WorldWideScience

Sample records for submarine canyon revealed

  1. Submarine canyons off Madras Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Submarine canyons off the coast of Madras, Tamil Nadu, India were studied during cruise of @iINS Kistna@@ as part of the IIOE programme They consist of hill-like projections and V-shaped valleys Their other features are also reported...

  2. Europe’s Grand Canyon: Nazaré submarine canyon

    OpenAIRE

    Tyler, P.; Amaro, T.; Arzola, R.; Cunha; Stigter, H. de; Gooday, A.; Huvenne, V.; Ingels, J; Kiriakoulakis, K; Lastras, G.; Masson, D.; Oliveira, A.; Pattenden, A.; Vanreusel, A.; van Weering, T.

    2009-01-01

    The Nazare submarine canyon extends similar to 210 km westward from the coast of Portugal, down to a water depth of > 4300 m. The considerable habitat heterogeneity found throughout the canyon is affected by strong currents and high turbidity, especially in the upper parts of the canyon. The canyon morphology comprises steep slopes, scarps, terraces, and overhangs, and a deeply incised thalweg is found in the lower part of the canyon. The seabed within the canyon is composed of varying propor...

  3. ROV Tiburon Investigation of Hawaiian Submarine Canyons

    Science.gov (United States)

    Paull, C. K.; Greene, H. G.; Caress, D. W.; Clague, D. A.; Ussler, W.; Maher, N. M.

    2001-12-01

    MBARI conducted ROV dives around the Hawaiian Islands during an expedition of the R/V Western Flyer and Tiburon in the spring of 2001. Eight ROV dives were made to investigate five major submarine canyons offshore of Oahu, Molokai, and Hawaii in up to 3,434 m water depths. Four of these canyons are located off the windward (northern) side of these islands where onshore canyons are also well developed. Those canyons located offshore of Molokai and Oahu incise the head scars of the giant Nuuanu and Wailai submarine landslides. ROV observations and sediment and rock outcrop sampling were made in these canyons to determine their origin and present-day activity. The fifth canyon investigated is located on the leeward (southern) side of Molokai. The canyons along the windward side expose extensive stratigraphic sections that reveal the history of the islands' formation. In composite, these sections contain marine pillow basalt overlain by a substantial sequence of alternating subaerial lava flows, rounded boulder conglomerates, shallow water carbonates, and hyaloclastites that indicate coastal and marine deposition. These sequences illustrate the accretion and subsequent subsidence of the islands' flanks. These canyons also have morphologically distinct upper and lower sections. The upper reaches of the canyons are incised into the shallow water marine facies and contain broad axial channels through which active sediment transport is occurring. In contrast, the morphology of the lower canyons are strongly influenced by the giant landslides that massively altered the northern flanks of the Hawaiian chain. The lower canyons contain plunge pools and steep headwall scarps that are generally comprised of mechanically competent subaerial lava flows. The presence of multiple plunge pools with differentially eroded head scarps suggests retrogressive erosion (bottom-up process) with headward advancement of the various heads. Undercutting of the headwalls also produce periodic

  4. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

    Directory of Open Access Journals (Sweden)

    Veerle A I Huvenne

    Full Text Available Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.

  5. Geomorphic process fingerprints in submarine canyons

    Science.gov (United States)

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  6. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    Science.gov (United States)

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  7. Flow dynamics around downwelling submarine canyons

    Directory of Open Access Journals (Sweden)

    J. M. Spurgin

    2014-10-01

    Full Text Available Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively and their impacts on flow dynamics. A new non-dimensional parameter (χ was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m. Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate, as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  8. Submarine canyons off the Coromandel coast

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Nair, R.R.; Murty, P.S.N.

    During the 26th Cruise of I.N.S. `KISTNA', a bathymetric survey was carried out in some detail off the Pondicherry coast. This survey has revealed the existence of three sets of distinctly separate canyons between Cuddalore and Palar River...

  9. ASSESSING LANDSLIDE-TSUNAMI HAZARD IN SUBMARINE CANYONS, USING THE COOK STRAIT CANYON SYSTEM AS AN EXAMPLE

    Directory of Open Access Journals (Sweden)

    William Power

    2016-11-01

    Full Text Available Tsunami generated by submarine landslides are now recognised as an important hazard, following several historical events. Submarine landslides can occur in a variety of settings such as on continental slopes, volcanic slopes, and submerged canyons and fjords. While significant progress has been made in understanding tsunami generation processes on open slopes, the problem of tsunami generation by landslides within submarine canyons has received less attention. In this paper we examine the tsunami hazard posed by submarine landslides in the Cook Strait canyon system, near Wellington, New Zealand. Understanding of the hazard posed by this tsunami source has practical value because of its proximity to a populated coast. Our studies also provide general results highlighting the differences between tsunami generation on open coasts and tsunami generation within canyons. Geotechnical and geological studies of the Cook Strait region reveal evidence for many large landslide scars in the canyon walls, these are interpreted to be failures of consolidated material which descend the slopes on the sides of the canyon. Scouring of the base of the canyon slopes by strong tidal currents is believed to be an important process in bringing slopes to the point of failure, with most large failures expected to occur during earthquake shaking. We present the results of computer simulations of landslide failures using simplified canyon geometries represented in either 2D (vertical slice or 3D. These simulations were made using Gerris, an adaptive-grid fluid dynamics solver. A key finding is that the sudden deceleration of the landslide material after reaching the canyon floor, leads to larger amplitude waves in the back-propagation direction (i.e. in the opposite direction to the initial landslide motion.

  10. Westward advance of the deformation front and evolution of submarine canyons offshore of southwestern Taiwan

    Science.gov (United States)

    Han, Wei-Chung; Liu, Char-Shine; Chi, Wu-Cheng; Chen, Liwen; Lin, Che-Chuan; Chen, Song-Chuen

    2017-11-01

    This study analyzes both 2D and 3D seismic images around the Palm Ridge area offshore of southwestern Taiwan to understand how the deformation front shifted westward and how tectonic activities interact with submarine canyon paths in the transition area between the active and passive margins. Palm Ridge is a submarine ridge that developed on the passive China continental margin by down-dip erosion of several tributaries of Penghu Canyon; it extends eastward across the deformation front into the submarine Taiwan accretionary wedge. The presence of proto-thrusts that are located west of the frontal thrust implies that the compressional stress field has advanced westward due to the convergence of the Philippine Sea Plate and Eurasian Plate. Since the deformation front is defined as the location of the most frontal contractional structure, no significant contractional structure should appear west of it. We thus suggest moving the location of the previously mapped deformation front farther west to where the westernmost proto-thrust lies. High-resolution seismic and bathymetric data reveal that the directions of the paleo-submarine canyons run transverse to the present slope dip, while the present submarine canyons head down slope in the study area. We propose that this might be the result of the westward migration of the deformation front that changed the paleo-bathymetry and thus the canyon path directions. The interactions of down-slope processes and active tectonics control the canyon paths in our study area.

  11. Anatomy of La Jolla submarine canyon system; offshore southern California

    Science.gov (United States)

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  12. Sedimentary characteristics of samples collected from some submarine canyons

    NARCIS (Netherlands)

    Bouma, Arnold H.

    Oriented rectangular cores of 20.3 × 30.5 cm and 45.7 cm high have been collected in a number of submarine canyons off southern California (U.S.A.) and off the southern tip of Baja California (Mexico) for a detailed study of their sedimentary structures. By applying several methods, mainly X-ray

  13. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  14. Focused sound from three-dimensional sound propagation effects over a submarine canyon.

    Science.gov (United States)

    Chiu, Linus Y S; Lin, Ying-Tsong; Chen, Chi-Fang; Duda, Timothy F; Calder, Brian

    2011-06-01

    Ship noise data reveal an intensification of the near-surface sound field over a submarine canyon. Numerical modeling of sound propagation is used to study the effect. The noise data were collected during an ocean acoustic and physical oceanography experiment northeast of Taiwan in 2009. In situ measurements of water sound-speed profiles and a database of high-resolution bathymetry are used in the modeling study. The model results suggest that the intensification is caused by three-dimensional sound focusing by the concave canyon seafloor. Uncertainties in the model results from unsampled aspects of the environment are discussed. © 2011 Acoustical Society of America

  15. Marine litter in submarine canyons of the Bay of Biscay

    Science.gov (United States)

    van den Beld, Inge M. J.; Guillaumont, Brigitte; Menot, Lénaïck; Bayle, Christophe; Arnaud-Haond, Sophie; Bourillet, Jean-François

    2017-11-01

    Marine litter is a matter of increasing concern worldwide, from shallow seas to the open ocean and from beaches to the deep-seafloor. Indeed, the deep sea may be the ultimate repository of a large proportion of litter in the ocean. We used footage acquired with a Remotely Operated Vehicle (ROV) and a towed camera to investigate the distribution and composition of litter in the submarine canyons of the Bay of Biscay. This bay contains many submarine canyons housing Vulnerable Marine Ecosystems (VMEs) such as scleractinian coral habitats. VMEs are considered to be important for fish and they increase the local biodiversity. The objectives of the study were to investigate and discuss: (i) litter density, (ii) the principal sources of litter, (iii) the influence of environmental factors on the distribution of litter, and (iv) the impact of litter on benthic communities. Litter was found in all 15 canyons and at three sites on the edge of the continental shelf/canyon, in 25 of 29 dives. The Belle-île and Arcachon Canyons contained the largest amounts of litter, up to 12.6 and 9.5 items per 100 images respectively. Plastic items were the most abundant (42%), followed by fishing-related items (16%). The litter had both a maritime and a terrestrial origin. The main sources could be linked to fishing activities, major shipping lanes and river discharges. Litter appeared to accumulate at water depths of 801-1100 m and 1401-1700 m. In the deeper of these two depth ranges, litter accumulated on a geologically structured area, accounting for its high frequency at this depth. A larger number of images taken in areas of coral in the shallower of these two depth ranges may account for the high frequency of litter detection at this depth. A larger number of litter items, including plastic objects in particular, were observed on geological structures and in coral areas than on areas of bare substratum. The distribution of fishing-related items was similar for the various types of

  16. Composition, Distribution and Abundance of Anthropogenic Marine Debris in Northwest Atlantic Submarine Canyons

    Science.gov (United States)

    Heyl, T. P.; Nizinski, M. S.; Kinlan, B. P.; Shank, T. M.

    2016-02-01

    Submarine canyons are important productive habitats in the deep-sea, as well as downslope conduits for transporting sediment and organic material that enhances local and regional species diversity, including species and ecosystems vulnerable to anthropogenic activities. In 2012 and 2013, we documented and characterized deep-sea coral and sponge ecosystems in virtually unexplored northeast and mid-Atlantic canyons using WHOI's TowCam towed imaging system on the FSV Bigelow. Specifically, thirty-eight digital image TowCam surveys were completed in 10 canyons, with more than 91,000 images documenting not only deep-sea coral and sponge ecosystems and habitat features, but also anthropogenic debris. Canyons surveyed cover most of the latitudinal range of the northeast US region and include Toms Canyon complex, Ryan, Veatch, Gilbert, Powell, and Munson canyons. Each of these canyon hosted debris across depths of 550 to 2100m, consisting mostly of fisheries equipment, including fishing lines, traps, and nets. Potentially-land-based debris (e.g., plastic bags and magazines) was also present in all canyons surveyed. These substrates likely enhance colonization and often served as habitat for specific sessile and mobile species. Comparisons of debris in these canyons revealed depth-related differences, likely due to offshore extent of fishing activities, and will be compared to density and abundances of other deep-sea environments. The occurrence of anthropogenic debris on Northeast US canyon floors suggests major sources via transport ship and fishing-related activities and perhaps the rapid transport of debris through near-shore zones and entrainment in bottom currents.

  17. A reflecting, steepening, and breaking internal tide in a submarine canyon

    Science.gov (United States)

    Alberty, M. S.; Billheimer, S.; Hamann, M. M.; Ou, C. Y.; Tamsitt, V.; Lucas, A. J.; Alford, M. H.

    2017-08-01

    Submarine canyons are common features of the coastal ocean. Although they are known to be hotspots of turbulence that enhance diapycnal transport in their stratified waters, the dynamics of canyon mixing processes are poorly understood. Most studies of internal wave dynamics within canyons have focused on a handful of canyons with along-axis slopes less steep than semidiurnal (D2) internal wave characteristics (subcritical). Here, we present the first tidally resolving observations within a canyon with a steeply sloping axis (supercritical). A process study consisting of two 24 h shipboard stations and a profiling mooring was conducted in the La Jolla Canyon off the coast of La Jolla, CA. Baroclinic energy flux is oriented up-canyon and decreases from 182 ±18 W m-1 at the canyon mouth to 46±5 W m-1 near the head. The ratio of horizontal kinetic energy to available potential energy and the observed group speed of each mode are lower than expected for freely propagating D2 internal waves at each station, indicating partial reflection. Harmonic analysis reveals that variance is dominated by the D2 tide. Moving up-canyon, the relative importance of D2 decreases and its higher harmonics are needed to account for a majority of the observed variance, indicating steepening. Steep internal tides cause large isopycnal displacements (˜50 m in 100 m water depth) and high strain events. These events coincide with enhanced O(10-7-10-5 m2 s-3) dissipation of turbulent kinetic energy at mid-depths.

  18. Geo-hazard by sediment mass movements in submarine canyons

    Science.gov (United States)

    Ghaith, Afif; Fakhri, Milad; Ivaldi, Roberta; Ciavola, Paolo

    2017-04-01

    Submarine mass movements and their consequences are of major concern for coastal communities and infrastructures but also for the exploitation and the development of seafloor resources. Elevated awareness of the need for better understanding of the underwater mass movement is coupled with great advances in underwater mapping technologies over the past two decades. The seafloor in the Nahr Ibrahim and Saida regions (Lebanon) is characterized by deep canyons, reaching one thousand meters depths in proximity of the coast. Signs of submarine mass movement instability related to these canyons create a connection between shallow and deep water. The presence of these canyons in a tectonically active area generates a particular drained mechanism to the sediment in form of mass movement and slumping. Identification of potential areas where slope movements could be triggered requires data with high spatial resolution. Since this area is poorly explored, in the framework of an international project between Lebanese Navy, Lebanese National Center for Marine Sciences, University of Ferrara and Italian Hydrographic Institute, we analyse the morpho-bathymetric and sedimentological characters of the coastal and shelf sectors. Multibeam echosounder and sub-bottom profiler acoustic systems calibrated with ground truths (sediment grab and core samples) allow us to characterize the nature of seafloor and sub-seafloor with particular detail to the geotechnical properties of sediments and high resolution seismic stratigraphy of the shallow layers. The detection of particular undersea features provides detail maps which are in support to littoral morpho-dynamics, coastal transport and sediment budget. Multilayer hydro-oceanographic map, referring to the seafloor dynamics in connection with deep water environment and drainage system, in accordance to the International Hydrographic Standards and nautical supports, are produced. This high resolution multibeam bathymetry dataset, integrated

  19. Tectonic controls on nearshore sediment accumulation and submarine canyon morphology offshore La Jolla, Southern California

    Science.gov (United States)

    Le Dantec, Nicolas; Hogarth, Leah J.; Driscoll, Neal W.; Babcock, Jeffrey M.; Barnhardt, Walter A.; Schwab, William C.

    2010-01-01

    CHIRP seismic and swath bathymetry data acquired offshore La Jolla, California provide an unprecedented three-dimensional view of the La Jolla and Scripps submarine canyons. Shore-parallel patterns of tectonic deformation appear to control nearshore sediment thickness and distribution around the canyons. These shore-parallel patterns allow the impact of local tectonic deformation to be separated from the influence of eustatic sea-level fluctuations. Based on stratal geometry and acoustic character, we identify a prominent angular unconformity inferred to be the transgressive surface and three sedimentary sequences: an acoustically laminated estuarine unit deposited during early transgression, an infilling or “healing-phase” unit formed during the transgression, and an upper transparent unit. Beneath the transgressive surface, steeply dipping reflectors with several dip reversals record faulting and folding along the La Jolla margin. Scripps Canyon is located at the crest of an antiform, where the rocks are fractured and more susceptible to erosion. La Jolla Canyon is located along the northern strand of the Rose Canyon Fault Zone, which separates Cretaceous lithified rocks to the south from poorly cemented Eocene sands and gravels to the north. Isopach and structure contour maps of the three sedimentary units reveal how their thicknesses and spatial distributions relate to regional tectonic deformation. For example, the estuarine unit is predominantly deposited along the edges of the canyons in paleotopographic lows that may have been inlets along barrier beaches during the Holocene sea-level rise. The distribution of the infilling unit is controlled by pre-existing relief that records tectonic deformation and erosional processes. The thickness and distribution of the upper transparent unit are controlled by long-wavelength, tectonically induced relief on the transgressive surface and hydrodynamics.

  20. Sediment community responses to marine vs. terrigenous organic matter in a submarine canyon

    OpenAIRE

    Hunter, W. R.; Jamieson, A; Huvenne, V. A. I.; Witte, U

    2013-01-01

    The Whittard Canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard Canyon, testing short-term (3–7 days) responses of sediment communities to deposition of nitrogen-rich marine (Thalassiosira weissflogii) and ni...

  1. Deep macrobenthic communities from Nazaré Submarine Canyon (NW Portugal

    Directory of Open Access Journals (Sweden)

    J. Cúrdia

    2004-04-01

    Full Text Available Macrofauna community structure within Nazaré Submarine Canyon is analysed and used to assess the potential effects of natural enrichment in this area subjected to accumulation of coastal sediments. A transect including three stations (2894, 3514 and 4141 m was carried out in the Nazaré Submarine Canyon (NW Portugal during a cruise of OMEX II programme (Ocean Margin Exchange, in the winter season of 1999. Although data was not collected in order to calculate sedimentation rates, sampling station at 2894 m is located in an area characterised by high levels of sedimentation, thus a high amount of organic matter is expected to be available for the local communities. Faunistic data are discussed in the context of the different features of the stations sampled. Multivariate analysis clearly separates the shallowest station from the other ones, which otherwise appear to be very similar. It also revealed a perceptible gradient along sediment depth at all stations, from shallow to deeper layers. Exceptionally depressed species richness and low evenness values were observed at the 2894 m station. The high number of individuals of a single species, Cossura sp. A, and the atypical diversity, dominance and evenness values obtained for this station support the hypothesis of community disturbance due to organic enrichment.

  2. Food-web dynamics and isotopic niches in deep-sea communities residing in a submarine canyon and on the adjacent open slopes

    Science.gov (United States)

    Demopoulos, Amanda W.J.; McClain-Counts, Jennifer; Ross, Steve W.; Brooke, Sandra; Mienis, Furu

    2017-01-01

    Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension feeders, consistent with consuming older, more refractory organic matter. In contrast, canyon suspension feeders had the largest and more distinct isotopic niche, indicating they consume an isotopically discrete food source, possibly fresher organic material. The wider isotopic niche observed for canyon consumers indicated the presence of feeding specialists and generalists. High dispersion in δ13C values for canyon consumers suggests that the isotopic composition of particulate organic matter changes, which is linked to depositional dynamics, resulting in discrete zones of organic matter accumulation or resuspension. Heterogeneity in habitat and food availability likely enhances trophic diversity in canyons. Given their abundance in the world's oceans, our results from Baltimore Canyon suggest that submarine canyons may represent important havens for trophic diversity.

  3. Analysis of Submarine Landslides and Canyons along the U.S. Atlantic Margin Using Extended Continental Shelf Mapping Data

    Science.gov (United States)

    Chaytor, J. D.; Brothers, D. S.; Ten Brink, U. S.; Hoy, S. K.; Baxter, C.; Andrews, B.

    2013-12-01

    U.S. Geological Survey (USGS) studies of the U.S. Atlantic continental slope and rise aim to understand the: 1) the role of submarine landslides in tsunami generation, and 2) the linkages between margin morphology and sedimentary processes, particularly in and around submarine canyon systems. Data from U.S. Extended Continental Shelf (ECS) and numerous subsequent mapping surveys have facilitated the identification and characterization of submarine landslides and related features in fine detail over an unprecedented spatial extent. Ongoing analysis of USGS collected piston cores, sub-bottom and multichannel seismic (MCS) reflection profiles, and an extensive suite of legacy MCS data from two landslides, the Southern New England landslide zone and the Currituck Landslide, suggest that the most recent major landslide events are pre-Holocene, but that failures were complex and most likely multi-phase, at times resulting in extensive overlapping debris deposits. Piston core records plus visual observations of the seafloor from recent TowCam deployments and NOAA Ship Okeanos Explorer ROV dives reveal ongoing development of colluvial wedge-style debris aprons at the base of scarps within these landslides, showing that these regions continue to evolve long after the initial failure events. Multibeam bathymetry data and MCS profiles along the upper slope reveal evidence for vertical fluid migration and possible seabed gas expulsion. These observations underscore the need to reevaluate the sources of pore fluid overpressure in slope sediments and their role in landslide generation. ECS and more recent multibeam mapping have provided the opportunity to investigate the full extent of submarine canyon morphology and evolution from Cape Hatteras up to the US-Canadian EEZ, which has led to better understanding of the important role of antecedent margin physiography on their development. Six submarine canyon systems along the margin (Veatch, Hydrographer, Hudson, Wilmington

  4. Geomorphology and sediment processes on the continental shelf and the submarine Akhziv canyon offshore north Galilee, eastern Mediterranean.

    Science.gov (United States)

    Ashqar, Lana; Bookman, Revital; Almogi-Labin, Ahuva; Ben-Avraham, Zvi

    2013-04-01

    The northern continental shelf of Israel is relatively steep and incised by submarine canyons. The Akhziv canyon is the largest and most developed and the southernmost in a series of canyons that formed off-shore Lebanon up to Beirut. The canyon is incised into the continental shelf 3 km from the northwestern Galilee coast to a depth of 1200 m. This study aims to understand processes responsible for the canyon morphology and the nature of sediment transport and accumulation mechanisms in the continental shelf and down the canyon to the deep sea. Moreover, the geological section in which the canyon is incised to, and the connection to the western Galilee fault system that transverse the continental shelf is explored for the regional perspective. Akhziv canyon consists of two main channels incised in cross-section V-shape at the upper part of the canyon that connect at 700m depth to produce a U-shaped main channel. The canyon's channels orientation implies a possible connection with the region's fault system. The high-resolution bathymetric map (the National Bathymetry Project) was used for the geomorphologic and morphometric analysis to define the connection between the canyon and the north- western Galilee streams that flow in a main east-west direction, parallel to the terrestrial fault system. Gaps in the submarine aeolian calcarenite ridge on the shallow shelf represent the continuation of terrestrial streams westward during low glacial sea level. Alluvial fans, mapped at 40m water depth, testify for sediment transport from land to the continental shelf toward the canyon head. Shallow high-resolution seismic lines (Sparker) were carried out along the continental shelf and canyon head to reveal the sub-surface structure. The seismic interpretation indicates the presence of channel incisions at depths of 10-15 m under the seafloor, with infill of young sediments which represents phases of deposition and erosion along the continental shelf. In addition, Piston

  5. Submarine canyons as coral and sponge habitat on the eastern Bering Sea slope

    Directory of Open Access Journals (Sweden)

    Robert J. Miller

    2015-07-01

    Full Text Available Submarine canyons have been shown to positively influence pelagic and benthic biodiversity and ecosystem function. In the eastern Bering Sea, several immense canyons lie under the highly productive “green belt” along the continental slope. Two of these, Pribilof and Zhemchug canyons, are the focus of current conservation interest. We used a maximum entropy modeling approach to evaluate the importance of these two canyons, as well as canyons in general, as habitat for gorgonian (alcyonacean corals, pennatulacean corals, and sponges, in an area comprising most of the eastern Bering Sea slope and outer shelf. These invertebrates create physical structure that is a preferred habitat for many mobile species, including commercially important fish and invertebrates. We show that Pribilof canyon is a hotspot of structure-forming invertebrate habitat, containing over 50% of estimated high-quality gorgonian habitat and 45% of sponge habitat, despite making up only 1.7% of the total study area. The amount of quality habitat for gorgonians and sponges varied in other canyons, but canyons overall contained more high-quality habitat for structure-forming invertebrates compared to other slope areas. Bottom trawling effort was not well correlated with habitat quality for structure-forming invertebrates, and bottom-contact fishing effort in general, including longlining and trawling, was not particularly concentrated in the canyons examined. These results suggest that if conserving gorgonian coral habitat is a management goal, canyons, particularly Pribilof Canyon, may be a prime location to do this without excessive impact on fisheries.

  6. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    Science.gov (United States)

    Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.

    2017-08-01

    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.

  7. Gas Hydrate Formation Amid Submarine Canyon Incision: Investigations From New Zealand's Hikurangi Subduction Margin

    Science.gov (United States)

    Crutchley, G. J.; Kroeger, K. F.; Pecher, I. A.; Mountjoy, J. J.; Gorman, A. R.

    2017-12-01

    We investigate gas hydrate system dynamics beneath a submarine canyon on New Zealand's Hikurangi subduction margin using seismic reflection data and petroleum systems modeling. High seismic velocities just above the base of gas hydrate stability (BGHS) indicate that concentrated gas hydrates exist beneath the canyon. Two-dimensional gas hydrate formation modeling shows how the process of canyon incision at this location alters the distribution and concentration of gas hydrate. The key modeling result is that free gas is trapped beneath the gas hydrate layer and then "captured" into a concentrated gas hydrate deposit as a result of a downward-shift in the BGHS driven by canyon incision. Our study thus provides new insight into the functioning of this process. From our data, we also conceptualize two other models to describe how canyons could significantly change gas hydrate distribution and concentration. One scenario is related to deflection of fluid flow pathways from over-pressured regions at the BGHS toward the canyon, and the other is based on relationships between simultaneous seafloor uplift and canyon incision. The relationships and processes described are of global relevance because of considerations of gas hydrate as an energy resource and the influence of both submarine canyons and gas hydrate systems on seafloor biodiversity.

  8. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    Science.gov (United States)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper

  9. Near-bottom particulate matter dynamics in the Nazare submarine canyon under calm and stormy conditions

    NARCIS (Netherlands)

    Martín, J.; Palanques, A.; Vitorino, J.; Oliveira, A.; de Stigter, H.C.

