutamine synthetase (GS activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

  16. Is there influence of the load addition during treadmill training on cardiovascular parameters and gait performance in patients with stroke? A randomized clinical trial.

    Science.gov (United States)

    Ribeiro, Tatiana Souza; Chaves da Silva, Tállyta Camyla; Carlos, Renata; de Souza E Silva, Emília Márcia Gomes; Lacerda, Matheus Oliveira; Spaniol, Ana Paula; Lindquist, Ana Raquel Rodrigues

    2017-01-01

    Although exercises involving both lower limbs are indicated for aerobic training, stroke patients have shown expressive asymmetry between the paretic and non-paretic lower limb (NPLL). Performing activities that stimulate the paretic limb during aerobic exercise may optimize training results. To evaluate if there is influence of load addition on NPLL during treadmill training on cardiovascular parameters and gait performance of subacute stroke patients. Thirty-eight stroke subjects with gait deficits were randomized into experimental group, which underwent treadmill training with a mass attached on NPLL, and control group, which underwent only treadmill training. Interventions lasted 2 weeks (9 sessions). Main outcomes were heart rate, arterial blood pressure, gait speed and distance covered. Assessments occurred at rest, 10th and 20th minutes of the session and immediately after each session. There was improvement in speed and walking distance in both groups. All cardiovascular parameters had showed no changes compared to 1st and 9th sessions and there were no differences between groups within each session. Load addition on NPLL did not alter cardiovascular parameters and gait training provide better gait performance of subacute stroke patients, which indicates this therapy can be considered useful and safe for these patients.

  17. Effects of treadmill training on cognitive and motor features of patients with mild to moderate Parkinson’s disease: a pilot, single-blind, randomized controlled trial

    Science.gov (United States)

    Picelli, Alessandro; Varalta, Valentina; Melotti, Camilla; Zatezalo, Vanja; Fonte, Cristina; Amato, Stefania; Saltuari, Leopold; Santamato, Andrea; Fiore, Pietro; Smania, Nicola

    2016-01-01

    Summary The aim of this pilot randomized controlled trial was to evaluate the effects of treadmill training on cognitive and motor performance in patients with Parkinson’s disease (PD). Seventeen persons with mild to moderate PD were enrolled. Nine patients were allocated to the Intervention group and received twelve 45-minute sessions of treadmill training: one session a day, three days a week, for four consecutive weeks. Eight patients were allocated to the Control group; these patients did not undergo physical training but were required to have regular social interactions, following a specific lifestyle program. All the patients were evaluated at baseline and one month later. The primary outcome measures were the Frontal Assessment Battery-Italian version (FAB-it) and the 6-minute walking test (6MWT). At the one-month evaluation significant differences were found between the groups in their performance on the FAB-it (p=0.005) and the 6MWT (p=0.018). Our findings support the hypothesis that treadmill training might effectively improve cognitive and motor features in patients with PD. PMID:27027891

  18. Walks on SPR neighborhoods.

    Science.gov (United States)

    Caceres, Alan Joseph J; Castillo, Juan; Lee, Jinnie; St John, Katherine

    2013-01-01

    A nearest-neighbor-interchange (NNI)-walk is a sequence of unrooted phylogenetic trees, T1, T2, . . . , T(k) where each consecutive pair of trees differs by a single NNI move. We give tight bounds on the length of the shortest NNI-walks that visit all trees in a subtree-prune-and-regraft (SPR) neighborhood of a given tree. For any unrooted, binary tree, T, on n leaves, the shortest walk takes Θ(n²) additional steps more than the number of trees in the SPR neighborhood. This answers Bryant’s Second Combinatorial Challenge from the Phylogenetics Challenges List, the Isaac Newton Institute, 2011, and the Penny Ante Problem List, 2009.

  19. Biomechanical conditions of walking

    CERN Document Server

    Fan, Y F; Luo, L P; Li, Z Y; Han, S Y; Lv, C S; Zhang, B

    2015-01-01

    The development of rehabilitation training program for lower limb injury does not usually include gait pattern design. This paper introduced a gait pattern design by using equations (conditions of walking). Following the requirements of reducing force to the injured side to avoid further injury, we developed a lower limb gait pattern to shorten the stride length so as to reduce walking speed, to delay the stance phase of the uninjured side and to reduce step length of the uninjured side. This gait pattern was then verified by the practice of a rehabilitation training of an Achilles tendon rupture patient, whose two-year rehabilitation training (with 24 tests) has proven that this pattern worked as intended. This indicates that rehabilitation training program for lower limb injury can rest on biomechanical conditions of walking based on experimental evidence.

  20. Random Walks and Trees

    Directory of Open Access Journals (Sweden)

    Shi Zhan

    2011-03-01

    Full Text Available These notes provide an elementary and self-contained introduction to branching random walks. Section 1 gives a brief overview of Galton–Watson trees, whereas Section 2 presents the classical law of large numbers for branching random walks. These two short sections are not exactly indispensable, but they introduce the idea of using size-biased trees, thus giving motivations and an avant-goût to the main part, Section 3, where branching random walks are studied from a deeper point of view, and are connected to the model of directed polymers on a tree. Tree-related random processes form a rich and exciting research subject. These notes cover only special topics. For a general account, we refer to the St-Flour lecture notes of Peres [47] and to the forthcoming book of Lyons and Peres [42], as well as to Duquesne and Le Gall [23] and Le Gall [37] for continuous random trees.

  1. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal

    2007-01-01

    I report on our construction and analysis of the effective low energy Lagrangian for the Minimal Walking Technicolor (MWT) model. The parameters of the effective Lagrangian are constrained by imposing modified Weinberg sum rules and by imposing a value for the S parameter estimated from the under......I report on our construction and analysis of the effective low energy Lagrangian for the Minimal Walking Technicolor (MWT) model. The parameters of the effective Lagrangian are constrained by imposing modified Weinberg sum rules and by imposing a value for the S parameter estimated from...

  2. Walking for data

    DEFF Research Database (Denmark)

    Bødker, Mads; Browning, David; Meinhardt, Nina Dam

    We suggest that ‘walking’ in ethnographic work sensitizes researchers to a particular means of making sense of place. Following a brief conceptual exposition, we present our research tool iMaCam) that supports capturing and representing activities such as walking.......We suggest that ‘walking’ in ethnographic work sensitizes researchers to a particular means of making sense of place. Following a brief conceptual exposition, we present our research tool iMaCam) that supports capturing and representing activities such as walking....

  3. Fitness Club / Nordic Walking

    CERN Multimedia

    Fitness Club

    2011-01-01

    Nordic Walking at CERN Enrollments are open for Nordic Walking courses and outings at CERN. Classes will be on Tuesdays as of 20 September, and outings for the more experienced will be on Thursdays as of 15 September. We meet at the CERN Club barracks car park (near entrance A). • 18:00 to 19:00 on 20 & 27 September, as well as 4 & 11 October. Check out our schedule and rates and enroll at: http://cern.ch/club-fitness Hope to see you among us! CERN Fitness Club fitness.club@cern.ch  

  4. The Act of Walking

    DEFF Research Database (Denmark)

    Vestergaard, Maria Quvang Harck; Olesen, Mette; Helmer, Pernille Falborg

    2014-01-01

    perception of ‘walkability’ is based upon a subjective judgement of different physical factors, such as sidewalk width, traffic volumes and building height (Ewing and Handy 2009:67). And iIn order to understand the act of walking it is therefore necessary to create a vocabulary to understand how and why...... internalize the common norms and values of pedestrian culture and are influenced by their physical environment when walking. In conclusion the chapter questions and discusses how this knowledge could be used in future planning practices....

