WorldWideScience

Sample records for submaximal running velocities

  1. Dose-response effect of photobiomodulation therapy on neuromuscular economy during submaximal running.

    Science.gov (United States)

    Dellagrana, Rodolfo André; Rossato, Mateus; Sakugawa, Raphael Luiz; Lazzari, Caetano Decian; Baroni, Bruno Manfredini; Diefenthaeler, Fernando

    2018-02-01

    The purpose of this study was to verify the photobiomodulation therapy (PBMT) effects with different doses on neuromuscular economy during submaximal running tests. Eighteen male recreational runners participate in a randomized, double-blind, and placebo-controlled trial, which each participant was submitted to the same testing protocol in five conditions: control, placebo, and PBMT with doses of 15, 30, and 60 J per site (14 sites in each lower limb). The submaximal running was performed at 8 and 9 km h -1 during 5 min for each velocity. Muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), and gastrocnemius lateralis (GL) was collected during the last minute of each running test. The root mean square (RMS) was normalized by maximal isometric voluntary contraction (MIVC) performed a priori in an isokinetic dynamometer. The RMS sum of all muscles (RMS LEG ) was considered as main neuromuscular economy parameter. PBMT with doses of 15, 30, and 60 J per site [33 diodes = 5 lasers (850 nm), 12 LEDs (670 nm), 8 LEDs (880 nm), and 8 LEDs (950 nm)] or placebo applications occurred before running tests. For the statistical analysis, the effect size was calculated. Moreover, a qualitative inference was used to determine the magnitude of differences between groups. Peak torque and RMS during MIVCs showed small effect sizes. According to magnitude-based inference, PBMT with dose of 15 J per site showed possibly and likely beneficial effects on neuromuscular economy during running at 8 and 9 km h -1 , respectively. On other hand, PBMT with doses of 30 and 60 J per site showed possible beneficial effects only during running at 9 km h -1 . We concluded that PBMT improve neuromuscular economy and the best PBMT dose was 15 J per site (total dose of 420 J).

  2. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior.

    Science.gov (United States)

    Morin, Jean-Benoit; Tomazin, Katja; Samozino, Pierre; Edouard, Pascal; Millet, Guillaume Y

    2012-04-01

    We investigated the changes in constant velocity spring-mass behavior after high intensity sprint fatigue in order to better interpret the results recently reported after ultra-long distance (ULD) exercises. Our hypothesis was that after repeated sprints (RS), subjects may likely experience losses of force such as after ULD, but the necessity to modify their running pattern to attenuate the overall impact at each step (such as after ULD) may not be present. Eleven male subjects performed four sets of five 6-s sprints with 24-s recovery between sprints and 3 min between sets, on a sprint treadmill and on a bicycle ergometer. For each session, their running mechanics and spring-mass characteristics were measured at 10 and 20 km h(-1) on an instrumented treadmill before and after RS. Two-way (period and velocity) ANOVAs showed that high-intensity fatigue did not induce any change in the constant velocity running pattern at low or high velocity, after both running and cycling RS, despite significant decreases (P < 0.001) in maximal power (-27.1 ± 8.2% after running RS and -15.4 ± 11.5 % after cycling RS) and knee extensors maximal voluntary force (-18.8 ± 6.7 % after running RS and -15.0 ± 7.6 % after cycling RS). These results bring indirect support to the hypothesis put forward in recent ULD studies that the changes in running mechanics observed after ULD are likely not related to the decrease in strength capabilities, but rather to the necessity for subjects to adopt a protective running pattern.

  3. Warm-Up Exercises May Not Be So Important for Enhancing Submaximal Running Performance.

    Science.gov (United States)

    Takizawa, Kazuki; Yamaguchi, Taichi; Shibata, Keisuke

    2018-05-01

    Takizawa, K, Yamaguchi, T, and Shibata, K. Warm-up exercises may not be so important for enhancing submaximal running performance. J Strength Cond Res 32(5): 1383-1390, 2018-The purpose of this study was to determine an appropriate warm-up intensity for enhancing performance in submaximal running at 90% vV[Combining Dot Above]O2max (it assumes 3,000-5,000 m in track events). Seven trained male university athletes took part in this study (age: 21.3 ± 2.1 years, height: 169.3 ± 4.7 cm, body mass: 58.4 ± 5.6 kg, V[Combining Dot Above]O2max: 73.33 ± 5.46 ml·kg·min). Each subject ran on a treadmill at 90% vV[Combining Dot Above]O2max until exhaustion after 1 of 4 warm-up treatments. The 4 warm-up treatments were no warm-up, 15 minutes running at 60% vV[Combining Dot Above]O2max, at 70% vV[Combining Dot Above]O2max, and at 80% vV[Combining Dot Above]O2max. The running performance was evaluated by time to exhaustion (TTE). V[Combining Dot Above]O2, and vastus lateralis muscle temperature were also measured. There were no significant differences in TTE among the warm-up exercises (p > 0.05). V[Combining Dot Above]O2 in no warm-up showed slower reaction than the other warm-up exercises. Regarding, the vastus lateralis muscle temperature immediately after warm-up, no warm-up was significantly (p warm-up exercises. Our results suggested that submaximal running performance was not affected by the presence or absence of a warm-up or by warm-up intensity, although physiological changes occurred.

  4. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response.

    Science.gov (United States)

    Doma, Kenji; Schumann, Moritz; Sinclair, Wade H; Leicht, Anthony S; Deakin, Glen B; Häkkinen, Keijo

    2015-08-01

    This study examined the effects of two typical strength training sessions performed 1 week apart (i.e. repeated bout effect) on sub-maximal running performance and hormonal. Fourteen resistance-untrained men (age 24.0 ± 3.9 years; height 1.83 ± 0.11 m; body mass 77.4 ± 14.0 kg; VOpeak 48.1 ± 6.1 M kg(-1) min(-1)) undertook two bouts of high-intensity strength training sessions (i.e. six-repetition maximum). Creatine kinase (CK), delayed-onset muscle soreness (DOMS), counter-movement jump (CMJ) as well as concentrations of serum testosterone, cortisol and testosterone/cortisol ratio (T/C) were examined prior to and immediately post, 24 (T24) and 48 (T48) h post each strength training bout. Sub-maximal running performance was also conducted at T24 and T48 of each bout. When measures were compared between bouts at T48, the degree of elevation in CK (-58.4 ± 55.6 %) and DOMS (-31.43 ± 42.9 %) and acute reduction in CMJ measures (4.1 ± 5.4 %) were attenuated (p 0.05). Sub-maximal running performance was impaired until T24, although changes were not attenuated following the second bout. The initial bout appeared to provide protection against a number of muscle damage indicators suggesting a greater need for recovery following the initial session of typical lower body resistance exercises in resistance-untrained men although sub-maximal running should be avoided following the first two sessions.

  5. Running economy and energy cost of running with backpacks.

    Science.gov (United States)

    Scheer, Volker; Cramer, Leoni; Heitkamp, Hans-Christian

    2018-05-02

    Running is a popular recreational activity and additional weight is often carried in backpacks on longer runs. Our aim was to examine running economy and other physiological parameters while running with a 1kg and 3 kg backpack at different submaximal running velocities. 10 male recreational runners (age 25 ± 4.2 years, VO2peak 60.5 ± 3.1 ml·kg-1·min-1) performed runs on a motorized treadmill of 5 minutes durations at three different submaximal speeds of 70, 80 and 90% of anaerobic lactate threshold (LT) without additional weight, and carrying a 1kg and 3 kg backpack. Oxygen consumption, heart rate, lactate and RPE were measured and analysed. Oxygen consumption, energy cost of running and heart rate increased significantly while running with a backpack weighing 3kg compared to running without additional weight at 80% of speed at lactate threshold (sLT) (p=0.026, p=0.009 and p=0.003) and at 90% sLT (p<0.001, p=0.001 and p=0.001). Running with a 1kg backpack showed a significant increase in heart rate at 80% sLT (p=0.008) and a significant increase in oxygen consumption and heart rate at 90% sLT (p=0.045 and p=0.007) compared to running without additional weight. While running at 70% sLT running economy and cardiovascular effort increased with weighted backpack running compared to running without additional weight, however these increases did not reach statistical significance. Running economy deteriorates and cardiovascular effort increases while running with additional backpack weight especially at higher submaximal running speeds. Backpack weight should therefore be kept to a minimum.

  6. The effect of graduated compression tights, compared with running shorts, on counter movement jump performance before and after submaximal running.

    Science.gov (United States)

    Rugg, Stuart; Sternlicht, Eric

    2013-04-01

    The purpose of this study was to determine if wearing graduated compression tights, compared with loose fitting running shorts, would increase and or help sustain counter movement jump (CMJ) height after submaximal running. Fourteen competitive runners (6 women and 8 men) participated in this study. The subjects' mean (±SD) for age, height, body mass, percent body fat, resting heart rate, and maximal heart rate were 28.2 ± 14.0 years, 174.7 ± 8.6 cm, 70.2 ± 14.9 kg, 15.5 ± 8.1%, 67.2 ± 7.4 b.min, and 186.5 ± 9.5 b.min, respectively. During testing, subjects wore a Polar RS400 heart rate monitor. Each trial consisted of 15 minutes of continual treadmill running with 5 minutes performed at 50%, 70%, and 85% of the subject's heart rate reserve. Using a Vertec vertical leaper, each subject performed 3 CMJ, both pre- and postrun trials, with the mean value used to measure relative leg power. In addition to the CMJ height data, each subject rated their level of perceived exertion (RPE), and their comfort level, after the postrun trials. The mean postrun CMJ height in graduated compression tights of 60.3 ± 19.4 cm was significantly greater (at the p shorts of 57.7 ± 19.6 cm (4.5% increase). In addition, the subjects reported a significantly lower level of perceived exertion and greater comfort values while wearing the graduated compression tights. The results of the present study support the use of graduated compression tights for maintenance of lower limb muscle power after submaximal endurance running.

  7. Kinesiological Analysis of Stationary Running Performed in Aquatic and Dry Land Environments

    Directory of Open Access Journals (Sweden)

    Lima Alberton Cristine

    2015-12-01

    Full Text Available The purpose of the present study was to analyze the electromyographic (EMG signals of the rectus femoris (RF, vastus lateralis (VL, semitendinosus (ST and short head of the biceps femoris (BF during the performance of stationary running at different intensities in aquatic and dry land environments. The sample consisted of 12 female volunteers who performed the stationary running exercise in aquatic and dry land environments at a submaximal cadence (80 beats·min-1 controlled by a metronome and at maximal velocity, with EMG signal measurements from the RF, VL, ST and BF muscles. The results showed a distinct pattern between environments for each muscle examined. For the submaximal cadence of 80 beats·min-1, there was a reduced magnitude of the EMG signal in the aquatic environment, except for the ST muscle, the pattern of which was similar in both environments. In contrast to the submaximal cadence, the pattern of the EMG signal from all of the muscles showed similar magnitudes for both environments and phases of movement at maximal velocity, except for the VL muscle. Therefore, the EMG signals from the RF, VL, ST and BF muscles of women during stationary running had different patterns of activation over the range of motion between aquatic and dry land environments for different intensities. Moreover, the neuromuscular responses of the lower limbs were optimized by an increase in intensity from submaximal cadence to maximal velocity.

  8. Middle cerebral artery blood velocity during running

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T

    2013-01-01

    for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...

  9. The Relationship between Running Velocity and the Energy Cost of Turning during Running

    Science.gov (United States)

    Hatamoto, Yoichi; Yamada, Yosuke; Sagayama, Hiroyuki; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki

    2014-01-01

    Ball game players frequently perform changes of direction (CODs) while running; however, there has been little research on the physiological impact of CODs. In particular, the effect of running velocity on the physiological and energy demands of CODs while running has not been clearly determined. The purpose of this study was to examine the relationship between running velocity and the energy cost of a 180°COD and to quantify the energy cost of a 180°COD. Nine male university students (aged 18–22 years) participated in the study. Five shuttle trials were performed in which the subjects were required to run at different velocities (3, 4, 5, 6, 7, and 8 km/h). Each trial consisted of four stages with different turn frequencies (13, 18, 24 and 30 per minute), and each stage lasted 3 minutes. Oxygen consumption was measured during the trial. The energy cost of a COD significantly increased with running velocity (except between 7 and 8 km/h, p = 0.110). The relationship between running velocity and the energy cost of a 180°COD is best represented by a quadratic function (y = −0.012+0.066x +0.008x2, [r = 0.994, p = 0.001]), but is also well represented by a linear (y = −0.228+0.152x, [r = 0.991, prunning velocities have relatively high physiological demands if the COD frequency increases, and that running velocities affect the physiological demands of CODs. These results also showed that the energy expenditure of COD can be evaluated using only two data points. These results may be useful for estimating the energy expenditure of players during a match and designing shuttle exercise training programs. PMID:24497913

  10. Running performance at high running velocities is impaired but V'O(₂max and peripheral endothelial function are preserved in IL-6⁻/⁻ mice.

    Directory of Open Access Journals (Sweden)

    Marta Wojewoda

    Full Text Available It has been reported that IL-6 knockout mice (IL-6⁻/⁻ possess lower endurance capacity than wild type mice (WT, however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max, decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively. Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05 than in WT mice. V'O(₂max in IL-6⁻/⁻ (n = 20 amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22 amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16. No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01 than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance

  11. Running performance at high running velocities is impaired but V'O(₂max) and peripheral endothelial function are preserved in IL-6⁻/⁻ mice.

    Science.gov (United States)

    Wojewoda, Marta; Kmiecik, Katarzyna; Ventura-Clapier, Renée; Fortin, Dominique; Onopiuk, Marta; Jakubczyk, Justyna; Sitek, Barbara; Fedorowicz, Andrzej; Majerczak, Joanna; Kaminski, Karol; Chlopicki, Stefan; Zoladz, Jerzy Andrzej

    2014-01-01

    It has been reported that IL-6 knockout mice (IL-6⁻/⁻) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max)), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05) than in WT mice. V'O(₂max) in IL-6⁻/⁻ (n = 20) amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16). No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max), endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance

  12. Running Performance at High Running Velocities Is Impaired but V′O2max and Peripheral Endothelial Function Are Preserved in IL-6−/− Mice

    Science.gov (United States)

    Wojewoda, Marta; Kmiecik, Katarzyna; Ventura-Clapier, Renée; Fortin, Dominique; Onopiuk, Marta; Jakubczyk, Justyna; Sitek, Barbara; Fedorowicz, Andrzej; Majerczak, Joanna; Kaminski, Karol; Chlopicki, Stefan; Zoladz, Jerzy Andrzej

    2014-01-01

    It has been reported that IL-6 knockout mice (IL-6−/−) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6−/− mice is linked to impaired maximal oxygen uptake (V′O2max), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6−/− mice than in WT mice (13.00±0.97 m.min−1 vs. 16.89±1.15 m.min−1, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m.min−1 in IL-6−/− mice was significantly shorter (P<0.05) than in WT mice. V′O2max in IL-6−/− (n = 20) amounting to 108.3±2.8 ml.kg−1.min−1 was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml.kg−1.min−1, (P = 0.16). No difference in maximal COX activity between the IL-6−/− and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6−/− mice. Surprisingly, plasma lactate concentration during running at 8 m.min−1 as well at maximal running velocity in IL-6−/− mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6−/− mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca2+-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6−/− mice could not be explained by reduced V′O2max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance performance. Furthermore, we

  13. Allometric scaling of body mass in running economy data: An important consideration in modeling marathon performance

    OpenAIRE

    Lundstrom, Christopher John; Biltz, George R.; Snyder, Eric M.; Ingraham, Stacy Jean

    2017-01-01

    The purpose of this study was to compare metabolic variables during submaximal running as predictors of marathon performance. Running economy (RE) and respiratory exchange ratio (RER) data were gathered during a 30 min incremental treadmill run completed within 2 weeks prior to running a 42.2-km marathon. Paces during the treadmill run progressed every 5 min from 75-100% of 10-km race velocity. Variables at each stage were analyzed as predictors of relative marathon performance (RMP) in compe...

  14. Effects of marathon fatigue on running kinematics and economy

    OpenAIRE

    Nicol , Caroline; Komi , P V; Marconnet , P

    1991-01-01

    International audience; The influence of marathon fatigue on both running kinematics and economy was investigated with 8 subjects. The measurements included a treadmill test at 3 steady submaximal speeds performed before and after the marathon. One complete left leg cycle was videotaped at 100 Hz from the left side at each speed. The analysis included contact time (braking and push-off') and flight time as well as displacements and angular velocities of the left hip and knee. This analysis wa...

  15. KINETIC CONSEQUENCES OF CONSTRAINING RUNNING BEHAVIOR

    Directory of Open Access Journals (Sweden)

    John A. Mercer

    2005-06-01

    Full Text Available It is known that impact forces increase with running velocity as well as when stride length increases. Since stride length naturally changes with changes in submaximal running velocity, it was not clear which factor, running velocity or stride length, played a critical role in determining impact characteristics. The aim of the study was to investigate whether or not stride length influences the relationship between running velocity and impact characteristics. Eight volunteers (mass=72.4 ± 8.9 kg; height = 1.7 ± 0.1 m; age = 25 ± 3.4 years completed two running conditions: preferred stride length (PSL and stride length constrained at 2.5 m (SL2.5. During each condition, participants ran at a variety of speeds with the intent that the range of speeds would be similar between conditions. During PSL, participants were given no instructions regarding stride length. During SL2.5, participants were required to strike targets placed on the floor that resulted in a stride length of 2.5 m. Ground reaction forces were recorded (1080 Hz as well as leg and head accelerations (uni-axial accelerometers. Impact force and impact attenuation (calculated as the ratio of head and leg impact accelerations were recorded for each running trial. Scatter plots were generated plotting each parameter against running velocity. Lines of best fit were calculated with the slopes recorded for analysis. The slopes were compared between conditions using paired t-tests. Data from two subjects were dropped from analysis since the velocity ranges were not similar between conditions resulting in the analysis of six subjects. The slope of impact force vs. velocity relationship was different between conditions (PSL: 0.178 ± 0.16 BW/m·s-1; SL2.5: -0.003 ± 0.14 BW/m·s-1; p < 0.05. The slope of the impact attenuation vs. velocity relationship was different between conditions (PSL: 5.12 ± 2.88 %/m·s-1; SL2.5: 1.39 ± 1.51 %/m·s-1; p < 0.05. Stride length was an important factor

  16. Metabolic cost of running is greater on a treadmill with a stiffer running platform.

    Science.gov (United States)

    Smith, James A H; McKerrow, Alexander D; Kohn, Tertius A

    2017-08-01

    Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75-81% VO 2max ). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg -1 · min -1 ), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min -1 ), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min -1 ), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min -1 ) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min -1 ) (all analysis of variance treadmill comparisons P running depending on the running platform stiffness.

  17. Maximum run-up behavior of tsunamis under non-zero initial velocity condition

    Directory of Open Access Journals (Sweden)

    Baran AYDIN

    2018-03-01

    Full Text Available The tsunami run-up problem is solved non-linearly under the most general initial conditions, that is, for realistic initial waveforms such as N-waves, as well as standard initial waveforms such as solitary waves, in the presence of initial velocity. An initial-boundary value problem governed by the non-linear shallow-water wave equations is solved analytically utilizing the classical separation of variables technique, which proved to be not only fast but also accurate analytical approach for this type of problems. The results provide important information on maximum tsunami run-up qualitatively. We observed that, although the calculated maximum run-ups increase significantly, going as high as double that of the zero-velocity case, initial waves having non-zero fluid velocity exhibit the same run-up behavior as waves without initial velocity, for all wave types considered in this study.

  18. EFFECTS OF RUN-UP VELOCITY ON PERFORMANCE, KINEMATICS, AND ENERGY EXCHANGES IN THE POLE VAULT

    Directory of Open Access Journals (Sweden)

    Nicholas P. Linthorne

    2012-06-01

    Full Text Available This study examined the effect of run-up velocity on the peak height achieved by the athlete in the pole vault and on the corresponding changes in the athlete's kinematics and energy exchanges. Seventeen jumps by an experienced male pole vaulter were video recorded in the sagittal plane and a wide range of run-up velocities (4.5-8.5 m/s was obtained by setting the length of the athlete's run-up (2-16 steps. A selection of performance variables, kinematic variables, energy variables, and pole variables were calculated from the digitized video data. We found that the athlete's peak height increased linearly at a rate of 0.54 m per 1 m/s increase in run-up velocity and this increase was achieved through a combination of a greater grip height and a greater push height. At the athlete's competition run-up velocity (8.4 m/s about one third of the rate of increase in peak height arose from an increase in grip height and about two thirds arose from an increase in push height. Across the range of run-up velocities examined here the athlete always performed the basic actions of running, planting, jumping, and inverting on the pole. However, he made minor systematic changes to his jumping kinematics, vaulting kinematics, and selection of pole characteristics as the run-up velocity increased. The increase in run-up velocity and changes in the athlete's vaulting kinematics resulted in substantial changes to the magnitudes of the energy exchanges during the vault. A faster run-up produced a greater loss of energy during the take-off, but this loss was not sufficient to negate the increase in run-up velocity and the increase in work done by the athlete during the pole support phase. The athlete therefore always had a net energy gain during the vault. However, the magnitude of this gain decreased slightly as run-up velocity increased

  19. Effects of velocity and weight support on ground reaction forces and metabolic power during running.

    Science.gov (United States)

    Grabowski, Alena M; Kram, Rodger

    2008-08-01

    The biomechanical and metabolic demands of human running are distinctly affected by velocity and body weight. As runners increase velocity, ground reaction forces (GRF) increase, which may increase the risk of an overuse injury, and more metabolic power is required to produce greater rates of muscular force generation. Running with weight support attenuates GRFs, but demands less metabolic power than normal weight running. We used a recently developed device (G-trainer) that uses positive air pressure around the lower body to support body weight during treadmill running. Our scientific goal was to quantify the separate and combined effects of running velocity and weight support on GRFs and metabolic power. After obtaining this basic data set, we identified velocity and weight support combinations that resulted in different peak GRFs, yet demanded the same metabolic power. Ideal combinations of velocity and weight could potentially reduce biomechanical risks by attenuating peak GRFs while maintaining aerobic and neuromuscular benefits. Indeed, we found many combinations that decreased peak vertical GRFs yet demanded the same metabolic power as running slower at normal weight. This approach of manipulating velocity and weight during running may prove effective as a training and/or rehabilitation strategy.

  20. The repeated bout effect of traditional resistance exercises on running performance across 3 bouts.

    Science.gov (United States)

    Doma, Kenji; Schumann, Moritz; Leicht, Anthony Scott; Heilbronn, Brian Edward; Damas, Felipe; Burt, Dean

    2017-09-01

    This study investigated the repeated bout effect of 3 typical lower body resistance-training sessions on maximal and submaximal effort running performance. Twelve resistance-untrained men (age, 24 ± 4 years; height, 1.81 ± 0.10 m; body mass, 79.3 ± 10.9 kg; peak oxygen uptake, 48.2 ± 6.5 mL·kg -1 ·min -1 ; 6-repetition maximum squat, 71.7 ± 12.2 kg) undertook 3 bouts of resistance-training sessions at 6-repetitions maximum. Countermovement jump (CMJ), lower-body range of motion (ROM), muscle soreness, and creatine kinase (CK) were examined prior to and immediately, 24 h (T24), and 48 h (T48) after each resistance-training bout. Submaximal (i.e., below anaerobic threshold (AT)) and maximal (i.e., above AT) running performances were also conducted at T24 and T48. Most indirect muscle damage markers (i.e., CMJ, ROM, and muscle soreness) and submaximal running performance were significantly improved (P running performance was also improved following the third bout (P 0.05). In conclusion, the initial bout induced the greatest change in CK; however, at least 2 bouts were required to produce protective effects on other indirect muscle damage markers and submaximal running performance measures. This suggests that submaximal running sessions should be avoided for at least 48 h after resistance training until the third bout, although a greater recovery period may be required for maximal running sessions.

  1. Increase in Leg Stiffness Reduces Joint Work During Backpack Carriage Running at Slow Velocities.

    Science.gov (United States)

    Liew, Bernard; Netto, Kevin; Morris, Susan

    2017-10-01

    Optimal tuning of leg stiffness has been associated with better running economy. Running with a load is energetically expensive, which could have a significant impact on athletic performance where backpack carriage is involved. The purpose of this study was to investigate the impact of load magnitude and velocity on leg stiffness. We also explored the relationship between leg stiffness and running joint work. Thirty-one healthy participants ran overground at 3 velocities (3.0, 4.0, 5.0 m·s -1 ), whilst carrying 3 load magnitudes (0%, 10%, 20% weight). Leg stiffness was derived using the direct kinetic-kinematic method. Joint work data was previously reported in a separate study. Linear models were used to establish relationships between leg stiffness and load magnitude, velocity, and joint work. Our results found that leg stiffness did not increase with load magnitude. Increased leg stiffness was associated with reduced total joint work at 3.0 m·s -1 , but not at faster velocities. The association between leg stiffness and joint work at slower velocities could be due to an optimal covariation between skeletal and muscular components of leg stiffness, and limb attack angle. When running at a relatively comfortable velocity, greater leg stiffness may reflect a more energy efficient running pattern.

  2. Factors affecting running economy in trained distance runners.

    Science.gov (United States)

    Saunders, Philo U; Pyne, David B; Telford, Richard D; Hawley, John A

    2004-01-01

    Running economy (RE) is typically defined as the energy demand for a given velocity of submaximal running, and is determined by measuring the steady-state consumption of oxygen (VO2) and the respiratory exchange ratio. Taking body mass (BM) into consideration, runners with good RE use less energy and therefore less oxygen than runners with poor RE at the same velocity. There is a strong association between RE and distance running performance, with RE being a better predictor of performance than maximal oxygen uptake (VO2max) in elite runners who have a similar VO2max). RE is traditionally measured by running on a treadmill in standard laboratory conditions, and, although this is not the same as overground running, it gives a good indication of how economical a runner is and how RE changes over time. In order to determine whether changes in RE are real or not, careful standardisation of footwear, time of test and nutritional status are required to limit typical error of measurement. Under controlled conditions, RE is a stable test capable of detecting relatively small changes elicited by training or other interventions. When tracking RE between or within groups it is important to account for BM. As VO2 during submaximal exercise does not, in general, increase linearly with BM, reporting RE with respect to the 0.75 power of BM has been recommended. A number of physiological and biomechanical factors appear to influence RE in highly trained or elite runners. These include metabolic adaptations within the muscle such as increased mitochondria and oxidative enzymes, the ability of the muscles to store and release elastic energy by increasing the stiffness of the muscles, and more efficient mechanics leading to less energy wasted on braking forces and excessive vertical oscillation. Interventions to improve RE are constantly sought after by athletes, coaches and sport scientists. Two interventions that have received recent widespread attention are strength training and

  3. Normobaric Hypoxia and Submaximal Exercise Effects on Running Memory and Mood State in Women.

    Science.gov (United States)

    Seo, Yongsuk; Gerhart, Hayden D; Stavres, Jon; Fennell, Curtis; Draper, Shane; Glickman, Ellen L

    2017-07-01

    An acute bout of exercise can improve cognitive function in normoxic and hypoxic conditions. However, limited research supports the improvement of cognitive function and mood state in women. The purpose of this study was to examine the effects of hypoxia and exercise on working memory and mood state in women. There were 15 healthy women (age = 22 ± 2 yr) who completed the Automated Neuropsychological Assessment Metrics-4th Edition (ANAM), including the Running Memory Continuous Performance Task (RMCPT) and Total Mood Disturbance (TMD) in normoxia (21% O2), at rest in normoxia and hypoxia (12.5% O2), and during cycling exercise at 60% and 40% Vo2max in hypoxia. RMCPT was not significantly impaired at 30 (100.3 ± 17.2) and 60 (96.6 ± 17.3) min rest in hypoxia compared to baseline in normoxia (97.0 ± 17.0). However, RMCPT was significantly improved during exercise (106.7 ± 20.8) at 60% Vo2max compared to 60 min rest in hypoxia. Following 30 (-89.4 ± 48.3) and 60 min of exposure to hypoxia (-79.8 ± 55.9) at rest, TMD was impaired compared with baseline (-107.1 ± 46.2). TMD was significantly improved during exercise (-108.5 ± 42.7) at 40% Vo2max compared with 30 min rest in hypoxia. Also, RMCPT was significantly improved during exercise (104.0 ± 19.1) at 60% Vo2max compared to 60 min rest in hypoxia (96.6 ± 17.3). Hypoxia and an acute bout of exercise partially influence RMCPT and TMD. Furthermore, a moderate-intensity bout of exercise (60%) may be a more potent stimulant for improving cognitive function than low-intensity (40%) exercise. The present data should be considered by aeromedical personnel performing cognitive tasks in hypoxia.Seo Y, Gerhart HD, Stavres J, Fennell C, Draper S, Glickman EL. Normobaric hypoxia and submaximal exercise effects on running memory and mood state in women. Aerosp Med Hum Perform. 2017; 88(7):627-632.

  4. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running

    Directory of Open Access Journals (Sweden)

    Dominique Daniel Gagnon

    2013-05-01

    Full Text Available Cold exposure modulates the use of carbohydrates and fat during exercise. This phenomenon has mostly been observed in controlled cycling studies, but not during walking and running when core temperature and oxygen consumption are controlled, as both may alter energy metabolism. This study aimed at examining energy substrate availability and utilization during walking and running in the cold when core temperature and oxygen consumption are maintained. Ten lightly clothed male subjects walked or ran for 60-min, at 50% and 70% of maximal oxygen consumption, respectively, in a climatic chamber set at 0°C or 22°C. Thermal, cardiovascular, and oxidative responses were measured every 15-min during exercise. Blood samples for serum non-esterified fatty acids, glycerol, glucose, beta-hydroxybutyrate, plasma catecholamines, and serum lipids were collected immediately prior, and at 30- and 60-min of exercise. Skin temperature strongly decreased while core temperature did not change during cold trials. Heart rate was also lower in cold trials. A rise in fat utilization in the cold was seen through lower respiratory quotient (-0.03 ± 0.02, greater fat oxidation (+0.14 ± 0.13 g•min-1 and contribution of fat to total energy expenditure (+1.62 ± 1.99 kcal•min-1. No differences from cold exposure were observed in blood parameters. During submaximal walking and running, a greater reliance on derived fat sources occurs in the cold, despite the absence of concurrent alterations in non-esterified fatty acids, glycerol, or catecholamine concentrations. This disparity may suggest a greater reliance on intra-muscular energy sources such as triglycerides during both walking and running.

  5. Effects of Training on the Estimation of Muscular Moment in Submaximal Exercise

    Science.gov (United States)

    Leverrier, Celine; Gauthier, Antoine; Nicolas, Arnaud; Molinaro, Corinne

    2011-01-01

    The purpose of this study was to observe the effects of a submaximal isometric training program on estimation capacity at 25, 50, and 75% of maximal contraction in isometric action and at two angular velocities. The second purpose was to study the variability of isometric action. To achieve these purposes, participants carried out an isokinetic…

  6. The Effect of Training in Minimalist Running Shoes on Running Economy.

    Science.gov (United States)

    Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-09-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear

  7. Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling

    Science.gov (United States)

    BARRATT, PAUL RICHARD; MARTIN, JAMES C.; ELMER, STEVE J.; KORFF, THOMAS

    2016-01-01

    ABSTRACT During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. Purpose To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Methods Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s−1 and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Results Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. Conclusions The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system’s attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians. PMID:26559455

  8. [Physiological differences between cycling and running].

    Science.gov (United States)

    Millet, Grégoire

    2009-08-05

    This review compares the differences in systemic responses (VO2max, anaerobic threshold, heart rate and economy) and in underlying mechanisms of adaptation (ventilatory and hemodynamic and neuromuscular responses) between cycling and running. VO2max is specific to the exercise modality. Overall, there is more physiological training transfer from running to cycling than vice-versa. Several other physiological differences between cycling and running are discussed: HR is different between the two activities both for maximal and sub-maximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than running due to mechanical constraints. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

  9. F-door spaces and F-submaximal spaces

    Directory of Open Access Journals (Sweden)

    Lobna Dridi

    2013-04-01

    Full Text Available Submaximal spaces and door spaces play an enigmatic role in topology. In this paper, reinforcing this role, we are concerned with reaching two main goals: The first one is to characterize topological spaces X such that F(X is a submaximal space (resp., door space for some covariant functor Ff rom the category Top to itself. T0, and FH functors are completely studied. Secondly, our interest is directed towards the characterization of maps f given by a flow (X, f in the category Set, such that (X,P(f is submaximal (resp., door where P(f is a topology on X whose closed sets are exactly the f-invariant sets.

  10. 10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.

    Science.gov (United States)

    Abad, Cesar C C; Barros, Ronaldo V; Bertuzzi, Romulo; Gagliardi, João F L; Lima-Silva, Adriano E; Lambert, Mike I; Pires, Flavio O

    2016-06-01

    The aim of this study was to verify the power of VO 2max , peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO 2max and PTV; 2) a constant submaximal run at 12 km·h -1 on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO 2max , PTV and RE) and adjusted variables (VO 2max 0.72 , PTV 0.72 and RE 0.60 ) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO 2max . Significant correlations (p 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV 0.72 and RE 0.60 and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.

  11. Potential Relationship between Passive Plantar Flexor Stiffness and Running Performance.

    Science.gov (United States)

    Ueno, Hiromasa; Suga, Tadashi; Takao, Kenji; Tanaka, Takahiro; Misaki, Jun; Miyake, Yuto; Nagano, Akinori; Isaka, Tadao

    2018-02-01

    The present study aimed to determine the relationship between passive stiffness of the plantar flexors and running performance in endurance runners. Forty-eight well-trained male endurance runners and 24 untrained male control subjects participated in this study. Plantar flexor stiffness during passive dorsiflexion was calculated from the slope of the linear portion of the torque-angle curve. Of the endurance runners included in the present study, running economy in 28 endurance runners was evaluated by measuring energy cost during three 4-min trials (14, 16, and 18 km/h) of submaximal treadmill running. Passive stiffness of the plantar flexors was significantly higher in endurance runners than in untrained subjects. Moreover, passive plantar flexor stiffness in endurance runners was significantly correlated with a personal best 5000-m race time. Furthermore, passive plantar flexor stiffness in endurance runners was significantly correlated with energy cost during submaximal running at 16 km/h and 18 km/h, and a trend towards such significance was observed at 14 km/h. The present findings suggest that stiffer plantar flexors may help achieve better running performance, with greater running economy, in endurance runners. Therefore, in the clinical setting, passive stiffness of the plantar flexors may be a potential parameter for assessing running performance. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Effects of a concurrent strength and endurance training on running performance and running economy in recreational marathon runners.

    Science.gov (United States)

    Ferrauti, Alexander; Bergermann, Matthias; Fernandez-Fernandez, Jaime

    2010-10-01

    The purpose of this study was to investigate the effects of a concurrent strength and endurance training program on running performance and running economy of middle-aged runners during their marathon preparation. Twenty-two (8 women and 14 men) recreational runners (mean ± SD: age 40.0 ± 11.7 years; body mass index 22.6 ± 2.1 kg·m⁻²) were separated into 2 groups (n = 11; combined endurance running and strength training program [ES]: 9 men, 2 women and endurance running [E]: 7 men, and 4 women). Both completed an 8-week intervention period that consisted of either endurance training (E: 276 ± 108 minute running per week) or a combined endurance and strength training program (ES: 240 ± 121-minute running plus 2 strength training sessions per week [120 minutes]). Strength training was focused on trunk (strength endurance program) and leg muscles (high-intensity program). Before and after the intervention, subjects completed an incremental treadmill run and maximal isometric strength tests. The initial values for VO2peak (ES: 52.0 ± 6.1 vs. E: 51.1 ± 7.5 ml·kg⁻¹·min⁻¹) and anaerobic threshold (ES: 3.5 ± 0.4 vs. E: 3.4 ± 0.5 m·s⁻¹) were identical in both groups. A significant time × intervention effect was found for maximal isometric force of knee extension (ES: from 4.6 ± 1.4 to 6.2 ± 1.0 N·kg⁻¹, p marathon running velocities (2.4 and 2.8 m·s⁻¹) and submaximal blood lactate thresholds (2.0, 3.0, and 4.0 mmol·L⁻¹). Stride length and stride frequency also remained unchanged. The results suggest no benefits of an 8-week concurrent strength training for running economy and coordination of recreational marathon runners despite a clear improvement in leg strength, maybe because of an insufficient sample size or a short intervention period.

  13. Distance exercised during submaximal training on race winnings for Thoroughbred racehorses

    Directory of Open Access Journals (Sweden)

    Carolina Berkman

    2015-07-01

    Full Text Available Evaluations of the physical fitness of Thoroughbred racehorses have been correlated with race earnings, but few reports exist about the influence of the distance exercised during training on both physical conditioning indices and financial productivity. During one training season sixteen claiming Thoroughbred horses were subjected to submaximal training and monitored by a global positioning system (GPS coupled to a heart rate monitor. After initial and single monitoring, the horses were distributed into two groups of eight individuals each; one group exercised short distances (SD between 1600 and 1900m, while the other exercised long distances (LD between 2000 and 2350m. The duration (min and mean and maximal velocities (ms-1attained during each session were determined, as well as the difference in distances exercised (m between official races and each training session. Blood lactate concentration ([LA] during recovery was also determined. Student's t-test was used for a non-paired analysis, with P≤0.05 considered significant. The winnings (USD of each horse were correlated with the peak heart rate (HRpeak attained during the training session. The distances exercised in the training sessions were greater in relation to the official races distances by 24.7% and 40% for SD and LD, respectively. Lactatemia did not differ between the groups. The HRpeak obtained during the training session was lower in LD group. The velocity at which the heart rate reached 200 bpm (V200 was higher in LD group. There was a moderate correlation (r= 0.42 between the highest winnings and lowest HRpeak. The horses that ran longer distances during their submaximal training session had better cardiac conditioning and tendency to increase financial productivity

  14. The influence of surface on the running velocities of elite and amateur orienteer athletes

    DEFF Research Database (Denmark)

    Hébert-Losier, K; Jensen, Kurt; Mourot, L

    2014-01-01

    We compared the reduction in running velocities from road to off-road terrain in eight elite and eight amateur male orienteer athletes to investigate whether this factor differentiates elite from amateur athletes. On two separate days, each subject ran three 2-km time trials and three 20-m sprints...... "all-out" on a road, on a path, and in a forest. On a third day, the running economy and maximal aerobic power of individuals were assessed on a treadmill. The elite orienteer ran faster than the amateur on all three surfaces and at both distances, in line with their better running economy and aerobic....... Of course, cognitive, mental, and physical attributes other than the ability to run on different surfaces are required for excellence in orienteering (e.g., a high aerobic power). However, we suggest that athlete-specific assessment of running performance on various surfaces and distances might assist...

  15. Effect of Jump Interval Training on Kinematics of the Lower Limbs and Running Economy.

    Science.gov (United States)

    Ache-Dias, Jonathan; Pupo, Juliano Dal; Dellagrana, Rodolfo A; Teixeira, Anderson S; Mochizuki, Luis; Moro, Antônio R P

    2018-02-01

    Ache-Dias, J, Pupo, JD, Dellagrana, RA, Teixeira, AS, Mochizuki, L, and Moro, ARP. Effect of jump interval training on kinematics of the lower limbs and running economy. J Strength Cond Res 32(2): 416-422, 2017-This study analyzed the effects of the addition of jump interval training (JIT) to continuous endurance training (40-minute running at 70% of peak aerobic velocity, 3 times per week for 4 weeks) on kinematic variables and running economy (RE) during submaximal constant-load running. Eighteen recreational runners, randomized into control group (CG) or experimental group (EG) performed the endurance training. In addition, the EG performed the JIT twice per week, which consisted of 4-6 bouts of continuous vertical jumping (30 seconds) with 5-minute intervals. The oxygen consumption (V[Combining Dot Above]O2) during the submaximal test (performed at 9 km·h) was similar before (EG: 38.48 ± 2.75 ml·kg·min; CG: 36.45 ± 2.70 ml·kg·min) and after training (EG: 37.42 ± 2.54 ml·kg·min; CG: 35.81 ± 3.10 ml·kg·min). No effect of training, group, or interaction (p > 0.05) was found for RE. There was no interaction or group effect for the kinematic variables (p > 0.05). Most of the kinematic variables had a training effect for both groups (support time [p ≤ 0.05]; step rate [SR; p ≤ 0.05]; and step length [SL; p ≤ 0.05]). In addition, according to the practical significance analysis (percentage chances of a better/trivial/worse effect), important effects in leg stiffness (73/25/2), vertical stiffness (73/25/2), SR (71/27/2), and SL (64/33/3) were found for the EG. No significant relationship between RE and stiffness were found for EG and CG. In conclusion, the results suggest that JIT induces important changes in the kinematics of the lower limbs of recreational runners, but the changes do not affect RE.

  16. Using the load-velocity relationship for 1RM prediction.

    OpenAIRE

    Jidovtseff, Boris; Harris, N. K.; Crielaard, Jean-Michel; Cronin, J. B.

    2011-01-01

    Jidovtseff, B, Harris, NK, Crielaard, J-M, and Cronin, JB. Using the load-velocity relationship for 1RM prediction. J Strength Cond Res 24(x): 000-000, 2009-The purpose of this study was to investigate the ability of the load-velocity relationship to accurately predict a bench press 1 repetition maximum (1RM). Data from 3 different bench press studies (n = 112) that incorporated both 1RM assessment and submaximal load-velocity profiling were analyzed. Individual regression analysis was perfor...

  17. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    International Nuclear Information System (INIS)

    Nishio, R.; Ikeda, M.; Sasaki, R.; Ohashi, S.

    2011-01-01

    The hybrid magnetically levitated carrying system is developed. Control method of running velocity of the carrier is studied. Running velocity is controlled by current of the propulsion coils. Propulsion characteristcs are improved. We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  18. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, R.; Ikeda, M.; Sasaki, R. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetically levitated carrying system is developed. Control method of running velocity of the carrier is studied. Running velocity is controlled by current of the propulsion coils. Propulsion characteristcs are improved. We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  19. Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed

  20. Physiological demands of running during long distance runs and triathlons.

    Science.gov (United States)

    Hausswirth, C; Lehénaff, D

    2001-01-01

    The aim of this review article is to identify the main metabolic factors which have an influence on the energy cost of running (Cr) during prolonged exercise runs and triathlons. This article proposes a physiological comparison of these 2 exercises and the relationship between running economy and performance. Many terms are used as the equivalent of 'running economy' such as 'oxygen cost', 'metabolic cost', 'energy cost of running', and 'oxygen consumption'. It has been suggested that these expressions may be defined by the rate of oxygen uptake (VO2) at a steady state (i.e. between 60 to 90% of maximal VO2) at a submaximal running speed. Endurance events such as triathlon or marathon running are known to modify biological constants of athletes and should have an influence on their running efficiency. The Cr appears to contribute to the variation found in distance running performance among runners of homogeneous level. This has been shown to be important in sports performance, especially in events like long distance running. In addition, many factors are known or hypothesised to influence Cr such as environmental conditions, participant specificity, and metabolic modifications (e.g. training status, fatigue). The decrease in running economy during a triathlon and/or a marathon could be largely linked to physiological factors such as the enhancement of core temperature and a lack of fluid balance. Moreover, the increase in circulating free fatty acids and glycerol at the end of these long exercise durations bear witness to the decrease in Cr values. The combination of these factors alters the Cr during exercise and hence could modify the athlete's performance in triathlons or a prolonged run.

  1. Improving Running Economy by Transitioning to Minimalist Footwear: A Randomised Controlled Trial.

    Science.gov (United States)

    Lindlein, K; Zech, A; Zoch, A; Braumann, K-M; Hollander, K

    2018-05-25

    Ongoing debates about benefits and risks of barefoot- and minimally-shod running have, to date, revealed no conclusive findings for long-term effects on physical performance. The purpose of this study was to examine the effects of an 8-week transition to minimalist footwear (MFW) on running economy (RE). Randomised controlled trial. Thirty-two male, habitually-shod runners were assigned randomly to an 8-week training intervention either in minimalist (=intervention group) or conventional running shoes (=control group). The intervention consisted of a gradual increase in use of the new footwear by 5% of the individual weekly distance. Before and after the intervention, a VO 2 max test was followed by a submaximal RE test at 70% and 80% of vVO 2 max in both shoe conditions 7days later. RE was measured at the submaximal tests and expressed as caloric unit cost (kcalkg -1 km -1 ) and oxygen consumption (mlkg -1 km -1 ). RE improved in the intervention group over time compared to the control group with small to moderate effect sizes (ES) in both shoe conditions: Effects on RE (kcalkg -1 km -1 ) in conventional running shoes: ES vVO 2 70%: 0.68 (95% CI: -0.14 to 1.51), ES vVO 2 80%: 0.78 (95% CI: 0-1.56). In minimalist footwear: ES vVO 2 70%: 0.3 (95% CI: -0.54 to 1.14), ES vVO 2 80%: 0.42 (95% CI: -0.41 to 1.25). These effects were not statistically significant (p>0.05). The repeated-measures ANOVA also showed no group by time interactions for all submaximal RE testing conditions (p>0.05). Although not reaching statistical significance, training in MFW compared to CRS resulted in small to moderate improvements in RE. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. EFFECTS OF A SAND RUNNING SURFACE ON THE KINEMATICS OF SPRINTING AT MAXIMUM VELOCITY

    Directory of Open Access Journals (Sweden)

    P E Alcaraz

    2011-05-01

    Full Text Available Performing sprints on a sand surface is a common training method for improving sprint-specific strength. For maximum specificity of training the athlete’s movement patterns during the training exercise should closely resemble those used when performing the sport. The aim of this study was to compare the kinematics of sprinting at maximum velocity on a dry sand surface to the kinematics of sprinting on an athletics track. Five men and five women participated in the study, and flying sprints over 30 m were recorded by video and digitized using biomechanical analysis software. We found that sprinting on a sand surface was substantially different to sprinting on an athletics track. When sprinting on sand the athletes tended to ‘sit’ during the ground contact phase of the stride. This action was characterized by a lower centre of mass, a greater forward lean in the trunk, and an incomplete extension of the hip joint at take-off. We conclude that sprinting on a dry sand surface may not be an appropriate method for training the maximum velocity phase in sprinting. Although this training method exerts a substantial overload on the athlete, as indicated by reductions in running velocity and stride length, it also induces detrimental changes to the athlete’s running technique which may transfer to competition sprinting.

  3. Relationship between Achilles tendon length and running performance in well-trained male endurance runners.

    Science.gov (United States)

    Ueno, Hiromasa; Suga, Tadashi; Takao, Kenji; Tanaka, Takahiro; Misaki, Jun; Miyake, Yuto; Nagano, Akinori; Isaka, Tadao

    2018-02-01

    This study aimed to determine the relationship between Achilles tendon (AT) length and running performance, including running economy, in well-trained endurance runners. We also examined the reasonable portion of the AT related to running performance among AT lengths measured in three different portions. The AT lengths at three portions and cross-sectional area (CSA) of 30 endurance runners were measured using magnetic resonance imaging. Each AT length was calculated as the distance from the calcaneal tuberosity to the muscle-tendon junction of the soleus, gastrocnemius medialis (GM AT ), and gastrocnemius lateralis, respectively. These AT lengths were normalized with shank length. The AT CSA was calculated as the average of 10, 20, and 30 mm above the distal insertion of the AT and normalized with body mass. Running economy was evaluated by measuring energy cost during three 4-minutes submaximal treadmill running trials at 14, 16, and 18 km/h, respectively. Among three AT lengths, only a GM AT correlated significantly with personal best 5000-m race time (r=-.376, P=.046). Furthermore, GM AT correlated significantly with energy cost during submaximal treadmill running trials at 14 km/h and 18 km/h (r=-.446 and -.429, respectively, Prunning performance. These findings suggest that longer AT, especially GM AT , may be advantageous to achieve superior running performance, with better running economy, in endurance runners. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Effects of Ramadan intermittent fasting on middle-distance running performance in well-trained runners.

    Science.gov (United States)

    Brisswalter, Jeanick; Bouhlel, Ezzedine; Falola, Jean Marie; Abbiss, Christopher R; Vallier, Jean Marc; Hausswirth, Christophe; Hauswirth, Christophe

    2011-09-01

    To assess whether Ramadan intermittent fasting (RIF) affects 5000-m running performance and physiological parameters classically associated with middle-distance performance. Two experimental groups (Ramadan fasting, n = 9, vs control, n = 9) participated in 2 experimental sessions, one before RIF and the other at the last week of fasting. For each session, subjects completed 4 tests in the same order: a maximal running test, a maximal voluntary contraction (MVC) of knee extensor, 2 rectangular submaximal exercises on treadmill for 6 minutes at an intensity corresponding to the first ventilatory threshold (VT1), and a running performance test (5000 m). Eighteen, well-trained, middle-distance runners. Maximal oxygen consumption, MVC, running performance, running efficiency, submaximal VO(2) kinetics parameters (VO(2), VO(2)b, time constant τ, and amplitude A1) and anthropometric parameters were recorded or calculated. At the end of Ramadan fasting, a decrease in MVC was observed (-3.2%; P < 0.00001; η, 0.80), associated with an increase in the time constant of oxygen kinetics (+51%; P < 0.00007; η, 0.72) and a decrease in performance (-5%; P < 0.0007; η, 0.51). No effect was observed on running efficiency or maximal aerobic power. These results suggest that Ramadan changes in muscular performance and oxygen kinetics could affect performance during middle-distance events and need to be considered to choose training protocols during RIF.

  5. Metabolic responses to prolonged work during treadmill and water immersion running.

    Science.gov (United States)

    Frangolias, D D; Rhodes, E C; Taunton, J E; Belcastro, A N; Coutts, K D

    2000-12-01

    The primary aim of this study was to compare the physiological responses to prolonged treadmill (TM) and water immersion to the neck (WI) running at threshold intensity. Ten endurance runners performed TM and WI running VO2max tests. Subjects completed submaximal performance tests at ventilatory threshold (Tvent) intensities under TM and WI conditions and responses at 15 and 42 minutes examined. VO2 was lower in WI (p<0.05) at maximal effort and Tvent. The Tvent VO2 intensities interpolated from the TM and WI VO2max tests were performed in both TM (i.e., TM@TM(tvent),TM@WI(tvent), corresponding to 77.6 and 71.3% respectively of TM VO2max) and WI conditions (i.e., WI@TM(tvent), WI@WI(tvent), corresponding to 85.5% and 78.2% respectively of WI VO2max). Each of the dependent variables was analyzed using a 3-way repeated measures ANOVA (2 conditions X 2 exercise intensities X 7 time points during exercise). VO2max values were significantly lower in the WI (52.4(5.1) ml.kg(-1) min(-1)) versus TM (59.7(6.5) ml.kg(-1) min(-1)) condition. VO2 during submaximal tests were similar during the TM and WI conditions. HR and [BLa] responses to exercise at and above WI(tvent) were similar during short-term exercise, but values tended to be lower during prolonged exercise in the WI condition. There were no statistical differences in VE responses in the 2 conditions, however as with HR and [BLa] an upward trend was noted with TM exercise over the 42 minute duration of the tests. RPE at WI(tvent) was similar for TM and WI exercise sessions, however, RPE at TM(tvent) was higher during WI compared to TM running. Cardiovascular drift was observed during prolonged TM but not WI running. Results suggest differences in metabolic responses to prolonged submaximal exercise in WI, however it can be used effectively for cross training.

  6. The highest velocity and the shortest duration permitting attainment of VO2max during running

    Directory of Open Access Journals (Sweden)

    Tiago Turnes

    2015-02-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n2p226   The severe-intensity domain has important applications for the prescription of running training and the elaboration of experimental designs. The objectives of this study were: 1 to investigate the validity of a previously proposed model to estimate the shortest exercise duration (TLOW and the highest velocity (VHIGH at which VO2max is reached during running, and 2 to evaluate the effects of aerobic training status on these variables. Eight runners and eight physically active subjects performed several treadmill running exercise tests to fatigue in order to mathematically estimate and to experimentally determine TLOW and VHIGH. The relationship between the time to achieve VO2max and time to exhaustion (Tlim was used to estimate TLOW. VHIGH was estimated using the critical velocity model. VHIGH was assumed to be the highest velocity at which VO2 was equal to or higher than the average VO2max minus one standard deviation. TLOW was defined as Tlim associated with VHIGH. Runners presented better aerobic fitness and higher VHIGH (22.2 ± 1.9 km.h-1 than active subjects (20.0 ± 2.1 km.h-1. However, TLOW did not differ between groups (runners: 101 ± 39 s; active subjects: 100 ± 35 s. TLOW and VHIGH were not well estimated by the model proposed, with high coefficients of variation (> 6% and a low correlation coefficient (r<0.70, a fact reducing the validity of the model. It was concluded that aerobic training status positively affected only VHIGH. Furthermore, the model proposed presented low validity to estimate the upper boundary of the severe-intensity domain (i.e., VHIGH, irrespective of the subjects’ training status.

  7. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    Science.gov (United States)

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  8. Using the load-velocity relationship for 1RM prediction.

    Science.gov (United States)

    Jidovtseff, Boris; Harris, Nigel K; Crielaard, Jean-Michel; Cronin, John B

    2011-01-01

    The purpose of this study was to investigate the ability of the load-velocity relationship to accurately predict a bench press 1 repetition maximum (1RM). Data from 3 different bench press studies (n = 112) that incorporated both 1RM assessment and submaximal load-velocity profiling were analyzed. Individual regression analysis was performed to determine the theoretical load at zero velocity (LD0). Data from each of the 3 studies were analyzed separately and also presented as overall group mean. Thereafter, correlation analysis provided quantification of the relationships between 1RM and LD0. Practically perfect correlations (r = ∼0.95) were observed in our samples, confirming the ability of the load-velocity profile to accurately predict bench press 1RM.

  9. Overspeed HIIT in Lower-Body Positive Pressure Treadmill Improves Running Performance.

    Science.gov (United States)

    Gojanovic, Boris; Shultz, Rebecca; Feihl, Francois; Matheson, Gordon

    2015-12-01

    Optimal high-intensity interval training (HIIT) regimens for running performance are unknown, although most protocols result in some benefit to key performance factors (running economy (RE), anaerobic threshold (AT), or maximal oxygen uptake (VO2max)). Lower-body positive pressure (LBPP) treadmills offer the unique possibility to partially unload runners and reach supramaximal speeds. We studied the use of LBPP to test an overspeed HIIT protocol in trained runners. Eleven trained runners (35 ± 8 yr, VO2max, 55.7 ± 6.4 mL·kg⁻¹·min⁻¹) were randomized to an LBPP (n = 6) or a regular treadmill (CON, n = 5), eight sessions over 4 wk of HIIT program. Four to five intervals were run at 100% of velocity at VO2max (vVO2max) during 60% of time to exhaustion at vVO2max (Tlim) with a 1:1 work:recovery ratio. Performance outcomes were 2-mile track time trial, VO2max, vVO2max, vAT, Tlim, and RE. LBPP sessions were carried out at 90% body weight. Group-time effects were present for vVO2max (CON, 17.5 vs. 18.3, P = 0.03; LBPP, 19.7 vs. 22.3 km·h⁻¹; P HIIT protocol at 100% vVO2max improves field performance, vVO2max, VO2max and submaximal HR in trained runners. Improvements are similar if intervals are run on a regular treadmill or at higher speeds on a LPBB treadmill with 10% body weight reduction. LBPP could provide an alternative for taxing HIIT sessions.

  10. Middle cerebral artery blood velocity during running

    NARCIS (Netherlands)

    Lyngeraa, T. S.; Pedersen, L. M.; Mantoni, T.; Belhage, B.; Rasmussen, L. S.; van Lieshout, J. J.; Pott, F. C.

    2013-01-01

    Running induces characteristic fluctuations in blood pressure (BP) of unknown consequence for organ blood flow. We hypothesized that running-induced BP oscillations are transferred to the cerebral vasculature. In 15 healthy volunteers, transcranial Doppler-determined middle cerebral artery (MCA)

  11. Frequentist and Bayesian Orbital Parameter Estimaton from Radial Velocity Data Using RVLIN, BOOTTRAN, and RUN DMC

    Science.gov (United States)

    Nelson, Benjamin Earl; Wright, Jason Thomas; Wang, Sharon

    2015-08-01

    For this hack session, we will present three tools used in analyses of radial velocity exoplanet systems. RVLIN is a set of IDL routines used to quickly fit an arbitrary number of Keplerian curves to radial velocity data to find adequate parameter point estimates. BOOTTRAN is an IDL-based extension of RVLIN to provide orbital parameter uncertainties using bootstrap based on a Keplerian model. RUN DMC is a highly parallelized Markov chain Monte Carlo algorithm that employs an n-body model, primarily used for dynamically complex or poorly constrained exoplanet systems. We will compare the performance of these tools and their applications to various exoplanet systems.

  12. Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors.

    Science.gov (United States)

    Peake, Jonathan M; Nosaka, Kazunori; Muthalib, Makii; Suzuki, Katsuhiko

    2006-01-01

    We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.