    2011-01-01

    Two mooring lines equipped with near-bottom sediment traps were deployed in the axis of the Nazare submarine canyon at similar to 1600 and similar to 3300 m depth, respectively. We studied time-series of particle flux, composition (biogenic silica, carbonates, organic matter and lithogenic

  10. Probabilistic Hazard of Tsunamis Generated by Submarine Landslides in the Cook Strait Canyon (New Zealand)

    Science.gov (United States)

    Lane, Emily M.; Mountjoy, Joshu J.; Power, William L.; Mueller, Christof

    2016-12-01

    Cook Strait Canyon is a submarine canyon that lies within ten kilometres of Wellington, the capital city of New Zealand. The canyon walls are covered with scars from previous landslides which could have caused local tsunamis. Palaeotsunami evidence also points to past tsunamis in the Wellington region. Furthermore, the canyon's location in Cook Strait means that there is inhabited land in the path of both forward- and backward-propagating waves. Tsunamis induced by these submarine landslides pose hazard to coastal communities and infrastructure but major events are very uncommon and the historical record is not extensive enough to quantify this hazard. The combination of infrequent but potentially very consequential events makes realistic assessment of the hazard challenging. However, information on both magnitude and frequency is very important for land use planning and civil defence purposes. We use a multidisciplinary approach bringing together geological information with modelling to construct a Probabilistic Tsunami Hazard Assessment of submarine landslide-generated tsunami. Although there are many simplifying assumptions used in this assessment, it suggests that the Cook Strait open coast is exposed to considerable hazard due to submarine landslide-generated tsunamis. We emphasise the uncertainties involved and present opportunities for future research.

  11. Internal tides affect benthic community structure in an energetic submarine canyon off SW Taiwan

    Science.gov (United States)

    Liao, Jian-Xiang; Chen, Guan-Ming; Chiou, Ming-Da; Jan, Sen; Wei, Chih-Lin

    2017-07-01

    Submarine canyons are major conduits of terrestrial and shelf organic matter, potentially benefiting the seafloor communities in the food-deprived deep sea; however, strong bottom currents driven by internal tides and the potentially frequent turbidity currents triggered by storm surges, river flooding, and earthquakes may negatively impact the benthos. In this study, we investigated the upper Gaoping Submarine Canyon (GPSC), a high-sediment-yield canyon connected to a small mountain river (SMR) off southwest (SW) Taiwan. By contrasting the benthic meiofaunal and macrofaunal communities within and outside the GPSC, we examined how food supplies and disturbance influenced the benthic community assemblages. The benthic communities in the upper GPSC were mainly a nested subset of the adjacent slope assemblages. Several meiofaunal (e.g. ostracods) and macrofaunal taxa (e.g. peracarid crustaceans and mollusks) that typically occurred on the slope were lost from the canyon. The polychaete families switched from diverse feeding guilds on the slope to motile subsurface deposit feeders dominant in the canyon. The diminishing of epibenthic peracarids and proliferation of deep burrowing polychaetes in the GPSC resulted in macrofauna occurring largely within deeper sediment horizons in the canyon than on the slope. The densities and numbers of taxa were depressed with distinct and more variable composition in the canyon than on the adjacent slope. Both the densities and numbers of taxa were negatively influenced by internal tide flushing and positively influenced by food availability; however, the internal tides also negatively influenced the food supplies. While the meiofauna and macrofauna densities were both depressed by the extreme physical conditions in the GPSC, only the macrofaunal densities increased with depth in the canyon, presumably related to increased frequency and intensity of disturbance toward the canyon head. The population densities of meiofauna, on the

  12. Anthropogenic impacts on deep submarine canyons of the western Mediterranean Sea

    Science.gov (United States)

    Sanchez-Vidal, A.; Tubau, X.; Llorca, M.; Woodall, L.; Canals, M.; Farré, M.; Barceló, D.; Thompson, R.

    2016-02-01

    Submarine canyons are seafloor geomorphic features connecting the shallow coastal ocean to the deep continental margin and basin. Often considered biodiversity hotspots, submarine canyons have been identified as preferential pathways for water, sediment, pollutant and litter transfers from the coastal to the deep ocean. Here we provide insights on the presence of some of the most insidious man-made debris and substances in submarine canyons of the western Mediterranean Sea, which are relevant to achieve a "Good Environmental Status" by 2020 as outlined in the European Union's ambitious Marine Strategy Framework Directive. Ranked by size on a decreasing basis, we review the origin, distribution and transport mechanisms of i) marine litter, including plastic, lost fishing gear and metallic objects; ii) microplastics in the form of fibers of rayon, polyester, polyamide and acetates; and iii) persistent organic pollutants including the toxic and persistent perfluoroalkyl substances. This integrated analysis allows us to understand the pivotal role of atmospheric driven oceanographic processes occurring in Mediterranean deep canyons (dense shelf water cascading, coastal storms) in spreading any type of man-made compound to the deep sea, where they sink and accumulate before getting buried.

  13. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    Science.gov (United States)

    Stevens, Thomas; Paull, Charles K.; Ussler, William III; McGann, Mary; Buylaert, Jan-Pieter; Lundsten, Eve M.

    2013-01-01

    While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry into the canyon head while the 14C ages of benthic foraminifera record the deposition of hemipelagic sediments that bound the sand horizons. We use both single-grain and small (∼2 mm area) single-aliquot regeneration approaches on vibracore samples from fining-upward sequences at various water depths to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand (from 14C ages of benthic foraminifera in bracketing hemipelagic sediments) are interpreted as indicating that the sand does not pass through the entire canyon instantly in large individual events, but rather moves multiple times before emerging onto the fan. The increased spread in single-grain OSL dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL ages that are consistent with a sub-decadal recurrence frequency while the fining-upward sand sequences on the fan indicate that the channel is still experiencing events with a 150

  14. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula

    Science.gov (United States)

    Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Sherrell, Robert M.; Schofield, Oscar

    2016-07-01

    Bathymetric depressions (canyons) exist along the West Antarctic Peninsula shelf and have been linked with increased phytoplankton biomass and sustained penguin colonies. However, the physical mechanisms driving this enhanced biomass are not well understood. Using a Slocum glider data set with over 25,000 water column profiles, we evaluate the relationship between mixed layer depth (MLD, estimated using the depth of maximum buoyancy frequency) and phytoplankton vertical distribution. We use the glider deployments in the Palmer Deep region to examine seasonal and across canyon variability. Throughout the season, the ML becomes warmer and saltier, as a result of vertical mixing and advection. Shallow ML and increased stratification due to sea ice melt are linked to higher chlorophyll concentrations. Deeper mixed layers, resulting from increased wind forcing, show decreased chlorophyll, suggesting the importance of light in regulating phytoplankton productivity. Spatial variations were found in the canyon head region where local physical water column properties were associated with different biological responses, reinforcing the importance of local canyon circulation in regulating phytoplankton distribution in the region. While the mechanism initially hypothesized to produce the observed increases in phytoplankton over the canyons was the intrusion of warm, nutrient enriched modified Upper Circumpolar Deep Water (mUCDW), our analysis suggests that ML dynamics are key to increased primary production over submarine canyons in the WAP.

  15. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea

    Science.gov (United States)

    Chen, Hongjun; Zhan, Wenhuan; Li, Liqing; Wen, Ming-ming

    2017-07-01

    In this study, we reveal a series of newly discovered submarine canyons, sediment waves, and mass movements on a flat and smooth seafloor using high-resolution, multi-beam bathymetry and shallow seismic surveys along the northern slope of the South China Sea. We also describe their geomorphology and seismic stratigraphy characteristics in detail. These canyons display U-shaped cross sections and are roughly elongated in the NNW-SSE direction; they are typically 8-25 km long, 1.2-7 km wide, and form incisions up to 175 m into Pliocene-Quaternary slope deposits at water depths of 400-1000 m. Slide complexes and the sediment wave field are oriented in the NE-SW direction and cover areas of approximately 1790 and 926 km2, respectively. Debris/turbidity flows are present within these canyons and along their lower slopes. Detailed analysis of seismic facies indicates the presence of six seismic facies, in which Cenozoic strata located above the acoustic basement in the study area can be roughly subdivided into three sequences (1-3), which are separated by regional unconformities (Tg, T4, and T3). By combining these data with the regional geological setting and the results of previous studies, we are able to determine the genetic mechanisms used to create these canyons, sediment wave field, and mass movements. For example, frontally confined slide complexes could have been influenced by high sedimentation rates and high pore pressures. A series of very large subaqueous sediment waves, which record wavelengths of 1.4-2 km and wave heights of 30-50 m, were likely produced by interactions between internal solitary waves and along-slope bottom (contour) currents. Canyons were likely initially created by landslides and then widened laterally by the processes of downcutting, headward erosion, and active bottom currents and debris/turbidity flows on canyon floors. We therefore propose a three-dimensional model to describe the development of these mass movements, the sediment

  16. Marine geophysical investigations across the submarine canyon (Swatch-of-No-Ground), northern Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.; Krishna, K.S.; Ramana, M.V.; Murthy, K.S.R.

    Multibeam swath bathymetry, gravity and magnetic investigations were conducted across the major delta front canyon known as Swatch-of-No-Ground in the northern Bay of Bengal. The study reveals that the canyon is a 300 m deep and 18 km wide...

  17. Sediment community responses to marine vs. terrigenous organic matter in a submarine canyon

    Directory of Open Access Journals (Sweden)

    W. R. Hunter

    2013-01-01

    Full Text Available The Whittard Canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard Canyon, testing short-term (3–7 days responses of sediment communities to deposition of nitrogen-rich marine (Thalassiosira weissflogii and nitrogen-poor terrigenous (Triticum aestivum phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs. Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time. Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest in the western branch of the Whittard Canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0–1 cm sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal–bacterial interactions influence benthic C cycling in the Whittard Canyon, resulting in differential fates for marine and terrigenous OM.

  18. Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic)

    Science.gov (United States)

    Cunha, Marina R.; Paterson, Gordon L. J.; Amaro, Teresa; Blackbird, Sabena; de Stigter, Henko C.; Ferreira, Clarisse; Glover, Adrian; Hilário, Ana; Kiriakoulakis, Konstadinos; Neal, Lenka; Ravara, Ascensão; Rodrigues, Clara F.; Tiago, Áurea; Billett, David S. M.

    2011-12-01

    The macrofaunal assemblages from three Portuguese submarine canyons, Nazaré, Cascais and Setúbal were studied from samples collected at their upper (900-1000 m), middle (3200-3500 m) and lower sections (4200-4500 m) and at the adjacent open slopes (˜1000 m), during the HERMES cruises D297 (R.R.S. Discovery, 2005) CD179 (R.R.S. Charles Darwin, 2006) and 64PE252 (R.V. Pelagia, 2006). The taxonomic composition and patterns in biodiversity, abundance and community structure of the benthic macrofauna were described. Annelida (42.1% of total abundance; 137 species) and Arthropoda (20.6%; 162 species) were, respectively, the most abundant and the most species-rich Phyla among the 342 taxa identified during this study. Multivariate analyses showed significant differences between and within canyons and between canyons and open slope assemblages. At their upper section, canyons supported higher macrofauna abundance but slightly lower biodiversity than the adjacent slopes at similar depth. In all canyons abundance reached the highest value in the middle section and the lowest in the upper section, with marked fluctuations in Nazaré (474-4599 ind. m -2) and lower variability in Cascais (583-1125 ind. m -2). The high abundance and dominance of the assemblages in the middle section of Nazaré and Setúbal was accompanied by depressed biodiversity, while in Cascais, Hurlbert's expected species richness showed increasing values from the upper to the middle canyon, and maintained the high values at the lower section. Overall, the Nazaré Canyon showed the lowest expected species richness (ES (100): 16-39) and the Cascais Canyon the highest (39-54). There was a significant negative Kendall's correlation between total organic carbon concentrations in the superficial sediments and ES (100) and a significant positive correlation between total nitrogen and macrofauna density. The influences of organic enrichment, sediment heterogeneity and hydrodynamic regime on the abundance

  19. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon

    Science.gov (United States)

    Symons, William O.; Sumner, Esther J.; Paull, Charles K.; Cartigny, Matthieu J.B.; Xu, Jingping; Maier, Katherine L.; Lorenson, Thomas; Talling, Peter J.

    2017-01-01

    Submarine turbidity currents create some of the largest sediment accumulations on Earth, yet there are few direct measurements of these flows. Instead, most of our understanding of turbidity currents results from analyzing their deposits in the sedimentary record. However, the lack of direct flow measurements means that there is considerable debate regarding how to interpret flow properties from ancient deposits. This novel study combines detailed flow monitoring with unusually precisely located cores at different heights, and multiple locations, within the Monterey submarine canyon, offshore California, USA. Dating demonstrates that the cores include the time interval that flows were monitored in the canyon, albeit individual layers cannot be tied to specific flows. There is good correlation between grain sizes collected by traps within the flow and grain sizes measured in cores from similar heights on the canyon walls. Synthesis of flow and deposit data suggests that turbidity currents sourced from the upper reaches of Monterey Canyon comprise three flow phases. Initially, a thin (38–50 m) powerful flow in the upper canyon can transport, tilt, and break the most proximal moorings and deposit chaotic sands and gravel on the canyon floor. The initially thin flow front then thickens and deposits interbedded sands and silty muds on the canyon walls as much as 62 m above the canyon floor. Finally, the flow thickens along its length, thus lofting silty mud and depositing it at greater altitudes than the previous deposits and in excess of 70 m altitude.

  20. Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands

    Science.gov (United States)

    De Leo, Fabio C.; Vetter, Eric W.; Smith, Craig R.; Rowden, Ashley A.; McGranaghan, Matthew

    2014-06-01

    The mapping of biodiversity on continental margins on landscape scales is highly relevant to marine spatial planning and conservation. Submarine canyons are widespread topographic features on continental and island margins that enhance benthic biomass across a range of oceanic provinces and productivity regimes. However, it remains unclear whether canyons enhance faunal biodiversity on landscape scales relevant to marine protected area (MPA) design. Furthermore, it is not known which physical attributes and heterogeneity metrics can provide good surrogates for large-scale mapping of canyon benthic biodiversity. To test mechanistic hypotheses evaluating the role of different canyon-landscape attributes in enhancing benthic biodiversity at different spatial scales we conducted 34 submersible dives in six submarine canyons and nearby slopes in the Hawaiian archipelago, sampling infaunal macrobenthos in a depth-stratified sampling design. We employed multivariate multiple regression models to evaluate sediment and topographic heterogeneity, canyon transverse profiles, and overall water mass variability as potential drivers of macrobenthic community structure and species richness. We find that variables related to habitat heterogeneity at medium (0.13 km2) and large (15-33 km2) spatial scales such as slope, backscatter reflectivity and canyon transverse profiles are often good predictors of macrobenthic biodiversity, explaining 16-30% of the variance. Particulate organic carbon (POC) flux and distance from shore are also important variables, implicating food supply as a major predictor of canyon biodiversity. Canyons off the high Main Hawaiian Islands (Oahu and Moloka'i) are significantly affected by organic enrichment, showing enhanced infaunal macrobenthos abundance, whereas this effect is imperceptible around the low Northwest Hawaiian Islands (Nihoa and Maro Reef). Variable canyon alpha-diversity and high rates of species turnover (beta-diversity), particularly for

  1. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

    Science.gov (United States)

    Azpiroz-Zabala, Maria; Cartigny, Matthieu J B; Talling, Peter J; Parsons, Daniel R; Sumner, Esther J; Clare, Michael A; Simmons, Stephen M; Cooper, Cortis; Pope, Ed L

    2017-10-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can explain why these are far more prolonged than all previously monitored oceanic turbidity currents, which lasted for only hours or minutes at other locations. The observed Congo Canyon flows consist of a short-lived zone of fast and dense fluid at their front, which outruns the slower moving body of the flow. We propose that the sustained duration of these turbidity currents results from flow stretching and that this stretching is characteristic of mud-rich turbidity current systems. The lack of stretching in previously monitored flows is attributed to coarser sediment that settles out from the body more rapidly. These prolonged seafloor flows rival the discharge of the Congo River and carry ~2% of the terrestrial organic carbon buried globally in the oceans each year through a single submarine canyon. Thus, this new structure explains sustained flushing of globally important amounts of sediment, organic carbon, nutrients, and fresh water into the deep ocean.

  2. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA

    Science.gov (United States)

    Nosal, D.C.; Cartamil, D.C.; Long, J.W.; Luhrmann, M.; Wegner, N.C.; Graham, J.B.

    2013-01-01

    The demography, spatial distribution, and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon in La Jolla, California, USA, were investigated to resolve the causal explanations for this and similar shark aggregations. All sharks sampled from the aggregation site (n=140) were sexually mature and 97.1 % were female. Aerial photographs taken during tethered balloon surveys revealed high densities of milling sharks of up to 5470 sharks ha-1. Eight sharks were each tagged with a continuous acoustic transmitter and manually tracked without interruption for up to 48 h. Sharks exhibited strong site-fidelity and were generally confined to a divergence (shadow) zone of low wave energy, which results from wave refraction over the steep bathymetric contours of the submarine canyon. Within this divergence zone, the movements of sharks were strongly localized over the seismically active Rose Canyon Fault. Tracked sharks spent most of their time in shallow water (≤2 m for 71.0 % and ≤10 m for 95.9 % of time), with some dispersing to deeper (max: 53.9 m) and cooler (min: 12.7 °C) water after sunset, subsequently returning by sunrise. These findings suggest multiple functions of this aggregation and that the mechanism controlling its formation, maintenance, and dissolution is complex and rooted in the sharks' variable response to numerous confounding environmental factors.

  3. The summer assemblage of large pelagic Crustacea in the Gully submarine canyon: Major patterns

    Science.gov (United States)

    MacIsaac, K. G.; Kenchington, T. J.; Kenchington, E. L. R.; Best, M.

    2014-06-01

    We describe the trawl-vulnerable crustacean micronekton and macrozooplankton of the Gully, a large, shelf-incising submarine canyon off Nova Scotia, Canada, and a Marine Protected Area. Over 68 species of pelagic crustacea were collected with an International Young Gadoid Pelagic Trawl during three annual summer surveys at one fixed station in the canyon. Depths sampled ranged from the surface to the upper bathypelagic zone, concentrated in the upper 1250 m, with a maximum depth of 1500 m. The crustacean fauna was dominated by cold temperate species typical of mid- to higher-latitudes in the North Atlantic. Meganyctiphanes norvegica and Eusergestes arcticus were particularly dominant in terms of both observed biomass and abundance above 750 m depth. At least 17 species were new records for Canadian waters. The species assemblage of the station varied primarily with depth and diel cycle, the only dominant members of the assemblage showing pronounced inter-annual variations in catch being M. norvegica and Themisto gaudichaudii, both relatively shallow living species.

  4. Macro- and megafauna recorded in the submarine Bari Canyon (southern Adriatic, Mediterranean Sea using different tools

    Directory of Open Access Journals (Sweden)

    G. D'ONGHIA

    2015-01-01

    Full Text Available Macro- and megafauna were recorded in the submarine Bari Canyon (southern Adriatic Sea, Mediterranean Sea during an oceanographic cruise carried out in May-June 2012 and an experimental fishing survey conducted in November 2013. During the former, a total of 20 benthic samples were taken using a Van Veen grab at depths between 268 and 770 m and 4 deployments of a baited lander, for about 43 hours of video records, were carried out at depths between 443 and 788 m. During the latter, 8 longline fishing operations were conducted from 338 down to 612 m. Eighty-five living benthic and benthopelagic species were recorded: 29 Porifera, 1 Cnidaria, 2 Mollusca, 11 Annelida, 1 Arthropoda, 19 Bryozoa, 3 Echinodermata and 19 Chordata. A total of 51 species are new records for the Bari Canyon, 29 new records for the Adriatic Sea. Among the Porifera Cerbaris curvispiculifer is a new addition for the Italian Sponge Fauna. The first certain record of living specimens for the bryozoan Crisia tenella longinodata is reported. A total of 6 Mediterranean endemic species have been identified: 4 Porifera and 2 Annelida. The bathymetric range of some species has been extended. New information acquired for deep sea species confirms their importance in the structure of cold-water coral communities. This study has updated the knowledge on the biodiversity of the Adriatic Sea, as well as of the Bari Canyon in particular, one of the sites designated as “jewels of the Mediterranean” for which urgent conservation measures are needed.

  5. AUV Mapping and ROV Exploration of Los Frailes Submarine Canyon, Cabo Pulmo National Marine Park, Baja California Sur, Mexico

    Science.gov (United States)

    Troni, G.; Caress, D. W.; Graves, D.; Thomas, H. J.; Thompson, D.; Barry, J. P.; Aburto-Oropeza, O.; Johnson, A. F.; Lundsten, L.

    2015-12-01

    Los Frailes submarine canyon is located at the south boundary of the Cabo Pulmo National Marine Park on the southeast tip of the Baja California Peninsula. During the Monterey Bay Aquarium Research Institute (MBARI) 2015 Gulf of California expedition we used an autonomous underwater vehicle (AUV) to map this canyon from 50 m to 450 m depths, and then explored the canyon with a small remotely operated vehicle (ROV). This three day R/V Rachel Carson cruise was a collaboration with the Center for Marine Biodiversity and Conservation at Scripps Institution of Oceanography and the Centro para la Biodiversidad Marina y la Conservación in La Paz. The MBARI AUV D. Allan B. collected high resolution bathymetry, sidescan, and subbottom profiles of Los Frailes submarine canyon and part of the north Cabo Pulmo deep reef. In order to safely generate a 1-m lateral resolution multibeam bathymetry map in the nearshore high relief terrain, the mapping operations consisted of an initial short survey following the 100-m isobath followed by a series of short, incremental AUV missions located on the deep edge of the new AUV bathymetry. The MBARI Mini-ROV was used to explore the submarine canyon within the detailed map created by the MBARI AUV. The Mini-ROV is a 1.2-m-long, 350 kg, 1,500-m-depth-rated ROV designed and constructed by MBARI. It is controlled by six 600-watt thrusters and is equipped with a high-definition video camera and navigation sensors. This small ROV carries less accurate, lower cost navigation sensors than larger vehicles. We implemented new algorithms to localize combining Doppler velocity log sensor data and low-cost MEMS-based inertial sensor data with sporadic ultra-short baseline position measurements to provide a high accuracy position estimation. The navigation performance allowed us to colocate the ROV video imagery with the 1-m resolution bathymetric map of the submarine canyon. Upper Los Frailes Canyon is rugged and, aside from small sand pockets along

  6. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

    Directory of Open Access Journals (Sweden)

    Sonja K Fagervold

    Full Text Available The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life.

  7. Epibiotic relationships on Zygochlamys patagonica (Mollusca, Bivalvia, Pectinidae) increase biodiversity in a submarine canyon in Argentina

    Science.gov (United States)

    Schejter, Laura; López Gappa, Juan; Bremec, Claudia Silvia

    2014-06-01

    The continental slope of the southern SW Atlantic Ocean has many distinguishable deep submarine canyons, varying in depth and extension. The benthic fauna within one of them, detected in April 2005 by means of a multibeam SIMRAD EM1002 sonar, and located at 43°35‧S to 59°33‧W, 325 m depth, was studied to discuss faunal affinities with the neighbouring Patagonian scallop fishing grounds located at upper slope depths. In order to add faunal information to the previous general study, we studied the epibiotic species settled on Patagonian scallops (the dominant species in the area) collected in the reference sampling site using a 2.5-m mouth-opening dredge, 10 mm mesh size. We sampled 103 scallops with shell heights between 22 and 69 mm; epibionts were recorded on both valves. We found 53 epibiotic taxa, which were most conspicuous on the upper valve. Bryozoa was the most diverse group (34 species) while Polychaeta was the most abundant group, recorded on 94% of the scallops. Stylasteridae (2 species) and Clavulariidae (Cnidaria) conform newly recorded epibionts on Z. patagonica and the sponge Tedania (Tedaniopsis) infundibuliformis also represents a new record for the SW Atlantic Ocean.

  8. Modeled alongshore circulation and force balances onshore of a submarine canyon

    Science.gov (United States)

    Hansen, Jeff E.; Raubenheimer, Britt; List, Jeffrey H.; Elgar, Steve

    2015-03-01

    Alongshore force balances, including the role of nonlinear advection, in the shoaling and surf zones onshore of a submarine canyon are investigated using a numerical modeling system (Delft3D/SWAN). The model is calibrated with waves and alongshore flows recorded over a period of 1.5 months at 26 sites along the 1.0, 2.5, and 5.0 m depth contours spanning about 2 km of coast. Field observation-based estimates of the alongshore pressure and radiation-stress gradients are reproduced well by the model. Model simulations suggest that the alongshore momentum balance is between the sum of the pressure and radiation-stress gradients and the sum of the nonlinear advective terms and bottom stress, with the remaining terms (e.g., wind stress and turbulent mixing) being negligible. The simulations also indicate that unexplained residuals in previous field-based estimates of the momentum balance may be owing to the neglect of the nonlinear advective terms, which are similar in magnitude to the sum of the forcing (pressure and radiations stress gradients) and to the bottom stress.

  9. Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea

    Science.gov (United States)

    Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji

    2017-05-01

    Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.

  10. Deep-Water Coral Diversity and Habitat Associations: Differences among Northeast Atlantic Submarine Canyons

    Science.gov (United States)

    Shank, T. M.