  5. Attentional costs of walking are not affected by variations in lateral balance demands in young and older adults.

    Science.gov (United States)

    Mazaheri, Masood; Roerdink, Melvyn; Duysens, Jacques; Beek, Peter J; Peper, C Lieke E

    2016-05-01

    Increased attentional costs of walking in older adults have been attributed to age-related changes in visuomotor and/or balance control of walking. The present experiment was conducted to examine the hypothesis that attentional costs of walking vary with lateral balance demands during walking in young and older adults. Twenty young and twenty older adults walked on a treadmill at their preferred walking speed under five conditions: unconstrained normal walking, walking on projected visual lines corresponding to either the participant's preferred step width or 50% thereof (i.e. increased balance demand), and walking within low- and high-stiffness lateral stabilization frames (i.e. lower balance demands). Attentional costs were assessed using a probe reaction-time task during these five walking conditions, normalized to baseline performance as obtained during sitting. Both imposed step-width conditions were more attentionally demanding than the three other conditions, in the absence of any other significant differences between conditions. These effects were similar in the two groups. The results indicate that the attentional costs of walking were, in contrast to what has been postulated previously, not influenced by lateral balance demands. The observed difference in attentional costs between normal walking and both visual lines conditions suggests that visuomotor control processes, rather than balance control, strongly affect the attentional costs of walking. A tentative explanation of these results may be that visuomotor control processes are mainly governed by attention-demanding cortical processes, whereas balance is regulated predominantly subcortically. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Prior treadmill exercise promotes resilience to vicarious trauma in rats.

    Science.gov (United States)

    Kochi, Camila; Liu, Hesong; Zaidi, Safiyya; Atrooz, Fatin; Dantoin, Phoebe; Salim, Samina

    2017-07-03

    Post-traumatic stress disorder (PTSD) is a serious psychological condition, which can develop both from physically experiencing and also from witnessing traumatic events. There is evidence that physical exercise can have a positive impact on the symptoms of PTSD. Relevant to this, in our previous pre-clinical work, beneficial effects of treadmill exercise were reported on PTSD-like behaviors in a social defeat paradigm, a rat model of direct physical trauma. However, the role of exercise on vicariously acquired PTSD-like phenotype was not examined. In this study, we utilized a rodent PTSD model, which mimics both the physical as well as the witness experience of trauma, and examined the impact of moderate treadmill exercise in mitigating vicariously acquired PTSD-like behaviors in rats. Our PTSD model is a modified social defeat paradigm, which involves aggressive encounters between a large Long-Evans male rat (resident) and a smaller Sprague-Dawley male rat (intruder), resulting in intruder social defeat. The cage mate of the intruder is positioned to witness intruder defeat. Rats were grouped as control (CON), social defeat (SD), exercise (EX), trauma witness (TW), and exercise prior to trauma witness (EX-TW). After acclimatization for 7days, the exercised groups were subjected to a daily 30-min treadmill exercise regimen for 14days. On day 21, the SD group was exposed for 7days of social defeat, while the TW groups witnessed social defeat. On days 28-34, behavioral and cognitive tests including short-term (STM) and long-term (LTM) memory function, anxiety- and depression-like behaviors were conducted. TW and SD rats demonstrated the highest levels of anxiety- and depression-like behaviors, while EX-TW rats did not exhibit anxiety- and depression-like behaviors. TW and SD rats showed no impairments in STM. However, TW and SD rats showed impairments in LTM, and exercise rescued LTM impairments in EX-TW rats. This study demonstrates that rats subjected to direct

  7. The effect of cigarette smoking status on six-minute walk distance in patients with intermittent claudication.

    Science.gov (United States)

    Cahan, M A; Montgomery, P; Otis, R B; Clancy, R; Flinn, W; Gardner, A

    1999-07-01

    The purposes of the study were threefold: (1) to compare 6-minute walk performance as a measure of exercise tolerance among three different groups of peripheral arterial occlusive disease (PAOD) patients with intermittent claudication-current smokers, former smokers, and patients who have never smoked; (2) to identify important covariates that might affect the relationship between smoking and exercise in the PAOD population; (3) to determine whether differences among the three groups in 6-minute walk performance persist after statistically controlling for the significant covariates. Recruited into the study were 415 PAOD patients with intermittent claudication between the ages of 42 and 88 years. The self-reported smoking status consisted of 182 current smokers, 196 former smokers, and 37 patients who had never smoked. The authors recorded 6-minute walk distance, a reliable measurement of exercise tolerance in PAOD patients, as well as age, body composition, self-reported ambulatory function, self-reported physical activity, and standard peripheral hemodynamics. Nonsmokers walked significantly farther (413 +/- 14 m; mean +/- standard error) and took more steps (665 +/- 14 steps) than either current (352 +/- 7 m; 563 +/- 9 steps) or former smokers 370 +/- 7 m; 600 +/- 8 steps) (pactively smoked 0.62 +/- 0.01 (pphysical activity (WIQ Distance Score: nonsmokers 51 +/- 6%, former smokers 38 +/- 3%, and smokers 32 +/- 2%) (pphysical activity, and perceived walking ability were the only independent predictors of 6-minute walk distance. Differences in the adjusted 6-minute walk distance among the nonsmokers (388 +/- 13 m), current smokers (359 +/- 6 m), and former smokers (368 +/-6 m) no longer remained after controlling statistically for these covariates. The findings suggest that 6-minute walk distance is a sensitive measure to detect differences in submaximal exercise performance between smoking and nonsmoking PAOD patients with intermittent claudication. Moreover, the

  8. Cognitive Performance Enhancement Induced by Caffeine, Carbohydrate and Guarana Mouth Rinsing during Submaximal Exercise

    Directory of Open Access Journals (Sweden)

    Laura Pomportes

    2017-06-01

    Full Text Available The aim of this study was to investigate the influence of serial mouth rinsing (MR with nutritional supplements on cognitive performance (i.e., cognitive control and time perception during a 40-min submaximal exercise. Twenty-four participants completed 4 counterbalanced experimental sessions, during which they performed MR with either placebo (PL, carbohydrate (CHO: 1.6 g/25 mL, guarana complex (GUAc: 0.4 g/25 mL or caffeine (CAF: 67 mg/25 mL before and twice during exercise. The present study provided some important new insights regarding the specific changes in cognitive performance induced by nutritional supplements. The main results were: (1 CHO, CAF and GUA MR likely led participants to improve temporal performance; (2 CAF MR likely improved cognitive control; and (3 CHO MR led to a likely decrease in subjective perception of effort at the end of the exercise compared to PL, GUA and CAF. Moreover, results have shown that performing 40-min submaximal exercise enhances information processing in terms of both speed and accuracy, improves temporal performance and does not alter cognitive control. The present study opens up new perspectives regarding the use of MR to optimize cognitive performance during physical exercise.

  9. Achilles tendinopathy alters stretch shortening cycle behaviour during a sub-maximal hopping task.

    Science.gov (United States)

    Debenham, James R; Travers, Mervyn J; Gibson, William; Campbell, Amity; Allison, Garry T

    2016-01-01

    To describe stretch shortening cycle behaviour of the ankle and lower limb in patients with Achilles tendinopathy (AT) and establish differences with healthy volunteers. Between-subjects case-controlled. Fifteen patients with AT (mean age 41.2±12.7 years) and 11 healthy volunteers (CON) (mean age 23.2±6.7 years) performed sub-maximal single-limb hopping on a custom built sledge-jump system. Using 3D motion analysis and surface EMG, temporal kinematic (lower limb stiffness, ankle angle at 80ms pre-contact, ankle angle at contact, peak ankle angle, ankle stretch amplitude) and EMG measures (onset, offset and peak times relative to contact) were captured. Data between AT and CON were compared statistically using a linear mixed model. Patients with AT exhibited significantly increased lower limb stiffness when compared to healthy volunteers (pbehaviour during sub-maximal hopping when compared with healthy volunteers. Patients with AT hop with greater lower limb stiffness, in a greater degree of ankle dorsiflexion and have a greater stretch amplitude. Likewise, delayed muscle activity is evident. These findings have implications in terms of informing the understanding of the pathoaetiology and management of AT. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Reliability of heart rate variability threshold and parasympathetic reactivation after a submaximal exercise test

    Directory of Open Access Journals (Sweden)

    Carlos Janssen Gomes da Cruz

    Full Text Available Abstract The objective of this study was to evaluate reproducibility of heart rate variability threshold (HRVT and parasympathetic reactivation in physically active men (n= 16, 24.3 ± 5.1 years. During the test, HRVT was assessed by SD1 and r-MSSD dynamics. Immediately after exercise, r-MSSD was analyzed in segments of 60 seconds for a period of five minutes. High absolute and relatively reproducible analysis of HRVT were observed, as assessed by SD1 and r-MSSD dynamics (ICC = 0.92, CV = 10.8, SEM = 5.8. During the recovery phase, a moderate to high reproducibility was observed for r-MSSD from the first to the fifth minute (ICC = 0.69-0.95, CV = 7.5-14.2, SEM = 0.07-1.35. We conclude that HRVT and r-MSSD analysis after a submaximal stress test are highly reproducible measures that might be used to assess the acute and chronic effects of exercise training on cardiac autonomic modulation during and/or after a submaximal stress test.