  13. Effects of Cycling vs. Running Training on Endurance Performance in Preparation for Inline Speed Skating.

    Science.gov (United States)

    Stangier, Carolin; Abel, Thomas; Hesse, Clemens; Claen, Stephanie; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-06-01

    Winter weather conditions restrict regular sport-specific endurance training in inline speed skating. As a result, this study was designed to compare the effects of cycling and running training programs on inline speed skaters' endurance performance. Sixteen (8 men, 8 women) high-level athletes (mean ± SD 24 ± 8 years) were randomly assigned to 1 of 2 groups (running and cycling). Both groups trained twice a week for 8 weeks, one group on a treadmill and the other on a cycle ergometer. Training intensity and duration was individually calculated (maximal fat oxidation: ∼52% of V[Combining Dot Above]O2peak: 500 kcal per session). Before and after the training intervention, all athletes performed an incremental specific (inline speed skating) and 1 nonspecific (cycling or running) step test according to the group affiliation. In addition to blood lactate concentration, oxygen uptake (V[Combining Dot Above]O2), ventilatory equivalent (VE/V[Combining Dot Above]O2), respiratory exchange ratio (RER), and heart rate were measured. The specific posttest revealed significantly increased absolute V[Combining Dot Above]O2peak values (2.9 ± 0.4, 3.4 ± 0.7, p = 0.01) and submaximal V[Combining Dot Above]O2 values (p ≤ 0.01). VE/V[Combining Dot Above]O2 and RER significantly decreased at maximal (46.6 ± 6.6, 38.5 ± 3.4, p = 0.005; 1.1 ± 0.03, 1.0 ± 0.04, p = 0.001) and submaximal intensities (p ≤ 0.04). None of the analysis revealed a significant group effect (p ≥ 0.15). The results indicate that both cycling vs. running exercise at ∼52% of V[Combining Dot Above]O2peak had a positive effect on the athletes' endurance performance. The increased submaximal V[Combining Dot Above]O2 values indicate a reduction in athletes' inline speed skating technique. Therefore, athletes would benefit from a focus on technique training in the subsequent period.

  14. Effects of intermittent hypoxia on running economy.

    Science.gov (United States)

    Burtscher, M; Gatterer, H; Faulhaber, M; Gerstgrasser, W; Schenk, K

    2010-09-01

    We investigated the effects of two 5-wk periods of intermittent hypoxia on running economy (RE). 11 male and female middle-distance runners were randomly assigned to the intermittent hypoxia group (IHG) or to the control group (CG). All athletes trained for a 13-wk period starting at pre-season until the competition season. The IHG spent additionally 2 h at rest on 3 days/wk for the first and the last 5 weeks in normobaric hypoxia (15-11% FiO2). RE, haematological parameters and body composition were determined at low altitude (600 m) at baseline, after the 5 (th), the 8 (th) and the 13 (th) week of training. RE, determined by the relative oxygen consumption during submaximal running, (-2.3+/-1.2 vs. -0.3+/-0.7 ml/min/kg, Ptraining phase. Georg Thieme Verlag KG Stuttgart . New York.

  15. Comparison of physiological and acid-base balance response during uphill, level and downhill running performed at constant velocity.

    Science.gov (United States)

    Maciejczyk, Marcin; Więcek, M; Szymura, J; Szyguła, Z

    2013-09-01

    The purpose of this study was to compare the physiological and the acid-base balance response to running at various slope angles. Ten healthy men 22.3 ± 1.56 years old participated in the study. The study consisted of completing the graded test until exhaustion and three 45-minute runs. For the first 30 minutes, runs were performed with an intensity of approximately 50% VO2max, while in the final 15 minutes the slope angle of treadmill was adjusted (0°; +4.5°; -4.5°), and a fixed velocity of running was maintained. During concentric exercise, a significant increase in the levels of physiological indicators was reported; during eccentric exercise, a significant decrease in the level of the analyzed indicators was observed. Level running did not cause significant changes in the indicators of acid-base balance. The indicators of acid-base balance changed significantly in the case of concentric muscle work (in comparison to level running) and after the eccentric work, significant and beneficial changes were observed in most of the biochemical indicators. The downhill run can be used for a partial regeneration of the body during exercise, because during this kind of effort an improvement of running economy was observed, and this type of effort did not impair the acid-base balance of body.

  16. The Effects of a 6-Week Strength Training on Critical Velocity, Anaerobic Running Distance, 30-M Sprint and Yo-Yo Intermittent Running Test Performances in Male Soccer Players.

    Science.gov (United States)

    Karsten, Bettina; Larumbe-Zabala, Eneko; Kandemir, Gokhan; Hazir, Tahir; Klose, Andreas; Naclerio, Fernando

    2016-01-01

    The objectives of this study were to examine the effects of a moderate intensity strength training on changes in critical velocity (CV), anaerobic running distance (D'), sprint performance and Yo-Yo intermittent running test (Yo-Yo IR1) performances. two recreational soccer teams were divided in a soccer training only group (SO; n = 13) and a strength and soccer training group (ST; n = 13). Both groups were tested for values of CV, D', Yo-Yo IR1 distance and 30-m sprint time on two separate occasions (pre and post intervention). The ST group performed a concurrent 6-week upper and lower body strength and soccer training, whilst the SO group performed a soccer only training. after the re-test of all variables, the ST demonstrated significant improvements for both, YoYo IR1 distance (p = 0.002) and CV values (psoccer training significantly improves CV, Yo-Yo IR1 whilst moderately improving 30-m sprint performances in non-previously resistance trained male soccer players. Critical Velocity can be recommended to coaches as an additional valid testing tool in soccer.

  17. Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua.

    Science.gov (United States)

    Kiyamu, Melisa; León-Velarde, Fabiola; Rivera-Chira, María; Elías, Gianpietro; Brutsaert, Tom D

    2015-06-01

    Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138-146, 2015.--Andean high altitude natives show higher arterial oxygen saturation (Sao(2)) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao(2), we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18-35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio(2)=0.12), in order to measure Sao(2) (%), ventilation (VE L/min) and oxygen consumption (Vo(2), L/min). Repeated-measures ANOVA, controlling for VE/VO(2) (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao(2) (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao(2) (%) (p<0.001), as workload increased. Resting Sao(2) levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao(2) levels during submaximal exercise at hypoxia.

  18. Influence of menstrual phase on ventilatory response to submaximal ...

    African Journals Online (AJOL)

    Objectives. To determine whether an increase in respiratory drive, due to elevated progesterone and oestrogen concentration during various menstrual phases, persists throughout prolonged submaximal exercise and potentially contributes to fatigue. Furthermore, to determine whether the difference in the ventilatory ...

  19. Myocardial oxygen consumption at rest and during submaximal ...

    African Journals Online (AJOL)

    Overweight and obesity are major risk factors for cardiovascular diseases. The objective of this study was to determine the effect of increased adiposity on myocardial oxygen consumption at rest and during submaximal exercise in young adults. The study consisted of 85 young adults (18-22years) grouped into 3 based on ...

  20. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    Science.gov (United States)

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  1. Running economy in early and late maturing youth soccer players does not differ.

    Science.gov (United States)

    Segers, V; De Clercq, D; Janssens, M; Bourgois, J; Philippaerts, R

    2008-04-01

    The aim of this study was to investigate the influence of maturity on running economy in a population of young soccer players. 13 boys (mean age 14.3 years) active in soccer were divided into two groups: 6 early and 7 late maturers. Anthropometrical characteristics, respiratory exchange ratio, heart rate and maximal oxygen uptake were measured. Running economy was assessed at three submaximal running speeds (8, 9.5 and 11 km/h). Allometric coefficients were calculated and used to diminish the effect of body mass. In addition, running style was analysed biomechanically (stride length and meaningful kinematic values). There was no significant difference in the running economy of early and late maturing soccer players, nor any significant differences in mass adjusted physiological values. Therefore physiological differences cannot explain why late maturers succeed in keeping up with early maturers. Late maturing boys take longer relative strides, and have more anteversion of the thigh at heel contact, a smaller knee-angle during swing-phase and a lower mass moment of inertia. Running style seems to be an important determinant in running economy of children.

  2. Characterization of Symmetry Properties of First Integrals for Submaximal Linearizable Third-Order ODEs

    Directory of Open Access Journals (Sweden)

    K. S. Mahomed

    2013-01-01

    Full Text Available The relationship between first integrals of submaximal linearizable third-order ordinary differential equations (ODEs and their symmetries is investigated. We obtain the classifying relations between the symmetries and the first integral for submaximal cases of linear third-order ODEs. It is known that the maximum Lie algebra of the first integral is achieved for the simplest equation and is four-dimensional. We show that for the other two classes they are not unique. We also obtain counting theorems of the symmetry properties of the first integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0, 1, 2, and 3 symmetries, and for the 4 symmetry class of linear third-order ODEs, they are 0, 1, and 2 symmetries, respectively. In the case of submaximal linear higher-order ODEs, we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals.

  3. Is There an Optimal Speed for Economical Running?

    Science.gov (United States)

    Black, Matthew I; Handsaker, Joseph C; Allen, Sam J; Forrester, Stephanie E; Folland, Jonathan P

    2018-01-01

    The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg -1  · km -1 ) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed-energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.

  4. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill.

    Science.gov (United States)

    Caekenberghe, Ine Van; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-07-06

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior-posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of

  5. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    Science.gov (United States)

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  6. Reliability and Validity of a Submaximal Warm-up Test for Monitoring Training Status in Professional Soccer Players.

    Science.gov (United States)

    Rabbani, Alireza; Kargarfard, Mehdi; Twist, Craig

    2018-02-01

    Rabbani, A, Kargarfard, M, and Twist, C. Reliability and validity of a submaximal warm-up test for monitoring training status in professional soccer players. J Strength Cond Res 32(2): 326-333, 2018-Two studies were conducted to assess the reliability and validity of a submaximal warm-up test (SWT) in professional soccer players. For the reliability study, 12 male players performed an SWT over 3 trials, with 1 week between trials. For the validity study, 14 players of the same team performed an SWT and a 30-15 intermittent fitness test (30-15IFT) 7 days apart. Week-to-week reliability in selected heart rate (HR) responses (exercise heart rate [HRex], heart rate recovery [HRR] expressed as the number of beats recovered within 1 minute [HRR60s], and HRR expressed as the mean HR during 1 minute [HRpost1]) was determined using the intraclass correlation coefficient (ICC) and typical error of measurement expressed as coefficient of variation (CV). The relationships between HR measures derived from the SWT and the maximal speed reached at the 30-15IFT (VIFT) were used to assess validity. The range for ICC and CV values was 0.83-0.95 and 1.4-7.0% in all HR measures, respectively, with the HRex as the most reliable HR measure of the SWT. Inverse large (r = -0.50 and 90% confidence limits [CLs] [-0.78 to -0.06]) and very large (r = -0.76 and CL, -0.90 to -0.45) relationships were observed between HRex and HRpost1 with VIFT in relative (expressed as the % of maximal HR) measures, respectively. The SWT is a reliable and valid submaximal test to monitor high-intensity intermittent running fitness in professional soccer players. In addition, the test's short duration (5 minutes) and simplicity mean that it can be used regularly to assess training status in high-level soccer players.

  7. Assessment of cardiorespiratory fitness using submaximal protocol in older adults with mood disorder and Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Natacha Alves de Oliveira

    2013-01-01

    Full Text Available BACKGROUND: Evidence has shown benefits for mental health through aerobic training oriented in percentage of VO2max, indicating the importance of this variable for clinical practice. OBJECTIVE: To validate a method for estimating VO2max using a submaximal protocol in elderly patients with clinically diagnosis as major depressive disorder (MDD and Parkinson's disease (PD. METHODS: The sample comprised 18 patients (64.22 ± 9.92 years with MDD (n = 7 and with PD (n = 11. Three evaluations were performed: I disease staging, II direct measurement of VO2max and III submaximal exercise test. Linear regression was performed to verify the accuracy of estimation in VO2max established in ergospirometry and the predicted VO2max from the submaximal test measurement. We also analyzed the correlation between the Bland-Altman procedures. RESULTS: The regression analysis showed that VO2max values estimated by submaximal protocol associated with the VO2max measured, both in absolute values (R² = 0.65; SEE = 0.26; p < 0.001 and the relative (R² = 0.56; SEE = 3.70; p < 0.001. The Bland-Altman plots for analysis of agreement of showed a good correlation between the two measures. DISCUSSION: The VO2max predicted by submaximal protocol demonstrated satisfactory criterion validity and simple execution compared to ergospirometry.

  8. Differential contributions of ankle plantarflexors during submaximal isometric muscle action

    DEFF Research Database (Denmark)

    Masood, Tahir; Bojsen-Møller, Jens; Kalliokoski, Kari K

    2014-01-01

    The objective of this study was to investigate the relative contributions of superficial and deep ankle plantarflexors during repetitive submaximal isometric contractions using surface electromyography (SEMG) and positron emission tomography (PET). Myoelectric signals were obtained from twelve...

  9. Recruitment of single muscle fibers during submaximal cycling exercise

    NARCIS (Netherlands)

    Altenburg, T.M.; Degens, H.; van Mechelen, W.; Sargeant, A.J.; de Haan, A.

    2007-01-01

    In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which

  10. Submaximal exercise capacity and maximal power output in polio subjects

    NARCIS (Netherlands)

    Nollet, F.; Beelen, A.; Sargeant, A. J.; de Visser, M.; Lankhorst, G. J.; de Jong, B. A.

    2001-01-01

    OBJECTIVES: To compare the submaximal exercise capacity of polio subjects with postpoliomyelitis syndrome (PPS) and without (non-PPS) with that of healthy control subjects, to investigate the relationship of this capacity with maximal short-term power and quadriceps strength, and to evaluate

  11. Low doses of caffeine reduce heart rate during submaximal cycle ergometry

    Directory of Open Access Journals (Sweden)

    Wetter Thomas J

    2007-10-01

    Full Text Available Abstract Background The purpose of this study was to examine the cardiovascular effects of two low-levels of caffeine ingestion in non habitual caffeine users at various submaximal and maximal exercise intensities. Methods Nine male subjects (19–25 yr; 83.3 ± 3.1 kg; 184 ± 2 cm, underwent three testing sessions administered in a randomized and double-blind fashion. During each session, subjects were provided 4 oz of water and a gelatin capsule containing a placebo, 1.5 mg/kg caffeine, or 3.0 mg/kg caffeine. After thirty minutes of rest, a warm-up (30 Watts for 2 min the pedal rate of 60 rpm was maintained at a steady-state output of 60 watts for five minutes; increased to 120 watts for five minutes and to 180 watts for five minutes. After a 2 min rest the workload was 180 watts for one minute and increased by 30 watts every minute until exhaustion. Heart rate (HR was measured during the last 15-seconds of each minute of submaximal exercise. Systolic blood pressure (BP was measured at rest and during each of the three sub-maximal steady state power outputs. Minute ventilation (VE, Tidal volume (VT, Breathing frequency (Bf, Rating of perceived exertion (RPE, Respiratory exchange ratio (RER, and Oxygen consumption (VO2 were measured at rest and during each minute of exercise. Results Caffeine at 1.5 and 3.0 mg/kg body weight significantly lowered (p E, VT, VO2, RPE, maximal power output or time to exhaustion. Conclusion In non habitual caffeine users it appears that consuming a caffeine pill (1.5 & 3.0 mg/kg at a dose comparable to 1–3 cups of coffee lowers heart rate during submaximal exercise but not at near maximal and maximal exercise. In addition, this caffeine dose also only appears to affect systolic blood pressure at rest but not during cycling exercise.

  12. Validity of a Newly-Designed Rectilinear Stepping Ergometer Submaximal Exercise Test to Assess Cardiorespiratory Fitness

    OpenAIRE

    Rubin Zhang, Likui Zhan, Shaoming Sun, Wei Peng, Yining Sun

    2017-01-01

    The maximum oxygen uptake (V̇O2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to det...

  13. Endurance running performance in athletes with asthma.

    Science.gov (United States)

    Freeman, W; Williams, C; Nute, M G

    1990-01-01

    Laboratory assessment was made during maximal and submaximal exercise on 16 endurance trained male runners with asthma (aged 35 +/- 9 years) (mean +/- S.D.). Eleven of these asthmatic athletes had recent performance times over a half-marathon, which were examined in light of the results from the laboratory tests. The maximum oxygen uptake (VO2max) of the group was 61.8 +/- 6.3 ml kg-1 min-1 and the maximum ventilation (VEmax) was 138.7 +/- 24.7 l min-1. These maximum cardio-respiratory responses to exercise were positively correlated to the degree of airflow obstruction, defined as the forced expiratory volume in 1 s (expressed as a percentage of predicted normal). The half-marathon performance times of 11 of the athletes ranged from those of recreational to elite runners (82.4 +/- 8.8 min, range 69-94). Race pace was correlated with VO2max (r = 0.863, P less than 0.01) but the highest correlation was with the running velocity at a blood lactate concentration of 2 mmol l-1 (r = 0.971, P less than 0.01). The asthmatic athletes utilized 82 +/- 4% VO2max during the half-marathon, which was correlated with the %VO2max at 2 mmol l-1 blood lactate (r = 0.817, P less than 0.01). The results of this study suggest that athletes with mild to moderate asthma can possess high VO2max values and can develop a high degree of endurance fitness, as defined by their ability to sustain a high percentage of VO2max over an endurance race. In athletes with more severe airflow obstruction, the maximum ventilation rate may be reduced and so VO2max may be impaired. The athletes in the present study have adapted to this limitation by being able to sustain a higher %VO2max before the accumulation of blood lactate, which is an advantage during an endurance race. Therefore, with appropriate training and medication, asthmatics can successfully participate in endurance running at a competitive level.

  14. Validity of a Newly-Designed Rectilinear Stepping Ergometer Submaximal Exercise Test to Assess Cardiorespiratory Fitness.

    Science.gov (United States)

    Zhang, Rubin; Zhan, Likui; Sun, Shaoming; Peng, Wei; Sun, Yining

    2017-09-01

    The maximum oxygen uptake (V̇O 2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to determine V̇O 2 max in young healthy male adults. Thirty-two young healthy male adults (32 males; age range: 20-35 years; height: 1.75 ± 0.05 m; weight: 67.5 ± 8.6 kg) firstly participated in a maximal-effort graded exercise test using a cycle ergometer (CE) to directly obtain measured V̇O 2 max. Subjects then completed the progressive multistage test on the RSE beginning at 50W and including additional stages of 70, 90, 110, 130, and 150W, and the RSE YMCA submaximal test consisting of a workload increase every 3 minutes until the termination criterion was reached. A metabolic equation was derived from the RSE multistage exercise test to predict oxygen consumption (V̇O 2 ) from power output (W) during the submaximal exercise test (V̇O 2 (mL·min -1 )=12.4 ×W(watts)+3.5 mL·kg -1 ·min -1 ×M+160mL·min -1 , R 2 = 0.91, standard error of the estimate (SEE) = 134.8mL·min -1 ). A high correlation was observed between the RSE YMCA estimated V̇O 2 max and the CE measured V̇O 2 max (r=0.87). The mean difference between estimated and measured V̇O 2 max was 2.5 mL·kg -1 ·min -1 , with an SEE of 3.55 mL·kg -1 ·min -1 . The data suggest that the RSE YMCA submaximal exercise test is valid for predicting V̇O 2 max in young healthy male adults. The findings show that the rectilinear stepping exercise is an effective submaximal exercise for predicting V̇O 2 max. The newly-designed RSE may be potentially further developed as an alternative ergometer for assessing

  15. Submaximal physical strain and peak performance in handcycling versus handrim wheelchair propulsion

    NARCIS (Netherlands)

    Dallmeijer, A.J.; Zentgraaff, I.D.; Zijp, N.I.; van der Woude, L.H.V.

    2004-01-01

    Study design: Experimental study in subjects with paraplegia and nondisabled subjects. Objective: To compare submaximal physical strain and peak performance in handcycling and handrim wheelchair propulsion in wheelchair-dependent and nondisabled control subjects Setting: Amsterdam, The Netherlands.

  16. How to run 100 meters ?

    OpenAIRE

    Aftalion, Amandine

    2016-01-01

    A paraitre dans SIAP; The aim of this paper is to bring a mathematical justification to the optimal way of organizing one's effort when running. It is well known from physiologists that all running exercises of duration less than 3mn are run with a strong initial acceleration and a decelerating end; on the contrary, long races are run with a final sprint. This can be explained using a mathematical model describing the evolution of the velocity, the anaerobic energy, and the propulsive force: ...

  17. Velocity Loss as a Variable for Monitoring Resistance Exercise.

    Science.gov (United States)

    González-Badillo, Juan José; Yañez-García, Juan Manuel; Mora-Custodio, Ricardo; Rodríguez-Rosell, David

    2017-03-01

    This study aimed to analyze: 1) the pattern of repetition velocity decline during a single set to failure against different submaximal loads (50-85% 1RM) in the bench press exercise; and 2) the reliability of the percentage of performed repetitions, with respect to the maximum possible number that can be completed, when different magnitudes of velocity loss have been reached within each set. Twenty-two men performed 8 tests of maximum number of repetitions (MNR) against loads of 50-55-60-65-70-75-80-85% 1RM, in random order, every 6-7 days. Another 28 men performed 2 separate MNR tests against 60% 1RM. A very close relationship was found between the relative loss of velocity in a set and the percentage of performed repetitions. This relationship was very similar for all loads, but particularly for 50-70% 1RM, even though the number of repetitions completed at each load was significantly different. Moreover, the percentage of performed repetitions for a given velocity loss showed a high absolute reliability. Equations to predict the percentage of performed repetitions from relative velocity loss are provided. By monitoring repetition velocity and using these equations, one can estimate, with considerable precision, how many repetitions are left in reserve in a bench press exercise set. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Physiological characteristics of the best Eritrean runners-exceptional running economy.

    Science.gov (United States)

    Lucia, Alejandro; Esteve-Lanao, Jonathan; Oliván, Jesús; Gómez-Gallego, Félix; San Juan, Alejandro F; Santiago, Catalina; Pérez, Margarita; Chamorro-Viña, Carolina; Foster, Carl

    2006-10-01

    Despite their young age, limited training history, and lack of running tradition compared with other East African endurance athletes (e.g., Kenyans and Ethiopians), male endurance runners from Eritrea have recently attained important running successes. The purposes of our study were (i) to document the main physical and physiological characteristics of elite black Eritrean distance runners (n = 7; age: 22 +/- 3 years) and (ii) to compare them with those of their elite white Spanish counterparts. For this second purpose we selected a control group of elite Spanish runners (n = 9; 24 +/- 2 years), owing to the traditionally high success of Spanish athletes in long-distance running compared with other white runners, especially in cross-country competitions. The subjects' main anthropometric characteristics were determined, together with their maximum oxygen uptake (VO2 max) and VO2 (mL.kg(-1).min(-1)), blood lactate, and ammonia concentrations while running at 17, 19, or 21 km.h(-1). The body mass index (18.9 +/- 1.5 kg.m(-2)) and maximal calf circumference (30.9 +/- 1.5 cm) was lower in Eritreans than in Spaniards (20.5 +/- 1.7 kg.m(-2) and 33.9 +/- 2.0 cm, respectively) (p economy of Eritreans is associated, at least partly, with anthropometric variables. Comparison of their submaximal running cost with other published data suggests that superior running economy, rather than enhanced aerobic capacity, may be the common denominator in the success of black endurance runners of East African origin.

  19. Positional Match Running Performance in Elite Gaelic Football.

    Science.gov (United States)

    Malone, Shane; Solan, Barry; Collins, Kieran D; Doran, Dominic A

    2016-08-01

    Malone, S, Solan, B, Collins, KD, and Doran, DA. Positional match running performance in elite Gaelic football. J Strength Cond Res 30(8): 2292-2298, 2016-There is currently limited information available on match running performance in Gaelic football. The objective of the current study was to report on the match running profile of elite male Gaelic football and assess positional running performance. In this observational study, 50 elite male Gaelic football players wore 4-Hz global positioning systems units (VX Sports) across 30 competitive games with a total of 215 full game data sets collected. Activity was classed according to total distance, high-speed distance (≥17 km·h), sprint distance (≥22 km·h), mean velocity (km·h), peak velocity (km·h), and number of accelerations. The average match distance was 8,160 ± 1,482 m, reflective of a relative distance of 116 ± 21 m·min, with 1,731 ± 659 m covered at high speed, which is reflective of a relative high-speed distance of 25 ± 9 m·min. The observed sprint distance was 445 ± 169 m distributed across 44 sprint actions. The peak velocity was 30.3 ± 1.8 km·h with a mean velocity of 6.5 ± 1.2 km·h. Players completed 184 ± 40 accelerations, which represent 2.6 ± 0.5 accelerations per minute. There were significant differences between positional groups for both total running distance, high-speed running distance, and sprint distance, with midfielders covering more total and high-speed running distance, compared with other positions (p football match play.

  20. THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY

    Science.gov (United States)

    THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY. William F. McDonnell Human Studies Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC 27711. Short-term exposure to ozone results in a neurally-mediated decrease in the ab...

  1. Effects of cognitive stimulation with a self-modeling video on time to exhaustion while running at maximal aerobic velocity: a pilot study.

    Science.gov (United States)

    Hagin, Vincent; Gonzales, Benoît R; Groslambert, Alain

    2015-04-01

    This study assessed whether video self-modeling improves running performance and influences the rate of perceived exertion and heart rate response. Twelve men (M age=26.8 yr., SD=6; M body mass index=22.1 kg.m(-2), SD=1) performed a time to exhaustion running test at 100 percent maximal aerobic velocity while focusing on a video self-modeling loop to synchronize their stride. Compared to the control condition, there was a significant increase of time to exhaustion. Perceived exertion was lower also, but there was no significant change in mean heart rate. In conclusion, the video self-modeling used as a pacer apparently increased endurance by decreasing perceived exertion without affecting the heart rate.

  2. The effects of gamma radiation on 2,3-diphosphoglycerate (2,3-DFG) content in healthy men's erythrocytes after submaximal physical exercise

    International Nuclear Information System (INIS)

    Dudek, I.; Zagorski, T.; Kedziora, J.

    1987-01-01

    The effects of gamma radiation and submaximal physical exercise on 2,3-DFG content in healthy men erythrocytes were studied. Twelve men aged 20-22 were examined. They were loaded by physical exrecise (at doses of 2 M/kg body weight) for 15 minutes. Erythrocytes were exposed to gamma radiation (500 Gy doses) from a 60 Co source. The concentration of 2,3-DFG in erythrocytes was estimated by Bartlett's method. Gamma radiation was found to decrese 2,3-DFG content in erythrocytes both at rest and after submaximal exercise. Furthermore, submaximal physical exercise was found to decrease 2,3-DFG content in non-irradiated erythrocytes. 20 refs., 1 tab. (author)

  3. Relationship between throwing velocity, muscle power, and bar velocity during bench press in elite handball players.

    Science.gov (United States)

    Marques, Mario C; van den Tilaar, Roland; Vescovi, Jason D; Gonzalez-Badillo, Juan Jose

    2007-12-01

    The purpose of this study was to examine the relationship between ball-throwing velocity during a 3-step running throw and dynamic strength, power, and bar velocity during a concentric-only bench-press exercise in team-handball players. Fourteen elite senior male team-handball players volunteered to participate. Each volunteer had power and bar velocity measured during a concentric-only bench-press test with 26, 36, and 46 kg, as well as having 1-repetition-maximum (1-RMBP) strength determined. Ball-throwing velocity was evaluated with a standard 3-step running throw using a radar gun. Ball-throwing velocity was related to the absolute load lifted during the 1-RMBP (r = .637, P = .014), peak power using 36 kg (r = .586, P = .028) and 46 kg (r = .582, P = .029), and peak bar velocity using 26 kg (r = .563, P = .036) and 36 kg (r = .625, P = .017). The results indicate that throwing velocity of elite team-handball players is related to maximal dynamic strength, peak power, and peak bar velocity. Thus, a training regimen designed to improve ball-throwing velocity in elite male team-handball players should include exercises that are aimed at increasing both strength and power in the upper body.

  4. Iron Status in Chronic Heart Failure: Impact on Symptoms, Functional Class and Submaximal Exercise Capacity.

    Science.gov (United States)

    Enjuanes, Cristina; Bruguera, Jordi; Grau, María; Cladellas, Mercé; Gonzalez, Gina; Meroño, Oona; Moliner-Borja, Pedro; Verdú, José M; Farré, Nuria; Comín-Colet, Josep

    2016-03-01

    To evaluate the effect of iron deficiency and anemia on submaximal exercise capacity in patients with chronic heart failure. We undertook a single-center cross-sectional study in a group of stable patients with chronic heart failure. At recruitment, patients provided baseline information and completed a 6-minute walk test to evaluate submaximal exercise capacity and exercise-induced symptoms. At the same time, blood samples were taken for serological evaluation. Iron deficiency was defined as ferritin < 100 ng/mL or transferrin saturation < 20% when ferritin is < 800 ng/mL. Additional markers of iron status were also measured. A total of 538 heart failure patients were eligible for inclusion, with an average age of 71 years and 33% were in New York Heart Association class III/IV. The mean distance walked in the test was 285 ± 101 meters among those with impaired iron status, vs 322 ± 113 meters (P=.002). Symptoms during the test were more frequent in iron deficiency patients (35% vs 27%; P=.028) and the most common symptom reported was fatigue. Multivariate logistic regression analyses showed that increased levels of soluble transferrin receptor indicating abnormal iron status were independently associated with advanced New York Heart Association class (P < .05). Multivariable analysis using generalized additive models, soluble transferrin receptor and ferritin index, both biomarkers measuring iron status, showed a significant, independent and linear association with submaximal exercise capacity (P=.03 for both). In contrast, hemoglobin levels were not significantly associated with 6-minute walk test distance in the multivariable analysis. In patients with chronic heart failure, iron deficiency but not anemia was associated with impaired submaximal exercise capacity and symptomatic functional limitation. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    OpenAIRE

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ? 7 years) were compared to 25 healthy age- and gender-matched cont...

  6. Running from Paris to Beijing: biomechanical and physiological consequences.

    Science.gov (United States)

    Millet, Guillaume Y; Morin, Jean-Benoît; Degache, Francis; Edouard, Pascal; Feasson, Léonard; Verney, Julien; Oullion, Roger

    2009-12-01

    The purpose of this study was to examine the physiological and biomechanical changes occurring in a subject after running 8,500 km in 161 days (i.e. 52.8 km daily). Three weeks before, 3 weeks after (POST) and 5 months after (POST+5) running from Paris to Beijing, energy cost of running (Cr), knee flexor and extensor isokinetic strength and biomechanical parameters (using a treadmill dynamometer) at different velocities were assessed in an experienced ultra-runner. At POST, there was a tendency toward a 'smoother' running pattern, as shown by (a) a higher stride frequency and duty factor, and a reduced aerial time without a change in contact time, (b) a lower maximal vertical force and loading rate at impact and (c) a decrease in both potential and kinetic energy changes at each step. This was associated with a detrimental effect on Cr (+6.2%) and a loss of strength at all angular velocities for both knee flexors and extensors. At POST+5, the subject returned to his original running patterns at low but not at high speeds and maximal strength remained reduced at low angular velocities (i.e. at high levels of force). It is suggested that the running pattern changes observed in the present study were a strategy adopted by the subject to reduce the deleterious effects of long distance running. However, the running pattern changes could partly be linked to the decrease in maximal strength.

  7. Effects of Obstacles on the Dynamics of Kinesins, Including Velocity and Run Length, Predicted by a Model of Two Dimensional Motion.

    Directory of Open Access Journals (Sweden)

    Woochul Nam

    Full Text Available Kinesins are molecular motors which walk along microtubules by moving their heads to different binding sites. The motion of kinesin is realized by a conformational change in the structure of the kinesin molecule and by a diffusion of one of its two heads. In this study, a novel model is developed to account for the 2D diffusion of kinesin heads to several neighboring binding sites (near the surface of microtubules. To determine the direction of the next step of a kinesin molecule, this model considers the extension in the neck linkers of kinesin and the dynamic behavior of the coiled-coil structure of the kinesin neck. Also, the mechanical interference between kinesins and obstacles anchored on the microtubules is characterized. The model predicts that both the kinesin velocity and run length (i.e., the walking distance before detaching from the microtubule are reduced by static obstacles. The run length is decreased more significantly by static obstacles than the velocity. Moreover, our model is able to predict the motion of kinesin when other (several motors also move along the same microtubule. Furthermore, it suggests that the effect of mechanical interaction/interference between motors is much weaker than the effect of static obstacles. Our newly developed model can be used to address unanswered questions regarding degraded transport caused by the presence of excessive tau proteins on microtubules.

  8. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    Science.gov (United States)

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  9. The effect of local skin cooling before a sustained, submaximal isometric contraction on fatigue and isometric quadriceps femoris performance: A randomized controlled trial.

    Science.gov (United States)

    Hohenauer, Erich; Cescon, Corrado; Deliens, Tom; Clarys, Peter; Clijsen, Ron

    2017-04-01

    The central- and peripheral mechanisms by which heat strain limits physical performance are not fully elucidated. Nevertheless, pre-cooling is often used in an attempt to improve subsequent performance. This study compared the effects of pre-cooling vs. a pre-thermoneutral application on central- and peripheral fatigue during 60% of isometric maximum voluntary contraction (MVC) of the right quadriceps femoris muscle. Furthermore, the effects between a pre-cooling and a pre-thermoneutral application on isometric MVC of the right quadriceps femoris muscle and subjective ratings of perceived exertion (RPE) were investigated. In this randomized controlled trial, 18 healthy adults voluntarily participated. The participants received either a cold (experimental) application (+8°C) or a thermoneutral (control) application (+32°C) for 20min on their right thigh (one cuff). After the application, central (fractal dimension - FD) and peripheral (muscle fiber conduction velocity - CV) fatigue was estimated using sEMG parameters during 60% of isometric MVC. Surface EMG signals were detected from the vastus medialis and lateralis using bidimensional arrays. Immediately after the submaximal contraction, isometric MVC and RPE were assessed. Participants receiving the cold application were able to maintain a 60% isometric MVC significantly longer when compared to the thermoneutral group (mean time: 78 vs. 46s; p=0.04). The thermoneutral application had no significant impact on central fatigue (p>0.05) compared to the cold application (p=0.03). However, signs of peripheral fatigue were significantly higher in the cold group compared to the thermoneutral group (p=0.008). Pre-cooling had no effect on isometric MVC of the right quadriceps muscle and ratings of perceived exertion. Pre-cooling attenuated central fatigue and led to significantly longer submaximal contraction times compared to the pre-thermoneutral application. These findings support the use of pre-cooling procedures

  10. The efficacy of downhill running as a method to enhance running economy in trained distance runners.

    Science.gov (United States)

    Shaw, Andrew J; Ingham, Stephen A; Folland, Jonathan P

    2018-06-01

    Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (-5% gradient; n = 10) or flat (n = 9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (E C ) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (⩒O 2max). No changes in E C were observed during flat running following downhill (1.22 ± 0.09 vs 1.20 ± 0.07 Kcal kg -1  km -1 , P = .41) or flat run training (1.21 ± 0.13 vs 1.19 ± 0.12 Kcal kg -1  km -1 ). Moreover, no changes in E C during downhill running were observed in either condition (P > .23). vLTP increased following both downhill (16.5 ± 0.7 vs 16.9 ± 0.6 km h -1 , P = .05) and flat run training (16.9 ± 0.7 vs 17.2 ± 1.0 km h -1 , P = .05), though no differences in responses were observed between groups (P = .53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.

  11. Reducing gravity takes the bounce out of running.

    Science.gov (United States)

    Polet, Delyle T; Schroeder, Ryan T; Bertram, John E A

    2018-02-13

    In gravity below Earth-normal, a person should be able to take higher leaps in running. We asked 10 subjects to run on a treadmill in five levels of simulated reduced gravity and optically tracked centre-of-mass kinematics. Subjects consistently reduced ballistic height compared with running in normal gravity. We explain this trend by considering the vertical take-off velocity (defined as maximum vertical velocity). Energetically optimal gaits should balance the energetic costs of ground-contact collisions (favouring lower take-off velocity), and step frequency penalties such as leg swing work (favouring higher take-off velocity, but less so in reduced gravity). Measured vertical take-off velocity scaled with the square root of gravitational acceleration, following energetic optimality predictions and explaining why ballistic height decreases in lower gravity. The success of work-based costs in predicting this behaviour challenges the notion that gait adaptation in reduced gravity results from an unloading of the stance phase. Only the relationship between take-off velocity and swing cost changes in reduced gravity; the energetic cost of the down-to-up transition for a given vertical take-off velocity does not change with gravity. Because lower gravity allows an elongated swing phase for a given take-off velocity, the motor control system can relax the vertical momentum change in the stance phase, thus reducing ballistic height, without great energetic penalty to leg swing work. Although it may seem counterintuitive, using less 'bouncy' gaits in reduced gravity is a strategy to reduce energetic costs, to which humans seem extremely sensitive. © 2018. Published by The Company of Biologists Ltd.

  12. The Impact of a Submaximal Level of Exercise on Balance Performance in Older Persons

    Directory of Open Access Journals (Sweden)

    Hani Asilah Alias

    2014-01-01

    Full Text Available Objective. The purpose of this study was to determine the impact of a submaximal level of exercise on balance performance under a variety of conditions. Material and Method. Thirteen community-dwelling older persons with intact foot sensation (age = 66.69 ± 8.17 years, BMI = 24.65 ± 4.08 kg/m2, female, n=6 volunteered to participate. Subjects’ balance performances were measured using the Modified Clinical Test of Sensory Integration of Balance (mCTSIB at baseline and after test, under four conditions of stance: (1 eyes-opened firm-surface (EOF, (2 eyes-closed firm-surface (ECF, (3 eyes-opened soft-surface (EOS, and (4 eyes-closed soft-surface (ECS. The 6-minute walk test (6MWT protocol was used to induce the submaximal level of exercise. Data was analyzed using the Wilcoxon Signed-Rank Test. Results. Balance changes during EOF (z=0.00, P=1.00 and ECF (z=-1.342, P=0.180 were not significant. However, balance changes during EOS (z=-2.314, P=0.021 and ECS (z=-3.089, P=0.02 were significantly dropped after the 6MWT. Conclusion. A submaximal level of exercise may influence sensory integration that in turn affects balance performance, particularly on an unstable surface. Rehabilitation should focus on designing intervention that may improve sensory integration among older individuals with balance deterioration in order to encourage functional activities.

  13. The Relationship between Running Economy and Biomechanical Variables in Distance Runners

    Science.gov (United States)

    Tartaruga, Marcus Peikriszwili; Brisswalter, Jeanick; Peyre-Tartaruga, Leonardo Alexandre; Avila, Aluisio Otavio Vargas; Alberton, Cristine Lima; Coertjens, Marcelo; Cadore, Eduardo Lusa; Tiggemann, Carlos Leandro; Silva, Eduardo Marczwski; Kruel, Luiz Fernando Martins

    2012-01-01

    In this study, we analyzed the relationship between running economy (RE) and biomechanical parameters in a group running at the same relative intensity and same absolute velocity. Sixteen homogeneous male long-distance runners performed a test to determine RE at 4.4 m.s[superscript -1], corresponding to 11.1% below velocity at the ventilatory…

  14. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.

    Science.gov (United States)

    Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2014-10-15

    We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.

  15. Running Performance Differences Between Men and Women (An Update)

    National Research Council Canada - National Science Library

    Cheuvront, C. N; Carter, R; DeRuisseau, K. C; Moffatt, R. J

    2005-01-01

    More than a decade ago it was reported in the journal Nature that the slope of improvement in the men's and women's running records, extrapolated from mean running velocity plotted against historical...

  16. Running Technique is an Important Component of Running Economy and Performance

    Science.gov (United States)

    FOLLAND, JONATHAN P.; ALLEN, SAM J.; BLACK, MATTHEW I.; HANDSAKER, JOSEPH C.; FORRESTER, STEPHANIE E.

    2017-01-01

    ABSTRACT Despite an intuitive relationship between technique and both running economy (RE) and performance, and the diverse techniques used by runners to achieve forward locomotion, the objective importance of overall technique and the key components therein remain to be elucidated. Purpose This study aimed to determine the relationship between individual and combined kinematic measures of technique with both RE and performance. Methods Ninety-seven endurance runners (47 females) of diverse competitive standards performed a discontinuous protocol of incremental treadmill running (4-min stages, 1-km·h−1 increments). Measurements included three-dimensional full-body kinematics, respiratory gases to determine energy cost, and velocity of lactate turn point. Five categories of kinematic measures (vertical oscillation, braking, posture, stride parameters, and lower limb angles) and locomotory energy cost (LEc) were averaged across 10–12 km·h−1 (the highest common velocity < velocity of lactate turn point). Performance was measured as season's best (SB) time converted to a sex-specific z-score. Results Numerous kinematic variables were correlated with RE and performance (LEc, 19 variables; SB time, 11 variables). Regression analysis found three variables (pelvis vertical oscillation during ground contact normalized to height, minimum knee joint angle during ground contact, and minimum horizontal pelvis velocity) explained 39% of LEc variability. In addition, four variables (minimum horizontal pelvis velocity, shank touchdown angle, duty factor, and trunk forward lean) combined to explain 31% of the variability in performance (SB time). Conclusions This study provides novel and robust evidence that technique explains a substantial proportion of the variance in RE and performance. We recommend that runners and coaches are attentive to specific aspects of stride parameters and lower limb angles in part to optimize pelvis movement, and ultimately enhance performance

  17. Vastus lateralis surface and single motor unit EMG following submaximal shortening and lengthening contractions

    NARCIS (Netherlands)

    Altenburg, T.M.; de Ruiter, C.J.; Verdijk, P.W.L.; van Mechelen, W.; de Haan, A.

    2008-01-01

    A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains

  18. A test of the metabolic cost of cushioning hypothesis during unshod and shod running.

    Science.gov (United States)

    Tung, Kryztopher David; Franz, Jason R; Kram, Rodger

    2014-02-01

    This study aimed to investigate the effects of surface and shoe cushioning on the metabolic cost of running. In running, the leg muscles generate force to cushion the impact with the ground. External cushioning (surfaces or shoes) may reduce the muscular effort needed for cushioning and thus reduce metabolic cost. Our primary hypothesis was that the metabolic cost of unshod running would decrease with a more cushioned running surface. We also hypothesized that because of the counteracting effects of shoe cushioning and mass, unshod running on a hard surface would have approximately the same metabolic cost as running in lightweight, cushioned shoes. To test these hypotheses, we attached 10- and 20-mm-thick slats of the same foam cushioning used in running shoe midsoles to the belt of a treadmill that had a rigid deck. Twelve subjects who preferred a midfoot strike pattern and had substantial barefoot/minimalist running experience ran without shoes on the normal treadmill belt and on each thickness of foam. They also ran with lightweight, cushioned shoes on the normal belt. We collected V˙O2 and V˙CO2 to calculate the metabolic power demand and used a repeated-measures ANOVA to compare between conditions. Compared to running unshod on the normal belt, running unshod on the 10-mm-thick foam required 1.63% ± 0.67% (mean ± SD) less metabolic power (P = 0.034) but running on the 20-mm-thick foam had no significant metabolic effect. Running with and without shoes on the normal belt had similar metabolic power demands, likely because the beneficial energetic effects of cushioning counterbalanced the detrimental effects of shoe mass. On average, surface and shoe cushioning reduce the metabolic power required for submaximal running.

  19. Bioenergetic constraints on tactical decision making in middle distance running.

    Science.gov (United States)

    Jones, A M; Whipp, B J

    2002-04-01

    The highest velocity that a runner can sustain during middle distance races is defined by the intersection of the runner's individual velocity-time curve and the distance-time curve. The velocity-time curve is presumably fixed at the onset of a race; however, whereas the race distance is ostensibly fixed, the actual distance-time curve is not. That is, it is possible for a runner to run further than the race distance if he or she runs wide on bends in track races. In this instance, the point of intersection of the individual velocity-time curve and the distance-time curve will move downwards and to the right, reducing the best average velocity that can be sustained for the distance. To illustrate this point, the race tactics used by the gold and silver medallists at 800 m and 5000 m in the Sydney Olympics were analysed. The paths taken by the runners were carefully tracked and the total distance they covered during the races and the average velocity they sustained over the distances they actually covered were calculated. In both the Olympic 800 m and 5000 m finals, for example, the winner was not the runner who ran at the highest average velocity in the race. Rather, the winners of these races were able to husband their metabolic resources to better effect by running closer to the actual race distance. Race results in middle distance running events are dependent not just on the energetic potential of the runners at the start of the race and their strategy for pace allocation, but also on the effect of their tactical approach to positioning on the total distance covered in the race. Middle distance runners should be conscious of minimising the distance covered in races if they wish to optimise their performance.

  20. Leg-adjustment strategies for stable running in three dimensions

    International Nuclear Information System (INIS)

    Peuker, Frank; Maufroy, Christophe; Seyfarth, André

    2012-01-01

    The dynamics of the center of mass (CoM) in the sagittal plane in humans and animals during running is well described by the spring-loaded inverted pendulum (SLIP). With appropriate parameters, SLIP running patterns are stable, and these models can recover from perturbations without the need for corrective strategies, such as the application of additional forces. Rather, it is sufficient to adjust the leg to a fixed angle relative to the ground. In this work, we consider the extension of the SLIP to three dimensions (3D SLIP) and investigate feed-forward strategies for leg adjustment during the flight phase. As in the SLIP model, the leg is placed at a fixed angle. We extend the scope of possible reference axes from only fixed horizontal and vertical axes to include the CoM velocity vector as a movement-related reference, resulting in six leg-adjustment strategies. Only leg-adjustment strategies that include the CoM velocity vector produced stable running and large parameter domains of stability. The ability of the model to recover from perturbations along the direction of motion (directional stability) depended on the strategy for lateral leg adjustment. Specifically, asymptotic and neutral directional stability was observed for strategies based on the global reference axis and the velocity vector, respectively. Additional features of velocity-based leg adjustment are running at arbitrary low speed (kinetic energy) and the emergence of large domains of stable 3D running that are smoothly transferred to 2D SLIP stability and even to 1D SLIP hopping. One of the additional leg-adjustment strategies represented a large convex region of parameters where stable and robust hopping and running patterns exist. Therefore, this strategy is a promising candidate for implementation into engineering applications, such as robots, for instance. In a preliminary comparison, the model predictions were in good agreement with the experimental data, suggesting that the 3D SLIP is an

  1. Recumbent Stepper Submaximal Test response is reliable in adults with and without stroke.

    Directory of Open Access Journals (Sweden)

    David R Wilson

    Full Text Available The purpose of the present study was to determine the reliability of the exercise response (predicted peak VO2 using the total body recumbent stepper (TBRS submaximal exercise test in: 1 healthy adults 20-70 years of age and 2 adults participating in inpatient stroke rehabilitation. We hypothesized that the predicted peak VO2 (Visit 1 would have an excellent relationship (r > 0.80 to predicted peak VO2 (Visit 2. We also wanted to test whether the exercise response at Visit 1 and Visit 2 would be significantly different.Healthy adults were recruited from the Kansas City metro area. Stroke participants were recruited during their inpatient rehabilitation stay. Eligible participants completed 2 TBRS submaximal exercise tests between 24 hours and 5 days at similar times of day.A total of 70 participants completed the study. Healthy adults (n = 50 were 36 M, 38.1 ± 10.1 years and stroke participants (n = 20 were 15 M, 62.5 ± 11.8 years of age. The exercise response was reliable for healthy adults (r = 0.980, p<0.01 and stroke participants (r = 0.987, p<0.01 between Visit 1 and Visit 2. Repeated Measures ANOVA showed a significant difference in predicted values between the two visits for healthy adults (47.2 ± 8.4 vs 47.7 ± 8.5 mL∙kg-1∙min-1; p = 0.04 but not for stroke participants (25.0 ± 9.9 vs 25.3 ± 11.4 mL∙kg-1∙min-1; p = 0.65.These results suggest that the exercise response is reliable using the TBRS submaximal exercise test in this cohort of healthy adults and stroke participants.

  2. Effects of Wheel and Hand-Rim Size on Submaximal Propulsion in Wheelchair Athletes

    NARCIS (Netherlands)

    Mason, Barry S.; Van der Woude, Lucas H. V.; Tolfrey, Keith; Lenton, John P.; Goosey-Tolfrey, Victoria L.

    MASON, B. S., L. H. V. VAN DER WOUDE, K. TOLFREY, J. P. LENTON, and V. L. GOOSEY-TOLFREY. Effects of Wheel and Hand-Rim Size on Submaximal Propulsion in Wheelchair Athletes. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 126-134, 2012. Purpose: This study aimed to investigate the effects of fixed gear

  3. Reduced peripheral arterial blood flow with preserved cardiac output during submaximal bicycle exercise in elderly heart failure

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2009-11-01

    Full Text Available Abstract Background Older heart failure (HF patients exhibit exercise intolerance during activities of daily living. We hypothesized that reduced lower extremity blood flow (LBF due to reduced forward cardiac output would contribute to submaximal exercise intolerance in older HF patients. Methods and Results Twelve HF patients both with preserved and reduced left ventricular ejection fraction (LVEF (aged 68 ± 10 years without large (aorta or medium sized (iliac or femoral artery vessel atherosclerosis, and 13 age and gender matched healthy volunteers underwent a sophisticated battery of assessments including a peak exercise oxygen consumption (peak VO2, b physical function, c cardiovascular magnetic resonance (CMR submaximal exercise measures of aortic and femoral arterial blood flow, and d determination of thigh muscle area. Peak VO2 was reduced in HF subjects (14 ± 3 ml/kg/min compared to healthy elderly subjects (20 ± 6 ml/kg/min (p = 0.01. Four-meter walk speed was 1.35 ± 0.24 m/sec in healthy elderly verses 0.98 ± 0.15 m/sec in HF subjects (p p ≤ 0.03. Conclusion During CMR submaximal bike exercise in the elderly with heart failure, mechanisms other than low cardiac output are responsible for reduced lower extremity blood flow.

  4. Unloaded shortening velocity of voluntarily and electrically activated human dorsiflexor muscles in vivo.

    Directory of Open Access Journals (Sweden)

    Kazushige Sasaki

    Full Text Available We have previously shown that unloaded shortening velocity (V(0 of human plantar flexors can be determined in vivo, by applying the "slack test" to submaximal voluntary contractions (J Physiol 567:1047-1056, 2005. In the present study, to investigate the effect of motor unit recruitment pattern on V(0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC. The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V(0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68-0.95. Regression analysis showed that V(0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R(2 = 0.52, P<0.001. By contrast, V(0 of electrically activated dorsiflexor muscles remained unchanged (R(2<0.001, P = 0.98 among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo.

  5. Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings.

    Science.gov (United States)

    Sartor, Francesco; Vernillo, Gianluca; de Morree, Helma M; Bonomi, Alberto G; La Torre, Antonio; Kubis, Hans-Peter; Veicsteinas, Arsenio

    2013-09-01

    Assessment of the functional capacity of the cardiovascular system is essential in sports medicine. For athletes, the maximal oxygen uptake [Formula: see text] provides valuable information about their aerobic power. In the clinical setting, the (VO(2max)) provides important diagnostic and prognostic information in several clinical populations, such as patients with coronary artery disease or heart failure. Likewise, VO(2max) assessment can be very important to evaluate fitness in asymptomatic adults. Although direct determination of [VO(2max) is the most accurate method, it requires a maximal level of exertion, which brings a higher risk of adverse events in individuals with an intermediate to high risk of cardiovascular problems. Estimation of VO(2max) during submaximal exercise testing can offer a precious alternative. Over the past decades, many protocols have been developed for this purpose. The present review gives an overview of these submaximal protocols and aims to facilitate appropriate test selection in sports, clinical, and home settings. Several factors must be considered when selecting a protocol: (i) The population being tested and its specific needs in terms of safety, supervision, and accuracy and repeatability of the VO(2max) estimation. (ii) The parameters upon which the prediction is based (e.g. heart rate, power output, rating of perceived exertion [RPE]), as well as the need for additional clinically relevant parameters (e.g. blood pressure, ECG). (iii) The appropriate test modality that should meet the above-mentioned requirements should also be in line with the functional mobility of the target population, and depends on the available equipment. In the sports setting, high repeatability is crucial to track training-induced seasonal changes. In the clinical setting, special attention must be paid to the test modality, because multiple physiological parameters often need to be measured during test execution. When estimating VO(2max), one has

  6. Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study.

    Science.gov (United States)

    Rice, Treva K; Sarzynski, Mark A; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Bouchard, Claude; Rankinen, Tuomo

    2012-08-01

    Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO(2)60), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO(2)60 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ΔVO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.

  7. Physiological characteristics of elite short- and long-distance triathletes.

    Science.gov (United States)

    Millet, Grégoire P; Dréano, Patrick; Bentley, David J

    2003-01-01

    The purpose of this study was to compare the physiological responses in cycling and running of elite short-distance (ShD) and long-distance (LD) triathletes. Fifteen elite male triathletes participating in the World Championships were divided into two groups (ShD and LD) and performed a laboratory trial that comprised submaximal treadmill running, maximal then submaximal ergometry cycling and then an additional submaximal run. "In situ" best ShD triathlon performances were also analysed for each athlete. ShD demonstrated a significantly faster swim time than LD whereas .VO(2max) (ml kg(-1) min(-1)), cycling economy (W l(-1) min(-1)), peak power output (.W(peak),W) and ventilatory threshold (%.VO(2max)) were all similar between ShD and LD. Moreover, there were no differences between the two groups in the change (%) in running economy from the first to the second running bout. Swimming time was correlated to .W(peak)(r=-0.76; Ptriathlon was correlated to .W(peak)(r=-0.83; P<0.05) in LD. In conclusion, ShD triathletes had a faster swimming time but did not exhibit different maximal or submaximal physiological characteristics measured in cycling and running than LD triathletes.

  8. Is an elevated submaximal heart rate associated with psychomotor slowness in young elite soccer players?

    NARCIS (Netherlands)

    Brink, Michel S.; Visscher, Chris; Schmikli, Sandor L.; Nederhof, E.; Lemmink, Koen A. P. M.

    2013-01-01

    The aim of the present study was to find early markers for overreaching that are applicable in sport practice. In a group of elite soccer players aged 1518, the stressrecovery balance and reaction times before and after exercise were assessed. Overreaching was indicated by an elevated submaximal

  9. A Short Submaximal test to determine the fatigue threshold of knee extensors in young men

    NARCIS (Netherlands)

    de Ruiter, C.J.; Hamacher, P.; Wolfs, B.G.A.

    Purpose Recently, a fatigue threshold obtained during submaximal repetitive isometric knee extensor contractions was related to VO 2max measured during cycling and to exercise endurance. However, test duration is quite long (20-30 min in young people) to be of practical and possibly clinical use.

  10. Correlations between plasma noradrenaline concentrations, antioxidants, and neutrophil counts after submaximal resistance exercise in men

    Science.gov (United States)

    Ramel, A; Wagner, K; Elmadfa, I

    2004-01-01

    Objectives: To investigate noradrenaline concentrations, neutrophil counts, plasma antioxidants, and lipid oxidation products before and after acute resistance exercise. Methods: 17 male participants undertook a submaximal resistance exercise circuit (10 exercises; 75% of the one repetition maximum; mean (SD) exercise time, 18.6 (1.1) minutes). Blood samples were taken before and immediately after exercise and analysed for plasma antioxidants, noradrenaline, neutrophils, and lipid oxidation products. Wilcoxon's signed-rank test and Pearson's correlation coefficient were used for calculations. Results: Neutrophils, noradrenaline, fat soluble antioxidants, and lipid oxidation products increased after exercise. Noradrenaline concentrations were associated with higher antioxidant concentrations. Neutrophils were related to higher concentrations of conjugated dienes. Conclusions: Submaximal resistance exercise increases plasma antioxidants. This might reflect enhanced antioxidant defence in response to the oxidative stress of exercise, though this is not efficient for inhibiting lipid oxidation. The correlation between noradrenaline concentrations and plasma antioxidants suggests a modulating role of the stress hormone. Neutrophils are a possible source of oxidative stress after resistance exercise. PMID:15388566

  11. Effect of a submaximal half-squats warm-up program on vertical jumping ability.

    Science.gov (United States)

    Gourgoulis, Vassilios; Aggeloussis, Nickos; Kasimatis, Panagiotis; Mavromatis, Giorgos; Garas, Athanasios

    2003-05-01

    The purpose of the current research was to study the effect of a warm-up program including submaximal half-squats on vertical jumping ability. Twenty physically active men participated in the study. Each subject performed 5 sets of half-squats with 2 repetitions at each of the following intensities: 20, 40, 60, 80, and 90% of the 1 repetition maximum (1RM) load. Prior to the first set and immediately after the end of the last set, the subjects performed 2 countermovement jumps on a Kistler force platform; the primary goal was to jump as high as possible. The results showed that mean vertical jumping ability improved by 2.39% after the warm-up period. Subjects were then divided into 2 groups according to their 1RM values for the half-squat. Subjects with greater maximal strength ability improved their vertical jumping ability (4.01%) more than did subjects with lower maximal strength (0.42%). A warm-up protocol including half-squats with submaximal loads and explosive execution can be used for short-term improvements of vertical jumping performance, and this effect is greater in athletes with a relatively high strength ability.

  12. Reliability of heart rate variability threshold and parasympathetic reactivation after a submaximal exercise test

    Directory of Open Access Journals (Sweden)

    Carlos Janssen Gomes da Cruz

    Full Text Available Abstract The objective of this study was to evaluate reproducibility of heart rate variability threshold (HRVT and parasympathetic reactivation in physically active men (n= 16, 24.3 ± 5.1 years. During the test, HRVT was assessed by SD1 and r-MSSD dynamics. Immediately after exercise, r-MSSD was analyzed in segments of 60 seconds for a period of five minutes. High absolute and relatively reproducible analysis of HRVT were observed, as assessed by SD1 and r-MSSD dynamics (ICC = 0.92, CV = 10.8, SEM = 5.8. During the recovery phase, a moderate to high reproducibility was observed for r-MSSD from the first to the fifth minute (ICC = 0.69-0.95, CV = 7.5-14.2, SEM = 0.07-1.35. We conclude that HRVT and r-MSSD analysis after a submaximal stress test are highly reproducible measures that might be used to assess the acute and chronic effects of exercise training on cardiac autonomic modulation during and/or after a submaximal stress test.