    2016-02-01

    From 2012 to 2015, annual seafloor surveys using the towed camera TowCam were used to characterize benthic ecosystems and habitats to groundtruth recently developed habitat suitability models that predict deep-sea coral locations in northwest Atlantic canyons. Faunal distribution, abundance, and habitat data were obtained from more than 90 towed camera surveys in 21 canyons, specifically Tom's, Hendrickson, Veatch, Gilbert, Ryan, Powell, Munson, Accomac, Leonard, Washington, Wilmington, Lindenkohl, Clipper, Sharpshooter, Welker, Dogbody, Chebacco, Heel Tapper, File Bottom, Carteret, and Spencer Canyons, as well as unnamed minor canyons and inter-canyon areas. We also investigated additional canyons including Block, Alvin, Atlantis, Welker, Heezen, Phoenix, McMaster, Nantucket, and two minor canyons and two intercanyon areas through high-definition ROV image surveys from the NOAA CANEX 2013 and 2014 expeditions. Significant differences in species composition and distribution correlated with specific habitat types, depth, and individual canyons. High abundances and diversity of scleractinians, antipatharians, octocorals and sponges were highly correlated with habitat substrates, includingvertical canyon walls, margins, sediments, cobbles, boulders, and coral rubble habitat. Significant differences in species composition among canyons were observed across similar depths suggesting that many canyons may have their own biological and geological signature. Locating and defining the composition and distribution of vulnerable coral ecosystems in canyons in concert with validating predictive species distribution modeling has resulted in the regional management and conservation recommendations of these living resources and the largest proposed Marine Protected Area in North American waters.

  11. Effective transport of event sediments from shelf to deep-sea through submarine canyon: Examples from the Japan and Ryukyu trench forearc

    Science.gov (United States)

    Ikehara, K.; Kanamatsu, T.; Usami, K.

    2016-02-01

    Large earthquakes and their related tsunamis resuspend and remobilize unconsolidated shallow marine sediments. Some of the resuspended grains form the dense water masses, and move downslope-ward gravitationally. Confined bathymetry of submarine canyon may play an important role on maintaining their density, and protecting dispersion and dilution of their bodies, and further leading the long-distance transport of the sediment grains from shelf to deep-sea. The 2011 Tohoku-oki earthquake and tsunami made erosion and resuspension of shelf sediments at the wide areas along the Tohoku coast. Although generation of tsunami-induced turbidity currents was reported, there are only a few examples of the shelf sediment transport to deep-sea. Weak development of submarine canyons at the upper slope may explain this phenomena. On the other hand, many turbidites were observed in the sediment cores collected from a submarine fan at a forearc basin along the southern Ryukyu Trench. A lot of bioclastic (carbonate) coarse grains of shallow marine origin composed the turbidites. Deep incision of submarine canyons along the upper forearc slope may contribute the effective transport of coarse bioclasts from shelf to deep-sea in this area. No or few submarine canyon connecting the shelf with the trench floor makes the different source of the trench fill deposits at both trenchs.

  12. External forcings, oceanographic processes and particle flux dynamics in Cap de Creus submarine canyon, NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    A. Rumín-Caparrós

    2013-06-01

    Full Text Available Particle fluxes (including major components and grain size, and oceanographic parameters (near-bottom water temperature, current speed and suspended sediment concentration were measured along the Cap de Creus submarine canyon in the Gulf of Lions (GoL; NW Mediterranean Sea during two consecutive winter-spring periods (2009–2010 and 2010–2011. The comparison of data obtained with the measurements of meteorological and hydrological parameters (wind speed, turbulent heat flux, river discharge have shown the important role of atmospheric forcings in transporting particulate matter through the submarine canyon and towards the deep sea. Indeed, atmospheric forcing during 2009–2010 and 2010–2011 winter months showed differences in both intensity and persistence that led to distinct oceanographic responses. Persistent dry northern winds caused strong heat losses (14.2 × 103 W m−2 in winter 2009–2010 that triggered a pronounced sea surface cooling compared to winter 2010–2011 (1.6 × 103 W m−2 lower. As a consequence, a large volume of dense shelf water formed in winter 2009–2010, which cascaded at high speed (up to ∼1 m s−1 down Cap de Creus Canyon as measured by a current-meter in the head of the canyon. The lower heat losses recorded in winter 2010–2011, together with an increased river discharge, resulted in lowered density waters over the shelf, thus preventing the formation and downslope transport of dense shelf water. High total mass fluxes (up to 84.9 g m−2 d−1 recorded in winter-spring 2009–2010 indicate that dense shelf water cascading resuspended and transported sediments at least down to the middle canyon. Sediment fluxes were lower (28.9 g m−2 d−1 under the quieter conditions of winter 2010–2011. The dominance of the lithogenic fraction in mass fluxes during the two winter-spring periods points to a resuspension origin for most of the particles transported down canyon. The variability in organic matter

  13. Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation

    Directory of Open Access Journals (Sweden)

    I. Tsandev

    2010-06-01

    Full Text Available The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.

  14. Shelf-Slope Exchanges near Submarine Canyons in the Southern Mid-Atlantic Bight

    Science.gov (United States)

    Wang, H.; Gong, D.

    2016-02-01

    Shelf-slope exchange processes are major physical drivers of biological productivity near the shelf-break. Observations from two Slocum ocean gliders in Fall 2013 are used to explore the driving mechanisms of cross-shelf-slope exchanges near Norfolk Canyon and Washington Canyon in the southern Mid-Atlantic Bight. Offshore excursion of bottom "cold pool" water, and shoreward intrusion of slope water at surface layer and thermocline depth occurred during northeasterly along-shelf winds. The saline intrusions of surface slope water resided between the cold pool and surface shelf water, and reached the bottom on the outer and mid-shelf, while the offshore excursion of cold pool water was found between the surface and intermediate slope-water over the canyon. Ekman transport calculation shows wind-driven cross-shelf transport can partially explain this interleaving pattern of intrusions. Scaling analysis of double diffusive processes demonstrate that they also likely played a role in the cross-shelf-slope exchange. A unique canyon upwelling event was captured in and around Washington Canyon during a period of southwesterly along-shelf wind and along-shelf flow to the northeast. The water mass distributions and isopycnal responses in both along-canyon and cross-canyon transects are consistent with scaling analysis and numerical studies of canyon upwelling. Temperature-Salinity properties of water masses in the canyon suggest active mixing between shelf and slope water masses near the canyon head. These results point to the importance of wind, double diffusion, and canyon topography on shelf-slope exchange in the MAB.

  15. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    Science.gov (United States)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic

  16. Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role of hydrodynamic processes

    Science.gov (United States)

    Tubau, Xavier; Canals, Miquel; Lastras, Galderic; Rayo, Xavier; Rivera, Jesus; Amblas, David

    2015-05-01

    Marine litter represents a widespread type of pollution in the World's Oceans. This study is based on direct observation of the seafloor by means of Remotely Operated Vehicle (ROV) dives and reports litter abundance, type and distribution in three large submarine canyons of the NW Mediterranean Sea, namely Cap de Creus, La Fonera and Blanes canyons. Our ultimate objective is establishing the links between active hydrodynamic processes and litter distribution, thus going beyond previous, essentially descriptive studies. Litter was monitored using the Liropus 2000 ROV. Litter items were identified in 24 of the 26 dives carried out in the study area, at depths ranging from 140 to 1731 m. Relative abundance of litter objects by type, size and apparent weight, and distribution of litter in relation to depth and canyon environments (i.e. floor and flanks) were analysed. Plastics are the dominant litter component (72%), followed by lost fishing gear, disregarding their composition (17%), and metal objects (8%). Most of the observed litter seems to be land-sourced. It reaches the ocean through wind transport, river discharge and after direct dumping along the coastline. While coastal towns and industrial areas represent a permanent source of litter, tourism and associated activities relevantly increase litter production during summer months ready to be transported to the deep sea by extreme events. After being lost, fishing gear such as nets and long-lines has the potential of being harmful for marine life (e.g. by ghost fishing), at least for some time, but also provides shelter and a substrate on which some species like cold-water corals are capable to settle and grow. La Fonera and Cap de Creus canyons show the highest mean concentrations of litter ever seen on the deep-sea floor, with 15,057 and 8090 items km-2, respectively, and for a single dive litter observed reached 167,540 items km-2. While most of the largest concentrations were found on the canyon floors at

  17. Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia.

    Directory of Open Access Journals (Sweden)

    Kathleen E Conlan

    Full Text Available Two South Australian canyons, one shelf-incising (du Couedic and one slope-limited (Bonney were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1 significantly differ by water mass, (H2 show significant regional differences and (H3 differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥ 1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to 1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01 among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water (H1. Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2, over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3. However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m, suggestive of heightened currents within the canyons that influence community composition there. At 1000-1500 m, the canyon interiors were

  18. Multibeam bathymetric survey of the Ipala Submarine Canyon, Jalisco, Mexico (20°N): The southern boundary of the Banderas Forearc Block?

    Science.gov (United States)

    Urías Espinosa, J.; Bandy, W. L.; Mortera Gutiérrez, C. A.; Núñez Cornú, Fco. J.; Mitchell, N. C.

    2016-03-01

    The Middle America Trench bends sharply northward at 20°N. This, along with the close proximity of the Rivera-North America Euler pole to the northern end of this trench, sharply increases the obliquity of subduction at 20°N. By analogy with other subduction zones with similar sharply changing obliquity, significant trench parallel extension is expected to exist in the forearc region near the bend. To evaluate this possibility, multibeam bathymetric, seafloor backscatter and sub-bottom seismic reflection data were collected in this area during the MORTIC08 campaign of the B.O. El Puma. These data image in detail a large submarine canyon (the Ipala Canyon) extending from the coast at 20°05‧N to the Middle America Trench at 19°50‧N. This canyon is 114 km long and is fed by sediments originating from two, possibly three, small rivers: the Ipala, Tecolotlán and Maria Garza. This canyon deeply incises (up to 600 m) the entire continental slope and at least the outer part of the shelf. Within the canyon, we observe meanders and narrow channels produced by turbidity flows indicating that the canyon is active. In the marginal areas of the canyon slumps, rills, and uplifts suggest that mass movements and fluid flow have had a major impact on the seafloor morphology. The seafloor bathymetry, backscatter images and sub-bottom reflection profiles evidence the tectonic processes occurring in this area. Of particular interest, the canyon is deflected by almost 90° at three locations, the deflections all having a similar azimuth of between 125° and 130°. Given the prominence and geometry of this canyon, along with its tectonic setting, we propose that the presence of the canyon is related to extension produced by the sharp change in the plate convergence. If so, the canyon may lie along the southeast boundary of a major forearc block (the Banderas Forearc Block).

  19. Temperature, salinity, oxygen, silicate, and phosphate data collected in Pacific Ocean from Monterey Submarine Canyon Station by Stanford University from 1951-01-02 to 1955-12-31 (NODC Accession 0093160)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen, silicate, and phosphate data collected in Pacific Ocean from Montery Submarine Canyon Station by Stanford University from 1951-01-02...

  20. A review of the role of submarine canyons in deep-ocean exchange with the shelf

    Directory of Open Access Journals (Sweden)

    S. E. Allen

    2009-12-01

    Full Text Available Cross shelf-break exchange is limited by the tendency of geostrophic flow to follow bathymetric contours, not cross them. However, small scale topography, such as canyons, can reduce the local lengthscale of the flow and increase the local Rossby number. These higher Rossby numbers mean the flow is no longer purely geostrophic and significant cross-isobath flow can occur. This cross-isobath flow includes both upwelling and downwelling due to wind-driven shelf currents and the strong cascading flows of dense shelf-water into the ocean. Tidal currents usually run primarily parallel to the shelf-break topography. Canyons cut across these flows and thus are often regions of generation of strong baroclinic tides and internal waves. Canyons can also focus internal waves. Both processes lead to greatly elevated levels of mixing. Thus, through both advection and mixing processes, canyons can enhance Deep Ocean Shelf Exchange. Here we review the state of the science describing the dynamics of the flows and suggest further areas of research, particularly into quantifying fluxes of nutrients and carbon as well as heat and salt through canyons.

  1. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    DEFF Research Database (Denmark)

    Stevens, Thomas; Paull, C.K.; Ussler, W., III

    2014-01-01

    to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand...

  2. Provenance and fate of organic carbon in three submarine canyons from the Portuguese Margin: Implications for transport processes of material in continental margins

    Science.gov (United States)

    Kiriakoulakis, Kostas; Wolff, George; Blackbird, Sabena

    2010-05-01

    Submarine canyons are key environments on the continental margin that are affected by unique and dynamic but often episodic and complex processes, and are difficult to study. Canyons are considered hotspots of biodiversity and enhancement of primary productivity at canyon heads has often been postulated to support this, although the evidence is sparse. Additionally canyons are considered to be fast-track corridors for material transported from the land to the deep sea and they are considered major pathways for the transportation and burial of organic carbon, acting as buffers for sediment and carbon storage. Organic geochemical and isotopic markers are often used as reliable indicators for the supply, quality and fate of organic matter in marine systems. In this study they have been used to test the above hypotheses in three contrasting submarine canyons (Nazaré, Setubal/Lisbon and Cascais) of the Portuguese Margin. The elemental and lipid biomarker composition of suspended particulate organic matter of surface waters close to the studied canyon heads had a fresh phytoplankton signal, however there was no clear evidence for enhanced primary productivity by comparison to the neighbouring open slope. By contrast, mid-depth waters (700-1600 m), that are dominated by the northward flowing Mediterranean Outflow Water, had high lipid content and abundant mesozooplankton biomarkers, perhaps reflecting zooplankton activity focused at the boundaries of distinct water masses. In the waters close to the floor of the Nazaré Canyon the presence of elemental sulphur (a product of sediment diagenesis) and high molecular weight hydrocarbons (recalcitrant, terrestrial markers) indicated high levels of resuspended material, particularly at the Upper section (

  3. (Paleo)ecology of coccolithophores in the submarine canyons of the central portuguese continental margin:environmental, sedimentary and oceanographic implications

    OpenAIRE

    Guerreiro, Catarina Alexandra Vicente, 1978-

    2013-01-01

    Tese de doutoramento, Geologia (Paleontologia e Estatigrafia), Universidade de Lisboa, Faculdade de Ciências, 2013 This thesis aims to contribute to the knowledge of coccolithophores from coastal-neriticoceanic transitional settings, their distribution offshore central Portugal, and their potential as (paleo)ecological and (paleo)ceanographic proxy in the context of submarine canyons. In order to achieve a good understanding of the relationship of coccolithophores with the environ...

  4. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons

    OpenAIRE

    Azpiroz-Zabala, Maria; Cartigny, Matthieu J.B.; Talling, Peter J.; Parsons, Daniel R.; Sumner, Esther J.; Clare, Michael A.; Simmons, Stephen M.; Cooper, Cortis; Pope, Ed L.

    2017-01-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can expla...

  5. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

    OpenAIRE

    Azpiroz-Zabala, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Sumner, Esther; Clare, Michael; Simmons, Stephen; Cooper, Cortis; Pope, Ed

    2017-01-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can expla...

  6. Relationship between environment and the occurrence of the deep-water rose shrimp Aristeus antennatus (Risso, 1816) in the Blanes submarine canyon (NW Mediterranean)

    Science.gov (United States)

    Sardà, F.; Company, J. B.; Bahamón, N.; Rotllant, G.; Flexas, M. M.; Sánchez, J. D.; Zúñiga, D.; Coenjaerts, J.; Orellana, D.; Jordà, G.; Puigdefábregas, J.; Sánchez-Vidal, A.; Calafat, A.; Martín, D.; Espino, M.

    2009-09-01

    We performed a multidisciplinary study characterizing the relationships between hydrodynamic conditions (currents and water masses) and the presence and abundance of the deep-water rose shrimp Aristeus antennatus in a submarine canyon (Blanes canyon in the NW Mediterranean Sea). This species is heavily commercially exploited and is the main target species of a bottom trawl fishery. Seasonal fluctuations in landings are attributed to spatio-temporal movements by this species associated with submarine canyons in the study area. Despite the economic importance of this species and the decreases in catches in the area in recent years, few studies have provided significant insight into the environmental conditions driving shrimp distribution. We therefore measured daily A. antennatus catches over the course of an entire year and analyzed this time series in terms of daily average temperature, salinity, mean kinetic energy (MKE), and eddy kinetic energy (EKE) values using generalized additive models and decision trees. A. antennatus was captured between 600 and 900 m in the Blanes canyon, depths that include Levantine Intermediate Water (LIW) and the underlying Western Mediterranean Deep Water (WMDW). The greatest catches were associated with relatively salty waters (38.5-38.6), low MKE values (6 and 9 cm 2 s -2) and moderate EKE values (10 and 20 cm 2 s -2). Deep-water rose shrimp occurrence appears to be driven in a non-linear manner by environmental conditions including local temperature. A. antennatus appears to prefer relatively salty (LIW) waters and low currents (MKE) with moderate variability (EKE).

  7. Pharmacological Potential of Phylogenetically Diverse Actinobacteria Isolated from Deep-Sea Coral Ecosystems of the Submarine Avilés Canyon in the Cantabrian Sea.

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; González, Verónica; Braña, Alfredo F; Palacios, Juan J; Otero, Luis; Fernández, Jonathan; Molina, Axayacatl; Kulik, Andreas; Vázquez, Fernando; Acuña, José L; García, Luis A; Blanco, Gloria

    2017-02-01

    Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.

  8. Diverse foraging strategies by a marine top predator: Sperm whales exploit pelagic and demersal habitats in the Kaikōura submarine canyon

    Science.gov (United States)

    Guerra, M.; Hickmott, L.; van der Hoop, J.; Rayment, W.; Leunissen, E.; Slooten, E.; Moore, M.

    2017-10-01

    The submarine canyon off Kaikōura (New Zealand) is an extremely productive deep-sea habitat, and an important foraging ground for male sperm whales (Physeter macrocephalus). We used high-resolution archival tags to study the diving behaviour of sperm whales, and used the echoes from their echolocation sounds to estimate their distance from the seafloor. Diving depths and distance above the seafloor were obtained for 28 dives from six individuals. Whales foraged at depths between 284 and 1433 m, targeting mesopelagic and demersal prey layers. The majority of foraging buzzes occurred within one of three vertical strata: within 50 m of the seafloor, mid-water at depths of 700-900 m, and mid-water at depths of 400-600 m. Sperm whales sampled during this study performed more demersal foraging than that reported in any previous studies - including at Kaikōura in further inshore waters. This suggests that the extreme benthic productivity of the Kaikōura Canyon is reflected in the trophic preferences of these massive top predators. We found some evidence for circadian patterns in the foraging behaviour of sperm whales, which might be related to vertical movements of their prey following the deep scattering layer. We explored the ecological implications of the whales' foraging preferences on their habitat use, highlighting the need for further research on how submarine canyons facilitate top predator hotspots.

  9. Deciphering the Temporal and Spatial Complexity in Submarine Canyons in Antarctica: the Role of Mixed Layer Depth in Regulating Primary Production

    Science.gov (United States)

    Carvalho, F.; Kohut, J. T.; Schofield, O.; Oliver, M. J.; Gorbunov, M. Y.

    2016-02-01

    There is a high spatial and temporal variability in the biophysical processes regulating primary productivity in submarine canyons in the West Antarctic Peninsula (WAP). WAP canyon heads are considered biological "hotspots" by providing predictable food resource and driving penguin foraging locations. Because the physiology and composition of the phytoplankton blooms and the physical mechanisms driving them aren't well understood, we aim to characterize the dynamics of the spring phytoplankton bloom at the head of a canyon in the WAP. A 6-year record of Slocum glider deployments is analyzed, corresponding to over 16,000 water column profiles. The mixed layer depth (MLD), determined by the maximum of the buoyancy frequency criteria, was found to be the MLD definition with the highest ecological relevance. The same holds true for other regions in Antarctica such as the Ross and Amundsen Seas. A FIRe sensor on a glider was used to evaluate physiological responses of phytoplankton to canyon dynamics using fluorescence kinetics. Initial results show a spatial influence, with increased photosynthetic efficiencies found at the canyon head. The strongest signal was the seasonal cycle. The shoaling of the MLD in early January results in increased chlorophyll a concentrations and as MLD deepens in mid season due to wind forcing, phytoplankton concentrations decrease, likely due to decreased light availability. A consistent secondary peak in chlorophyll matches a shoaling in MLD later in the growth season. A steady warming and increase in salinity of the MLD is seen throughout the season. Spatial differences were recorded at the head of the canyon and result from the local circulation. Shallower MLD found on the northern region are consistent with a fresher surface ocean (coastal influence) and increased chlorophyll concentrations. The southern region is thought to be more oceanic influenced as intrusions of warm deep water (mUCDW) to the upper water column were recorded

  10. Hazard assessment for a submarine landslide generated local-source tsunami from Kaikoura Canyon

    Science.gov (United States)

    DuBois, J.

    2012-04-01

    The Kaikoura Canyon, sediment sink for the Canterbury rivers north of Christchurch, comes to within 500 meters of shore at Goose Bay and accumulates approximately 1.5x106 m3 of sediment each year (Lewis and Barnes, 1999). This sediment, which has accumulated to about seventy meters in thickness (Walters et al., 2006), exhibits tensional fractures, is located in a tectonically active area and could result in catastrophic failure and potentially a local-source tsunami (Lewis and Banes, 1999; Lewis, 1998; Walters et al, 2006). Evidence suggests that this may have happened in the last two hundred years (Lewis, 1998; Lewis and Barnes 1999) and with a return period on the nearby Alpine and Hope faults also in the range of a one to two hundred years (Walters et al, 2006) could happen again relatively soon. A review of the historical record and oral traditions for Kaikoura shows that historically Kaikoura has been affected by 11 events of which 10 are from distant sources and one, though debatable, is possibly from a local source. There are some preserved traditions for the Kaikoura area. These taniwha stories from near Oaro and from the Lyell Creek have been repeated and changed though time though the general essence remains the same. These taniwha legends, though not conclusive, indicate a dangerous shoreline where people have been killed in the past, possibly by flooding or tsunami. Archaeological investigations at Kaikoura found evidence of a Maori occupational layers interrupted by water-worn stones, a "lens of clean gravel between occupation layers" and in other areas of the excavation, the gravels separate discontinuous periods of occupation (Fomison 1963; Foster, 2006). Additionally "pea-gravel" sized greywacke pebbles were found dispersed throughout sections of the South Bay shore platforms, though they were attributesd to slopewash (Duckmanton, 1974) this is less likely since the nearby hills are limestone. A geological investigation along the Kaikoura Coast, at

  11. Particle fluxes and their drivers in the Avilés submarine canyon and adjacent slope, central Cantabrian margin, Bay of Biscay

    Science.gov (United States)

    Rumín-Caparrós, A.; Sanchez-Vidal, A.; González-Pola, C.; Lastras, G.; Calafat, A.; Canals, M.

    2016-05-01

    The Avilés Canyon in the central Cantabrian margin is one of the largest submarine canyons in Europe, extending from the shelf edge at 130 m depth to 4765 m depth in the Biscay abyssal plain. In this paper we present the results of a year-round (March 2012 to April 2013) study of particle fluxes in this canyon and the adjacent continental slope. Three mooring lines equipped with automated sequential sediment traps, high-accuracy conductivity-temperature recorders and current meters allowed measuring total mass fluxes and their major components (lithogenics, calcium carbonate, opal and organic matter) in the settling material jointly with a set of environmental parameters. The integrated analysis of the data obtained from the moorings together with remote sensing images and meteorological and hydrographical data has shed light on the sources of particles and the across- and along margin mechanisms involved in their transfer to the deep. Our results allow interpreting the dynamics of the sedimentary particles in the study area. Two factors play a critical role: (i) direct delivery of river-sourced material to the narrow continental shelf, and (ii) major resuspension events caused by large waves and near bottom currents developing at the occasion of the rather frequent severe storms that are typical of the Cantabrian Sea. Wind direction and subsequent wind-driven currents largely determine the way sedimentary particles reach the canyon. While westerly winds favour the injection of sediments into the Avilés Canyon mainly by building an offshore transport in the bottom Ekman layer, easterly winds ease the offshore advection of particulate matter towards the Avilés Canyon and its adjacent western slope principally through the surface Ekman layer. Furthermore, repeated cycles of semidiurnal tides add an extra amount of energy to the prevailing bottom currents and actively contribute to keep a permanent background of suspended particles in near-bottom waters. High

  12. Canyon effect and seasonal variability of deep-sea organisms in the NW Mediterranean: Synchronous, year-long captures of ;swimmers; from near-bottom sediment traps in a submarine canyon and its adjacent open slope

    Science.gov (United States)

    Romano, C.; Flexas, M. M.; Segura, M.; Román, S.; Bahamon, N.; Gili, J. M.; Sanchez-Vidal, A.; Martin, D.

    2017-11-01

    Numerous organisms, including both passive sinkers and active migrators, are captured in sediment traps together with sediments. By capturing these "swimmers", the traps become an extraordinarily tool to obtain relevant information on the biodiversity and dynamics of deep-sea organisms. Here we analyze near-bottom swimmers larger than 500 μm and their fluxes collected from eight near-bottom sediment traps installed on instrumented moorings deployed nearby Blanes Canyon (BC). Our data, obtained from November 2008 to October 2009 with a sampling rate of 15 days, constitutes the first year-long, continuous time series of the whole swimmers' community collected at different traps and bottom depths (from 300 m to 1800 m) inside a submarine canyon and on its adjacent open slope (OS). The traps captured 2155 specimens belonging to 70 taxa, with Crustacea (mainly Copepoda) and Annelida Polychaeta accounting for more than 90% of the total abundance. Almost half of the identified taxa (33) were only present in BC traps, where mean annual swimmer fluxes per trap were almost one order of magnitude higher than in the OS ones. Temporal variability in swimmer fluxes was more evident in BC than in OS. Fluxes dropped in winter (in coincidence with the stormy period in the region) and remained low until the following spring. In spring, there was a switch in taxa composition, including an increase of planktonic organisms. Additionally, we report drastic effects of extreme events, such as major storms, on deep-sea fauna. The impact of such extreme events along submarine canyon systems calls to rethink the influence of climate-driven phenomena on deep-sea ecosystems and, consequently, on their living resources.

  13. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    Science.gov (United States)

    Miller, Robert J; Hocevar, John; Stone, Robert P; Fedorov, Dmitry V

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  14. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    Directory of Open Access Journals (Sweden)

    Robert J Miller

    Full Text Available Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  15. Early benthic successional processes at implanted substrates in Barkley Submarine Canyon affected by a permanent oxygen minimum zone

    Science.gov (United States)

    Cabrera De Leo, F.; Smith, C. R.; Levin, L. A.; Fleury, A.; Aguzzi, J.