  11. VO2@RER1.0: a novel submaximal cardiopulmonary exercise index.

    Science.gov (United States)

    Chin, Clifford; Kazmucha, Jeffrey; Kim, Nancy; Suryani, Reny; Olson, Inger

    2010-01-01

    Maximal oxygen consumption (VO2max) is the "gold standard" by which to assess functional capacity; however, it is effort dependent. VO2@RER1.0 is defined when VO2 = VCO2. Between December 22, 1997 and November 9, 2004, 305 pediatric subjects underwent cycle ergometer cardiopulmonary exercise testing, exercised to exhaustion, and reached a peak respiratory exchange ratio > or = 1.10. Group 1 subjects achieved a peak VO2 > or = 80% of predicted VO2max; group 2 subjects achieved a peak VO2 subjects achieved a peak VO2 between 61 and 79% of predicted VO2max. Linear regression analysis was performed for VO2@RER1.0 as a function of predicted VO2 for group 1 subjects. A -2 SD regression line and equation was created. VO2@RER1.0 data from groups 2 and 3 were plotted onto the normative graph. Contingency table and relative-risk analysis showed that an abnormal VO2@RER1.0 predicted an abnormal peak VO2(positive-predictive value 83%, negative-predictive value 85%, sensitivity 84%, and specificity 84%). VO2@RER1.0 is a highly sensitive, specific, and predictive submaximal index of functional capacity. This submaximal index is easy to identify without subjectivity. This index may aid in the evaluation of subjects who cannot exercise to maximal parameters.

  12. Using virtual reality to improve walking post-stroke: translation to individuals with diabetes.

    Science.gov (United States)

    Deutsch, Judith E

    2011-03-01

    Use of virtual reality (VR) technology to improve walking for people post-stroke has been studied for its clinical application since 2004. The hardware and software used to create these systems has varied but has predominantly been constituted by projected environments with users walking on treadmills. Transfer of training from the virtual environment to real-world walking has modest but positive research support. Translation of the research findings to clinical practice has been hampered by commercial availability and costs of the VR systems. Suggestions for how the work for individuals post-stroke might be applied and adapted for individuals with diabetes and other impaired ambulatory conditions include involvement of the target user groups (both practitioners and clients) early in the design and integration of activity and education into the systems. © 2011 Diabetes Technology Society.

  13. Plantar flexor stretch reflex responses to whole body loading/unloading during human walking

    DEFF Research Database (Denmark)

    Grey, Michael James; van Doornik, Johannes; Sinkjær, Thomas

    2002-01-01

    perturbation during human walking. Three body load conditions were investigated: normal body load, a 30% increase in body load, and a 30% decrease in body load. Healthy subjects walked on a treadmill at approximately 3.6 km/h with the left ankle attached to a portable stretching device. Dorsiflexion......Numerous animal and human studies have shown that afferent information from the periphery contributes to the control of walking. In particular, recent studies have consistently shown that load receptor input is an important element of the locomotion control mechanism. The objective of this study...... electrodes. Stretch reflex responses were observed in the soleus and gastrocnemius muscles for all of the body load conditions; however, increasing or decreasing the body load did not affect the timing and magnitude of the responses. This study provides evidence that load receptor input does not contribute...

  14. Cardiorespiratory responses during aquatic treadmill exercise and land treadmill exercise in older adults with type 2 diabetes.

    Science.gov (United States)

    Rigby, Brandon R; Bolte, Janie; Biggerstaff, Kyle D; Nichols, David L; Castleberry, Todd J

    2017-07-05

    The purpose of this study was to compare the effect of aquatic treadmill exercise (ATM) to land treadmill exercise (LTM) in adults with and without type 2 diabetes (T2D). Five participants with T2D (4 females, 1 male; age = 51±3 years; height = 170±3 cm; weight = 96±11 kg; body fat = 32±1%) and five participants without T2D (4 females, 1 male; age = 51±3 years; height = 170±3 cm; weight = 71±15 kg; body fat = 27±2%) completed the study. Participants completed three, 5-minute stages of exercise at 3.2 km/h, 4.8 km/h and 6.4 km/h with 0% grade on land and aquatic treadmills. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), absolute and relative oxygen consumption (VO2), and energy expenditure were measured at rest and during steady-state exercise at each intensity. A 2x2x4 Mixed Factorial ANOVA and Bonferroni post hoc test with a significance level of 0.05 was used. All variables increased as speed increased (p aquatic and land exercise when comparing those with and without T2D, cardiorespiratory and metabolic variables are similar in both groups during locomotion on land and in an aquatic environment.

  15. Cadence, energy expenditure, and gait symmetry during music-prompted and self-regulated walking in adults with unilateral transtibial amputation.

    Science.gov (United States)

    Rowe, David A; McMinn, David; Peacock, Leslie; Buis, Arjan W P; Sutherland, Rona; Henderson, Emma; Hewitt, Allan

    2014-02-01

    Walking cadence has shown promise for estimating walking intensity in healthy adults. Auditory cues have been shown to improve gait symmetry in populations with movement disorders. We investigated the walking cadence-energy expenditure relationship in unilateral transtibial amputees (TTAs), and the potential of music cues for regulating walking cadence and improving gait symmetry. Seventeen unilateral TTAs performed 2 5-min treadmill walking trials, followed by 2 5-min overground walking trials (self-regulated "brisk" intensity, and while attempting to match a moderate-tempo digital music cue). Walking cadence significantly (P < .001) and accurately (R(2) = .55, SEE = 0.50 METs) predicted energy expenditure, and a cadence of 86 steps·min(-1) was equivalent to a 3-MET intensity. Although most participants were able to match cadence to prescribed music tempo, gait symmetry was not improved during the music-guided condition, compared with the self-regulated condition. This is the first study to investigate the utility of walking cadence for monitoring and regulating walking intensity in adults with lower limb prosthesis. Cadence has similar or superior accuracy as an indicator of walking intensity in this population, compared with the general population, and adults with a unilateral TTA are capable of walking at moderate intensity and above for meaningful bouts of time.

  16. Impact of a Submaximal Warm-Up on Endurance Performance in Highly Trained and Competitive Male Runners

    Science.gov (United States)

    Zourdos, Michael C.; Bazyler, Caleb D.; Jo, Edward; Khamoui, Andy V.; Park, Bong-Sup; Lee, Sang-Rok; Panton, Lynn B.; Kim, Jeong-Su

    2017-01-01

    Purpose: The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, M[subscript age] = 21 ± 2 years, M[subscript VO2max] = 69.3 ± 5.1 mL/kg/min). Method: Endurance performance was determined by a 30-min distance trial after control and submaximal running…

  17. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning walk-in coolers and walk-in... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Walk-in Coolers and Walk-in Freezers § 431.302 Definitions concerning walk-in coolers and walk-in freezers. Walk-in cooler and walk-in freezer mean an...

  18. The Effect of Clothing on the Responses of Autonomic Nervous System Activity while Walking and Running

    OpenAIRE

    小柴, 朋子; 斎藤, 嘉代

    2011-01-01

    To determine what kind of walking wear is suitable for one's health, we examined the changes in autonomic nervous system activity by analyzing heart rate variability and the changes of salivary a -amylase activity during exercise.First, ten female subjects were kept sedentary for 30 minutes in the experimental room at 25°C before the experiments. The subjects were asked to walk at 3km/h and run at 5krn/h on the treadmill for 5 minutes each after lying, sitting, and standing.Additionally, hear...

  19. Walking transect path

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — We designed a 12.2 km walking transect so that an observer would pass within 50m of all habitat in the estuary and also minimize fording large channels. This...

  20. Walking in My Shoes

    Science.gov (United States)

    Salia, Hannah

    2010-01-01

    The Walking in My Shoes curriculum at St. Thomas School in Medina, Washington, has been developed to deepen students' understanding of their own heritage and the cultural similarities and differences among their global peers. Exploring the rich diversity of the world's cultural heritage and the interactions of global migrations throughout history,…

  1. Walking - Sensing - Participation

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam; Browning, David

    Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider...