  13. Variation in heart rate during submaximal exercise: Implications for monitoring training : Implications for monitoring training

    NARCIS (Netherlands)

    Lamberts, R.P.; Lemmink, K.A.P.M.; Durandt, J.J.; Lambert, M.I.

    2004-01-01

    A change in heart rate at a controlled submaximal exercise intensity is used as a marker of training status. However, the standard error of measurement has not been studied systematically, and therefore a change in heart rate, which can be considered relevant, has not been determined. Forty-four

  14. Effects of synchronous music on treadmill running among elite triathletes.

    Science.gov (United States)

    Terry, Peter C; Karageorghis, Costas I; Saha, Alessandra Mecozzi; D'Auria, Shaun

    2012-01-01

    Music can provide ergogenic, psychological, and psychophysical benefits during physical activity, especially when movements are performed synchronously with music. The present study developed the train of research on synchronous music and extended it to elite athletes. Repeated-measures laboratory experiment. Elite triathletes (n=11) ran in time to self-selected motivational music, a neutral equivalent and a no-music control during submaximal and exhaustive treadmill running. Measured variables were time-to-exhaustion, mood responses, feeling states, RPE, blood lactate concentration, oxygen consumption and running economy. Time-to-exhaustion was 18.1% and 19.7% longer, respectively, when running in time to motivational and neutral music, compared to no music. Mood responses and feeling states were more positive with motivational music compared to either neutral music or no music. RPE was lowest for neutral music and highest for the no-music control. Blood lactate concentrations were lowest for motivational music. Oxygen consumption was lower with music by 1.0%-.7%. Both music conditions were associated with better running economy than the no-music control. Although neutral music did not produce the same level of psychological benefits as motivational music, it proved equally beneficial in terms of time-to-exhaustion and oxygen consumption. In functional terms, the motivational qualities of music may be less important than the prominence of its beat and the degree to which participants are able to synchronise their movements to its tempo. Music provided ergogenic, psychological and physiological benefits in a laboratory study and its judicious use during triathlon training should be considered. Copyright © 2011 Sports Medicine Australia. All rights reserved.

  15. Submaximal exercise thallium-201 SPECT for assessment of interventional therapy in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Stewart, R.E.; Kander, N.; Juni, J.E.; Ellis, S.G.; O'Neill, W.W.; Schork, M.A.; Topol, E.J.; Schwaiger, M.

    1991-01-01

    Submaximal thallium-201 stress testing has been shown to provide important diagnostic and prognostic information in patients with acute myocardial infarction. The purpose of this investigation was to evaluate the diagnostic value of early submaximal stress testing and thallium-201 single photon emission computed tomography (SPECT) after interventional therapy. Scintigraphic results from 56 patients with infarctions, who underwent acute thrombolytic therapy, angioplasty, or both, were compared with late (6 weeks) functional outcome as assessed by radionuclide ventriculography and with results of discharge coronary angiography. A linear correlation was found between the extent of thallium-201 SPECT perfusion defect and late ventricular function (r = 0.74, p less than 0.01). Forty-two percent of patients with large SPECT perfusion defects had normal left ventricular ejection fractions, suggesting an overestimation of infarct size by early imaging. Sensitivity and specificity of thallium-201 SPECT for detection of coronary artery stenosis in noninfarct territories was 57% and 46%, respectively, indicating limited diagnostic definition of extent of underlying coronary artery disease. Results of follow-up coronary angiography showed a significant relationship between the size of the initial perfusion defect and early restenosis or reocclusion of the infarct artery. Thus the extent of early thallium-201 perfusion defects correlates with late functional outcome but appears to overestimate the degree of injury. Submaximal thallium-201 stress testing allows only limited characterization of underlying coronary artery disease. Early assessment of infarct size may identify a patient population at high risk for reocclusion of the infarct artery

  16. Wave Run-up on Slender Piles in Design Conditions

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter; Damsgaard, M. L.

    2011-01-01

    in the design of Horns Reef 1. As a consequence damage was observed on the platforms. This has been the situation for several sites and design tools for platform loads are lacking. As a consequence a physical model test study was initiated at Aalborg University to clarify wave run-up on cylindrical piles...... to the pile an empirical factor is included on the velocity head. The evaluation of the calculation model shows that an accurate design rule can be established even in breaking wave conditions. However, calibration of a load model showed that it was necessary to increase the run-up factor on the velocity head...

  17. Forecasting to velocities harness racing on average, long, superlong distances (marathon run

    Directory of Open Access Journals (Sweden)

    Klochko L.I.

    2010-05-01

    Full Text Available The prospects of increase of sporting results are shown in a marathon. The sportsmen of high qualification are investigational in age from 17 to 27 years. Sportsmen are practice mainly on distance of 1500m. The degree of deoxygenation during at run with different speed and his attitude is certain toward a maximal deoxygenation. The degree of including of anaerobic metabolism is during work of different power. The indexes of aerobic and anaerobic metabolism allow to forecast sporting results in at run.

  18. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man

    Science.gov (United States)

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2015-01-01

    Neuromuscular fatigue increases the amplitude of fluctuations in torque output during isometric contractions, but the effect of fatigue on the temporal structure, or complexity, of these fluctuations is not known. We hypothesised that fatigue would result in a loss of temporal complexity and a change in fractal scaling of the torque signal during isometric knee extensor exercise. Eleven healthy participants performed a maximal test (5 min of intermittent maximal voluntary contractions, MVCs), and a submaximal test (contractions at a target of 40% MVC performed until task failure), each with a 60% duty factor (6 s contraction, 4 s rest). Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque were quantified by calculating approximate entropy (ApEn), sample entropy (SampEn) and the detrended fluctuation analysis (DFA) scaling exponent α. Fresh submaximal contractions were more complex than maximal contractions (mean ± SEM, submaximal vs. maximal: ApEn 0.65 ± 0.09 vs. 0.15 ± 0.02; SampEn 0.62 ± 0.09 vs. 0.14 ± 0.02; DFA α 1.35 ± 0.04 vs. 1.55 ± 0.03; all P torque, fatigue reduces the neuromuscular system's adaptability to external perturbations. PMID:25664928

  19. The correlation between running economy and maximal oxygen uptake: cross-sectional and longitudinal relationships in highly trained distance runners.

    Science.gov (United States)

    Shaw, Andrew J; Ingham, Stephen A; Atkinson, Greg; Folland, Jonathan P

    2015-01-01

    A positive relationship between running economy and maximal oxygen uptake (V̇O2max) has been postulated in trained athletes, but previous evidence is equivocal and could have been confounded by statistical artefacts. Whether this relationship is preserved in response to running training (changes in running economy and V̇O2max) has yet to be explored. This study examined the relationships of (i) running economy and V̇O2max between runners, and (ii) the changes in running economy and V̇O2max that occur within runners in response to habitual training. 168 trained distance runners (males, n = 98, V̇O2max 73.0 ± 6.3 mL∙kg-1∙min-1; females, n = 70, V̇O2max 65.2 ± 5.9 mL kg-1∙min-1) performed a discontinuous submaximal running test to determine running economy (kcal∙km-1). A continuous incremental treadmill running test to volitional exhaustion was used to determine V̇O2max 54 participants (males, n = 27; females, n = 27) also completed at least one follow up assessment. Partial correlation analysis revealed small positive relationships between running economy and V̇O2max (males r = 0.26, females r = 0.25; Peconomy and V̇O2max in response to habitual training (r = 0.35; Peconomy and V̇O2max in highly trained distance runners. With >85% of the variance in these parameters unexplained by this relationship, these findings reaffirm that running economy and V̇O2max are primarily determined independently.

  20. Effects of 12-week overground walking training at ventilatory threshold velocity in type 2 diabetic women.

    Science.gov (United States)

    Belli, Taisa; Ribeiro, Luiz Fernando Paulino; Ackermann, Marco Aurélio; Baldissera, Vilmar; Gobatto, Claudio Alexandre; Galdino da Silva, Rozinaldo

    2011-09-01

    This study analyzed the effects of overground walking training at ventilatory threshold (VT) velocity on glycaemic control, body composition, physical fitness and lipid profile in DM2 women. Nineteen sedentary patients were randomly assigned to a control group (CG; n=10, 55.9±2.2 years) or a trained group (TG; n=9, 53.4±2.3 years). Both groups were subjected to anthropometric measures, a 12-h fasting blood sampling and a graded treadmill exercise test at baseline and after a 12-week period, during which TG followed a training program involving overground walking at VT velocity for 20-60min/session three times/week. Significant group×time interactions (P0.05) in fasting blood glucose, submaximal fitness parameters and lipid profile. Our results suggest that overground walking training at VT velocity improves long term glycaemic control, body composition and exercise capacity, attesting for the relevance of this parameter as an effective strategy for the exercise intensity prescription in DM2 population. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners

    Science.gov (United States)

    Finatto, Paula; Silva, Edson Soares Da; Okamura, Alexandre B.; Almada, Bruna P.; Oliveira, Henrique B.

    2018-01-01

    Purpose Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. Methods Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). Results Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. Conclusions Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners. PMID:29561907

  2. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners.

    Directory of Open Access Journals (Sweden)

    Paula Finatto

    Full Text Available Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet and an improvement in running performance is feasible with strength training of the postural and trunk muscles.Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16 or the Pilates group (PG, n = 16.Confirming our hypothesis, a significant improvement (p<0.05 was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min. Similarly, the PG (4.33±0.07 J.kg-1.m-1 had better responses than the CG (4.71±0.11 J.kg-1.m-1 during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG.Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners.

  3. Mechanical Alterations during 800-m Self-Paced Track Running.

    Science.gov (United States)

    Girard, Olivier; Millet, Gregoire P; Micallef, Jean-Paul

    2017-04-01

    We assessed the time course of running mechanical alterations during an 800-m. On a 200-m indoor track, 18 physical education students performed an 800-m self-paced run. Once per lap, ground reaction forces were measured by a 5-m-long force platform system, and used to determine running kinetics/kinematics and spring-mass characteristics. Compared with 100 m (19.4±1.8 km.h -1 ) running velocity progressively decreased at 300, 500 m but levelled-off at 700 m marks (-5.7±4.6, -10.4±8.3, and -9.1±13.5%, respectively; Ppush-off forces (-5.1±7.2%, P0.05) and leg compression (+2.8±3.9%; P>0.05) remained unchanged, whereas centre of mass vertical displacement (+24.0±7.0%; P0.05). During an 800 m by physical education students, highest running velocity was achieved early during the run, with a progressive decrease in the second half of the trial. While vertical ground force characteristics remained unchanged, non-specialist runners produced lower peak braking and push-off forces, in turn leading to shorter stride length. Spring-mass model characteristics changed toward lower vertical stiffness values, whereas leg stiffness did not change. © Georg Thieme Verlag KG Stuttgart · New York.

  4. A comparison of methods of predicting maximum oxygen uptake.

    OpenAIRE

    Grant, S; Corbett, K; Amjad, A M; Wilson, J; Aitchison, T

    1995-01-01

    The aim of this study was to compare the results from a Cooper walk run test, a multistage shuttle run test, and a submaximal cycle test with the direct measurement of maximum oxygen uptake on a treadmill. Three predictive tests of maximum oxygen uptake--linear extrapolation of heart rate of VO2 collected from a submaximal cycle ergometer test (predicted L/E), the Cooper 12 min walk, run test, and a multi-stage progressive shuttle run test (MST)--were performed by 22 young healthy males (mean...

  5. Cognitive Performance Enhancement Induced by Caffeine, Carbohydrate and Guarana Mouth Rinsing during Submaximal Exercise.

    Science.gov (United States)

    Pomportes, Laura; Brisswalter, Jeanick; Casini, Laurence; Hays, Arnaud; Davranche, Karen

    2017-06-09

    The aim of this study was to investigate the influence of serial mouth rinsing (MR) with nutritional supplements on cognitive performance (i.e., cognitive control and time perception) during a 40-min submaximal exercise. Twenty-four participants completed 4 counterbalanced experimental sessions, during which they performed MR with either placebo (PL), carbohydrate (CHO: 1.6 g/25 mL), guarana complex (GUAc: 0.4 g/25 mL) or caffeine (CAF: 67 mg/25 mL) before and twice during exercise. The present study provided some important new insights regarding the specific changes in cognitive performance induced by nutritional supplements. The main results were: (1) CHO, CAF and GUA MR likely led participants to improve temporal performance; (2) CAF MR likely improved cognitive control; and (3) CHO MR led to a likely decrease in subjective perception of effort at the end of the exercise compared to PL, GUA and CAF. Moreover, results have shown that performing 40-min submaximal exercise enhances information processing in terms of both speed and accuracy, improves temporal performance and does not alter cognitive control. The present study opens up new perspectives regarding the use of MR to optimize cognitive performance during physical exercise.

  6. Athletes and Sedentary Individuals: An Intergroup Comparison Utilizing a Pulmonary Function Ratio Obtained During Submaximal Exercise.

    Science.gov (United States)

    Maud, Peter J.

    A pulmonary function ratio describing oxygen extraction from alveolar ventilation was used for an intergroup comparison between three groups of athletes (rugby, basketball, and football players) and one group of sedentary subjects during steady-state submaximal exercise. The ratio and its component parts are determined from only three gas…

  7. Influence of footwear designed to boost energy return on running economy in comparison to a conventional running shoe.

    Science.gov (United States)

    Sinclair, J; Mcgrath, R; Brook, O; Taylor, P J; Dillon, S

    2016-01-01

    Running economy is a reflection of the amount of inspired oxygen required to maintain a given velocity and is considered a determining factor for running performance. Athletic footwear has been advocated as a mechanism by which running economy can be enhanced. New commercially available footwear has been developed in order to increase energy return, although their efficacy has not been investigated. This study aimed to examine the effects of energy return footwear on running economy in relation to conventional running shoes. Twelve male runners completed 6-min steady-state runs in conventional and energy return footwear. Overall, oxygen consumption (VO2), heart rate, respiratory exchange ratio, shoe comfort and rating of perceived exertion were assessed. Moreover, participants subjectively indicated which shoe condition they preferred for running. Differences in shoe comfort and physiological parameters were examined using Wilcoxon signed-rank tests, whilst shoe preferences were tested using a chi-square analysis. The results showed that VO2 and respiratory exchange ratio were significantly lower, and shoe comfort was significantly greater, in the energy return footwear. Given the relationship between running economy and running performance, these observations indicate that the energy return footwear may be associated with enhanced running performance in comparison to conventional shoes.

  8. Abnormal heart rate recovery and deficient chronotropic response after submaximal exercise in young Marfan syndrome patients.

    Science.gov (United States)

    Peres, Paulo; Carvalho, Antônio C; Perez, Ana Beatriz A; Medeiros, Wladimir M

    2016-10-01

    Marfan syndrome patients present important cardiac structural changes, ventricular dysfunction, and electrocardiographic changes. An abnormal heart rate response during or after exercise is an independent predictor of mortality and autonomic dysfunction. The aim of the present study was to compare heart rate recovery and chronotropic response obtained by cardiac reserve in patients with Marfan syndrome subjected to submaximal exercise. A total of 12 patients on β-blocker therapy and 13 off β-blocker therapy were compared with 12 healthy controls. They were subjected to submaximal exercise with lactate measurements. The heart rate recovery was obtained in the first minute of recovery and corrected for cardiac reserve and peak lactate concentration. Peak heart rate (141±16 versus 155±17 versus 174±8 bpm; p=0.001), heart rate reserve (58.7±9.4 versus 67.6±14.3 versus 82.6±4.8 bpm; p=0.001), heart rate recovery (22±6 versus 22±8 versus 34±9 bpm; p=0.001), and heart rate recovery/lactate (3±1 versus 3±1 versus 5±1 bpm/mmol/L; p=0.003) were different between Marfan groups and controls, respectively. All the patients with Marfan syndrome had heart rate recovery values below the mean observed in the control group. The absolute values of heart rate recovery were strongly correlated with the heart rate reserve (r=0.76; p=0.001). Marfan syndrome patients have reduced heart rate recovery and chronotropic deficit after submaximal exercise, and the chronotropic deficit is a strong determinant of heart rate recovery. These changes are suggestive of autonomic dysfunction.

  9. Experimental knee pain impairs submaximal force steadiness in isometric, eccentric, and concentric muscle actions.

    Science.gov (United States)

    Rice, David A; McNair, Peter J; Lewis, Gwyn N; Mannion, Jamie

    2015-09-12

    Populations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions. The study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided. Hypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0-10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant. Experimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the

  10. Neuromuscular function of the quadriceps muscle during isometric maximal, submaximal and submaximal fatiguing voluntary contractions in knee osteoarthrosis patients.

    Directory of Open Access Journals (Sweden)

    Anett Mau-Moeller

    and neuromuscular activation, but also with an impaired position and torque control at submaximal torque levels, an altered EMG-torque relationship and a higher performance fatigability of the quadriceps muscle. It is recommended that the rehabilitation includes strengthening and fatiguing exercises at maximal and submaximal force levels.

  11. Running Economy from a Muscle Energetics Perspective

    Directory of Open Access Journals (Sweden)

    Jared R. Fletcher

    2017-06-01

    Full Text Available The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun can be obtained with this approach. Erun is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of Erun from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting Erun are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics.

  12. The bilateral movement condition facilitates maximal but not submaximal paretic-limb grip force in people with post-stroke hemiparesis

    Science.gov (United States)

    DeJong, Stacey L.; Lang, Catherine E.

    2012-01-01

    Objectives Although healthy individuals have less force production capacity during bilateral muscle contractions compared to unilateral efforts, emerging evidence suggests that certain aspects of paretic upper limb task performance after stroke may be enhanced by moving bilaterally instead of unilaterally. We investigated whether the bilateral movement condition affects grip force differently on the paretic side of people with post-stroke hemiparesis, compared to their non-paretic side and both sides of healthy young adults. Methods Within a single session, we compared: 1) maximal grip force during unilateral vs. bilateral contractions on each side, and 2) force contributed by each side during a 30% submaximal bilateral contraction. Results Healthy controls produced less grip force in the bilateral condition, regardless of side (- 2.4% difference), and similar findings were observed on the non-paretic side of people with hemiparesis (- 4.5% difference). On the paretic side, however, maximal grip force was increased by the bilateral condition in most participants (+11.3% difference, on average). During submaximal bilateral contractions in each group, the two sides each contributed the same percentage of unilateral maximal force. Conclusions The bilateral condition facilitates paretic limb grip force at maximal, but not submaximal levels. Significance In some people with post-stroke hemiparesis, the paretic limb may benefit from bilateral training with high force requirements. PMID:22248812

  13. Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity

    DEFF Research Database (Denmark)

    Thomsen, J J; Rentsch, R L; Robach, P

    2007-01-01

    HuEpo treatment VO2max increased (Ptime-to-exhaustion (80% VO2max) was increased by 54.0 and 54.3% (Ptime point...... week 11), TTE was decreased by 26.8% as compared to pre rHuEpo administration. In conclusion, in healthy non-athlete subjects rHuEpo administration prolongs submaximal exercise performance by about 54% independently of the approximately 12% increase in VO2max....

  14. Body load in heel-strike running: the effect of a firm heel counter.

    Science.gov (United States)

    Jørgensen, U

    1990-01-01

    The effect of a firm heel counter in the shoe was studied in 11 athletes during submaximal heel-strike running on a treadmill under standardized conditions. The runners were tested in identical shoes with and without the distal 2 cm of the firm heel counter. Body load was expressed by absolute and relative VO2, surface EMG on the right leg, and g-force registration from an accelerometer below the right tibial tuberosity. The heel counter caused a 2.4% significant decrease in VO2, a reduction in musculoskeletal transients, and a decrease in the activity of the triceps surae and quadriceps muscles at heel strike. The changes found are expressions of kinematic adaptations in the body to increased or decreased load and provide functional evidence for the loading factor in the pathophysiology of overuse injuries.

  15. Cognitive Performance Enhancement Induced by Caffeine, Carbohydrate and Guarana Mouth Rinsing during Submaximal Exercise

    Directory of Open Access Journals (Sweden)

    Laura Pomportes

    2017-06-01

    Full Text Available The aim of this study was to investigate the influence of serial mouth rinsing (MR with nutritional supplements on cognitive performance (i.e., cognitive control and time perception during a 40-min submaximal exercise. Twenty-four participants completed 4 counterbalanced experimental sessions, during which they performed MR with either placebo (PL, carbohydrate (CHO: 1.6 g/25 mL, guarana complex (GUAc: 0.4 g/25 mL or caffeine (CAF: 67 mg/25 mL before and twice during exercise. The present study provided some important new insights regarding the specific changes in cognitive performance induced by nutritional supplements. The main results were: (1 CHO, CAF and GUA MR likely led participants to improve temporal performance; (2 CAF MR likely improved cognitive control; and (3 CHO MR led to a likely decrease in subjective perception of effort at the end of the exercise compared to PL, GUA and CAF. Moreover, results have shown that performing 40-min submaximal exercise enhances information processing in terms of both speed and accuracy, improves temporal performance and does not alter cognitive control. The present study opens up new perspectives regarding the use of MR to optimize cognitive performance during physical exercise.

  16. Evaluation of bacterial run and tumble motility parameters through trajectory analysis

    Science.gov (United States)

    Liang, Xiaomeng; Lu, Nanxi; Chang, Lin-Ching; Nguyen, Thanh H.; Massoudieh, Arash

    2018-04-01

    In this paper, a method for extraction of the behavior parameters of bacterial migration based on the run and tumble conceptual model is described. The methodology is applied to the microscopic images representing the motile movement of flagellated Azotobacter vinelandii. The bacterial cells are considered to change direction during both runs and tumbles as is evident from the movement trajectories. An unsupervised cluster analysis was performed to fractionate each bacterial trajectory into run and tumble segments, and then the distribution of parameters for each mode were extracted by fitting mathematical distributions best representing the data. A Gaussian copula was used to model the autocorrelation in swimming velocity. For both run and tumble modes, Gamma distribution was found to fit the marginal velocity best, and Logistic distribution was found to represent better the deviation angle than other distributions considered. For the transition rate distribution, log-logistic distribution and log-normal distribution, respectively, was found to do a better job than the traditionally agreed exponential distribution. A model was then developed to mimic the motility behavior of bacteria at the presence of flow. The model was applied to evaluate its ability to describe observed patterns of bacterial deposition on surfaces in a micro-model experiment with an approach velocity of 200 μm/s. It was found that the model can qualitatively reproduce the attachment results of the micro-model setting.

  17. Differences in physical fitness and throwing velocity among elite and amateur male handball players.

    Science.gov (United States)

    Gorostiaga, E M; Granados, C; Ibáñez, J; Izquierdo, M

    2005-04-01

    This study compared physical characteristics (body height, body mass [BM], body fat [BF], and free fatty mass [FFM]), one repetition maximum bench-press (1RM (BP)), jumping explosive strength (VJ), handball throwing velocity, power-load relationship of the leg and arm extensor muscles, 5- and 15-m sprint running time, and running endurance in two handball male teams: elite team, one of the world's leading teams (EM, n = 15) and amateur team, playing in the Spanish National Second Division (AM, n = 15). EM had similar values in body height, BF, VJ, 5- and 15-m sprint running time and running endurance than AM. However, the EM group gave higher values in BM (95.2 +/- 13 kg vs. 82.4 +/- 10 kg, p vs. 72.4 +/- 7 kg, p vs. 83 +/- 10 kg, p vs. 21.8 +/- 1.6 m . s (-1), p vs. 22.9 +/- 1.4 m . s (-1), p individual values of velocity at 30 % of 1RM (BP) and individual values of ball velocity during a standing throw. Significant correlations were observed in EM, but not in AM, between the individual values of velocity during 3-step running throw and the individual values of velocity at 30 % of 1RM (BP) (r = 0.72, p individual values of power at 100 % of body mass during half-squat actions (r = 0.62, p < 0.05). The present results suggest that more muscular and powerful players are at an advantage in handball. The differences observed in free fatty mass could partly explain the differences observed between groups in absolute maximal strength and muscle power. In EM, higher efficiency in handball throwing velocity may be associated with both upper and lower extremity power output capabilities, whereas in AM this relationship may be different. Endurance capacity does not seem to represent a limitation for elite performance in handball.

  18. Velocity distribution of women's 30-km cross-country skiing during Olympic Games from 2002-2014.

    Science.gov (United States)

    Erdmann, Wlodzimierz S; Dancewicz-Nosko, Dorota; Giovanis, Vasilios

    2017-12-01

    Within several investigated endurance sport disciplines the distribution of load of the best competitors has a manner of evenly or slightly rising velocity values. Unfortunately many other competitors have usually diminishing values or when they are very poor they have evenly values. The aim of this study was to investigate distribution of velocity within 30-km cross-country female skiers. Cross-country skiing runs were investigated of Olympic Games 2002-2014 (Salt Lake City, Turin, Vancouver, Sochi). At every race two 15 km or three 10 km loops of the same vertical profile were taken into account. The competitors were divided onto: A - winners, B - medallists, C - competitors who obtained places 4 to 10 at the finish line (medium runners), D - competitors who obtained places 11 to 30 at the finish line (poor runners). Velocity data presented on the web pages of several institutions were utilized. The competitors had their velocity distributed in a manner with usually diminishing values. While comparing velocity of sequential loops with the mean velocity the difference for the poor runners reached the value of almost 6 %, which was too high. There was significant (usually negative) correlation coefficient between values of velocity deviation for the first and second loops and the mean value of velocity for the entire distance for the better runners and mixed, i.e. positive and negative values for the poorer runners. It was postulated investigations of velocity distribution should be introduced in coaching in order to inform competitors about their running. This advise is especially important for the poorer runners. Up to now cross country skiers run for themselves. It should be discussed whether the tactics used by road and track runners, i.e. running with pace makers, can be introduced in cross country skiing. Also the use of a drone during training can be used in order to maintain proper pace.

  19. Which Instruments can Detect Submaximal Physical and Functional Capacity in Patients With Chronic Nonspecific Back Pain?: A Systematic Review

    NARCIS (Netherlands)

    van der Meer, Suzan; Trippolini, Maurizio A.; van der Palen, Jacobus Adrianus Maria; Verhoeven, Jan; Reneman, Michiel F.

    2013-01-01

    Objective. To evaluate the validity of instruments that claim to detect submaximal capacity when maximal capacity is requested in patients with chronic nonspecific musculoskeletal pain. Summary of Background Data. Several instruments have been developed to measure capacity in patients with chronic

  20. Which Instruments Can Detect Submaximal Physical and Functional Capacity in Patients With Chronic Nonspecific Back Pain? A Systematic Review

    NARCIS (Netherlands)

    van der Meer, Suzan; Trippolini, Maurizio A.; van der Palen, Job; Verhoeven, Jan; Reneman, Michiel F.

    2013-01-01

    Study Design. Systematic review. Objective. To evaluate the validity of instruments that claim to detect submaximal capacity when maximal capacity is requested in patients with chronic nonspecific musculoskeletal pain. Summary of Background Data. Several instruments have been developed to measure

  1. EFFECT OF ENERGY EXPENDITURE AND TRAINING STATUS ON LEPTIN RESPONSE TO SUB-MAXIMAL CYCLING

    Directory of Open Access Journals (Sweden)

    Anissa Bouassida

    2009-06-01

    Full Text Available We examined the leptin response and related hormones during and after two sub-maximal exercise protocols in trained and untrained subjects. During this study, plasma concentrations of leptin [Lep], insulin [I], cortisol [C], growth hormone [GH], glucose [G] and lactate [La] were measured. 7 elite volleyball trained players (TR and 7 untrained (UTR subjects (percent body fat: 13.2 ± 1.8 versus 15.7 ± 1.0, p < 0.01, respectively were examined after short and prolonged sub-maximal cycling exercise protocols (SP and PP. Venous blood samples were collected before each protocol, during, at the end, and after 2 and 24 h of recovery. SP and PP energy expenditures ranged from 470 ± 60 to 740 ± 90 kcal for TR and from 450 ± 60 to 710 ± 90 kcal for UTR, respectively. [Lep] was related to body fat percentage and body fat mass in TR (r = 0. 84, p < 0.05 and r = 0.93, p < 0.01 and in UTR (r = 0.89, p < 0.01 and r = 0.92, p < 0. 01, respectively. [Lep] did not change significantly during both protocols for both groups but was lower (p < 0.05 in all sampling in TR when compared to UTR. Plasma [I] decreased (p < 0.01 and [GH] increased (p < 0.01 significantly during both SP and PP and these hormones remained lower (I: p < 0.01 and higher (GH: p < 0.01 than pre-exercise levels after a 2-h recovery period, returning to base-line at 24-h recovery. Plasma [La] increased (p < 0.01 during both protocols for TR and UTR. There was no significant change in [C] and [G] during and after both protocols for all subjects. It is concluded that 1 leptin is not sensitive to acute short or prolonged sub-maximal exercises (with energy expenditure under 800 kcal in volleyball/ anaerobically trained athletes as in untrained subjects, 2 volleyball athletes showed significantly lower resting and exercise leptin response with respect to untrained subjects and 3 it appears that in these anaerobically trained athletes leptin response to exercise is more sensitive to the level of

  2. Aortopulmonary collateral flow quantification by MR at rest and during continuous submaximal exercise in patients with total cavopulmonary connection.

    Science.gov (United States)

    Mkrtchyan, Naira; Frank, Yvonne; Steinlechner, Eva; Calavrezos, Lenika; Meierhofer, Christian; Hager, Alfred; Martinoff, Stefan; Ewert, Peter; Stern, Heiko

    2017-11-06

    Aortopulmonary collateral flow is considered to have significant impact on the outcome of patients with single ventricle circulation and total cavopulmonary connection (TCPC). There is little information on collateral flow during exercise. To quantify aortopulmonary collateral flow at rest and during continuous submaximal exercise in clinical patients doing well with TCPC. Prospective, case controlled. Thirteen patients with TCPC (17 (11-37) years) and 13 age and sex-matched healthy controls (18 (11-38) years). 1.5T; free breathing; phase sensitive gradient echo sequence. Blood flow in the ascending and descending aorta and superior vena cava were measured at rest and during continuous submaximal physical exercise in patients and controls. Systemic blood flow (Q s ) was assumed to be represented by the sum of flow in the superior caval vein (Q svc ) and the descending aorta (Q AoD ) at the diaphragm level. Aortopulmonary collateral flow (Q coll ) was calculated by subtracting Q s from flow in the ascending aorta (Q AoA ). Mann-Whitney U-test and Wilcoxon test for comparison between groups and between rest and exercise. Absolute collateral flow in TCPC patients at rest was 0.4 l/min/m 2 (-0.1-1.2), corresponding to 14% (-2-42) of Q s . Collateral flow did not change during exercise (difference -0.01 (-0.7-1.0) l/min/m 2 , P = 0.97). TCPC patients had significantly lower Q s at rest (2.5 (1.6-4.1) vs. 3.5 (2.6-4.8) l/min/m 2 , P = 0.001) and during submaximal exercise (3.2 (2.0-6.0) vs. 4.8 (3.3-6.9) l/min/m 2 , P = 0.001), compared to healthy controls. The increase in Q s with exercise was also significantly lower in patients than in healthy controls (median 0.6 vs. 1.2 l/min/m 2 , P collateral flow at rest (14% of Q s ) compared to healthy controls, which does not change during submaximal exercise. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Relationship between running kinematic changes and time limit at vVO2max

    Directory of Open Access Journals (Sweden)

    Leonardo De Lucca

    2012-06-01

    Exhaustive running at maximal oxygen uptake velocity (vVO2max can alter running kinematic parameters and increase energy cost along the time. The aims of the present study were to compare characteristics of ankle and knee kinematics during running at vVO2max and to verify the relationship between changes in kinematic variables and time limit (Tlim. Eleven male volunteers, recreational players of team sports, performed an incremental running test until volitional exhaustion to determine vVO2max and a constant velocity test at vVO2max. Subjects were filmed continuously from the left sagittal plane at 210 Hz for further kinematic analysis. The maximal plantar flexion during swing (p<0.01 was the only variable that increased significantly from beginning to end of the run. Increase in ankle angle at contact was the only variable related to Tlim (r=0.64; p=0.035 and explained 34% of the performance in the test. These findings suggest that the individuals under study maintained a stable running style at vVO2max and that increase in plantar flexion explained the performance in this test when it was applied in non-runners.

  4. An Extreme Mountain Ultra-Marathon Decreases the Cost of Uphill Walking and Running.

    Science.gov (United States)

    Vernillo, Gianluca; Savoldelli, Aldo; Skafidas, Spyros; Zignoli, Andrea; La Torre, Antonio; Pellegrini, Barbara; Giardini, Guido; Trabucchi, Pietro; Millet, Grégoire P; Schena, Federico

    2016-01-01

    Purpose: To examine the effects of the world's most challenging mountain ultramarathon (MUM, 330 km, cumulative elevation gain of +24,000 m) on the energy cost and kinematics of different uphill gaits. Methods: Before (PRE) and immediately after (POST) the competition, 19 male athletes performed three submaximal 5-min treadmill exercise trials in a randomized order: walking at 5 km·h -1 , +20%; running at 6 km·h -1 , +15%; and running at 8 km·h -1 , +10%. During the three trials, energy cost was assessed using an indirect calorimetry system and spatiotemporal gait parameters were acquired with a floor-level high-density photoelectric cells system. Results: The average time of the study participants to complete the MUM was 129 h 43 min 48 s (range: 107 h 29 min 24 s to 144 h 21 min 0 s). Energy costs in walking (-11.5 ± 5.5%, P running condition decreased between PRE and POST, with a reduction both in the heart rate (-11.3, -10.0, and -9.3%, respectively) and oxygen uptake only for the walking condition (-6.5%). No consistent and significant changes in the kinematics variables were detected ( P -values from 0.10 to 0.96). Conclusion: Though fatigued after completing the MUM, the subjects were still able to maintain their uphill locomotion patterns noted at PRE. The decrease (improvement) in the energy costs was likely due to the prolonged and repetitive walking/running, reflecting a generic improvement in the mechanical efficiency of locomotion after ~130 h of uphill locomotion rather than constraints imposed by the activity on the musculoskeletal structure and function.

  5. Test results of Run-1 and Run-2 in steam generator safety test facility (SWAT-3)

    International Nuclear Information System (INIS)

    Kurihara, A.; Yatabe, Toshio; Tanabe, Hiromi; Hiroi, Hiroshi

    2003-07-01

    Large leak sodium-water reaction tests were carried out using SWAT-1 rig and SWAT-3 facility in Power Reactor and Nuclear Fuel Development Corporation (PNC) O-arai Engineering Center to obtain the data on the design of the prototype LMFBR Monju steam generator against a large leak accident. This report provides the results of SWAT-3 Runs 1 and 2. In Runs 1 and 2, the heat transfer tube bundle of the evaporator, fabricated by TOSHIBA/IHI, were used, and the pressure relief line was located at the top of evaporator. The water injection rates in the evaporator were 6.7 kg/s and 14.2 (initial)-9.7 kg/s in Runs 1 and 2 respectively, which corresponded to 3.3 tubes and 7.1 (initial)-4.8 tubes failure in actual size system according to iso-velocity modeling. Approximately two hundreds of measurement points were provided to collect data such as pressure, temperature, strain, sodium level, void, thrust load, acceleration, displacement, flow rate, and so on in each run. Initial spike pressures were 1.13 MPa and 2.62 MPa nearest to injection point in Runs 1 and 2 respectively, and the maximum quasi-steady pressures in evaporator were 0.49 MPa and 0.67 MPa in Runs 1 and 2. No secondary tube failure was observed. The rupture disc of evaporator (RD601) burst at 1.1s in Run-1 and at 0.7s in Run-2 after water injected, and the pressure relief system was well-functioned though a few items for improvement were found. (author)

  6. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions.

    Science.gov (United States)

    Dunne, Alan; Crampton, David; Egaña, Mikel

    2013-09-01

    Despite the widespread use of cold water immersion (CWI) in normothermic conditions, little data is available on its effect on subsequent endurance performance. This study examined the effect of CWI as a recovery strategy on subsequent running performance in normothermic ambient conditions (∼22°C). Nine endurance-trained men completed two submaximal exhaustive running bouts on three separate occasions. The running bouts (Ex1 and Ex2) were separated by 15min of un-immersed seated rest (CON), hip-level CWI at 8°C (CWI-8) or hip-level CWI at 15°C (CWI-15). Intestinal temperature, blood lactate and heart rate were recorded throughout and V˙O2, running economy and exercise times were recorded during the running sessions. Running time to failure (min) during Ex2 was significantly (p<0.05, ES=0.7) longer following CWI-8 (27.7±6.3) than CON (23.3±5) but not different between CWI-15 (26.3±3.4) and CON (p=0.06, ES=0.7) or CWI-8 and CWI-15 (p=0.4, ES=0.2). Qualitative analyses showed a 95% and 89% likely beneficial effect of CWI-8 and CWI-15 during Ex2 compared with CON, respectively. Time to failure during Ex2 was significantly shorter than Ex1 only during the CON condition. Intestinal temperature and HR were significantly lower for most of Ex2 during CWI-8 and CWI-15 compared with CON but they were similar at failure for the three conditions. Blood lactate, running economy and V˙O2 were not altered by CWI. These data indicate that a 15min period of cold water immersion applied between repeated exhaustive exercise bouts significantly reduces intestinal temperature and enhances post-immersion running performance in normothermic conditions. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. The changes in running economy during puberty in overweight and normal weight boys

    Directory of Open Access Journals (Sweden)

    Maciejczyk Marcin

    2015-03-01

    Full Text Available Study aim: running economy (RE is important indicator of endurance performance. During puberty dynamic changes in body composition and function are observed, as such RE is also expected to change. The aim of the study was to compare the running economy (RE in overweight and normoweight boys during a running exercise performed with constant velocity, and the assessment of changes in RE during puberty.

  8. An electromyographic-based test for estimating neuromuscular fatigue during incremental treadmill running

    International Nuclear Information System (INIS)

    Camic, Clayton L; Kovacs, Attila J; Hill, Ethan C; Calantoni, Austin M; Yemm, Allison J; Enquist, Evan A; VanDusseldorp, Trisha A

    2014-01-01

    The purposes of the present study were two fold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWC FT ) from electromyographic (EMG) amplitude data during incremental cycle ergometry could be applied to treadmill running to derive a new neuromuscular fatigue threshold for running, and (2) to compare the running velocities associated with the PWC FT , ventilatory threshold (VT), and respiratory compensation point (RCP). Fifteen college-aged subjects (21.5  ±  1.3 y, 68.7  ±  10.5 kg, 175.9  ±  6.7 cm) performed an incremental treadmill test to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences in running velocities between the VT (11.3  ±  1.3 km h −1 ) and PWC FT (14.0  ±  2.3 km h −1 ), VT and RCP (14.0  ±  1.8 km h −1 ), but not the PWC FT and RCP. The findings of the present study indicated that the PWC FT model could be applied to a single continuous, incremental treadmill test to estimate the maximal running velocity that can be maintained prior to the onset of neuromuscular fatigue. In addition, these findings suggested that the PWC FT , like the RCP, may be used to differentiate the heavy from severe domains of exercise intensity. (paper)

  9. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review

    Directory of Open Access Journals (Sweden)

    Julia Ratter

    2014-09-01

    [Ratter J, Radlinger L, Lucas C (2014 Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review. Journal of Physiotherapy 60: 144–150

  10. Effects of posture on upper and lower limb peripheral resistance following submaximal cycling.

    Science.gov (United States)

    Swan, P D; Spitler, D L; Todd, M K; Maupin, J L; Lewis, C L; Darragh, P M

    1989-09-01

    The purpose of this study was to determine postural effects on upper and lower limb peripheral resistance (PR) after submaximal exercise. Twelve subjects (six men and six women) completed submaximal cycle ergometer tests (60% age-predicted maximum heart rate) in the supine and upright seated positions. Each test included 20 minutes of rest, 20 minutes of cycling, and 15 minutes of recovery. Stroke volume and heart rate were determined by impedance cardiography, and blood pressure was measured by auscultation during rest, immediately after exercise, and at minutes 1-5, 7.5, 10, 12.5, and 15 of recovery. Peripheral resistance was calculated from values of mean arterial pressure and cardiac output. No significant (p less than 0.05) postural differences in PR were noted during rest for either limb. Immediately after exercise, PR decreased (55% to 61%) from resting levels in both limbs, independent of posture. Recovery ankle PR values were significantly different between postures. Upright ankle PR returned to 92% of the resting level within four minutes of recovery, compared to 76% of the resting level after 15 minutes in the supine posture. Peripheral resistance values in the supine and upright arm were not affected by posture and demonstrated a gradual pattern of recovery similar to the supine ankle recovery response (85% to 88% of rest within 15 minutes). The accelerated recovery rate of PR after upright exercise may result from local vasoconstriction mediated by a central regulatory response to stimulation from gravitational pressure on lower body circulation.

  11. Run don't walk: locomotor performance of geckos on wet substrates.

    Science.gov (United States)

    Stark, Alyssa Y; Ohlemacher, Jocelyn; Knight, Ashley; Niewiarowski, Peter H

    2015-08-01

    The gecko adhesive system has been under particular scrutiny for over a decade, as the field has recently attracted attention for its application to bio-inspired design. However, little is known about how the adhesive system behaves in ecologically relevant conditions. Geckos inhabit a variety of environments, many of which are characterized by high temperature, humidity and rain. The van der Waals-based gecko adhesive system should be particularly challenged by wet substrates because water can disrupt the intimate contact necessary for adhesion. While a few previous studies have focused on the clinging ability of geckos on wet substrates, we tested a dynamic performance characteristic, sprint velocity. To better understand how substrate wettability and running orientation affect locomotor performance of multiple species on wet substrates, we measured average sprint velocity of five species of gecko on substrates that were either hydrophilic or intermediately wetting and oriented either vertically or horizontally. Surprisingly, we found no indication that wet substrates impact average sprint velocity over 1 m, and rather, in some species, sprint velocity was increased on wet substrates rather than reduced. When investigating physical characteristics and behavior that may be associated with running on wet substrates, such as total number of stops, slips and wet toes at the completion of a race, we found that there may be habitat-related differences between some species. Our results show that in general, unlike clinging and walking, geckos running along wet substrates suffer no significant loss in locomotor performance over short distances. © 2015. Published by The Company of Biologists Ltd.

  12. The association between submaximal quadriceps force steadiness and the knee adduction moment during walking in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Sørensen, Tina Juul; Langberg, Henning; Aaboe, Jens

    2011-01-01

    in this population. METHODS: Forty-one patients with knee OA (34 females and 7 males) were included in the study. Submaximal isometric quadriceps force steadiness was measured during a force target-tracking task. Peak knee adduction moments during ambulation were measured using a 3-dimensional gait analysis system...

  13. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    Science.gov (United States)

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in

  14. An extreme mountain ultra-marathon decreases the cost of uphill walking and running

    Directory of Open Access Journals (Sweden)

    Gianluca Vernillo

    2016-11-01

    Full Text Available Purpose: To examine the effects of the world’s most challenging mountain ultramarathon (MUM, 330 km, cumulative elevation gain of +24000 m on the energy cost and kinematics of different uphill gaits. Methods: Before (PRE and immediately after (POST the competition, 19 male athletes performed three submaximal 5-min treadmill exercise trials in a randomized order: walking at 5 km·h-1, +20%; running at 6 km·h-1, +15%; and running at 8 km·h-1, +10%. During the three trials, energy cost was assessed using an indirect calorimetry system and spatiotemporal gait parameters were acquired with a floor-level high-density photoelectric cells system. Results: The average time of the study participants to complete the MUM was 129 h 43 min 48 s (range: 107 h 29 min 24 s to 144 h 21 min 0 s. Energy costs in walking (-11.5 ± 5.5%, P < 0.001, as well as in the first (-7.2 ± 3.1%, P = 0.01 and second (-7.0 ± 3.9%, P = 0.02 running condition decreased between PRE and POST, with a reduction both in the heart rate (-11.3%, -10.0%, and -9.3%, respectively and oxygen uptake only for the walking condition (-6.5%. No consistent and significant changes in the kinematics variables were detected (P values from 0.10 to 0.96. Conclusion: Though fatigued after completing the MUM, the subjects were still able to maintain their uphill locomotion patterns noted at PRE. The decrease (improvement in the energy costs was likely due to the prolonged and repetitive walking/running, reflecting a generic improvement in the mechanical efficiency of locomotion after ~130 h of uphill locomotion rather than constraints imposed by the activity on the musculoskeletal structure and function.

  15. Comparison of minimalist footwear strategies for simulating barefoot running: a randomized crossover study.

    Directory of Open Access Journals (Sweden)

    Karsten Hollander

    Full Text Available Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km x week(-1 performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m x s(-1 using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (p<0.001 at all running velocities. Posthoc pairwise comparisons showed significant differences (p<0.001 between running barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m x s(-1, followed by running with uncushioned minimalist shoes (62.9%, cushioned minimalist (88.6% and standard shoes (94.3%. Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running.

  16. Comparison of minimalist footwear strategies for simulating barefoot running: a randomized crossover study.

    Science.gov (United States)

    Hollander, Karsten; Argubi-Wollesen, Andreas; Reer, Rüdiger; Zech, Astrid

    2015-01-01

    Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km x week(-1)) performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m x s(-1)) using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (prunning velocities. Posthoc pairwise comparisons showed significant differences (prunning barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m x s(-1)), followed by running with uncushioned minimalist shoes (62.9%), cushioned minimalist (88.6%) and standard shoes (94.3%). Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running.

  17. Estimating Stair Running Performance Using Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Lauro V. Ojeda

    2017-11-01

    Full Text Available Stair running, both ascending and descending, is a challenging aerobic exercise that many athletes, recreational runners, and soldiers perform during training. Studying biomechanics of stair running over multiple steps has been limited by the practical challenges presented while using optical-based motion tracking systems. We propose using foot-mounted inertial measurement units (IMUs as a solution as they enable unrestricted motion capture in any environment and without need for external references. In particular, this paper presents methods for estimating foot velocity and trajectory during stair running using foot-mounted IMUs. Computational methods leverage the stationary periods occurring during the stance phase and known stair geometry to estimate foot orientation and trajectory, ultimately used to calculate stride metrics. These calculations, applied to human participant stair running data, reveal performance trends through timing, trajectory, energy, and force stride metrics. We present the results of our analysis of experimental data collected on eleven subjects. Overall, we determine that for either ascending or descending, the stance time is the strongest predictor of speed as shown by its high correlation with stride time.

  18. Run-away electrons and plasma pinching in a high-current diode

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.

    1984-01-01

    The electrons run-away process in space-confined plasma with current is considered. It has been found that the effect of the proper magnetic field of a current leads to appearance, in add tion to the Dreicer mechanism, of other run-away mechanism in the process of radial oscillations of electrons accelerating near the axis. The appearance of run-away electrons from a thermal velocities region occurs in the course of collisions as well as radial drift. The thresholds of Dreicer run-away and drift are determined. The conditions of formation of Z-pinch current envelope and its collisionless compression by the ''snow plough'' type for the 10-100 ns of high-current accelerator pulse duration are elucidated

  19. Effect of gamma radiation on the concentration of pyruvate and lactate in erythrocytes of healthy men after submaximal physical exercise

    International Nuclear Information System (INIS)

    Zagorski, T.; Dudek, I.; Berkan, L.; Chmielewski, H.; Kedziora, J.

    1993-01-01

    The aim of this work was to study the effect of gamma radiation and submaximal physical exercise on the concentration of final products of anaerobic glycolytic pathway in erythrocytes of healthy men. Twenty one men aged 20-22 were examined. They underwent physical exercise at doses of 2 w/kg body weight for 15 min. Erythrocytes were taken in the rest and after physical exercise and were exposed to gamma radiation (500 Gy doses) from 60 Co source. The concentration of pyruvate was estimated by Fermognost tests and the concentration of lactate by Boehringer Mannheim tests. The submaximal physical exercise was found to cause a significantly increased concentration of pyruvate and lactate in the non-radiated and irradiated erythrocytes. Gamma radiation at 500 Gy dose was found to increase concentration of pyruvate in erythrocytes (in the rest and after physical exercise) with simultaneous decrease of lactate concentration. (author). 17 refs, 1 tab

  20. Relationship between lower limbs kinematic variables and effectiveness of sprint during maximum velocity phase.

    Science.gov (United States)

    Struzik, Artur; Konieczny, Grzegorz; Grzesik, Kamila; Stawarz, Mateusz; Winiarski, Sławomir; Rokita, Andrzej

    2015-01-01

    The aim of the study was to determine the relationships between time of running over a 15-25 m section of a 30-meter run along a straight line and changes in the angle and angular velocity observed in ankle, knee and hip joints. Therefore, the authors attempted to answer the question of whether a technique of lower limbs movement during the phase of sprint maximum velocity significantly correlates with the time of running over this section. A group of 14 young people from the Lower Silesia Voivodeship Team participated in the experiment. A Fusion Smart Speed System was employed for running time measurements. The kinematic data were recorded using Noraxon MyoMotion system. There were observed statistically significant relationships between sprint time over a section from 15 to 25 m and left hip rotation (positive) and between this time and left and right ankle joint dorsi-plantar flexion (negative). During the maximum velocity phase of a 30 m sprint, the effect of dorsi-plantar flexion performed in the whole range of motion was found to be beneficial. This can be attributed to the use of elastic energy released in the stride cycle. Further, hip rotation should be minimized, which makes the stride aligned more along a line of running (a straight line) instead of from side to side.

  1. The effect of recreational soccer training and running on postural balance in untrained men

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Krustrup, Peter

    2011-01-01

    The aim of this study was to examine the effect of intense intermittent exercise performed as soccer training or interval running in comparison with continuous endurance running exercise on postural balance in young healthy untrained males. Young sedentary men were randomized to soccer training...... strength and countermovement jump velocity. Postural control was improved in response to 12 weeks of soccer training and high-intensity interval running, respectively, while less-marked changes were observed following continuous running. Notably, the reduced variability in CoP acceleration after soccer...

  2. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review

    NARCIS (Netherlands)

    Ratter, Julia; Radlinger, Lorenz; Lucas, Cees

    2014-01-01

    Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Systematic review of studies of the psychometric properties of exercise tests. People older than 18 years with chronic pain, fibromyalgia and chronic fatigue

  3. The effect of menstruation on chosen physiological and biochemical reactions caused by the physical effort with the submaximal intensity

    Directory of Open Access Journals (Sweden)

    P Zieliński

    2003-03-01

    Full Text Available The aim of this work was to determine the influence of the menstruation phase on changes of respective indicators of the gas exchange and on biochemical parameters of blood during physical efforts with the sub-maximal intensity. Fifteen female students of the Academy of Physical Education took part in the study. Girls were aged from 19 to 22 years old and did not practice sports. The effort tests were conducted in the follicular and luteal phase of two succeeding menstrual cycles. As far the aerobic capacity determination is concerned, one cyclo-ergometric test with graded effort was conducted and it was performed till the “refusal”. It allowed to mark a threshold (TDMA and a maximal level of physiological and biochemical indicators. Basing on the results of the graded test individual loads were determined for every next effort trial (repeated 4 times in every phase of the two succeeding menstrual cycles. The aim of this trial was to evaluate the reaction of women’s constitution on work with the sub-maximal intensity. The above trial consisted on two 10 min efforts divided with the 2 min pause (the first effort with the intensity of 80% of the TDMA threshold, second with the intensity bigger about 30-40% of difference between TDMA and a maximal load established by the graded test. The research did not reveal statistically significant differentiation as considering effort changes of basic physiological and biochemical indicators, determining reaction of women’s organisms on work with the sub- and over- threshold intensity (TDMA. It showed that menstruation has not significant effect on the level of changes of analysed parameters caused by the physical effort with the sub-maximal intensity.

  4. Effects of a 4-week high-intensity interval training on pacing during 5-km running trial

    Directory of Open Access Journals (Sweden)

    R. Silva

    2017-10-01

    Full Text Available This study analyzed the influence of a 4-week high-intensity interval training on the pacing strategy adopted by runners during a 5-km running trial. Sixteen male recreational long-distance runners were randomly assigned to a control group (CON, n=8 or a high-intensity interval training group (HIIT, n=8. The HIIT group performed high-intensity interval-training twice per week, while the CON group maintained their regular training program. Before and after the training period, the runners performed an incremental exercise test to exhaustion to measure the onset of blood lactate accumulation, maximal oxygen uptake (VO2max, and peak treadmill speed (PTS. A submaximal constant-speed test to measure the running economy (RE and a 5-km running trial on an outdoor track to establish pacing strategy and performance were also done. During the 5-km running trial, the rating of perceived exertion (RPE and time to cover the 5-km trial (T5 were registered. After the training period, there were significant improvements in the HIIT group of ∼7 and 5% for RE (P=0.012 and PTS (P=0.019, respectively. There was no significant difference between the groups for VO2max (P=0.495 or onset of blood lactate accumulation (P=0.101. No difference was found in the parameters measured during the 5-km trial before the training period between HIIT and CON (P>0.05. These findings suggest that 4 weeks of HIIT can improve some traditional physiological variables related to endurance performance (RE and PTS, but it does not alter the perception of effort, pacing strategy, or overall performance during a 5-km running trial.

  5. Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise.

    Science.gov (United States)

    Koskinen, Satu O A; Kyröläinen, Heikki; Flink, Riina; Selänne, Harri P; Gagnon, Sheila S; Ahtiainen, Juha P; Nindl, Bradley C; Lehti, Maarit

    2017-11-01

    Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump height and increased serum creatine kinase activities as indirect markers for muscle damage and HSP27 immunostainings on muscle biopsies as a direct marker for muscle damage indicated that the current exercised protocol caused muscle damage. mRNA levels for four (MLP, Ankrd1/CARP, MuRF1 and MuRF2) out of the five studied stress sensors significantly (p exercise. The magnitude of MLP and Ankrd2 responses was related to the proportion of type 1 myofibres. Our data showed that the submaximal exhaustive exercise with subject's own physical fitness level activates titin-based stretch-sensing proteins. These results suggest that both degenerative and regenerative pathways are activated in very early phase after the exercise or probably already during the exercise. Activation of these proteins represents an initial step forward adaptive remodelling of the exercised muscle and may also be involved in the initiation of myofibre repair.

  6. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review.

    Science.gov (United States)

    Ratter, Julia; Radlinger, Lorenz; Lucas, Cees

    2014-09-01

    Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Systematic review of studies of the psychometric properties of exercise tests. People older than 18 years with chronic pain, fibromyalgia and chronic fatigue disorders. Studies of the measurement properties of tests of physical capacity in people with chronic pain, fibromyalgia or chronic fatigue disorders were included. Studies were required to report: reliability coefficients (intraclass correlation coefficient, alpha reliability coefficient, limits of agreements and Bland-Altman plots); validity coefficients (intraclass correlation coefficient, Spearman's correlation, Kendal T coefficient, Pearson's correlation); or dropout rates. Fourteen studies were eligible: none had low risk of bias, 10 had unclear risk of bias and four had high risk of bias. The included studies evaluated: Åstrand test; modified Åstrand test; Lean body mass-based Åstrand test; submaximal bicycle ergometer test following another protocol other than Åstrand test; 2-km walk test; 5-minute, 6-minute and 10-minute walk tests; shuttle walk test; and modified symptom-limited Bruce treadmill test. None of the studies assessed maximal exercise tests. Where they had been tested, reliability and validity were generally high. Dropout rates were generally acceptable. The 2-km walk test was not recommended in fibromyalgia. Moderate evidence was found for reliability, validity and acceptability of submaximal exercise tests in patients with chronic pain, fibromyalgia or chronic fatigue. There is no evidence about maximal exercise tests in patients with chronic pain, fibromyalgia and chronic fatigue. Copyright © 2014. Published by Elsevier B.V.

  7. The Power of Auditory-Motor Synchronization in Sports: Enhancing Running Performance by Coupling Cadence with the Right Beats

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  8. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Directory of Open Access Journals (Sweden)

    Robert Jan Bood

    Full Text Available Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1 a control condition without acoustic stimuli, 2 a metronome condition with a sequence of beeps matching participants' cadence (synchronization, and 3 a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation. Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps. These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  9. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants' cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory

  10. Mechanical alterations during interval-training treadmill runs in high-level male team-sport players.

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P

    2017-01-01

    To examine mechanical alterations during interval-training treadmill runs in high-level team-sport players. Within-participants repeated measures. Twenty high-level male field-hockey players performed six 30-s runs at 5.53±0.19ms -1 corresponding to 115% of their velocity associated with maximal oxygen uptake (vVO 2max ) with 30-s passive recovery on an instrumented treadmill. Continuous measurement of running kinetics/kinematics and spring-mass characteristics were performed and values were subsequently averaged over 20s (8th-28ths) for comparison. Contact time (+1.1±4.3%; p=0.044), aerial time (+4.1±5.3%; p=0.001), step length (+2.4±2.2%; pteam-sport players modified their mechanical behaviour towards lower vertical stiffness while preserving a constant leg stiffness. Maintenance of running velocity induced longer step lengths and decreased step frequencies that were also accompanied by increased impact loading rates. These mechanical alterations occurred early during the set. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Activation of selected shoulder muscles during unilateral wall and bench press tasks under submaximal isometric effort.

    Science.gov (United States)

    Tucci, Helga T; Ciol, Marcia A; de Araújo, Rodrigo C; de Andrade, Rodrigo; Martins, Jaqueline; McQuade, Kevin J; Oliveira, Anamaria S

    2011-07-01

    Controlled laboratory study. To assess the activation of 7 shoulder muscles under 2 closed kinetic chain (CKC) tasks for the upper extremity using submaximal isometric effort, thus providing relative quantification of muscular isometric effort for these muscles across the CKC exercises, which may be applied to rehabilitation protocols for individuals with shoulder weakness. CKC exercises favor joint congruence, reduce shear load, and promote joint dynamic stability. Additionally, knowledge about glenohumeral and periscapular muscle activity elicited during CKC exercises may help clinicians to design protocols for shoulder rehabilitation. Using surface electromyography, activation level was measured across 7 shoulder muscles in 20 healthy males, during the performance of a submaximal isometric wall press and bench press. Signals were normalized to the maximal voluntary isometric contraction, and, using paired t tests, data were analyzed between the exercises for each muscle. Compared to the wall press, the bench press elicited higher activity for most muscles, except for the upper trapezius. Levels of activity were usually low but were above 20% maximal voluntary isometric contraction for the serratus anterior on both tasks, and for the long head triceps brachii on the bench press. Both the bench press and wall press, as performed in this study, led to relatively low EMG activation levels for the muscles measured and may be considered for use in the early phases of rehabilitation.