    2016-02-01

    With the advent of cabled observatories scientists are now able to have a permanent presence in the deep-seafloor, being able to reveal previously unseen faunal behavior as well as to track long-term changes in biodiversity and ecosystem function. The Ocean Networks Canada 800-km loop seafloor observatory array (NEPTUNE) located in the NE Pacific has instruments measuring a variety of environmental variables ranging from temperature, salinity, oxygen, currents, turbidity, fluorescence, etc, at multiple and very high temporal resolution scales. High-definition video cameras also monitor benthic communities in multiple deep-sea habitats, all at some extent influenced by an oxygen minimum zone (OMZ). In the present study, whale-bone and wood substrates are being used to evaluate bathymetric, regional and inter-basin variations in benthic biodiversity and connectivity, as well as interactions between biodiversity and ecosystem function. In May of 2014 three humpback whale (Megaptera novaeangliae) rib sections, one 20x20x10 cm block of Douglas Fir (Pseudotsunga meniziesii), and a 30x30x30 block of authigenic carbonate were placed with the use of an ROV at 890 m depth inside Barkley Canyon. The substrate packages were placed concentrically, 45-cm away from a HD video camera. Five-minute videos were captured at 2-hr intervals. Preliminary data analysis from 8 months of deployment showed very distinct early community succession patterns between the two organic substrates (bones and wood) and the authigenic carbonate. Whalebones and wood showed amphipod (Orchomene obtusa) abundance peaks mostly contained during the first 60 days after deployment; Amphipod peak abundance rapid decline coincides with rapid growth of bacterial mat on whalebone and wood surfaces. Low abundance, species richness and substrate degradation rates are in agreement with a low oxygen environment of the OMZ in the canyon. Despite the early stages of data analysis, this experiment demonstrates how

  16. Effect of submarine canyons on tsunami heights, currents and run-up off the southeast coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.; ManiMurali, R.; Baldock, T.E.

    in transverse directions. The tsunami RESEARCH ARTICLES CURRENT SCIENCE, VOL. 111, NO. 12, 25 DECEMBER 2016 1999 Figure 8. Plot showing tsunami height variation along the Pondicherry canyon (solid line; C1–C2) and Ridge (line with symbols; R1–R2) tran... CURRENT SCIENCE, VOL. 111, NO. 12, 25 DECEMBER 2016 2002 Figure 12. Plot showing tsunami-induced current speed variation along the Pondicherry canyon (solid line) and ridge (line with symbols) tran- sects at (a) 02 : 57 h; (b) 03 : 25 h; (c) 03 : 30 h...

  17. Living and dead foraminiferal assemblages from an active submarine canyon and surrounding sectors: the Gioia Canyon system (Tyrrhenian Sea, Southern Italy)

    Science.gov (United States)

    Letizia, Di Bella; Martina, Pierdomenico; Roberta, Porretta; Chiocci, Francesco Latino; Eleonora, Martorelli

    2017-05-01

    Living (rose Bengal stained) and dead benthic foraminiferal assemblages were studied from 23 stations located between 60 and 670 m depth along the Gioia Canyon and the adjacent continental shelf and slope (Southern Tyrrhenian Sea). The aim of this study is to investigate the relationships among sedimentary processes, hydrological patterns and benthic foraminiferal distribution, in a highly dynamic environment. High sedimentation rates on the shelf and occasional turbidity flows along the canyon, lead to unstable environmental conditions at the seafloor that reflect on the microbenthic community influencing faunal density, diversity, species composition and distribution inside the sediment. The foraminiferal distribution seems to be controlled by sedimentary processes, nutrient supply and organic matter recycling, which in turn are strongly controlled by the seasonal variability of riverine inputs and current dynamics in the Gulf of Gioia. From the inner shelf to the upper continental slope (550 m depth), the living foraminiferal assemblage is dominated by agglutinated taxa, likely favored by the high terrigenous supply. Frequent eutrophic taxa (Valvulineria bradyana and Nonionella turgida) tolerant high turbidity (Leptohalysis scottii,) and low oxygen (Bolivina spp. and Bulimina spp.) are recorded on the edge of the inner shelf, where channeling, deposition of coastal deposits and occasional sediment gravity flows occur. In the outer sector of the shelf a turnover of species is observed; L. scottii replaced by the opportunistic species Reophax scorpiurus, and taxa indicative of high energy conditions (Cassidulina spp.) become dominant in association with mesotrophic species like Globocassidulina subglobosa. Along the continental slope, lower sedimentation rates and more stable environmental conditions support richer and more diversified foraminiferal assemblage. The abundance of Bulimina marginata indicates eutrophic conditions at the shallower station (300 m depth

  18. The dynamic balance between food abundance and habitat instability: benthic foraminifera of Portuguese margin canyons. Geologica Ultraiectina (286)

    NARCIS (Netherlands)

    Koho, K.A.

    2008-01-01

    Submarine canyons are dynamic sedimentary environments influenced by sediment transport, erosion and deposition. Gravity flows can scour and erode the canyon floor, thus redistributing sediment to distal locations. In addition, submarine canyons can act as sedimentary traps where sediment

  19. Gigantic oocytes in the deep sea black coral Dendrobathypathes grandis (Antipatharia) from the Mar del Plata submarine canyon area (southwestern Atlantic)

    Science.gov (United States)

    Lauretta, Daniel; Penchaszadeh, Pablo E.

    2017-10-01

    The black coral Dendrobathypathes grandis (Cnidaria: Antipatharia) is studied for the first time in the southwestern Atlantic off Argentina. This is the only antipatharian reported from the Atlantic between 35°S and 54°S. Eleven specimens were collected at depths of 819-2204 m during three expeditions to the Mar del Plata submarine canyon (2012-2013); seven were females. The species is gonochoric, and the polyps in female colonies contain up to nine oocytes per polyp, which can reach 1500 μm in diameter. In contrast, the largest oocyte currently reported for antipatharians is 500 μm, and usual diameters do not exceed 200 μm. These large oocytes have over 20 times more volume than the biggest oocyte reported, but over 800 times more volume when compared with the common oocyte size of the group. Sperm size and morphology is similar to previous data from other species. As in previous studies, neither embryos nor larvae were found in any specimens. This species was previously only reported from waters off South Georgia Island, and so these specimens expand the known distribution north by 1800 km.

  20. Origin and biogeography of the deep-water Mediterranean Hydromedusae including the description of two new species collected in submarine canyons of Northwestern Mediterranean

    Directory of Open Access Journals (Sweden)

    J. M. Gili

    1998-06-01

    Full Text Available Two new species of hydromedusae (Foersteria antoniae and Cunina simplex are described from plankton collected in sediment traps placed in the Lacaze-Duthiers Submarine Canyon and along Banyuls-sur-Mer coast (northwestern Mediterranean. The Mediterranean hydromedusan deep-water fauna contains 41 species which represent 45.5 % of the world-wide deep-sea hydromedusae fauna (90 and 20% of the total number of Mediterranean hydromedusae (204. The Mediterranean deep-water hydromedusan fauna is characterised by a large percentage of holoplanktonic species (61%, mainly Trachymedusae. Nevertheless, contrary to the general opinion, the percentage of meroplanktonic species is equally high. The most original features of this fauna lies however in the importance of the number of endemic species (22% and in the fact that the majority of them are meroplanktonic Leptomedusae with a supposed bathybenthic stage. Some of the endemic species could still represent relics of the primitive Tethys fauna having survived to the Messinian crisis. The origin of the Mediterranean deep-water hydromedusan fauna is discussed and a general hypothesis is proposed.

  1. The community of deep-sea decapod crustaceans between 175 and 2600 m in submarine canyons of a volcanic oceanic island (central-eastern Atlantic)

    Science.gov (United States)

    Pajuelo, José G.; Triay-Portella, Raül; Santana, José I.; González, José A.

    2015-11-01

    The community structure and faunal composition of deep-sea decapod crustaceans in submarine canyons on the slope off Gran Canaria Island (Canary Islands, central-eastern Atlantic) were investigated. Samples were collected during five research cruises (115 stations) at depths between 175 and 2554 m. A total of 26387 decapod specimens, belonging to 24 families and 38 species, were collected with traps. A cluster analysis of the stations showed four distinct assemblages: (i) in the transition area between shelf and slope (175-302 m); (ii) on the upper slope (361-789 m); (iii) on the middle slope (803-1973 m); and iv) on the lower slope (2011-2554 m). The deep-sea decapod fauna of the Canary Islands is dominated by shrimp of the family Pandalidae, which make up more than 23% of the species. Within the Pandalidae, species of the genus Plesionika stand out as those of greatest abundance on the island slope. The greatest diversity of species was located on the upper slope. The standardized mean abundance and mean biomass for the transition zone between the shelf and slope and for the upper slope were nearly 5 times greater in abundance and 4 times greater in biomass than those estimated for the middle slope, and nearly 53 and 29 times greater for the lower slope, indicating a lower abundance and biomass at the shallower part of the insular slope. The mean weight per individual showed an increasing pattern with depth and an inverse pattern with the bottom temperature and salinity. The existence of depth boundaries around the Canary Islands is known to be closely linked to oceanographic conditions, determined by the water masses present in this archipelago explaining the discontinuities observed at depths of 800 and 2000 m. The boundary observed inside the bathymetric region of the Eastern North Atlantic Central Water can be related with the transition zone between the shelf and the slope of the island.

  2. Holocene canyon activity under a combination of tidal and tectonic forcing

    Science.gov (United States)

    Mountjoy, Joshu; Micallef, Aaron; Stevens, Craig; Stirling, Mark

    2013-04-01

    The majority of submarine canyon systems that are active during sea level highstands are coupled to terrestrial or littoral sediment transport systems (e.g. high sediment-yield rivers, wave-base sediment disturbance). However, non-coupled canyon systems can also exhibit sedimentary activity. Characterising the nature, origin, and spatial and temporal influence of the processes responsible for this sedimentary activity is important to understand the extent of sediment and carbon transfer to the deep sea, the impact of sedimentary flows on biological colonisation and diversity, and the control of recent seafloor processes on canyon morphology. The Cook Strait canyon system, between the North and South islands of New Zealand, is a large (1800 km2), multi-branching, shelf-indenting canyon on an active subduction margin. The canyon comes within 1 km of the coast, but does not intercept fluvial or littoral sediment systems and is therefore defined as a non-terrestrially-coupled system. Sediment transport on the continental shelf, associated with a strong tidal stream, and seafloor disturbance related to numerous high-activity faults is known from previous studies. Little is known, however, about the rates of sedimentary activity in the canyon and the processes driving it. The canyon system therefore provides an excellent study area for understanding sediment transport in a non-coupled submarine canyon system. Analysis of EM300 multibeam bathymetry, gravity cores, 3.5 kHz seismic reflection profiles, camera and video transects and current meter data reveals a system where oceanographic (tidal) and tectonic (earthquake) processes are moving sediment from the continental shelf, through the upper canyon, and finally to the deep ocean. Sediment accumulation rates may reach several mm/yr in the upper canyons, with data suggesting minimum rates of 0.5 mm/yr. We demonstrate that tidal currents are sufficient to mobilise fine to medium sand around and within the upper canyon

  3. Reconstructing the evolution of the submarine Monterey Canyon System from Os, Nd, and Pb isotopes in hydrogenetic Fe-Mn crusts

    Science.gov (United States)

    Conrad, T.A.; Nielsen, S.G.; Peucker-Ehrenbrink, Bernhard; Blusztajn, J.; Winslow, D.; Hein, James; Paytan, A.

    2017-01-01

    The sources of terrestrial material delivered to the California margin over the past 7 Myr were assessed using 187Os/188Os, Nd, and Pb isotopes in hydrogenetic ferromanganese crusts from three seamounts along the central and southern California margin. From 6.8 to 4.5 (± 0.5) Ma, all three isotope systems show more radiogenic values at Davidson Seamount, located near the base of the Monterey Canyon System, than in Fe-Mn crusts from the more remote Taney and Hoss seamounts. At the Taney seamounts, approximately 225 km farther offshore from Davidson Seamount, 187Os/188Os values, but not Pb and Nd isotope ratios, also deviate from the Cenozoic seawater curve towards more radiogenic values from 6.8 to 4.5 (± 0.5) Ma. However, none of the isotope systems in Fe-Mn crusts deviate from seawater at Hoss Seamount located approximately 450 km to the south. The regional gradients in isotope ratios indicate that substantial input of dissolved and particulate terrestrial material into the Monterey Canyon System is responsible for the local deviations in the seawater Nd, Pb, and Os isotope compositions from 6.8 to 4.5 (± 0.5) Ma. The isotope ratios recorded in Fe-Mn crusts are consistent with a southern Sierra Nevada or western Basin and Range provenance of the terrestrial material which was delivered by rivers to the canyon. The exhumation of the modern Monterey Canyon must have begun between 10 and 6.8 ± 0.5 Ma, as indicated by our data, the age of incised strata, and paleo-location of the Monterey Canyon relative to the paleo-coastline.

  4. Data from Oceanographer, Lydonia, and Gilbert Canyons acquired in 1965 (SCHWARTZ65 shapefile)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Submarine canyons occur at the edge of the continental shelf and cut across the slope and rise along the U.S. east coast. Three of these canyons (Oceanographer,...

  5. Sediment Dating With Short-Lived Radioisotopes In Monterey Canyon, California Imply Episodes Of Rapid Deposition And Erosion

    Science.gov (United States)

    Lorenson, T. D.; Swarzenski, P. W.; Maier, K. L.; Gwiazda, R.; Paull, C. K.; Sumner, E.; Symons, W. O.

    2015-12-01

    Submarine canyons are a major conduit for terrestrial material to the deep sea. To better constrain the timing and rates in which sediment is transported down-canyon, we collected a series of sediment cores along the axis of Monterey Canyon, and quantified mass accumulation rates using short-lived radio-isotopes. A suite of sediment cores were carefully collected perpendicular to the canyon thalweg in water depths of approximately 300m, 500m, 800m, and 1500m using a remotely operated vehicle (ROV). We choose cores that were between 60m and 75m above the canyon thalweg on canyon side bench features for correlation with moored instrument deployments. The sediment cores reveal a complex stratigraphy that includes copious bioturbation features, sand lenses, subtle erosional surfaces, subtle graded bedding, and abrupt changes sediment texture and color. Downcore excess 210Pb and 137Cs profiles imply episodic deposition and remobilization cycles on the canyon benches. Excess 210Pb activities in cores reach depths of up to 1m, implying very rapid sedimentation. Sedimentation rates vary with water depth, generally with the highest sedimentation rate in closest to land, but vary substantially on adjacent canyon benches. Preliminary results demonstrate that sediment movement within Monterey Canyon is both dynamic and episodic on human time-scales and can be reconstructed used short-lived radio-isotopes.

  6. Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities.

    Directory of Open Access Journals (Sweden)

    Andrea M Quattrini

    Full Text Available The continental margin off the northeastern United States (NEUS contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa, demersal fish (69 taxa, and decapod crustacean (34 taxa assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While

  7. Exploration of the canyon-incised continental margin of the northeastern United States reveals dynamic habitats and diverse communities

    Science.gov (United States)

    Quattrini, Andrea; Nizinski, Martha S.; Chaytor, Jason; Demopoulos, Amanda W.J.; Roark, E. Brendan; France, Scott; Moore, Jon A.; Heyl, Taylor P.; Auster, Peter J.; Ruppel, Carolyn D.; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth A.; Skarke, Adam; Shank, Timothy M.

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichosand the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial

  8. The trophic biology of the holothurian Molpadia musculus: implications for organic matter cycling and ecosystem functioning in a deep submarine canyon

    Directory of Open Access Journals (Sweden)

    A. Pusceddu

    2010-08-01

    Full Text Available Megafaunal organisms play a key role in ecosystem functioning in the deep-sea through bioturbation, bioirrigation and organic matter cycling. At 3500 m water depth in the Nazaré Canyon, NE Atlantic, very high abundances of the infaunal holothurian Molpadia musculus were observed. To quantify the role of M. musculus in sediment cycling, sediment samples and holothurians were collected using an ROV and in situ experiments were conducted with incubation chambers. The biochemical composition of the sediment (in terms of proteins, carbohydrates and lipids, the holothurians' gut contents and holothurians' faecal material were analysed. In the sediments, proteins were the dominant organic compound, followed by carbohydrates and lipids. In the holothurian's gut contents, protein concentrations were higher than the other compounds, decreasing significantly as the material passed through the digestive tract. Approximately 33±1% of the proteins were digested by the time sediment reached the mid gut, with a total digestion rate equal to 67±1%. Carbohydrates and lipids were ingested in smaller amounts and digested with lower efficiencies (23±11% and 50±11%, respectively. As a result, the biopolymeric C digestion rate was on average 62±3%. We estimated that the population of M. musculus could remove approximately 0.49±0.13 g biopolymeric C and 0.13±0.03 g N m−2 d−1 from the sediments. These results suggest that M. musculus plays a key role in the benthic tropho-dynamics and biogeochemical processes in the Nazaré Canyon.

  9. Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems.

    Science.gov (United States)

    Polyak, Victor; Hill, Carol; Asmerom, Yemane

    2008-03-07

    The age and evolution of the Grand Canyon have been subjects of great interest and debate since its discovery. We found that cave mammillaries (water table indicator speleothems) from nine sites in the Grand Canyon showed uranium-lead dating evidence for an old western Grand Canyon on the assumption that groundwater table decline rates are equivalent to incision rates. Samples in the western Grand Canyon yielded apparent water table decline rates of 55 to 123 meters per million years over the past 17 million years, in contrast to eastern Grand Canyon samples that yielded much faster rates (166 to 411 meters per million years). Chronology and inferred incision data indicate that the Grand Canyon evolved via headward erosion from west to east, together with late-stage ( approximately 3.7 million years ago) accelerated incision in the eastern block.

  10. Comparison between ROV video and Agassiz trawl methods for sampling deep water fauna of submarine canyons in the Northwestern Mediterranean Sea with observations on behavioural reactions of target species

    Science.gov (United States)

    Ayma, A.; Aguzzi, J.; Canals, M.; Lastras, G.; Bahamon, N.; Mecho, A.; Company, J. B.

    2016-08-01

    In this paper we present a comparison between Remotely Operated Vehicle (ROV) and Agassiz trawling methods for sampling deep-water fauna in three submarine canyons of the Northwestern Mediterranean Sea and describe the behavioural reactions of fishes and crustacean decapods to ROV approach. 10 ROV dives, where 3583 individuals were observed and identified to species level, and 8 Agassiz trawls were carried out in a depth range of 750-1500 m. As noticed in previous studies, abundances of fishes and decapod crustaceans were much higher in the ROV videos than in Agassiz trawl samples, as the latter are designed for the retrieval of benthic, less motile species in permanent contact with the bottom. In our observations fish abundance was one order of magnitude higher with ROV (4110.22 ind/km2) than with Agassiz trawl (350.88 ind/km2), whereas decapod crustaceans were six times more abundant in ROV videos (6362.40 ind/km2) than in Agassiz samples (1364.52 ind/km2). The behaviour of highly motile fishes was analysed in terms of stationary positioning over the seafloor and avoidance or attraction to ROV approach. The most frequently occurring fish species Coelorinchus mediterraneus, Nezumia aequalis, Bathypterois dubius, Lepidion lepidion, Trachyrincuss scabrus and Polyacanthonotus rissoanus did not react to the presence of the ROV in most cases (>50%). Only B. dubius (11%), Lepidion lepidion (14.8%), P. rissoanus (41%) and T. scabrus (14.3%) reacted to ROV approach. More than 60% of less motile species, such as crustacean decapods, did not respond to ROV presence either. Only 33.3% of Geryon longipes, 36.2% of Munida spp. and 29.79% of Pagurus spp. were observed avoiding or defensively reacting to the ROV. The comparison of results obtained with ROV and trawl sampling is of ecological relevance since ROV can report observations in areas where trawling is technically unfeasible. The lack of reaction by most fish and crustacean decapod specimens further confirms that ROV

  11. Canyon-confined pockmarks on the western Niger Delta slope

    Science.gov (United States)

    Benjamin, Uzochukwu; Huuse, Mads; Hodgetts, David

    2015-07-01

    Fluid flow phenomena in the deepwater Niger Delta are important for the safe and efficient exploration, development and production of hydrocarbons in the area. Utilizing 3D seismic data from the western Niger Delta slope, we have identified pockmarks that are confined within a NE-SW oriented submarine canyon system that has been active since the early Quaternary. The pockmarks, subdivided into 'canyon-margin' pockmarks and 'intra-canyon' pockmarks, on the basis of their plan-form distribution patterns, are found to be spatially and stratigraphically related to stratigraphic discontinuities created by erosion cuts associated with the submarine canyon system. We infer that stratigraphic discontinuities provided pathways for fluid migration within the buried canyon system, allowing fluids from deeper parts of the basin to reach the seafloor as indicated by abundant pockmarks above the partly buried canyon. The transportation of fluids from deeper parts of the basin into the buried segment of the canyon system was facilitated by carrier beds expressed as high amplitude reflection packages and by extensional normal faults. The prevalence of the 'canyon margin' pockmarks over the 'intra-canyon' pockmarks is attributed to the direct connection of the buried canyon margins with truncated reservoir facies in hydraulic connection with deeper reservoir facies. The formation of the 'intra-canyon' pockmarks is interpreted to have been limited by fluid flow disconnection often caused by stratigraphic alternation of sand-rich and shale-rich channel deposits that constitute the canyon fill. Muddy canyon fill units act as baffles to fluid flow, while connected sandy infill units constitute pathways for fluid migration. Occurrence of pockmarks throughout the length of the submarine canyon system is an indication of shallow fluid flow within buried reservoir facies. Systematic alignment of seafloor pockmarks are clues to buried reservoirs and provide insights into reservoir

  12. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  13. Currents, temperature, attenuation, and conductivity data collected during the Monterey Canyon Experiment from moorings deployed from platforms ROBERT GORDON SPROUL and NOAA Ship McARTHUR from 1993-08-03 to 1995-05-15 (NODC Accession 0067570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey Canyon experiment studied the mechanisms that govern the circulation within and the transport of sediment and water through Monterey Submarine Canyon....

  14. GEOMORPHOLOGY. Comment on "Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet".

    Science.gov (United States)

    Zeitler, Peter K; Koons, Peter O; Hallet, Bernard; Meltzer, Anne S

    2015-08-21

    Wang et al. (Reports, 21 November, 2014, p. 978) describe a buried canyon upstream of the Yarlung Tsangpo Gorge and argue that rapid erosion of the gorge was merely a passive response to rapid uplift at ~2.5 million years ago (Ma). We view these data as an expected consequence emerging from feedbacks between erosion and crustal rheology active well before 2.5 Ma. Copyright © 2015, American Association for the Advancement of Science.

  15. Heavy mineral sorting as a tool to distinguish depositional characteristics of “in situ” sands from their related injected sands in a Palaeogene submarine Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Moatari Kazerouni, Afsoon; Friis, Henrik; Svendsen, Johan. B

    Postdepositional remoblization and injection of sand are important processes in deep-water clastic systems. Subsurface mobilisation and injection of sand has been recently recognised as a significant control of deep-water sandstone geometry. Kilometre-scale injection complexes have been interpreted...... in the Paleocene Siri Canyon near the Danish Central Graben of the North Sea hydrocarbon province from borehole data. The emplacement of large-scale injection complexes has been commonly attributed in the geological literature to seismic activity and consequent sand liquefaction. However, due to very small...... differences in textural and compositional properties, and the lack of depositional structures of reservoir sands in the Siri Canyon, the distinction between "in situ" and injected or remobilised sands is difficult. Large scale heavy mineral sorting (in 10 m thick units) is observed in several reservoir units...

  16. Boulder emplacement and remobilisation by cyclone and submarine landslide tsunami waves near Suva City, Fiji

    Science.gov (United States)

    Lau, A. Y. Annie; Terry, James P.; Ziegler, Alan; Pratap, Arti; Harris, Daniel

    2018-02-01

    The characteristics of a reef-top boulder field created by a local submarine landslide tsunami are presented for the first time. Our examination of large reef-derived boulders deposited by the 1953 tsunami near Suva City, Fiji, revealed that shorter-than-normal-period tsunami waves generated by submarine landslides can create a boulder field resembling a storm boulder field due to relatively short boulder transport distances. The boulder-inferred 1953 tsunami flow velocity is estimated at over 9 m s- 1 at the reef edge. Subsequent events, for example Cyclone Kina (1993), appear to have remobilised some large boulders. While prior research has demonstrated headward retreat of Suva Canyon in response to the repeated occurrence of earthquakes over the past few millennia, our results highlight the lingering vulnerability of the Fijian coastlines to high-energy waves generated both in the presence (tsunami) and absence (storm) of submarine failures and/or earthquakes. To explain the age discrepancies of U-Th dated coral comprising the deposited boulders, we introduce a conceptual model showing the role of repeated episodes of tsunamigenic submarine landslides in removing reef front sections through collapse. Subsequent high-energy wave events transport boulders from exposed older sections of the reef front onto the reef where they are deposited as 'new' boulders, alongside freshly detached sections of the living reef. In similar situations where anachronistic deposits complicate the deposition signal, age-dating of the coral boulders should not be used as a proxy for determining the timing of the submarine landslides or the tsunamis that generated them.

  17. Submarine Medicine Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Submarine Medicine Team conducts basic and applied research on biomedical aspects of submarine and diving environments. It focuses on ways to optimize the health...

  18. Seasonal variability in particulate matter source and composition to the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight

    Science.gov (United States)

    Prouty, Nancy G.; Mienis, Furu; Campbell, P.; Roark, E. Brendan; Davies, Andrew; Robertson, Craig M.; Duineveld, Gerard; Ross, Steve W.; Rhodes, M.; Demopoulos, Amanda W.J.