  2. Walking along water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    Steep slopes, white peaks and deep valleys make up the Andes. As phenomenologists of landscape have told us, different people have different landscapes. By moving across the terrain, walking along, we might get a sense of how this has been carved out by the movement of wind and water, tectonics...

  3. The walking robot project

    Science.gov (United States)

    Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.

    1991-01-01

    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.

  4. Effects of treadmill training with load addition on non-paretic lower limb on gait parameters after stroke: A randomized controlled clinical trial.

    Science.gov (United States)

    Ribeiro, Tatiana S; Silva, Emília M G S; Silva, Isaíra A P; Costa, Mayara F P; Cavalcanti, Fabrícia A C; Lindquist, Ana R

    2017-05-01

    The addition of load on the non-paretic lower limb for the purpose of restraining this limb and stimulating the use of the paretic limb has been suggested to improve hemiparetic gait. However, the results are conflicting and only short-term effects have been observed. This study aims to investigate the effects of adding load on non-paretic lower limb during treadmill gait training as a multisession intervention on kinematic gait parameters after stroke. With this aim, 38 subacute stroke patients (mean time since stroke: 4.5 months) were randomly divided into two groups: treadmill training with load (equivalent to 5% of body weight) on the non-paretic ankle (experimental group) and treadmill training without load (control group). Both groups performed treadmill training during 30min per day, for two consecutive weeks (nine sessions). Spatiotemporal and angular gait parameters were assessed by a motion system analysis at baseline, post-training (at the end of 9days of interventions) and follow-up (40days after the end of interventions). Several post-training effects were demonstrated: patients walked faster and with longer paretic and non-paretic steps compared to baseline, and maintained these gains at follow-up. In addition, patients exhibited greater hip and knee joint excursion in both limbs at post-training, while maintaining most of these benefits at follow-up. All these improvements were observed in both groups. Although the proposal gait training program has provided better gait parameters for these subacute stroke patients, our data indicate that load addition used as a restraint may not provide additional benefits to gait training. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Combination of robot-assisted and conventional body-weight-supported treadmill training improves gait in persons with multiple sclerosis: a pilot study.

    Science.gov (United States)

    Ruiz, Jennifer; Labas, Michele P; Triche, Elizabeth W; Lo, Albert C

    2013-12-01

    The majority of persons with multiple sclerosis (MS) experience problems with gait, which they characterize as highly disabling impairments that adversely impact their quality of life. Thus, it is crucial to develop effective therapies to improve mobility for these individuals. The purpose of this study was to determine whether combination gait training, using robot-assisted treadmill training followed by conventional body-weight-supported treadmill training within the same session, improved gait and balance in individuals with MS. This study tested combination gait training in 7 persons with MS. The participants were randomized into the immediate therapy group (IT group) or the delayed therapy group (DT group). In phase I of the trial, the IT group received treatment while the DT group served as a concurrent comparison group. In phase II of the trial, the DT group received treatment identical to the treatment received by the IT group in phase I. Outcome measures included the 6-Minute Walk Test (6MWT), the Timed 25-Foot Walk Test, velocity, cadence, and the Functional Reach Test (FRT). Nonparametric statistical techniques were used for analysis. Combination gait training resulted in significantly greater improvements in the 6MWT for the IT group (median change = +59 m) compared with Phase I DT group (median change = -8 m) (P = 0.08) and FRT (median change = +3.3 cm in IT vs -0.8 cm in the DT group phase I; P = 0.03). Significant overall pre-post improvements following combination gait training were found in 6MWT (+32 m; P = 0.02) and FRT (+3.3 cm; P = 0.06) for IT and Phase II DT groups combined. Combination of robot with body-weight-supported treadmill training gait training is feasible and improved 6MWT and FRT distances in persons with MS.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A62) for more insights from the authors.

  6. People With Chronic Neck Pain Walk With a Stiffer Spine.

    Science.gov (United States)

    Falla, Deborah; Gizzi, Leonardo; Parsa, Hesam; Dieterich, Angela; Petzke, Frank

    2017-04-01

    Study Design Controlled laboratory study, case-control design. Objective To evaluate spine kinematics and gait characteristics in people with nonspecific chronic neck pain. Background People with chronic neck pain present with a number of sensorimotor and biomechanical alterations, yet little is known about the influence of neck pain on gait and motions of the spine during gait. Methods People with chronic nonspecific neck pain and age- and sex-matched asymptomatic controls walked on a treadmill at 3 different speeds (self-selected, 3 km/h, and 5 km/h), either with their head in a neutral position or rotated 30°. Tridimensional motion capture was employed to quantify body kinematics. Neck and trunk rotations were derived from the difference between the transverse plane component of the head and thorax and thorax and pelvis angles to provide an indication of neck and trunk rotation during gait. Results Overall, the patient group showed shorter stride length compared to the control group (Pneck pain showed smaller trunk rotations (Pneck pain walk with reduced trunk rotation, especially when challenged by walking with their head positioned in rotation. Reduced rotation of the trunk during gait may have long-term consequences on spinal health. J Orthop Sports Phys Ther 2017;47(4):268-277. Epub 3 Feb 2017. doi:10.2519/jospt.2017.6768.

  7. Effect of walking speed on gait sub phase durations.

    Science.gov (United States)

    Hebenstreit, Felix; Leibold, Andreas; Krinner, Sebastian; Welsch, Götz; Lochmann, Matthias; Eskofier, Bjoern M

    2015-10-01

    Gait phase durations are important spatiotemporal parameters in different contexts such as discrimination between healthy and pathological gait and monitoring of treatment outcomes after interventions. Although gait phases strongly depend on walking speed, the influence of different speeds has rarely been investigated in literature. In this work, we examined the durations of the stance sub phases and the swing phase for 12 different walking speeds ranging from 0.6 to 1.7 m/s in 21 healthy subjects using infrared cinematography and an instrumented treadmill. We separated the stance phase into loading response, mid stance, terminal stance and pre-swing phase and we performed regression modeling of all phase durations with speed to determine general trends. With an increasing speed of 0.1m/s, stance duration decreased while swing duration increased by 0.3%. All distinct stance sub phases changed significantly with speed. These findings suggest the importance of including all distinct gait sub phases in spatiotemporal analyses, especially when different walking speeds are involved. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Walking and Sensing Mobile Lives

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam

    In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk.......In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk....

  9. Quantum walks induced by Dirichlet random walks on infinite trees

    Science.gov (United States)

    Higuchi, Yusuke; Segawa, Etsuo

    2018-02-01

    We consider the Grover walk on infinite trees from the viewpoint of spectral analysis. From the previous work, infinite regular trees provide localization. In this paper, we give the complete characterization of the eigenspace of this Grover walk, which involves localization of its behavior and recovers the previous work. Our result suggests that the Grover walk on infinite trees may be regarded as a limit of the quantum walk induced by the isotropic random walk with the Dirichlet boundary condition at the n-th depth rather than one with the Neumann boundary condition.

  10. Effect of blocked vision treadmill training on knee joint proprioception of patients with chronic stroke.

    Science.gov (United States)

    Moon, Sung-Jun; Kim, Yong-Wook

    2015-03-01

    [Purpose] The purpose of this study was to compare the effect of treadmill training with the eyes closed and eyes open on the joint position sense of chronic stroke patients. [Subjects and Methods] Thirty patients with chronic stroke participated in this study. Patients performed the timed up and go test and were assigned to one of two treadmill training groups with and without visual deprivation. The treadmill gait training for each group lasted 40 minutes, and sessions were held 3 times a week for 4 weeks. The knee joint proprioception was measured using the Biodex System Pro 3 before and after the intervention. [Results] The knee joint proprioception of the treadmill training with blocked vision group showed more significant improvement after the treadmill training sessions than that of the eyes open group. [Conclusion] This study demonstrated that treadmill training with blocked vision may be useful for the proprioceptive sensory rehabilitation of patients with chronic stroke.

  11. Effects of a group circuit progressive resistance training program compared with a treadmill training program for adolescents with cerebral palsy.