  12. Myocardial 201Tl washout after combined dipyridamole submaximal exercise stress: Reference values from different patient groups

    International Nuclear Information System (INIS)

    Fridrich, L.

    1989-01-01

    Dipyridamole stress is favorable in patients unable to exercise maximally for 201 Tl myocardial scintigraphy. Aside from an analysis of uptake defects, proper washout analysis can be limited by heart rate variations when isolated dipyridamole stress is used. Heart rate standardized 201 Tl washout kinetics after a combined dipyridamole and submaximal exercise stress protocol (CDSE), feasible in elderly patients as well as in patients with peripheral artery disease, were therefore studied to investigate the 201 Tl washout after CDSE in differently defined patient groups: Group I comprised 19 patients with documented heart disease and angiographically excluded coronary artery disease (CAD); group II contained 17 patients with a very low likelihood of CAD determined by both normal exercise radionuclide ventriculography and normal 201 Tl uptake. Group III comprised 56 patients with a 50% pretest likelihood of CAD but normal 201 Tl uptake. Mean washout values were nearly identical in all groups. Despite similar uptake patterns, however, washout standardized by CDSE was significantly lower than the normal washout values after maximal treadmill exercise. Thus an obviously lower 201 Tl washout after CDSE than after maximal treadmill exercise must be considered if washout analysis criteria after dipyridamole are applied to evaluate ischemic heart disease. Nevertheless, heart rate elevation achieved by additional submaximal exercise stress seems necessary, adequate and clinically safe for standardisation of washout analysis in dipyridamole 201 Tl scintigraphy. (orig.)

  13. The drift velocity monitoring system of the CMS barrel muon chambers

    CERN Document Server

    Altenhoefer, Georg Friedrich; Heidemann, Carsten Andreas; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel Francois

    2017-01-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  14. The drift velocity monitoring system of the CMS barrel muon chambers

    Science.gov (United States)

    Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel

    2018-04-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  15. Influence of experimental interfering occlusal contacts on the activity of the anterior temporal and masseter muscles during submaximal and maximal bite in the intercuspal position.

    Science.gov (United States)

    Sheikholeslam, A; Riise, C

    1983-05-01

    The effects of an intercuspal occlusal interference on the pattern of activity of the anterior temporal and masseter muscles during submaximal and maximal bite, were studied in eleven volunteers with complete, natural dentitions. The results show that, during maximal and submaximal bite an occlusal interference (about 0.5 mm) in the intercuspal position is able to disturb the almost symmetric pattern of muscular activity in the anterior temporal and masseter muscles. Further, the level of muscular activity during maximal bite decreased significantly in all muscles studied. In some subjects, the decrease of muscular activity could still be observed one week after insertion of the interfering contact. After eliminating the interference, the muscular co-ordination pattern improved and the level of muscular activity increased significantly.

  16. Effects of music tempo upon submaximal cycling performance.

    Science.gov (United States)

    Waterhouse, J; Hudson, P; Edwards, B

    2010-08-01

    In an in vivo laboratory controlled study, 12 healthy male students cycled at self-chosen work-rates while listening to a program of six popular music tracks of different tempi. The program lasted about 25 min and was performed on three occasions--unknown to the participants, its tempo was normal, increased by 10% or decreased by 10%. Work done, distance covered and cadence were measured at the end of each track, as were heart rate and subjective measures of exertion, thermal comfort and how much the music was liked. Speeding up the music program increased distance covered/unit time, power and pedal cadence by 2.1%, 3.5% and 0.7%, respectively; slowing the program produced falls of 3.8%, 9.8% and 5.9%. Average heart rate changes were +0.1% (faster program) and -2.2% (slower program). Perceived exertion and how much the music was liked increased (faster program) by 2.4% and 1.3%, respectively, and decreased (slower program) by 3.6% and 35.4%. That is, healthy individuals performing submaximal exercise not only worked harder with faster music but also chose to do so and enjoyed the music more when it was played at a faster tempo. Implications of these findings for improving training regimens are discussed.

  17. Development and validation of the European Cluster Assimilation Techniques run libraries

    Science.gov (United States)

    Facskó, G.; Gordeev, E.; Palmroth, M.; Honkonen, I.; Janhunen, P.; Sergeev, V.; Kauristie, K.; Milan, S.

    2012-04-01

    The European Commission funded the European Cluster Assimilation Techniques (ECLAT) project as a collaboration of five leader European universities and research institutes. A main contribution of the Finnish Meteorological Institute (FMI) is to provide a wide range global MHD runs with the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS). The runs are divided in two categories: Synthetic runs investigating the extent of solar wind drivers that can influence magnetospheric dynamics, as well as dynamic runs using measured solar wind data as input. Here we consider the first set of runs with synthetic solar wind input. The solar wind density, velocity and the interplanetary magnetic field had different magnitudes and orientations; furthermore two F10.7 flux values were selected for solar radiation minimum and maximum values. The solar wind parameter values were constant such that a constant stable solution was archived. All configurations were run several times with three different (-15°, 0°, +15°) tilt angles in the GSE X-Z plane. The result of the 192 simulations named so called "synthetic run library" were visualized and uploaded to the homepage of the FMI after validation. Here we present details of these runs.

  18. Pump speed modulations and sub-maximal exercise tolerance in left ventricular assist device recipients

    DEFF Research Database (Denmark)

    Jung, Mette Holme; Houston, Brian; Russell, Stuart D

    2017-01-01

    of the 2 sub-maximal tests was determined by randomization. Both patient and physician were blinded to the sequence. Exercise duration, oxygen consumption (VO2) and rate of perceived exertion (RPE), using the Borg scale (score 6 to 20), were recorded. RESULTS: Nineteen patients (all with a HeartMate II...... ventricular assist device) completed 57 exercise tests. Baseline pump speed was 9,326 ± 378 rpm. At AT, workload was 63 ± 26 W (25 to 115 W) and VO2 was 79 ± 14% of maximum. Exercise duration improved by 106 ± 217 seconds (~13%) in Speedinc compared with Speedbase (837 ± 358 vs 942 ± 359 seconds; p = 0...

  19. Effects of endurance training and competition on exercise tests in relatively untrained people.

    Science.gov (United States)

    Verstappen, F T; Janssen, G M; Does, R J

    1989-10-01

    One hundred fourteen subjects (34 +/- 8 years) without any competition background took part in an endurance training study to be completed after 1.5 years with running a marathon. Ultimately, 60 males and 18 females achieved that goal. The training program, carefully supervised, was divided into three phases with a maximum of 45, 70, and 110 km/week training volume and concluded with a performance race of 15, 25, and 42.195 km, respectively. Three days before and 3 and 5 days after each race, 35 subjects were selected to perform a progressive treadmill test and the remaining subjects participated in performing field tests of running 400 and 1000 m. The maximal velocity achieved in the treadmill test was 4.75 +/- 0.36 m.s-1 for males and 4.18 +/- 0.28 m.s-1 for females; it remained constant throughout the study. However, the running velocity at 4 mmol.1(-1) plasma lactate concentration increased about 10% from phase 1 to 3. In the females this rise already appeared to be completed in phase 2. Heart rate showed a tendency to increase at both submaximal and maximal exercise from training phase 1 to 2 and 3, whereas plasma lactate concentration showed a decreasing tendency. Three days after the 25 km and the marathon race the maximal running velocity in the exercise test was 2%-4% lower compared with the pre-race test (P less than 0.05). Five days after the race this difference again faded away. This small decline in running performance was not reflected in changes of physiologic responses such as heart rate or plasma lactate concentration.

  20. Changes in the lipid composition of blood under the influence of a single submaximal exercise capacity (experimental research.

    Directory of Open Access Journals (Sweden)

    Ermolaeva E.N.

    2015-06-01

    Full Text Available In acute physical exercise, there is a change in oxygen delivery working tissues, blood gas transport function and efficiency of the use of oxygen by cells in the process of metabolism, which is the basis for compensation for physical activities. Lipid metabolism plays an important role in the energy supply of muscle activity. The aim of our research is to study the effect of a single submaximal exercise capacity by changing the lipid profile of peripheral blood. Materials and Methods. The study was performed on 18 white rats. Model of acute exercise: animals swam 4 minutes with a load weighing 20% of body weight. Blood sampling was performed by intracardiac way, right after exercise. The blood lipid profile was determined. Results. In the experiment reported an increase in triglycerides, total cholesterol, very low-density lipoproteins, but the atherogenic ratio is maintained at the control values, due to a significant increase in the level of high-density lipoprotein. Conclusion. Acute submaximal exercise capacity by untrained body has an atherogenic effect. Working muscles during physical activity is a major consumer of free fatty acids, which are the source of atherogenic lipoprotein form of the very low and low density.

  1. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    Science.gov (United States)

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede

  2. Running the running

    OpenAIRE

    Cabass, Giovanni; Di Valentino, Eleonora; Melchiorri, Alessandro; Pajer, Enrico; Silk, Joseph

    2016-01-01

    We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\\alpha_\\mathrm{s} = \\mathrm{d}n_{\\mathrm{s}} / \\mathrm{d}\\log k$ and the running of the running $\\beta_{\\mathrm{s}} = \\mathrm{d}\\alpha_{\\mathrm{s}} / \\mathrm{d}\\log k$ of the spectral index $n_{\\mathrm{s}}$ of primordial scalar fluctuations. We find $\\alpha_\\mathrm{s}=0.011\\pm0.010$ and $\\beta_\\mathrm{s}=0.027\\...

  3. Increased Blood Lactate Level Deteriorates Running Economy in World Class Endurance Athletes.

    Science.gov (United States)

    Hoff, Jan; Støren, Øyvind; Finstad, Arnstein; Wang, Eivind; Helgerud, Jan

    2016-05-01

    Blood lactate accumulation is associated with development of muscle fatigue and negatively correlated to endurance performance. No research has quantified the effects of lactate presence at moderate levels of lactate accumulation. The purpose of this study was to test whether 2 moderate blood lactate concentration levels affect running economy (RE) when running at the individual lactate threshold (LT). Seven male world class endurance athletes with an average V[Combining Dot Above]O2max of 80.7 ± 2.7 ml·kg·min or 5.8 ± 0.5 L·min participated in this study. After the V[Combining Dot Above]O2max test, the subjects were resting or walking and in a random order tested for RE at their LT velocity when the blood lactate level reached either 3 mmol·L or 5 mmol·L. After a new 5-minute exercising period at maximal aerobic velocity, the crossover lactate value RE testing was performed. Running economy was significantly (p ≤ 0.05) deteriorated from 0.668 ± 0.044 to 0.705 ± 0.056 ml·kg·m or 5.5% (p ≤ 0.05) for blood lactate level of 3 mmol·L compared with 5 mmol·L, respectively. Increased lactate level from 3 to 5 mmol·L is thus accompanied by deteriorated RE at LT running velocity. The deteriorated RE at moderate levels of lactate concentration emphasizes the importance of avoiding intensities above LT in the early parts of a dominantly aerobic endurance competition. It also emphasizes the importance of a high V[Combining Dot Above]O2max for aerobic endurance athletes and may partly explain the V[Combining Dot Above]O2 slow component as impaired RE.

  4. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    stack velocities available inside the area, interpolated using the kriging geo-statistical method. The stack velocities are intersected with the position of the horizons in time domain and from this information we build a pseudo-well to calculate the initial velocity and the gradient of increase (or decrease) of velocity with depth inside the considered rock volume. The experiment is aimed to obtain estimation and a representation of the uncertainty related to the geo-statistical interpolation of velocity data in a 3D model and to have an independent control of the final results using the well markers available inside the test area as constraints. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu

  5. Influence of obstructive sleep apnea syndrome in the fluctuation of the submaximal isometric torque of knee extensors in patients with early-grade osteoarthritis

    Science.gov (United States)

    Silva, Andressa; Mello, Marco T.; Serrão, Paula R.; Luz, Roberta P.; Bittencourt, Lia R.; Mattiello, Stela M.

    2015-01-01

    OBJECTIVE: The aim of this study was to investigate whether obstructive sleep apnea (OSA) alters the fluctuation of submaximal isometric torque of the knee extensors in patients with early-grade osteoarthritis (OA). METHOD: The study included 60 male volunteers, aged 40 to 70 years, divided into four groups: Group 1 (G1) - Control (n=15): without OA and without OSA; Group 2 (G2) (n=15): with OA and without OSA; Group 3 (G3) (n=15): without OA and with OSA; and Group 4 (G4) (n=15) with OA and with OSA. Five patients underwent maximal isometric contractions of 10 seconds duration each, with the knee at 60° of flexion to determine peak torque at 60°. To evaluate the fluctuation of torque, 5 submaximal isometric contractions (50% of maximum peak torque) of 10 seconds each, which were calculated from the standard deviation of torque and coefficient of variation, were performed. RESULTS: Significant differences were observed between groups for maximum peak torque, while G4 showed a lower value compared with G1 (p=0.005). Additionally, for the average torque exerted, G4 showed a lower value compared to the G1 (p=0.036). However, no differences were found between the groups for the standard deviation (p=0.844) and the coefficient of variation (p=0.143). CONCLUSION: The authors concluded that OSA did not change the parameters of the fluctuation of isometric submaximal torque of knee extensors in patients with early-grade OA. PMID:26443974

  6. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats.

    Science.gov (United States)

    Legerlotz, Kirsten; Elliott, Bradley; Guillemin, Bernard; Smith, Heather K

    2008-06-01

    The aims of this study were to characterize the pattern of voluntary activity of young rats in response to resistance loading on running wheels and to determine the effects of the activity on the growth of six limb skeletal muscles. Male Sprague-Dawley rats (4 weeks old) were housed individually with a resistance running wheel (R-RUN, n = 7) or a conventional free-spinning running wheel (F-RUN, n = 6) or without a wheel, as non-running control animals (CON, n = 6). The torque required to move the wheel in the R-RUN group was progressively increased, and the activity (velocity, distance and duration of each bout) of the two running wheel groups was recorded continuously for 45 days. The R-RUN group performed many more, shorter and faster bouts of running than the F-RUN group, yet the mean daily distance was not different between the F-RUN (1.3 +/- 0.2 km) and R-RUN group (1.4 +/- 0.6 km). Only the R-RUN resulted in a significantly (P RUN and R-RUN led to a significantly greater wet mass relative to increase in body mass and muscle fibre cross-sectional area in the soleus muscle compared with CON. We conclude that the pattern of voluntary activity on a resistance running wheel differs from that on a free-spinning running wheel and provides a suitable model to induce physiological muscle hypertrophy in rats.

  7. Wave Run-Up on Cylindrical and Cone Shaped Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    De Vos, Leen; Frigaard, Peter; De Rouck, Julien

    2007-01-01

    During the last decade, several offshore wind-farms were built and offshore wind energy promises to be a suitable alternative to provide green energy. However, there are still some engineering challenges in placing the foundations of offshore wind turbines. For example, wave run-up and wave impacts....... The results show that the shape of the foundation substantially affects the maximum run-up level, increasing the expected run-up value. A new relationship between the wave climate (regular and irregular waves) and the run-up is suggested. For this, the velocity stagnation head theory is adjusted and second...... order Stokes equations are used to calculate the wave kinematics in the crest. The variation of the run-up around the pile is measured and it is found that the position with the lowest run-up level is located under 135°, while the run-up at that position amounts to approximately 40% to 50...

  8. Brief note about plasma catecholamines kinetics and submaximal exercise in untrained standardbreds

    Directory of Open Access Journals (Sweden)

    Paolo Baragli

    2010-03-01

    Full Text Available Four untrained standardbred horses performed a standardized exercise test on the treadmill and an automated blood collection system programmed to obtain blood samples every 15 s was used for blood collection in order to evaluate the kinetics of adrenaline and noradrenaline. The highest average values obtained for adrenaline and noradrenaline were 15.0 ± 3.0 and 15.8 ± 2.8 nmol/l respectively, with exponential accumulation of adrenaline (r = 0.977 and noradrenaline (r = 0.976 during the test. Analysis of the correlation between noradrenaline and adrenaline for each phase of the test shows that correlation coefficient decreases as the intensity of exercise increases (from r = 0.909 to r = 0.788. This suggests that during submaximal exercise, the process for release, distribution and clearance of adrenaline into blood circulation differs from that of noradrenaline.

  9. Myocardial perfusion after prolonged submaximal exercise in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Flotats, A.; Mena, E.; Camacho, V.; Tembl, A.; Hernandez, M.A.; Estorch, M.; Carrio, I.; Serra-Grima, R.

    2002-01-01

    Aim: Exercise training in patients with coronary artery disease (CAD) has established benefits. We assessed myocardial perfusion after submaximal but prolonged exercise in patients with CAD, who were enrolled in supervised exercise rehabilitation programs. Material and Methods: Nine patients with CAD enrolled in supervised exercise rehabilitation programs (7 men, 2 women; mean age 54±9 years), 7 with prior AMI and 2 with re-vascularized (CABG) multiple vessel disease, were encouraged to walk/run actively around the perimeter of our Hospital during the annual social sporting event organised in our Institution. Patients were studied by means of perfusion Tc-99m tetrofosmin SPECT imaging after prolonged exercise and at rest (gated SPECT), for two consecutive years. All patients remained symptom free during this interval period. Quantitative analysis was performed dividing polar map images in 13 segments. Tracer activity 9% in the resting image. The analysis was focused on those segments showing perfusion defects. Results: No symptoms other than fatigue were registered during prolonged exercise (range 1-2 hr). There were no significant differences in distance covered (7,462±3,031 m vs. 8,456±2,998 m), heart rate (92±11 bpm vs. 85±13 bpm) and rate-pressure product at the end of exercise (10,804±2,467 vs. 10,403±2,955) or gated SPECT calculated LVEF (44%±19 vs. 46%±20) between the two consecutive annual sporting events. Tracer activity in segments with perfusion defects did not significantly differ between both events. Overall agreement between both examinations regarding patient classification as having scar/ischemia was 77% (kappa=0.49). There was one patient who showed partial reversibility in three segments, consistent with mild anteroapical ischemia, only in the first examination. On the other hand, another patient showed reversibility in one segment (medium septum), only in the second examination, when he covered a distance 1.3 times superior. Conclusions

  10. The OB run-away stars from Sco-Cen and Orion reviewed

    International Nuclear Information System (INIS)

    Blaauw, A.

    1989-01-01

    The author studies the past paths of the run-away star Zeta Oph from the OB association Sco-Cen, and of the run-away stars AE Aur, Mu Col and 53 Ari from the OB association Ori OB1, in connection with the question of the origin of these high velocities. Should the binary-hypothesis be adhered to (supernova explosion of one of the components) or, perhaps, dynamical evolution in young, dense clusters offer a clue to this phenomenon? It is shown that the latter hypothesis is very unlikely to apply to Zeta Oph. For the run-away stars from Orion conclusive evidence may well be obtained in the course of the next decade, from improved accuracy of the proper motions

  11. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Science.gov (United States)

    Sims, David T.; Onambélé-Pearson, Gladys L.; Burden, Adrian; Payton, Carl; Morse, Christopher I.

    2018-01-01

    The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1), set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1) and a self-selected walking speed (SSW). V͘O2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude’s number (Fr). Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P 0.05), but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05). Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups. PMID:29720948

  12. Sex differences in elite swimming with advanced age are less than marathon running.

    Science.gov (United States)

    Senefeld, J; Joyner, M J; Stevens, A; Hunter, S K

    2016-01-01

    The sex difference in marathon performance increases with finishing place and age of the runner but whether this occurs among swimmers is unknown. The purpose was to compare sex differences in swimming velocity across world record place (1st-10th), age group (25-89 years), and event distance. We also compared sex differences between freestyle swimming and marathon running. The world's top 10 swimming times of both sexes for World Championship freestyle stroke, backstroke, breaststroke, and butterfly events and the world's top 10 marathon times in 5-year age groups were obtained. Men were faster than women for freestyle (12.4 ± 4.2%), backstroke (12.8 ± 3.0%), and breaststroke (14.5 ± 3.2%), with the greatest sex differences for butterfly (16.7 ± 5.5%). The sex difference in swimming velocity increased across world record place for freestyle (P swimming (P swimming increased with world record place and age, but was less than for marathon running. Collectively, these results suggest more depth in women's swimming than marathon running. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Effects of human head hair on performance and thermoregulatory responses during 10-km outdoor running in healthy men

    Directory of Open Access Journals (Sweden)

    Angelo Ruediger Pisani Martini

    2016-05-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2016v18n2p155   The aim of the present study was to evaluate the effects of human head hair on performance and thermoregulatory responses during 10-km outdoor running in healthy men. Twelve healthy males (29.5 ± 3.7 years, 174.9 ± 4.3 cm, 72.7 ± 3.2 kg and VO2max 44.6 ± 3.4 ml.kg-1.min-1 participated in two self-paced outdoor 10-km running trials separated by 7 days: 1 HAIR, subjects ran with their natural head hair; 2 NOHAIR, subjects ran after their hair had been totally shaved. Average running velocity was calculated from each 2-km running time. Rectal temperature, heart rate and physiological strain index were measured before and after the 10-km runs and at the end of each 2 km. The rate of heat storage was measured every 2 km. The environmental stress (WBGT was measured every 10 min. The running velocity (10.9 ± 1 and 10.9 ± 1.1 km.h-1, heart rate (183 ± 10 and 180 ± 12 bpm, rectal temperature (38.82 ± 0.29 and 38.81 ± 0.49oC, physiological strain index (9 ± 1 and 9 ± 1, or heat storage rate (71.9 ± 64.1 and 80.7 ± 56.7 W.m-1 did not differ between the HAIR and NOHAIR conditions, respectively (p>0.05. There was no difference in WBGT between the HAIR and NOHAIR conditions (24.0 ± 1.4 and 23.2 ± 1.5ºC, respectively; p=0.10. The results suggest that shaved head hair does not alter running velocity or thermoregulatory responses during 10-km running under the sun.

  14. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  15. The design of the run Clever randomized trial: running volume, -intensity and running-related injuries.

    Science.gov (United States)

    Ramskov, Daniel; Nielsen, Rasmus Oestergaard; Sørensen, Henrik; Parner, Erik; Lind, Martin; Rasmussen, Sten

    2016-04-23

    Injury incidence and prevalence in running populations have been investigated and documented in several studies. However, knowledge about injury etiology and prevention is needed. Training errors in running are modifiable risk factors and people engaged in recreational running need evidence-based running schedules to minimize the risk of injury. The existing literature on running volume and running intensity and the development of injuries show conflicting results. This may be related to previously applied study designs, methods used to quantify the performed running and the statistical analysis of the collected data. The aim of the Run Clever trial is to investigate if a focus on running intensity compared with a focus on running volume in a running schedule influences the overall injury risk differently. The Run Clever trial is a randomized trial with a 24-week follow-up. Healthy recreational runners between 18 and 65 years and with an average of 1-3 running sessions per week the past 6 months are included. Participants are randomized into two intervention groups: Running schedule-I and Schedule-V. Schedule-I emphasizes a progression in running intensity by increasing the weekly volume of running at a hard pace, while Schedule-V emphasizes a progression in running volume, by increasing the weekly overall volume. Data on the running performed is collected by GPS. Participants who sustain running-related injuries are diagnosed by a diagnostic team of physiotherapists using standardized diagnostic criteria. The members of the diagnostic team are blinded. The study design, procedures and informed consent were approved by the Ethics Committee Northern Denmark Region (N-20140069). The Run Clever trial will provide insight into possible differences in injury risk between running schedules emphasizing either running intensity or running volume. The risk of sustaining volume- and intensity-related injuries will be compared in the two intervention groups using a competing

  16. Interaction effects of stride angle and strike pattern on running economy.

    Science.gov (United States)

    Santos-Concejero, J; Tam, N; Granados, C; Irazusta, J; Bidaurrazaga-Letona, I; Zabala-Lili, J; Gil, S M

    2014-12-01

    This study aimed to investigate the relationship between stride angle and running economy (RE) in athletes with different foot strike patterns. 30 male runners completed 4 min running stages on a treadmill at different velocities. During the test, biomechanical variables such as stride angle, swing time, contact time, stride length and frequency were recorded using an optical measurement system. Their foot strike pattern was determined, and VO2 at velocities below the lactate threshold were measured to calculate RE. Midfoot/forefoot strikers had better RE than rearfoot strikers (201.5±5.6 ml · kg(-1) · km(-1) vs. 213.5±4.2 ml · kg(-1) · km(-1)respectively; p=0.019). Additionally, midfoot/fore-foot strikers presented higher stride angles than rearfoot strikers (p=0.043). Linear modelling analysis showed that stride angle is closely related to RE (r=0.62, pstrike pattern is likely to be more economical, whereas at any lower degree, the midfoot/forefoot strike pattern appears to be more desirable. A biomechanical running technique characterised by high stride angles and a midfoot/forefoot strike pattern is advantageous for a better RE. Athletes may find stride angle useful for improving RE. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    International Nuclear Information System (INIS)

    Bin Mohamad, Edy Tonnizam; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia; Saad, Rosli

    2010-01-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  18. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    Science.gov (United States)

    Bin Mohamad, Edy Tonnizam; Saad, Rosli; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia

    2010-12-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  19. Torque decrease during submaximal evoked contractions of the quadriceps muscle is linked not only to muscle fatigue.

    Science.gov (United States)

    Matkowski, Boris; Lepers, Romuald; Martin, Alain

    2015-05-01

    The aim of this study was to analyze the neuromuscular mechanisms involved in the torque decrease induced by submaximal electromyostimulation (EMS) of the quadriceps muscle. It was hypothesized that torque decrease after EMS would reflect the fatigability of the activated motor units (MUs), but also a reduction in the number of MUs recruited as a result of changes in axonal excitability threshold. Two experiments were performed on 20 men to analyze 1) the supramaximal twitch superimposed and evoked at rest during EMS (Experiment 1, n = 9) and 2) the twitch response and torque-frequency relation of the MUs activated by EMS (Experiment 2, n = 11). Torque loss was assessed by 15 EMS-evoked contractions (50 Hz; 6 s on/6 s off), elicited at a constant intensity that evoked 20% of the maximal voluntary contraction (MVC) torque. The same stimulation intensity delivered over the muscles was used to induce the torque-frequency relation and the single electrical pulse evoked after each EMS contraction (Experiment 2). In Experiment 1, supramaximal twitch was induced by femoral nerve stimulation. Torque decreased by ~60% during EMS-evoked contractions and by only ~18% during MVCs. This was accompanied by a rightward shift of the torque-frequency relation of MUs activated and an increase of the ratio between the superimposed and posttetanic maximal twitch evoked during EMS contraction. These findings suggest that the torque decrease observed during submaximal EMS-evoked contractions involved muscular mechanisms but also a reduction in the number of MUs recruited due to changes in axonal excitability. Copyright © 2015 the American Physiological Society.

  20. Water velocity influences prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss irideus)

    Science.gov (United States)

    John J. Piccolo; Nicholas F. Hughes; Mason D. Bryant

    2008-01-01

    We examined the effects of water velocity on prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (sea-run rainbow trout,Oncorhynchus mykiss irideus) in laboratory experiments. We used repeated-measures analysis of variance to test the effects of velocity, species, and the velocity x species interaction on prey capture...

  1. How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier.

    Science.gov (United States)

    Hoogkamer, Wouter; Kram, Rodger; Arellano, Christopher J

    2017-09-01

    A sub-2-hour marathon requires an average velocity (5.86 m/s) that is 2.5% faster than the current world record of 02:02:57 (5.72 m/s) and could be accomplished with a 2.7% reduction in the metabolic cost of running. Although supporting body weight comprises the majority of the metabolic cost of running, targeting the costs of forward propulsion and leg swing are the most promising strategies for reducing the metabolic cost of running and thus improving marathon running performance. Here, we calculate how much time could be saved by taking advantage of unconventional drafting strategies, a consistent tailwind, a downhill course, and specific running shoe design features while staying within the current International Association of Athletic Federations regulations for record purposes. Specifically, running in shoes that are 100 g lighter along with second-half scenarios of four runners alternately leading and drafting, or a tailwind of 6.0 m/s, combined with a 42-m elevation drop could result in a time well below the 2-hour marathon barrier.

  2. 1995 and 1996 Upper Three Runs Dye Study Data Analyses

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    This report presents an analysis of dye tracer studies conducted on Upper Three Runs. The revised STREAM code was used to analyze these studies and derive a stream velocity and a dispersion coefficient for use in aqueous transport models. These models will be used to facilitate the establishment of aqueous effluent limits and provide contaminant transport information to emergency management in the event of a release

  3. Run-up of tsunamis and long waves in terms of surf-similarity

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2008-01-01

    of the surf-similarity parameter and the amplitude to depth ratio determined at some offshore location. We use the analytical expressions to analyze the impact of tsunamis on beaches and relate the discussion to the recent Indian Ocean tsunami from December 26, 2004. An important conclusion is that extreme...... run-up combined with extreme flow velocities occurs for surf-similarity parameters of the order 3-6, and for typical tsunami wave periods this requires relatively mild beach slopes. Next, we compare the theoretical solutions to measured run-up of breaking and non-breaking irregular waves on steep...

  4. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review

    OpenAIRE

    Julia Ratter; Lorenz Radlinger; Cees Lucas

    2014-01-01

    Question: Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Design: Systematic review of studies of the psychometric properties of exercise tests. Participants: People older than 18 years with chronic pain, fibromyalgia and chronic fatigue disorders. Intervention: Studies of the measurement properties of tests of physical capacity in people with chronic pain, fibromyalgia or chronic fatigue disorders were ...

  5. Simulation of nonlinear wave run-up with a high-order Boussinesq model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2008-01-01

    This paper considers the numerical simulation of nonlinear wave run-up within a highly accurate Boussinesq-type model. Moving wet–dry boundary algorithms based on so-called extrapolating boundary techniques are utilized, and a new variant of this approach is proposed in two horizontal dimensions....... As validation, computed results involving the nonlinear run-up of periodic as well as transient waves on a sloping beach are considered in a single horizontal dimension, demonstrating excellent agreement with analytical solutions for both the free surface and horizontal velocity. In two horizontal dimensions...... cases involving long wave resonance in a parabolic basin, solitary wave evolution in a triangular channel, and solitary wave run-up on a circular conical island are considered. In each case the computed results compare well against available analytical solutions or experimental measurements. The ability...

  6. Associations between rate of force development metrics and throwing velocity in elite team handball players: a short research report.

    Science.gov (United States)

    Marques, Mário C; Saavedra, Francisco J; Abrantes, Catarina; Aidar, Felipe J

    2011-09-01

    Performance assessment has become an invaluable component of monitoring participant's development in distinct sports, yet limited and contradictory data are available in trained subjects. The purpose of this study was to examine the relationship between ball throwing velocity during a 3-step running throw in elite team handball players and selected measures of rate of force development like force, power, velocity, and bar displacement during a concentric only bench press exercise in elite male handball players. Fitteen elite senior male team handball players volunteered to participate. Each volunteer had power and bar velocity measured during a concentric only bench press test with 25, 35, and 45 kg as well as having one-repetition maximum strength determined. Ball throwing velocity was evaluated with a standard 3-step running throw using a radar gun. The results of this study indicated significant associations between ball velocity and time at maximum rate of force development (0, 66; pvelocity was only median associated with maximum rate of force development with light loads. A training regimen designed to improve ball-throwing velocity in elite male team handball players should emphasize bench press movement using light loads.

  7. Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises

    Directory of Open Access Journals (Sweden)

    Gerold R. Ebenbichler

    2017-05-01

    Full Text Available Purpose: To investigate the differences in neural control of back muscles activated during the eccentric vs. the concentric portions of a cyclic, submaximal, fatiguing trunk extension exercise via the analysis of amplitude and time-frequency parameters derived from surface electromyographic (SEMG data.Methods: Using back dynamometers, 87 healthy volunteers performed three maximum voluntary isometric trunk extensions (MVC's, an isometric trunk extension at 80% MVC, and 25 cyclic, dynamic trunk extensions at 50% MVC. Dynamic testing was performed with the trunk angular displacement ranging from 0° to 40° and the trunk angular velocity set at 20°/s. SEMG data was recorded bilaterally from the iliocostalis lumborum at L1, the longissimus dorsi at L2, and the multifidus muscles at L5. The initial value and slope of the root mean square (RMS-SEMG and the instantaneous median frequency (IMDF-SEMG estimates derived from the SEMG recorded during each exercise cycle were used to investigate the differences in MU control marking the eccentric vs. the concentric portions of the exercise.Results: During the concentric portions of the exercise, the initial RMS-SEMG values were almost twice those observed during the eccentric portions of the exercise. The RMS-SEMG values generally increased during the concentric portions of the exercise while they mostly remained unchanged during the eccentric portions of the exercise with significant differences between contraction types. Neither the initial IMDF-SEMG values nor the time-course of the IMDF-SEMG values significantly differed between the eccentric and the concentric portions of the exercise.Conclusions: The comparison of the investigated SEMG parameters revealed distinct neural control strategies during the eccentric vs. the concentric portions of the cyclic exercise. We explain these differences by relying upon the principles of orderly recruitment and common drive governing motor unit behavior.

  8. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  9. Joint contact loading in forefoot and rearfoot strike patterns during running.

    Science.gov (United States)

    Rooney, Brandon D; Derrick, Timothy R

    2013-09-03

    Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (pstrike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The effect of additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes.

    Science.gov (United States)

    Park, Hun-Young; Kim, Jisu; Park, Miyoung; Chung, Nana; Lim, Kiwon

    2018-03-30

    The purpose of our study was to determine the effectiveness of carbohydrate loading by additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. Twenty male team-sports athletes (14 soccer and 6 rugby players) volunteered to participate in the study and were equally divided into the experimental group (EXP, n=10) performing additional carbohydrate supplementation for 7 days after prolonged interval exercise until blood glucose level reaches 50 mg/dL or less and the control group (CON, n=10). Then, maximal oxygen consumption (VO2max) and minute ventilation (VE), oxygen consumption (VO2), carbon dioxide excretion (VCO2), respiratory exchange ratio (RER), blood glucose level, and blood lactate level were measured in all team-sports players during submaximal exercise corresponding to 70% VO2max before and after intervention. There was no significant interaction in all parameters, but team-sports players in the EXP presented more improved VO2max (CON vs EXP = vs 5.3% vs 6.3%), VE (CON vs EXP = vs 3.8% vs 6.6%), VO2 (CON vs EXP = vs 8.5% vs 9.9%), VCO2 (CON vs EXP = vs 2.8% vs 4.0%), blood glucose level (CON vs EXP = vs -12.9% vs -7.6%), and blood lactate level (CON vs EXP = -18.2% vs -25%) compared to those in the CON. These findings showed that additional carbohydrate supplementation conducted in our study is not effective in exercise performance and energy metabolism during submaximal exercise. ©2018 The Korean Society for Exercise Nutrition.

  11. The effect of additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes

    Science.gov (United States)

    Park, Hun-Young; Kim, Jisu; Park, Miyoung; Chung, Nana; Lim, Kiwon

    2018-01-01

    [Purpose] The purpose of our study was to determine the effectiveness of carbohydrate loading by additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. [Methods] Twenty male team-sports athletes (14 soccer and 6 rugby players) volunteered to participate in the study and were equally divided into the experimental group (EXP, n=10) performing additional carbohydrate supplementation for 7 days after prolonged interval exercise until blood glucose level reaches 50 mg/dL or less and the control group (CON, n=10). Then, maximal oxygen consumption (VO2max) and minute ventilation (VE), oxygen consumption (VO2), carbon dioxide excretion (VCO2), respiratory exchange ratio (RER), blood glucose level, and blood lactate level were measured in all team-sports players during submaximal exercise corresponding to 70% VO2max before and after intervention. [Results] There was no significant interaction in all parameters, but team-sports players in the EXP presented more improved VO2max (CON vs EXP = vs 5.3% vs 6.3%), VE (CON vs EXP = vs 3.8% vs 6.6%), VO2 (CON vs EXP = vs 8.5% vs 9.9%), VCO2 (CON vs EXP = vs 2.8% vs 4.0%), blood glucose level (CON vs EXP = vs -12.9% vs -7.6%), and blood lactate level (CON vs EXP = -18.2% vs -25%) compared to those in the CON. [Conclusion] These findings showed that additional carbohydrate supplementation conducted in our study is not effective in exercise performance and energy metabolism during submaximal exercise. PMID:29673243

  12. Initial results from the NSTX Real-Time Velocity diagnostic

    Science.gov (United States)

    Podesta, M.; Bell, R. E.

    2011-10-01

    A new diagnostic for fast measurements of plasma rotation through active charge-exchange recombination spectroscopy (CHERS) was installed on NSTX. The diagnostic infers toroidal rotation from carbon ions undergoing charge-exchange with neutrals from a heating Neutral Beam (NB). Each of the 4 channels, distributed along the outer major radius, includes active views intercepting the NB and background views missing the beam. Estimated uncertainties in the measured velocity are system. Signals are acquired on 2 CCD detectors, each controlled by a dedicated PC. Spectra are fitted in real-time through a C++ processing code and velocities are made available to the Plasma Control System for future implementation of feedback on velocity. Results from the initial operation during the 2011 run are discussed, emphasizing the fast dynamics of toroidal rotation, e . g . during L-H mode transition and breaking caused by instabilities and by externally-imposed magnetic perturbations. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  13. Barefoot running: biomechanics and implications for running injuries.

    Science.gov (United States)

    Altman, Allison R; Davis, Irene S

    2012-01-01

    Despite the technological developments in modern running footwear, up to 79% of runners today get injured in a given year. As we evolved barefoot, examining this mode of running is insightful. Barefoot running encourages a forefoot strike pattern that is associated with a reduction in impact loading and stride length. Studies have shown a reduction in injuries to shod forefoot strikers as compared with rearfoot strikers. In addition to a forefoot strike pattern, barefoot running also affords the runner increased sensory feedback from the foot-ground contact, as well as increased energy storage in the arch. Minimal footwear is being used to mimic barefoot running, but it is not clear whether it truly does. The purpose of this article is to review current and past research on shod and barefoot/minimal footwear running and their implications for running injuries. Clearly more research is needed, and areas for future study are suggested.

  14. Investigation of the Relationship Between Electrical Stimulation Frequency and Muscle Frequency Response Under Submaximal Contractions.

    Science.gov (United States)

    Papcke, Caluê; Krueger, Eddy; Olandoski, Marcia; Nogueira-Neto, Guilherme Nunes; Nohama, Percy; Scheeren, Eduardo Mendonça

    2018-03-25

    Neuromuscular electrical stimulation (NMES) is a common tool that is used in clinical and laboratory experiments and can be combined with mechanomyography (MMG) for biofeedback in neuroprostheses. However, it is not clear if the electrical current applied to neuromuscular tissues influences the MMG signal in submaximal contractions. The objective of this study is to investigate whether the electrical stimulation frequency influences the mechanomyographic frequency response of the rectus femoris muscle during submaximal contractions. Thirteen male participants performed three maximal voluntary isometric contractions (MVIC) recorded in isometric conditions to determine the maximal force of knee extensors. This was followed by the application of nine modulated NMES frequencies (20, 25, 30, 35, 40, 45, 50, 75, and 100 Hz) to evoke 5% MVIC. Muscle behavior was monitored by the analysis of MMG signals, which were decomposed into frequency bands by using a Cauchy wavelet transform. For each applied electrical stimulus frequency, the mean MMG spectral/frequency response was estimated for each axis (X, Y, and Z axes) of the MMG sensor with the values of the frequency bands used as weights (weighted mean). Only with respect to the Z (perpendicular) axis of the MMG signal, the stimulus frequency of 20 Hz did not exhibit any difference with the weighted mean (P = 0.666). For the frequencies of 20 and 25 Hz, the MMG signal displayed the bands between 12 and 16 Hz in the three axes (P frequencies from 30 to 100 Hz, the muscle presented a higher concentration of the MMG signal between the 22 and 29 Hz bands for the X and Z axes, and between 16 and 34 Hz bands for the Y axis (P frequency, because their frequency contents tend to mainly remain between the 20- and 25-Hz bands. Hence, NMES does not interfere with the use of MMG in neuroprosthesis. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Strength and Power Correlates of Throwing Velocity on Subelite Male Cricket Players.

    Science.gov (United States)

    Freeston, Jonathan L; Carter, Thomas; Whitaker, Gary; Nicholls, Owen; Rooney, Kieron B

    2016-06-01

    Throwing velocity is an important aspect of fielding in cricket to affect run-outs and reduce the opponent's run-scoring opportunities. Although a relationship between strength and/or power and throwing velocity has been well established in baseball, water polo, and European handball, it has not been adequately explored in cricket. Consequently, this study aimed to determine the relationship between measures of strength and/or power and throwing velocity in cricket players. Seventeen male cricket players (mean ± SD; age, 21.1 ± 1.6 years; height, 1.79 ± 0.06 m; weight, 79.8 ± 6.4 kg) from an elite athlete program were tested for maximal throwing velocity from the stretch position and after a 3-meter shuffle. They were also assessed for strength and power using a range of different measures. Throwing velocity from the stretch position (30.5 ± 2.4 m·s) was significantly related to dominant leg lateral-to-medial jump (LMJ) distance (r = 0.71; p velocity and medicine ball chest pass (MB CP) distance (r = 0.67; p bench press strength (p = 0.90), height (p = 0.33), or weight (p = 0.29). Multiple regression analysis revealed that dominant MB Rot and MB CP explained 66% of the variance. The results were similar for velocity after a shuffle step (31.8 ± 2.1 m·s); however, VJ height reached statistical significance (r = 0.51; p ≤ 0.05). The multiple regression was also similar with MB Rot and MB CP explaining 70% of the variance. The cricketers in this study threw with greater velocity than elite junior and subelite senior cricketers but with lower velocities than elite senior cricketers and collegiate level and professional baseball players. This is the first study to demonstrate a link between strength and/or power and throwing velocity in cricket players and highlight the importance of power development as it relates to throwing velocity. Exercises that more closely simulated the speed (body weight jumps and medicine ball throws) or movement pattern (shoulder IR

  16. UCVM: An Open Source Framework for 3D Velocity Model Research

    Science.gov (United States)

    Gill, D.; Maechling, P. J.; Jordan, T. H.; Plesch, A.; Taborda, R.; Callaghan, S.; Small, P.

    2013-12-01

    Three-dimensional (3D) seismic velocity models provide fundamental input data to ground motion simulations, in the form of structured or unstructured meshes or grids. Numerous models are available for California, as well as for other parts of the United States and Europe, but models do not share a common interface. Being able to interact with these models in a standardized way is critical in order to configure and run 3D ground motion simulations. The Unified Community Velocity Model (UCVM) software, developed by researchers at the Southern California Earthquake Center (SCEC), is an open source framework designed to provide a cohesive way to interact with seismic velocity models. We describe the several ways in which we have improved the UCVM software over the last year. We have simplified the UCVM installation process by automating the installation of various community codebases, improving the ease of use.. We discuss how UCVM software was used to build velocity meshes for high-frequency (4Hz) deterministic 3D wave propagation simulations, and how the UCVM framework interacts with other open source resources, such as NetCDF file formats for visualization. The UCVM software uses a layered software architecture that transparently converts geographic coordinates to the coordinate systems used by the underlying velocity models and supports inclusion of a configurable near-surface geotechnical layer, while interacting with the velocity model codes through their existing software interfaces. No changes to the velocity model codes are required. Our recent UCVM installation improvements bundle UCVM with a setup script, written in Python, which guides users through the process that installs the UCVM software along with all the user-selectable velocity models. Each velocity model is converted into a standardized (configure, make, make install) format that is easily downloaded and installed via the script. UCVM is often run in specialized high performance computing (HPC

  17. Optimal velocity in the race over variable slope trace.

    Science.gov (United States)

    Maroński, Ryszard; Samoraj, Piotr

    2015-01-01

    The minimum-time running problem is reconsidered. The time of covering a given distance is minimized. The function that should be found is the runner's velocity that varies with the distance. The Hill-Keller model of motion is employed. It is based on the Newton second law and an equation of power balance. The new element of the current approach is that the trace slope angle varies with the distance. The problem is formulated and solved in optimal control applying the Chebyshev direct pseudospectral method. The essential finding is that the optimal velocity during the cruise is constant regardless of the local slope of the terrain. Such result is valid if the inequality constraints imposed on the propulsive force or the energy are not active.

  18. Performance of the SLD Barrel CRID during the 1992 physics data run

    International Nuclear Information System (INIS)

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Toge, N.; Yuta, H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Colye, P.; Coyne, D.; Liu, X.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-11-01

    The SLD Barrel Cherenkov Ring Imaging Detector was fully operational in the 1992 physics data run. The electron drift velocity and magnetic field deflection of electron trajectories have been measured. Cherenkov rings have been observed from both the liquid and gas radiators. The number and the resolution of the angle of Cherenkov photons have been measured to be approximately equal to design specifications

  19. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  20. Energy system contributions and determinants of performance in sprint cross-country skiing

    DEFF Research Database (Denmark)

    Andersson, E; Björklund, G; Holmberg, H-C

    2017-01-01

    To improve current understanding of energy contributions and determinants of sprint-skiing performance, 11 well-trained male cross-country skiers were tested in the laboratory for VO2max , submaximal gross efficiency (GE), maximal roller skiing velocity, and sprint time-trial (STT) performance...... during the STT was predicted from the submaximal relationships for GE against velocity and incline, allowing computation of metabolic rate and O2 deficit. The skiers completed the STT in 232 ± 10 s (distributed as 55 ± 3% DP and 45 ± 3% DS) with a mean power output of 324 ± 26 W. The anaerobic energy......-skiing has demonstrated an anaerobic energy contribution of 18%, with GE being the strongest predictor of performance....

  1. Comparison of myocardial 201Tl clearance after maximal and submaximal exercise: implications for diagnosis of coronary disease: concise communication

    International Nuclear Information System (INIS)

    Massie, B.M.; Wisneski, J.; Kramer, B.; Hollenberg, M.; Gertz, E.; Stern, D.

    1982-01-01

    Recently the quantitation of regional 201 Tl clearance has been shown to increase the sensitivity of the scintigraphic detection of coronary disease. Although 201 Tl clearance rates might be expected to vary with the degree of exercise, this relationship has not been explored. We therefore evaluated the rate of decrease in myocardial 201 Tl activity following maximal and submaximal stress in seven normal subjects and 21 patients with chest pain, using the seven-pinhole tomographic reconstruction technique. In normals, the mean 201 Tl clearance rate declined from 41% +/- 7 over a 3-hr period with maximal exercise to 25% +/- 5 after 3 hr at a submaximal level (p less than 0.001). Similar differences in clearance rates were found in the normally perfused regions of the left ventricle in patients with chest pain, depending on whether or not a maximal end point (defined as either the appearance of ischemia or reaching 85% of age-predicted heart rate) was achieved. In five patients who did not reach these end points, 3-hr clearance rates in uninvolved regions averaged 25% +/- 2, in contrast to a mean of 38% +/- 5 for such regions in 15 patients who exercised to ischemia or an adequate heart rate. These findings indicate that clearance criteria derived from normals can be applied to patients who are stressed maximally, even if the duration of exercise is limited, but that caution must be used in interpreting clearance rates in those who do not exercise to an accepted end point

  2. Fitness effects of 10-month frequent low-volume ball game training or interval running for 8-10-year-old school children

    DEFF Research Database (Denmark)

    Larsen, Malte Nejst; Nielsen, Claus Malta; Ørntoft, Christina Øyangen

    2017-01-01

    performing either 5 × 12 min/wk small-sided football plus other ball games (SSG, n = 62) or interval running (IR, n = 61). Whole-body DXA scans, flamingo balance, standing long-jump, 20 m sprint, and Yo-Yo IR1 children's tests (YYIR1C) were performed before and after the intervention. Mean running velocity...

  3. Angular velocity determination of spinning solar sails using only a sun sensor

    Directory of Open Access Journals (Sweden)

    Kun Zhai

    2017-02-01

    Full Text Available The direction of the sun is the easiest and most reliable observation vector for a solar sail running in deep space exploration. This paper presents a new method using only raw measurements of the sun direction vector to estimate angular velocity for a spinning solar sail. In cases with a constant spin angular velocity, the estimation equation is formed based on the kinematic model for the apparent motion of the sun direction vector; the least-squares solution is then easily calculated. A performance criterion is defined and used to analyze estimation accuracy. In cases with a variable spin angular velocity, the estimation equation is developed based on the kinematic model for the apparent motion of the sun direction vector and the attitude dynamics equation. Simulation results show that the proposed method can quickly yield high-precision angular velocity estimates that are insensitive to certain measurement noises and modeling errors.

  4. CDF run II run control and online monitor

    International Nuclear Information System (INIS)

    Arisawa, T.; Ikado, K.; Badgett, W.; Chlebana, F.; Maeshima, K.; McCrory, E.; Meyer, A.; Patrick, J.; Wenzel, H.; Stadie, H.; Wagner, W.; Veramendi, G.

    2001-01-01

    The authors discuss the CDF Run II Run Control and online event monitoring system. Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes. Run Control is a real-time multi-threaded application implemented in Java with flexible state machines, using JDBC database connections to configure clients, and including a user friendly and powerful graphical user interface. The CDF online event monitoring system consists of several parts: the event monitoring programs, the display to browse their results, the server program which communicates with the display via socket connections, the error receiver which displays error messages and communicates with Run Control, and the state manager which monitors the state of the monitor programs

  5. Textured insoles reduce vertical loading rate and increase subjective plantar sensation in overground running.

    Science.gov (United States)

    Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee

    2018-05-01

    The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.

  6. The Kinematics and Kinetics of the Running Pattern of Two-, Four-, and Six-Year-Old Children.

    Science.gov (United States)

    Fortney, Virginia L.

    1983-01-01

    The running patterns of two-, four-, and six-year-old children were analyzed to determine how age and sex differences affected selected kinematic and kinetic variables. Differences tended to involve displacement, velocity, and magnitude of force measures. Sex differences concerning the leg swing were noted. (Author/PP)

  7. The effect of shoe type on gait in forefoot strike runners during a 50-km run

    Directory of Open Access Journals (Sweden)

    Mark E. Kasmer

    2014-06-01

    Conclusion: More runners adopted a more posterior initial contact area after the 50-km run in the traditional shoe type than in the minimalist shoe type. The runners who adopted a more posterior initial contact area were more closely associated with an increased median frequency of the medial gastrocnemius, which suggests there may be a change in motor unit recruitment pattern during long-distance, sustained velocity running. The increased peak pressures observed in the medial forefoot in the minimalist shoe type may predispose to metatarsal stress fractures in the setting of improper training.

  8. Responding for sucrose and wheel-running reinforcement: effect of pre-running.

    Science.gov (United States)

    Belke, Terry W

    2006-01-10

    Six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. To assess the effect of pre-running, animals were allowed to run for 1h prior to a session of responding for sucrose and running. Results showed that, after pre-running, response rates in the later segments of the 30-s schedule decreased in the presence of a wheel-running stimulus and increased in the presence of a sucrose stimulus. Wheel-running rates were not affected. Analysis of mean post-reinforcement pauses (PRP) broken down by transitions between successive reinforcers revealed that pre-running lengthened pausing in the presence of the stimulus signaling wheel running and shortened pauses in the presence of the stimulus signaling sucrose. No effect was observed on local response rates. Changes in pausing in the presence of stimuli signaling the two reinforcers were consistent with a decrease in the reinforcing efficacy of wheel running and an increase in the reinforcing efficacy of sucrose. Pre-running decreased motivation to respond for running, but increased motivation to work for food.

  9. Transfer, loss and physical processing of water in hit-and-run collisions of planetary embryos

    Science.gov (United States)

    Burger, C.; Maindl, T. I.; Schäfer, C. M.

    2018-01-01

    Collisions between large, similar-sized bodies are believed to shape the final characteristics and composition of terrestrial planets. Their inventories of volatiles such as water are either delivered or at least significantly modified by such events. Besides the transition from accretion to erosion with increasing impact velocity, similar-sized collisions can also result in hit-and-run outcomes for sufficiently oblique impact angles and large enough projectile-to-target mass ratios. We study volatile transfer and loss focusing on hit-and-run encounters by means of smooth particle hydrodynamics simulations, including all main parameters: impact velocity, impact angle, mass ratio and also the total colliding mass. We find a broad range of overall water losses, up to 75% in the most energetic hit-and-run events, and confirm the much more severe consequences for the smaller body also for stripping of volatile layers. Transfer of water between projectile and target inventories is found to be mostly rather inefficient, and final water contents are dominated by pre-collision inventories reduced by impact losses, for similar pre-collision water mass fractions. Comparison with our numerical results shows that current collision outcome models are not accurate enough to reliably predict these composition changes in hit-and-run events. To also account for non-mechanical losses, we estimate the amount of collisionally vaporized water over a broad range of masses and find that these contributions are particularly important in collisions of ˜ Mars-sized bodies, with sufficiently high impact energies, but still relatively low gravity. Our results clearly indicate that the cumulative effect of several (hit-and-run) collisions can efficiently strip protoplanets of their volatile layers, especially the smaller body, as it might be common, e.g., for Earth-mass planets in systems with Super-Earths. An accurate model for stripping of volatiles that can be included in future planet

  10. Muscle Damage and Metabolic Responses to Repeated-Sprint Running With and Without Deceleration.

    Science.gov (United States)

    Minahan, Clare L; Poke, Daniel P; Morrison, Jaime; Bellinger, Phillip M

    2018-04-04

    Minahan, CL, Poke, DP, Morrison, J, and Bellinger, PM. Muscle damage and metabolic responses to repeated-sprint running with and without deceleration. J Strength Cond Res XX(X): 000-000, 2017-This study aimed to determine whether repeated-sprint running with deceleration aggravates markers of muscle damage or delays the recovery of performance compared with repeated-sprint running without deceleration. Fourteen male team-sport athletes performed 2 randomly ordered testing sessions on a nonmotorized treadmill with one session requiring participants to decelerate (TMd) within 4 seconds before stopping or immediately step to the side of the treadmill belt at the completion of each sprint (TMa). Peak and mean velocities, speed decrement, blood lactate concentrations, and oxygen uptake were monitored during the repeated-sprint running protocols. Countermovement vertical jump (CMJ) performance, perceived muscle soreness, sit-and-reach flexibility, plasma creatine kinase (CK), lactate dehydrogenase (LDH), and myoglobin (Mb) concentrations were quantified immediately before and after and 45 minutes, 24 and 48 hours after repeated-sprint running protocols. Although muscle damage was indicated by increases in CK, LDH, and Mb (p ≤ 0.05) in both groups, there was no significant effect of condition (TMa vs. TMd) on any of the measured performance or physiological variables (p > 0.05). The present study indicated that the removal of deceleration from repeated-sprint running on a nonmotorized treadmill has no effect on metabolism or performance during or after repeated-sprint running or markers of muscle damage.

  11. Simulations of flow and prediction of sediment movement in Wymans Run, Cochranton Borough, Crawford County, Pennsylvania

    Science.gov (United States)

    Hittle, Elizabeth

    2011-01-01

    In small watersheds, runoff entering local waterways from large storms can cause rapid and profound changes in the streambed that can contribute to flooding. Wymans Run, a small stream in Cochranton Borough, Crawford County, experienced a large rain event in June 2008 that caused sediment to be deposited at a bridge. A hydrodynamic model, Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), which is incorporated into the U.S. Geological Survey Multi-Dimensional Surface-Water Modeling System (MD_SWMS) was constructed to predict boundary shear stress and velocity in Wymans Run using data from the June 2008 event. Shear stress and velocity values can be used to indicate areas of a stream where sediment, transported downstream, can be deposited on the streambed. Because of the short duration of the June 2008 rain event, streamflow was not directly measured but was estimated using U.S. Army Corps of Engineers one-dimensional Hydrologic Engineering Centers River Analysis System (HEC-RAS). Scenarios to examine possible engineering solutions to decrease the amount of sediment at the bridge, including bridge expansion, channel expansion, and dredging upstream from the bridge, were simulated using the FaSTMECH model. Each scenario was evaluated for potential effects on water-surface elevation, boundary shear stress, and velocity.

  12. Thermoregulatory responses to skin wetting during prolonged treadmill running.

    Science.gov (United States)

    Bassett, D R; Nagle, F J; Mookerjee, S; Darr, K C; Ng, A V; Voss, S G; Napp, J P

    1987-02-01

    We examined the physiological responses to skin wetting during a 120-min level treadmill run to assess whether skin wetting would reduce the dehydration and the increase in core temperature associated with prolonged exercise. Testing was conducted in an environmental chamber (T = 29.5 degrees C, wind velocity = 3 m X sec-1) under two different humidity conditions (33 or 66% relative humidity). Ten male subjects performed two runs in each humidity condition; one served as a control run. The other included spraying the body with 50 ml of water (T = 29.5 degrees C) every 10 min. Spraying had no effect on rectal temperature (Tre), heart rate, oxygen consumption, perceived exertion, sweat loss, or percent change in plasma volume in both the humid and the dry conditions. Spraying produced a significant reduction in mean skin temperature (Tsk), which increased the (Tre - Tsk) gradient. At the same time, overall skin conductance (K) was decreased, presumably as a result of cutaneous vasoconstriction due to the low Tsk. Since heat transfer from the body's core to the skin is expressed by the equation: heat transfer = K X (Tre - Tsk) the spraying had no effect on heat transfer away from the core, and Tre remained unchanged.