    2017-01-01

    Submarine canyons are often hotspots of biomass and productivity in the deep sea. However, the majority of deep-sea canyons remain poorly sampled. Using a multi-tracer approach, results from a detailed geochemical investigation from a year-long sediment trap deployment reveals details concerning the source, transport, and fate of particulate matter to the depositional zone (1318 m) of Baltimore Canyon on the US Mid-Atlantic Bight (MAB). Both organic biomarker composition (sterol and n-alkanes) and bulk characteristics (δ13C, Δ14C, Chl-a) suggest that on an annual basis particulate matter from marine and terrestrially-derived organic matter are equally important. However, elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight the seasonal influx of relatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive elements cadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking of biomass during seasonal blooms in response to enhanced surface production within the nutricline. While internal waves within the canyon resuspend sediment between 200 and 600 m, creating a nepheloid layer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone is minimal. Instead, vertical transport and lateral transport across the continental margin are the dominant processes driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organic matter may be linked to benthic faunal composition and ecosystem scale carbon cycling.

  19. Comment on "Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems".

    Science.gov (United States)

    Pearthree, Philip A; Spencer, Jon E; Faulds, James E; House, P Kyle

    2008-09-19

    Polyak et al. (Reports, 7 March 2008, p. 1377) reported that development of the western Grand Canyon began about 17 million years ago. However, their conclusion is based on an inappropriate conflation of Plio-Quaternary incision rates and longer-term rates derived from sites outside the Grand Canyon. Water-table declines at these sites were more likely related to local base-level changes and Miocene regional extensional tectonics.

  20. Seasonal variability in the source and composition of particulate matter in the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight

    NARCIS (Netherlands)

    Prouty, N.G.; Mienis, F.; Campbell-Swarzenski, P.; Roark, E.B.; Davies, A.J.; Robertson, C.M.; Duineveld, G.; Ross, S.W.; Rhode, M.; Demopoulos, A.W.J.

    2017-01-01

    Submarine canyons are often hotspots of biomass due to enhanced productivity and funneling of organic matterof marine and terrestrial origin. However, most deep-sea canyons remain poorly studied in terms of their role asconduits of terrestrial and marine particles. A multi-tracer geochemical

  1. Submarine groundwater discharge revealed by radium isotopes (Ra-223 and Ra-224 near a paleochannel on the Southern Brazilian continental shelf

    Directory of Open Access Journals (Sweden)

    Karina Kammer Attisano

    2013-09-01

    Full Text Available Submarine Groundwater Discharge (SGD has been recognized as an important component of the ocean-continent interface. The few previous studies in Brazil have focused on nearshore areas. This paper explores SGD on the Southern Brazilian Continental Shelf using multiple lines of evidence that include radium isotopes, dissolved nutrients, and water mass observations. The results indicated that SGD may be occurring on the Continental Shelf in the Albardão region, near a paleochannel located 50 km offshore. This paleochannel may thus be a preferential pathway for the delivery of nutrient- and metal-enriched groundwater and porewater into continental shelf waters.

  2. Low cost submarine robot

    OpenAIRE

    Ponlachart Chotikarn; Werapong Koedsin; Boonlua Phongdara; Pattara Aiyarak

    2010-01-01

    A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-rin...

  3. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  4. Impact of Submarine Geohazards on Organic Carbon Burial Offshore Southwestern Taiwan

    Science.gov (United States)

    Su, C. C.; Tsai, P. H.; Liu, J. T.; Hsu, S. K.; Chiu, S. D.

    2015-12-01

    The tectonically active setting and climatic conditions give Taiwan a high exposure to severe natural hazards. After the Pingtung Earthquake and Morakot Typhoon which occurred in 2006 and 2009, the turbidity currents caused a series of submarine cable breaks along the Gaoping and Fangliao Submarine Canyons off SW Taiwan. Large amounts of terrestrial sediments were fast transported bypass the narrow continental shelf and rapidly moved southward through submarine canyons to the deep sea. Two piston cores which were taken from the Tsangyao Ridge and its adjacent area (OR5-1302-2-MT7 and MT6) might shed light on understanding the export of terrestrial organic carbon to the abyss by submarine geo-hazards. The 210Pb profile of MT7 in conjunction with the grain size data indicates the existence of the Pingtung Earthquake and Morakot Typhoon related deposits. The sedimentation rate of these two cores which derived from 210Pb is approximately 0.05 cm/yr. The cores collected from the Gaoping Submarine Canyon, Gaoping Slope and Fangliao Submarine Canyon are used for analyzing TOC, organic C/N and δ13C ratios. The concentrations of total organic carbon are ~0.5%, and C/N rations almost remain between 4 and 8. The high TOC (~1%) and C/N ratio (>10) are observed in the samples with plant debris. The fluctuation of TOC and C/N ratios in near-shore samples is higher than deep sea. In terms of δ13C-values, it progressively decreases with distances from coastal zone to the deep sea. Due to the larger proportions of land-derived organic carbon, the δ13C-values in the surface sediment of upper Gaoping Submarine Canyon, Gaoping Slope, and the turbidite layers at the head of Fangliao Submarine Canyon are lighter. Furthermore, we use the TOC concentrations and δ13C-values to estimate the fractional contributions of terrestrial organic carbon by a simple two component mixing model, and integrate with the 210Pb-derived sediment accumulation rates to evaluate the organic carbon burial

  5. Inter-bed fluid triggered slope failures of the Kaoping Canyon upstream area: Results from memorial R/V Ocean Researcher 5

    Science.gov (United States)

    Yeh, Yi-Ching; Shen, Tsung-Fu; Liu, Shao-Yung; Yu, Pai-Sen

    2015-04-01

    As a major pathway of the sediment transportation, the submarine canyons sculpture the seafloor then deposit sediments at the deep ocean. The submarine canyons could be classified to two categories: erosive or deposition based on geological environment or fluid flow down to the canyon. The erosive canyons often 'attack' the levee which may result in submarine landslides or mass transportations due to slope failure. Once slope failure occurs at geological weakness area such as gas hydrate dissociation zone, giant mass slumping will be triggered. These kinds of mass transportations will further develop turbidity current or hyperpycnal flow, which could damage the submarine cables or pipes. The giant mass transportation even triggers devastated tsunami. In this study, a latest swath bathymetric map was compiled by comprising seven cruises between December, 2012 and March 2013. The result shows that regressive erosion may take a place north of 500 meters contour (gas hydrate dissociation region), southwest off Taiwan. Moreover, high resolution seismic image (acquired by Edgetech SB-424 sub-bottom profiler) show that gas rich sediments co-exist with submarine landslide deposits in the edge of the upstream of Kaoping submarine canyon. It implies that slope failures in the study area might be caused by weaken sediment collapse.

  6. Currents, pressure, temperature, conductivity, salinity, and attenuation data collected from moorings during the Lydonia Canyon Dynamics Experiment deployed from platforms OCEANUS, LULU, and WHITEFOOT from October 24, 1980 to November 11, 1982 (NCEI Accession 0054154)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A major field experiment to determine the importance of submarine canyons in sediment transport along and across the continental margin. The experiment included...

  7. Oceanographic data collected during the Atlantic Deep-Water Canyons: Pathways to the Abyss 2011 on NOAA Ship Nancy Foster in the North Atlantic Ocean from 2011-06-04 to 2011-06-17 (NCEI Accession 0082240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Submarine canyons are dominant features of the outer continental shelf and slope of the US East coast from Cape Hatteras to the Gulf of Maine. They are important...

  8. Bathymetric map of Lydonia Canyon, U.S. Atlantic Outer Continental Shelf

    Science.gov (United States)

    Butman, Bradford; Moody, John A.

    1984-01-01

    Lydonia Canyon is one of several large submarine canyons that indent the eastern U.S. Continental Shelf along the southern flank of Georges Bank (Index map).  This bathymetric map of the upper part of Lydonia Canyon (water depths shallower than about 2,00 m) was prepared as part of a study of the physical oceanography and geology of Lydonia Canyon (Butman and others, 1983; Twichell, 1983).  An accurate map of the canyon at a scale of at least 1:50,000 was needed for placement of current-meter morrings, for location of hydrographic and sediment sampling stations, and for interpretation of current-meter and geologic data. The map covers the area from 40°10'N. to 40°40'N. and from 67°28'W. to 67°50'W. 

  9. The marine soundscape of the Perth Canyon

    Science.gov (United States)

    Erbe, Christine; Verma, Arti; McCauley, Robert; Gavrilov, Alexander; Parnum, Iain

    2015-09-01

    The Perth Canyon is a submarine canyon off Rottnest Island in Western Australia. It is rich in biodiversity in general, and important as a feeding and resting ground for great whales on migration. Australia's Integrated Marine Observing System (IMOS) has moorings in the Perth Canyon monitoring its acoustical, physical and biological oceanography. Data from these moorings, as well as weather data from a near-by Bureau of Meteorology weather station on Rottnest Island and ship traffic data from the Australian Maritime Safety Authority were correlated to characterise and quantify the marine soundscape between 5 and 3000 Hz, consisting of its geophony, biophony and anthrophony. Overall, biological sources are a strong contributor to the soundscape at the IMOS site, with whales dominating seasonally at low (15-100 Hz) and mid frequencies (200-400 Hz), and fish or invertebrate choruses dominating at high frequencies (1800-2500 Hz) at night time throughout the year. Ships contribute significantly to the 8-100 Hz band at all times of the day, all year round, albeit for a few hours at a time only. Wind-dependent noise is significant at 200-3000 Hz; winter rains are audible underwater at 2000-3000 Hz. We discuss how passive acoustic data can be used as a proxy for ocean weather. Passive acoustics is an efficient way of monitoring animal visitation times and relative densities, and potential anthropogenic influences.

  10. Occurrence of submarine canyons, sediment waves and mass ...

    Indian Academy of Sciences (India)

    MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China. CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.

  11. Seasonal variability in the source and composition of particulate matter in the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight

    Science.gov (United States)

    Prouty, N. G.; Mienis, F.; Campbell-Swarzenski, P.; Roark, E. B.; Davies, A. J.; Robertson, C. M.; Duineveld, G.; Ross, S. W.; Rhode, M.; Demopoulos, A. W. J.

    2017-09-01

    Submarine canyons are often hotspots of biomass due to enhanced productivity and funneling of organic matter of marine and terrestrial origin. However, most deep-sea canyons remain poorly studied in terms of their role as conduits of terrestrial and marine particles. A multi-tracer geochemical investigation of particles collected yearlong by a sediment trap in Baltimore Canyon on the US Mid-Atlantic Bight (MAB) revealed temporal variability in source, transport, and fate of particulate matter. Both organic biomarker composition (sterol and n-alkanes) and bulk characteristics (δ13C, Δ14C, Chl-a) suggest that while on average the annual contribution of terrestrial and marine organic matter sources are similar, 42% and 52% respectively, marine sources dominate. Elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight a seasonal influx of relatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive micronutrients cadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking of phytodetrital biomass in response to enhanced surface production within the nutricline. While tidally driven currents within the canyon resuspend sediment between 200 and 600 m, resulting in the formation of a nepheloid layer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone was minimal. Instead, vertical transport and lateral transport across the continental margin were the dominant processes driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organic matter is likely linked to benthic faunal composition and ecosystem scale carbon cycling.

  12. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  13. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-01-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, to obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular the dynamic pore pressure and the combined static and dynamic effective stresses are presented. 10 references, 11 figures.

  14. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-09-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.

  15. Submarine landside in the Bussol Graben: Structural and formation features

    Science.gov (United States)

    Baranov, B. V.; Lobkovsky, L. I.; Dozorova, K. A.; Rukavishnikova, D. D.

    2017-05-01

    Analysis of geophysical data obtained during a study of the insular slope in the central Kuril‒Kamchatka Trench during projects Kuriles-2005 and Kuriles-2006 promoted by the Presidium of the Russian Academy of Sciences revealed a large submarine landslide in this area. The landslide, located at the bottom of the transverse valley confined to the Bussol l Graben, resulted from the failure of the northeastern wall of a graben composed of sedimentary material. It exceeds 35 km3 in size, representing one of the large submarine landslides discovered to date on the slope of the Kuril‒Kamchatka Trench in submarine canyonfan environments.

  16. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona

    Science.gov (United States)

    Cole, Kenneth L.; Arundel, Samantha T.

    2005-09-01

    Carbon isotopes in rodent fecal pellets were measured on packrat (Neotoma spp.) middens from the Grand Canyon, Arizona. The pellet samples reflect the abundance of cold-intolerant C4 and Crassulacean acid metabolism (CAM) plant species relative to the predominant C3 vegetation in the packrat diet. The temporal sequence of isotopic results suggests a temperature decline followed by a sharp increase corresponding to the Bølling/ Allerød Younger Dryas early Holocene sequence. This pattern was then tested using the past distribution of Utah agave (Agave utahensis). Spatial analyses of the range of this temperature-sensitive CAM species demonstrate that its upper elevational limit is controlled by winter minimum temperature. Applying this paleotemperature proxy to the past elevational limits of Utah agave suggests that minimum winter temperatures were ˜8 °C below modern values during the Last Glacial Maximum, 4.5 6.5 °C below modern during the Bølling/Allerød, and 7.5 8.7 °C below modern during the early Younger Dryas. As the Younger Dryas terminated, temperatures warmed ˜4 °C between ca. 11.8 ka and 11.5 ka. These extreme fluctuations in winter minimum temperature have not been generally accepted for terrestrial paleoecological records from the arid southwestern United States, likely because of large statistical uncertainties of older radiocarbon results and reliance on proxies for summer temperatures, which were less affected.

  17. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona

    Science.gov (United States)

    Cole, K.L.; Arundel, S.T.

    2005-01-01

    Carbon isotopes in rodent fecal pellets were measured on packrat (Neotoma spp.) middens from the Grand Canyon, Arizona. The pellet samples reflect the abundance of cold-intolerant C4 and Crassulacean acid metabolism (CAM) plant species relative to the predominant C3 vegetation in the packrat diet. The temporal sequence of isotopic results suggests a temperature decline followed by a sharp increase corresponding to the B??lling/Aller??d-Younger Dryas - early Holocene sequence. This pattern was then tested using the past distribution of Utah agave (Agave utahensis). Spatial analyses of the range of this temperature-sensitive CAM species demonstrate that its upper elevational limit is controlled by winter minimum temperature. Applying this paleotemperature proxy to the past elevational limits of Utah agave suggests that minimum winter temperatures were ???8??C below modern values during the Last Glacial Maximum, 4.5-6.5 ??C below modern during the B??lling/Aller??d, and 7.5-8.7 ??C below modern during the early Younger Dryas. As the Younger Dryas terminated, temperatures warmed ???4 ??C between ca. 11.8 ka and 11.5 ka. These extreme fluctuations in winter minimum temperature have not been generally accepted for terrestrial paleoecological records from the arid southwestern United States, likely because of large statistical uncertainties of older radiocarbon results and reliance on proxies for summer temperatures, which were less affected. ?? 2005 Geological Society of America.

  18. Development of the Astoria Canyon-Fan physiography and comparison with similar systems

    Science.gov (United States)

    Nelson, C.H.; Carlson, P.R.; Byrne, J.V.; Alpha, T.R.

    1970-01-01

    A detailed bathymetric study of Astoria Canyon and Astoria Fan provides a model for typical submarine canyon-fan systems. The present canyon head is 9 miles (17 km) west of the Columbia River mouth but buried Pleistocene channels appear to have connected the two features in the past. The canyon, which is distinguished by its relief, V-shaped profiles, and numerous tributaries, winds sinuously and is coincident with apparent structural trends across the continental shelf and slope. At the fan apex, the canyon mouth merges smoothly into Astoria Channel, which is characterized by its U-shaped profiles, lower walls of even height, and levee development. Astoria Channel and the fan valley at the base of the continental slope are the most recently active of a series of main fan valleys that appear to have: (1) progressively "hooked left"; (2) migrated from north to south across the fan during its formation; and (3) been partly responsible for the asymmetrical shape of the fan. The deep, narrow upper fan valleys that characterize the steep (> 1:100, or 0??35???) and rough (10-30 fathoms, or 18-55 m) upper fan surface break into distributaries on the middle fan, where there is the sharpest change in gradient. The main valleys become broader and shallower down the fan, while the generally concave fan surface grades to nearly a flat seafloor (to gradients Similarity of Astoria Canyon-Fan system with other deep-sea fan and alluvial fan systems, suggests the hypothesis that size of drainage basin, sediment size, and sediment load control the size, gradient, and valley development of any fan system. Data from bathymetry, seismic refraction stations, and sediment load of the Columbia River indicate that the cutting of Astoria Canyon and the deposition of the unconsolidated sediment layer forming Astoria Fan could have been accomplished during the Pleistocene. A similar history can be suggested for other major submarine canyon-fan systems. ?? 1970.

  19. The turbidity currents records of Kaoping Canyon during past 32000 yrs

    Science.gov (United States)

    Yu, S.; Lin, A. T.; Tsai, L.

    2013-12-01

    Taiwan is both located in East Asia Monsoon area and plate collision boundary; as the result, frequently episodic rainfall and fractal geologic setting will cause Taiwan become a high potential area that gravity flows happen. When the high density terristrial flows were exported to the sea, it will become the hyperpycnal flow and perhaps can cause submarine geo-hazard happen (i.e. In 2010 Typhoon Morakot, there are numerous terrestrial sediments be delivered to the southwestern offshore Taiwan along the Kaoping Canyon and causing submarine cable be broken). Additionally, turbidite will also be triggered by earthquakes and it will also have the chance to cause submarine geo-hazard. For an example, Pintung earthquake happened in Hengchun, Taiwan in 1996; this earthquake triggered very huge magnitude submarine landslide happened and damaged several hundred kilometers submarine cable along the Kaoping Canyon. Taiwan is a island surrounded by ocean, and there are lots of submarine cables across these seas, especially along the Kaoping Canyon in southwestern offshore Taiwan. In order to avoid too much economic and safety waste, the risk estimation of geo-hazard is very important, and the frequency of turbidity currents happened is a very visible index. Hence, we collected a core located at the downstream of Kaoping Canyon in 2800 meters water depth. Its length is about 39 meters and we can divide this core into two different lithofacies roughly by core description. The upper part is dominated by mud and silt inter-bedded, and the lower part is dominated by massive mud. By the 14C dating, the age of lithofacies change is about 11000 yrs BP. According to the previous studies, We supposed due to Kaoping Canyon is connected with Kaoping river directly and the terrestrial materials of Pintong plain can be delivered from the land to deep ocean directly via the high energy flooding events. In other words, the lithoface change is related to the high energy events happened in

  20. Miocene Current-Modified Submarine Fans

    Science.gov (United States)

    Arce Perez, L. E.; Snedden, J.; Fisher, W. L.

    2016-12-01

    In the southwestern Gulf of Mexico, new and newly reprocessed seismic data has revealed a series of large bedforms, with set thicknesses of 130 to 250 meters. These exhibit hummocky, oblique and shingled to parallel seismic clinoform reflections. This seismic package has a paleowater depth of 450 meters. Those shingled seismic reflections in offshore east Mexico are interpreted as contourite drift deposits. These Miocene-age contourites may be related to strong ocean bottom currents that modified submarine fans and transported sediment to the north. Those contourites were identified on older seismic data, but are better imaged and interpreted on this new data. Plans are to map out and investigate the origin and extent of fans and contourites that extends over a large area of the Gulf of Mexico. In the Early Miocene several submarine fans systems were formed by the sediment input related to orogenic activity in Mexico. Submarine fan development persisted into the Middle Miocene due to continued uplift and erosion of the Mexican landmass. Initial, contourites are small and close proximity to the deep-water fan. In the Late Miocene time, contourite drift field reached its maximum extent in the Mexican deepwater area, anchored on its southern end by a submarine mound. This mounded submarine fan is located in the offshore northeast Veracruz and can be linked to increased uplift and erosion of the Trans-Mexican volcanic belt. In the Miocene-Pliocene, the large contourite drift begins to diminish in size and scale and is moribund by the Pliocene, with establishment of oceanic circulation similar to the present day. This research is important to understand more about the Gulf of Mexico and also for the Miocene timeframe that is a key phase in the earth's history. The role of the change in bottom water flow during progressive closure of the equatorial seaway separating North and South America will also be investigated.

  1. Paleogene canyons of Tethyan margin and their hydrocarbon potential, Czechoslovakia

    Energy Technology Data Exchange (ETDEWEB)

    Picha, F.J. (Chevron Overseas Petroleum Inc., San Ramon, CA (United States))

    1991-03-01

    Two Paleogene canyons buried below the Neogene foredeep and the Carpathian thrust belt in Southern Moravia have been outlined by drilling and seismic profiling. The features, as much as 12 km wide and over 1000 m deep, have been traced for 40 km. They are cut into Mesozoic and Paleozoic carbonate and clastic deposits and underlying Precambrian crystalline rocks. The sedimentary fill is made of late Eocene and early oligocene marine deposits, predominantly silty mudstones and siltstones. Sandstones and conglomerates are distributed mainly in the lower axial part of the valleys. Proximal and distal turbidites, grain-flow and debris-flow deposits have been identified in the fill. The common occurrence of slump folds, pebbly mudstones, and chaotic slump deposits indicate that mass movement played a significant role in sediment transport inside the canyons. The canyons are interpreted as being cut by rivers, then submerged and further developed by submarine processes. The organic rich mudstones of the canyon fill are significant source rocks (1-10% TOC). They reached the generative stage only after being tectonically buried below the Carpathian thrust belt in middle Miocene time. Channelized sandstones and proximal turbidities provide reservoirs of limited extent, although more substantial accumulations of sands are possible further downslope at the mouth of these canyons. Several oil fields have been discovered both within the canyon fill and the surrounding rocks. Similar Paleogene valleys may be present elsewhere along the ancient Tethyan margins buried below the Neogene foredeeps and frontal zones of the Alps and Carpathians. Their recognition could prove fruitful in the search for hydrocarbons.

  2. Submarine fans: A critical retrospective (1950–2015

    Directory of Open Access Journals (Sweden)

    G. Shanmugam

    2016-04-01

    Full Text Available When we look back the contributions on submarine fans during the past 65 years (1950–2015, the empirical data on 21 modern submarine fans and 10 ancient deep-water systems, published by the results of the First COMFAN (Committee on FANs Meeting (Bouma et al., 1985a, have remained the single most significant compilation of data on submarine fans. The 1970s were the “heyday” of submarine fan models. In the 21st century, the general focus has shifted from submarine fans to submarine mass movements, internal waves and tides, and contourites. The purpose of this review is to illustrate the complexity of issues surrounding the origin and classification of submarine fans. The principal elements of submarine fans, composed of canyons, channels, and lobes, are discussed using nine modern case studies from the Mediterranean Sea, the Equatorial Atlantic, the Gulf of Mexico, the North Pacific, the NE Indian Ocean (Bay of Bengal, and the East Sea (Korea. The Annot Sandstone (Eocene–Oligocene, exposed at Peira-Cava area, SE France, which served as the type locality for the “Bouma Sequence”, was reexamined. The field details are documented in questioning the validity of the model, which was the basis for the turbidite-fan link. The 29 fan-related models that are of conceptual significance, developed during the period 1970–2015, are discussed using modern and ancient systems. They are: (1 the classic submarine fan model with attached lobes, (2 the detached-lobe model, (3 the channel-levee complex without lobes, (4 the delta-fed ramp model, (5 the gully-lobe model, (6 the suprafan lobe model, (7 the depositional lobe model, (8 the fan lobe model, (9 the ponded lobe model, (10 the nine models based on grain size and sediment source, (11 the four fan models based on tectonic settings, (12 the Jackfork debrite model, (13 the basin-floor fan model, (14 supercritical and subcritical fans, and (15 the three types of fan reservoirs. Each model is unique

  3. Process sedimentology of submarine fan deposits - new perspectives

    Science.gov (United States)

    Postma, George

    2017-04-01

    To link submarine fan process sedimentology with sand distribution, sand body architecture, texture and fabric, the field geologist studies sedimentary facies, facies associations (fan elements) and stratigraphy. Facies analysis resides on factual knowledge of modern fan morphodynamics and physical modelling of en-masse sediment transport. Where do we stand after 55 years of submarine research, i.e. the date when the first submarine fan model was launched by Arnold Bouma in 1962? Since that date students of submarine fans have worked on a number of important, recurring questions concerned with facies analysis of submarine successions in outcrop and core: 1. What type of sediment transport produced the beds? 2. What facies can be related to initial flow conditions? 3. What is the significance of grain size jumps and bounding surface hierarchy in beds consisting of crude and spaced stratification (traction carpets)? Do these point to multi flow events or to flow pulsations by one and the same event? 4. What facies associations relate to the basic elements of submarine fans? 5. What are the autogenic and allogenic signatures in submarine fans? Particularly in the last decade, the enormous technical advancement helped to obtain high-quality data from observations of density flows in modern canyons, deep basins and deep-water delta slopes (refs 1,2,3). In combination with both physical (refs 4,5) and numerical modelling (ref 6) these studies broke new ground into our understanding of density flow processes in various submarine environments and have led to new concepts of submarine fan building by super- and subcritical high-density flow (ref 7). Do these new concepts provide better answers to our recurrent questions related to the morphodynamics of submarine fans and prediction of sand body architecture? In discussing this open question, I shall 1. apply the new concepts to a modern and ancient example of a channel-lobe-transition-zone (ref 8); 2. raise the problem of

  4. Newly recognized submarine slide complexes in the southern California Bight

    Science.gov (United States)

    Conrad, J. E.; Lee, H. J.; Edwards, B. D.; McGann, M.; Sliter, R. W.