    Science.gov (United States)

    Aviram, Ronit; Harries, Netta; Namourah, Ibtisam; Amro, Akram; Bar-Haim, Simona

    2017-08-01

    To determine whether goal-directed group circuit progressive resistance exercise training (GT) can improve motor function in adolescents with cerebral palsy (CP) and to compare outcomes with a treadmill training (TT) intervention. In a multi-centered matched pairs study, 95 adolescents with spastic CP (GMFCS II-III) were allocated to GT or TT interventions for 30 bi-weekly one hour training. Outcome measures of GMFM-66, GMFM-D%, GMFM-E%, TUG, 10 meter walk test (10 MWT), and 6 minute walk test (6 MWT) were made at baseline (T1), after interventions (T2) and 6 months post training (T3). Both training programs induced significant improvement in all outcome measures (T2-T1) that were mostly retained at T3. At the end of the intervention, the GT group showed an advantage in all measured changes compared to the TT group and in percentage changes. Differences were significant (p programs were effective in improving motor function in adolescents with cerebral palsy. The GT program had generally greater benefits based on the functional measures.

  12. Benefits of low-intensity pain-free treadmill exercise on functional capacity of individuals presenting with intermittent claudication due to peripheral arterial disease.

    Science.gov (United States)

    Barak, Sharon; Stopka, Christine Boyd; Archer Martinez, Coleen; Carmeli, Eli

    2009-01-01

    Patients with intermittent claudication due to peripheral arterial disease (PAD) experience muscle aching during walking secondary to ischemia. The purpose of this study was to examine the effects of low-intensity pain-free exercise (LIPFE) on functional capacity of individuals with PAD. A total of 12 participants with PAD underwent training on treadmill for 6 weeks, twice a week, for about 45 minutes. Outcome measures included walking distance (WDI), walking duration (WDU), mean walking rate (WR), estimated oxygen consumption (EVO(2)), metabolic equivalent (MET), estimated total energy expenditure (ETEE), and estimated rate of energy expenditure (EREE). Mean improvement of WDI, WDU, and MWR were 104% (an addition of 1.0 km), 55% (an addition of 13.3 minutes), and 41% (0.9 km/h faster), respectively. Mean improvement of EVO(2), MET, ETEE, and EREE, were 20%, 20%, 80%, and 20%, respectively. In conclusion, it appears that LIPFE training is an effective intervention for individuals presenting with PAD.

  13. Virtual Reality Training with Cognitive Load Improves Walking Function in Chronic Stroke Patients.

    Science.gov (United States)

    Cho, Ki Hun; Kim, Min Kyu; Lee, Hwang-Jae; Lee, Wan Hee

    2015-08-01

    Virtual reality training is considered as an effective intervention method of stroke patients, and the virtual reality system for therapeutic rehabilitation has emphasized the cognitive factors to improve walking function. The purpose of current study was to investigate the effect of virtual reality training with cognitive load (VRTCL) on walking function of chronic stroke. Chronic stroke patients were randomly assigned to the VRTCL group (11 patients, including 5 men; mean age, 60.0 years; post-stroke duration, 273.9 days) or control group (11 patients, including 2 men; mean age, 58.6 years; post-stroke duration, 263.9 days). All subjects participated in the standard rehabilitation program that consisted of physical and occupational therapies. In addition, VRTCL group participated in the VRTCL for 4 weeks (30 min per day and five times a week), while those in the control group participated in virtual reality treadmill training. Walking function under single (walking alone) and dual task (walking with cognitive tasks) conditions was assessed using an electrical walkway system. After the 4-week intervention, under both single and dual task conditions, significant improvement on walking function was observed in VRTCL and control groups (P stroke patients.

  14. STS-44 crewmembers exercise using treadmill rowing device on OV-104's middeck

    Science.gov (United States)

    1991-01-01

    STS-44 Pilot Terence T. Henricks (foreground) 'rows' on the modified treadmill device used by crewmembers for biomedical evaluations and for exercising. Earlier, the treadmill, located on the middeck of Atlantis, Orbiter Vehicle (OV) 104, had experienced an anomaly that affected its ability to support the subjects in 'running' mode. Mission Specialist (MS) Mario Runco, Jr (background), his torso bearing sensors, awaits his turn on the treadmill.

  15. Blunted Maximal and Submaximal Responses to Cardiopulmonary Exercise Tests in Patients With Parkinson Disease.

    Science.gov (United States)

    Kanegusuku, Hélcio; Silva-Batista, Carla; Peçanha, Tiago; Nieuwboer, Alice; Silva, Natan D; Costa, Luiz A; de Mello, Marco T; Piemonte, Maria E; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2016-05-01

    To investigate submaximal and maximal responses during maximal cardiopulmonary exercise tests in subjects with Parkinson disease (PD). Cross-sectional. A PD association. A sample (N=68) of subjects with PD (n=48; mean age, 66±8y; modified Hoehn and Yahr stage between 2 and 3; "on" state of medication) and age-matched controls without PD (n=20; mean age, 64±9y). Maximal cardiopulmonary exercise test on a cycle ergometer. Oxygen uptake (V˙o2), systolic blood pressure (SBP), and heart rate assessed at rest, submaximal intensities (ie, anaerobic threshold [AT] and respiratory compensation point), and maximal intensity (peak exercise). Compared with control subjects, subjects with PD had lower V˙o2, heart rate, and SBP at respiratory compensation point and peak exercise (V˙o2: 14.6±3.6mL⋅kg⋅min vs 17.9±5.5mL⋅kg⋅min and 17.7±4.8mL⋅kg⋅min vs 21.5±6.6mL⋅kg⋅min; heart rate: 119±17beats/min vs 139±12beats/min and 132±20beats/min vs 158±13beats/min; SBP: 151±17mmHg vs 172±20mmHg and 166±21mmHg vs 187±24mmHg; P≤.05). They also had lower heart rate at AT (102±14beats/min vs 110±13beats/min; P≤.05), whereas V˙o2 and SBP at this intensity were similar to those of control subjects. Subjects with PD demonstrated blunted metabolic and cardiovascular responses to submaximal and maximal exercise tests, especially at intensities above AT, which are in line with autonomic disturbances present in patients with PD. Future studies need to determine how this affects performance, participation, and responses of these patients to exercise training at different intensities. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Aerobic interval training reduces vascular resistances during submaximal exercise in obese metabolic syndrome individuals.

    Science.gov (United States)

    Mora-Rodriguez, Ricardo; Fernandez-Elias, V E; Morales-Palomo, F; Pallares, J G; Ramirez-Jimenez, M; Ortega, J F

    2017-08-12

    The aim of this study was to determine the effects of high-intensity aerobic interval training (AIT) on exercise hemodynamics in metabolic syndrome (MetS) volunteers. Thirty-eight, MetS participants were randomly assigned to a training (TRAIN) or to a non-training control (CONT) group. TRAIN consisted of stationary interval cycling alternating bouts at 70-90% of maximal heart rate during 45 min day(-1) for 6 months. CONT maintained baseline physical activity and no changes in cardiovascular function or MetS factors were detected. In contrast, TRAIN increased cardiorespiratory fitness (14% in VO2PEAK; 95% CI 9-18%) and improved metabolic syndrome (-42% in Z score; 95% CI 83-1%). After TRAIN, the workload that elicited a VO2 of 1500 ml min(-1) increased 15% (95% CI 5-25%; P < 0.001). After TRAIN when subjects pedaled at an identical submaximal rate of oxygen consumption, cardiac output increased by 8% (95% CI 4-11%; P < 0.01) and stroke volume by 10% (95% CI, 6-14%; P < 0.005) being above the CONT group values at that time point. TRAIN reduced submaximal exercise heart rate (109 ± 15-106 ± 13 beats min(-1); P < 0.05), diastolic blood pressure (83 ± 8-75 ± 8 mmHg; P < 0.001) and systemic vascular resistances (P < 0.01) below CONT values. Double product was reduced only after TRAIN (18.2 ± 3.2-17.4 ± 2.4 bt min(-1) mmHg 10(-3); P < 0.05). The data suggest that intense aerobic interval training improves hemodynamics during submaximal exercise in MetS patients. Specifically, it reduces diastolic blood pressure, systemic vascular resistances, and the double product. The reduction in double product, suggests decreased myocardial oxygen demands which could prevent the occurrence of adverse cardiovascular events during exercise in this population. CLINICALTRIALS. NCT03019796.

  17. [Walking abnormalities in children].