  13. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Science.gov (United States)

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  14. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions.

    Science.gov (United States)

    Izquierdo, M; González-Badillo, J J; Häkkinen, K; Ibáñez, J; Kraemer, W J; Altadill, A; Eslava, J; Gorostiaga, E M

    2006-09-01

    The purpose of this study was to examine the effect of different loads on repetition speed during single sets of repetitions to failure in bench press and parallel squat. Thirty-six physical active men performed 1-repetition maximum in a bench press (1 RM (BP)) and half squat position (1 RM (HS)), and performed maximal power-output continuous repetition sets randomly every 10 days until failure with a submaximal load (60 %, 65 %, 70 %, and 75 % of 1RM, respectively) during bench press and parallel squat. Average velocity of each repetition was recorded by linking a rotary encoder to the end part of the bar. The values of 1 RM (BP) and 1 RM (HS) were 91 +/- 17 and 200 +/- 20 kg, respectively. The number of repetitions performed for a given percentage of 1RM was significantly higher (p bench press performance. Average repetition velocity decreased at a greater rate in bench press than in parallel squat. The significant reductions observed in the average repetition velocity (expressed as a percentage of the average velocity achieved during the initial repetition) were observed at higher percentage of the total number of repetitions performed in parallel squat (48 - 69 %) than in bench press (34 - 40 %) actions. The major finding in this study was that, for a given muscle action (bench press or parallel squat), the pattern of reduction in the relative average velocity achieved during each repetition and the relative number of repetitions performed was the same for all percentages of 1RM tested. However, relative average velocity decreased at a greater rate in bench press than in parallel squat performance. This would indicate that in bench press the significant reductions observed in the average repetition velocity occurred when the number of repetitions was over one third (34 %) of the total number of repetitions performed, whereas in parallel squat it was nearly one half (48 %). Conceptually, this would indicate that for a given exercise (bench press or squat) and

  15. Which impairments are most associated with high mobility performance in older adults? Implications for a rehabilitation prescription.

    Science.gov (United States)

    Bean, Jonathan F; Kiely, Dan K; LaRose, Sharon; Leveille, Suzanne G

    2008-12-01

    To test which rehabilitative impairments are associated with higher mobility performance among community-dwelling, mobility-limited older adults. Cross-sectional analysis of baseline data from participants within a randomized controlled trial. Outpatient rehabilitation research center. Community-dwelling older adults (N=138; mean age, 75.4 y) with mobility limitations as defined by the Short Physical Performance Battery (SPPB). Not applicable. Balance measured via the Berg Balance Scale, leg strength, leg velocity, submaximal aerobic capacity, body mass index (BMI), and mobility performance as measured by the SPPB. Each of the 5 physiologic attributes (unipedal balance, leg strength, leg velocity, submaximal aerobic capacity, BMI) was categorized into tertiles by using lower values as reference for impairment status. Within an adjusted model, measures associated with higher SPPB performance (>9) included a BBS score greater than or equal to 54 (odds ratio [OR]=4.54; 95% confidence interval [CI], 1.11-18.60), leg strength greater than or equal to 21.5 N/kg (OR=30.35; 95% CI, 5.48-168.09), leg velocity .0101 to .0129 m.s(-1).kg(-1) (OR=5.31; 95% CI, 1.25-22.57), and leg velocity greater than or equal to .0130 m.s(-1).kg(-1) (OR=22.86; 95% CI, 3.88-134.75). Our investigation highlights the importance of rehabilitative impairments in leg strength, leg velocity, and balance as being associated with mobility status as measured by the SPPB. In our sample of participants within an exercise trial, submaximal aerobic capacity and BMI status were not associated with mobility performance. These findings suggest that the augmentation of not only leg strength and balance but also leg velocity may be important in the rehabilitative care of mobility-limited older adults.

  16. Effect of Different Training Methods on Stride Parameters in Speed Maintenance Phase of 100-m Sprint Running.

    Science.gov (United States)

    Cetin, Emel; Hindistan, I Ethem; Ozkaya, Y Gul

    2018-05-01

    Cetin, E, Hindistan, IE, Ozkaya, YG. Effect of different training methods on stride parameters in speed maintenance phase of 100-m sprint running. J Strength Cond Res 32(5): 1263-1272, 2018-This study examined the effects of 2 different training methods relevant to sloping surface on stride parameters in speed maintenance phase of 100-m sprint running. Twenty recreationally active students were assigned into one of 3 groups: combined training (Com), horizontal training (H), and control (C) group. Com group performed uphill and downhill training on a sloping surface with an angle of 4°, whereas H group trained on a horizontal surface, 3 days a week for 8 weeks. Speed maintenance and deceleration phases were divided into distances with 10-m intervals, and running time (t), running velocity (RV), step frequency (SF), and step length (SL) were measured at preexercise, and postexercise period. After 8 weeks of training program, t was shortened by 3.97% in Com group, and 2.37% in H group. Running velocity also increased for totally 100 m of running distance by 4.13 and 2.35% in Com, and H groups, respectively. At the speed maintenance phase, although t and maximal RV (RVmax) found to be statistically unaltered during overall phase, t was found to be decreased, and RVmax was preceded by 10 m in distance in both training groups. Step length was increased at 60-70 m, and SF was decreased at 70-80 m in H group. Step length was increased with concomitant decrease in SF at 80-90 m in Com group. Both training groups maintained the RVmax with a great percentage at the speed maintenance phase. In conclusion, although both training methods resulted in an increase in running time and RV, Com training method was more prominently effective method in improving RV, and this improvement was originated from the positive changes in SL during the speed maintaining phase.

  17. The running pattern and its importance in running long-distance gears

    Directory of Open Access Journals (Sweden)

    Jarosław Hoffman

    2017-07-01

    Full Text Available The running pattern is individual for each runner, regardless of distance. We can characterize it as the sum of the data of the runner (age, height, training time, etc. and the parameters of his run. Building the proper technique should focus first and foremost on the work of movement coordination and the power of the runner. In training the correct running steps we can use similar tools as working on deep feeling. The aim of this paper was to define what we can call a running pattern, what is its influence in long-distance running, and the relationship between the training technique and the running pattern. The importance of a running pattern in long-distance racing is immense, as the more distracted and departed from the norm, the greater the harm to the body will cause it to repetition in long run. Putting on training exercises that shape the technique is very important and affects the running pattern significantly.

  18. Estimated VO2max and its corresponding velocity predict performance of amateur runners

    Directory of Open Access Journals (Sweden)

    Bruno Ribeiro Ramalho Oliveira

    2012-03-01

    Full Text Available In recent years, there has been a substantial increase in the number of runners, with a proportional increase in their involvement in amateur street competition. Identification of the determinants of performance in this population appears necessary for optimization of time devoted to training. The objective of this study was to ascertain the association between estimated maximal oxygen uptake (VO2max, critical velocity (CV and VO2max velocity (VVO2max and athletic performance in the 3.6 km (uphill and 10 and 21.1 km (flatland events. Twelve amateur runners (nine male, mean age 36 ± 5 years underwent five tests: 1 and 5 km race on level ground, 3.6 km race with slope (≈8%, and indirect VO2max measurement. CV was determined from the linear relationship between distance and run time on the first two tests. The subjects then took part in two official 10 km and 21.1 km (half marathon races. VVO2max was calculated from the VO2max through a metabolic equation. VO2max showed the best association with running performance in the 10 and 21.1 km events. For the uphill race, VVO2max showed a better association. Overall, the variable with the highest average association was VO2max (0.91±0.07, followed by VVO2max (0.90±0.04 and VC (0.87±0.06. This study showed strong associations between physiological variables established by low-cost, user-friendly indirect methods and running performance in the 10 and 21.1 km (flatland and 3.6 km (uphill running events.

  19. Solitary impulse wave run-up and overland flow

    International Nuclear Information System (INIS)

    Fuchs, H.

    2013-04-01

    Impulse waves are generated by landslides, rockfalls or avalanches impacting a reservoir or natural lake. These long waves generated by the impulse transferred to the water body in combination with the usually short propagation distance within a lake lead to a large damage potential due to wave run-up or dam overtopping. Damages are then caused by (1) direct wave load on structures, (2) driftwood and float impact and (3) their deposits after water retreat. Major historic events occurred at Lituya Bay, Alaska, in 1958, or at the Vaiont Reservoir, Italy, in 1963. Recent events were observed at Lake Chehalis, Canada, or Lake Lucerne, Switzerland, both in 2007, or at the Lower Grindelwald proglacial lake, Switzerland, in 2009. Whereas previous VAW research aimed at the generation phase of landslide-generated impulse waves with a special focus on the wave characteristics, the current research concentrates on the opposite wave-shore interaction. A particular focus is given to the transition point from the shore slope to the horizontal plane where the orbital wave motion is transformed into a shore-parallel flow. As most literature relates only to plain wave run-up on a linearly-inclined plane and the few studies focussing on wave-induced overland flow are case studies considering only a specific bathymetry, currently no general conclusions on wave-induced overland flow can be drawn. The present study therefore intends to fill in this gap by physical modeling. Testing involved a new test-setup including a piston-type wave maker to generate solitary waves, and a smooth impermeable PVC shore of height w = 0.25 m with a connected horizontal overland flow portion. By varying the shore slope tanβ = 1/1.5, 1/2.5 and 1/5.0, the still water depth h = 0.16 - 0.24 m, and the relative wave height H/h = 0.1 -0.7, a wide range of basic parameters was covered. Overland flow depths and front velocities were measured along the shore using Ultrasonic Distance Sensors. Further, flow

  20. The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models

    Science.gov (United States)

    Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Murphy, B. W.; Seitzer, P. O.; Callanan, P. J.; Rutten, R. G. M.; Charles, P. A.

    1997-05-01

    We report a new measurement of the velocity dispersion profile within 1' (3 pc) of the center of the globular cluster M15 (NGC 7078), using long-slit spectra from the 4.2 m William Herschel Telescope at La Palma Observatory. We obtained spatially resolved spectra for a total of 23 slit positions during two observing runs. During each run, a set of parallel slit positions was used to map out the central region of the cluster; the position angle used during the second run was orthogonal to that used for the first. The spectra are centered in wavelength near the Ca II infrared triplet at 8650 Å, with a spectral range of about 450 Å. We determined radial velocities by cross-correlation techniques for 131 cluster members. A total of 32 stars were observed more than once. Internal and external comparisons indicate a velocity accuracy of about 4 km s-1. The velocity dispersion profile rises from about σ = 7.2 +/- 1.4 km s-1 near 1' from the center of the cluster to σ = 13.9 +/- 1.8 km s-1 at 20". Inside of 20", the dispersion remains approximately constant at about 10.2 +/- 1.4 km s-1 with no evidence for a sharp rise near the center. This last result stands in contrast with that of Peterson, Seitzer, & Cudworth who found a central velocity dispersion of 25 +/- 7 km s-1, based on a line-broadening measurement. Our velocity dispersion profile is in good agreement with those determined in the recent studies of Gebhardt et al. and Dubath & Meylan. We have developed a new set of Fokker-Planck models and have fitted these to the surface brightness and velocity dispersion profiles of M15. We also use the two measured millisecond pulsar accelerations as constraints. The best-fitting model has a mass function slope of x = 0.9 (where 1.35 is the slope of the Salpeter mass function) and a total mass of 4.9 × 105 M⊙. This model contains approximately 104 neutron stars (3% of the total mass), the majority of which lie within 6" (0.2 pc) of the cluster center. Since the

  1. Compensations for increased rotational inertia during human cutting turns.

    Science.gov (United States)

    Qiao, Mu; Brown, Brian; Jindrich, Devin L

    2014-02-01

    Locomotion in a complex environment is often not steady state, but unsteady locomotion (stability and maneuverability) is not well understood. We investigated the strategies used by humans to perform sidestep cutting turns when running. Previous studies have argued that because humans have small yaw rotational moments of inertia relative to body mass, deceleratory forces in the initial velocity direction that occur during the turning step, or 'braking' forces, could function to prevent body over-rotation during turns. We tested this hypothesis by increasing body rotational inertia and testing whether braking forces during stance decreased. We recorded ground reaction force and body kinematics from seven participants performing 45 deg sidestep cutting turns and straight running at five levels of body rotational inertia, with increases up to fourfold. Contrary to our prediction, braking forces remained consistent at different rotational inertias, facilitated by anticipatory changes to body rotational speed. Increasing inertia revealed that the opposing effects of several turning parameters, including rotation due to symmetrical anterior-posterior forces, result in a system that can compensate for fourfold changes in rotational inertia with less than 50% changes to rotational velocity. These results suggest that in submaximal effort turning, legged systems may be robust to changes in morphological parameters, and that compensations can involve relatively minor adjustments between steps to change initial stance conditions.

  2. Short-Run and Long-Run Elasticities of Diesel Demand in Korea

    Directory of Open Access Journals (Sweden)

    Seung-Hoon Yoo

    2012-11-01

    Full Text Available This paper investigates the demand function for diesel in Korea covering the period 1986–2011. The short-run and long-run elasticities of diesel demand with respect to price and income are empirically examined using a co-integration and error-correction model. The short-run and long-run price elasticities are estimated to be −0.357 and −0.547, respectively. The short-run and long-run income elasticities are computed to be 1.589 and 1.478, respectively. Thus, diesel demand is relatively inelastic to price change and elastic to income change in both the short-run and long-run. Therefore, a demand-side management through raising the price of diesel will be ineffective and tightening the regulation of using diesel more efficiently appears to be more effective in Korea. The demand for diesel is expected to continuously increase as the economy grows.

  3. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat.

    Science.gov (United States)

    Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A

    2001-06-01

    Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.

  4. Evaluation of anaerobic capacity in soccer players using a maximal shuttle run test

    Directory of Open Access Journals (Sweden)

    Alexandre Gomes de Almeida

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n1p88   The aim of this study was to investigate whether a 300-m shuttle run test predicts anaerobic capacity, expressed as mean power output in the Wingate test, in a group of professional soccer players. Twenty-one soccer players (21 ± 2 years; 76.8 ± 7.0 kg; 179.8 ± 6.7 cm from a first division team of the São Paulo Soccer Federation participated in the study. In the first session, the players were submitted to the Wingate test for the determination of relative peak power output, relative mean power output and fatigue index. In the second session, the players underwent a shuttle run test which consisted of a maximum sprint of 20 m at the highest speed possible until completing a distance of 300 m. The total run time and mean velocity over the 20 m (V20m were recorded. Blood samples were collected before and after the 300-m shuttle run test for the determination of lactate concentration ([LAC]. Pearson’s correlation between the Wingate and 300-m shuttle run test variables showed that only relative mean power output was significantly correlated with total run time (r = - 0.75 and V20m (r = 0.72. [LAC] showed a significant increase (p < 0.05 when comparing the values obtained before (2.1 ± 1.0 mM and after (14.3 ± 2.4 mM the shuttle run test. In conclusion, this study demonstrated that the 300-m shuttle run test can predict anaerobic capacity in professional soccer players.

  5. Magnetic resonance and diffusion tensor imaging analyses indicate heterogeneous strains along human medial gastrocnemius fascicles caused by submaximal plantar-flexion activity.

    Science.gov (United States)

    Karakuzu, Agah; Pamuk, Uluç; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A

    2017-05-24

    Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle's contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Directory of Open Access Journals (Sweden)

    David T. Sims

    2018-04-01

    Full Text Available The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2 and metabolic cost (C when walking at running compared to those of average stature (controls. The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1, set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1 and a self-selected walking speed (SSW. V͘O2 and C was scaled to total body mass (TBM and fat free mass (FFM while gait speed was scaled to leg length using Froude’s number (Fr. Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P < 0.05 and 12 and 18% higher during SRS (P < 0.05 than controls, respectively. Achondroplasic CTBM and CFFM were 29 and 33% greater during SWS (P < 0.05 and 12 and 18% greater during SRS (P < 0.05 than controls, respectively. There was no difference in SSW V͘O2TBM or V͘O2FFM between groups (P > 0.05, but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05 in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05. Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls.New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups.

  7. The Effect of Submaximal Exercise Preceded by Single Whole-Body Cryotherapy on the Markers of Oxidative Stress and Inflammation in Blood of Volleyball Players

    OpenAIRE

    Mila-Kierzenkowska, Celestyna; Jurecka, Alicja; Woźniak, Alina; Szpinda, Michał; Augustyńska, Beata; Woźniak, Bartosz

    2013-01-01

    The aim of the study was to determine the effect of single whole-body cryotherapy (WBC) session applied prior to submaximal exercise on the activity of antioxidant enzymes, the concentration of lipid peroxidation products, total oxidative status, and the level of cytokines in blood of volleyball players. The study group consisted of 18 male professional volleyball players, who were subjected to extremely cold air (−130°C) prior to exercise performed on cycloergometer. Blood samples were taken...

  8. Metabolic adaptations may counteract ventilatory adaptations of intermittent hypoxic exposure during submaximal exercise at altitudes up to 4000 m.

    Directory of Open Access Journals (Sweden)

    Martin Faulhaber

    Full Text Available Intermittent hypoxic exposure (IHE has been shown to induce aspects of altitude acclimatization which affect ventilatory, cardiovascular and metabolic responses during exercise in normoxia and hypoxia. However, knowledge on altitude-dependent effects and possible interactions remains scarce. Therefore, we determined the effects of IHE on cardiorespiratory and metabolic responses at different simulated altitudes in the same healthy subjects. Eight healthy male volunteers participated in the study and were tested before and 1 to 2 days after IHE (7 × 1 hour at 4500 m. The participants cycled at 2 submaximal workloads (corresponding to 40% and 60% of peak oxygen uptake at low altitude at simulated altitudes of 2000 m, 3000 m, and 4000 m in a randomized order. Gas analysis was performed and arterial oxygen saturation, blood lactate concentrations, and blood gases were determined during exercise. Additionally baroreflex sensitivity, hypoxic and hypercapnic ventilatory response were determined before and after IHE. Hypoxic ventilatory response was increased after IHE (p<0.05. There were no altitude-dependent changes by IHE in any of the determined parameters. However, blood lactate concentrations and carbon dioxide output were reduced; minute ventilation and arterial oxygen saturation were unchanged, and ventilatory equivalent for carbon dioxide was increased after IHE irrespective of altitude. Changes in hypoxic ventilatory response were associated with changes in blood lactate (r = -0.72, p<0.05. Changes in blood lactate correlated with changes in carbon dioxide output (r = 0.61, p<0.01 and minute ventilation (r = 0.54, p<0.01. Based on the present results it seems that the reductions in blood lactate and carbon dioxide output have counteracted the increased hypoxic ventilatory response. As a result minute ventilation and arterial oxygen saturation did not increase during submaximal exercise at simulated altitudes between 2000 m and 4000 m.

  9. Effect of suspension systems on the physiological and psychological responses to sub-maximal biking on simulated smoothand bumpy tracks.

    Science.gov (United States)

    Titlestad, John; Fairlie-Clarke, Tony; Whittaker, Arthur; Davie, Mark; Watt, Ian; Grant, Stanley

    2006-02-01

    The aim of this study was to compare the physiological and psychological responses of cyclists riding on a hard tail bicycle and on a full suspension bicycle. Twenty males participated in two series of tests. A test rig held the front axle of the bicycle steady while the rear wheel rotated against a heavy roller with bumps (or no bumps) on its surface. In the first series of tests, eight participants (age 19-27 years, body mass 65-82 kg) were tested on both the full suspension and hard tail bicycles with and without bumps fitted to the roller. The second series of test repeated the bump tests with a further six participants (age 22-31 years, body mass 74-94 kg) and also involved an investigation of familiarization effects with the final six participants (age 21-30 years, body mass 64-80 kg). Heart rate, oxygen consumption (VO(2)), rating of perceived exertion (RPE) and comfort were recorded during 10 min sub-maximal tests. Combined data for the bumps tests show that the full suspension bicycle was significantly different (P < 0.001) from the hard tail bicycle on all four measures. Oxygen consumption, heart rate and RPE were lower on average by 8.7 (s = 3.6) ml . kg(-1) . min(-1), 32.1 (s = 12.1) beats . min(-1) and 2.6 (s = 2.0) units, respectively. Comfort scores were higher (better) on average by 1.9 (s = 0.8) units. For the no bumps tests, the only statistically significant difference (P = 0.008) was in VO(2), which was lower for the hard tail bicycle by 2.2 (s = 1.7) ml . kg(-1) . min(-1). The results indicate that the full suspension bicycle provides a physiological and psychological advantage over the hard tail bicycle during simulated sub-maximal exercise on bumps.

  10. Run Clever - No difference in risk of injury when comparing progression in running volume and running intensity in recreational runners

    DEFF Research Database (Denmark)

    Ramskov, Daniel; Rasmussen, Sten; Sørensen, Henrik

    2018-01-01

    Background/aim: The Run Clever trial investigated if there was a difference in injury occurrence across two running schedules, focusing on progression in volume of running intensity (Sch-I) or in total running volume (Sch-V). It was hypothesised that 15% more runners with a focus on progression...... in volume of running intensity would sustain an injury compared with runners with a focus on progression in total running volume. Methods: Healthy recreational runners were included and randomly allocated to Sch-I or Sch-V. In the first eight weeks of the 24-week follow-up, all participants (n=839) followed...... participants received real-time, individualised feedback on running intensity and running volume. The primary outcome was running-related injury (RRI). Results: After preconditioning a total of 80 runners sustained an RRI (Sch-I n=36/Sch-V n=44). The cumulative incidence proportion (CIP) in Sch-V (reference...

  11. The risks and benefits of running barefoot or in minimalist shoes: a systematic review.

    Science.gov (United States)

    Perkins, Kyle P; Hanney, William J; Rothschild, Carey E

    2014-11-01

    The popularity of running barefoot or in minimalist shoes has recently increased because of claims of injury prevention, enhanced running efficiency, and improved performance compared with running in shoes. Potential risks and benefits of running barefoot or in minimalist shoes have yet to be clearly defined. To determine the methodological quality and level of evidence pertaining to the risks and benefits of running barefoot or in minimalist shoes. In September 2013, a comprehensive search of the Ovid MEDLINE, SPORTDiscus, and CINAHL databases was performed by 2 independent reviewers. Included articles were obtained from peer-reviewed journals in the English language with no limit for year of publication. Final inclusion criteria required at least 1 of the following outcome variables: pain, injury rate, running economy, joint forces, running velocity, electromyography, muscle performance, or edema. Systematic review. Level 3. Two reviewers appraised each article using the Downs and Black checklist and appraised each for level of evidence. Twenty-three articles met the criteria for this review. Of 27 possible points on the Downs and Black checklist, articles scored between 13 and 19 points, indicating a range of evidence from very limited to moderate. Moderate evidence supports the following biomechanical differences when running barefoot versus in shoes: overall less maximum vertical ground reaction forces, less extension moment and power absorption at the knee, less foot and ankle dorsiflexion at ground contact, less ground contact time, shorter stride length, increased stride frequency, and increased knee flexion at ground contact. Because of lack of high-quality evidence, no definitive conclusions can be drawn regarding specific risks or benefits to running barefoot, shod, or in minimalist shoes.

  12. Running and osteoarthritis.

    Science.gov (United States)

    Willick, Stuart E; Hansen, Pamela A

    2010-07-01

    The overall health benefits of cardiovascular exercise, such as running, are well established. However, it is also well established that in certain circumstances running can lead to overload injuries of muscle, tendon, and bone. In contrast, it has not been established that running leads to degeneration of articular cartilage, which is the hallmark of osteoarthritis. This article reviews the available literature on the association between running and osteoarthritis, with a focus on clinical epidemiologic studies. The preponderance of clinical reports refutes an association between running and osteoarthritis. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Backward running or absence of running from Creutz ratios

    International Nuclear Information System (INIS)

    Giedt, Joel; Weinberg, Evan

    2011-01-01

    We extract the running coupling based on Creutz ratios in SU(2) lattice gauge theory with two Dirac fermions in the adjoint representation. Depending on how the extrapolation to zero fermion mass is performed, either backward running or an absence of running is observed at strong bare coupling. This behavior is consistent with other findings which indicate that this theory has an infrared fixed point.

  14. Changes in Running Mechanics During a 6-Hour Running Race.

    Science.gov (United States)

    Giovanelli, Nicola; Taboga, Paolo; Lazzer, Stefano

    2017-05-01

    To investigate changes in running mechanics during a 6-h running race. Twelve ultraendurance runners (age 41.9 ± 5.8 y, body mass 68.3 ± 12.6 kg, height 1.72 ± 0.09 m) were asked to run as many 874-m flat loops as possible in 6 h. Running speed, contact time (t c ), and aerial time (t a ) were measured in the first lap and every 30 ± 2 min during the race. Peak vertical ground-reaction force (F max ), stride length (SL), vertical downward displacement of the center of mass (Δz), leg-length change (ΔL), vertical stiffness (k vert ), and leg stiffness (k leg ) were then estimated. Mean distance covered by the athletes during the race was 62.9 ± 7.9 km. Compared with the 1st lap, running speed decreased significantly from 4 h 30 min onward (mean -5.6% ± 0.3%, P running, reaching the maximum difference after 5 h 30 min (+6.1%, P = .015). Conversely, k vert decreased after 4 h, reaching the lowest value after 5 h 30 min (-6.5%, P = .008); t a and F max decreased after 4 h 30 min through to the end of the race (mean -29.2% and -5.1%, respectively, P running, suggesting a possible time threshold that could affect performance regardless of absolute running speed.

  15. Asymmetry between the Dominant and Non-Dominant Legs in the Kinematics of the Lower Extremities during a Running Single Leg Jump in Collegiate Basketball Players.

    Science.gov (United States)

    Sugiyama, Takashi; Kameda, Mai; Kageyama, Masahiro; Kiba, Kazufusa; Kanehisa, Hiroaki; Maeda, Akira

    2014-12-01

    The present study aimed to clarify the asymmetry between the dominant (DL) and non-dominant takeoff legs (NDL) in terms of lower limb behavior during running single leg jumps (RSJ) in collegiate male basketball players in relation to that of the jump height. Twenty-seven players performed maximal RSJ with a 6 m approach. Three-dimensional kinematics data during RSJ was collected using a 12 Raptor camera infrared motion analysis system (MAC 3D system) at a sampling frequency of 500 Hz. The symmetry index in the jump heights and the kinematics variables were calculated as {2 × (DL - NDL) / (DL + NDL)} × 100. The run-up velocity was similar between the two legs, but the jump height was significantly higher in the DL than in the NDL. During the takeoff phase, the joint angles of the ankle and knee were significantly larger in the DL than the NDL. In addition, the contact time for the DL was significantly shorter than that for the NDL. The symmetry index of the kinematics for the ankle joint was positively correlated with that of jump height, but that for the knee joint was not. The current results indicate that, for collegiate basketball players, the asymmetry in the height of a RSJ can be attributed to that in the joint kinematics of the ankle during the takeoff phase, which may be associated with the ability to effectively transmit run-up velocity to jump height. Key pointsAsymmetry of height during running single leg jump between two legs is due to the behavior of the ankle joint (i.e. stiffer the ankle joint and explosive bounding).The dominant leg can transmit run-up velocity into the vertical velocity at takeoff phase to jump high compared with the non-dominant leg.Basketball players who have a greater asymmetry of the RSJ at the collegiate level could be assessed as non-regulars judging by the magnitude of asymmetry.

  16. Does “Live High-Train Low (and High)” Hypoxic Training Alter Running Mechanics In Elite Team-sport Players?

    Science.gov (United States)

    Girard, Olivier; Millet, Grégoire P.; Morin, Jean-Benoit; Brocherie, Franck

    2017-01-01

    This study aimed to investigate if “Live High-Train Low (and High)” hypoxic training alters constant-velocity running mechanics. While residing under normobaric hypoxia (≥14 h·d-1; FiO2 14.5-14.2%) for 14 days, twenty field hockey players performed, in addition to their usual training in normoxia, six sessions (4 × 5 × 5-s maximal sprints; 25 s passive recovery; 5 min rest) under either normobaric hypoxia (FiO2 ~14.5%, n = 9) or normoxia (FiO2 20.9%, n = 11). Before and immediately after the intervention, their running pattern was assessed at 10 and 15 km·h-1 as well as during six 30-s runs at ~20 km·h-1 with 30-s passive recovery on an instrumented motorised treadmill. No clear changes in running kinematics and spring-mass parameters occurred globally either at 10, 15 or ~20 km·h-1, with also no significant time × condition interaction for any parameters (p > 0.14). Independently of the condition, heart rate (all p < 0.05) and ratings of perceived exertion decreased post-intervention (only at 15 km·h-1, p < 0.05). Despite indirect signs for improved psycho-physiological responses, no forthright change in stride mechanical pattern occurred after “Live High-Train Low (and High)” hypoxic training. Key points There are indirect signs for improved psycho-physiological responses in responses to “Live High-Train Low (and High)” hypoxic training. This hypoxic training regimen, however, does not modify the running mechanics of elite team-sport players at low and high velocities. Coaches can be confident that this intervention, known for inducing significant metabolic benefits, is appropriate for athletes since their running kinetics and kinematics are not negatively affected by chronic hypoxic exposure. PMID:28912649

  17. Prediction Equations of Energy Expenditure in Chinese Youth Based on Step Frequency during Walking and Running

    Science.gov (United States)

    Sun, Bo; Liu, Yu; Li, Jing Xian; Li, Haipeng; Chen, Peijie

    2013-01-01

    Purpose: This study set out to examine the relationship between step frequency and velocity to develop a step frequency-based equation to predict Chinese youth's energy expenditure (EE) during walking and running. Method: A total of 173 boys and girls aged 11 to 18 years old participated in this study. The participants walked and ran on a…

  18. Muscle injury after low-intensity downhill running reduces running economy.

    Science.gov (United States)

    Baumann, Cory W; Green, Michael S; Doyle, J Andrew; Rupp, Jeffrey C; Ingalls, Christopher P; Corona, Benjamin T

    2014-05-01

    Contraction-induced muscle injury may reduce running economy (RE) by altering motor unit recruitment, lowering contraction economy, and disturbing running mechanics, any of which may have a deleterious effect on endurance performance. The purpose of this study was to determine if RE is reduced 2 days after performing injurious, low-intensity exercise in 11 healthy active men (27.5 ± 5.7 years; 50.05 ± 1.67 VO2peak). Running economy was determined at treadmill speeds eliciting 65 and 75% of the individual's peak rate of oxygen uptake (VO2peak) 1 day before and 2 days after injury induction. Lower extremity muscle injury was induced with a 30-minute downhill treadmill run (6 × 5 minutes runs, 2 minutes rest, -12% grade, and 12.9 km·h(-1)) that elicited 55% VO2peak. Maximal quadriceps isometric torque was reduced immediately and 2 days after the downhill run by 18 and 10%, and a moderate degree of muscle soreness was present. Two days after the injury, steady-state VO2 and metabolic work (VO2 L·km(-1)) were significantly greater (4-6%) during the 65% VO2peak run. Additionally, postinjury VCO2, VE and rating of perceived exertion were greater at 65% but not at 75% VO2peak, whereas whole blood-lactate concentrations did not change pre-injury to postinjury at either intensity. In conclusion, low-intensity downhill running reduces RE at 65% but not 75% VO2peak. The results of this study and other studies indicate the magnitude to which RE is altered after downhill running is dependent on the severity of the injury and intensity of the RE test.

  19. Excessive Progression in Weekly Running Distance and Risk of Running-related Injuries

    DEFF Research Database (Denmark)

    Nielsen, R.O.; Parner, Erik Thorlund; Nohr, Ellen Aagaard

    2014-01-01

    Study Design An explorative, 1-year prospective cohort study. Objective To examine whether an association between a sudden change in weekly running distance and running-related injury varies according to injury type. Background It is widely accepted that a sudden increase in running distance...... is strongly related to injury in runners. But the scientific knowledge supporting this assumption is limited. Methods A volunteer sample of 874 healthy novice runners who started a self-structured running regimen were provided a global-positioning-system watch. After each running session during the study...... period, participants were categorized into 1 of the following exposure groups, based on the progression of their weekly running distance: less than 10% or regression, 10% to 30%, or more than 30%. The primary outcome was running-related injury. Results A total of 202 runners sustained a running...

  20. ATLAS Strip Detector: Operational Experience and Run1-> Run2 Transition

    CERN Document Server

    Nagai, Koichi; The ATLAS collaboration

    2014-01-01

    Large hadron collider was operated very successfully during the Run1 and provided a lot of opportunities of physics studies. It currently has a consolidation work toward to the operation at $\\sqrt{s}=14 \\mathrm{TeV}$ in Run2. The ATLAS experiment has achieved excellent performance in Run1 operation, delivering remarkable physics results. The SemiConductor Tracker contributed to the precise measurement of momentum of charged particles. This paper describes the operation experience of the SemiConductor Tracker in Run1 and the preparation toward to the Run2 operation during the LS1.

  1. Solitary impulse wave run-up and overland flow

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, H.

    2013-04-15

    Impulse waves are generated by landslides, rockfalls or avalanches impacting a reservoir or natural lake. These long waves generated by the impulse transferred to the water body in combination with the usually short propagation distance within a lake lead to a large damage potential due to wave run-up or dam overtopping. Damages are then caused by (1) direct wave load on structures, (2) driftwood and float impact and (3) their deposits after water retreat. Major historic events occurred at Lituya Bay, Alaska, in 1958, or at the Vaiont Reservoir, Italy, in 1963. Recent events were observed at Lake Chehalis, Canada, or Lake Lucerne, Switzerland, both in 2007, or at the Lower Grindelwald proglacial lake, Switzerland, in 2009. Whereas previous VAW research aimed at the generation phase of landslide-generated impulse waves with a special focus on the wave characteristics, the current research concentrates on the opposite wave-shore interaction. A particular focus is given to the transition point from the shore slope to the horizontal plane where the orbital wave motion is transformed into a shore-parallel flow. As most literature relates only to plain wave run-up on a linearly-inclined plane and the few studies focussing on wave-induced overland flow are case studies considering only a specific bathymetry, currently no general conclusions on wave-induced overland flow can be drawn. The present study therefore intends to fill in this gap by physical modeling. Testing involved a new test-setup including a piston-type wave maker to generate solitary waves, and a smooth impermeable PVC shore of height w = 0.25 m with a connected horizontal overland flow portion. By varying the shore slope tanβ = 1/1.5, 1/2.5 and 1/5.0, the still water depth h = 0.16 - 0.24 m, and the relative wave height H/h = 0.1 -0.7, a wide range of basic parameters was covered. Overland flow depths and front velocities were measured along the shore using Ultrasonic Distance Sensors. Further, flow

  2. Effect of step width manipulation on tibial stress during running.

    Science.gov (United States)

    Meardon, Stacey A; Derrick, Timothy R

    2014-08-22

    Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (pstresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Do interindividual differences in cardiac output during submaximal exercise explain differences in exercising muscle oxygenation and ratings of perceived exertion?

    Science.gov (United States)

    Bentley, Robert F; Jones, Joshua H; Hirai, Daniel M; Zelt, Joel T; Giles, Matthew D; Raleigh, James P; Quadrilatero, Joe; Gurd, Brendon J; Neder, J Alberto; Tschakovsky, Michael E

    2018-01-01

    Considerable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy. Cardiac output (Q˙ L/min; inert gas rebreathe), oxygen uptake (V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps saturation (near infrared spectroscopy) and exercise tolerance (6-20; Borg Scale RPE) were measured. The Q˙-V˙O2 relationship from 40 to 160 W was used to partition individuals post hoc into higher (n = 10; 6.3 ± 0.4) versus lower (n = 10; 3.7 ± 0.4, P exercise (all P > 0.4). Lower cardiac responders had greater leg (P = 0.027) and whole body (P = 0.03) RPE only at 185 W, but this represented a higher %peak V˙O2 in lower cardiac responders (87 ± 15% vs. 66 ± 12%, P = 0.005). Substantially lower Q˙-V˙O2 in the lower responder group did not result in altered RPE or exercising muscle deoxygenation. This suggests substantial recruitment of blood flow redistribution in the lower responder group as part of protecting matching of exercising muscle oxygen delivery to demand. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Running and Osteoarthritis: Does Recreational or Competitive Running Increase the Risk?

    Science.gov (United States)

    2017-06-01

    Exercise, like running, is good for overall health and, specifically, our hearts, lungs, muscles, bones, and brains. However, some people are concerned about the impact of running on longterm joint health. Does running lead to higher rates of arthritis in knees and hips? While many researchers find that running protects bone health, others are concerned that this exercise poses a high risk for age-related changes to hips and knees. A study published in the June 2017 issue of JOSPT suggests that the difference in these outcomes depends on the frequency and intensity of running. J Orthop Sports Phys Ther 2017;47(6):391. doi:10.2519/jospt.2017.0505.

  5. The effect of footwear on running performance and running economy in distance runners.

    Science.gov (United States)

    Fuller, Joel T; Bellenger, Clint R; Thewlis, Dominic; Tsiros, Margarita D; Buckley, Jonathan D

    2015-03-01

    The effect of footwear on running economy has been investigated in numerous studies. However, no systematic review and meta-analysis has synthesised the available literature and the effect of footwear on running performance is not known. The aim of this systematic review and meta-analysis was to investigate the effect of footwear on running performance and running economy in distance runners, by reviewing controlled trials that compare different footwear conditions or compare footwear with barefoot. The Web of Science, Scopus, MEDLINE, CENTRAL (Cochrane Central Register of Controlled Trials), EMBASE, AMED (Allied and Complementary Medicine), CINAHL and SPORTDiscus databases were searched from inception up until April 2014. Included articles reported on controlled trials that examined the effects of footwear or footwear characteristics (including shoe mass, cushioning, motion control, longitudinal bending stiffness, midsole viscoelasticity, drop height and comfort) on running performance or running economy and were published in a peer-reviewed journal. Of the 1,044 records retrieved, 19 studies were included in the systematic review and 14 studies were included in the meta-analysis. No studies were identified that reported effects on running performance. Individual studies reported significant, but trivial, beneficial effects on running economy for comfortable and stiff-soled shoes [standardised mean difference (SMD) beneficial effect on running economy for cushioned shoes (SMD = 0.37; P beneficial effect on running economy for training in minimalist shoes (SMD = 0.79; P beneficial effects on running economy for light shoes and barefoot compared with heavy shoes (SMD running was identified (P running economy. Certain models of footwear and footwear characteristics can improve running economy. Future research in footwear performance should include measures of running performance.

  6. Testing constitutive relations by running and walking on cornstarch and water suspensions

    Science.gov (United States)

    Mukhopadhyay, Shomeek; Allen, Benjamin; Brown, Eric

    2018-05-01

    The ability of a person to run on the surface of a suspension of cornstarch and water has fascinated scientists and the public alike. However, the constitutive relation obtained from traditional steady-state rheology of cornstarch and water suspensions has failed to explain this behavior. In another paper we presented an averaged constitutive relation for impact rheology consisting of an effective compressive modulus of a system-spanning dynamically jammed structure [R. Maharjan et al., this issue, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. Here we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water. The ability of the constitutive relation to predict the material behavior in a case with different forcing conditions and flow geometry than it was obtained from suggests that the constitutive relation could be applied more generally. We also present a detailed calculation of the added mass effect to show that while it may be able to explain some cases of people running or walking on the surface of cornstarch and water for pool depths H >1.2 m and foot impact velocities VI>1.7 m/s, it cannot explain observations of people walking or running on the surface of cornstarch and water for smaller H or VI.

  7. INTERFERENCE OF THE RUNNING WAVES AT LIGHT BRIDGES OF A SUNSPOT

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Priya, T. G.; Yu, S. J.; Zhang, M. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji, K. F. [Kunming University of Science and Technology, Kunming 650093 (China); Banerjee, D. [Indian Institute of Astrophysics, Koramangala Bangalore 560034 (India); Cao, W. D. [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Zhao, J. S.; Ji, H. S., E-mail: jt@bao.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2016-01-01

    The observations of chromospheric oscillations of two umbral light bridges (LBs) within a sunspot from NOAA Active Region 12127 are presented. It was found that the running umbral waves with periods of 2.2–2.6 minutes underwent very fast damping before approaching umbral boundaries, while those with higher periods (>2.6 minutes) could propagate outside umbrae. On two sides of each LB adjacent to umbrae, the cross-wavelet spectra displayed that the oscillations on them had a common significant power region with dominant frequencies of 2–6 minutes and phase differences of ∼90°. A counterstream of two running umbral waves in the 2–6 minute frequency range propagated toward the LBs, where they encountered each other and gave rise to constructive or even destructive interference on the LBs. In addition, the velocity and density perturbations on the LBs were found in opposite phases suggesting that the perturbations were caused by the downward propagating waves.

  8. Does a run/walk strategy decrease cardiac stress during a marathon in non-elite runners?

    Science.gov (United States)

    Hottenrott, Kuno; Ludyga, Sebastian; Schulze, Stephan; Gronwald, Thomas; Jäger, Frank-Stephan

    2016-01-01

    Although alternating run/walk-periods are often recommended to novice runners, it is unclear, if this particular pacing strategy reduces the cardiovascular stress during prolonged exercise. Therefore, the aim of the study was to compare the effects of two different running strategies on selected cardiac biomarkers as well as marathon performance. Randomized experimental trial in a repeated measure design. Male (n=22) and female subjects (n=20) completed a marathon either with a run/walk strategy or running only. Immediately after crossing the finishing line cardiac biomarkers were assessed in blood taken from the cubital vein. Before (-7 days) and after the marathon (+4 days) subjects also completed an incremental treadmill test. Despite different pacing strategies, run/walk strategy and running only finished the marathon with similar times (04:14:25±00:19:51 vs 04:07:40±00:27:15 [hh:mm:ss]; p=0.377). In both groups, prolonged exercise led to increased B-type natriuretic peptide, creatine kinase MB isoenzyme and myoglobin levels (pmarathon. Elevated cTnI concentrations were observable in only two subjects. B-type natriuretic peptide (r=-0.363; p=0.041) and myoglobin levels (r=-0.456; p=0.009) were inversely correlated with the velocity at the individual anaerobic threshold. Run/walk strategy compared to running only reported less muscle pain and fatigue (p=0.006) after the running event. In conclusion, the increase in cardiac biomarkers is a reversible, physiological response to strenuous exercise, indicating temporary stress on the myocyte and skeletal muscle. Although a combined run/walk strategy does not reduce the load on the cardiovascular system, it allows non-elite runners to achieve similar finish times with less (muscle) discomfort. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Peak Velocity as an Alternative Method for Training Prescription in Mice

    Directory of Open Access Journals (Sweden)

    Caroline de Carvalho Picoli

    2018-02-01

    Full Text Available Purpose: To compare the efficiency of an aerobic physical training program prescribed according to either velocity associated with maximum oxygen uptake (vVO2max or peak running speed obtained during an incremental treadmill test (Vpeak_K in mice.Methods: Twenty male Swiss mice, 60 days old, were randomly divided into two groups with 10 animals each: 1. group trained by vVO2max (GVO2, 2. group trained by Vpeak_K (GVP. After the adaptation training period, an incremental test was performed at the beginning of each week to adjust training load and to determine the amount of VO2 and VCO2 fluxes consumed, energy expenditure (EE and run distance during the incremental test. Mice were submitted to 4 weeks of aerobic exercise training of moderate intensity (velocity referring to 70% of vVO2max and Vpeak_K in a programmable treadmill. The sessions lasted from 30 to 40 min in the first week, to reach 60 min in the fourth week, in order to provide the mice with a moderate intensity exercise, totaling 20 training sessions.Results: Mice demonstrated increases in VO2max (ml·kg−1·min−1 (GVO2 = 49.1% and GVP = 56.2%, Vpeak_K (cm·s−1 (GVO2 = 50.9% and GVP = 22.3%, EE (ml·kg−0,75·min−1 (GVO2 = 39.9% and GVP = 51.5%, and run distance (cm (GVO2 = 43.5% and GVP = 33.4%, after 4 weeks of aerobic training (time effect, P < 0.05; there were no differences between the groups.Conclusions: Vpeak_K, as well as vVO2max, can be adopted as an alternative test to determine the performance and correct prescription of systemized aerobic protocol training to mice.

  10. Peak Velocity as an Alternative Method for Training Prescription in Mice.

    Science.gov (United States)

    Picoli, Caroline de Carvalho; Romero, Paulo Vitor da Silva; Gilio, Gustavo R; Guariglia, Débora A; Tófolo, Laize P; de Moraes, Solange M F; Machado, Fabiana A; Peres, Sidney B

    2018-01-01

    Purpose: To compare the efficiency of an aerobic physical training program prescribed according to either velocity associated with maximum oxygen uptake (vVO 2max ) or peak running speed obtained during an incremental treadmill test (V peak_K ) in mice. Methods: Twenty male Swiss mice, 60 days old, were randomly divided into two groups with 10 animals each: 1. group trained by vVO 2max (GVO 2 ), 2. group trained by V peak_K (GVP). After the adaptation training period, an incremental test was performed at the beginning of each week to adjust training load and to determine the amount of VO 2 and VCO 2 fluxes consumed, energy expenditure (EE) and run distance during the incremental test. Mice were submitted to 4 weeks of aerobic exercise training of moderate intensity (velocity referring to 70% of vVO 2max and V peak_K ) in a programmable treadmill. The sessions lasted from 30 to 40 min in the first week, to reach 60 min in the fourth week, in order to provide the mice with a moderate intensity exercise, totaling 20 training sessions. Results: Mice demonstrated increases in VO 2max (ml·kg -1 ·min -1 ) (GVO 2 = 49.1% and GVP = 56.2%), V peak_K (cm·s -1 ) (GVO 2 = 50.9% and GVP = 22.3%), EE (ml·kg -0,75 ·min -1 ) (GVO 2 = 39.9% and GVP = 51.5%), and run distance (cm) (GVO 2 = 43.5% and GVP = 33.4%), after 4 weeks of aerobic training (time effect, P < 0.05); there were no differences between the groups. Conclusions: V peak_K , as well as vVO 2max , can be adopted as an alternative test to determine the performance and correct prescription of systemized aerobic protocol training to mice.

  11. The collision forces and lower-extremity inter-joint coordination during running.

    Science.gov (United States)

    Wang, Li-I; Gu, Chin-Yi; Wang, I-Lin; Siao, Sheng-Wun; Chen, Szu-Ting

    2018-06-01

    The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.

  12. Remote determination of the velocity index and mean streamwise velocity profiles

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  13. Triathlon: running injuries.

    Science.gov (United States)

    Spiker, Andrea M; Dixit, Sameer; Cosgarea, Andrew J

    2012-12-01

    The running portion of the triathlon represents the final leg of the competition and, by some reports, the most important part in determining a triathlete's overall success. Although most triathletes spend most of their training time on cycling, running injuries are the most common injuries encountered. Common causes of running injuries include overuse, lack of rest, and activities that aggravate biomechanical predisposers of specific injuries. We discuss the running-associated injuries in the hip, knee, lower leg, ankle, and foot of the triathlete, and the causes, presentation, evaluation, and treatment of each.

  14. Relationship between running kinematic changes and time limit at vVO2max. DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n4p428

    Directory of Open Access Journals (Sweden)

    Sebastião Iberes Lopes Melo

    2012-07-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n4p428Exhaustive running at maximal oxygen uptake velocity (vVO2max can alter running kinematic parameters and increase energy cost along the time. The aims of the present study were to compare characteristics of ankle and knee kinematics during running at vVO2max and to verify the relationship between changes in kinematic variables and time limit (Tlim. Eleven male volunteers, recreational players of team sports, performed an incremental running test until volitional exhaustion to determine vVO2max and a constant velocity test at vVO2max. Subjects were filmed continuously from the left sagittal plane at 210 Hz for further kinematic analysis. The maximal plantar flexion during swing (p<0.01 was the only variable that increased significantly from beginning to end of the run. Increase in ankle angle at contact was the only variable related to Tlim (r=0.64; p=0.035 and explained 34% of the performance in the test. These findings suggest that the individuals under study maintained a stable running style at vVO2max and that increase in plantar flexion explained the performance in this test when it was applied in non-runners.

  15. Honderd jaar orthopedie in Nederland. X. Sportletsel

    NARCIS (Netherlands)

    Heijboer, M. P.; van Dijk, C. N.; Diercks, R. L.

    1998-01-01

    Sports injuries result from frequently repeated similar movements performed with submaximal force. In practice the term is also used, incorrectly, for many other injuries sustained during, or even outside, the practising of sports. Running may lead to injuries of muscles (rupture, chronic

  16. Habitual Minimalist Shod Running Biomechanics and the Acute Response to Running Barefoot.

    Science.gov (United States)

    Tam, Nicholas; Darragh, Ian A J; Divekar, Nikhil V; Lamberts, Robert P

    2017-09-01

    The aim of the study was to determine whether habitual minimalist shoe runners present with purported favorable running biomechanithat reduce running injury risk such as initial loading rate. Eighteen minimalist and 16 traditionally cushioned shod runners were assessed when running both in their preferred training shoe and barefoot. Ankle and knee joint kinetics and kinematics, initial rate of loading, and footstrike angle were measured. Sagittal ankle and knee joint stiffness were also calculated. Results of a two-factor ANOVA presented no group difference in initial rate of loading when participants were running either shod or barefoot; however, initial loading rate increased for both groups when running barefoot (p=0.008). Differences in footstrike angle were observed between groups when running shod, but not when barefoot (minimalist:8.71±8.99 vs. traditional: 17.32±11.48 degrees, p=0.002). Lower ankle joint stiffness was found in both groups when running barefoot (p=0.025). These findings illustrate that risk factors for injury potentially differ between the two groups. Shoe construction differences do change mechanical demands, however, once habituated to the demands of a given shoe condition, certain acute favorable or unfavorable responses may be moderated. The purported benefits of minimalist running shoes in mimicking habitual barefoot running is questioned, and risk of injury may not be attenuated. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Electricity prices and fuel costs. Long-run relations and short-run dynamics

    International Nuclear Information System (INIS)

    Mohammadi, Hassan

    2009-01-01

    The paper examines the long-run relation and short-run dynamics between electricity prices and three fossil fuel prices - coal, natural gas and crude oil - using annual data for the U.S. for 1960-2007. The results suggest (1) a stable long-run relation between real prices for electricity and coal (2) Bi-directional long-run causality between coal and electricity prices. (3) Insignificant long-run relations between electricity and crude oil and/or natural gas prices. And (4) no evidence of asymmetries in the adjustment of electricity prices to deviations from equilibrium. A number of implications are addressed. (author)

  18. Liquidity Runs

    NARCIS (Netherlands)

    Matta, R.; Perotti, E.

    2016-01-01

    Can the risk of losses upon premature liquidation produce bank runs? We show how a unique run equilibrium driven by asset liquidity risk arises even under minimal fundamental risk. To study the role of illiquidity we introduce realistic norms on bank default, such that mandatory stay is triggered

  19. COMPARISON OF LIVE HIGH: TRAIN LOW ALTITUDE AND INTERMITTENT HYPOXIC EXPOSURE

    Directory of Open Access Journals (Sweden)

    Clare E. Humberstone-Gough

    2013-09-01

    Full Text Available Live High:Train Low (LHTL altitude training is a popular ergogenic aid amongst athletes. An alternative hypoxia protocol, acute (60-90 min daily Intermittent Hypoxic Exposure (IHE, has shown potential for improving athletic performance. The aim of this study was to compare directly the effects of LHTL and IHE on the running and blood characteristics of elite triathletes. Changes in total haemoglobin mass (Hbmass, maximal oxygen consumption (VO2max, velocity at VO2max (vVO2max, time to exhaustion (TTE, running economy, maximal blood lactate concentration ([La] and 3 mM [La] running speed were compared following 17 days of LHTL (240 h of hypoxia, IHE (10.2 h of hypoxia or Placebo treatment in 24 Australian National Team triathletes (7 female, 17 male. There was a clear 3.2 ± 4.8% (mean ± 90% confidence limits increase in Hbmass following LHTL compared with Placebo, whereas the corresponding change of -1.4 ± 4.5% in IHE was unclear. Following LHTL, running economy was 2.8 ± 4.4% improved compared to IHE and 3mM [La] running speed was 4.4 ± 4.5% improved compared to Placebo. After IHE, there were no beneficial changes in running economy or 3mM [La] running speed compared to Placebo. There were no clear changes in VO2max, vVO2max and TTE following either method of hypoxia. The clear difference in Hbmass response between LHTL and IHE indicated that the dose of hypoxia in IHE was insufficient to induce accelerated erythropoiesis. Improved running economy and 3mM [La] running speed following LHTL suggested that this method of hypoxic exposure may enhance performance at submaximal running speeds. Overall, there was no evidence to support the use of IHE in elite triathletes

  20. Generalised functions method in the boundary value problems of elastodynamics by stationary running loads

    International Nuclear Information System (INIS)

    Alexeyeva, L.A.

    2001-01-01

    Investigation of diffraction processes of seismic waves on underground tunnels and pipelines with use of mathematical methods is related to solving boundary value problems (BVP) for hyperbolic system of differential equations in domains with cylindrical cavities when seismic disturbances propagate along boundaries with subsonic or transonic speeds. Also such classes of problems appear when it's necessary to study the behavior of underground constructions and Stress-strain State of environment. But in this case the velocities of running loads are less than velocities of wave propagation in surrounding medium. At present similar problems were solved only for constructions of circular cylindrical form with use of methods of full and not full dividing of variables. For cylindrical constructions of complex cross section strong mathematical theories for solving these problems were absent.(author)

  1. A new Technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescence (PILIF)

    International Nuclear Information System (INIS)

    Tabares, F.L.

    1992-01-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton Ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (author)

  2. A new technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescent (PILIF)

    International Nuclear Information System (INIS)

    Tabares, F.L.

    1992-01-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (Author) 8 refs

  3. A new technique for ultrafast velocity distribution measurements of atomic species by post-ionization laser induced fluorescent (PILIF)

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F.L.

    1992-07-01

    A new method for single shot velocity distribution measurement of metallic impurities of relevance for studies involving continuous sources, such as limiter experiments in fusion devices or sputtering experiments, based in the combination of Resonant Enhanced Multiphoton ionization (REMPI) and Laser Induced Fluorescence (LIF) is proposed. High ionization yield and good time resolution are expected according to the numerical simulation of the experiment that has been run for several atomic species. Other possible applications of REMPI to plasma edge physics and to conventional techniques for velocity distribution measurements are briefly addressed. (Author) 8 refs.

  4. Dr. Sheehan on Running.

    Science.gov (United States)

    Sheehan, George A.

    This book is both a personal and technical account of the experience of running by a heart specialist who began a running program at the age of 45. In its seventeen chapters, there is information presented on the spiritual, psychological, and physiological results of running; treatment of athletic injuries resulting from running; effects of diet…

  5. Relationship between Achilles tendon properties and foot strike patterns in long-distance runners.

    Science.gov (United States)

    Kubo, Keitaro; Miyazaki, Daisuke; Tanaka, Shigeharu; Shimoju, Shozo; Tsunoda, Naoya

    2015-01-01

    The purpose of this study was to investigate the relationship between Achilles tendon properties and foot strike patterns in long-distance runners. Forty-one highly trained male long-distance runners participated in this study. Elongation of the Achilles tendon and aponeurosis of the medial gastrocnemius muscle were measured using ultrasonography, while the participants performed ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force and tendon elongation during the ascending phase was fit to a linear regression, the slope of which was defined as stiffness. In addition, the cross-sectional area of the Achilles tendon was measured using ultrasonography. Foot strike patterns (forefoot, midfoot and rearfoot) during running were determined at submaximal velocity (18 km · h(-1)) on a treadmill. The number of each foot strike runner was 12 for the forefoot (29.3%), 12 for the midfoot (29.3%) and 17 for the rearfoot (41.5%). No significant differences were observed in the variables measured for the Achilles tendon among the three groups. These results suggested that the foot strike pattern during running did not affect the morphological or mechanical properties of the Achilles tendon in long-distance runners.

  6. A LABORATORY TEST FOR THE EXAMINATION OF ALACTIC RUNNING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Armin Kibele

    2005-12-01

    Full Text Available A new testing procedure is introduced to evaluate the alactic running performance in a 10s sprint task with near-maximal movement velocity. The test is performed on a motor-equipped treadmill with inverted polarity that increases mechanical resistance instead of driving the treadmill belt. As a result, a horizontal force has to be exerted against the treadmill surface in order to overcome the resistant force of the engine and to move the surface in a backward direction. For this task, subjects lean with their hands towards the front safety barrier of the treadmill railing with a slightly inclined body posture. The required skill resembles the pushing movement of bobsleigh pilots at the start of a race. Subjects are asked to overcome this mechanical resistance and to cover as much distance as possible within a time period of 10 seconds. Fifteen male students (age: 27.7 ± 4.1 years, body height: 1.82 ± 0.46 m, body mass: 78.3 ± 6.7 kg participated in a study. As the resistance force was set to 134 N, subjects ran 35.4 ± 2.6 m on the average corresponding to a mean running velocity of 3.52 ± 0.25 m·s-1. The validity of the new test was examined by statistical inference with various measures related to alactic performance including a metabolic equivalent to estimate alactic capacity (2892 ± 525 mL O2, an estimate for the oxygen debt (2662 ± 315 ml, the step test by Margaria to estimate alactic energy flow (1691 ± 171 W, and a test to measure the maximal strength in the leg extensor muscles (2304 ± 351 N. The statistical evaluation showed that the new test is in good agreement with the theoretical assumptions for alactic performance. Significant correlation coefficients were found between the test criteria and the measures for alactic capacity (r = 0.79, p < 0.01 as well as alactic power (r = 0.77, p < 0.01. The testing procedure is easy to administer and it is best suited to evaluate the alactic capacity for bobsleigh pilots as well as for

  7. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  8. The Apollo Number: space suits, self-support, and the walk-run transition.