    2012-12-01

    New high-resolution bathymetric and seismic-reflection surveys have imaged large (7) individual overlapping slides along the western margin of Santa Cruz Basin (SCB slide); 2) a series of slumps and slide scars on the slope south of San Pedro shelf (SPS slide); and 3) a slope failure along the shelf edge in northern San Diego County, termed the Del Mar slide. The SCB slide complex extends for 30 km along the western slope of Santa Cruz Basin, with debris lobes extending 5-8 km into the basin. Head scarps of some of these slides are 50-75 m high. The SPS slide complex also appears to consist of multiple slides, which roughly parallel the Palos Verdes Fault and the San Gabriel Canyon submarine channel on the shelf edge and slope south of San Pedro shelf. Slide deposits associated with this complex are only partially mapped due to limited high-resolution bathymetric coverage, but extend to the south in the area SW of Lasuen Knoll. Seismic-reflection profiles show that some of these deposits are up to 20 m thick. The Del Mar slide is located about 10 km north of La Jolla Canyon and extends about 6 km along the shelf edge. The head scarp lies along the trend of a branch of the Rose Canyon Fault Zone. Radiocarbon ages of sediment overlying this slide indicate the Del Mar slide is approximately 12-16 ka. These large slide complexes have several characteristics in common. Nearly all occur in areas of tectonic uplift. All of the complexes show evidence of recurrent slide activity, exhibiting multiple headwall scarps and debris lobes, and where available, high-resolution seismic-reflection profiles of these slide areas provide evidence of older, buried mass transport deposits. Assuming typical sedimentation rates, the recurrence interval of major slide events appears to be on the order of tens of thousands of years. Most of the slide complexes do not appear to be located in areas of high sediment input. The SCB and Del Mar slides are in areas receiving relatively small

  5. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    Science.gov (United States)

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  6. Surprise and Opportunity for Learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    Directory of Open Access Journals (Sweden)

    Theodore S. Melis

    2015-09-01

    Full Text Available With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  7. Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA

    Science.gov (United States)

    Brooke, S. D.; Watts, M. W.; Heil, A. D.; Rhode, M.; Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.

    2017-03-01

    A multi-disciplinary study of two major submarine canyons, Baltimore Canyon and Norfolk Canyon, off the US mid-Atlantic coast focused on the ecology and biology of canyon habitats, particularly those supporting deep-sea corals. Historical data on deep-sea corals from these canyons were sparse with less than 750 records for the mid-Atlantic region, with most being soft sediment species. This study substantially increased the number of deep-sea coral records for the target canyons and the region. Large gorgonians were the dominant structure-forming coral taxa on exposed hard substrates, but several species of scleractinians were also documented, including first observations of Lophelia pertusa in the mid-Atlantic Bight region. Coral distribution varied within and between the two canyons, with greater abundance of the octocoral Paragorgia arborea in Baltimore Canyon, and higher occurrence of stony corals in Norfolk Canyon; these observations reflect the differences in environmental conditions, particularly turbidity, between the canyons. Some species have a wide distribution (e.g., P. arborea, Primnoa resedaeformis, Anthothela grandiflora), while others are limited to certain habitat types and/or depth zones (e.g., Paramuricea placomus, L. pertusa, Solenosmilia variabilis). The distribution of a species is driven by a combination of factors, which include availability of appropriate physical structure and environmental conditions. Although the diversity of the structure-forming corals (gorgonians, branching scleractinians and large anemones) was low, many areas of both canyons supported high coral abundance and a diverse coral-associated community. The canyons provide suitable habitat for the development of deep-sea coral communities that is not readily available elsewhere on the sedimented shelf and slope of the Mid-Atlantic Bight.

  8. Application of a lagrangian transport model to organo-mineral aggregates within the Nazaré canyon

    Directory of Open Access Journals (Sweden)

    S. Pando

    2013-06-01

    Full Text Available In this study, a hydrodynamic model was applied to the Nazaré submarine canyon with boundary forcing provided by an operational forecast model for the west Iberian coast for the spring of 2009. After validation, a lagrangian transport model was coupled to the hydrodynamic model to study and compare the transport patterns of three different classes of organo-mineral aggregates along the Nazaré canyon. The results show that the transport in the canyon is neither constant, nor unidirectional and that there are preferential areas where deposited matter is resuspended and redistributed. The transport of the larger class size of organo-mineral aggregates (2000 μm and 4000 μm is less pronounced, and a decrease in the phytodetrital carbon flux along the canyon is observed. During the modelled period, the Nazaré canyon acts as a depocentre of sedimentary organic matter rather than a conduit of organo-mineral aggregates to the deep sea, as has been reported by other authors. The results of this study are crucial for the understanding of the oceanic carbon sequestration at the continental margin, and therefore important for evaluating the role of submarine canyons within the global carbon cycle.

  9. The development of permafrost bacterial communities under submarine conditions

    Science.gov (United States)

    Mitzscherling, Julia; Winkel, Matthias; Winterfeld, Maria; Horn, Fabian; Yang, Sizhong; Grigoriev, Mikhail N.; Wagner, Dirk; Overduin, Pier P.; Liebner, Susanne

    2017-07-01

    Submarine permafrost is more vulnerable to thawing than permafrost on land. Besides increased heat transfer from the ocean water, the penetration of salt lowers the freezing temperature and accelerates permafrost degradation. Microbial communities in thawing permafrost are expected to be stimulated by warming, but how they develop under submarine conditions is completely unknown. We used the unique records of two submarine permafrost cores from the Laptev Sea on the East Siberian Arctic Shelf, inundated about 540 and 2500 years ago, to trace how bacterial communities develop depending on duration of the marine influence and pore water chemistry. Combined with geochemical analysis, we quantified total cell numbers and bacterial gene copies and determined the community structure of bacteria using deep sequencing of the bacterial 16S rRNA gene. We show that submarine permafrost is an extreme habitat for microbial life deep below the seafloor with changing thermal and chemical conditions. Pore water chemistry revealed different pore water units reflecting the degree of marine influence and stages of permafrost thaw. Millennia after inundation by seawater, bacteria stratify into communities in permafrost, marine-affected permafrost, and seabed sediments. In contrast to pore water chemistry, the development of bacterial community structure, diversity, and abundance in submarine permafrost appears site specific, showing that both sedimentation and permafrost thaw histories strongly affect bacteria. Finally, highest microbial abundance was observed in the ice-bonded seawater unaffected but warmed permafrost of the longer inundated core, suggesting that permafrost bacterial communities exposed to submarine conditions start to proliferate millennia after warming.

  10. Mapping the True 3D Morphology of Deep-Sea Canyons

    Science.gov (United States)

    Huvenne, V. A.; Masson, D.; Tyler, P. A.; Huehnerbach, V.

    2010-12-01

    The importance of submarine canyons as ecosystem hotspots and sediment transport pathways has been recognised for decades (e.g. Heezen et al., 1955; Vetter & Dayton, 1998). However, studying canyon systems in detail is a challenge, because of the complexity and steepness of the terrain. Acoustic surveys are hampered by side-echoes, while the high slope angles cause most types of sampling equipment, deployed from surface vessels, to fail. Ship-borne bathymetric surveys tend to represent the canyon topography in an overly smoothed way as a result of their limited resolution in deep water compared to the scale of the terrain variability. Moreover, it is clear that overhanging cliffs cannot be mapped correctly with traditional, downward looking multibeam echosounders. The increasing availability of underwater vehicles, however, opens new opportunities. During summer 2009, we mapped several submarine canyon habitats in detail, using the UK deep-water Remotely Operated Vehicle (ROV) ISIS. In particular, we developed a new methodology to map vertical cliffs and overhangs by placing the high-resolution Simrad SM2000 multibeam system of the ROV in a forward-looking position rather than in the traditional downward-looking configuration. The cliff morphology was then mapped by moving the ROV laterally in parallel passes at different depths. Repeating this approach at different distances from the cliff face, we obtained maps of varying resolution and extent. The low resolution maps provide an overview of the general geological framework, while individual strata and faunal colonies can be recognised on the highest resolution maps. Using point-cloud models, we combined the ship-borne bathymetry with the ROV-based data, in order to obtain a true 3D seabed morphology of the canyon study site, which can be used for fly-throughs, geomorphological analysis or habitat mapping. With this approach, we could visualise the spatial structure and density distribution of a unique and

  11. Development of early diagenetic silica and quartz morphologies — Examples from the Siri Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Weibel, Rikke; Friis, Henrik; Kazerouni, Afsoon Moatari

    2010-01-01

    from0 to 65 km).Hydrocarbons and pore fluids, now found in the Siri Fairway, have (at least partly) originated from the Central Graben. The Siri Canyon is a submarine canyon system eroded into the uppermost chalk deposits and filled with Palaeogene hemipelagic and turbiditic marls and mudstones......The Siri Canyon has proved to be a perfect area for investigating various morphologies of diagenetic silica in sandstones. The development in silica morphologies can be observed from very shallow (∼1700 m) to increased burial depth (∼3000 m)and increased proximity to the Central Graben (distance...... interbedded with sandstone units deposited from sandy mass-flows and sandy turbidites, which originated on the Stavanger Platform. Several hydrocarbon exploration and production wells have been drilled in the Siri Canyon, seven of which are included in this study (Nini-3, Nini-1, NA-2P, Sofie-1, Siri-4...

  12. Physical linkages between an offshore canyon and surf zone morphologic change

    Science.gov (United States)

    Hansen, Jeff E.; Raubenheimer, Britt; Elgar, Steve; List, Jeffrey H.; Lippmann, Thomas C.

    2017-04-01

    The causes of surf zone morphologic changes observed along a sandy beach onshore of a submarine canyon were investigated using field observations and a numerical model (Delft3D/SWAN). Numerically simulated morphologic changes using four different sediment transport formulae reproduce the temporal and spatial patterns of net cross-shore integrated (between 0 and 6.5 m water depths) accretion and erosion observed in a ˜300 m alongshore region, a few hundred meters from the canyon head. The observations and simulations indicate that the accretion or erosion results from converging or diverging alongshore currents driven primarily by breaking waves and alongshore pressure gradients. The location of convergence or divergence depends on the direction of the offshore waves that refract over the canyon, suggesting that bathymetric features on the inner shelf can have first-order effects on short-term nearshore morphologic change.

  13. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  14. The Submarine, 1776-1918

    National Research Council Canada - National Science Library

    Uhlig, Frank

    2004-01-01

    When, on 11 April 1900, the U.S. Navy thought the Holland, named for its designer, that little submarine joined a fleet consisting of two armored cruisers, six monitors, seven first and second-class battleships, and seventeen each...

  15. Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure.

    Science.gov (United States)

    Tan, Wai Kiat; Teh, Su Yean; Koh, Hock Lye

    2017-07-01

    Submarine landslides, also known as submarine mass failures (SMFs), are major natural marine disasters that could critically damage coastal facilities such as nuclear power plants and oil and gas platforms. It is therefore essential to investigate submarine landslides for potential tsunami hazard assessment. Three-dimensional seismic data from offshore Brunei have revealed a giant seabed mass deposited by a previous SMF. The submarine mass extends over 120 km from the continental slope of the Baram Canyon at 200 m water depth to the deep basin floor of the Northwest Borneo Trough. A suite of in-house two-dimensional depth-averaged tsunami simulation model TUNA (Tsunami-tracking Utilities and Application) is developed to assess the vulnerability of coastal communities in Sabah and Sarawak subject to potential SMF tsunami. The submarine slide is modeled as a rigid body moving along a planar slope with the center of mass motion parallel to the planar slope and subject to external forces due to added mass, gravity, and dissipation. The nonlinear shallow water equations are utilized to simulate tsunami propagation from deepwater up to the shallow offshore areas. A wetting-drying algorithm is used when a tsunami wave reaches the shoreline to compute run up of tsunami along the shoreline. Run-up wave height and inundation maps are provided for seven densely populated locations in Sabah and Sarawak to highlight potential risks at each location, subject to two scenarios of slide slopes: 2° and 4°. The first wave may arrive at Kudat as early as 0.4 h after the SMF, giving local communities little time to evacuate. Over a small area, maximum inundated depths reaching 20.3 m at Kudat, 26.1 m at Kota Kinabalu, and 15.5 m at Miri are projected, while the maximum inundation distance of 4.86 km is expected at Miri due to its low-lying coast. In view of the vulnerability of some locations to the SMF tsunami, it is important to develop and implement community resilience

  16. Composition and temporal variability of particle fluxes in an insular canyon of the northwestern Mediterranean Sea

    Science.gov (United States)

    Grinyó, Jordi; Isla, Enrique; Peral, Laura; Gili, Josep-Maria

    2017-12-01

    Particle fluxes have been widely studied in canyons located in continental margins; conversely, particle fluxes in canyons in sediment starved margins incising small island margins have received very little attention and remain poorly understood. The Menorca Canyon is the largest canyon system in the Balearic Archipelago. Despite the high oligotrophic conditions of the Balearic Archipelago the canyon and surrounding areas host diverse communities dominated by benthic suspension feeders. Understanding the magnitude and variability of environmental factors influencing these communities thus remain crucial. In order to characterize the temporal variability of particle fluxes, analyze its geochemical and macroscopic composition and identify the main processes that modulate particle fluxes in the Menorca Canyon, one instrumented line with a sediment trap and a current meter was deployed at 430 m water depth from September 2010 to October 2012. Particle fluxes ranged between 190 and 2300 mg m2 d-1 being one of the lowest ever registered in a Mediterranean submarine canyon's head. The CaCO3 fraction was the major constituent contrasting with the general trend observed in other Mediterranean canyons. Macroscopic constituents (fecal pellets, Posidonia oceanica detritus and pelagic and benthic foraminifera) presented a wide variability throughout the sampling period and were not significantly correlated with the total mass flux. The low magnitude of the registered fluxes and the lack of correlation with the observed environmental variables (e.g., currents, winds, wave height, chlorophyll-a biomass) suggest that there is no evident controlling mechanism. However, we could infer that resuspension processes and the presence of different hydrodynamic features (e.g., eddies, interchange of water masses) condition the magnitude and composition of particle fluxes.

  17. Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan

    Directory of Open Access Journals (Sweden)

    Shu-Kun Hsu

    2008-01-01

    Full Text Available Submarine landslides or slumps may generate turbidity currents consisting of mixture of sediment and water. Large and fast-moving turbidity currents can incise and erode continental margins and cause damage to artificial structures such as telecommunication cables on the seafloor. In this study, we report that eleven submarine cables across the Kaoping canyon and Manila trench were broken in sequence from 1500 to 4000 m deep, as a consequence of submarine landslides and turbidity currents associated with the 2006 Pingtung earthquakes offshore SW Taiwan. We have established a full-scale scenario and calculation of the turbidity currents along the Kaoping canyon channel from the middle continental slope to the adjacent deep ocean. Our results show that turbidity current velocities vary downstream ranging from 20 to 3.7 and 5.7 m/s, which demonstrates a positive relationship between turbidity current velocity and bathymetric slope. The violent cable failures happened in this case evidenced the destructive power of the turbidity current to seafloor or underwater facilities that should not be underestimated.

  18. Submarine Information Organization and Prioritization and Submarine Officer of the Deck Experience

    Science.gov (United States)

    2004-07-12

    The Submarine Review, 58-64. Shobe, K. (2002, May). Information organization and modeling of the submarine officer of the deck and sonar operator...Technical Report 01Oct00 - 31Sep02 SUBMARINE INFORMATION ORGANIZATION AND PRIORITIZATION AND SUBMARINE OFFICER OF THE DECK EXPERIENCE 51001 1) Katharine K

  19. Enhancing Submarine Operational Relevance: A Leadership Challenge

    National Research Council Canada - National Science Library

    Daigle, Jr, Michael J

    2008-01-01

    .... This vision of submarine operations must change. As the military continues to shift to operations focused on joint capabilities, the submarine force must break from the closed, protective, and risk averse culture of its past and push forward...

  20. Submarine silicic volcanism: Processes and products

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.

    The occurrence of submarine silicic volcanics is rare at the mid-oceanic ridges, abyssal depths, seamounts and fracture zones. Hydrothermal processes are active in submarine silicic environments and are associated with host ores of Cu, Au, Ag, Pb...

  1. The Grand Canyon

    Science.gov (United States)

    2001-01-01

    Northern Arizona and the Grand Canyon are captured in this pair of MISR images from December 31, 2000 (Terra orbit 5525). The left-hand image is a true color view from the nadir (vertical) camera. The right-hand image is a stereo composite generated using data from MISR's vertical and 46-degree-forward cameras. Viewing the stereo image in 3-D requires the use of red/blue glasses with the red filter placed over your left eye. To facilitate stereo viewing, the images have been oriented with north at the left.In addition to the Grand Canyon itself, which is visible in the western (lower)half of the images, other landmarks include Lake Powell, on the left, and Humphreys Peak and Sunset Crater National Monument on the right. Meteor Crater appears as a small dark depression with a brighter rim, and is just visible along the upper right-hand edge. Can you find it?MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  2. Megabenthic assemblages at the Hudson Canyon head (NW Atlantic margin): Habitat-faunal relationships

    Science.gov (United States)

    Pierdomenico, Martina; Gori, Andrea; Guida, Vincent G.; Gili, Josep-Maria

    2017-09-01

    . Such results are of particular significance in light of the recent action promoted by the Mid-Atlantic Fisheries Management Council, that restricts bottom trawling in most of the submarine canyons of the US Atlantic margin, including the Hudson Canyon, to protect cold-water corals from damage by fishing gear.

  3. 2010 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): Diablo Canyon, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Diablo Canyon (2010), and San...

  4. North American Submarine Cable Association (NASCA) Submarine Cables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data show the locations of in-service and out-of-service submarine cables that are owned by members of NASCA and located in U.S. territorial waters. More...

  5. Calcareous nannoplankton and benthic foraminiferal assemblages from the Nazare Canyon (Portuguese continental margin): Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, C; Oliveira, A; Rodrigues, A [Division of Marine Geology, Portuguese Hydrographic Institute (IH), Rua das Trinas 49, 1249-093 Lisboa (Portugal); Rosa, F [CIACOMAR, Algarve University, Av. 16 de Julho s/n 8700-311 Olhao (Portugal); Cachao, M; Fatela, F [Geology Center and Geology Department, FCUL, Bloco C6, 3o Piso, sala 6.3.57 Campo Grande 1749-016 Lisboa (Portugal)], E-mail: catarina.guerreiro@hidrografico.pt

    2009-01-01

    Submarine canyons are assumed to play an important role in oceanic/neritic circulation, marine productivity and sedimentary processes, acting as preferential conduits between the littoral and deep oceanic domain. Here we present first results of a comparative micropalaeontological study on calcareous nannoplankton and benthic foraminifera from surface sediments from the surroundings of the upper Nazare Canyon (Portuguese continental margin) and from the shelf north of the canyon. Regardless of the difficulty to distinguish taphonomical from (palaeo)ecological effects in such a complex and still poorly known marine system, the first results suggest that the canyon's hydro-sedimentary dynamic regime act as a prolongation of the shore/inner shelf hydrodynamic conditions towards west, preventing deposition and/or preservation of the smaller and fragile species of calcareous nannoplankton (e.g. E. huxleyi and G. ericsonii) and enhancing the record of the larger and more opportunistic ones (e.g. G. oceanica); and disturbing benthic foraminiferal productivity and/or diversity, or their preservation in the fossil record. Both calcareous nannoplankton and benthic foraminifera are more abundant off the canyon's domain, suggesting that its highly energetic thalweg conditions are probably filtering the fossil record in the sediment. Still, preliminary results suggest that the occurrence of persistent physical phenomena related with the canyon's morphology and proximity to the coast (e.g. solitary internal waves) may be locally promoting favourable conditions for calcareous nannoplankton, as shown by high values of nannoliths, chlorophyll a and 19' hexanoyloxyfucoxantine (unpublished data) north of the canyon's head. It is our goal to test this hypothesis in the near future by (a) studying multicore and surficial sediments from more recent surveys, and (b) calibrating the sediment results with water column data presently in process at the Institute of

  6. Submarine geothermal resources

    Science.gov (United States)

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (< 200 m) and within sight of land. Other interesting areas include the Sea of Japan, the Sea of Okhotsk and the Andaman Sea along the margins of the western Pacific, the Tyrrhenian Sea west of Italy, and the southern California borderland and west flank of the Juan de Fuca Ridge off the west coast of the United States. Many questions remain to be

  7. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    Science.gov (United States)

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  8. A submarine volcanic eruption leads to a novel microbial habitat.

    Science.gov (United States)

    Danovaro, Roberto; Canals, Miquel; Tangherlini, Michael; Dell'Anno, Antonio; Gambi, Cristina; Lastras, Galderic; Amblas, David; Sanchez-Vidal, Anna; Frigola, Jaime; Calafat, Antoni M; Pedrosa-Pàmies, Rut; Rivera, Jesus; Rayo, Xavier; Corinaldesi, Cinzia

    2017-04-24

    Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus's hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus's hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus's hair can drive the restart of biological systems after submarine volcanic eruptions.

  9. Environmental assessment of submarine power cables

    Energy Technology Data Exchange (ETDEWEB)

    Isus, Daniel; Martinez, Juan D. [Grupo General Cable Sistemas, S.A., 08560-Manlleu, Barcelona (Spain); Arteche, Amaya; Del Rio, Carmen; Madina, Virginia [Tecnalia Research and Innovation, 20009 San Sebastian (Spain)

    2011-03-15

    Extensive analyses conducted by the European Community revealed that offshore wind energy have relatively benign effects on the marine environment by comparison to other forms of electric power generation [1]. However, the materials employed in offshore wind power farms suffer major changes to be confined to the marine environment at extreme conditions: saline medium, hydrostatic pressure... which can produce an important corrosion effect. This phenomenon can affect on the one hand, to the material from the structural viewpoint and on the other hand, to the marine environment. In this sense, to better understand the environmental impacts of generating electricity from offshore wind energy, this study evaluated the life cycle assessment for some new designs of submarine power cables developed by General Cable. To achieve this goal, three approaches have been carried out: leaching tests, eco-toxicity tests and Life Cycle Assessment (LCA) methodologies. All of them are aimed to obtaining quantitative data for environmental assessment of selected submarine cables. LCA is a method used to assess environmental aspects and potential impacts of a product or activity. LCA does not include financial and social factors, which means that the results of an LCA cannot exclusively form the basis for assessment of a product's sustainability. Leaching tests results allowed to conclude that pH of seawater did not significantly changed by the presence of submarine three-core cables. Although, it was slightly higher in case of broken cable, pH values were nearly equals. Concerning to the heavy metals which could migrate to the aquatic medium, there were significant differences in both scenarios. The leaching of zinc is the major environmental concern during undersea operation of undamaged cables whereas the fully sectioned three-core cable produced the migration of significant quantities of copper and iron apart from the zinc migrated from the galvanized steel. Thus, the tar

  10. Deepwater Canyons 2013: Pathways to the Abyss

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Leg I focused on biological objectives in Norfolk Canyon, with some sampling in Baltimore Canyon. Leg II focused on archaeological targets in and around the Norfolk...

  11. Influence of the Nazaré Canyon, central Portuguese margin, on late winter coccolithophore assemblages

    Science.gov (United States)

    Guerreiro, Catarina; Sá, Carolina; de Stigter, Henko; Oliveira, Anabela; Cachão, Mário; Cros, Lluϊsa; Borges, Carlos; Quaresma, Luis; Santos, Ana I.; Fortuño, José-Manuel; Rodrigues, Aurora

    2014-06-01

    This paper presents a first attempt to characterize coccolithophore assemblages occurring in the context of an active submarine canyon. Coccolithophores from the upper-middle sections of the Nazaré Canyon (central Portuguese margin) - one of the largest canyons of the European continental margin - were investigated during a late winter period (9-12 March 2010). Species distributions were analyzed in a multiparameter environmental context (temperature, salinity, turbidity, Chl-a and nutrient concentrations). Monthly averaged surface water Chl-a concentrations between 2006 and 2011 assessed from satellite data are also presented, as a framework for interpreting spatial and temporal distribution of phytoplankton in the Nazaré Canyon. The Nazaré Canyon was observed to act as a conduit for advection of relatively nutrient-poor oceanic waters of ENACWst origin into nearshore areas of the continental shelf (less than 10 km off the coast), whilst at the surface a nutrient-rich buoyant plume resulting from intensive coastal runoff prior and during the beginning of the cruise was spreading in oceanward direction. Two distinct coccolithophore assemblages appear representative for the coast to open-ocean gradient: (1) Emiliania huxleyi together with Gephyrocapsa ericsonii and Coronosphaera mediterranea dominated the more productive assemblage present within coastal-neritic surface waters; and (2) Syracosphaera spp. and Ophiaster spp. displayed a higher affinity with open-ocean conditions, and also generally a broader vertical distribution. Local “hotspots” of coccolithophore and phytoplankton biomass potentially associated with perturbations of surface water circulation by the canyon are discussed.

  12. Submarine thermal springs on the Galapagos Rift

    Science.gov (United States)

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.

    1979-01-01

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  13. SCICEX: Submarine Arctic Science Program, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  14. Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea)

    Science.gov (United States)

    Sánchez, Francisco; González-Pola, Cesar; Druet, María; García-Alegre, Ana; Acosta, Juan; Cristobo, Javier; Parra, Santiago; Ríos, Pilar; Altuna, Álvaro; Gómez-Ballesteros, María; Muñoz-Recio, Araceli; Rivera, Jesus; del Río, Guillermo Díaz

    2014-08-01

    Surveys conducted at the complex Avilés Canyon System (southern Bay of Biscay) in order to identify vulnerable habitats and biological communities revealed the presence of noteworthy deep-water coral reefs in one of the tributaries of the system (La Gaviera Canyon). The aim of the present study is to determine why this deep-sea canyon provides suitable environmental conditions for corals to grow. This hanging canyon is characterized by an irregular U-shaped floor with two narrow differentiated flanks. Sand ripples and rocky outcrops structured in diverse W-E directed steps are observed on the canyon floor, suggesting intense hydrodynamic activity. Accordingly, high-frequency near-bottom current and thermal structure profiles showed that there occur strong shifts in currents/hydrography behaving as front-like features at each tidal cycle. These involve the sudden increase of along-axis velocities to over 50 cm/s and vertical velocities of over 5 cm/s in each tidal cycle associated with the passage of sharp thermal fronts and thermal inversions suggesting overturning. A year-long near-bottom current record showed events with near-bottom velocities well over 1 m/s lasting for several days. Three cold-water coral settings were distinguished: a dense coral reef located on stepped rocky bottoms of the eastern and western flanks, carbonate mounds (20-30 m high) located on the canyon floor, and a cluster of shallower water dead coral framework at the head sector of the canyon. Video and still images from a towed sled and ROV verified the presence of dropstones and rippled sand sheets surrounding the mounds and revealed changes in the coral population (alive or dead; total or patchy coverage) in coral reef and carbonate mound areas. The dominant species of the reef are Lophelia pertusa and Madrepora oculata, which considerably increase the habitat‧s complexity and biodiversity in relation to other facies described in the canyon. The presence of living cold-water reefs is

  15. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  16. Thomas Moran: "The Grand Canyon."