    Science.gov (United States)

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional

  18. Cardiorespiratory response to walking in trained and sedentary pregnant women.

    Science.gov (United States)

    O'Neill, M E; Cooper, K A; Hunyor, S N; Boyce, S

    1993-03-01

    In order to test whether trained (n = 10) and sedentary (n = 29) pregnant women have different responses to weight-bearing exercise in the second trimester (range 23 to 28 weeks of gestation), subjects walked continuously on a treadmill for 26 minutes: at low intensity for 10 minutes, then an intermediate stage, followed by moderate intensity for 10 minutes. In the trained group, the mean heart rate was lower (p exercise (128.4 +/- 5.7 versus 145.2 +/- 2.9 bpm) and the associated mean stroke volume was higher (105 +/- 16 versus 84 +/- 17 ml; 103 +/- 15 versus 86 +/- 18 ml, respectively) (p 0.02) at the same absolute workloads. The potential implications of these findings for exercise prescriptions for pregnant women, research evaluation and exercise testing are discussed.

  19. Covering walks in graphs

    CERN Document Server

    Fujie, Futaba

    2014-01-01

    Covering Walks  in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous Kӧnigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and...

  20. Cycling on rollers: Kreitler fan resistance at submaximal levels of effort.

    Science.gov (United States)

    Reiser, R F; Hart, C R

    2008-03-01

    The goal of this investigation was to characterize the commercially available fan unit for the KreitlerAlloy rollers at submaximal levels of effort (cyclist rode six times at each of three fan inlet settings (closed, half, and full open) and five fan speeds (900, 1800, 2700, 3600, and 4500 rpm). Fan power requirements were isolated by subtracting roller resistance from separate trials. Power requirements relative to fan inlet and fan speed possessed a significant interaction with the main effects for each also significant (all p or = 0.997). Fan resistance was virtually non existent at 900 rpm. Fan resistance then significantly increased with increasing fan speed and inlet opening. At 4500 rpm power requirements of the fan reached 269 +/- 6, 352 +/- 7, and 406 +/- 9 W with the inlet closed, half, and fully open, respectively (p training and testing environments.

  1. The validity of submaximal ratings of perceived exertion to predict one repetition maximum.

    Science.gov (United States)

    Eston, Roger; Evans, Harrison James Llewelyn

    2009-01-01

    The One Repetition Maximum (1-RM) test is commonly used to assess strength. However, direct assessments of 1-RM are time consuming and unsafe for novice lifters. Whilst various equations exist to predict 1-RM, there is limited research on the validity of these equations. The purpose of this study was to assess the validity of using sub-maximal ratings of perceived exertion (RPE) to predict 1-RM in young adults, using the Borg 6-20 RPE Scale. Twenty healthy participants (ten male (Mean ± SD, 20.8 ± 0.6 y, 75.7 ± 9.3 kg, 1.8 ± 0.07 m) and ten female (20.3 ± 0.7 y, 68.4 ± 10.0 kg, 1.68 ± 0.03 m)) completed two trials involving resistance exercises for both the upper and lower body. In the first trial the 1-RM for the bilateral biceps curl (BC) and the bilateral knee extension (KE) were determined for each participant. In the second trial, participants performed blinded repetitions which were equivalent to 20, 40 and 60 % of 1-RM for both exercises. The RPE was recorded immediately after two repetitions had been completed at each intensity. The order of intensity of the repetitions was randomly assigned with participants wearing blindfolds to exclude the possibility of pre-determined judgments about load and RPE. Individual RPE recorded at each intensity was subjected to linear regression analysis and the line of best fit was extrapolated to RPE 20 to predict 1-RM in both exercises. There was no significant difference (p > 0.05) between the 1-RM predicted from RPE 20 and measured 1-RM for both exercises for the men and women. Measured and predicted values for men were 46.0 ± 4.6 and 45.2 ± 6. 1 kg for biceps curl, and 46.3 ± 3.8 and 43.0 ± 7.1 kg for knee extension, respectively. Measured and predicted values for women were 18.6 ± 5.7 and 19.3 ± 5.6 kg for biceps curl, and 25.5 ± 9.6 and 27.2 ± 12.6 kg for knee extension, respectively. Pearson product-moment correlation coefficients between actual and predicted 1-RM for the BC and KE were 0.97 and 0

  2. Nordic Walking Classes

    CERN Multimedia

    Fitness Club

    2015-01-01

    Four classes of one hour each are held on Tuesdays. RDV barracks parking at Entrance A, 10 minutes before class time. Spring Course 2015: 05.05/12.05/19.05/26.05 Prices 40 CHF per session + 10 CHF club membership 5 CHF/hour pole rental Check out our schedule and enroll at: https://espace.cern.ch/club-fitness/Lists/Nordic%20Walking/NewForm.aspx? Hope to see you among us! fitness.club@cern.ch

  3. A new submaximal cycle ergometer test for prediction of VO2max.

    Science.gov (United States)

    Ekblom-Bak, E; Björkman, F; Hellenius, M-L; Ekblom, B

    2014-04-01

    Maximal oxygen uptake (VO2max) is an important, independent predictor of cardiovascular health and mortality. Despite this, it is rarely measured in clinical practice. The aim of this study was to create and evaluate a submaximal cycle ergometry test based on change in heart rate (HR) between a lower standard work rate and an individually chosen higher work rate. In a mixed population (n = 143) with regard to sex (55% women), age (21-65 years), and activity status (inactive to highly active), a model included change in HR per unit change in power, sex, and age for the best estimate of VO2max. The association between estimated and observed VO2max for the mixed sample was r = 0.91, standard error of estimate = 0.302 L/min, and mean measured VO2max = 3.23 L/min. The corresponding coefficient of variation was 9.3%, a significantly improved precision compared with one of the most commonly used submaximal exercise tests, the Åstrand test, which in the present study was estimated to be 18.1%. Test-retest reliability analysis over 1 week revealed no mean difference in the estimated VO2max (-0.02 L/min, 95% confidence interval: -0.07-0.03). The new test is low-risk, easily administered, and valid for a wide capacity range, and is therefore suitable in situations as health evaluations in the general population. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Haemodynamic changes induced by submaximal exercise before a dive and its consequences on bubble formation

    Science.gov (United States)

    Blatteau, Jean‐Eric; Boussuges, Alain; Gempp, Emmanuel; Pontier, Jean‐Michel; Castagna, Olivier; Robinet, Claude; Galland, Francois‐Michel; Bourdon, Lionel

    2007-01-01

    Objectives To evaluate the effects of a submaximal exercise performed 2 h before a simulated dive on bubble formation and to observe the haemodynamic changes and their influence on bubble formation. Participants and methods 16 trained divers were compressed in a hyperbaric chamber to 400 kPa for 30 min and decompressed at a rate of 100 kPa/min with a 9 min stop at 130 kPa (French Navy MN90 procedure). Each diver performed two dives 3 days apart, one without exercise and one with exercise before the dive. All participants performed a 40 min constant‐load submaximal and calibrated exercise, which consisted of outdoor running 2 h before the dive. Circulating bubbles were detected with a precordial Doppler at 30, 60 and 90 min after surfacing. Haemodynamic changes were evaluated with Doppler echocardiography. Results A single bout of strenuous exercise 2 h before a simulated dive significantly reduced circulating bubbles. Post‐exercise hypotension (PEH) was observed after exercise with reductions in diastolic and mean blood pressure (DBP and MBP), but total peripheral resistance was unchanged. Stroke volume was reduced, whereas cardiac output was unchanged. Simulated diving caused a similar reduction in cardiac output independent of pre‐dive exercise, suggesting that pre‐dive exercise only changed DBP and MBP caused by reduced stroke volume. Conclusion A single bout of strenuous exercise 2 h before a dive significantly reduced the number of bubbles in the right heart of divers and protected them from decompression sickness. Declining stroke volume and moderate dehydration induced by a pre‐dive exercise might influence inert gas load and bubble formation. PMID:17138641

  5. Muscle vibration sustains motor unit firing rate during submaximal isometric fatigue in humans.

    Science.gov (United States)

    Griffin, L; Garland, S J; Ivanova, T; Gossen, E R

    2001-09-15

    1. In keeping with the 'muscular wisdom hypothesis', many studies have documented that the firing rate of the majority of motor units decreased during fatiguing isometric contractions. The present study investigated whether the application of periodic muscle vibration, which strongly activates muscle spindles, would alter the modulation of motor unit firing rate during submaximal fatiguing isometric contractions. 2. Thirty-three motor units from the lateral head of the triceps brachii muscle were recorded from 10 subjects during a sustained isometric 20 % maximal voluntary contraction (MVC) of the elbow extensors. Vibration was interposed on the contraction for 2 s every 10 s. Twenty-two motor units were recorded from the beginning of the fatigue task. The discharge rate of the majority of motor units remained constant (12/22) or increased (4/22) with fatigue. Six motor units demonstrated a reduction in discharge rate that later returned toward initial values; these motor units had higher initial discharge rates than the other 16 motor units. 3. In a second series of experiments, four subjects held a sustained isometric 20 % MVC for 2 min and then vibration was applied as above for the remainder of the contraction. In this case, motor units initially demonstrated a decrease in firing rate that increased after the vibration was applied. Thus muscle spindle disfacilitation of the motoneurone pool may be associated with the decline of motor unit discharge rate observed during the first 2 min of the contraction. 4. In a third set of experiments, seven subjects performed the main experiment on one occasion and repeated the fatigue task without vibration on a second occasion. Neither the endurance time of the fatiguing contraction nor the MVC torque following fatigue was affected by the application of vibration. This finding calls into question the applicability of the muscular wisdom hypothesis to submaximal contractions.