    Directory of Open Access Journals (Sweden)

    Christopher E Carr

    Full Text Available BACKGROUND: How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g, running, unlike on Earth, uses less energy per distance than walking. METHODOLOGY/PRINCIPAL FINDINGS: The walk-run transition (denoted * correlates with the Froude Number (Fr = v(2/gL, velocity v, gravitational acceleration g, leg length L. Human unsuited Fr* is relatively constant (approximately 0.5 with gravity but increases substantially with decreasing gravity below approximately 0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g or completely (lunar-g support their own weight. We define the Apollo Number (Ap = Fr/M as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run and calculate Ap. We estimated the binary transition between walk/lope (0 and run (1, yielding Fr* (0.36+/-0.11, mean+/-95% CI and Ap* (0.68+/-0.20. CONCLUSIONS/SIGNIFICANCE: The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars.

  9. Electron run-away

    International Nuclear Information System (INIS)

    Levinson, I.B.

    1975-01-01

    The run-away effect of electrons for the Coulomb scattering has been studied by Dricer, but the question for other scattering mechanisms is not yet studied. Meanwhile, if the scattering is quasielastic, a general criterion for the run-away may be formulated; in this case the run-away influence on the distribution function may also be studied in somewhat general and qualitative manner. (Auth.)

  10. Similar Running Economy With Different Running Patterns Along the Aerial-Terrestrial Continuum.

    Science.gov (United States)

    Lussiana, Thibault; Gindre, Cyrille; Hébert-Losier, Kim; Sagawa, Yoshimasa; Gimenez, Philippe; Mourot, Laurent

    2017-04-01

    No unique or ideal running pattern is the most economical for all runners. Classifying the global running patterns of individuals into 2 categories (aerial and terrestrial) using the Volodalen method could permit a better understanding of the relationship between running economy (RE) and biomechanics. The main purpose was to compare the RE of aerial and terrestrial runners. Two coaches classified 58 runners into aerial (n = 29) or terrestrial (n = 29) running patterns on the basis of visual observations. RE, muscle activity, kinematics, and spatiotemporal parameters of both groups were measured during a 5-min run at 12 km/h on a treadmill. Maximal oxygen uptake (V̇O 2 max) and peak treadmill speed (PTS) were assessed during an incremental running test. No differences were observed between aerial and terrestrial patterns for RE, V̇O 2 max, and PTS. However, at 12 km/h, aerial runners exhibited earlier gastrocnemius lateralis activation in preparation for contact, less dorsiflexion at ground contact, higher coactivation indexes, and greater leg stiffness during stance phase than terrestrial runners. Terrestrial runners had more pronounced semitendinosus activation at the start and end of the running cycle, shorter flight time, greater leg compression, and a more rear-foot strike. Different running patterns were associated with similar RE. Aerial runners appear to rely more on elastic energy utilization with a rapid eccentric-concentric coupling time, whereas terrestrial runners appear to propel the body more forward rather than upward to limit work against gravity. Excluding runners with a mixed running pattern from analyses did not affect study interpretation.

  11. A Running Start: Resource Guide for Youth Running Programs

    Science.gov (United States)

    Jenny, Seth; Becker, Andrew; Armstrong, Tess

    2016-01-01

    The lack of physical activity is an epidemic problem among American youth today. In order to combat this, many schools are incorporating youth running programs as a part of their comprehensive school physical activity programs. These youth running programs are being implemented before or after school, at school during recess at the elementary…

  12. Effect of Peer Influence on Exercise Behavior and Enjoyment in Recreational Runners.

    Science.gov (United States)

    Carnes, Andrew J; Petersen, Jennifer L; Barkley, Jacob E

    2016-02-01

    Fitness professionals and popular media sources often recommend exercising with a partner to increase exercise motivation, adherence, intensity, and/or duration. Although competition with peers has been shown to enhance maximal athletic performance, experimental research examining the impact of peer influence on submaximal exercise behavior in adults is limited. The purpose of this study was to determine the effects of the presence of familiar and unfamiliar peers, vs. running alone, on recreational runners' voluntary running duration, distance, intensity, liking (i.e., enjoyment), and ratings of perceived exertion (RPEs). Recreational runners (n = 12 males, n = 12 females) completed 3 experimental trials, each under a different social condition, in a randomized order. Each trial consisted of self-paced running for a duration voluntarily determined by the participant. The 3 social conditions were running alone, with a sex- and fitness-matched familiar peer, or with a sex- and fitness-matched unfamiliar peer. A wrist-worn global positioning system was used to record running duration, distance, and average speed. Liking and RPE were assessed at the end of each trial. Mixed model regression analysis showed no significant effects of social condition (p ≥ 0.40) for any of the dependent variables. The presence of a familiar or unfamiliar peer did not alter recreational runners' running behavior, liking, or perceived exertion during submaximal exercise. However, exercising with others may have other benefits (e.g., reduced attrition) not examined herein.

  13. Why making an experiment susceptible of determining the velocity of the gravitational interaction is compulsory

    International Nuclear Information System (INIS)

    Cristea, G.

    1975-01-01

    In papers /1,2,3/, some proposals were made concerning the effecting of certain experiments apt to leading to the determination of the velocity of the gravitational interaction. This paper brings into relief the fact that this determination can only be achieved by measuring the delayed gravitational field and not by measuring the propagation velocity of the gravitational radiation that remains as yet a controversial problem, both theoretically and experimentally. The possibility is shown of the existence of a gravitational effect not unlike the Poynting-Robertson light effect; the importance is discussed of its determination both in the spatial and the astronomical fields. Certain of the proposed mechanisms for explaining the gravitational interaction are run over, their nonviability being objectively pointed out. Finally, conclusions are drawn from the presented material as to the necessity of effecting experiments for the determination of the velocity of the gravitational interaction

  14. Mechanical neutron velocity selector for wavelengths over 0.4 nm

    International Nuclear Information System (INIS)

    Tieben, H.; Wendt, W.

    1975-07-01

    A mechanical velocity selector with twisted acrylic glass plates glued to the rotor is described. The selector is designed for use in the neutron wavelength region above 0.4 nanometers. The transmission is 62% and the full width at half maximum of the triangular spectrum of the transmitted neutrons with the wavelength lambda sub(o) is +- 0.06 lambda sub(o). The rotor runs in the vacuum; it is magnetically coupled to the drive motor, its speed is stabilized to maximum deviations of 0.03%. The application of the selector in studies of bloch walls is described. (orig.) [de

  15. Early phase interference between low-intensity running and power training in moderately trained females

    DEFF Research Database (Denmark)

    Terzis, Gerasimos; Spengos, Kostas; Methenitis, Spyros

    2016-01-01

    PURPOSE: The aim of the study was to investigate the effects of low-intensity running performed immediately after lower-body power-training sessions on power development. METHODS: Twenty young females participated in 6 weeks, 3/week, of either lower body power training (PT) or lower body power...... training followed by 30 min of low-intensity running (PET) eliciting 60-70 % of maximal heart rate. The following were measured before and after the training period: counter-movement jump, isometric leg press force and rate of force development (RFD), half squat 1-RM, vastus lateralis fiber type...... performed after lower-body power training impairs the exercise-induced adaptation in stretch-shortening cycle jumping performance (vertical jump height, peak power), during the first 6 weeks of training, which may be partially linked to inhibited muscle fiber hypertrophy and muscle fiber conduction velocity....

  16. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  17. 4U 1907+09: an HMXB running away from the Galactic plane

    Science.gov (United States)

    Gvaramadze, V. V.; Röser, S.; Scholz, R.-D.; Schilbach, E.

    2011-05-01

    We report the discovery of a bow shock around the high-mass X-ray binary (HMXB) 4U 1907+09 using the Spitzer Space Telescope 24 μm data (after Vela X-1 the second example of bow shocks associated with HMXBs). The detection of the bow shock implies that 4U 1907+09 is moving through space with a high (supersonic) peculiar velocity. To confirm the runaway nature of 4U 1907+09, we measured its proper motion, which for an adopted distance to the system of 4 kpc corresponds to a peculiar transverse velocity of ≃ 160 ± 115 km s-1, meaning that 4U 1907+09 is indeed a runaway system. This also supports the general belief that most HMXBs possess high space velocities. The direction of motion of 4U 1907+09 inferred from the proper motion measurement is consistent with the orientation of the symmetry axis of the bow shock, and shows that the HMXB is running away from the Galactic plane. We also present the Spitzer images of the bow shock around Vela X-1 (a system similar to 4U 1907+09) and compare it with the bow shock generated by 4U 1907+09.

  18. Effects of a helium/oxygen mixture on individuals’ lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases

    Directory of Open Access Journals (Sweden)

    Häussermann S

    2015-09-01

    Full Text Available Sabine Häussermann,1 Anja Schulze,1 Ira M Katz,2,3 Andrew R Martin,4 Christiane Herpich,1 Theresa Hunger,1 Joëlle Texereau2 1Inamed GmbH, Gauting, Germany; 2Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 3Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 4Department of Mechanical Engineering, University of Alberta, Edmonton, AB, CanadaBackground: Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22% to that of medical air.Methods: The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD participants, both moderate and severe (6 participants in each disease group, a total of 30; at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained.Results: There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups.Conclusion: The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications. Keywords: helium/oxygen, inspiratory capacity, oxygen uptake, COPD, asthma, obstructive airway diseases, exercise, heliox

  19. HYDRAULIC UNITS FOR DRIVING SYSTEMS OF RUNNING EQUIPMENT IN ROAD CONSTRUCTION MACHINERY

    Directory of Open Access Journals (Sweden)

    A. Ja. Kotlobai

    2016-01-01

    Full Text Available Operational efficiency of multi-functional road construction machines depends on number of working bodies which are simultaneously performing technological operations. Systems for propulsion pto to the running equipment drive and active working bodies of road construction machines are developing in the way of using three-axis hydraulic drives. When designing a hydraulic system for road construction machinery dividing of power flow from propulsion to the running equipment drive and active working bodies is considered as rather essential problem. Leading companies do not pay attention to the development of flow divider designs, preferring to produce more expensive multi-flow pumps. One of the ways to increase efficiency of multi-functional road construction machinery is an implementation of running equipment hydraulic driving system based on a mono-aggregate pump unit which consists of a pump and a volumetric divider of power fluid flow. A principle of volumetric division and summing-up of power fluid flows, technical realization and methodology for calculation of key parameters of discrete flow distributors has been developed on the basis of discrete hydraulics regulations. The paper presents results of mathematical modeling of hydraulic systems equipped with the discrete flow distributor. Analysis of a dual-motor hydraulic drive operation has shown the following results: a discrete flow distributor ensures independent load mode of the current consumer circuit operation from the load mode of the second consumer circuit within a wide range of loads; rational value of working fluid flow discretization parameter is the following value interval k = 4–6, maximum value of parameter efficiency is reached when an angular velocity of a distributor rotor coincides with the angular velocity of a pump shaft; discrete flow distributor provides a possibility to change parameters of hydraulic flow feeding in consumers’ pressure lines within a wide range

  20. Rearfoot striking runners are more economical than midfoot strikers.

    Science.gov (United States)

    Ogueta-Alday, Ana; Rodríguez-Marroyo, José Antonio; García-López, Juan

    2014-03-01

    This study aimed to analyze the influence of foot strike pattern on running economy and biomechanical characteristics in subelite runners with a similar performance level. Twenty subelite long-distance runners participated and were divided into two groups according to their foot strike pattern: rearfoot (RF, n = 10) and midfoot (MF, n = 10) strikers. Anthropometric characteristics were measured (height, body mass, body mass index, skinfolds, circumferences, and lengths); physiological (VO2max, anaerobic threshold, and running economy) and biomechanical characteristics (contact and flight times, step rate, and step length) were registered during both incremental and submaximal tests on a treadmill. There were no significant intergroup differences in anthropometrics, VO2max, or anaerobic threshold measures. RF strikers were 5.4%, 9.3%, and 5.0% more economical than MF at submaximal speeds (11, 13, and 15 km·h respectively, although the difference was not significant at 15 km·h, P = 0.07). Step rate and step length were not different between groups, but RF showed longer contact time (P Foot strike pattern affected both contact and flight times, which may explain the differences in running economy.

  1. The effect of gait velocity on calcaneal balance at heel strike; Implications for orthotic prescription in injury prevention.

    Science.gov (United States)

    Shanthikumar, Shivanthan; Low, Zi; Falvey, Eanna; McCrory, Paul; Franklyn-Miller, Andy

    2010-01-01

    Exercise related lower limb injuries (ERLLI), are common in the recreational and competitive sporting population. Although ERLLI are thought to be multi-factorial in aetiology, one of the critical predisposing factors is known to gait abnormality. There is little published evidence comparing walking and running gait in the same subjects, and no evidence on the effect of gait velocity on calcaneal pronation, even though this may have implications for orthotic prescription and injury prevention. In this study, the walking and running gait of 50 physically active subjects was assessed using pressure plate analysis. The results show that rearfoot pronation occurs on foot contact in both running and walking gait, and that there is significantly more rearfoot pronation in walking gait (prunning vs. walking gait. The findings of this study suggest that in the athletic population orthoses prescription should be based on dynamic assessment of running gait. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  2. Cellular automaton simulation of pedestrian counter flow with different walk velocities

    International Nuclear Information System (INIS)

    Weng, W. G.; Chen, T.; Yuan, H. Y.; Fan, W. C.

    2006-01-01

    This paper presents a cellular automaton model without step back for pedestrian dynamics considering the human behaviors which can make judgments in some complex situations. This model can simulate pedestrian movement with different walk velocities through update at different time-step intervals. Two kinds of boundary conditions including periodic and open boundary for pedestrian counter flow are considered, and their dynamical characteristics are discussed. Simulation results show that for periodic boundary condition there are three phases of pedestrian patterns, i.e., freely moving phase, lane formation phase, and perfectly stopped phase at some certain total density ranges. In the stage of lane formation, the phenomenon that pedestrians exceed those with lower walk velocity through a narrow walkway can be found. For open boundary condition, at some certain entrance densities, there are two steady states of pedestrian patterns; but the first is metastable. Spontaneous fluctuations can break the first steady state, i.e., freely moving phase, and run into the second steady state, i.e., perfectly stopped phase

  3. Fault gouge rheology under confined, high-velocity conditions

    Science.gov (United States)

    Reches, Z.; Madden, A. S.; Chen, X.

    2012-12-01

    We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was

  4. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    Science.gov (United States)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  5. Short-run and long-run elasticities of import demand for crude oil in Turkey

    International Nuclear Information System (INIS)

    Altinay, Galip

    2007-01-01

    The aim of this study is to attempt to estimate the short-run and the long-run elasticities of demand for crude oil in Turkey by the recent autoregressive distributed lag (ARDL) bounds testing approach to cointegration. As a developing country, Turkey meets its growing demand for oil principally by foreign suppliers. Thus, the study focuses on modelling the demand for imported crude oil using annual data covering the period 1980-2005. The bounds test results reveal that a long-run cointegration relationship exists between the crude oil import and the explanatory variables: nominal price and income, but not in the model that includes real price in domestic currency. The long-run parameters are estimated through a long-run static solution of the estimated ARDL model, and then the short-run dynamics are estimated by the error correction model. The estimated models pass the diagnostic tests successfully. The findings reveal that the income and price elasticities of import demand for crude oil are inelastic both in the short run and in the long run

  6. Habituation contributes to the decline in wheel running within wheel-running reinforcement periods.

    Science.gov (United States)

    Belke, Terry W; McLaughlin, Ryan J

    2005-02-28

    Habituation appears to play a role in the decline in wheel running within an interval. Aoyama and McSweeney [Aoyama, K., McSweeney, F.K., 2001. Habituation contributes to within-session changes in free wheel running. J. Exp. Anal. Behav. 76, 289-302] showed that when a novel stimulus was presented during a 30-min interval, wheel-running rates following the stimulus increased to levels approximating those earlier in the interval. The present study sought to assess the role of habituation in the decline in running that occurs over a briefer interval. In two experiments, rats responded on fixed-interval 30-s schedules for the opportunity to run for 45 s. Forty reinforcers were completed in each session. In the first experiment, the brake and chamber lights were repeatedly activated and inactivated after 25 s of a reinforcement interval had elapsed to assess the effect on running within the remaining 20 s. Presentations of the brake/light stimulus occurred during nine randomly determined reinforcement intervals in a session. In the second experiment, a 110 dB tone was emitted after 25 s of the reinforcement interval. In both experiments, presentation of the stimulus produced an immediate decline in running that dissipated over sessions. No increase in running following the stimulus was observed in the first experiment until the stimulus-induced decline dissipated. In the second experiment, increases in running were observed following the tone in the first session as well as when data were averaged over several sessions. In general, the results concur with the assertion that habituation plays a role in the decline in wheel running that occurs within both long and short intervals. (c) 2004 Elsevier B.V. All rights reserved.

  7. Orthotic intervention in forefoot and rearfoot strike running patterns.

    Science.gov (United States)

    Stackhouse, Carrie Laughton; Davis, Irene McClay; Hamill, Joseph

    2004-01-01

    To compare the differential effect of custom orthoses on the lower extremity mechanics of a forefoot and rearfoot strike pattern. Fifteen subjects ran with both a forefoot and a rearfoot strike pattern with and without orthoses. Lower extremity kinematic and kinetic variables were compared between strike pattern and orthotic conditions. Foot orthoses have been shown to be effective in controlling excessive rearfoot motion in rearfoot strikers. The effect of orthotic intervention on rearfoot motion in forefoot strikers has not been previously reported. Five trials were collected for each condition. Peak rearfoot eversion, eversion excursion, eversion velocity, peak inversion moment, and inversion work were compared between conditions. Kinematic variables in the sagittal plane of the rearfoot and in the frontal and sagittal plane of the knee were also determined. Increased rearfoot excursions and velocities and decreased peak eversion were noted in the forefoot strike pattern compared to the rearfoot strike pattern. Orthotic intervention, however,did not significantly change rearfoot motion in either strike pattern. Reductions in internal rotation and abduction of the knee were noted with orthotic intervention. Foot orthoses do not differentially effect rearfoot motion of a rearfoot strike and a forefoot strike running pattern. Orthotic intervention has a larger and more systematic effect on rearfoot kinetics compared to rearfoot kinematics.

  8. RUNNING INJURY DEVELOPMENT

    DEFF Research Database (Denmark)

    Johansen, Karen Krogh; Hulme, Adam; Damsted, Camma

    2017-01-01

    BACKGROUND: Behavioral science methods have rarely been used in running injury research. Therefore, the attitudes amongst runners and their coaches regarding factors leading to running injuries warrants formal investigation. PURPOSE: To investigate the attitudes of middle- and long-distance runners...... able to compete in national championships and their coaches about factors associated with running injury development. METHODS: A link to an online survey was distributed to middle- and long-distance runners and their coaches across 25 Danish Athletics Clubs. The main research question was: "Which...... factors do you believe influence the risk of running injuries?". In response to this question, the athletes and coaches had to click "Yes" or "No" to 19 predefined factors. In addition, they had the possibility to submit a free-text response. RESULTS: A total of 68 athletes and 19 coaches were included...

  9. Running Injury Development

    DEFF Research Database (Denmark)

    Krogh Johansen, Karen; Hulme, Adam; Damsted, Camma

    2017-01-01

    Background: Behavioral science methods have rarely been used in running injury research. Therefore, the attitudes amongst runners and their coaches regarding factors leading to running injuries warrants formal investigation. Purpose: To investigate the attitudes of middle- and long-distance runners...... able to compete in national championships and their coaches about factors associated with running injury development. Methods: A link to an online survey was distributed to middle- and long-distance runners and their coaches across 25 Danish Athletics Clubs. The main research question was: “Which...... factors do you believe influence the risk of running injuries?”. In response to this question, the athletes and coaches had to click “Yes” or “No” to 19 predefined factors. In addition, they had the possibility to submit a free-text response. Results: A total of 68 athletes and 19 coaches were included...

  10. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Rocker shoe, minimalist shoe, and standard running shoe : A comparison of running economy

    NARCIS (Netherlands)

    Sobhani, Sobhan; Bredeweg, Steven; Dekker, Rienk; Kluitenberg, Bas; van den Heuvel, Edwin; Hijmans, Juha; Postema, Klaas

    Objectives: Running with rocker shoes is believed to prevent lower limb injuries. However, it is not clear how running in these shoes affects the energy expenditure. The purpose of this study was, therefore, to assess the effects of rocker shoes on running economy in comparison with standard and

  12. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  13. The LHCb Run Control

    Energy Technology Data Exchange (ETDEWEB)

    Alessio, F; Barandela, M C; Frank, M; Gaspar, C; Herwijnen, E v; Jacobsson, R; Jost, B; Neufeld, N; Sambade, A; Schwemmer, R; Somogyi, P [CERN, 1211 Geneva 23 (Switzerland); Callot, O [LAL, IN2P3/CNRS and Universite Paris 11, Orsay (France); Duval, P-Y [Centre de Physique des Particules de Marseille, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Franek, B [Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Galli, D, E-mail: Clara.Gaspar@cern.c [Universita di Bologna and INFN, Bologna (Italy)

    2010-04-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented

  14. runDM: Running couplings of Dark Matter to the Standard Model

    Science.gov (United States)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2018-02-01

    runDM calculates the running of the couplings of Dark Matter (DM) to the Standard Model (SM) in simplified models with vector mediators. By specifying the mass of the mediator and the couplings of the mediator to SM fields at high energy, the code can calculate the couplings at low energy, taking into account the mixing of all dimension-6 operators. runDM can also extract the operator coefficients relevant for direct detection, namely low energy couplings to up, down and strange quarks and to protons and neutrons.

  15. Effects of Marathon Running on Aerobic Fitness and Performance in Recreational Runners One Week after a Race

    Directory of Open Access Journals (Sweden)

    Fuminori Takayama

    2017-01-01

    Full Text Available It is not clear whether or not recreational runners can recover aerobic fitness and performance within one week after marathon running. This study aimed to investigate the effects of running a marathon race on aerobic fitness and performance one week later. Eleven recreational runners (six men, five women completed the race in 3 h 36 min 20 s ± 41 min 34 s (mean ± standard deviation. Before and 7 days after the race, they performed a treadmill running test. Perceived muscle soreness was assessed before the race and for the following 7 days. The magnitude of changes in the treadmill running test was considered possibly trivial for maximal oxygen uptake (V˙O2max (mean difference −1.2 ml/kg/min; ±90% confidence limits 2 ml/kg/min, unclear for %V˙O2max at anaerobic threshold (AT (−0.5; ±4.1% and RE (0.2; ±3.5 ml/kg/km, and likely trivial for both velocity at AT and peak (−0.2; ±0.49 km/h and −0.3; ±0.28 km/h. Perceived muscle soreness increased until 3 days after the race, but there were no clear differences between the values before the race and 4–7 days after it. These results show that physiological capacity associated with marathon running performance is recovered within 7 days after a marathon run.

  16. Effects of Marathon Running on Aerobic Fitness and Performance in Recreational Runners One Week after a Race.

    Science.gov (United States)

    Takayama, Fuminori; Aoyagi, Atsushi; Shimazu, Wataru; Nabekura, Yoshiharu

    2017-01-01

    It is not clear whether or not recreational runners can recover aerobic fitness and performance within one week after marathon running. This study aimed to investigate the effects of running a marathon race on aerobic fitness and performance one week later. Eleven recreational runners (six men, five women) completed the race in 3 h 36 min 20 s ± 41 min 34 s (mean ± standard deviation). Before and 7 days after the race, they performed a treadmill running test. Perceived muscle soreness was assessed before the race and for the following 7 days. The magnitude of changes in the treadmill running test was considered possibly trivial for maximal oxygen uptake ([Formula: see text]O 2 max) (mean difference -1.2 ml/kg/min; ±90% confidence limits 2 ml/kg/min), unclear for %[Formula: see text]O 2 max at anaerobic threshold (AT) (-0.5; ±4.1%) and RE (0.2; ±3.5 ml/kg/km), and likely trivial for both velocity at AT and peak (-0.2; ±0.49 km/h and -0.3; ±0.28 km/h). Perceived muscle soreness increased until 3 days after the race, but there were no clear differences between the values before the race and 4-7 days after it. These results show that physiological capacity associated with marathon running performance is recovered within 7 days after a marathon run.

  17. Neural network-based run-to-run controller using exposure and resist thickness adjustment

    Science.gov (United States)

    Geary, Shane; Barry, Ronan

    2003-06-01

    This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.

  18. Evaluation of Central and Peripheral Fatigue in the Quadriceps Using Fractal Dimension and Conduction Velocity in Young Females

    Science.gov (United States)

    Beretta-Piccoli, Matteo; D’Antona, Giuseppe; Barbero, Marco; Fisher, Beth; Dieli-Conwright, Christina M.; Clijsen, Ron; Cescon, Corrado

    2015-01-01

    Purpose Over the past decade, linear and non-linear surface electromyography descriptors for central and peripheral components of fatigue have been developed. In the current study, we tested fractal dimension (FD) and conduction velocity (CV) as myoelectric descriptors of central and peripheral fatigue, respectively. To this aim, we analyzed FD and CV slopes during sustained fatiguing contractions of the quadriceps femoris in healthy humans. Methods A total of 29 recreationally active women (mean age±standard deviation: 24±4 years) and two female elite athletes (one power athlete, age 24 and one endurance athlete, age 30 years) performed two knee extensions: (1) at 20% maximal voluntary contraction (MVC) for 30 s, and (2) at 60% MVC held until exhaustion. Surface EMG signals were detected from the vastus lateralis and vastus medialis using bidimensional arrays. Results Central and peripheral fatigue were described as decreases in FD and CV, respectively. A positive correlation between FD and CV (R=0.51, pfatiguing task. Conclusions Central and peripheral fatigue can be described as changes in FD and CV, at least in young, healthy women. The significant correlation between FD and CV observed at 60% MVC suggests that a mutual interaction between central and peripheral fatigue can arise during submaximal isometric contractions. PMID:25880369

  19. Symmetry in running.

    Science.gov (United States)

    Raibert, M H

    1986-03-14

    Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.

  20. The Robust Running Ape: Unraveling the Deep Underpinnings of Coordinated Human Running Proficiency

    Directory of Open Access Journals (Sweden)

    John Kiely

    2017-06-01

    Full Text Available In comparison to other mammals, humans are not especially strong, swift or supple. Nevertheless, despite these apparent physical limitations, we are among Natures most superbly well-adapted endurance runners. Paradoxically, however, notwithstanding this evolutionary-bestowed proficiency, running-related injuries, and Overuse syndromes in particular, are widely pervasive. The term ‘coordination’ is similarly ubiquitous within contemporary coaching, conditioning, and rehabilitation cultures. Various theoretical models of coordination exist within the academic literature. However, the specific neural and biological underpinnings of ‘running coordination,’ and the nature of their integration, remain poorly elaborated. Conventionally running is considered a mundane, readily mastered coordination skill. This illusion of coordinative simplicity, however, is founded upon a platform of immense neural and biological complexities. This extensive complexity presents extreme organizational difficulties yet, simultaneously, provides a multiplicity of viable pathways through which the computational and mechanical burden of running can be proficiently dispersed amongst expanded networks of conditioned neural and peripheral tissue collaborators. Learning to adequately harness this available complexity, however, is a painstakingly slowly emerging, practice-driven process, greatly facilitated by innate evolutionary organizing principles serving to constrain otherwise overwhelming complexity to manageable proportions. As we accumulate running experiences persistent plastic remodeling customizes networked neural connectivity and biological tissue properties to best fit our unique neural and architectural idiosyncrasies, and personal histories: thus neural and peripheral tissue plasticity embeds coordination habits. When, however, coordinative processes are compromised—under the integrated influence of fatigue and/or accumulative cycles of injury, overuse

  1. Accurate mass and velocity functions of dark matter haloes

    Science.gov (United States)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z publicly available in the Skies and Universes data base.

  2. Superconducting RF for Low-Velocity and Intermediate-Velocity Beams

    CERN Document Server

    Grimm, Terry L

    2005-01-01

    Existing superconducting radio frequency (SRF) linacs are used to accelerate ions (protons through uranium) with velocities less than about 15% the speed of light, or electrons with velocities approximately equal to the speed of light. In the last ten years, prototype SRF cavities have completely covered the remaining range of velocities. They have demonstrated that SRF linacs will be capable of accelerating electrons from rest up to the speed of light, and ions from less than 1% up to the speed of light. When the Spallation Neutron Source is operational, SRF ion linacs will have covered the full range of velocities except for v/c ~ 0.15 to v/c ~ 0.5. A number of proposed projects (RIA, EURISOL) would span the latter range of velocities. Future SRF developments will have to address the trade-offs associated with a number of issues, including high gradient operation, longitudinal and transverse acceptance, microphonics, Lorentz detuning, operating temperature, cryogenic load, number of gaps or cells per cavity...

  3. Relationship among maximal grip, throwing velocity and anthropometric parameters in elite water polo players.

    Science.gov (United States)

    Ferragut, C; Vila, H; Abraldes, J A; Argudo, F; Rodriguez, N; Alcaraz, P E

    2011-03-01

    As independent aspects, body size, body composition, and physiological performance of elite athletes have aroused the interest of sports scientists but, unfortunately, studies that combine these aspects are scarcely avalaible in water polo. The aim of the present study was to: 1) to develop an anthropometric profile of highly skilled male Water Polo players, and 2) to identify significant relationships between these features and overhead throwing velocity in highly skilled male water polo players. Thirteen male water polo players, with a mean age of 26.10±4.82, were recruited from the Spanish Water Polo team and an anthropometric assessment on all of them was carried out. Throwing velocity was evaluated in three different situations from the 5 m-penalty line on the center of the water polo goal: A) throwing without a defender nor a goalkeeper; B) throwing with a goalkeeper only, and C) 3) armfuls running shot with goalkeeper. Maximal handgrip was also tested. Biacromial breadth shows a significative correlation with hand grip in water polo players (r=0.792; P=0.001) and also correlates with Throwing velocity (r=0.716; P<0.001). Biepicondylar femur breadth correlates significatively with hand grip (r=0.727; P<0.05) and also with throwing velocity in "throwing with goalkeeper" situation (r=0.664; P<0.05). Hand grip shows a significant correlation with throwing velocity in "throwing with goalkeeper" situation (r=0.603; P<0.05). In conclusion, body mass aspects are not related with throwing velocity in highly skilled Water Polo players. Maximal hand grip is related with throwing velocity in "throwing with goalkeeper" situation. More investigations about water polo are necessary.

  4. EnergyPlus Run Time Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-09-20

    EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences, identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.

  5. Critical velocities in He II for independently varied superfluid and normal fluid velocities

    International Nuclear Information System (INIS)

    Baehr, M.L.

    1984-01-01

    Experiments were performed to measure the critical velocity in pure superflow and compare to the theoretical prediction; to measure the first critical velocity for independently varied superfluid and normal fluid velocities; and to investigate the propagation of the second critical velocity from the thermal counterflow line through the V/sub n/,-V/sub s/ quadrant. The experimental apparatus employed a thermal counterflow heater to adjust the normal fluid velocity, a fountain pump to vary the superfluid velocity, and a level sensing capacitor to measure the superfluid velocity. The results of the pure superfluid critical velocity measurements indicate that this velocity is temperature independent contrary to Schwarz's theory. It was found that the first critical velocity for independently varied V/sub n/ and V/sub s/ could be described by a linear function of V/sub n/ and was otherwise temperature independent. It was found that the second critical velocity could only be distinguished near the thermal counterflow line

  6. The ATLAS Tau Trigger Performance during LHC Run 1 and Prospects for Run 2

    CERN Document Server

    Mitani, T; The ATLAS collaboration

    2016-01-01

    The ATLAS tau trigger is designed to select hadronic decays of the tau leptons. Tau lepton plays an important role in Standard Model (SM) physics, such as in Higgs boson decays. Tau lepton is also important in beyond the SM (BSM) scenarios, such as supersymmetry and exotic particles, as they are often produced preferentially in these models. During the 2010-2012 LHC run (Run1), the tau trigger was accomplished successfully, which leads several rewarding results such as evidence for $H\\rightarrow \\tau\\tau$. From the 2015 LHC run (Run2), LHC will be upgraded and overlapping interactions per bunch crossing (pile-up) are expected to increase by a factor two. It will be challenging to control trigger rates while keeping interesting physics events. This paper summarized the tau trigger performance in Run1 and its prospects for Run2.

  7. Variance of measurements from a calibration function derived from data which exhibit run-to-run differences

    International Nuclear Information System (INIS)

    Liebetrau, A.M.

    1985-01-01

    The volume of liquid in a nuclear process tank is determined from a calibration equation which expresses volume as a function of liquid level. Successive calibration runs are made to obtain data from which to estimate either the calibration function or its inverse. For tanks equipped with high-precision measurement systems to determine liquid level, it frequently happens that run-to-run differences due to uncontrolled or uncontrollable ambient conditions are large relative to within-run measurement errors. In the strict sense, a calibration function cannot be developed from data which exhibit significant run-to-run differences. In practice, run-to-run differences are ignored when they are small relative to the accuracy required for measurements of the tank's contents. The use of standard statistical techniques in this situation can result in variance estimates which severely underestimate the actual uncertainty in volume measurements. This paper gives a method whereby reasonable estimates of the calibration uncertainty in volume determinations can be obtained in the presence of statistically significant run-to-run variability. 4 references, 3 figures, 1 table

  8. Relationship between the Pedaling Biomechanics and Strain of Bicycle Frame during Submaximal Tests

    Directory of Open Access Journals (Sweden)

    Aneliya V. Manolova

    2015-06-01

    Full Text Available The aim of this study was to analyse the effect of forces applied to pedals and cranks on the strain imposed to an instrumented bicycle motocross (BMX frame. Using results from a finite element analysis to determine the localisation of highest stress, eight strain gauges were located on the down tube, the seat tube and the right chain stay. Before the pedaling tests, static loads were applied to the frame during bench tests. Two pedaling conditions have been analysed. In the first, the rider was in static standing position on the pedals and applied maximal muscular isometric force to the right pedal. The second pedaling condition corresponds to three pedaling sprint tests at submaximal intensities at 150, 300 and 550 W on a cycle-trainer. The results showed that smaller strain was observed in the pedaling condition than in the rider static standing position condition. The highest strains were located in the seat tube and the right chain stay near the bottom bracket area. The maximum stress observed through all conditions was 41 MPa on the right chain stay. This stress was 11 times lower than the yield stress of the frame material (460 MPa. This protocol could help to adapt the frame design to the riders as a function of their force and mechanical power output. These results could also help design BMX frames for specific populations (females and rider morphology.

  9. Can the Lamberts and Lambert Submaximal Cycle Test Reflect Overreaching in Professional Cyclists?

    Science.gov (United States)

    Decroix, Lieselot; Lamberts, Robert P; Meeusen, Romain

    2018-01-01

    The Lamberts and Lambert Submaximal Cycle Test (LSCT) consists of 3 stages during which cyclists cycle for 6 min at 60%, 6 min at 80%, and 3 min at 90% of their maximal heart rate, followed by 1-min recovery. To determine if the LSCT is able to reflect a state of functional overreaching in professional female cyclists during an 8-d training camp and the following recovery days. Six professional female cyclists performed an LSCT on days 1, 5, and 8 of the training camp and 3 d after the training camp. During each stage of the LSCT, power output and rating of perceived exertion (RPE) were determined. Training diaries and Profile of Mood States (POMS) were also completed. At the middle and the end of the training camp, increased power output during the 2nd and 3rd stages of the LSCT was accompanied with increased RPE during these stages and/or the inability to reach 90% of maximal heart rate. All athletes reported increased feelings of fatigue and muscle soreness, while changes in energy balance, calculated from the POMS, were less indicative of a state of overreaching. After 3 d of recovery, all parameters of the LSCT returned to baseline, indicating a state of functional overreaching during the training camp. The LSCT is able to reflect a state of overreaching in elite professional female cyclists during an 8-d training camp and the following recovery days.

  10. Not Just Running: Coping with and Managing Everyday Life through Road-Running

    OpenAIRE

    Cook, Simon

    2014-01-01

    From the external form, running looks like running. Yet this alikeness masks a hugely divergent practice consisting of different movements, meanings and experiences. In this paper I wish to shed light upon some of these different ‘ways of running’ and in turn identify a range of the sometimes surprising, sometimes significant and sometimes banal benefits that road-running can gift its practitioners beyond simply exercise and physical fitness. Drawing on an innovative mapping and ethnographic ...

  11. Running Club

    CERN Multimedia

    Running Club

    2011-01-01

    The cross country running season has started well this autumn with two events: the traditional CERN Road Race organized by the Running Club, which took place on Tuesday 5th October, followed by the ‘Cross Interentreprises’, a team event at the Evaux Sports Center, which took place on Saturday 8th October. The participation at the CERN Road Race was slightly down on last year, with 65 runners, however the participants maintained the tradition of a competitive yet friendly atmosphere. An ample supply of refreshments before the prize giving was appreciated by all after the race. Many thanks to all the runners and volunteers who ensured another successful race. The results can be found here: https://espace.cern.ch/Running-Club/default.aspx CERN participated successfully at the cross interentreprises with very good results. The teams succeeded in obtaining 2nd and 6th place in the Mens category, and 2nd place in the Mixed category. Congratulations to all. See results here: http://www.c...

  12. Change in running kinematics after cycling are related to alterations in running economy in triathletes.

    Science.gov (United States)

    Bonacci, Jason; Green, Daniel; Saunders, Philo U; Blanch, Peter; Franettovich, Melinda; Chapman, Andrew R; Vicenzino, Bill

    2010-07-01

    Emerging evidence suggests that cycling may influence neuromuscular control during subsequent running but the relationship between altered neuromuscular control and run performance in triathletes is not well understood. The aim of this study was to determine if a 45 min high-intensity cycle influences lower limb movement and muscle recruitment during running and whether changes in limb movement or muscle recruitment are associated with changes in running economy (RE) after cycling. RE, muscle activity (surface electromyography) and limb movement (sagittal plane kinematics) were compared between a control run (no preceding cycle) and a run performed after a 45 min high-intensity cycle in 15 moderately trained triathletes. Muscle recruitment and kinematics during running after cycling were altered in 7 of 15 (46%) triathletes. Changes in kinematics at the knee and ankle were significantly associated with the change in VO(2) after cycling (precruitment in some triathletes and that changes in kinematics, especially at the ankle, are closely related to alterations in running economy after cycling. Copyright 2010 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    Science.gov (United States)

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  14. Financial Performance of Health Insurers: State-Run Versus Federal-Run Exchanges.

    Science.gov (United States)

    Hall, Mark A; McCue, Michael J; Palazzolo, Jennifer R

    2018-06-01

    Many insurers incurred financial losses in individual markets for health insurance during 2014, the first year of Affordable Care Act mandated changes. This analysis looks at key financial ratios of insurers to compare profitability in 2014 and 2013, identify factors driving financial performance, and contrast the financial performance of health insurers operating in state-run exchanges versus the federal exchange. Overall, the median loss of sampled insurers was -3.9%, no greater than their loss in 2013. Reduced administrative costs offset increases in medical losses. Insurers performed better in states with state-run exchanges than insurers in states using the federal exchange in 2014. Medical loss ratios are the underlying driver more than administrative costs in the difference in performance between states with federal versus state-run exchanges. Policy makers looking to improve the financial performance of the individual market should focus on features that differentiate the markets associated with state-run versus federal exchanges.

  15. Barefoot running: does it prevent injuries?

    Science.gov (United States)

    Murphy, Kelly; Curry, Emily J; Matzkin, Elizabeth G

    2013-11-01

    Endurance running has evolved over the course of millions of years and it is now one of the most popular sports today. However, the risk of stress injury in distance runners is high because of the repetitive ground impact forces exerted. These injuries are not only detrimental to the runner, but also place a burden on the medical community. Preventative measures are essential to decrease the risk of injury within the sport. Common running injuries include patellofemoral pain syndrome, tibial stress fractures, plantar fasciitis, and Achilles tendonitis. Barefoot running, as opposed to shod running (with shoes), has recently received significant attention in both the media and the market place for the potential to promote the healing process, increase performance, and decrease injury rates. However, there is controversy over the use of barefoot running to decrease the overall risk of injury secondary to individual differences in lower extremity alignment, gait patterns, and running biomechanics. While barefoot running may benefit certain types of individuals, differences in running stance and individual biomechanics may actually increase injury risk when transitioning to barefoot running. The purpose of this article is to review the currently available clinical evidence on barefoot running and its effectiveness for preventing injury in the runner. Based on a review of current literature, barefoot running is not a substantiated preventative running measure to reduce injury rates in runners. However, barefoot running utility should be assessed on an athlete-specific basis to determine whether barefoot running will be beneficial.

  16. Differences in ground contact time explain the less efficient running economy in north african runners.

    Science.gov (United States)

    Santos-Concejero, J; Granados, C; Irazusta, J; Bidaurrazaga-Letona, I; Zabala-Lili, J; Tam, N; Gil, S M

    2013-09-01

    The purpose of this study was to investigate the relationship between biomechanical variables and running economy in North African and European runners. Eight North African and 13 European male runners of the same athletic level ran 4-minute stages on a treadmill at varying set velocities. During the test, biomechanical variables such as ground contact time, swing time, stride length, stride frequency, stride angle and the different sub-phases of ground contact were recorded using an optical measurement system. Additionally, oxygen uptake was measured to calculate running economy. The European runners were more economical than the North African runners at 19.5 km · h(-1), presented lower ground contact time at 18 km · h(-1) and 19.5 km · h(-1) and experienced later propulsion sub-phase at 10.5 km · h(-1),12 km · h(-1), 15 km · h(-1), 16.5 km · h(-1) and 19.5 km · h(-1) than the European runners (P Running economy at 19.5 km · h(-1) was negatively correlated with swing time (r = -0.53) and stride angle (r = -0.52), whereas it was positively correlated with ground contact time (r = 0.53). Within the constraints of extrapolating these findings, the less efficient running economy in North African runners may imply that their outstanding performance at international athletic events appears not to be linked to running efficiency. Further, the differences in metabolic demand seem to be associated with differing biomechanical characteristics during ground contact, including longer contact times.

  17. The LHCb Run Control

    CERN Document Server

    Alessio, F; Callot, O; Duval, P-Y; Franek, B; Frank, M; Galli, D; Gaspar, C; v Herwijnen, E; Jacobsson, R; Jost, B; Neufeld, N; Sambade, A; Schwemmer, R; Somogyi, P

    2010-01-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provid...

  18. Effects of fatigue on kinematics and kinetics during overground running: a systematic review.

    Science.gov (United States)

    Winter, Sara; Gordon, Susan; Watt, Kerrianne

    2017-06-01

    Understanding kinematic and kinetic changes with fatigue during running is important to assess changes that may influence performance and injury. The aim of this systematic review was to identify, critique and summarize literature about the effects of fatigue on kinematics and kinetics during a fatiguing overground run and present the reported influence on performance and injury. An electronic search was conducted of MEDLINE, SPORTDiscus, CINAHL and PubMed databases. Two reviewers assessed articles for inclusion, and evaluated the quality of articles included using a modified version of the Downs and Black Quality Index. A total of twelve articles were identified for review. The mean quality assessment score was seven out of a possible 12. Kinematic and kinetic changes reported to affect performance included decreased speed, step or stride frequency and length, increased trunk flexion, lower leg position at heel strike, mediolateral acceleration, changes in hip and knee ranges, and decreased stride regularity, heel lift, maximum knee rotation and backward ankle velocity. Alterations reported to increase risk of injury included decreased step frequency, increased upper body rotation and lower leg position at heel strike, and decreased knee flexion during stance. Reduced risk of injury has been linked to decreased step length and hip ranges, and increased trunk flexion. This review found limited evidence regarding changes in kinematic and kinetic during a fatiguing run in relation to performance and injury. Higher quality studies are warranted, with a larger sample of homogenous runners, and type of run carefully selected to provide quality information for runners, coaches and clinicians.

  19. ATLAS strip detector: Operational Experience and Run1 → Run2 transition

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2014-01-01

    The ATLAS SCT operational experience and the detector performance during the RUN1 period of LHC will be reported. Additionally the preparation outward to RUN2 during the long shut down 1 will be mentioned.

  20. Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise.

    Science.gov (United States)

    LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F

    2002-10-01

    The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.

  1. The NLstart2run study: Incidence and risk factors of running-related injuries in novice runners.

    Science.gov (United States)

    Kluitenberg, B; van Middelkoop, M; Smits, D W; Verhagen, E; Hartgens, F; Diercks, R; van der Worp, H

    2015-10-01

    Running is a popular form of physical activity, despite of the high incidence of running-related injuries (RRIs). Because of methodological issues, the etiology of RRIs remains unclear. Therefore, the purposes of the study were to assess the incidence of RRIs and to identify risk factors for RRIs in a large group of novice runners. In total, 1696 runners of a 6-week supervised "Start to Run" program were included in the NLstart2run study. All participants were aged between 18 and 65, completed a baseline questionnaire that covered potential risk factors, and completed at least one running diary. RRIs were registered during the program with a weekly running log. An RRI was defined as a musculo-skeletal complaint of the lower extremity or back attributed to running and hampering running ability for three consecutive training sessions. During the running program, 10.9% of the runners sustained an RRI. The multivariable Cox regression analysis showed that a higher age, higher BMI, previous musculo-skeletal complaints not attributed to sports and no previous running experience were related to RRI. These findings indicate that many novice runners participating in a short-term running program suffer from RRIs. Therefore, the identified risk factors should be considered for screening and prevention purposes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Running: Improving Form to Reduce Injuries.

    Science.gov (United States)

    2015-08-01

    Running is often perceived as a good option for "getting into shape," with little thought given to the form, or mechanics, of running. However, as many as 79% of all runners will sustain a running-related injury during any given year. If you are a runner-casual or serious-you should be aware that poor running mechanics may contribute to these injuries. A study published in the August 2015 issue of JOSPT reviewed the existing research to determine whether running mechanics could be improved, which could be important in treating running-related injuries and helping injured runners return to pain-free running.

  3. Should tsunami models use a nonzero initial condition for horizontal velocity?

    Science.gov (United States)

    Nava, G.; Lotto, G. C.; Dunham, E. M.

    2017-12-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami

  4. Transport of mass goods on the top run and bottom run of belt conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, D

    1977-06-01

    For combined coal winning from the collieries 'General Blumenthal' and 'Ewald Fortsetzung' a large belt conveyor plant was taken into operation which is able to transport 1360 tons/h in the top run and 300 tons/h of dirt in the bottom run. The different types of coal are transported separately in intermittent operation with the aid of bunker systems connected to the front and rear of the belt conveyor. Persons can be transported in the top run as well as in the bottom run.

  5. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  6. LHCb siliicon detectors: the Run 1 to Run 2 transition and first experience of Run 2

    CERN Document Server

    Rinnert, Kurt

    2015-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction region, a large- area silicon-strip detector located upstream of a dipole magnet (TT), and three stations of silicon- strip detectors (IT) and straw drift tubes placed downstream (OT). The operational transition of the silicon detectors VELO, TT and IT from LHC Run 1 to Run 2 and first Run 2 experiences will be presented. During the long shutdown of the LHC the silicon detectors have been maintained in a safe state and operated regularly to validate changes in the control infrastructure, new operational procedures, updates to the alarm systems and monitoring software. In addition, there have been some infrastructure related challenges due to maintenance performed in the vicinity of the silicon detectors that will be discussed. The LHCb silicon dete...

  7. Progression in Running Intensity or Running Volume and the Development of Specific Injuries in Recreational Runners: Run Clever, a Randomized Trial Using Competing Risks.

    Science.gov (United States)

    Ramskov, Daniel; Rasmussen, Sten; Sørensen, Henrik; Parner, Erik Thorlund; Lind, Martin; Nielsen, Rasmus

    2018-06-12

    Study Design Randomized clinical trial, etiology. Background Training intensity and volume have been proposed to be associated with specific running-related injuries. If such an association exists, secondary preventive measures could be initiated by clinicians based on symptoms of a specific injury diagnosis. Objectives To test the following hypotheses: (i) A running schedule focusing on intensity will increase the risk of sustaining Achilles tendinopathy, gastrocnemius injuries and plantar fasciitis compared with hypothesized volume-related injuries. (ii) A running schedule focusing on running volume will increase the risk of sustaining patellofemoral pain syndrome, iliotibial band syndrome and patellar tendinopathy compared with hypothesized intensity-related injuries. Methods Healthy recreational runners were included in a 24-week follow-up, divided into 8-week preconditioning and 16-week specific focus-training. Participants were randomized to one of two running schedules: Schedule Intensity(Sch-I) or Schedule Volume(Sch-V). Sch-I progressed the amount of high intensity running (≥88% VO2max) each week. Sch-V progressed total weekly running volume. Global positioning system watch or smartphone collected data on running. Running-related injuries were diagnosed based on a clinical examination. Estimates were risk difference (RD) and 95%CI. Results Of 447 runners, a total of 80 sustained an injury (Sch-I n=36; Sch-V n=44). Risk of intensity injuries in Sch-I were: RD 2-weeks =-0.8%[-5.0;3.4]; RD 4-weeks =-0.8%[-6.7;5.1]; RD 8-weeks =-2.0%[-9.2;5.1]; RD 16-weeks =-5.1%[-16.5;6.3]. Risk of volume injuries in Sch-V were: RD 2-weeks =-0.9%[-5.0;3.2]; RD 4-weeks =-2.0%[-7.5;3.5]; RD 8-weeks =-3.2%[-9.1;2.7]; RD 16-weeks =-3.4%[-13.2;6.2]. Conclusion No difference in risk of hypothesized intensity and volume specific running-related injuries exist between running schedules focused on progression in either running intensity or volume. Level of Evidence Etiology, level 1

  8. Running Boot Camp

    CERN Document Server

    Toporek, Chuck

    2008-01-01

    When Steve Jobs jumped on stage at Macworld San Francisco 2006 and announced the new Intel-based Macs, the question wasn't if, but when someone would figure out a hack to get Windows XP running on these new "Mactels." Enter Boot Camp, a new system utility that helps you partition and install Windows XP on your Intel Mac. Boot Camp does all the heavy lifting for you. You won't need to open the Terminal and hack on system files or wave a chicken bone over your iMac to get XP running. This free program makes it easy for anyone to turn their Mac into a dual-boot Windows/OS X machine. Running Bo

  9. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  10. Design of ProjectRun21

    DEFF Research Database (Denmark)

    Damsted, Camma; Parner, Erik Thorlund; Sørensen, Henrik

    2017-01-01

    BACKGROUND: Participation in half-marathon has been steeply increasing during the past decade. In line, a vast number of half-marathon running schedules has surfaced. Unfortunately, the injury incidence proportion for half-marathoners has been found to exceed 30% during 1-year follow......-up. The majority of running-related injuries are suggested to develop as overuse injuries, which leads to injury if the cumulative training load over one or more training sessions exceeds the runners' load capacity for adaptive tissue repair. Owing to an increase of load capacity along with adaptive running...... the association between running experience or running pace and the risk of running-related injury. METHODS: Healthy runners using Global Positioning System (GPS) watch between 18 and 65 years will be invited to participate in this 14-week prospective cohort study. Runners will be allowed to self-select one...

  11. Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.

    Science.gov (United States)

    Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J

    2017-09-01

    A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.

  12. Western diet increases wheel running in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Meek, T H; Eisenmann, J C; Garland, T

    2010-06-01

    Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.

  13. The ATLAS Muon Trigger Performance : Run 1 and initial Run 2.

    CERN Document Server

    Kasahara, Kota; The ATLAS collaboration

    2015-01-01

    The ATLAS Muon Trigger Performance: Run 1 and Initial Run 2 Performance

Events with muons in the final state are an important signature for many physics topics at the Large Hadron Collider (LHC). An efficient trigger on muons and a detailed understanding of its performance are required. In 2012, the last year of Run 1, the instantaneous luminosity of the LHC reached 7.7x10^33 cm -2s-1 and the average number of events that occur in a same bunch crossing was 25. The ATLAS Muon trigger has successfully adapted to this changing environment by making use of isolation requirements, combined trigger signatures with electron and jet trigger objects, and by using so-called full-scan triggers, which make use of the full event information to search for di-lepton signatures, seeded by single lepton objects. A stable and highly efficient muon trigger was vital in the discovery of Higgs boson in 2012 and for many searches for new physics. 
The performance of muon triggers during the LHC Run 1 data-taking campaigns i...

  14. LHCb computing in Run II and its evolution towards Run III

    CERN Document Server

    Falabella, Antonio

    2016-01-01

    his contribution reports on the experience of the LHCb computing team during LHC Run 2 and its preparation for Run 3. Furthermore a brief introduction on LHCbDIRAC, i.e. the tool to interface to the experiment distributed computing resources for its data processing and data management operations, is given. Run 2, which started in 2015, has already seen several changes in the data processing workflows of the experiment. Most notably the ability to align and calibrate the detector between two different stages of the data processing in the high level trigger farm, eliminating the need for a second pass processing of the data offline. In addition a fraction of the data is immediately reconstructed to its final physics format in the high level trigger and only this format is exported from the experiment site to the physics analysis. This concept have successfully been tested and will continue to be used for the rest of Run 2. Furthermore the distributed data processing has been improved with new concepts and techn...

  15. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  16. RUN COORDINATION

    CERN Multimedia

    M. Chamizo

    2012-01-01

      On 17th January, as soon as the services were restored after the technical stop, sub-systems started powering on. Since then, we have been running 24/7 with reduced shift crew — Shift Leader and DCS shifter — to allow sub-detectors to perform calibration, noise studies, test software upgrades, etc. On 15th and 16th February, we had the first Mid-Week Global Run (MWGR) with the participation of most sub-systems. The aim was to bring CMS back to operation and to ensure that we could run after the winter shutdown. All sub-systems participated in the readout and the trigger was provided by a fraction of the muon systems (CSC and the central RPC wheel). The calorimeter triggers were not available due to work on the optical link system. Initial checks of different distributions from Pixels, Strips, and CSC confirmed things look all right (signal/noise, number of tracks, phi distribution…). High-rate tests were done to test the new CSC firmware to cure the low efficiency ...

  17. Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    Science.gov (United States)

    Saar, Steven; Lindstrom, David M. (Technical Monitor)

    2004-01-01

    We have made significant progress towards the proposal goals of understanding the causes and effects of magnetic activity-induced radial velocity (v_r) jitter and developing methods for correcting it. In the process, we have also made some significant discoveries in the fields of planet-induced stellar activity, planet detection methods, M dwarf convection, starspot properties, and magnetic dynamo cycles. We have obtained super high resolution (R approximately 200,000), high S / N (greater than 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 in particular was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., kappa Ceti; P_cyc = 5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and radial velocity (v-r) changes which we have uncovered. Preliminary analysis (Saar et al. 2003) of the data in hand, reveals correlations between median line bisector displacement and v_r. The correlation appears to be specific the the particular star being considered, probably since it is a function of both spectral type and rotation rate. Further analysis and interpretation will be in the context of evolving plage models and is in progress.

  18. The NLstart2run study : Economic burden of running-related injuries in novice runners participating in a novice running program

    NARCIS (Netherlands)

    Hespanhol, Luiz C.; Huisstede, Bionka M. A.; Smits, Dirk-Wouter; Kluitenberg, Bas; van der Worp, Henk; van Middelkoop, Marienke; Hartgens, Fred; Verhagen, Evert

    2016-01-01

    Objectives: To investigate the economic burden of running-related injuries (RRI) occurred during the 6-week 'Start-to-Run' program of the Dutch Athletics Federation in 2013. Design: Prospective cohort study. Methods: This was a monetary cost analysis using the data prospectively gathered alongside

  19. Measurements of low density, high velocity flow by electron beam fluorescence technique

    International Nuclear Information System (INIS)

    Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

    1981-01-01

    A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

  20. Probing dark energy models with extreme pairwise velocities of galaxy clusters from the DEUS-FUR simulations

    Science.gov (United States)

    Bouillot, Vincent R.; Alimi, Jean-Michel; Corasaniti, Pier-Stefano; Rasera, Yann

    2015-06-01

    Observations of colliding galaxy clusters with high relative velocity probe the tail of the halo pairwise velocity distribution with the potential of providing a powerful test of cosmology. As an example it has been argued that the discovery of the Bullet Cluster challenges standard Λ cold dark matter (ΛCDM) model predictions. Halo catalogues from N-body simulations have been used to estimate the probability of Bullet-like clusters. However, due to simulation volume effects previous studies had to rely on a Gaussian extrapolation of the pairwise velocity distribution to high velocities. Here, we perform a detail analysis using the halo catalogues from the Dark Energy Universe Simulation Full Universe Runs (DEUS-FUR), which enables us to resolve the high-velocity tail of the distribution and study its dependence on the halo mass definition, redshift and cosmology. Building upon these results, we estimate the probability of Bullet-like systems in the framework of Extreme Value Statistics. We show that the tail of extreme pairwise velocities significantly deviates from that of a Gaussian, moreover it carries an imprint of the underlying cosmology. We find the Bullet Cluster probability to be two orders of magnitude larger than previous estimates, thus easing the tension with the ΛCDM model. Finally, the comparison of the inferred probabilities for the different DEUS-FUR cosmologies suggests that observations of extreme interacting clusters can provide constraints on dark energy models complementary to standard cosmological tests.