    Science.gov (United States)

    Brubaker, Ann

    1986-01-01

    Presents a lesson plan for introducing students in grades four through six to Thomas Moran's painting, "The Grand Canyon." The goal of the lesson is to illustrate the importance of the American West as a subject for artists in the nineteenth century. (JDH)

  17. Submarine landslides: advances and challenges

    Science.gov (United States)

    Locat, Jacques; Lee, Homa J.

    2002-01-01

    Due to the recent development of well-integrated surveying techniques of the sea floor, significant improvements were achieved in mapping and describing the morphology and architecture of submarine mass movements. Except for the occurrence of turbidity currents, the aquatic environment (marine and fresh water) experiences the same type of mass failure as that found on land. Submarine mass movements, however, can have run-out distances in excess of 100 km, so their impact on any offshore activity needs to be integrated over a wide area. This great mobility of submarinemass movements is still not very well understood, particularly for cases like the far-reaching debris flows mapped on the Mississippi Fan and the large submarine rock avalanches found around many volcanic islands. A major challenge ahead is the integration of mass movement mechanics in an appropriate evaluation of the hazard so that proper risk assessment methodologies can be developed and implemented for various human activities offshore, including the development of natural resources and the establishment of reliable communication corridors. Key words : submarine slides, hazards, risk assessment, morphology, mobility, tsunami. Le dveloppement rcent de techniques de levs hydrograhiques pour les fonds marins nous a permis d'atteindre une qualit ingale dans la cartographie et la description des glissements sous marins. l'exception des courants de turbidit, on retrouve dans le domaine aquatique les mmes types de mouvements de terrain que sur terre. Par contre, les glissements sous-marins peuvent atteindre des distances excdant 100 km de telle sorte que leur impact sur les activits offshore doit tre pris en compte sur degrandes tendues. La grande mobilit des glissements sous-marins n'est pas encore bien comprise, comme pour le cas des coules dedbris cartographies sur le cne du Mississippi ainsi que pour les grandes avalanches rocheuses sous-marines retrouves au pourtour des les volcaniques. Un dfi majeur

  18. California State Waters Map Series—Monterey Canyon and vicinity, California

    Science.gov (United States)

    Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.

    2016-06-10

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The

  19. Similarities between rivers and submarine channels

    Science.gov (United States)

    Balcerak, Ernie

    2013-02-01

    Scientists have long known that the width and depth of rivers follows a power law relationship with discharge. They have also noticed that submarine channels appear to be similar to terrestrial rivers, but there have not been many systematic comparisons of the relationships between submarine channel morphology and discharge. Konsoer et al. compared the width, depth, and slope of 177 submarine channels to those of 231 river cross sections. They found that submarine channels are up to an order of magnitude wider and deeper than the largest terrestrial rivers, but they exhibit a similar power law relationship between width and depth. For submarine channels that were similar in size to rivers, the authors found that submarine channels tend to be 1 to 2 orders of magnitude steeper than rivers. The authors also inferred values for sediment concentration in the turbidity currents in the channels and combined this with estimated mean flow velocities to look for a relationship between discharge and morphology in the channels. They found that like rivers, the width and depth of the submarine channels follow a power law scaling with discharge. (Journal of Geophysical Research-Earth Surface, doi:10.1029/2012JF002422, 2013)

  20. California State Waters Map Series--Hueneme Canyon and vicinity, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.

    2012-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts

  1. Palynofacies reveal fresh terrestrial organic matter inputs in the terminal lobes of the Congo deep-sea fan

    Science.gov (United States)

    Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe

    2017-08-01

    The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.

  2. Calciclastic submarine fans: An integrated overview

    Science.gov (United States)

    Payros, Aitor; Pujalte, Victoriano

    2008-01-01

    Calciclastic submarine fans are rare in the stratigraphic record and no bona fide present-day analogue has been described to date. Possibly because of that, and although calciclastic submarine fans have long intrigued deep-water carbonate sedimentologists, they have largely been overlooked by the academic and industrial communities. To fill this gap we have compiled and critically reviewed the existing sedimentological literature on calciclastic submarine fans, thus offering an updated view of this type of carbonate slope sedimentary system. Calciclastic submarine fans range in length from just a few to more than 100 km. Three different types can be distinguished: (1) Coarse-grained, small-sized (depression associated with tectonic structures, an inherited topography, or large-scale mass failures.

  3. Aspects of Propeller Developements for a Submarine

    DEFF Research Database (Denmark)

    Andersen, Poul; kappel, Jens Julius; Spangenberg, Eugen

    2009-01-01

    Design and development of propellers for submarines are in some ways different from propellers for surface vessels. The most important demand is low acoustic signature that has priority over propeller efficiency, and the submarine propeller must be optimized with respect to acoustics rather than...... efficiency. Moreover the operating conditions of a submarine propeller are quite different. These aspects are discussed as well as the weighing of the various propeller parameters against the design objectives. The noise generated by the propeller can be characterized as thrust noise due to the inhomogeneous...... wake field of the submarine, trailing-edge noise and noise caused by turbulence in the inflow. The items discussed are demonstrated in a case study where a propeller of the Kappel type was developed. Three stages of the development are presented, including a design of an 8-bladed propeller where...

  4. Russia's Submarine Force: Determinants and Prospects

    National Research Council Canada - National Science Library

    Tully, John

    2001-01-01

    ... the determinants of these events, The Russian Federation inherited a huge submarine fleet from the Soviet Union, Due to the changing conditions in the world and in Russia, its future status is in doubt...

  5. SSN 774 Virginia Class Submarine (SSN 774)

    Science.gov (United States)

    2015-12-01

    Report: The VIRGINIA Class Submarine Program continues to deliver submarines within cost, ahead of schedule , with improved quality and with...baseline schedule threshold set ten years earlier, in 1994. June 20, 2006: USS TEXAS, which was essentially the second lead ship of the class , is the first...factored for the VIRGINIA Class based on weight. Public and private shipyard data was used, as well as the maintenance schedule provided in the CARD, Rev E

  6. Submarine landslides: processes, triggers and hazard prediction.

    Science.gov (United States)

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.

  7. Research Furthers Conservation of Grand Canyon Sandbars

    Science.gov (United States)

    Melis, Theodore S.; Topping, David J.; Rubin, David M.; Wright, Scott A.

    2007-01-01

    Grand Canyon National Park lies approximately 25 km (15 mi) down-river from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border in Glen Canyon National Recreation Area. Before the dam began to regulate the Colorado River in 1963, the river carried such large quantities of red sediment, for which the Southwest is famous, that the Spanish named the river the Rio Colorado, or 'red river'. Today, the Colorado River usually runs clear below Glen Canyon Dam because the dam nearly eliminates the main-channel sand supply. The daily and seasonal flows of the river were also altered by the dam. These changes have disrupted the sedimentary processes that create and maintain Grand Canyon sandbars. Throughout Grand Canyon, sandbars create habitat for native plants and animals, supply camping beaches for river runners and hikers, and provide sediment needed to protect archaeological resources from weathering and erosion. Maintenance of sandbars in the Colorado River ecosystem, the river corridor that stretches from the dam to the western boundary of Grand Canyon National Park, is a goal of the Glen Canyon Dam Adaptive Management Program. The program is a federally authorized initiative to ensure that the mandates of the Grand Canyon Protection Act of 1992 are met through advances in information and resource management. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center has responsibility for scientific monitoring and research efforts for the program. Extensive research and monitoring during the past decade have resulted in the identification of possible alternatives for operating Glen Canyon Dam that hold new potential for the conservation of sand resources.

  8. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  9. Building sandbars in the Grand Canyon

    Science.gov (United States)

    Grams, Paul E.; Schmidt, John C.; Wright, Scott A.; Topping, David; Melis, Theodore S.; Rubin, David M.

    2015-01-01

    In 1963, the U.S. Department of the Interior’s Bureau of Reclamation finished building Glen Canyon Dam on the Colorado River in northern Arizona, 25 kilometers upstream from Grand Canyon National Park. The dam impounded 300 kilometers of the Colorado River, creating Lake Powell, the nation’s second largest reservoir.

  10. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  11. ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    KEHLER KL

    2011-01-13

    At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

  12. 76 FR 8359 - Boulder Canyon Project

    Science.gov (United States)

    2011-02-14

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE...) is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates... section 9(c) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)), and other acts that specifically...

  13. DESCHUTES CANYON ROADLESS AREA, OREGON.

    Science.gov (United States)

    Walker, George W.; Winters, Richard A.

    1984-01-01

    An examination of the Deschutes Canyon Roadless Area, Oregon indicated that the area is devoid of mines and active mineral prospects or claims and that there is little likelihood for the occurrence of metallic or nonmetallic mineral resources. There is no evidence to indicate that mineral fuels are present in the roadless area. Nearby parts of central Jefferson County on the Warm Springs Indian Reservation are characterized by higher-than-normal heat flow and by numerous thermal springs, some of which have been partly developed. This may indicate that the region has some as yet undefined potential for the development of geothermal energy.

  14. H-Canyon Recovery Crawler

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hera, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marzolf, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Phillips, M. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and

  15. Methane concentration inside a submarine mud volcano examined through seismic velocity profiles

    Science.gov (United States)

    Kioka, Arata; Tsuji, Takeshi; Otsuka, Hironori; Ashi, Juichiro

    2017-04-01

    Mud volcanoes are considered to be among largest geological sources releasing hydrocarbon gases into the atmosphere. Numerous studies have revealed their origins and compositions from submarine mud volcanoes. A recent long-term observation at a submarine mud volcano sheds light on that larger volume of methane gas than expected is escaped from deep-water mud volcanoes, suggesting that the global methane flux from the seafloor is likely underestimated. Yet, estimates of the gas amount inside mud volcanoes have been still challenging, because of the difficulty of in-situ measurements. This study provides a new model to bridge methane amounts and seismic velocities in fluidized mud conduits of submarine mud volcanoes. This model is universally applicable and enables estimates of methane concentration in the mud conduits, using the seismic velocity profile derived from reflection/refraction seismic and/or downhole logging data. In this study, (1) we examine our modeled results through deep-drilling data obtained at mud volcanoes in the Olimpi mud field of the central Mediterranean Ridge accretionary margin, to evaluate the difference between in situ methane amounts and those calculated from our model, and (2) apply our model to the seismic velocity profile derived from seicmic data to estimate the methane amount inside the submarine mud volcano in the Nankai accretionary margin. Our scheme may provide an opportunity to re-estimate the total methane flux from submarine mud volcanoes.

  16. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    Directory of Open Access Journals (Sweden)

    Magdalena Guardiola

    Full Text Available Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp. We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m. We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla, Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm of sediment was significantly different from deeper layers. We found that qualitative (presence-absence and quantitative (relative number of reads data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation

  17. Tsunami Generated by a Two-Phase Submarine Debris Flow

    Science.gov (United States)

    Pudasaini, S. P.

    2012-04-01

    The general two-phase debris flow model proposed by Pudasaini (2011) is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model includes several essential physical aspects, including Mohr-Coulomb plasticity for the solid stress, while the fluid stress is modelled as a solid volume fraction gradient enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes the viscous drag, buoyancy, and the virtual mass. The generalized drag covers both the solid-like and fluid-like contributions, and can be applied to linear to quadratic drags. Strong couplings exist between the solid and the fluid momentum transfer. The advantage of the real two-phase debris flow model over classical single-phase or quasi-two-phase models is that by considering the solid (and/or the fluid) volume fraction appropriately, the initial mass can be divided into several (even mutually disjoint) parts; a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This offers a unique and innovative opportunity within a single framework to simultaneously simulate (a) the sliding debris (or landslide), (b) the water lake or ocean, (c) the debris impact at the lake or ocean, (d) tsunami generation and propagation, (e) mixing and separation between the solid and the fluid phases, and (f) sediment transport and deposition process in the bathymetric surface. The new model is applied to two-phase subaerial and submarine debris flows. Benchmark numerical simulations reveal that the dynamics of the debris impact induced tsunamis are fundamentally different than the tsunami generated by pure rock avalanche and landslides. Special attention is paid to study the basic features of the debris impact to the mountain lakes or oceans. This includes the generation, amplification and propagation of the multiple

  18. Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation

    Science.gov (United States)

    Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.

    2017-08-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.

  19. Terrestrial-style slow-moving earthflow kinematics in a submarine landslide complex

    Science.gov (United States)

    Joshu J. Mountjoy; Jim McKean; Philip M. Barnes; Jarg R. Pettinga

    2009-01-01

    Morphometric analysis of Simrad EM300 multibeam bathymetric DEMs reveals details of deformation patterns in a ~145 km2 submarine landslide complex that are commonly associated with slow-moving earthflows in terrestrial settings. This mode of failure, where existing landslide debris is remobilised repeatedly along discrete shear boundaries and is...

  20. Prehistoric deforestation at Chaco Canyon?

    Science.gov (United States)

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world.

  1. 27 CFR 9.217 - Happy Canyon of Santa Barbara.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Happy Canyon of Santa... Areas § 9.217 Happy Canyon of Santa Barbara. (a) Name. The name of the viticultural area described in this section is “Happy Canyon of Santa Barbara”. For purposes of part 4 of this chapter, “Happy Canyon...

  2. Submarine geology and geomorphology of active Sub-Antarctic volcanoes: Heard and McDonald Islands

    Science.gov (United States)

    Watson, S. J.; Coffin, M. F.; Whittaker, J. M.; Lucieer, V.; Fox, J. M.; Carey, R.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Martin, T.; Cooke, F.

    2016-12-01

    Heard and McDonald Islands (HIMI) are World Heritage listed sub-Antarctic active volcanic islands in the Southern Indian Ocean. Built atop the Kerguelen Plateau by Neogene-Quaternary volcanism, HIMI represent subaerial exposures of the second largest submarine Large Igneous Province globally. Onshore, processes influencing island evolution include glaciers, weathering, volcanism, vertical tectonics and mass-wasting (Duncan et al. 2016). Waters surrounding HIMI are largely uncharted, due to their remote location. Hence, the extent to which these same processes shape the submarine environment around HIMI has not been investigated. In early 2016, we conducted marine geophysical and geologic surveys around HIMI aboard RV Investigator (IN2016_V01). Results show that volcanic and sedimentary features prominently trend east-west, likely a result of erosion by the eastward flowing Antarctic Circumpolar Current and tidal currents. However, spatial patterns of submarine volcanism and sediment distribution differ substantially between the islands. >70 sea knolls surround McDonald Island suggesting substantial submarine volcanism. Geophysical data reveals hard volcanic seafloor around McDonald Island, whereas Heard Island is characterised by sedimentary sequences tens of meters or more thick and iceberg scours - indicative of glacial processes. Differences in submarine geomorphology are likely due to the active glaciation of Heard Island and differing rock types (Heard: alkali basalt, McDonald: phonolite), and dominant products (clastics vs. lava). Variations may also reflect different magmatic plumbing systems beneath the two active volcanoes (Heard produces larger volumes of more focused lava, whilst McDonald extrudes smaller volumes of more evolved lavas from multiple vents across the edifice). Using geophysical data, corroborated with new and existing geologic data, we present the first geomorphic map revealing the processes that shape the submarine environment around HIMI.

  3. High spatiotemporal variability in meiofaunal assemblages in Blanes Canyon (NW Mediterranean) subject to anthropogenic and natural disturbances

    Science.gov (United States)

    Román, Sara; Vanreusel, Ann; Romano, Chiara; Ingels, Jeroen; Puig, Pere; Company, Joan B.; Martin, Daniel

    2016-11-01

    We investigated the natural and anthropogenic drivers controlling the spatiotemporal distribution of the meiofauna in the submarine Blanes Canyon, and its adjacent western slope (NW Mediterranean margin of the Iberian Peninsula). We analyzed the relationships between the main sedimentary environmental variables (i.e. grain size, Chl-a, Chl-a: phaeopigments, CPE, organic carbon and total nitrogen) and the density and structure of the meiofaunal assemblages along a bathymetric gradient (from 500 to 2000 m depth) in spring and autumn of 2012 and 2013. Twenty-one and 16 major taxa were identified for respectively the canyon and slope, where the assemblages were always dominated by nematodes. The gradual decreasing meiofaunal densities with increasing depth at the slope showed little variability among stations and corresponded with a uniform pattern of food availability. The canyon was environmentally much more variable and sediments contained greater amounts of food resources (Chl-a and CPE) throughout, leading not only to increased meiofaunal densities compared to the slope, but also different assemblages in terms of composition and structure. This variability in the canyon is only partly explained by seasonal food inputs. The high densities found at 900 m and 1200 m depth coincided with significant increases in food availability compared to shallower and deeper stations in the canyon. Our results suggest that the disruption in expected bathymetric decrease in densities at 900-1200 m water depth coincided with noticeable changes in the environmental variables typical for disturbance and deposition events (e.g., higher sand content and CPE), evoking the hypothesis of an anthropogenic effect at these depths in the canyon. The increased downward particle fluxes at 900-1200 m depth caused by bottom trawling along canyon flanks, as reported in previous studies, support our hypothesis and allude to a substantial anthropogenic factor influencing benthic assemblages at these

  4. Post-eruptive Submarine Terrace Development of Capelinhos, Azores

    Science.gov (United States)

    Zhongwei Zhao, Will; Mitchell, Neil; Quartau, Rui; Tempera, Fernando; Bricheno, Lucy

    2017-04-01

    Erosion of the coasts of volcanic islands by waves creates shallow banks, but how erosion proceeds with time to create them and how it relates to wave climate is unclear. In this study, historical and recent marine geophysical data collected around the Capelinhos promontory (western Faial Island, Azores) offer an unusual opportunity to characterize how a submarine terrace developed after the eruption. The promontory was formed in 1957/58 during a Surtseyan eruption that terminated with extensive lava forming new rocky coastal cliffs. Historical measurements of coastline position are supplemented here with coastlines measured from 2004 and 2014 Google Earth images in order to characterize coastline retreat rate and distance for lava- and tephra-dominated cliffs. Swath mapping sonars were used to characterize the submarine geometry of the resulting terrace (terrace edge position, gradient and morphology). Limited photographs are available from a SCUBA dive and drop-down camera deployments to ground truth the submarine geomorphology. The results reveal that coastal retreat rates have decreased rapidly with the time after the eruption, possibly explained by the evolving resistance to erosion of cliff base materials. Surprisingly, coastline retreat rate decreases with terrace width in a simple inverse power law with terrace width. We suspect this is only a fortuitous result as wave attenuation over the terrace will not obviously produce the variation, but nevertheless it shows how rapidly the retreat rate declines. Understanding the relationship between terrace widening shelf and coastal cliff retreat rate may be more widely interesting if they can be used to understand how islands evolve over time into abrasional banks and guyots.

  5. Habitat--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the habitat map of the seafloor of the Monterey Canyon and Vicinity map area, California. The vector data file is included in...

  6. Contours--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents bathymetric contours for several seafloor maps of the Monterey Canyon and Vicinity map area, California. The raster data file is...

  7. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  8. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  9. MVAC Submarine cable, impedance measurements and analysis

    DEFF Research Database (Denmark)

    Arentsen, Martin Trolle; Pedersen, Morten Virklund; Expethit, Adrian

    2017-01-01

    Due to environmental concerns an increase in off-shore windfarms has been observed in recent years, leading to an increased demand for three-core-wire-armoured submarine cables. However, the IEC Standard 60287 used to calculate the ampacity of these cables is widely recognized as being not accurate...

  10. German Submarine Offensives and South African Countermeasures

    African Journals Online (AJOL)

    Evert

    'Good Hunting': German Submarine Offensives and South African. Countermeasures off the South African Coast during the Second World. War, 1942-1945. Evert Kleynhans. •. Abstract .... wolf packs south, Dönitz had hoped to cause a diversionary effect whereby the Allies would be forced to split their defensive forces ...

  11. Submarine Telecommunication Cables in Disputed Maritime Areas

    NARCIS (Netherlands)

    van Logchem, Youri

    2014-01-01

    There are a considerable number of maritime areas where no boundary exists, or where a boundary is delimited only in part. This article deals with the issue of submarine telecommunication cables, which are sometimes placed on the seabed or buried in the subsoil of areas that are claimed by multiple

  12. Monitoring of the nuclear submarine Komsomolets

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, Hilde E.; Flo, Janita K.; Liebig, Penny L. [Institute of Marine Research, P. O. Box 1870 Nordnes, N-5817 Bergen (Norway); Gaefvert, Torbjoern; Rudjord, Anne Liv [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Gwynn, Justin P. [Norwegian Radiation Protection Authority, The Fram Centre, N-9296 Tromsoe (Norway)

    2014-07-01

    The Soviet nuclear submarine Komsomolets sank on the 7 April 1989, 180 km southwest of Bear Island in the Norwegian Sea to a depth of about 1655 m. The submarine contains one nuclear reactor containing long-lived radionuclides such as cesium-137 ({sup 137}Cs) along with other fission and activation products, in addition to 2 mixed uranium/plutonium nuclear warheads containing weapons grade plutonium. Although several model studies have shown that a radioactive leakage from Komsomolets will have insignificant impact on fish and other marine organisms, there are still public concerns about the condition of the submarine and the potential for radioactive leakage. In order to document the contamination levels and to meet public concerns, monitoring of radioactive contamination in the area adjacent to the submarine has been ongoing since 1993. Samples of bottom seawater and sediments have been collected annually by the Institute of Marine Research (IMR) and have been analysed for {sup 137}Cs and plutonium-239,240 ({sup 239,240}Pu). So far, activity concentrations in the samples have been comparable to levels found in other samples from the Norwegian and Barents Seas. During sampling from R/V 'G. O. Sars' in April 2013, an area of about 1 km{sup 2} of the seabed around Komsomolets was mapped to precisely locate the submarine using a Kongsberg EM302 multibeam echo sounder, a Simrad EK60 single beam echo sounder and an Olex 3D bottom-mapping system. For sediment sampling, a Simrad MST342 mini-transponder was attached to a Smoegen box corer to allow for precise positioning of the corer. With the aid of the Kongsberg HiPAP (High Precision Acoustic Positioning) system, 4 box cores were collected around the submarine at a distance of 10 to 20 m. In addition, one box core was collected from a reference station about 100 m upstream of the submarine. Surface sediments and sediment cores were collected from the box cores taken at each sampling location. Sediment cores

  13. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  14. Phase 1 Final Report: Titan Submarine

    Science.gov (United States)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of

  15. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    Science.gov (United States)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the

  16. Seasonal Transport of Fine Particles to the Grand Canyon.

    Science.gov (United States)

    de P Vasconcelos, Luis A

    1999-03-01

    Potential sources of pollutants can be identified by analyzing back trajectories associated with extreme ambient concentrations. Conditional frequency analysis (CFA) was used to identify statistically significant associations of geographical regions and ambient air quality observed at sites near the Grand Canyon. Stratification by season reveals a pattern of association during the fall quarter that is not observed during other seasons. Application of CFA to different source tracers provides additional information on the nature of the associations. Tracer species that were often below detection limits can be studied because the method requires only that the highest concentrations be identified.

  17. Surprise and Opportunity for Learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    Science.gov (United States)

    Melis, T. S.; Walters, C. J.; Korman, J.

    2013-12-01

    With a focus on resources of the Colorado River ecosystem downstream of Glen Canyon Dam in Glen Canyon National Recreation Area (GCNRA) and Grand Canyon National Park (GCNP) of northern Arizona, the Glen Canyon Dam Adaptive Management Program has evaluated experimental flow and nonflow policy tests since 1990. Flow experiments have consisted of a variety of water releases from the dam within pre-existing annual downstream delivery agreements. The daily experimental dam operation, termed the Modified Low Fluctuating Flow (MLFF), implemented in 1996 to increase daily low flows and decrease daily peaks were intended to limit daily flow range to conserve tributary sand inputs and improve navigation among other objectives, including hydropower energy. Other flow tests have included controlled floods with some larger releases bypassing the dam's hydropower plant to rebuild and maintain eroded sandbars in GCNP. Experimental daily hydropeaking tests beyond MLFF have also been evaluated for managing the exotic recreational rainbow trout fishery in the dam's GCNRA tailwater. Experimental nonflow policies, such as physical removal of exotic fish below the tailwater, and experimental translocation of endangered native humpback chub from spawning habitats in the Little Colorado River (the largest natal origin site for chub in the basin) to other tributaries within GCNP have also been monitored. None of these large-scale field experiments has yet produced unambiguous results in terms of management prescriptions, owing to inadequate monitoring programs and confounding of treatment effects with effects of ongoing natural changes; most notably, a persistent warming of the river resulting from reduced storage in the dam's reservoir after 2003. But there have been several surprising results relative to predictions from models developed to identify monitoring needs and evaluate experimental design options at the start of the adaptive ecosystem assessment and management program in 1997

  18. Canyon morphology on a modern carbonate slope of the Bahamas: Evidence of regional tectonic tilting.

    NARCIS (Netherlands)

    Mulder, T.; Ducassou, E.; Gillet, H.; Hanquiez, V.; Tournadour, E.; Combes, J.; Eberli, G.P.; Kindler, P.; Gonthier, E.; Conesa, G.; Robin, C.; Sianipar, R.; Reijmer, J.J.G.; François, A.

    2012-01-01

    New high-quality multibeam data presented here depict the northern slope of the Little Bahama Bank (Bahamas). The survey reveals the details of large- and small-scale morphologies that look like siliciclastic systems at a smaller scale, including large-scale slope failure scars and canyon

  19. Community analysis of pitcher plant bogs of the Little River Canyon National Preserve, Alabama

    Science.gov (United States)

    Robert Carter; Terry Boyer; Heather McCoy; Andrew J. Londo

    2006-01-01

    Pitcher plant bogs of the Little River Canyon National Preserve in northern Alabama contain the federally endangered green pitcher plant [Sarracenia oreophila (Kearney) Wherry]. Multivariate analysis of the bog vegetation and environmental variables revealed three communities with unique species compositions and soil characteristics. The significant...