  6. Walking with springs

    Science.gov (United States)

    Sugar, Thomas G.; Hollander, Kevin W.; Hitt, Joseph K.

    2011-04-01

    Developing bionic ankles poses great challenges due to the large moment, power, and energy that are required at the ankle. Researchers have added springs in series with a motor to reduce the peak power and energy requirements of a robotic ankle. We developed a "robotic tendon" that reduces the peak power by altering the required motor speed. By changing the required speed, the spring acts as a "load variable transmission." If a simple motor/gearbox solution is used, one walking step would require 38.8J and a peak motor power of 257 W. Using an optimized robotic tendon, the energy required is 21.2 J and the peak motor power is reduced to 96.6 W. We show that adding a passive spring in parallel with the robotic tendon reduces peak loads but the power and energy increase. Adding a passive spring in series with the robotic tendon reduces the energy requirements. We have built a prosthetic ankle SPARKy, Spring Ankle with Regenerative Kinetics, that allows a user to walk forwards, backwards, ascend and descend stairs, walk up and down slopes as well as jog.

  7. 500-m and 1000-m moderate walks equally assess cardiorespiratory fitness in male outpatients with cardiovascular diseases.

    Science.gov (United States)

    Mazzoni, Gianni; Chiaranda, Giorgio; Myers, Jonathan; Sassone, Biagio; Pasanisi, Giovanni; Mandini, Simona; Volpato, Stefano; Conconi, Francesco; Grazzi, Giovanni

    2017-09-29

    The walking speed maintained during a moderate 1-km treadmill walk (1k-TWT) has been demonstrated to be a valid tool for estimating peak oxygen uptake (VO2peak), and to be inversely related to long-term survival and hospitalization in outpatients with cardiovascular disease (CVD). We aimed to examine whether 500-m and 1-k moderate treadmill-walking tests equally estimate VO2peak in male outpatients with CVD. 142 clinically stable male outpatients with CVD, aged 34-92 years, referred to an exercise-based secondary prevention program, performed a moderate and perceptually-regulated (11-13/20 on the Borg scale) 1k- TWT. Age, height, weight, time to walk 500-m and the entire 1000-m, and the corresponding heart rates were entered into validated equations to estimate VO2peak. VO2peak estimated from the 500-m test was not different from that estimated from the 1k test (25.2±5.1 vs 25.1±5.2 mL/kg/min). The correlation coefficient between the two was 0.98. The slope and the intercept of the relationship between the 500-m and 1k tests were not different from the line of identity. Bland-Altman analysis demonstrated that 96% of the data points were within two standard deviations (from -1.9 to 1.7 mL/kg/min). The 500-m treadmill-walking test is a reliable method for estimating VO2peak in stable male outpatients with CVD. A shorter version of the test, 500-m, provides similar information as that from the original 1k test, but is more time efficient. These findings have practical implications in the context of transitioning patients from clinically based and supervised programs to fitness facilities or self-guided exercise programs.

  8. Brisk walking speed in older adults who walk for exercise.

    Science.gov (United States)

    Parise, Carol; Sternfeld, Barbara; Samuels, Steven; Tager, Ira B

    2004-03-01

    To determine the self-selected exercise intensity of older adults who report that they walk briskly for exercise. An additional aim of the study was to assess the contribution of self-reported physical activity to self-selected exercise intensity. Observational. walking path. Subjects consisted of 212 participants in the Study of Physical Performance and Age-Related Changes in Sonomans who stated in a detailed home interview that they walked briskly for exercise. Observed brisk walking speed was measured as the time it took participants to walk half a mile at "normal brisk walking speed." Self-reported physical activity was categorized as metabolic equivalent of the task (MET) in minutes of exercise reported in the previous 7 days. Physiological measures and body composition were obtained through laboratory evaluation. Men walked at an average speed+/-standard deviation of 5.72+/-0.69 km/h and women walked at an average speed of 5.54+/-0.64 km/h. Self-reported physical activity was not associated with brisk walking speed when adjusted for age and ratio of lean to fat mass. This study found that older adults who report that they walk briskly for exercise do so at a pace considered moderate or greater in absolute intensity as indicated by their walking speed (4.83 km/h). Ninety-eight percent of men (93/95) and 97% of women (113/117) had an observed walking speed equivalent to 3 or more METs based on their calculated walking speed.

  9. Unloaded treadmill training therapy for lumbar disc herniation injury.

    Science.gov (United States)

    Simpson, S; Bettis, B; Herbertson, J

    1996-01-01

    The low back region is an area that is very susceptible to injury in athletes. Running is an activity that can be significantly affected by chronic overuse stress. The athlete presented in this case report suffered a herniation of the disc between L-4 and L-5 while training for and racing in a national championship marathon. The athlete was placed on a treatment program of heat, electrical muscle stimulation, and strength and flexibility exercises. The athlete also continued to train by unloaded treadmill training therapy. Unloaded treadmill training therapy produced an effect that reduced stress on injured joints and tissue. This enabled the athlete to maintain fitness while running pain-free on this specialized equipment. The athlete trained twice a week for 16 weeks and training runs ranged from 3 miles to a half-marathon (13.1 miles). Unloaded amounts decreased from 20 to 3 pounds. Training times improved at all distances and were maintained following resumption of normal training.

  10. Curve walking in freely moving crayfish (Procambarus clarkii)

    Science.gov (United States)

    Domenici; Jamon; Clarac

    1998-05-01

    The curve walking of freely moving crayfish trained to walk along a curved path during homing behaviour was investigated using a video-analysis system. The leg kinematics and leg phase relationships, as well as the relationship between stepping patterns and body axis rotation measured relative to external references, were studied. The anterior and posterior extreme positions of the power stroke (AEP and PEP, respectively) and step amplitudes were analysed. As in a previous study on crayfish curve walking on a treadmill, PEPs were more posterior in outer legs (the legs on the outside of the turn) than in the inner legs. As a result, outer legs showed larger step amplitudes than inner legs. Leg kinematics varied within each walking sequence. AEP leg angles (the angles between the body and leg axes at the AEP) tended to decrease over time for inner legs and increase for outer legs. This leg angle drift was present mainly in the anterior legs and it suggests that these legs did not completely compensate for the body rotation after each step. In addition, leg angle asymmetries in a direction opposite to that of leg angle drift were observed at the start of each curve-walking sequence, suggesting that the extensive training (3 weeks) may have allowed crayfish to anticipate the leg angle drift. The rotational component of curve walking showed a discontinuous pattern, with the animal's body axis turning towards the inside of the curve only periodically. Analysis of cross-correlation functions showed that the angular acceleration of the body axis in the direction of the turn occurred during the power strokes of inner legs 2 and 5 and outer leg 4. While the tripod formed by these three legs showed in-phase relationships, the legs of the corresponding contralateral tripod (outer legs 2 and 5 and inner leg 4) were not in phase. We hypothesize that inner legs 2 and 5 and outer leg 4 act synergically causing the inward body rotation observed in curve-walking crayfish and that

  11. Comparison of cardiorespiratory responses during aquatic and land treadmill exercise in patients with coronary artery disease.