  1. The Effects of Backwards Running Training on Forward Running Economy in Trained Males.

    Science.gov (United States)

    Ordway, Jason D; Laubach, Lloyd L; Vanderburgh, Paul M; Jackson, Kurt J

    2016-03-01

    Backwards running (BR) results in greater cardiopulmonary response and muscle activity compared with forward running (FR). BR has traditionally been used in rehabilitation for disorders such as stroke and lower leg extremity injuries, as well as in short bursts during various athletic events. The aim of this study was to measure the effects of sustained backwards running training on forward running economy in trained male athletes. Eight highly trained, male runners (26.13 ± 6.11 years, 174.7 ± 6.4 cm, 68.4 ± 9.24 kg, 8.61 ± 3.21% body fat, 71.40 ± 7.31 ml·kg(-1)·min(-1)) trained with BR while harnessed on a treadmill at 161 m·min(-1) for 5 weeks following a 5-week BR run-in period at a lower speed (134 m·min(-1)). Subjects were tested at baseline, postfamiliarized, and post-BR training for body composition, a ramped VO2max test, and an economy test designed for trained male runners. Subjects improved forward running economy by 2.54% (1.19 ± 1.26 ml·kg(-1)·min(-1), p = 0.032) at 215 m·min(-1). VO2max, body mass, lean mass, fat mass, and % body fat did not change (p > 0.05). Five weeks of BR training improved FR economy in healthy, trained male runners without altering VO2max or body composition. The improvements observed in this study could be a beneficial form of training to an already economical population to improve running economy.

  2. Progression in Running Intensity or Running Volume and the Development of Specific Injuries in Recreational Runners

    DEFF Research Database (Denmark)

    Ramskov, Daniel; Rasmussen, Sten; Sørensen, Henrik

    2018-01-01

    -training. Participants were randomized to one of two running schedules: Schedule Intensity(Sch-I) or Schedule Volume(Sch-V). Sch-I progressed the amount of high intensity running (≥88% VO2max) each week. Sch-V progressed total weekly running volume. Global positioning system watch or smartphone collected data on running...

  3. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  4. The effect of Sub-maximal exercise-rehabilitation program on cardio-respiratory endurance indexes and oxygen pulse in patients with spastic cerebral palsy

    Directory of Open Access Journals (Sweden)

    M Izadi

    2006-05-01

    Full Text Available Background: Physical or cardio-respiratory fitness are of the best important physiological variables in children with cerebral palsy (CP, but the researches on exercise response of individuals with CP are limited. Our aim was to determine the effect of sub-maximal rehabilitation program (aerobic exercise on maximal oxygen uptake, oxygen pulse and cardio- respiratory physiological variables of children with moderate to severe spastic cerebral palsy diplegia and compare with able-bodied children. Methods: In a controlled clinical trial study, 15 children with diplegia spastic cerebral palsy, were recruited on a voluntarily basis (experimental group and 18 subjects without neurological impairments selected as control group. In CP group, aerobic exercise program performed on the average of exercise intensity (144 beat per minute of heart rate, 3 times a week for 3 months. The time of each exercise session was 20-25 minutes. Dependent variables were measured in before (pretest and after (post test of rehabilitation program through Mac Master Protocol on Tantories cycle ergometer in CP group and compared with the control group. Results: The oxygen pulse (VO2/HR during ergometery protocol was significantly lower in CP group than normal group (P<0.05. No significant statistical difference in maximal oxygen uptake (VO2 max was found between groups. The rehabilitation program leads to little increase of this variable in CP group. After sub-maximal exercise in pretest and post test, the heart rate of patient group was greater than control group, and aerobic exercise leads to significant decrease in heart rate in CP patients(P<0.05. Conclusion: The patients with spastic cerebral palsy, because of high muscle tone, severe spasticity and involuntarily movements have higher energy cost and lower aerobic fitness than normal people. The rehabilitation exercise program can improve physiological function of muscle and cardio-respiratory endurance in these

  5. Free-surface velocity measurements using an optically recording velocity interferometer

    International Nuclear Information System (INIS)

    Lu Jianxin; Wang Zhao; Liang Jing; Shan Yusheng; Zhou Chuangzhi; Xiang Yihuai; Lu Ze; Tang Xiuzhang

    2006-01-01

    An optically recording velocity interferometer system (ORVIS) was developed for the free-surface velocity measurements in the equation of state experiments. The time history of free-surface velocity could be recorded by the electronic streak camera. In the experiments, ORVIS got a 179 ps time resolution, and a higher time resolution could be got by minimizing the delay time. The equation of state experiments were carried out on the high power excimer laser system called 'Heaven I' with laser wavelength of 248.4 nm, pulse duration of 25 ns and maximum energy 158 J. Free-surface velocity of 20 μm thick iron got 3.86 km/s with laser intensity of 6.24 x 10 11 W·cm -2 , and free-surface velocity of 100 μm thick aluminum with 100 μm CH foil at the front got 2.87 km/s with laser intensity 7.28 x 10 11 W·cm -2 . (authors)

  6. On linear relationship between shock velocity and particle velocity

    International Nuclear Information System (INIS)

    Dandache, H.

    1986-11-01

    We attempt to derive the linear relationship between shock velocity U s and particle velocity U p from thermodynamic considerations, taking into account an ideal gas equation of state and a Mie-Grueneisen equation of state for solids. 23 refs

  7. Can parallel use of different running shoes decrease running-related injury risk?

    Science.gov (United States)

    Malisoux, L; Ramesh, J; Mann, R; Seil, R; Urhausen, A; Theisen, D

    2015-02-01

    The aim of this study was to determine if runners who use concomitantly different pairs of running shoes are at a lower risk of running-related injury (RRI). Recreational runners (n = 264) participated in this 22-week prospective follow-up and reported all information about their running session characteristics, other sport participation and injuries on a dedicated Internet platform. A RRI was defined as a physical pain or complaint located at the lower limbs or lower back region, sustained during or as a result of running practice and impeding planned running activity for at least 1 day. One-third of the participants (n = 87) experienced at least one RRI during the observation period. The adjusted Cox regression analysis revealed that the parallel use of more than one pair of running shoes was a protective factor [hazard ratio (HR) = 0.614; 95% confidence interval (CI) = 0.389-0.969], while previous injury was a risk factor (HR = 1.722; 95%CI = 1.114-2.661). Additionally, increased mean session distance (km; HR = 0.795; 95%CI = 0.725-0.872) and increased weekly volume of other sports (h/week; HR = 0.848; 95%CI = 0.732-0.982) were associated with lower RRI risk. Multiple shoe use and participation in other sports are strategies potentially leading to a variation of the load applied to the musculoskeletal system. They could be advised to recreational runners to prevent RRI. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Physiological and performance adaptations to an in-season soccer camp in the heat: Associations with heart rate and heart rate variability

    DEFF Research Database (Denmark)

    Buchheit, M; Voss, S C; Nybo, Lars

    2011-01-01

    The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well-trained but ......The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well......-trained but non-heat-acclimatized male adult players performed a training week in Qatar (34.6¿±¿1.9°C wet bulb globe temperature). HRex, HRR, HRV (i.e. the standard deviation of instantaneous beat-to-beat R-R interval variability measured from Poincaré plots SD1, a vagal-related index), creatine kinase (CK...... at the beginning and at the end of the training week. Throughout the intervention, HRex and HRV showed decreasing (P¿...

  9. No Change in Running Mechanics With Live High-Train Low Altitude Training in Elite Distance Runners.

    Science.gov (United States)

    Stickford, Abigail S L; Wilhite, Daniel P; Chapman, Robert F

    2017-01-01

    Investigations into ventilatory, metabolic, and hematological changes with altitude training have been completed; however, there is a lack of research exploring potential gait-kinematic changes after altitude training, despite a common complaint of athletes being a lack of leg "turnover" on return from altitude training. To determine if select kinematic variables changed in a group of elite distance runners after 4 wk of altitude training. Six elite male distance runners completed a 28-d altitude-training intervention in Flagstaff, AZ (2150 m), following a modified "live high-train low" model, wherein higherintensity runs were performed at lower altitudes (945-1150 m) and low-intensity sessions were completed at higher altitudes (1950-2850 m). Gait parameters were measured 2-9 d before departure to altitude and 1 to 2 d after returning to sea level at running speeds of 300-360 m/min. No differences were found in ground-contact time, swing time, or stride length or frequency after altitude training (P > .05). Running mechanics are not affected by chronic altitude training in elite distance runners. The data suggest that either chronic training at altitude truly has no effect on running mechanics or completing the live high-train low model of altitude training, where higher-velocity workouts are completed at lower elevations, mitigates any negative mechanical adaptations that may be associated with chronic training at slower speeds.

  10. Running multiple marathons is not a risk factor for premature subclinical vascular impairment.

    Science.gov (United States)

    Pressler, Axel; Suchy, Christiane; Friedrichs, Tasja; Dallinger, Sophia; Grabs, Viola; Haller, Bernhard; Halle, Martin; Scherr, Johannes

    2017-08-01

    Background In contrast to the well-accepted benefits of moderate exercise, recent research has suggested potential deleterious effects of repeated marathon running on the cardiovascular system. We thus performed a comprehensive analysis of markers of subclinical vascular damage in a cohort of runners having finished multiple marathon races successfully. Design This was a prospective, observational study. Methods A total of 97 healthy male Munich marathon participants (mean age 44 ± 10 years) underwent detailed training history, cardiopulmonary exercise testing for assessment of peak oxygen uptake, ultrasound for assessment of intima-media-thickness as well as non-invasive assessments of ankle-brachial index, augmentation index, pulse wave velocity and reactive hyperaemia index. Results Runners had previously completed a median of eight (range 1-500) half marathons, six (1-100) full marathons and three (1-40) ultramarathons; mean weekly and annual training volumes were 59 ± 23 and 1639 ± 979 km. Mean peak oxygen uptake was 50 ± 8 ml/min/kg, and the Munich marathon was finished in 3:45 ± 0:32 h. Runners showed normal mean values for intima-media-thickness (0.60 ± 0.14 mm), ankle-brachial index (1.2 ± 0.1), augmentation index (17 ± 13%), pulse wave velocity (8.7 ± 1.4 cm/s) and reactive hyperaemia index (1.96 ± 0.50). Age was significantly and independently associated with intima-media-thickness ( r = 0.531; p running multiple marathon races did not pose an additional risk factor for premature subclinical vascular impairment beyond age.

  11. Voluntary Wheel Running in Mice.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  12. Determination of the filtration velocities and mean velocity in ground waters using radiotracers

    International Nuclear Information System (INIS)

    Duran P, Oscar; Diaz V, Francisco; Heresi M, Nelida

    1994-01-01

    An experimental method to determine filtration, or, Darcy velocity and mean velocity in underground waters using radiotracers, is described. After selecting the most appropriate tracers, from 6 chemical compounds, to measure water velocity, a method to measure filtration velocity was developed. By fully labelling the water column with 2 radioisotopes, Br and tritium, almost identical values were obtained for the aquifer filtration velocity in the sounding S1. This value was 0.04 m/d. Field porosity was calculated at 11% and mean velocity at 0.37 m.d. With the filtration velocity value and knowing the hydraulic variation between the soundings S1 and S2 placed at 10 meters, field permeability was estimated at 2.4 x 10 m/s. (author)

  13. Sprint Running Performance and Technique Changes in Athletes During Periodized Training: An Elite Training Group Case Study.

    Science.gov (United States)

    Bezodis, Ian N; Kerwin, David G; Cooper, Stephen-Mark; Salo, Aki I T

    2017-11-15

    To understand how training periodization influences sprint performance and key step characteristics over an extended training period in an elite sprint training group. Four sprinters were studied during five months of training. Step velocities, step lengths and step frequencies were measured from video of the maximum velocity phase of training sprints. Bootstrapped mean values were calculated for each athlete for each session and 139 within-athlete, between-session comparisons were made with a repeated measures ANOVA. As training progressed, a link in the changes in velocity and step frequency was maintained. There were 71 between-session comparisons with a change in step velocity yielding at least a large effect size (>1.2), of which 73% had a correspondingly large change in step frequency in the same direction. Within-athlete mean session step length remained relatively constant throughout. Reductions in step velocity and frequency occurred during training phases of high volume lifting and running, with subsequent increases in step velocity and frequency happening during phases of low volume lifting and high intensity sprint work. The importance of step frequency over step length to the changes in performance within a training year was clearly evident for the sprinters studied. Understanding the magnitudes and timings of these changes in relation to the training program is important for coaches and athletes. The underpinning neuro-muscular mechanisms require further investigation, but are likely explained by an increase in force producing capability followed by an increase in the ability to produce that force rapidly.

  14. Radial velocity asymmetries from jets with variable velocity profiles

    International Nuclear Information System (INIS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  15. Comparison of fractions of inactive modules between Run1 and Run2

    CERN Document Server

    Motohashi, Kazuki; The ATLAS collaboration

    2015-01-01

    Fraction of inactive modules for each component of the ATLAS pixel detector at the end of Run 1 and the beginning of Run 2. A similar plot which uses a result of functionality tests during LS1 can be found in ATL-INDET-SLIDE-2014-388.

  16. Weekly running volume and risk of running-related injuries among marathon runners

    DEFF Research Database (Denmark)

    Rasmussen, Christina Haugaard; Nielsen, R.O.; Juul, Martin Serup

    2013-01-01

    The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race.......The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race....

  17. Short-run and long-run effects of unemployment on suicides: does welfare regime matter?

    Science.gov (United States)

    Gajewski, Pawel; Zhukovska, Kateryna

    2017-12-01

    Disentangling the immediate effects of an unemployment shock from the long-run relationship has a strong theoretical rationale. Different economic and psychological forces are at play in the first moment and after prolonged unemployment. This study suggests a diverse impact of short- and long-run unemployment on suicides in liberal and social-democratic countries. We take a macro-level perspective and simultaneously estimate the short- and long-run relationships between unemployment and suicide, along with the speed of convergence towards the long-run relationship after a shock, in a panel of 10 high-income countries. We also account for unemployment benefit spending, the share of the population aged 15-34, and the crisis effects. In the liberal group of countries, only a long-run impact of unemployment on suicides is found to be significant (P = 0.010). In social-democratic countries, suicides are associated with initial changes in unemployment (P = 0.028), but the positive link fades over time and becomes insignificant in the long run. Further, crisis effects are a much stronger determinant of suicides in social-democratic countries. Once the broad welfare regime is controlled for, changes in unemployment-related spending do not matter for preventing suicides. A generous welfare system seems efficient at preventing unemployment-related suicides in the long run, but societies in social-democratic countries might be less psychologically immune to sudden negative changes in their professional lives compared with people in liberal countries. Accounting for the different short- and long-run effects could thus improve our understanding of the unemployment-suicide link. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  18. Bike and run pacing on downhill segments predict Ironman triathlon relative success.

    Science.gov (United States)

    Johnson, Evan C; Pryor, J Luke; Casa, Douglas J; Belval, Luke N; Vance, James S; DeMartini, Julie K; Maresh, Carl M; Armstrong, Lawrence E

    2015-01-01

    Determine if performance and physiological based pacing characteristics over the varied terrain of a triathlon predicted relative bike, run, and/or overall success. Poor self-regulation of intensity during long distance (Full Iron) triathlon can manifest in adverse discontinuities in performance. Observational study of a random sample of Ironman World Championship athletes. High performing and low performing groups were established upon race completion. Participants wore global positioning system and heart rate enabled watches during the race. Percentage difference from pre-race disclosed goal pace (%off) and mean HR were calculated for nine segments of the bike and 11 segments of the run. Normalized graded running pace (accounting for changes in elevation) was computed via analysis software. Step-wise regression analyses identified segments predictive of relative success and HP and LP were compared at these segments to confirm importance. %Off of goal velocity during two downhill segments of the bike (HP: -6.8±3.2%, -14.2±2.6% versus LP: -1.2±4.2%, -5.1±11.5%; p<0.020) and %off from NGP during one downhill segment of the run (HP: 4.8±5.2% versus LP: 33.3±38.7%; p=0.033) significantly predicted relative performance. Also, HP displayed more consistency in mean HR (141±12 to 138±11 bpm) compared to LP (139±17 to 131±16 bpm; p=0.019) over the climb and descent from the turn-around point during the bike component. Athletes who maintained faster relative speeds on downhill segments, and who had smaller changes in HR between consecutive up and downhill segments were more successful relative to their goal times. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Weekly running volume and risk of running-related injuries among marathon runners

    DEFF Research Database (Denmark)

    Rasmussen, Christina Haugaard; Nielsen, Rasmus Østergaard; Juul, Martin Serup

    2013-01-01

    PURPOSEBACKGROUND: The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race.......PURPOSEBACKGROUND: The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race....

  20. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rojacz, H., E-mail: rojacz@ac2t.at [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria); Mozdzen, G. [Aerospace & Advanced Composites GmbH, Viktor-Kaplan-Straße 2F, 2700 Wiener Neustadt (Austria); Weigel, F.; Varga, M. [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria)

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  1. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    International Nuclear Information System (INIS)

    Rojacz, H.; Mozdzen, G.; Weigel, F.; Varga, M.

    2016-01-01

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  2. Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandertals.

    Science.gov (United States)

    Raichlen, David A; Armstrong, Hunter; Lieberman, Daniel E

    2011-03-01

    The endurance running (ER) hypothesis suggests that distance running played an important role in the evolution of the genus Homo. Most researchers have focused on ER performance in modern humans, or on reconstructing ER performance in Homo erectus, however, few studies have examined ER capabilities in other members of the genus Homo. Here, we examine skeletal correlates of ER performance in modern humans in order to evaluate the energetics of running in Neandertals and early Homo sapiens. Recent research suggests that running economy (the energy cost of running at a given speed) is strongly related to the length of the Achilles tendon moment arm. Shorter moment arms allow for greater storage and release of elastic strain energy, reducing energy costs. Here, we show that a skeletal correlate of Achilles tendon moment arm length, the length of the calcaneal tuber, does not correlate with walking economy, but correlates significantly with running economy and explains a high proportion of the variance (80%) in cost between individuals. Neandertals had relatively longer calcaneal tubers than modern humans, which would have increased their energy costs of running. Calcaneal tuber lengths in early H. sapiens do not significantly differ from those of extant modern humans, suggesting Neandertal ER economy was reduced relative to contemporaneous anatomically modern humans. Endurance running is generally thought to be beneficial for gaining access to meat in hot environments, where hominins could have used pursuit hunting to run prey taxa into hyperthermia. We hypothesize that ER performance may have been reduced in Neandertals because they lived in cold climates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effect of Minimalist Footwear on Running Efficiency

    Science.gov (United States)

    Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.

    2015-01-01

    Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304

  4. Overuse injuries in running

    DEFF Research Database (Denmark)

    Larsen, Lars Henrik; Rasmussen, Sten; Jørgensen, Jens Erik

    2016-01-01

    What is an overuse injury in running? This question is a corner stone of clinical documentation and research based evidence.......What is an overuse injury in running? This question is a corner stone of clinical documentation and research based evidence....

  5. Influence of fatigue, stress, muscle soreness and sleep on perceived exertion during submaximal effort.

    Science.gov (United States)

    Haddad, Monoem; Chaouachi, Anis; Wong, Del P; Castagna, Carlo; Hambli, Mourad; Hue, Olivier; Chamari, Karim

    2013-07-02

    The aim of this study was to assess the effects of the Hooper's Index variations (i.e., self-ratings of fatigue, stress, delayed onset muscle soreness (DOMS), and sleep) on rating of perceived exertion during a 10 min submaximal exercise training session (RPE-10 min) and then check the stability and the internal consistency of RPE-10 min. Seventeen junior soccer players took part in this study. The individual Hooper's indices taken before each training session were correlated with RPE-10 min during a constant intensity and duration effort (10 min) using Pearson product moment correlation. Intraclass correlation (ICC) was used to assess the internal consistency of the RPE-10 min. All individual correlations between RPE-10 min and quality of sleep and quantity of fatigue, stress, and DOMS were non-significant (p>0.05). No significant correlations were resulted between RPE-10 min and Hooper's Index in all athletes. The ICC of RPE-10 min was 0.77 thus demonstrating internal consistency. The results of the present study demonstrated the objectivity and utility of RPE as a psychological tool for monitoring training during traditional soccer training. Therefore, the results of the present study suggest that fatigue, stress, DOMS and sleep are not major contributors of perceived exertion during traditional soccer training without excessive training loads. It seems that psychobiological factors other than fatigue, stress, DOMS and sleep may have mediated the 10 min exercise perceptual intensity. © 2013.

  6. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    Science.gov (United States)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  7. Injury-free running - a utopia? Risk factors of running-related injuries in men and women

    NARCIS (Netherlands)

    Worp, M.P. van der

    2016-01-01

    Running is a popular sport worldwide and has a positive effect on health and well-being. However, the rate of running-related injuries and the associated costs are high. Van der Worp performed a systematic review to examine which factors increase the risk of running injuries, and whether this is the

  8. Preventing Running Injuries through Barefoot Activity

    Science.gov (United States)

    Hart, Priscilla M.; Smith, Darla R.

    2008-01-01

    Running has become a very popular lifetime physical activity even though there are numerous reports of running injuries. Although common theories have pointed to impact forces and overpronation as the main contributors to chronic running injuries, the increased use of cushioning and orthotics has done little to decrease running injuries. A new…

  9. Effects of stair-climbing on balance, gait, strength, resting heart rate, and submaximal endurance in healthy seniors.

    Science.gov (United States)

    Donath, L; Faude, O; Roth, R; Zahner, L

    2014-04-01

    Stair-climbing serves as a feasible opportunity to remain physically active within everyday-life. Data on neuromuscular and cardiorespiratory performance after regular stair-climbing in seniors are scarce. Forty-eight seniors were stratified to a one- (taking every step, INT1) or two-step strategy (every second step, INT2) or a control group (CON). Thirty-nine seniors [females: n = 22, males: n = 17; age: 70.5 (SD 5.1) years; BMI: 25.8 (3.1) kg/m(2)] completed the 8-week intervention (three weekly sessions). Before and after the intervention, balance, gait, strength, and submaximal endurance (at different intensities) were assessed. Maximal strength and explosive power did not improve significantly (0.10 walking significantly decreased (-11/min; P beam balancing (4.5 cm width) increased in INT2 (P = 0.007) compared with CON. With more pronounced effects in INT2, stair-climbing significantly improved resting and exercise heart rates, perceived exertion, and dynamic balance performance in healthy seniors and may contribute to better overall fitness, reduced fall risk, and less perceived strain during daily life activities. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run.

    Science.gov (United States)

    Morin, Jean-Benoît; Samozino, Pierre; Millet, Guillaume Y

    2011-05-01

    This study investigated the changes in running mechanics and spring-mass behavior over a 24-h treadmill run (24TR). Kinematics, kinetics, and spring-mass characteristics of the running step were assessed in 10 experienced ultralong-distance runners before, every 2 h, and after a 24TR using an instrumented treadmill dynamometer. These measurements were performed at 10 km·h, and mechanical parameters were sampled at 1000 Hz for 10 consecutive steps. Contact and aerial times were determined from ground reaction force (GRF) signals and used to compute step frequency. Maximal GRF, loading rate, downward displacement of the center of mass, and leg length change during the support phase were determined and used to compute both vertical and leg stiffness. Subjects' running pattern and spring-mass behavior significantly changed over the 24TR with a 4.9% higher step frequency on average (because of a significantly 4.5% shorter contact time), a lower maximal GRF (by 4.4% on average), a 13.0% lower leg length change during contact, and an increase in both leg and vertical stiffness (+9.9% and +8.6% on average, respectively). Most of these changes were significant from the early phase of the 24TR (fourth to sixth hour of running) and could be speculated as contributing to an overall limitation of the potentially harmful consequences of such a long-duration run on subjects' musculoskeletal system. During a 24TR, the changes in running mechanics and spring-mass behavior show a clear shift toward a higher oscillating frequency and stiffness, along with lower GRF and leg length change (hence a reduced overall eccentric load) during the support phase of running. © 2011 by the American College of Sports Medicine

  11. Running in a running wheel substitutes for stereotypies in mink (Mustela vison) but does it improve their welfare?

    DEFF Research Database (Denmark)

    Hansen, Steffen W; Damgaard, Birthe Marie

    2009-01-01

    This experiment investigated whether access to a running wheel affects the development of stereotypies during restricted feeding and whether selection for high or low levels of stereotypy affects the use of the running wheel. Sixty-two female mink kept in standard cages and selected for high or low...... levels of stereotypy were used. Thirty of these females had access to a running wheel whereas thirty-two female mink had no access to running wheels. The number of turns of the running wheel, behaviour, feed consumption, body weight and the concentration of plasma cortisol were measured during the winter...... period. Mink with access to a running wheel did not perform stereotypic behaviour and mink selected for a high level of stereotypies had more turns in the running wheel than mink selected for low levels of stereotypies. Mink with access to a running wheel used the running wheel for the same amount...

  12. Cardiovascular responses during deep water running versus shallow water running in school children

    Directory of Open Access Journals (Sweden)

    Anerao Urja M, Shinde Nisha K, Khatri SM

    2014-03-01

    Full Text Available Overview: As the school going children especially the adolescents’ need workout routine; it is advisable that the routine is imbibed in the school’s class time table. In India as growing number of schools provide swimming as one of the recreational activities; school staff often fails to notice the boredom that is caused by the same activity. Deep as well as shallow water running can be one of the best alternatives to swimming. Hence the present study was conducted to find out the cardiovascular response in these individuals. Methods: This was a Prospective Cross-Sectional Comparative Study done in 72 healthy school going students (males grouped into 2 according to the interventions (Deep water running and Shallow water running. Cardiovascular parameters such as Heart rate (HR, Saturation of oxygen (SpO2, Maximal oxygen consumption (VO2max and Rate of Perceived Exertion (RPE were assessed. Results: Significant improvements in cardiovascular parameters were seen in both the groups i.e. by both the interventions. Conclusion: Deep water running and Shallow water running can be used to improve cardiac function in terms of various outcome measures used in the study.

  13. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    Science.gov (United States)

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  14. Anthropometry as a predictor of bench press performance done at different loads.

    Science.gov (United States)

    Caruso, John F; Taylor, Skyler T; Lutz, Brant M; Olson, Nathan M; Mason, Melissa L; Borgsmiller, Jake A; Riner, Rebekah D

    2012-09-01

    The purpose of our study was to examine the ability of anthropometric variables (body mass, total arm length, biacromial width) to predict bench press performance at both maximal and submaximal loads. Our methods required 36 men to visit our laboratory and submit to anthropometric measurements, followed by lifting as much weight as possible in good form one time (1 repetition maximum, 1RM) in the exercise. They made 3 more visits in which they performed 4 sets of bench presses to volitional failure at 1 of 3 (40, 55, or 75% 1RM) submaximal loads. An accelerometer (Myotest Inc., Royal Oak MI) measured peak force, velocity, and power after each submaximal load set. With stepwise multivariate regression, our 3 anthropometric variables attempted to explain significant amounts of variance for 13 bench press performance indices. For criterion measures that reached significance, separate Pearson product moment correlation coefficients further assessed if the strength of association each anthropometric variable had with the criterion was also significant. Our analyses showed that anthropometry explained significant amounts (p bench press prowess in athletes.

  15. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    Science.gov (United States)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  16. The NLstart2run study: Training-related factors associated with running-related injuries in novice runners.

    Science.gov (United States)

    Kluitenberg, Bas; van der Worp, Henk; Huisstede, Bionka M A; Hartgens, Fred; Diercks, Ron; Verhagen, Evert; van Middelkoop, Marienke

    2016-08-01

    The incidence of running-related injuries is high. Some risk factors for injury were identified in novice runners, however, not much is known about the effect of training factors on injury risk. Therefore, the purpose of this study was to examine the associations between training factors and running-related injuries in novice runners, taking the time varying nature of these training-related factors into account. Prospective cohort study. 1696 participants completed weekly diaries on running exposure and injuries during a 6-week running program for novice runners. Total running volume (min), frequency and mean intensity (Rate of Perceived Exertion) were calculated for the seven days prior to each training session. The association of these time-varying variables with injury was determined in an extended Cox regression analysis. The results of the multivariable analysis showed that running with a higher intensity in the previous week was associated with a higher injury risk. Running frequency was not significantly associated with injury, however a trend towards running three times per week being more hazardous than two times could be observed. Finally, lower running volume was associated with a higher risk of sustaining an injury. These results suggest that running more than 60min at a lower intensity is least injurious. This finding is contrary to our expectations and is presumably the result of other factors. Therefore, the findings should not be used plainly as a guideline for novices. More research is needed to establish the person-specific training patterns that are associated with injury. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Kung fu training improves physical fitness measures in overweight/obese adolescents: the "martial fitness" study.

    Science.gov (United States)

    Tsang, Tracey W; Kohn, Michael R; Chow, Chin Moi; Fiatarone Singh, Maria Antoinette

    2010-01-01

    Aim. To examine the efficacy of a six-month Kung Fu (KF) program on physical fitness in overweight/obese adolescents. Methods. Subjects were randomly assigned to the KF or sham exercise (Tai Chi, TC) control group. Physical measurements in cardiovascular fitness and muscle fitness occurred at baseline and after 6 months of training thrice weekly. Results. Twenty subjects were recruited. One subject was lost to follow-up, although overall compliance to the training sessions was 46.7 +/- 27.8%. At follow-up, the cohort improved in absolute upper (P = .002) and lower (P = .04) body strength, and upper body muscle endurance (P = .02), without group differences. KF training resulted in significantly greater improvements in submaximal cardiovascular fitness (P = .03), lower body muscle endurance (P = .28; significant 95% CI: 0.37-2.49), and upper body muscle velocity (P = .03) relative to TC training. Conclusions. This short-term KF program improved submaximal cardiovascular fitness, lower body muscle endurance, and muscle velocity, in overweight/obese adolescents with very low baseline fitness.

  18. Kung Fu Training Improves Physical Fitness Measures in Overweight/Obese Adolescents: The “Martial Fitness” Study

    Directory of Open Access Journals (Sweden)

    Tracey W. Tsang

    2010-01-01

    Full Text Available Aim. To examine the efficacy of a six-month Kung Fu (KF program on physical fitness in overweight/obese adolescents. Methods. Subjects were randomly assigned to the KF or sham exercise (Tai Chi, TC control group. Physical measurements in cardiovascular fitness and muscle fitness occurred at baseline and after 6 months of training thrice weekly. Results. Twenty subjects were recruited. One subject was lost to follow-up, although overall compliance to the training sessions was 46.7±27.8%. At follow-up, the cohort improved in absolute upper (P=.002 and lower (P=.04 body strength, and upper body muscle endurance (P=.02, without group differences. KF training resulted in significantly greater improvements in submaximal cardiovascular fitness (P=.03, lower body muscle endurance (P=.28; significant 95% CI: 0.37–2.49, and upper body muscle velocity (P=.03 relative to TC training. Conclusions. This short-term KF program improved submaximal cardiovascular fitness, lower body muscle endurance, and muscle velocity, in overweight/obese adolescents with very low baseline fitness.

  19. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  20. Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels

    KAUST Repository

    Radu, Andrea I.

    2012-04-01

    A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid. © 2012 Elsevier B.V.

  1. Sub-maximal and maximal Yo-Yo intermittent endurance test level 2: heart rate response, reproducibility and application to elite soccer

    DEFF Research Database (Denmark)

    Bradley, Paul S; Mohr, Magni; Bendiksen, Mads

    2011-01-01

    to detect test-retest changes and discriminate between performance for different playing standards and positions in elite soccer. Elite (n = 148) and sub-elite male (n = 14) soccer players carried out the Yo-Yo IE2 test on several occasions over consecutive seasons. Test-retest coefficient of variation (CV......) in Yo-Yo IE2 test performance and heart rate after 6 min were 3.9% (n = 37) and 1.4% (n = 32), respectively. Elite male senior and youth U19 players Yo-Yo IE2 performances were better (P ......The aims of this study were to (1) determine the reproducibility of sub-maximal and maximal versions of the Yo-Yo intermittent endurance test level 2 (Yo-Yo IE2 test), (2) assess the relationship between the Yo-Yo IE2 test and match performance and (3) quantify the sensitivity of the Yo-Yo IE2 test...

  2. Understanding key performance indicators for breast support: An analysis of breast support effects on biomechanical, physiological and subjective measures during running.

    Science.gov (United States)

    Risius, Debbie; Milligan, Alexandra; Berns, Jason; Brown, Nicola; Scurr, Joanna

    2017-05-01

    To assess the effectiveness of breast support previous studies monitored breast kinematics and kinetics, subjective feedback, muscle activity (EMG), ground reaction forces (GRFs) and physiological measures in isolation. Comparing these variables within one study will establish the key performance variables that distinguish between breast supports during activities such as running. This study investigates the effects of changes in breast support on biomechanical, physiological and subjective measures during running. Ten females (34D) ran for 10 min in high and low breast supports, and for 2 min bare breasted (2.8 m·s -1 ). Breast and body kinematics, EMG, expired air and heart rate were recorded. GRFs were recorded during 10 m overground runs (2.8 m·s -1 ) and subjective feedback obtained after each condition. Of the 62 variables measured, 22 kinematic and subjective variables were influenced by changes in breast support. Willingness to exercise, time lag and superio-inferior breast velocity were most affected. GRFs, EMG and physiological variables were unaffected by breast support changes during running. Breast displacement reduction, although previously advocated, was not the most sensitive variable to breast support changes during running. Instead breast support products should be assessed using a battery of performance indicators, including the key kinematic and subjective variables identified here.

  3. Short-run and long-run dynamics of farm land allocation

    DEFF Research Database (Denmark)

    Arnberg, Søren; Hansen, Lars Gårn

    2012-01-01

    This study develops and estimates a dynamic multi-output model of farmers’ land allocation decisions that allows for the gradual adjustment of allocations that can result from crop rotation practices and quasi-fixed capital constraints. Estimation is based on micro-panel data from Danish farmers...... that include acreage, output, and variable input utilization at the crop level. Results indicate that there are substantial differences between the short-run and long-run land allocation behaviour of Danish farmers and that there are substantial differences in the time lags associated with different crops...

  4. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  5. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  6. Influence of normal loads and sliding velocities on friction properties of engineering plastics sliding against rough counterfaces

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Chowdhury, M A; Rahaman, M L; Oumer, A N

    2016-01-01

    Friction properties of plastic materials are very important under dry sliding contact conditions for bearing applications. In the present research, friction properties of engineering plastics such as polytetrafluoroethylene (PTFE) and nylon are investigated under dry sliding contact conditions. In the experiments, PTFE and nylon slide against different rough counterfaces such as mild steel and stainless steel 316 (SS 316). Frictional tests are carried out at low loads 5, 7.5 and 10 N, low sliding velocities 0.5, 0.75 and 1 m/s and relative humidity 70%. The obtained results reveal that friction coefficient of PTFE increases with the increase in normal loads and sliding velocities within the observed range. On the other hand, frictional values of nylon decrease with the increase in normal loads and sliding velocities. It is observed that in general, these polymers show higher frictional values when sliding against SS 316 rather than mild steel. During running-in process, friction coefficient of PTFE and nylon steadily increases with the increase in rubbing time and after certain duration of rubbing, it remains at steady level. At identical operating conditions, the frictional values are significantly different depending on normal load, sliding velocity and material pair. It is also observed that in general, the influence of normal load on the friction properties of PTFE and nylon is greater than that of sliding velocity. (paper)

  7. Effects of Heavy Strength Training on Running Performance and Determinants of Running Performance in Female Endurance Athletes

    Science.gov (United States)

    Vikmoen, Olav; Raastad, Truls; Seynnes, Olivier; Bergstrøm, Kristoffer; Ellefsen, Stian; Rønnestad, Bent R.

    2016-01-01

    Purpose The purpose of the current study was to investigate the effects of adding strength training to normal endurance training on running performance and running economy in well-trained female athletes. We hypothesized that the added strength training would improve performance and running economy through altered stiffness of the muscle-tendon complex of leg extensors. Methods Nineteen female endurance athletes [maximal oxygen consumption (VO2max): 53±3 ml∙kg-1∙min-1, 5.8 h weekly endurance training] were randomly assigned to either normal endurance training (E, n = 8) or normal endurance training combined with strength training (E+S, n = 11). The strength training consisted of four leg exercises [3 x 4–10 repetition maximum (RM)], twice a week for 11 weeks. Muscle strength, 40 min all-out running distance, running performance determinants and patellar tendon stiffness were measured before and after the intervention. Results E+S increased 1RM in leg exercises (40 ± 15%) and maximal jumping height in counter movement jump (6 ± 6%) and squat jump (9 ± 7%, p running economy, fractional utilization of VO2max or VO2max. There were also no change in running distance during a 40 min all-out running test in neither of the groups. Conclusion Adding heavy strength training to endurance training did not affect 40 min all-out running performance or running economy compared to endurance training only. PMID:26953893

  8. Children's Fitness. Managing a Running Program.

    Science.gov (United States)

    Hinkle, J. Scott; Tuckman, Bruce W.

    1987-01-01

    A running program to increase the cardiovascular fitness levels of fourth-, fifth-, and sixth-grade children is described. Discussed are the running environment, implementation of a running program, feedback, and reinforcement. (MT)

  9. Relationship Between the Range of Motion and Isometric Strength of Elbow and Shoulder Joints and Ball Velocity in Women Team Handball Players.

    Science.gov (United States)

    Schwesig, René; Hermassi, Souhail; Wagner, Herbert; Fischer, David; Fieseler, Georg; Molitor, Thomas; Delank, Karl-Stefan

    2016-12-01

    Schwesig, R, Hermassi, S, Wagner, H, Fischer, D, Fieseler, G, Molitor, T, and Delank, K-S. Relationship between the range of motion and isometric strength of elbow and shoulder joints and ball velocity in women team handball players. J Strength Cond Res 30(12): 3428-3435, 2016-The aims of this study were to investigate relationships between isometric strength and range of motion (ROM) of shoulder and elbow joints and compare 2 different team handball throwing techniques in women team handball. Twenty highly experienced women team handball players (age: 20.7 ± 2.9 years; body mass: 68.4 ± 6.0 kg; and height: 1.74 ± 0.06 m) participated in this study. The isometric strength (hand-held dynamometer) and ROM (goniometer) of shoulder and elbow joints were measured at the beginning of the preseasonal training. After clinical examination, the subjects performed 3 standing throws with run-up (10 m) and 3 jump throws over a hurdle (0.20 m). The mean ball velocity was calculated from 3 attempts and measured using a radar gun. The results showed that the ball velocity of the standing throw with run-up (vST) was significantly higher than that of the jump throw (vJT) (25.5 ± 1.56 vs. 23.2 ± 1.31 m·s; p handball players.

  10. Predictors of high-intensity running capacity in collegiate women during a soccer game.

    Science.gov (United States)

    McCormack, William P; Stout, Jeffrey R; Wells, Adam J; Gonzalez, Adam M; Mangine, Gerald T; Fragala, Maren S; Hoffman, Jay R

    2014-04-01

    The purpose of this investigation was to determine which physiological assessments best predicted high-intensity running (HIR) performance during a women's collegiate soccer game. A secondary purpose was to examine the relationships among physiological performance measures including muscle architecture on soccer performance (distance covered, HIR, and sprints during the game) during a competitive collegiate women's soccer game. Ten National Collegiate Athletic Association (NCAA) Division I women soccer players performed physiological assessments within a 2-week period before a competitive regulation soccer game performed during the spring season. Testing consisted of height, body mass, ultrasound measurement of dominant (DOMleg), and nondominant leg (NDOMleg) vastus lateralis for muscle thickness (MT) and pennation angle (PA), VO2max, running economy, and Wingate anaerobic test (WAnT) for peak power (PP), mean power (MP), and fatigue rate (FR). During the game, distance run, HIR, and sprints were measured using a 10-Hz global positioning system. Stepwise regression revealed that VO2max, dominant leg thickness, and dominant leg PA were the strongest predictors of HIR distance during the game (R = 0.989, SEE = 115.5 m, p = 0.001). V[Combining Dot Above]O2max was significantly correlated with total distance run (r = 0.831; p = 0.003), HIR (r = 0.755; p = 0.012), WAnTPP (r = -0.737; p = 0.015), WAnTPP·kg (r = -0.706; p = 0.022), and WAnTFR (r = -0.713; p = 0.021). DOMlegMT was significantly correlated with WAnTFR (r = 0.893; p = 0.001). DOMlegPA was significantly correlated with WAnTFR (r = 0.740; p = 0.023). The NDOMlegPA was significantly correlated to peak running velocity (r = 0.781; p = 0.013) and WAnT MP·kg (r = 0.801; p = 0.01). Results of this study indicate that V[Combining Dot Above]O2max and muscle architecture are important characteristics of NCAA Division I women soccer players and may predict HIR distance during a competitive contest.

  11. Responding for sucrose and wheel-running reinforcement: effects of sucrose concentration and wheel-running reinforcer duration.

    Science.gov (United States)

    Belke, Terry W; Hancock, Stephanie D

    2003-03-01

    Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.

  12. Barefoot running survey: Evidence from the field

    OpenAIRE

    David Hryvniak; Jay Dicharry; Robert Wilder

    2014-01-01

    Background: Running is becoming an increasingly popular activity among Americans with over 50 million participants. Running shoe research and technology has continued to advance with no decrease in overall running injury rates. A growing group of runners are making the choice to try the minimal or barefoot running styles of the pre-modern running shoe era. There is some evidence of decreased forces and torques on the lower extremities with barefoot running, but no clear data regarding how thi...

  13. The effect of three surface conditions, speed and running experience on vertical acceleration of the tibia during running.

    Science.gov (United States)

    Boey, Hannelore; Aeles, Jeroen; Schütte, Kurt; Vanwanseele, Benedicte

    2017-06-01

    Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.

  14. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  15. Overcoming the "Run" Response

    Science.gov (United States)

    Swanson, Patricia E.

    2013-01-01

    Recent research suggests that it is not simply experiencing anxiety that affects mathematics performance but also how one responds to and regulates that anxiety (Lyons and Beilock 2011). Most people have faced mathematics problems that have triggered their "run response." The issue is not whether one wants to run, but rather…

  16. Street children: “Running from” or “running to”?

    Directory of Open Access Journals (Sweden)

    J. le Roux

    1997-03-01

    Full Text Available The street child phenomenon presents a complex issue resulting from a diversity of integrated factors. The problem should therefore preferably be explained and addressed holistically. A search of available literature on street children clearly indicates that street children per se are not the primary problem. The phenomenon o f street children is merely a symptom of a problem underlying the intolerable situation of these children's family and community lives. In this article it is explained that the street child phenomenon is thus symptomatic of contemporary twentieth century conditions. "Running from " and “running to " are in fact intereffective tendencies or reactions to a complicated polarised society: two sides of a common coin.

  17. Determinants of time limit at velocity corresponding to VO2max in physically active individuals

    Directory of Open Access Journals (Sweden)

    Leonardo Gonçalves Ribeiro

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n1p69 The objective of the present study was to determine the relationship between time limit (Tlim at VO2Máx velocity (VVO2Máx and the variables VO2Máx, VVO2Máx, running economy (RE, ventilatory threshold (VT, strength test (9-10 maximum repetitions, velocity at maximal anaerobic running test (VMART, vertical jump test and body fat percentage. The sample was composed of 18 male volunteers, aged between 18 and 45 years old, non-athletes, but physically active. The study was carried out during fi ve visits, on non-consecutive days and at approximately the same time each day: visit 1 - signature of informed consent form, medical history, anthropometric assessment, aerobic power test and familiarization with Tlim test; visit 2 - RE test and Tlim test; visit 3 - familiarization with VMART test; visit 4 - familiarization with vertical jump and 9-10 maximum repetition tests and VMART test; visit 5 - vertical jump and 9-10 maximum repetition tests. Low (r = 0.220 to – 0.359 and non-signifi cant correlations (p = 0.281 to 0.935 were observed between Tlim and the selected variables, characterizing the low predictive value of Tlim for the sample studied. Thus, and because of the considerable inter-individual variability in Tlim, no variable was identifi ed that was capable of satisfactorily predicting Tlim.

  18. Effects of age and spa treatment on match running performance over two consecutive games in highly trained young soccer players.

    Science.gov (United States)

    Buchheit, Martin; Horobeanu, Cosmin; Mendez-Villanueva, Alberto; Simpson, Ben M; Bourdon, Pitre C

    2011-03-01

    The aim of this study was to examine the effect of age and spa treatment (i.e. combined sauna, cold water immersion, and jacuzzi) on match running performance over two consecutive matches in highly trained young soccer players. Fifteen pre- (age 12.8 ± 0.6 years) and 13 post- (15.9 ± 1 y) peak height velocity (PHV) players played two matches (Matches 1 and 2) within 48 h against the same opposition, with no specific between-match recovery intervention (control). Five post-PHV players also completed another set of two consecutive matches, with spa treatment implemented after the first match. Match running performance was assessed using a global positioning system with very-high-intensity running (> 16.1-19.0 km · h(-1)), sprinting distance (>19 km · h(-1)), and peak match speed determined. Match 2 very-high-intensity running was "possibly" impaired in post-PHV players (-9 ± 33%; ± 90% confidence limits), whereas it was "very likely" improved for the pre-PHV players (+27 ± 22%). The spa treatment had a beneficial impact on Match 2 running performance, with a "likely" rating for sprinting distance (+30 ± 67%) and "almost certain" for peak match speed (+6.4 ± 3%). The results suggest that spa treatment is an effective recovery intervention for post-PHV players, while its value in pre-PHV players is questionable.

  19. A theoretical perspective on running-related injuries.

    Science.gov (United States)

    Gallant, Jodi Lynn; Pierrynowski, Michael Raymond

    2014-03-01

    The etiology of running-related injuries remains unknown; however, an implicit theory underlies much of the conventional research and practice in the prevention of these injuries. This theory posits that the cause of running-related injuries lies in the high-impact forces experienced when the foot contacts the ground and the subsequent abnormal movement of the subtalar joint. The application of this theory is seen in the design of the modern running shoe, with cushioning, support, and motion control. However, a new theory is emerging that suggests that it is the use of these modern running shoes that has caused a maladaptive running style, which contributes to a high incidence of injury among runners. The suggested application of this theory is to cease use of the modern running shoe and transition to barefoot or minimalist running. This new running paradigm, which is at present inadequately defined, is proposed to avoid the adverse biomechanical effects of the modern running shoe. Future research should rigorously define and then test both theories regarding their ability to discover the etiology of running-related injury. Once discovered, the putative cause of running-related injury will then provide an evidence-based rationale for clinical prevention and treatment.

  20. MODIFICATION OF AGILITY RUNNING TECHNIQUE IN REACTION TO A DEFENDER IN RUGBY UNION

    Directory of Open Access Journals (Sweden)

    Keane W. Wheeler

    2010-09-01

    Full Text Available Three-dimensional kinematic analysis examined agility running technique during pre-planned and reactive performance conditions specific to attacking ball carries in rugby union. The variation to running technique of 8 highly trained rugby union players was compared between agility conditions (pre-planned and reactive and also agility performance speeds (fast, moderate and slow. Kinematic measures were used to determine the velocity of the centre of mass (COM in the anteroposterior (running speed and mediolateral (lateral movement speed planes. The position of foot-strike and toe-off was also examined for the step prior to the agility side- step (pre-change of direction phase and then the side-step (change of direction phase. This study demonstrated that less lateral movement speed towards the intended direction change occurred during reactive compared to pre-planned conditions at pre-change of direction (0.08 ± 0.28 m·s-1 and 0.42 ± 0.25 m·s-1, respectively and change of direction foot-strikes (0.25 ± 0.42 m·s-1 and 0.69 ± 0.43 m·s-1, respectively. Less lateral movement speed during reactive conditions was associated with greater lateral foot displacement (44.52 ± 6.10% leg length at the change of direction step compared to pre-planned conditions (41.35 ± 5.85%. Importantly, the anticipation abilities during reactive conditions provided a means to differentiate between speeds of agility performance, with faster performances displaying greater lateral movement speed at the change of direction foot- strike (0.52 ± 0.34 m·s-1 compared to moderate (0.20 ± 0.37 m·s-1 and slow (-0.08 ± 0.31 m·s-1. The changes to running technique during reactive conditions highlight the need to incorporate decision-making in rugby union agility programs

  1. PRECIS Runs at IITM

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. PRECIS Runs at IITM. Evaluation experiment using LBCs derived from ERA-15 (1979-93). Runs (3 ensembles in each experiment) already completed with LBCs having a length of 30 years each, for. Baseline (1961-90); A2 scenario (2071-2100); B2 scenario ...

  2. [Osteoarthritis from long-distance running?].

    Science.gov (United States)

    Hohmann, E; Wörtler, K; Imhoff, A

    2005-06-01

    Long distance running has become a fashionable recreational activity. This study investigated the effects of external impact loading on bone and cartilage introduced by performing a marathon race. Seven beginners were compared to six experienced recreational long distance runners and two professional athletes. All participants underwent magnetic resonance imaging of the hip and knee before and after a marathon run. Coronal T1 weighted and STIR sequences were used. The pre MRI served as a baseline investigation and monitored the training effect. All athletes demonstrated normal findings in the pre run scan. All but one athlete in the beginner group demonstrated joint effusions after the race. The experienced and professional runners failed to demonstrate pathology in the post run scans. Recreational and professional long distance runners tolerate high impact forces well. Beginners demonstrate significant changes on the post run scans. Whether those findings are a result of inadequate training (miles and duration) warrant further studies. We conclude that adequate endurance training results in adaptation mechanisms that allow the athlete to compensate for the stresses introduced by long distance running and do not predispose to the onset of osteoarthritis. Significant malalignment of the lower extremity may cause increased focal loading of joint and cartilage.

  3. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    OpenAIRE

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...

  4. The design of the run Clever randomized trial

    DEFF Research Database (Denmark)

    Ramskov, Daniel; Nielsen, Rasmus Oestergaard; Sørensen, Henrik

    2016-01-01

    BACKGROUND: Injury incidence and prevalence in running populations have been investigated and documented in several studies. However, knowledge about injury etiology and prevention is needed. Training errors in running are modifiable risk factors and people engaged in recreational running need...... evidence-based running schedules to minimize the risk of injury. The existing literature on running volume and running intensity and the development of injuries show conflicting results. This may be related to previously applied study designs, methods used to quantify the performed running...... and the statistical analysis of the collected data. The aim of the Run Clever trial is to investigate if a focus on running intensity compared with a focus on running volume in a running schedule influences the overall injury risk differently. METHODS/DESIGN: The Run Clever trial is a randomized trial with a 24-week...

  5. On the apparent velocity of integrated sunlight. 2: 1983-1992 and comparisons with magnetograms

    Science.gov (United States)

    Deming, Drake; Plymate, Claude

    1994-01-01

    We report additional results in our program to monitor the wavelength stability of lines in the 2.3 micrometer spectrum of integrated sunlight. We use the McMath Fourier transform spectrometer (FTS) of the National Solar Observatory to monitor 16 delta V = 2 lines of (12)C(16)O, as well as five atomic lines. Wavenumber calibration is achieved using a low-pressure N2O absorption cell and checked against terrestrial atmospheric lines. Imperfect optical integration of the solar disk remains the principal source of error, but this error has been reduced by improved FTS/telescope collimation and observing procedures. The present results include data from an additional 13 quarterly observing runs since 1985. We continue to find that the apparent velocity of integrated sunlight is variable, in the sense of having a greater reshift at solar maximum. This is supported by the temporal dependence of the integrated light velocity, and by the presence of a correlation between velocity and the disk-averaged magnetic flux derived from Kitt Peak magnetograms. The indicated peak-to-peak apparent velocity amplitude over a solar cycle is approximately the same as the velocity amplitude of the Sun's motion about the solar system barycenter. This represents about half the amplitude which we inferred in Paper I (Deming et al. 1987), but the present result has a much greater statistical significance. Our results have implications for those investigations which search for the Doppler signatures of planetary-mass companions to solar-type stars. We contrast our results to the recent finding by McMillan et al. 1993 that solar absorption lines in the violet spectral region are wavelength-stable over the solar cycle.

  6. Effective action and brane running

    International Nuclear Information System (INIS)

    Brevik, Iver; Ghoroku, Kazuo; Yahiro, Masanobu

    2004-01-01

    We address the renormalized effective action for a Randall-Sundrum brane running in 5D bulk space. The running behavior of the brane action is obtained by shifting the brane position without changing the background and fluctuations. After an appropriate renormalization, we obtain an effective, low energy brane world action, in which the effective 4D Planck mass is independent of the running position. We address some implications for this effective action

  7. Fitness Assessment Comparison Between the "Jackie Chan Action Run" Videogame, 1-Mile Run/Walk, and the PACER.

    Science.gov (United States)

    Haddock, Bryan; Siegel, Shannon; Costa, Pablo; Jarvis, Sarah; Klug, Nicholas; Medina, Ernie; Wilkin, Linda

    2012-06-01

    The purpose of this study was to examine whether a correlation existed among the scores of the "Jackie Chan Studio Fitness(™) Action Run" active videogame (XaviX(®), SSD Company, Ltd., Kusatsu, Japan), the 1-mile run/walk, and Progressive Aerobic Cardiovascular Endurance Run (PACER) aerobic fitness tests of the FITNESSGRAM(®) (The Cooper Institute, Dallas, TX) in order to provide a potential alternative testing method for days that are not environmentally desirable for outdoor testing. Participants were a convenience sample from physical education classes of students between the ages of 10 and 15 years. Participants (n=108) were randomly assigned to one of three groups with the only difference being the order of testing. The tests included the "Jackie Chan Action Run" active videogame, the 1-mile run/walk, and the PACER. Testing occurred on three different days during the physical education class. Rating of perceived exertion (RPE) was reported. Significant correlations (r=-0.598 to 0.312) were found among the three aerobic fitness tests administered (P<0.05). The RPE for the "Jackie Chan Action Run" was lower than the RPE for the 1-mile run/walk and the PACER (3.81±1.89, 5.93±1.77, and 5.71±2.14, respectively). The results suggest that the "Jackie Chan Action Run" test could be an alternative to the 1-mile run/walk and PACER, allowing physical education teachers to perform aerobic fitness testing in an indoor setting that requires less space. Also, children may be more willing to participate in the "Jackie Chan Action Run" based on the lower RPE.

  8. 28 CFR 544.34 - Inmate running events.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events. ...

  9. RNA-Sequencing Reveals Unique Transcriptional Signatures of Running and Running-Independent Environmental Enrichment in the Adult Mouse Dentate Gyrus.

    Science.gov (United States)

    Grégoire, Catherine-Alexandra; Tobin, Stephanie; Goldenstein, Brianna L; Samarut, Éric; Leclerc, Andréanne; Aumont, Anne; Drapeau, Pierre; Fulton, Stephanie; Fernandes, Karl J L

    2018-01-01

    Environmental enrichment (EE) is a powerful stimulus of brain plasticity and is among the most accessible treatment options for brain disease. In rodents, EE is modeled using multi-factorial environments that include running, social interactions, and/or complex surroundings. Here, we show that running and running-independent EE differentially affect the hippocampal dentate gyrus (DG), a brain region critical for learning and memory. Outbred male CD1 mice housed individually with a voluntary running disk showed improved spatial memory in the radial arm maze compared to individually- or socially-housed mice with a locked disk. We therefore used RNA sequencing to perform an unbiased interrogation of DG gene expression in mice exposed to either a voluntary running disk (RUN), a locked disk (LD), or a locked disk plus social enrichment and tunnels [i.e., a running-independent complex environment (CE)]. RNA sequencing revealed that RUN and CE mice showed distinct, non-overlapping patterns of transcriptomic changes versus the LD control. Bio-informatics uncovered that the RUN and CE environments modulate separate transcriptional networks, biological processes, cellular compartments and molecular pathways, with RUN preferentially regulating synaptic and growth-related pathways and CE altering extracellular matrix-related functions. Within the RUN group, high-distance runners also showed selective stress pathway alterations that correlated with a drastic decline in overall transcriptional changes, suggesting that excess running causes a stress-induced suppression of running's genetic effects. Our findings reveal stimulus-dependent transcriptional signatures of EE on the DG, and provide a resource for generating unbiased, data-driven hypotheses for novel mediators of EE-induced cognitive changes.

  10. Low velocity collisions of porous planetesimals in the early solar system

    Science.gov (United States)

    de Niem, D.; Kührt, E.; Hviid, S.; Davidsson, B.

    2018-02-01

    The ESA Rosetta mission has shown that Comet 67P/Churuymov-Gerasimenko is bi-lobed, has a high average porosity of around 70%, does not have internal cavities on size scales larger than 10 m, the lobes could have individual sets of onion shell-like layering, and the nucleus surface contains 100 m-scale cylindrical pits. It is currently debated whether these properties are consistent with high-velocity collisional evolution or if they necessarily are surviving signatures of low-velocity primordial accretion. We use an Eulerian hydrocode to study collisions between highly porous bodies of different sizes, material parameters and relative velocities with emphasis on 5-100 m/s to characterize the effects of collisions in terms of deformation, compaction, and heating. We find that accretion of 1 km cometesimals by 3 km nuclei at 13.5 m/s flattens and partially buries the cometesimal with ∼ 1% reduction of the bulk porosity. This structure locally becomes more dense but the global effect of compaction is minor, suggesting that low-velocity accretion does not lead to a 'bunch of grapes' structure with large internal cavities but a more homogeneous interior, consistent with Rosetta findings. The mild local compaction associated with accretion is potentially the origin of the observed nucleus layering. In 2D axially symmetric impacts hit-and-stick collisions of similarly-sized nuclei are possible at velocities up to 30 m/s where deformation becomes severe. The bulk porosity is reduced significantly, even at 30-50 m/s relative velocity. To avoid hit-and-run collisions the impact angle must be less than 35°-45° from the surface normal at 10 m/s, and even smaller at higher velocities. Impact heating is insignificant. We find that the small cross section of the 67P neck may require a ≤ 5 m/s impact, unless the cohesion exceeds 10 kPa. We conclude that bi-lobe nucleus formation is possible at velocities typically discussed in hierarchical growth scenarios. Impacts of a 7 m

  11. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    Science.gov (United States)

    Verheul, Jasper; Clansey, Adam C; Lake, Mark J

    2017-03-01

    It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training. NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by lower thigh muscle activation after touch down, higher initial knee stiffness, and greater estimates of energy return, with adaptations being increasingly evident at faster running speeds. Copyright © 2017 the American Physiological Society.