    Science.gov (United States)

    Choi, Jun Hwan; Kim, Bo Ryun; Joo, Seung Jae; Han, Eun Young; Kim, Song Yi; Kim, Sun Mi; Lee, So Young; Yoon, Ho Min

    2015-01-01

    To investigate cardiorespiratory responses during exercise stress tests using an aquatic treadmill and a land-based treadmill in patients with coronary artery disease (CAD). Twenty-one stable CAD patients were enrolled. All patients participated in 2 symptom-limited incremental exercise tests, using both an aquatic and a land treadmill. For the aquatic treadmill protocol, patients were submerged to the upper waist in 28°C water. The treadmill speed started at 2.0 km/h and increased 0.5 km/h every minute thereafter. For the land treadmill protocol, the speed and gradient were started at 2.4 km/h and 1.5%, respectively. The speed was increased by 0.3 km/h and grade by 1% every minute thereafter. Oxygen consumption ((Equation is included in full-text article.)O2), heart rate (HR), and respiratory exchange ratio were measured continuously and peak values recorded. Rating of perceived exertion, percentage of age-predicted maximal HR, and total exercise duration were also recorded. Peak cardiorespiratory responses during both protocols were compared. The peak (Equation is included in full-text article.)O2 and peak HR did not show any significant differences. The peak respiratory exchange ratio was significantly greater using the land treadmill than the aquatic treadmill protocol. Rating of perceived exertion, age-predicted maximal HR percentage, and total exercise duration were similar for both protocols. There was a significant linear relationship between HR and (Equation is included in full-text article.)O2 with both protocols. This study demonstrated that aquatic treadmill exercise elicits similar peak cardiorespiratory responses compared with land treadmill exercise, suggesting that aquatic treadmill exercise may be effective for CAD patients in cardiac rehabilitation.

  12. Performance of a visuomotor walking task in an augmented reality training setting.

    Science.gov (United States)

    Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper

    2017-12-01

    Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fractional random walk lattice dynamics

    Science.gov (United States)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2017-02-01

    We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in n  =  1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices {{L}\\fracα{2}}} where α =2 recovers the normal walk. First we demonstrate that the interval 0<α ≤slant 2 is admissible for the fractional random walk. We derive analytical expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix {{Z}(α )} , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix {{Z}(α )} relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic {{t}-\\frac{n{α}} -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.

  14. Gait Biomechanics, Spatial and Temporal Characteristics, and the Energy Cost of Walking in Older Adults With Impaired Mobility

    Science.gov (United States)

    Brach, Jennifer; Perera, Subashan; VanSwearingen, Jessie M.

    2010-01-01

    Background Abnormalities of gait and changes in posture during walking are more common in older adults than in young adults and may contribute to an increase in the energy expended for walking. Objective The objective of this study was to examine the contributions of abnormalities of gait biomechanics (hip extension, trunk flexion, and foot-floor angle at heel-strike) and gait characteristics (step width, stance time, and cadence) to the energy cost of walking in older adults with impaired mobility. Design A cross-sectional design was used. Methods Gait speed, step width, stance time, and cadence were derived during walking on an instrumented walkway. Trunk flexion, hip extension, and foot-floor angle at heel contact were assessed during overground walking. The energy cost of walking was determined from oxygen consumption data collected during treadmill walking. All measurements were collected at the participants' usual, self-selected walking speed. Results Fifty community-dwelling older adults with slow and variable gait participated. Hip extension, trunk flexion, and step width were factors related to the energy cost of walking. Hip extension, step width, and cadence were the only gait measures beyond age and gait speed that provided additional contributions to the variance of the energy cost, with mean R2 changes of .22, .12, and .07, respectively. Limitations Other factors not investigated in this study (interactions among variables, psychosocial factors, muscle strength [force-generating capacity], range of motion, body composition, and resting metabolic rate) may further explain the greater energy cost of walking in older adults with slow and variable gait. Conclusions Closer inspection of hip extension, step width, and cadence during physical therapy gait assessments may assist physical therapists in recognizing factors that contribute to the greater energy cost of walking in older adults. PMID:20488977

  15. Patient-specific determinants of responsiveness to robot-enhanced treadmill therapy in children and adolescents with cerebral palsy.

    Science.gov (United States)

    Schroeder, Andreas Sebastian; Von Kries, Rüdiger; Riedel, Christina; Homburg, Maria; Auffermann, Helene; Blaschek, Astrid; Jahn, Klaus; Heinen, Florian; Borggraefe, Ingo; Berweck, Steffen

    2014-12-01

    The aim of the study was to evaluate patient-specific determinants of responsiveness to robot-enhanced repetitive treadmill therapy (ROBERT) in patients with early-developed movement disorders. Patients were treated over 12 sessions during a 3-week period. Gross Motor Function Measure-66 (GMFM-66) scores 1 day before ROBERT were compared with scores recorded 1 day after ROBERT. The association of GMFM-66 baseline score, age, sex, aetiology, and add-on botulinum toxin therapy to response to treatment was assessed. Eighty-three patients aged between 4 and 18 years (48 males, 35 females; mean age 10y 8mo, SD 6y 1mo; Gross Motor Function Classification System level I [n=12], II [n=21], III [n=35], IV [n=10], and V [n=1]) were each treated for a total of 7.2 (SD 1.9) treadmill walking hours. Aetiology was bilateral spastic cerebral palsy (BS-CP; n=69), unilateral CP (n=3), ataxic CP (n=3), hereditary spastic paraparesis (n=6), and genetic syndrome including spasticity (n=2). Meaningful improvements were observed in GMFM-66 (+2.5; 95% CI 2.0-3.0), GMFM-D (+5.2; 95% CI 3.6-6.8), and GMFM-E (+4.0; 95% CI 2.8-5.3). There was a high inter-individual variability in treatment response. After multivariable adjustment, the improvements in GMFM-66 and GMFM-E scores were positively associated with the GMFM-66 baseline score. The effect on GMFM-D improvement was inversely associated with age. Gross motor abilities at baseline and age were identified as relevant determinants for the high degree of interpersonal variability in response to ROBERT. © 2014 Mac Keith Press.

  16. The Reliability of a 5km Run Test on a Motorized Treadmill

    Science.gov (United States)

    Driller, Matthew; Brophy-Williams, Ned; Walker, Anthony

    2017-01-01

    The purpose of the present study was to determine the reliability of a 5km run test on a motorized treadmill. Over three consecutive weeks, 12 well-trained runners completed three 5km time trials on a treadmill following a standardized warm-up. Runners were partially-blinded to their running speed and distance covered. Total time to complete the…

  17. Better economy in field running than on the treadmill: evidence from high-level distance runners

    Directory of Open Access Journals (Sweden)

    M Mooses

    2015-05-01

    Full Text Available Given the ongoing interest in ways to improve the specificity of testing elite athletes in their natural environment, portable metabolic systems provide an opportunity to assess metabolic demand of exercise in sport-specific settings. Running economy (RE and maximal oxygen uptake ( ·VO 2 max were compared between track and treadmill (1% inclination conditions in competitive level European distance runners who were fully habituated to treadmill running (n = 13. All runners performed an exercise test on running track and on treadmill. While ·VO 2 max was similar on the track and on the treadmill (68.5 ± 5.3 vs. 71.4 ± 6.4 ml∙kg -1 ∙min -1 , p = 0.105, respectively, superior RE was found on the track compared to the treadmill (215.4 ± 12.4 vs. 236.8 ± 18.0 O2 ml∙kg -1 ∙km -1 , p < 0.001. RE on the track was strongly correlated with RE on the treadmill (r = 0.719, p = 0.006. The present findings indicate that high-level distance runners have significantly better RE but not ·VO2max on the track compared to treadmill. This difference may be due to biomechanical adjustments. As RE is strongly correlated between the two conditions, it would be reasonable to assume that interventions affecting RE on the treadmill will also affect RE on the track.

  18. Reduction of common motoneuronal drive on the affected side during walking in hemiplegic stroke patients

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Brittain, John-Stuart; Halliday, David M.

    2008-01-01

    OBJECTIVE: The objective of this study was to use motor unit coupling in the time and frequency domains to obtain evidence of changes in motoneuronal drive during walking in subjects with stroke. METHODS: Paired tibialis anterior (TA) EMG activity was sampled during the swing phase of treadmill......-term synchrony were either absent or very small on the affected side. Instead, pronounced 10 Hz coupling was observed. CONCLUSIONS: It is suggested that reduced corticospinal drive to the spinal motoneurones is responsible for the reduced short-term synchrony and coherence in the 10-25 Hz frequency band...