  12. Collective cell migration without proliferation: density determines cell velocity and wave velocity

    Science.gov (United States)

    Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François

    2018-05-01

    Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.

  13. Asymmetric information and bank runs

    OpenAIRE

    Gu, Chao

    2007-01-01

    It is known that sunspots can trigger panic-based bank runs and that the optimal banking contract can tolerate panic-based runs. The existing literature assumes that these sunspots are based on a publicly observed extrinsic randomizing device. In this paper, I extend the analysis of panic-based runs to include an asymmetric-information, extrinsic randomizing device. Depositors observe different, but correlated, signals on the stability of the bank. I find that if the signals that depositors o...

  14. Does “Live High-Train Low (and High” Hypoxic Training Alter Running Mechanics In Elite Team-sport Players?

    Directory of Open Access Journals (Sweden)

    Olivier Girard, Grégoire P. Millet, Jean-Benoit Morin, Franck Brocherie

    2017-09-01

    Full Text Available This study aimed to investigate if “Live High-Train Low (and High” hypoxic training alters constant-velocity running mechanics. While residing under normobaric hypoxia (≥14 h·d-1; FiO2 14.5-14.2% for 14 days, twenty field hockey players performed, in addition to their usual training in normoxia, six sessions (4 × 5 × 5-s maximal sprints; 25 s passive recovery; 5 min rest under either normobaric hypoxia (FiO2 ~14.5%, n = 9 or normoxia (FiO2 20.9%, n = 11. Before and immediately after the intervention, their running pattern was assessed at 10 and 15 km·h-1 as well as during six 30-s runs at ~20 km·h-1 with 30-s passive recovery on an instrumented motorised treadmill. No clear changes in running kinematics and spring-mass parameters occurred globally either at 10, 15 or ~20 km·h-1, with also no significant time × condition interaction for any parameters (p > 0.14. Independently of the condition, heart rate (all p < 0.05 and ratings of perceived exertion decreased post-intervention (only at 15 km·h-1, p < 0.05. Despite indirect signs for improved psycho-physiological responses, no forthright change in stride mechanical pattern occurred after “Live High-Train Low (and High” hypoxic training.

  15. Effect of Cutaneous Heat Pain on Corticospinal Excitability of the Tibialis Anterior at Rest and during Submaximal Contraction

    Directory of Open Access Journals (Sweden)

    Maxime Billot

    2018-01-01

    Full Text Available Previous studies have shown that pain can interfere with motor control. The neural mechanisms underlying these effects remain largely unknown. At the upper limb, mounting evidence suggests that pain-induced reduction in corticospinal excitability is involved. No equivalent data is currently available at the lower limb. The present study therefore examined the effect of thermal pain on the corticospinal drive to tibialis anterior (TA at rest and during an isometric submaximal dorsiflexion. Transcranial magnetic stimulation was used to induce motor-evoked potentials (MEPs in the TA at rest and during contraction in the presence or absence of cutaneous heat pain induced by a thermode positioned above the TA (51°C during 1 s. With similar pain ratings between conditions (3.9/10 at rest and 3.6/10 during contraction, results indicate significant decreases in MEP amplitude during both rest (−9% and active conditions (−13% (main effect of pain, p=0.02. These results therefore suggest that cutaneous heat pain can reduce corticospinal excitability in the TA muscle and that such reduction in corticospinal excitability could contribute to the interference of pain on motor control/motor learning.

  16. Running-in as an Engineering Optimization

    OpenAIRE

    Jamari, Jamari

    2007-01-01

    Running-in is a process which can be found in daily lives. This phenomenon occurs after the start of the contact between fresh solid surfaces, resulting in changes in the surface topography, friction and wear. Before the contacting engineering solid surfaces reach a steady-state operation situation this running-n enhances the contact performance. Running-in is very complex and is a vast problem area. A lot of variable occurs in the running-in process, physically, mechanically or chemically. T...

  17. Impact Accelerations of Barefoot and Shod Running.

    Science.gov (United States)

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  19. Consideration of some difficulties in migration velocity analysis; Migration velocity analysis no shomondai ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Akama, K [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1997-10-22

    Concerning migration velocity analysis in the seismic exploration method, two typical techniques, out of velocity analysis techniques using residual moveout in the CIP gather, are verified. Deregowski`s method uses pre-stacking deep-level migration records for velocity analysis to obtain velocities free of spatial inconsistency and not dependent on the velocity structure. This method is very like the conventional DMO velocity analysis method and is easy to understand intuitively. In this method, however, error is apt to be aggravated in the process of obtaining the depth-sector velocity from the time-RMS velocity. Al-Yahya`s method formulates the moveout residual in the CIP gather. This assumes horizontal stratification and a small residual velocity, however, and fails to guarantee convergence in the case of a steep structure or a grave model error. In the updating of the velocity model, in addition, it has to maintain required accuracy and, at the same time, incorporate smoothing to ensure not to deteriorate high convergence. 2 refs., 5 figs.

  20. Option Valuation with Long-run and Short-run Volatility Components

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Ornthanalai, Chayawat

    This paper presents a new model for the valuation of European options, in which the volatility of returns consists of two components. One of these components is a long-run component, and it can be modeled as fully persistent. The other component is short-run and has a zero mean. Our model can...... be viewed as an affine version of Engle and Lee (1999), allowing for easy valuation of European options. The model substantially outperforms a benchmark single-component volatility model that is well-established in the literature, and it fits options better than a model that combines conditional...... model long-maturity and short-maturity options....

  1. Effects of chronic nitric oxide synthase inhibition on V'O2max and exercise capacity in mice.

    Science.gov (United States)

    Wojewoda, M; Przyborowski, K; Sitek, B; Zakrzewska, A; Mateuszuk, L; Zoladz, J A; Chlopicki, S

    2017-03-01

    Acute inhibition of NOS by L-NAME (N ω -nitro-L-arginine methyl ester) is known to decrease maximal oxygen consumption (V'O 2max ) and impair maximal exercise capacity, whereas the effects of chronic L-NAME treatment on V'O 2max and exercise performance have not been studied so far. In this study, we analysed the effect of L-NAME treatment, (LN2 and LN12, respectively) on V'O 2max and exercise capacity (in maximal incremental running and prolonged sub-maximal incremental running tests), systemic NO bioavailability (plasma nitrite (NO 2 - ) and nitrate (NO 3 - )) and prostacyclin (PGI 2 ) production in C57BL6/J mice. Mice treated with L-NAME for 2 weeks (LN2) displayed higher V'O 2max and better running capacity than age-matched control mice. In LN2 mice, NO bioavailability was preserved, as evidenced by maintained NO 2 - plasma concentration. PGI 2 production was activated (increased 6-keto-PGF 1α plasma concentration) and the number of circulating erythrocytes (RBC) and haemoglobin concentration were increased. In mice treated with L-NAME for 12 weeks (LN12), NO bioavailability was decreased (lower NO 2 - plasma concentration), and 6-keto-PGF 1α plasma concentration and RBC number were not elevated compared to age-matched control mice. However, LN12 mice still performed better during the maximal incremental running test despite having lower V'O 2max . Interestingly, the LN12 mice showed poorer running capacity during the prolonged sub-maximal incremental running test. To conclude, short-term (2 weeks) but not long-term (12 weeks) treatment with L-NAME activated robust compensatory mechanisms involving preservation of NO2- plasma concentration, overproduction of PGI 2 and increased number of RBCs, which might explain the fully preserved exercise capacity despite the inhibition of NOS.

  2. Joint stiffness and running economy during imposed forefoot strike before and after a long run in rearfoot strike runners.

    Science.gov (United States)

    Melcher, Daniel A; Paquette, Max R; Schilling, Brian K; Bloomer, Richard J

    2017-12-01

    Research has focused on the effects of acute strike pattern modifications on lower extremity joint stiffness and running economy (RE). Strike pattern modifications on running biomechanics have mostly been studied while runners complete short running bouts. This study examined the effects of an imposed forefoot strike (FFS) on RE and ankle and knee joint stiffness before and after a long run in habitual rearfoot strike (RFS) runners. Joint kinetics and RE were collected before and after a long run. Sagittal joint kinetics were computed from kinematic and ground reaction force data that were collected during over-ground running trials in 13 male runners. RE was measured during treadmill running. Knee flexion range of motion, knee extensor moment and ankle joint stiffness were lower while plantarflexor moment and knee joint stiffness were greater during imposed FFS compared with RFS. The long run did not influence the difference in ankle and knee joint stiffness between strike patterns. Runners were more economical during RFS than imposed FFS and RE was not influenced by the long run. These findings suggest that using a FFS pattern towards the end of a long run may not be mechanically or metabolically beneficial for well-trained male RFS runners.

  3. Constraints on the running of the running of the scalar tilt from CMB anisotropies and spectral distortions

    NARCIS (Netherlands)

    Cabass, Giovanni; Valentino, Eleonora Di; Melchiorri, Alessandro; Pajer, Enrico|info:eu-repo/dai/nl/413315797; Silk, Joseph

    2016-01-01

    We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\\alpha_\\mathrm{s} = \\mathrm{d}n_{\\mathrm{s}} / \\mathrm{d}\\log k$ and the running of the running $\\beta_{\\mathrm{s}}

  4. Robotic Bipedal Running : Increasing disturbance rejection

    NARCIS (Netherlands)

    Karssen, J.G.D.

    2013-01-01

    The goal of the research presented in this thesis is to increase the understanding of the human running gait. The understanding of the human running gait is essential for the development of devices, such as prostheses and orthoses, that enable disabled people to run or that enable able people to

  5. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    Science.gov (United States)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  6. Voluntary resistance running induces increased hippocampal neurogenesis in rats comparable to load-free running.

    Science.gov (United States)

    Lee, Min Chul; Inoue, Koshiro; Okamoto, Masahiro; Liu, Yu Fan; Matsui, Takashi; Yook, Jang Soo; Soya, Hideaki

    2013-03-14

    Recently, we reported that voluntary resistance wheel running with a resistance of 30% of body weight (RWR), which produces shorter distances but higher work levels, enhances spatial memory associated with hippocampal brain-derived neurotrophic factor (BDNF) signaling compared to wheel running without a load (WR) [17]. We thus hypothesized that RWR promotes adult hippocampal neurogenesis (AHN) as a neuronal substrate underlying this memory improvement. Here we used 10-week-old male Wistar rats divided randomly into sedentary (Sed), WR, and RWR groups. All rats were injected intraperitoneally with the thymidine analogue 5-Bromo-2'-deoxuridine (BrdU) for 3 consecutive days before wheel running. We found that even when the average running distance decreased by about half, the average work levels significantly increased in the RWR group, which caused muscular adaptation (oxidative capacity) for fast-twitch plantaris muscle without causing any negative stress effects. Additionally, immunohistochemistry revealed that the total BrdU-positive cells and newborn mature cells (BrdU/NeuN double-positive) in the dentate gyrus increased in both the WR and RWR groups. These results provide new evidence that RWR has beneficial effects on AHN comparable to WR, even with short running distances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. The NLstart2run study: Economic burden of running-related injuries in novice runners participating in a novice running program.

    Science.gov (United States)

    Hespanhol Junior, Luiz C; Huisstede, Bionka M A; Smits, Dirk-Wouter; Kluitenberg, Bas; van der Worp, Henk; van Middelkoop, Marienke; Hartgens, Fred; Verhagen, Evert

    2016-10-01

    To investigate the economic burden of running-related injuries (RRI) occurred during the 6-week 'Start-to-Run' program of the Dutch Athletics Federation in 2013. Prospective cohort study. This was a monetary cost analysis using the data prospectively gathered alongside the RRI registration in the NLstart2run study. RRI data were collected weekly. Cost diaries were applied two and six weeks after the RRI registration to collect data regarding healthcare utilisation (direct costs) and absenteeism from paid and unpaid work (indirect costs). RRI was defined as running-related pain that hampered running ability for three consecutive training sessions. From the 1696 participants included in the analysis, 185 reported a total of 272 RRIs. A total of 26.1% of the cost data (71 RRIs reported by 50 participants) were missing. Therefore, a multiple imputation procedure was performed. The economic burden (direct plus indirect costs) of RRIs was estimated at €83.22 (95% CI €50.42-€116.02) per RRI, and €13.35 (95% CI €7.07-€19.63) per participant. The direct cost per RRI was €56.93 (95% CI €42.05-€71.81) and the indirect cost per RRI was €26.29 (95% CI €0.00-€54.79). The indirect cost was higher for sudden onset RRIs than for gradual onset RRIs, with a mean difference of €33.92 (95% CI €17.96-€49.87). Direct costs of RRIs were 2-fold higher than the indirect costs, and sudden onset RRIs presented higher costs than gradual onset RRIs. The results of this study are important to provide information to public health agencies and policymakers about the economic burden of RRIs in novice runners. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  9. Heat transfer simulation of motorcycle fins under varying velocity using CFD method

    Science.gov (United States)

    Shahril, K.; Mohd Kasim, Nurhayati Binti; Sabri, M.

    2013-12-01

    Motorcycle engine releases heat to the atmosphere through the mode of force convection. To solve this, fins are provided on the outer of the cylinder. The heat transfer rate is defined depending on the velocity of vehicle, fin geometry and the ambient temperature. Increasing the temperature difference between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer. Many experimental methods are available in literature to analyze the effect of these factors on the heat transfer rate. However, CFD analysis will be use to simulate the heat transfer of the engine block. ANSYS software is selected to run the simulation.

  10. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    International Nuclear Information System (INIS)

    Machida, S.; Goertz, C.K.; Lu, G.

    1988-01-01

    Simulations of the Critical Ionization Velocity (CIV) for a neutral gas cloud moving across the static magnetic field are made. We treat a low-β plasma and use a 2-1/2 D electrostatic code linked with our Plasma and Neutral Interaction Code (PANIC). Our study is focused on the understanding of the interface between the neutral gas cloud and the surrounding plasma where the strong interaction takes place. We assume the existence of some hot electrons in the ambient plasma to provide a seed ionization for CIV. When the ionization starts a sheath-like structure is formed at the surface of the neutral gas (Ionizing Front). In that region the crossfield component of the electric field causes the electron to E x B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. Thus the kinetic energy of the drifting electrons can be large enough for electron impact ionization. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the ionization front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating and additional ionization. The overall structure is studied by developing a simple analytic model as well as making simulation runs. (author)

  11. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy.

    Science.gov (United States)

    Moore, Isabel S

    2016-06-01

    Running economy (RE) has a strong relationship with running performance, and modifiable running biomechanics are a determining factor of RE. The purposes of this review were to (1) examine the intrinsic and extrinsic modifiable biomechanical factors affecting RE; (2) assess training-induced changes in RE and running biomechanics; (3) evaluate whether an economical running technique can be recommended and; (4) discuss potential areas for future research. Based on current evidence, the intrinsic factors that appeared beneficial for RE were using a preferred stride length range, which allows for stride length deviations up to 3 % shorter than preferred stride length; lower vertical oscillation; greater leg stiffness; low lower limb moment of inertia; less leg extension at toe-off; larger stride angles; alignment of the ground reaction force and leg axis during propulsion; maintaining arm swing; low thigh antagonist-agonist muscular coactivation; and low activation of lower limb muscles during propulsion. Extrinsic factors associated with a better RE were a firm, compliant shoe-surface interaction and being barefoot or wearing lightweight shoes. Several other modifiable biomechanical factors presented inconsistent relationships with RE. Running biomechanics during ground contact appeared to play an important role, specifically those during propulsion. Therefore, this phase has the strongest direct links with RE. Recurring methodological problems exist within the literature, such as cross-comparisons, assessing variables in isolation, and acute to short-term interventions. Therefore, recommending a general economical running technique should be approached with caution. Future work should focus on interdisciplinary longitudinal investigations combining RE, kinematics, kinetics, and neuromuscular and anatomical aspects, as well as applying a synergistic approach to understanding the role of kinetics.

  12. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  13. Origins of Solar Systems: Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    Science.gov (United States)

    Saar, Steven; Lindstrom, David (Technical Monitor)

    2003-01-01

    We have continued the super high resolution (R is approximately 200,000), high S/N (> 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., K Ceti; P(sub cyc)=5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and v(sub r), changes which we have uncovered. A preliminary analysis of the limited data in hand, and find some tantalizing evidence for correlations between median line bisector displacement and radial velocity v(sub r). The correlation appears to be specific to the particular star being considered, probably since it is a function of both spectral type and rotation rate. Additional information regarding progress on the grant is included.

  14. The Impact of Firefighter Personal Protective Equipment and Treadmill Protocol on Maximal Oxygen Uptake

    Science.gov (United States)

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2015-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854

  15. RNA-Sequencing Reveals Unique Transcriptional Signatures of Running and Running-Independent Environmental Enrichment in the Adult Mouse Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Catherine-Alexandra Grégoire

    2018-04-01

    Full Text Available Environmental enrichment (EE is a powerful stimulus of brain plasticity and is among the most accessible treatment options for brain disease. In rodents, EE is modeled using multi-factorial environments that include running, social interactions, and/or complex surroundings. Here, we show that running and running-independent EE differentially affect the hippocampal dentate gyrus (DG, a brain region critical for learning and memory. Outbred male CD1 mice housed individually with a voluntary running disk showed improved spatial memory in the radial arm maze compared to individually- or socially-housed mice with a locked disk. We therefore used RNA sequencing to perform an unbiased interrogation of DG gene expression in mice exposed to either a voluntary running disk (RUN, a locked disk (LD, or a locked disk plus social enrichment and tunnels [i.e., a running-independent complex environment (CE]. RNA sequencing revealed that RUN and CE mice showed distinct, non-overlapping patterns of transcriptomic changes versus the LD control. Bio-informatics uncovered that the RUN and CE environments modulate separate transcriptional networks, biological processes, cellular compartments and molecular pathways, with RUN preferentially regulating synaptic and growth-related pathways and CE altering extracellular matrix-related functions. Within the RUN group, high-distance runners also showed selective stress pathway alterations that correlated with a drastic decline in overall transcriptional changes, suggesting that excess running causes a stress-induced suppression of running’s genetic effects. Our findings reveal stimulus-dependent transcriptional signatures of EE on the DG, and provide a resource for generating unbiased, data-driven hypotheses for novel mediators of EE-induced cognitive changes.

  16. Acute Warm-up Effects in Submaximal Athletes: An EMG Study of Skilled Violinists.

    Science.gov (United States)

    McCrary, J Matt; Halaki, Mark; Sorkin, Evgeny; Ackermann, Bronwen J

    2016-02-01

    Warm-up is commonly recommended for injury prevention and performance enhancement across all activities, yet this recommendation is not supported by evidence for repetitive submaximal activities such as instrumental music performance. The objective of this study is to quantify the effects of cardiovascular, core muscle, and musical warm-ups on muscle activity levels, musical performance, and subjective experience in skilled violinists. Fifty-five undergraduate, postgraduate, or professional violinists performed five randomly ordered 45-s musical excerpts of varying physical demands both before and after a randomly assigned 15-min, moderate-intensity cardiovascular, core muscle, musical (technical violin exercises), or inactive control warm-up protocol. Surface EMG data were obtained for 16 muscles of the trunk, shoulders, and right arm during each musical performance. Sound recording and perceived exertion (RPE) data were also obtained. Sound recordings were randomly ordered and rated for performance quality by blinded adjudicators. Questionnaire data regarding participant pain sites and fitness levels were used to stratify participants according to pain and fitness levels. Data were analyzed using two- and three-factor ANCOVA (surface EMG and sound recording) and Wilcoxon matched pairs tests (RPE). None of the three warm-up protocols had significant effects on muscle activity levels (P ≥ 0.10). Performance quality did not significantly increase (P ≥ 0.21). RPE significantly decreased (P warm-up for each of the three experimental warm-ups; control condition RPE did not significantly decrease (P > 0.23). Acute physiological and musical benefits from cardiovascular, core muscle, and musical warm-ups in skilled violinists are limited to decreases in RPE. This investigation provides data from the performing arts in support of sports medical evidence suggesting that warm-up only effectively enhances maximal strength and power performance.

  17. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning

    NARCIS (Netherlands)

    Schellart, W. P.; Stegman, D. R.; Farrington, R. J.; Moresi, L.

    2011-01-01

    Subduction of oceanic lithosphere occurs through both trenchward subducting plate motion and trench retreat. We investigate how subducting plate velocity, trench velocity and the partitioning of these two velocity components vary for individual subduction zone segments as a function of proximity to

  18. Effect of sucrose availability and pre-running on the intrinsic value of wheel running as an operant and a reinforcing consequence.

    Science.gov (United States)

    Belke, Terry W; Pierce, W David

    2014-03-01

    The current study investigated the effect of motivational manipulations on operant wheel running for sucrose reinforcement and on wheel running as a behavioral consequence for lever pressing, within the same experimental context. Specifically, rats responded on a two-component multiple schedule of reinforcement in which lever pressing produced the opportunity to run in a wheel in one component of the schedule (reinforcer component) and wheel running produced the opportunity to consume sucrose solution in the other component (operant component). Motivational manipulations involved removal of sucrose contingent on wheel running and providing 1h of pre-session wheel running. Results showed that, in opposition to a response strengthening view, sucrose did not maintain operant wheel running. The motivational operations of withdrawing sucrose or providing pre-session wheel running, however, resulted in different wheel-running rates in the operant and reinforcer components of the multiple schedule; this rate discrepancy revealed the extrinsic reinforcing effects of sucrose on operant wheel running, but also indicated the intrinsic reinforcement value of wheel running across components. Differences in wheel-running rates between components were discussed in terms of arousal, undermining of intrinsic motivation, and behavioral contrast. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Children with Burn Injury Have Impaired Cardiac Output during Submaximal Exercise.

    Science.gov (United States)

    Rivas, Eric; Herndon, David N; Beck, Kenneth C; Suman, Oscar E

    2017-10-01

    Burn trauma damages resting cardiac function; however, it is currently unknown if the cardiovascular response to exercise is likewise impaired. We tested the hypothesis that, in children, burn injury lowers cardiac output (Q˙) and stroke volume (SV) during submaximal exercise. Five children with 49% ± 4% total body surface area (BSA) burned (two female, 11.7 ± 1 yr, 40.4 ± 18 kg, 141.1 ± 9 cm) and eight similar nonburned controls (five female, 12.5 ± 2 yr, 58.0 ± 17 kg, 147.3 ± 12 cm) with comparable exercise capacity (peak oxygen consumption [peak V˙O2]: 31.9 ± 11 vs 36.8 ± 8 mL O2·kg·min, P = 0.39) participated. The exercise protocol entailed a preexercise (pre-EX) rest period followed by 3-min exercise stages at 20 W and 50 W. V˙O2, HR, Q˙ (via nonrebreathing), SV (Q˙/HR), and arteriovenous O2 difference ([a-v]O2diff, Q˙/ V˙O2) were the primary outcome variables. Using a 2-way factorial ANOVA (group [G] × exercise [EX]), we found that Q˙ was approximately 27% lower in the burned than the nonburned group at 20 W of exercise (burned 5.7 ± 1.0 vs nonburned: 7.9 ± 1.8 L·min) and 50 W of exercise (burned 6.9 ± 1.6 vs nonburned 9.2 ± 3.2 L·min) (G-EX interaction, P = 0.012). SV did not change from rest to exercise in burned children but increased by approximately 24% in the nonburned group (main effect for EX, P = 0.046). Neither [a-v] O2diff nor V˙O2 differed between groups at rest or exercise, but HR response to exercise was reduced in the burn group (G-EX interaction, P = 0.004). When normalized to BSA, SV (index) was similar between groups; however, Q˙ (index) remained attenuated in the burned group (G-EX interaction, P exercise. Further investigation of hemodynamic function during exercise will provide insights important for cardiovascular rehabilitation in burned children.

  20. The 5- or 10-km Marikenloop Run: A Prospective Study of the Etiology of Running-Related Injuries in Women.

    Science.gov (United States)

    van der Worp, Maarten P; de Wijer, Anton; van Cingel, Robert; Verbeek, André L M; Nijhuis-van der Sanden, Maria W G; Staal, J Bart

    2016-06-01

    Study Design Prospective cohort. Background The popularity of running events is still growing, particularly among women; however, little is known about the risk factors for running-related injuries in female runners. Objectives The aims of this study were to determine the incidence and characteristics (site and recurrence) of running-related injuries and to identify specific risk factors for running-related injuries among female runners training for a 5- or 10-km race. Methods Four hundred thirty-five women registered for the Marikenloop run of 5 or 10 km were recruited. Follow-up data were collected over 12 weeks using questionnaires, starting 8 weeks before the event and ending 4 weeks after the event. Two orthopaedic tests (navicular drop test and extension of the first metatarsophalangeal joint) were performed in the 8 weeks before the event. Running-related injuries, defined as running-related pain of the lower back and/or the lower extremity that restricted running for at least 1 day, were assessed at 1-, 2-, and 3-month follow-ups. Results Of 417 female runners with follow-up data (96%), 93 runners (22.3%) reported 109 running-related injuries, mainly of the hip/groin, knee, and lower leg. Multivariable Cox regression analysis showed that a weekly training distance of more than 30 km (hazard ratio = 3.28; 95% confidence interval [CI]: 1.23, 8.75) and a previous running injury longer than 12 months prior (hazard ratio = 1.88; 95% CI: 1.03, 3.45) were associated with the occurrence of running-related injuries. Conclusion Hip/groin, knee, and lower-leg injuries were common among female runners. Only weekly training distance (greater than 30 km) and previous running injury (greater than 12 months prior) were associated with running-related injuries in female runners training for a 5- or 10-km event. Level of Evidence Etiology, 2b. J Orthop Sports Phys Ther 2016;46(6):462-470. Epub 26 Apr 2016. doi:10.2519/jospt.2016.6402.

  1. Evaluation of central and peripheral fatigue in the quadriceps using fractal dimension and conduction velocity in young females.

    Directory of Open Access Journals (Sweden)

    Matteo Beretta-Piccoli

    Full Text Available Over the past decade, linear and non-linear surface electromyography descriptors for central and peripheral components of fatigue have been developed. In the current study, we tested fractal dimension (FD and conduction velocity (CV as myoelectric descriptors of central and peripheral fatigue, respectively. To this aim, we analyzed FD and CV slopes during sustained fatiguing contractions of the quadriceps femoris in healthy humans.A total of 29 recreationally active women (mean age±standard deviation: 24±4 years and two female elite athletes (one power athlete, age 24 and one endurance athlete, age 30 years performed two knee extensions: (1 at 20% maximal voluntary contraction (MVC for 30 s, and (2 at 60% MVC held until exhaustion. Surface EMG signals were detected from the vastus lateralis and vastus medialis using bidimensional arrays.Central and peripheral fatigue were described as decreases in FD and CV, respectively. A positive correlation between FD and CV (R=0.51, p<0.01 was found during the sustained 60% MVC, probably as a result of simultaneous motor unit synchronization and a decrease in muscle fiber CV during the fatiguing task.Central and peripheral fatigue can be described as changes in FD and CV, at least in young, healthy women. The significant correlation between FD and CV observed at 60% MVC suggests that a mutual interaction between central and peripheral fatigue can arise during submaximal isometric contractions.

  2. Development and Prevention of Running-Related Osteoarthritis.

    Science.gov (United States)

    Ni, Guo-Xin

    2016-01-01

    Studies investigating the effect of running on risk for developing osteoarthritis at weight-bearing joints have reported with conflicting results. Generally, moderate-level running is not likely detrimental to joint health. However, many factors may be associated with the increased risk of developing osteoarthritis in runners. Factors often implicated in the development of osteoarthritis comprise those that increase joint vulnerability and those which increase joint loading. It is therefore suggested that running has different effects on different people. Efforts should be made to identify those with joint vulnerability and joint loading, and measures should be taken to have those factors and/or their running programs modified to run safely. Further investigations are needed to examine the effect of running on joint health under different conditions to confirm the association between exposure to risk factors and development of osteoarthritis, as well as to validate the effectiveness of measures for preventing running-related osteoarthritis.

  3. Influence of running shoes and cross-trainers on Achilles tendon forces during running compared with military boots.

    Science.gov (United States)

    Sinclair, Jonathan; Taylor, P J; Atkins, S

    2015-06-01

    Military recruits are known to be susceptible to Achilles tendon pathology. The British Army have introduced footwear models, the PT-03 (cross-trainer) and PT1000 (running shoes), in an attempt to reduce the incidence of injuries. The aim of the current investigation was to examine the Achilles tendon forces of the cross-trainer and running shoe in relation to conventional army boots. Ten male participants ran at 4.0 m/s in each footwear condition. Achilles tendon forces were obtained throughout the stance phase of running and compared using repeated-measures ANOVAs. The results showed that the time to peak Achilles tendon force was significantly shorter when running in conventional army boots (0.12 s) in comparison with the cross-trainer (0.13 s) and running shoe (0.13 s). Achilles tendon loading rate was shown to be significantly greater in conventional army boots (38.73 BW/s) in comparison with the cross-trainer (35.14 BW/s) and running shoe (33.57 BW/s). The results of this study suggest that the running shoes and cross-trainer footwear are associated with reductions in Achilles tendon parameters that have been linked to the aetiology of injury, and thus it can be hypothesised that these footwear could be beneficial for military recruits undertaking running exercises. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Students' Gender Stereotypes about Running in Schools

    Science.gov (United States)

    Xiang, Ping; McBride, Ron E.; Lin, Shuqiong; Gao, Zan; Francis, Xueying

    2018-01-01

    Two hundred forty-six students (132 boys, 114 girls) were tracked from fifth to eighth grades, and changes in gender stereotypes about running as a male sport, running performance, interest in running, and intention for future running participation were assessed. Results revealed that neither sex held gender stereotypes about running as a male…

  5. Ground reaction forces in shallow water running are affected by immersion level, running speed and gender.

    Science.gov (United States)

    Haupenthal, Alessandro; Fontana, Heiliane de Brito; Ruschel, Caroline; dos Santos, Daniela Pacheco; Roesler, Helio

    2013-07-01

    To analyze the effect of depth of immersion, running speed and gender on ground reaction forces during water running. Controlled laboratory study. Twenty adults (ten male and ten female) participated by running at two levels of immersion (hip and chest) and two speed conditions (slow and fast). Data were collected using an underwater force platform. The following variables were analyzed: vertical force peak (Fy), loading rate (LR) and anterior force peak (Fx anterior). Three-factor mixed ANOVA was used to analyze data. Significant effects of immersion level, speed and gender on Fy were observed, without interaction between factors. Fy was greater when females ran fast at the hip level. There was a significant increase in LR with a reduction in the level of immersion regardless of the speed and gender. No effect of speed or gender on LR was observed. Regarding Fx anterior, significant interaction between speed and immersion level was found: in the slow condition, participants presented greater values at chest immersion, whereas, during the fast running condition, greater values were observed at hip level. The effect of gender was only significant during fast water running, with Fx anterior being greater in the men group. Increasing speed raised Fx anterior significantly irrespective of the level of immersion and gender. The magnitude of ground reaction forces during shallow water running are affected by immersion level, running speed and gender and, for this reason, these factors should be taken into account during exercise prescription. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Running injuries - changing trends and demographics.

    Science.gov (United States)

    Fields, Karl B

    2011-01-01

    Running injuries are common. Recently the demographic has changed, in that most runners in road races are older and injuries now include those more common in master runners. In particular, Achilles/calf injuries, iliotibial band injury, meniscus injury, and muscle injuries to the hamstrings and quadriceps represent higher percentages of the overall injury mix in recent epidemiologic studies compared with earlier ones. Evidence suggests that running mileage and previous injury are important predictors of running injury. Evidence-based research now helps guide the treatment of iliotibial band, patellofemoral syndrome, and Achilles tendinopathy. The use of topical nitroglycerin in tendinopathy and orthotics for the treatment of patellofemoral syndrome has moderate to strong evidence. Thus, more current knowledge about the changing demographics of runners and the application of research to guide treatment and, eventually, prevent running injury offers hope that clinicians can help reduce the high morbidity associated with long-distance running.

  7. Corrida em piscina funda: limites e possibilidades para o alto desempenho Velocidad en piscina de profundidad: límites y posibilidades para un alto desempeño Deep water running: limits and possibilities for high performance

    Directory of Open Access Journals (Sweden)

    Leonardo Alexandre Peyré-Tartaruga

    2006-10-01

    Full Text Available O objetivo deste estudo foi analisar os limites e possibilidades da utilização da corrida em piscina funda no treinamento de corredores de rendimento. Além disso, são discutidas as respostas agudas submáximas, máximas e crônicas, do ponto de vista fisiológico e biomecânico entre a corrida em terra e em piscina funda. As respostas máximas de freqüência cardíaca e consumo de oxigênio são menores no exercício aquático do que na corrida terrestre. Dados experimentais sugerem o uso do treinamento de corrida em piscina funda para corredores de rendimento; contudo, essas evidências são limitadas para treinamentos de até 10 semanas.El objetivo de este estudio ha sido el de analizar los límites y posibilidades de la utilización de carreras de velocidad en piscina de profundidad durante el entrenamiento de velocista de rendimiento. Además de esto, son discutidas las respuestas agudas submáximas, máximas y crónicas, bajo el punto de vista fisiológico y biomecánico entre la carrera en tierra y en piscina profunda. Las respuestas máximas de frecuencia cardíaca y consumo de oxígeno son menores en el ejercicio acuático que en la de tierra. Datos experimentales sugieren el uso de entrenamiento de carrera en piscina profunda para velocistas de rendimiento, sin embargo estas evidencias son limitadas a entrenamientos de hasta 10 semanas.The purpose of this study was to analyze the limits and possibilities of deep water running on training of performance runners. Besides, it has been discussed the submaximal acute, maximal acute and chronical responses, following physiological and biomechanical aspects between running on land and deep water running. Heart rate and oxygen uptake's maximal responses are lower in aquatic exercise than in running on land. Experimental evidences suggest the deep water running training for performance athletes, but these studies are limited in training program until ten weeks.

  8. Arterial wave intensity and ventricular-arterial coupling by vascular ultrasound: rationale and methods for the automated analysis of forwards and backwards running waves.

    Science.gov (United States)

    Rakebrandt, F; Palombo, C; Swampillai, J; Schön, F; Donald, A; Kozàkovà, M; Kato, K; Fraser, A G

    2009-02-01

    Wave intensity (WI) in the circulation is estimated noninvasively as the product of instantaneous changes in pressure and velocity. We recorded diameter as a surrogate for pressure, and velocity in the right common carotid artery using an Aloka SSD-5500 ultrasound scanner. We developed automated software, applying the water hammer equation to obtain local wave speed from the slope of a pressure/velocity loop during early systole to separate net WI into individual forwards and backwards-running waves. A quality index was developed to test for noisy data. The timing, duration, peak amplitude and net energy of separated WI components were measured in healthy subjects with a wide age range. Age and arterial stiffness were independent predictors of local wave speed, whereas backwards-travelling waves correlated more strongly with ventricular systolic function than with age-related changes in arterial stiffness. Separated WI offers detailed insight into ventricular-arterial interactions that may be useful for assessing the relative contributions of ventricular and vascular function to wave travel.

  9. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution. Revision 3

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1994-06-01

    The purpose is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs (Ref. 7) and Quiet Time Runs Program (described in Section 3.6). The Filter/Stripper Test Runs and Quiet Time Runs program involves a 12,000 gallon feed tank containing an agitator, a 4,000 gallon flush tank, a variable speed pump, associated piping and controls, and equipment within both the Filter and the Stripper Building

  10. Run II jet physics: Proceedings of the Run II QCD and weak boson physics workshop

    International Nuclear Information System (INIS)

    Gerald C. Blazey

    2000-01-01

    The Run II jet physics group includes the Jet Algorithms, Jet Shape/Energy Flow, and Jet Measurements/Correlations subgroups. The main goal of the jet algorithm subgroup was to explore and define standard Run II jet finding procedures for CDF and D0. The focus of the jet shape/energy flow group was the study of jets as objects and the energy flows around these objects. The jet measurements/correlations subgroup discussed measurements at different beam energies; α S measurements; and LO, NLO, NNLO, and threshold jet calculations. As a practical matter the algorithm and shape/energy flow groups merged to concentrate on the development of Run II jet algorithms that are both free of theoretical and experimental difficulties and able to reproduce Run I measurements. Starting from a review of the experience gained during Run I, the group considered a variety of cone algorithms, and K T algorithms. The current understanding of both types of algorithms, including calibration issues, are discussed in this report along with some preliminary experimental results. The jet algorithms group recommends that CDF and D0 employ the same version of both a cone algorithm and a K T algorithm during Run II. Proposed versions of each type of algorithm are discussed. The group also recommends the use of full 4-vector kinematic variables whenever possible. The recommended algorithms attempt to minimize the impact of seeds in the case of the cone algorithm and preclustering in the case of the K T algorithm. Issues regarding precluster definitions and merge/split criteria require further study

  11. Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields

    Science.gov (United States)

    Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo

    The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

  12. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    Science.gov (United States)

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Long-Run Neutrality and Superneutrality in an ARIMA Framework.

    OpenAIRE

    Fisher, Mark E; Seater, John J

    1993-01-01

    The authors formalize long-run neutrality and long-run superneutrality in the context of a bivariate ARIMA model; show how the restrictions implied by long-run neutrality and long-run superneutrality depend on the orders of integration of the variables; apply their analysis to previous work, showing how that work is related to long-run neutrality and long-run superneutrality; and provide some new evidence on long-run neutrality and long-run superneutrality. Copyright 1993 by American Economic...

  14. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  15. From Concept to Realization: Designing Miniature Humanoids for Running

    Directory of Open Access Journals (Sweden)

    Youngbum Jun

    2010-02-01

    Full Text Available Humanoid robots present exciting research possibilities such as human gaits, social interaction, and even creativity. Full-size humanoid designs have shown impressive capabilities, yet are custom-built and expensive. Cost and sophistication barriers make reproducing and verifying results very difficult. The recent proliferation of mini-humanoids presents an affordable alternative, in that smaller robots are cheaper to own and simpler to operate. At less than 2000 USD, these robots are capable of human-like motion, yet lack precision sensors and processing power. The authors' goal is to produce a miniature humanoid robot that is both small and affordable, while capable of advanced dynamic walking and running. This requires sensing of the robot's inertia and velocity, the forces on its feet, and the ability to generate and modify motion commands in real time. The presented design uses commercial parts and simple machining methods to minimize cost. A power-efficient mobile x86 computer on-board leverages existing operating systems and simplifies software development. Preliminary results demonstrate controlled walking and feedback control.

  16. Running shoes and running injuries: mythbusting and a proposal for two new paradigms: 'preferred movement path' and 'comfort filter'.

    Science.gov (United States)

    Nigg, B M; Baltich, J; Hoerzer, S; Enders, H

    2015-10-01

    In the past 100 years, running shoes experienced dramatic changes. The question then arises whether or not running shoes (or sport shoes in general) influence the frequency of running injuries at all. This paper addresses five aspects related to running injuries and shoe selection, including (1) the changes in running injuries over the past 40 years, (2) the relationship between sport shoes, sport inserts and running injuries, (3) previously researched mechanisms of injury related to footwear and two new paradigms for injury prevention including (4) the 'preferred movement path' and (5) the 'comfort filter'. Specifically, the data regarding the relationship between impact characteristics and ankle pronation to the risk of developing a running-related injury is reviewed. Based on the lack of conclusive evidence for these two variables, which were once thought to be the prime predictors of running injuries, two new paradigms are suggested to elucidate the association between footwear and injury. These two paradigms, 'the preferred movement path' and 'the comfort filter', suggest that a runner intuitively selects a comfortable product using their own comfort filter that allows them to remain in the preferred movement path. This may automatically reduce the injury risk and may explain why there does not seem to be a secular trend in running injury rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. ROSA-III 100 % break integral test Run 914

    International Nuclear Information System (INIS)

    Yonomoto, Taisuke; Tasaka, Kanji; Koizumi, Yasuo; Anoda, Yoshinari; Kumamaru, Hiroshige; Nakamura, Hideo; Suzuki, Mitsuhiro; Murata, Hideo

    1987-05-01

    This report presents the experimental data of RUN 914 conducted at the ROSA-III test facility. The facility is a volumetrically scaled (1/424) simulator for a BWR/6 with the electrically heated core, the break simulator and the scaled ECCS (emergency core cooling system). RUN 914 was a 100% split break test at the recirculation pump suction line with an assumption of HPCS diesel generator failure and conducted as one of the break area parameter tests. A peak cladding temperature (PCT) of 851 K was reached at 130 s after the break during the reflooding phase. Whole core was completely quenched by ECCS, and the effectiveness of ECCS was confirmed. The primary test results of RUN 914 are compared in this report with those of RUN 926, which was a 200 % double-ended break test. The initiation of core dryout in RUN 914 was almost the same as that in RUN 926. Duration of core dryourt was, however, longer in RUN 914 because of later actuation of ECCSs. PCT in RUN 914 was 67 K higher than that in RUN 926. (author)

  18. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  19. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    Science.gov (United States)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications

  20. Effects of Submaximal Endurance Training and Vitamin D3 Supplementation on Pain Threshold in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    S. Jalal Taherabadi

    2013-07-01

    Full Text Available Background: According to beneficial effects of endurance training and vitamin D3 in diabetes mellitus, purpose of this study is effects submaximal endurance training and vitamin D3 supplementation on pain threshold in streptozotocin induced diabetic rats.Materials and Methods: Male Wistar rats (250±20 g, N=40 were made diabetic by streptozotocin (60 mg/kg, subcutaneously. 72 h after injection diabetes induction was confirmed by tail vein blood glucose concentration (>300 mg/dl. Then animals were divided to five groups: diabetic control (DC, diabetic trained (DT, diabetic -vitamin D (DD, diabetic trained and vitamin D (DTD, and control (C. Animals were submitted to endurance training by treadmill and vitamin D3 treatment (twice aweek, intrapretonally for 4 weeks. 48 h after at the end of exercise and treatment protocol, we used tail-flick to assess the effects of training and vitamin D3 on thermal pain threshold. We used one way ANOVA statistical analysis to compare differences between groups, significance level of p<0.05 was considered.Results: Diabetic induced hyperalgesia were decreased significantly by vitamin D but not 4 weeks endurance exercise training. Concurrent effects of training and vitamin D on thermal pain threshold were not significantly higher than vitamin D effects alone.Conclusion: It is concluded that vitamin D administration given at the time of diabetes induction may be able to restore thermal hyperalgesia. But effects of endurance exercise training needs to more investigation in diabetic rats.

  1. Preventing running injuries. Practical approach for family doctors.

    OpenAIRE

    Johnston, C. A. M.; Taunton, J. E.; Lloyd-Smith, D. R.; McKenzie, D. C.

    2003-01-01

    OBJECTIVE: To present a practical approach for preventing running injuries. QUALITY OF EVIDENCE: Much of the research on running injuries is in the form of expert opinion and comparison trials. Recent systematic reviews have summarized research in orthotics, stretching before running, and interventions to prevent soft tissue injuries. MAIN MESSAGE: The most common factors implicated in running injuries are errors in training methods, inappropriate training surfaces and running shoes, malalign...

  2. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, F.; Camp, J. B.; hide

    2016-01-01

    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M solar mass and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 alpha over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87 probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9-240 Gpc-3 yr-1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

  3. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    Directory of Open Access Journals (Sweden)

    2016-10-01

    Full Text Available The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M_{⊙} and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9–240  Gpc^{-3} yr^{-1}. These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.

  4. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  5. Determining dark matter properties with a XENONnT/LZ signal and LHC Run 3 monojet searches

    Science.gov (United States)

    Baum, Sebastian; Catena, Riccardo; Conrad, Jan; Freese, Katherine; Krauss, Martin B.

    2018-04-01

    We develop a method to forecast the outcome of the LHC Run 3 based on the hypothetical detection of O (100 ) signal events at XENONnT. Our method relies on a systematic classification of renormalizable single-mediator models for dark matter-quark interactions and is valid for dark matter candidates of spin less than or equal to one. Applying our method to simulated data, we find that at the end of the LHC Run 3 only two mutually exclusive scenarios would be compatible with the detection of O (100 ) signal events at XENONnT. In the first scenario, the energy distribution of the signal events is featureless, as for canonical spin-independent interactions. In this case, if a monojet signal is detected at the LHC, dark matter must have spin 1 /2 and interact with nucleons through a unique velocity-dependent operator. If a monojet signal is not detected, dark matter interacts with nucleons through canonical spin-independent interactions. In a second scenario, the spectral distribution of the signal events exhibits a bump at nonzero recoil energies. In this second case, a monojet signal can be detected at the LHC Run 3; dark matter must have spin 1 /2 and interact with nucleons through a unique momentum-dependent operator. We therefore conclude that the observation of O (100 ) signal events at XENONnT combined with the detection, or the lack of detection, of a monojet signal at the LHC Run 3 would significantly narrow the range of possible dark matter-nucleon interactions. As we argued above, it can also provide key information on the dark matter particle spin.

  6. Concurrent schedules of wheel-running reinforcement: choice between different durations of opportunity to run in rats.

    Science.gov (United States)

    Belke, Terry W

    2006-02-01

    How do animals choose between opportunities to run of different durations? Are longer durations preferred over shorter durations because they permit a greater number of revolutions? Are shorter durations preferred because they engender higher rates of running? Will longer durations be chosen because running is less constrained? The present study reports on three experiments that attempted to address these questions. In the first experiment, five male Wistar rats chose between 10-sec and 50-sec opportunities to run on modified concurrent variable-interval (VI) schedules. Across conditions, the durations associated with the alternatives were reversed. Response, time, and reinforcer proportions did not vary from indifference. In a second experiment, eight female Long-Evans rats chose between opportunities to run of equal (30 sec) and unequal durations (10 sec and 50 sec) on concurrent variable-ratio (VR) schedules. As in Experiment 1, between presentations of equal duration conditions, 10-sec and 50-sec durations were reversed. Results showed that response, time, and reinforcer proportions on an alternative did not vary with reinforcer duration. In a third experiment, using concurrent VR schedules, durations were systematically varied to decrease the shorter duration toward 0 sec. As the shorter duration decreased, response, time, and reinforcer proportions shifted toward the longer duration. In summary, differences in durations of opportunities to run did not affect choice behavior in a manner consistent with the assumption that a longer reinforcer is a larger reinforcer.

  7. Twisting the Dollar? On the Consistency of Short-Run and Long-Run Exchange Rate Expectations

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Rülke, Jan; Frenkel, Michael

    2012-01-01

    ’ in the dollar/euro expectation formation process, i.e. market participants expect bandwagon effects in the short run, while they have stabilizing expectations in their long-run forecasts. Applying a panel probit analysis we find that this twisting behavior is more likely to occur in periods of excess exchange...

  8. Interset stretching does not influence the kinematic profile of consecutive bench-press sets.

    Science.gov (United States)

    García-López, David; Izquierdo, Mikel; Rodríguez, Sergio; González-Calvo, Gustavo; Sainz, Nuria; Abadía, Olaia; Herrero, Azael J

    2010-05-01

    This study was undertaken to examine the role of interset stretching on the time course of acceleration portion AP and mean velocity profile during the concentric phase of 2 bench-press sets with a submaximal load (60% of the 1 repetition maximum). Twenty-five college students carried out, in 3 different days, 2 consecutive bench-press sets leading to failure, performing between sets static stretching, ballistic stretching, or no stretching. Acceleration portion and lifting velocity patterns of the concentric phase were not altered during the second set, regardless of the stretching treatment performed. However, when velocity was expressed in absolute terms, static stretching reduced significantly (p velocity during the second set compared to the first one. Therefore, if maintenance of a high absolute velocity over consecutive sets is important for training-related adaptations, static stretching should be avoided or replaced by ballistic stretching.

  9. THE LONG-RUN AND SHORT-RUN EFFECTS OF CRUDE OIL PRICE ON METHANOL MARKET IN IRAN

    Directory of Open Access Journals (Sweden)

    Akbar Komijani

    2013-01-01

    Full Text Available Substituting crude oil exports with value-added petrochemical products is one of the main strategies for policy makers in oil-driven economies to isolating the real sectors of economy from oil price volatility. This policy inclination has led to a body of literature in energy economics in recent decades. As a case study, this paper investigates the short-run and long-run relationship between Iran’s oil price and methanol price which is one of the most important non-oil exports of the oil-exporting country. To do so, the weekly data from 18 Jan. 2009 to 18 Sep. 2011 in a VECM framework is applied. The results show that in the long-run, oil price hikes leads to proportional increase in methanol price while in the short-run, this impact is not significant.

  10. CMB constraints on running non-Gaussianity

    OpenAIRE

    Oppizzi, Filippo; Liguori, Michele; Renzi, Alessandro; Arroja, Frederico; Bartolo, Nicola

    2017-01-01

    We develop a complete set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation. We validate our pipeline using mock CMB running non-Gaussianity realizations and test it on real data by obtaining experimental constraints on the $f_{\\rm NL}$ running spectral index, $n_{\\rm NG}$, using WMAP 9-year data. Our final bounds (68\\% C.L.) read $-0.3< n_{\\rm NG}

  11. Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA during treadmill running: Pre/post 2 treatment experimental design

    Directory of Open Access Journals (Sweden)

    Misic Mark

    2010-05-01

    Full Text Available Abstract Background β-Alanine (βA has been shown to improve performance during cycling. This study was the first to examine the effects of βA supplementation on the onset of blood lactate accumulation (OBLA during incremental treadmill running. Methods Seventeen recreationally-active men (mean ± SE 24.9 ± 4.7 yrs, 180.6 ± 8.9 cm, 79.25 ± 9.0 kg participated in this randomized, double-blind, placebo-controlled pre/post test 2-treatment experimental design. Subjects participated in two incremental treadmill tests before and after 28 days of supplementation with either βA (6.0 g·d-1(βA, n = 8 or an equivalent dose of Maltodextrin as the Placebo (PL, n = 9. Heart rate, percent heart rate maximum (%HRmax, %VO2max@OBLA (4.0 mmol.L-1 blood lactate concentration and VO2max (L.min-1 were determined for each treadmill test. Friedman test was used to determine within group differences; and Mann-Whitney was used to determine between group differences for pre and post values (p Results The βA group experienced a significant rightward shift in HR@OBLA beats.min-1 (p 2max@OBLA increased (p 2max (L.min-1 decreased (p Conclusions βA supplementation for 28 days enhanced sub-maximal endurance performance by delaying OBLA. However, βA supplemented individuals had a reduced aerobic capacity as evidenced by the decrease in VO2max values post supplementation.

  12. Wave Run-Up on Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez

    to the cylinder. Based on appropriate analysis the collected data has been analysed with the stream function theory to obtain the relevant parameters for the use of the predicted wave run-up formula. An analytical approach has been pursued and solved for individual waves. Maximum run-up and 2% run-up were studied......This study has investigated the interaction of water waves with a circular structure known as wave run-up phenomenon. This run-up phenomenon has been simulated by the use of computational fluid dynamic models. The numerical model (NS3) used in this study has been verified rigorously against...... a number of cases. Regular and freak waves have been generated in a numerical wave tank with agentle slope in order to address the study of the wave run-up on a circular cylinder. From the computational side it can be said that it is inexpensive. Furthermore, the comparison of the current numerical model...

  13. Wave Run-Up on Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez

    to the cylinder. Based on appropriate analysis the collected data has been analysed with the stream function theory to obtain the relevant parameters for the use of the predicted wave run-up formula. An analytical approach has been pursued and solved for individual waves. Maximum run-up and 2% run-up were studied......This study has investigated the interaction of water waves with a circular structure known as wave run-up phenomenon. This run-up phenomenon has been simulated by the use of computational fluid dynamic models. The numerical model (NS3) used in this study has been verified rigorously against...... a number of cases. Regular and freak waves have been generated in a numerical wave tank with a gentle slope in order to address the study of the wave run-up on a circular cylinder. From the computational side it can be said that it is inexpensive. Furthermore, the comparison of the current numerical model...

  14. The need for speed: escape velocity and dynamical mass measurements of the Andromeda galaxy

    Science.gov (United States)

    Kafle, Prajwal R.; Sharma, Sanjib; Lewis, Geraint F.; Robotham, Aaron S. G.; Driver, Simon P.

    2018-04-01

    Our nearest large cosmological neighbour, the Andromeda galaxy (M31), is a dynamical system, and an accurate measurement of its total mass is central to our understanding of its assembly history, the life-cycles of its satellite galaxies, and its role in shaping the Local Group environment. Here, we apply a novel approach to determine the dynamical mass of M31 using high-velocity Planetary Nebulae, establishing a hierarchical Bayesian model united with a scheme to capture potential outliers and marginalize over tracers unknown distances. With this, we derive the escape velocity run of M31 as a function of galactocentric distance, with both parametric and non-parametric approaches. We determine the escape velocity of M31 to be 470 ± 40 km s-1 at a galactocentric distance of 15 kpc, and also, derive the total potential of M31, estimating the virial mass and radius of the galaxy to be 0.8 ± 0.1 × 1012 M⊙ and 240 ± 10 kpc, respectively. Our M31 mass is on the low side of the measured range, this supports the lower expected mass of the M31-Milky Way system from the timing and momentum arguments, satisfying the H I constraint on circular velocity between 10 ≲ R/ kpc < 35, and agreeing with the stellar mass Tully-Fisher relation. To place these results in a broader context, we compare them to the key predictions of the ΛCDM cosmological paradigm, including the stellar-mass-halo-mass and the dark matter halo concentration-virial mass correlation, and finding it to be an outlier to this relation.

  15. Technical Note: Drifting vs. anchored flux chambers for measuring greenhouse gas emissions from running waters

    Science.gov (United States)

    Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.

    2015-09-01

    Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.

  16. Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters

    Science.gov (United States)

    Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai-Haase, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.

    2015-12-01

    Stream networks have recently been discovered to be major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross-comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams with different flow velocities. The study clearly shows that (1) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (2) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil collar to seal the chambers to the water surface, rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.

  17. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    Science.gov (United States)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  18. The CMS trigger in Run 2

    CERN Document Server

    Tosi, Mia

    2018-01-01

    During its second period of operation (Run 2) which started in 2015, the LHC will reach a peak instantaneous luminosity of approximately 2$\\times 10^{34}$~cm$^{-2}s^{-1}$ with an average pile-up of about 55, far larger than the design value. Under these conditions, the online event selection is a very challenging task. In CMS, it is realised by a two-level trigger system: the Level-1 (L1) Trigger, implemented in custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the offline reconstruction software running on a computer farm.\\\\ In order to face this challenge, the L1 trigger has undergone a major upgrade compared to Run 1, whereby all electronic boards of the system have been replaced, allowing more sophisticated algorithms to be run online. Its last stage, the global trigger, is now able to perform complex selections and to compute high-level quantities, like invariant masses. Likewise, the algorithms that run in the HLT went through big improvements; in particular, new ap...

  19. ROSA-III 50 % break integral test RUN 916

    International Nuclear Information System (INIS)

    Yonomoto, Taisuke; Tasaka, Kanji; Koizumi, Yasuo; Anoda, Yoshinari; Kumamaru, Hiroshige; Nakamura, Hideo; Suzuki, Mitsuhiro; Murata, Hideo

    1985-08-01

    This report presents the experimental data of RUN 916 conducted at the ROSA-III test facility. The facility is a volumetrically scaled (1/424) simulator for a BWR/6 with the electrically heated core, the break simulator and the scaled ECCS(emergency core cooling system). RUN 916 was a 50 % split break test at the recirculation pump suction line with an assumption of HPCS diegel generator failure and conducted as one of the break area parameter tests. A peak cladding temperature (PCT) of 917 K was reached at 190 s after the break during the reflooding phase. Whole core was completely quenched by ECCS, and the effectiveness of ECCS was confermed. The primary test results of RUN 916 are compared in this report with those of RUN 926, which was a 200 % double-ended break test. The initiation of core dryout in RUN 916 was later than that in RUN 926 because of the smaller discharge flow rate. Duration of core dryourt was, however, longer in RUN 916 because of later actuation of ECCSs. PCT in RUN 916 was 133 K higher than that in RUN 926. (author)

  20. Comparison of sport-specific and non-specific exercise testing in inline speed skating.

    Science.gov (United States)

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Gutmann, Boris; Hollmann, Wildor; Struder, Heiko K

    2016-04-01

    The most effective way to measure exercise performance in inline speed skating (ISS) has yet to be established. Generally most athletes are examined by means of traditional but unspecific cycling (CYC) or running (RUN) testing. The present study investigates whether a sport-specific incremental test in ISS reveals different results. Eight male top level inline speed skaters (age: 30±4 years; 65.4±6.3 mL∙kg-1∙min-1, training: 12-14 h/week) performed three incremental exhaustive tests in a randomized order (ergometer CYC, field RUN, field ISS). During the tests, heart rate (HR), oxygen uptake (V̇O2, energy expenditure (EE) and blood lactate concentration (BLC) were measured. Analysis of variance revealed no significant differences for peak HR (187±9, 191±9, 190±9; P=0.75), BLC (10.9±2.3, 10.8±2.4, 8.5±3.2; P=0.25), V̇O2 (65.4±6.3, 66.8±3.5, 66.4±6.5; P=0.91) and EE (1371±165, 1335±93, 1439±196; P=0.51) between ISS and CYC or RUN test. Similar results appeared for HR and V̇O2 at submaximal intensities (2 and 4 mmol·L-1 BLC; P≥0.05). Small to moderate effect sizes 0.3-0.87 and considerable variability of differences between the exercise modes (mean bias range between 1% and 17% with 95% limits of agreement between 3% and 33%) among submaximal and maximal results limit the comparability of the three tests. Consequently, CYC and RUN tests may be considered as qualified alternatives for a challenging ISS test. However a sport-specific test should be conducted in cases of doubt, or when precision is required (e.g. for elite athletes or scientific studies).