  20. The Schistes à Blocs Fm: the ultimate member of the Annot Sandstones in the Southern Alps (France); slope gullies or canyon system?

    Science.gov (United States)

    Rubino, Jean-Loup; Mercier, Louison; Daghdevirenian, Laurent; Migeon, Sébastien; Bousquet, Romain; Broucke, Olivier; Raisson, Francois; Joseph, Philippe; Deschamp, Remi; Imbert, Patrice

    2017-04-01

    Described since a long time, the Schistes à Blocs Fm is the ultimate member of the famous tertiary Grès d'Annot Sandstones in southern alpine foredeep basin in SE France. It mainly consists of shales, silty shales, debris flows, olistoliths and a subordinate amount of sandstones. Since their introduction, and because of their location down to major thrust sheet, they have been considered as a tectono-sedimentary unit linked to the nappe's emplacement and refer as an olistostrome, (Kerckove 1964-1969). However they are separated from the underlying Annot Sandstones by a major erosional surface which deeply cuts, up to 500m, into the sandy turbidites; this surface definitively predates the infill and the nappe emplacement. This is supported by the fact that imbricates affect the upper part of the Schistes and also because of the age; the Schistes à Blocs being Upper Eocene to Lower Oligocene whilst the nappe is latest Oligocene to Lower Miocene. A detailed analysis of the erosional surface in la Bonette area reveals a complex geometry which shows obvious similarities with these observed either on submarine canyons or in slope dissected by gullies as shown by numerous seabeams or 3D seismic images. The infill is quite complex, no basal lag have been observed, however bioturbations suggest occurrence of by pass. Most commonly the lower part of the infill is made of muddy or silty sediments. In some areas, decametric to pluri hectometric olistoliths are interbedded within these deposits. Debris flows are also common with a muddy matrix and finally isolated turbidite channels including the same material than in the Annot Sandstones occur. The reworked material into the debris flows and in the olistoliths suggests that it doesn't only derived from canyon flanks (sandstones) but includes elements belonging to older tethyan series such as Triassic and Liassic carbonates which must be exposed on the sea floor on local highs in the more internal part of the Alps but much

  1. Red Rock Canyon National Conservation Area Transportation Feasibility Study

    Science.gov (United States)

    2012-07-31

    Red Rock Canyon National Conservation Area is a popular Bureau of Land Management natural area located near Las Vegas, Nevada. Red Rock Canyon experiences heavy congestion on its Scenic Drive and associated parking areas, due to high volumes of visit...

  2. Particle Transport and Accumulation in Norfolk and Baltimore Canyons

    Science.gov (United States)

    Robertson, C.; Mienis, F.; Duineveld, G.; Prouty, N.; Davies, A. J.; Ross, S. W.; Demopoulos, A. W.

    2016-02-01

    The Mid-Atlantic Bight is incised by several large canyons two of which were studied as part of a multi-disciplinary project initiated by the Bureau of Ocean Energy Management (BOEM, USA) and jointly funded by BOEM, NOAA and USGS. The heads of the canyons, which are situated 140 km apart, both lie at a distance of 90 km off shore on the same shelf margin and lack direct input from rivers. Two hypotheses were formulated at the start of the study: i) canyons incising the MAB shelf, including Norfolk and Baltimore, capture sediment and organic carbon. This transport ultimately enriches the canyon floor sediment, resulting in higher concentration and quality of carbon than the adjacent slope, and ii) given Baltimore and Norfolk canyons have a very different morphology and orientation from each other, and previous reports indicated differences in sediment grain size and transport properties, the canyons have different sedimentation patterns and accumulation rates, which explains the differing faunal communities between the two canyons. Core samples collected along the canyon axis and for comparison on the adjacent open slope were analyzed for their sediment composition, organic matter content and accumulation rates. Additionally water column properties, including turbidity were measured with CTD. In contrast to our expectations, sediment distribution, sedimentation rates and organic matter content differed strongly between both canyons. Although accumulation rates in both canyons were higher than accumulation rates on the open slope, Norfolk canyon showed an even distribution of sediment and organic matter along the canyon axis. While two distinct zones were observed in Baltimore Canyon; coarse grained sediments with low organic matter in the upper canyon and finer grained sediments with high organic matter content in the lower canyon. Differences are attributed to canyon morphology, physical processes and active particle transport.

  3. Psychological Implications for Submarine Display Design

    Science.gov (United States)

    2005-08-01

    This paper addresses a number of psychological issues pertaining to display design . We review the literature comparing 3-D and 2-D displays and...perceptual, cognitive and ecological factors that are relevant to display design for submarine environments. The Generative Transformational approach...to visual perception is outlined and the relevance of transformational theory to display design is discussed. The paper also discusses a number of

  4. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2013-04-10

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and independent...

  5. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2012-02-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research...

  6. 27 CFR 9.152 - Malibu-Newton Canyon.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the Malibu-Newton...

  7. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Science.gov (United States)

    2010-07-01

    ... Monument. 7.19 Section 7.19 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument unless...

  8. Topology Model of the Flow around a Submarine Hull Form

    Science.gov (United States)

    2015-12-01

    resistance and flow noise arising from flow-structure interaction, it is necessary to test the shape of the submarine , which includes the length-to...UNCLASSIFIED Topology Model of the Flow around a Submarine Hull Form S.-K. Lee Maritime Division Defence Science and Technology Group DST-Group–TR...3177 ABSTRACT A topology model constructed from surface-streamer visualisation describes the flow around a generic conventional submarine hull form at

  9. A Lanchester model of submarine attack on a carrier battlegroup

    OpenAIRE

    Eagle, James N.

    1987-01-01

    A Lanchester model is developed for a battlegroup ASW engagement. Two variations are included. In the first, long-range missile firing submarines, short-range missile or torpedo firing submarines, and submarines firing only torpedoes distribute their attack uniformly over battlegroup escort ships and carriers. In the second variation, the attack is concentrated on the carriers. supported by the Naval War College http://archive.org/details/lanchestermodelo00eagl NA

  10. High-frequency study of epibenthic megafaunal community dynamics in Barkley Canyon: A multi-disciplinary approach using the NEPTUNE Canada network

    Science.gov (United States)

    Matabos, Marjolaine; Bui, Alice O. V.; Mihály, Steven; Aguzzi, Jacopo; Juniper, S. Kim; Ajayamohan, R. S.

    2014-02-01

    In the deep sea and along the continental slope, benthic observations have often been limited to seasonal or longer time scales, conducted at irregular and intermittent intervals. The recent development of cabled observatories now permits continuous high-frequency studies of the ecology of deep environments, and will bring greater temporal resolution to our understanding of processes that shape benthic communities. Combining high-frequency quantitative biological and environmental data, we studied the epibenthic megafaunal community at 890 m depth in Barkley Canyon off Vancouver Island (BC, Canada) using the NEPTUNE Canada cabled network. A video sweep of the same 5 m2 area was recorded every 2 h during the month of December 1-31, 2011 and examined for species composition and behavior. A suite of instruments provided environmental data at the same location allowing us to relate species and community patterns to environmental variables at different temporal scales using time-series analysis (periodogram and wavelet analyses) and multivariate methods (canonical redundancy analysis and the distance-based Moran Eigenvector Map). At the beginning of our study physical conditions in the lower water column were influenced by a preceding period (late November) of high surface winds and waves that generated enhanced currents down to 840 m depth. These currents created a potentially inhospitable environment for hippolytid shrimp explaining their migration into deeper waters. At the same time a shift in hydrographic properties was occurring in bottom waters with the intrusion of slightly colder (4 to 3.3 °C), and saltier (34.3 to 34.4 psu) waters over approximately 10 days. These changes were accompanied by a shift in benthic community composition from one dominated by hippolytid shrimp to one dominated by buccinid snails. The temporal structure detected in the epibenthic megafaunal community coincided with oscillations detected in the ambient currents. These results reveal

  11. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  12. Crossing fitness canyons by a finite population.

    Science.gov (United States)

    Saakian, David B; Bratus, Alexander S; Hu, Chin-Kun

    2017-06-01

    We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.

  13. A submarine landslide source for the devastating 1964 Chenega tsunami, southern Alaska

    Science.gov (United States)

    Brothers, Daniel; Haeussler, Peter J.; Lee Liberty,; David Finlayson,; Geist, Eric L.; Labay, Keith A.; Michael Byerly,

    2016-01-01

    During the 1964 Great Alaska earthquake (Mw 9.2), several fjords, straits, and bays throughout southern Alaska experienced significant tsunami runup of localized, but unexplained origin. Dangerous Passage is a glacimarine fjord in western Prince William Sound, which experienced a tsunami that devastated the village of Chenega where 23 of 75 inhabitants were lost – the highest relative loss of any community during the earthquake. Previous studies suggested the source of the devastating tsunami was either from a local submarine landslide of unknown origin or from coseismic tectonic displacement. Here we present new observations from high-resolution multibeam bathymetry and seismic reflection surveys conducted in the waters adjacent to the village of Chenega. The seabed morphology and substrate architecture reveal a large submarine landslide complex in water depths of 120–360 m. Analysis of bathymetric change between 1957 and 2014 indicates the upper 20–50 m (∼0.7 km3) of glacimarine sediment was destabilized and evacuated from the steep face of a submerged moraine and an adjacent ∼21 km2 perched sedimentary basin. Once mobilized, landslide debris poured over the steep, 130 m-high face of a deeper moraine and then blanketed the terminal basin (∼465 m water depth) in 11 ± 5 m of sediment. These results, combined with inverse tsunami travel-time modeling, suggest that earthquake- triggered submarine landslides generated the tsunami that struck the village of Chenega roughly 4 min after shaking began. Unlike other tsunamigenic landslides observed in and around Prince William Sound in 1964, the failures in Dangerous Passage are not linked to an active submarine delta. The requisite environmental conditions needed to generate large submarine landslides in glacimarine fjords around the world may be more common than previously thought. 

  14. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    Science.gov (United States)

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  15. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  16. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  17. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV).

    Science.gov (United States)

    Doya, Carolina; Chatzievangelou, Damianos; Bahamon, Nixon; Purser, Autun; De Leo, Fabio C; Juniper, S Kim; Thomsen, Laurenz; Aguzzi, Jacopo

    2017-01-01

    Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014). Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage). 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata) were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea), undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens) were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri) were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon), dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of grooved tanner

  18. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV.

    Directory of Open Access Journals (Sweden)

    Carolina Doya

    Full Text Available Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs, such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ. Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014. Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage. 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea, undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon, dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of

  19. Benthic foraminiferal response to sedimentary disturbance in the Capbreton canyon (Bay of Biscay, NE Atlantic)

    Science.gov (United States)

    Duros, P.; Silva Jacinto, R.; Dennielou, B.; Schmidt, S.; Martinez Lamas, R.; Gautier, E.; Roubi, A.; Gayet, N.

    2017-02-01

    Living (Rose Bengal stained) and dead benthic foraminifera were investigated at 6 deep-sea sites sampled in the Capbreton canyon area (Bay of Biscay, France). Three sites were located along the canyon axis at 301 m, 983 m and 1478 m and 3 stations were positioned on adjacent terraces at 251 m, 894 m and 1454 m. Sedimentary features indicate that frequent sedimentary disturbances of different magnitudes occur along the Capbreton canyon axis and adjacent terraces. Such environmental conditions cause the presence of very particular benthic environments. Along the 6 studied sites, different foraminiferal responses to various sedimentary patterns are observed revealing the complexity of this canyon environment. Some sites (Gitan 3 (canyon axis), Gitan 5 (canyon axis) and Gitan 6 (terrace)) are characterized by moderate to low standing stocks and low diversity and are mainly dominated by pioneer taxa such as Fursenkoina brady, Reophax dentaliniformis and Technitella melo suggesting a recent response to turbidite deposits recorded at these sites. Others sites (Gitan 1 and Gitan 2) show extremely high standing stocks and are mainly dominated by the opportunistic Bolivina subaenariensis and Bulimina marginata. Such faunal characteristics belonging to a more advanced stage of ecosystem colonization indicates strongly food-enriched sediment but extremely unstable conditions. Moderate standing stocks and diverse assemblage composed of species such as Uvigerina mediterranea and U. peregrina has only been observed at the terrace site Gitan 4. More stable sedimentary conditions recorded at this terrace seem to be suitable to the development of a dense and diverse foraminiferal community. Numerous neritic allochtonous species were observed in the dead foraminiferal fauna. These allochthonous species mainly originate from shelf areas (<60 m).

  20. Low forced expiratory flow rates and forceful exhalation as a cause for arterial gas embolism during submarine escape training: a case report.

    Science.gov (United States)

    Hartge, Francis J; Bennett, Thomas L

    2015-01-01

    A 26-year-old male U.S. Navy submariner suffered an arterial gas embolism during pressurized submarine escape training. Routine pretraining medical screening revealed no history of asthma, pneumothorax or recent respiratory infection. Pulmonary function testing and posterioranterior/lateral chest X-ray were normal. He forcefully exhaled at the start of his ascent and developed neurological abnormalities including lightheadedness with lower extremity weakness and paresthesias after surfacing. He fully recovered after a U.S. Navy Treatment Table 6. This case represents the first report of an arterial gas embolism since the U.S. Navy resumed pressurized submarine escape training utilizing the Submarine Escape and Immersion Equipment suit. We discuss possible contributing factors and propose that his AGE was caused by pulmonary barotrauma due to a combination of low forced expiratory flow rates and an overly forceful exhalation during his ascent.

  1. Meta-Analysis of Data from the Submarine Ventilation Doctrine Test Program

    National Research Council Canada - National Science Library

    Hoover, J

    1998-01-01

    .... The Submarine Ventilation Doctrine Test Program was developed to address submarine-specific issues regarding the use of ventilation systems to control smoke and heat movement, maintain habitability...

  2. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    National Research Council Canada - National Science Library

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-01-01

    .... As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must...

  3. Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2017-05-01

    A large eddy simulation (LES) model coupled with O3-NOx-VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NOx-O3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO2 and Ox inside the street canyon are enhanced by approximately 30-40% via OH/HO2 chemistry. NO, NOx, O3, OH and HO2 are chemically consumed, while NO2 and Ox (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O3 levels, but overestimated NO2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO2. This study reveals the impacts of nonlinear O3-NOx-VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 76 FR 56430 - Boulder Canyon Project

    Science.gov (United States)

    2011-09-13

    ..., e-mail [email protected] . SUPPLEMENTARY INFORMATION: Hoover Dam, authorized by the Boulder Canyon... continually reviews its security costs and seeks ways to reduce its overall costs. Hoover Dam security costs... border. Hoover Power Plant has nineteen (19) generating units (two for plant use) and an installed...

  5. Grand Canyon, Lake Powell, and Lake Mead

    Science.gov (United States)

    2002-01-01

    A snowfall in the American West provides contrast to the landscape's muted earth tones and indicates changes in topography and elevation across (clockwise from top left) Nevada, Utah, Colorado, New Mexico, Arizona, and California. In Utah, the southern ranges of the Wasatch Mountains are covered in snow, and the Colorado River etches a dark ribbon across the red rock of the Colorado Plateau. In the center of the image is the reservoir created by the Glen Canyon Dam. To the east are the gray-colored slopes of Navaho Mountain, and to the southeast, dusted with snow is the region called Black Mesa. Southwest of Glen Canyon, the Colorado enters the Grand Canyon, which cuts westward through Arizona. At a deep bend in the river, the higher elevations of the Keibab Plateau have held onto snow. At the end of the Grand Canyon lies another large reservoir, Lake Mead, which is formed by the Hoover Dam. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  6. The Colorado River in the Grand Canyon.

    Science.gov (United States)

    Speece, Susan

    1991-01-01

    An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the…

  7. ACUMEN 2012: Atlantic Canyons Undersea Mapping Expeditions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between February and August 2012, a team of NOAA and external partners will conduct a mapping ‘blitz’ focused on deepwater canyons off the northeastern...

  8. Map Your Way to the Grand Canyon

    Science.gov (United States)

    Yoder, Holly

    2005-01-01

    In the introductory assignment, each randomly assigned group spends about 10 to 15 minutes at each station. The author incorporates as much sensory stimulation in the activity as possible. At the first station, students view a PowerPoint show from a geology class the author participated in at the Grand Canyon. At station two, students look at a…

  9. Submarine flow discharge changes as a way to explain incission-overspilling and other cycles in submarine channel sequences

    Science.gov (United States)

    Milana, J. P.; Kneller, B.; Dykstra, M.

    2009-04-01

    -stratification. The second bedform recognized is related to described macrodunes, and is comparable to large-scale antidunes, and produce tabular bodies with very subtle undulating structure. The third and perhaps more important is described as "gravel sheets" although they could be also low-relief gravel dunes developed during low-flow events, on top of the large-scale bedforms or directly over a flat gravelly bed. It is well known that bedforms produce the effect of delay averaged sediment velocity with respect to flow velocity, and thus we propose that this delay has an important geological effect as it creates a lag time between the onset of discharge increase and the time the channel bed reaches an equilibrium with the dominant flows. The effect of changes in the transport efficiency of submarine slope systems in the resulting depositional architecture is already known. However, we introduce here the concept of lagging the coarsest-grained fractions, delayed by the fact they involve in bedform building which move at lower velocities of the flows and hence allow the system to pass along a stage in which flows are big and fast, but the bed is not in equilibrium with them and as a result, canyoning may occur. These changes in external conditions (flow discharge) is likely to occur as a result of changes of turbid water near the slope by fluvial action and hence it would be t result of the interplay of river discharge and eustacy.

  10. Australia’s Submarine Design Capabilities and Capacities: Challenges and Options for the Future Submarine

    Science.gov (United States)

    2011-01-01

    General Dynamics Electric Boat Corporation EMC electromagnetic compatibility EMF electromagnetic field EMI electromagnetic interference EPCM engineering...to-diagnose flow-induced radiated noise Own-sensor performance degradation Note: Risks can be reduced for given designs using scale models...Acoustic analysis Addresses the total radiated noise signature of submarine designs Radiated noise that an enemy might detect Self-noise that that

  11. Creationism in the Grand Canyon, Texas Textbooks

    Science.gov (United States)

    Folger, Peter

    2004-01-01

    AGU President Bob Dickinson, together with presidents of six other scientific societies, have written to Joseph Alston, Superintendent of Grand Canyon National Park, pointing out that a creationist book, The Grand Canyon: A Different View, is being sold in bookstores within the borders of the park as a scientific explanation about Grand Canyon geologic history. President Dickinson's 16 December letter urges that Alston clearly separate The Grand Canyon: A Different View from books and materials that discuss the legitimate scientific understanding of the origin of the Grand Canyon. The letter warns the Park Service against giving the impression that it approves of the anti-science movement known as young-Earth creationism, or that it endorses the advancement of religious tenets disguised as science. The text of the letter is on AGU's Web site http://www.agu.org/sci_soc/policy/sci_pol.html. Also, this fall, AGU sent an alert to Texas members about efforts by intelligent design creationists aimed at weakening the teaching of biological evolution in textbooks used in Texas schools. The alert pointed scientists to a letter, drafted by AGU, together with the American Institute of Physics, the American Physical Society, the Optical Society of America, and the American Astronomical Society, that urged the Texas State Board of Education to adopt textbooks that presented only accepted, peer-reviewed science and pedagogical expertise. Over 550 scientists in Texas added their names to the letter (http://www.agu.org/sci_soc/policy/texas_textbooks.pdf ), sent to the Board of Education on 1 November prior to their vote to adopt a slate of new science textbooks. The Board voted 11-5 in favor of keeping the textbooks free of changes advocated by groups supporting intelligent design creationism.

  12. North Sea submarine cable disruptions and fishing activity

    NARCIS (Netherlands)

    Hintzen, N.T.; Machiels, M.A.M.

    2014-01-01

    At the North Sea seafloor, numerous submarine cables are positioned that connect telecommunication networks between countries. Worldwide, human activities cause most of the cable disruptions with fisheries accounting for nearly half of all reported faults. Due to a recent increase of submarine cable

  13. Submarine landslide identified in DLW3102 core of the northern continental slope, South China Sea

    Science.gov (United States)

    Xu, Yuanqin; Liu, Lejun; Zhou, Hang; Huang, Baoqi; Li, Ping; Ma, Xiudong; Dong, Feiyin

    2018-02-01

    In this paper, we take DLW3101 core obtained at the top of the canyon (no landslide area) and DLW3102 core obtained at the bottom of the canyon (landslide area) on the northern continental slope of the South China Sea as research objects. The chronostratigraphic framework of the DLW3101 core and elemental strata of the DLW3101 core and the DLW3102 core since MIS5 are established by analyzing oxygen isotope, calcium carbonate content, and X-Ray Fluorescence (XRF) scanning elements. On the basis of the information obtained by analyzing the sedimentary structure and chemical elements in the landslide deposition, we found that the DLW3102 core shows four layers of submarine landslides, and each landslide layer is characterized by high Si, K, Ti, and Fe contents, thereby indicating terrigenous clastic sources. L1 (2.15-2.44 m) occurred in MIS2, which is a slump sedimentary layer with a small sliding distance and scale. L2 (15.48-16.00 m) occurred in MIS5 and is a debris flow-deposited layer with a scale and sliding distance that are greater than those of L1. L3 (19.00-20.90 m) occurred in MIS5; its upper part (19.00-20.00 m) is a debris flow-deposited layer, and its lower part (20.00-20.90 m) is a sliding deposition layer. The landslide scale of L3 is large. L4 (22.93-24.27 m) occurred in MIS5; its upper part (22.93-23.50 m) is a turbid sedimentary layer, and its lower part (23.50-24.27 m) is a slump sedimentary layer. The landslide scale of L4 is large.

  14. The 1929 Grand Banks submarine landslide revisited

    Science.gov (United States)

    Schulten, Irena; Mosher, David C.; Krastel, Sebastian; Piper, David J. W.; Kienast, Markus

    2017-04-01

    On November 18th, 1929 a large submarine landslide occurred along the St. Pierre Slope of the southwestern Grand Banks of Newfoundland, as a result of a Mw 7.2 earthquake. This submarine landslide led to the first recognition of naturally-occurring submarine turbidity currents and is one of the few landslides known to have generated a tsunami. The event caused 28 causalities in Newfoundland and severe infrastructural damage. Earlier investigations of the area identified widely distributed shallow mass failures (15 - 20 m high escarpments), but no evidence of a larger headscarp. It is difficult to conceive, therefore, how this distributed shallow failure that rapidly evolved into a turbidity current would have generated a tsunami. It is hypothesised in this study that a deeper rooted sediment failure ( 500 m), involving faulting and mass-rotation, was involved in the sediment failure and this displacement generated the tsunami. In order to test this hypothesis, the volume and kinematics of the 1929 slope failure are analysed by means of recently acquired high resolution seismic reflection and multibeam swath bathymetry data, in addition to a significant volume of legacy data. The data allow determination of: 1) the dimension of the failure area, 2) the thickness and volume of failed sediment on St. Pierre Slope, 3) fault patterns and displacements, and 4) styles of sediment failure involved. Shallow (20 m high) sinuous escarpments and a number of faults are observed along the upper St. Pierre Slope (500 - 2 500 m water depth). The uppermost and largest of these escarpments shows association with a fault system. Preliminary results, therefore, indicate a complex sediment failure pattern along the St. Pierre Slope, possibly involving a deep-seated decollement and mobilization of a large volume of surficial sediment through retrogressive failure. Causes for the tsunami are yet to be determined.

  15. Multivariable Control System Design for a Submarine,

    Science.gov (United States)

    1984-05-01

    perturbations applied to the nominal point were identical in all cases (see table 2.3). The comparisons show excellent correlation between the...Open Loop Singular Values for the 5 and 1S Knot Linear Modelo *~~* b % % V’ , * % ~ .%~ C 9 ~ V. --.- V. V.-.--.--46..- S. 77’ Model S20R5 20- 10- -0...without imparting a pitch angle to the submarine and provides an excellent example of both the usefulness of w(t) as a state variable and the

  16. Hydrogen isotope systematics of submarine basalts

    Science.gov (United States)

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  17. Research on Fairing design and CFD Analysis of Submarine Pipeline Inspection ARV

    Directory of Open Access Journals (Sweden)

    Jin Xiaojian

    2017-01-01

    Full Text Available Along with the fast development of the ocean exploitation, the cost-effective requirement of autonomous & remotely operated vehicle (ARV, which can perform more complicated missions such as the oil exploitation and the inspection of the submarine pipeline is more urgent. The submarine pipeline inspection ARV can help us better understand, protect and efficiently utilize them for human welfare. Fairing design of a new detection ARV are introduced in this paper. In order to select an appropriate thruster that will achieve the required speed of the ARV, the ANSYS-CFX tools are used to predicted the drag force. The CFD results reveal the distribution of velocity and pressure values of the ARV. In order to verify the CFD modeling process, a towed body was developed and analyzed, compared against the corresponding physical test data.

  18. Assessment of submarine landslides hazard through geotechnical and rheological analysis of sediments on the French Atlantic continental slope

    Science.gov (United States)

    Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.

    2016-12-01

    In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.

  19. Possible sources of archaeological maize found in Chaco Canyon and Aztec Ruin, New Mexico

    Science.gov (United States)

    Benson, L.V.; Stein, J.R.; Taylor, H.E.

    2009-01-01

    Maize played a major role in Chaco's interaction with outlying communities in the southern Colorado Plateau. This paper seeks to determine where archaeological corn cobs brought to Chaco Canyon were grown. Strontium-isotope and trace-metal ratios of 180 soil-water and 18 surface-water sites in the Southern Colorado Plateau have revealed possible source areas for some of 37 archaeological corn cobs from Chaco Canyon and 10 archaeological corn cobs from Aztec Ruin, New Mexico. The most probable source areas for cobs that predate the middle-12th-century drought include several Upper Rio Chaco sites (not including Chaco Canyon). There are many potential source areas for cobs that date to the late A.D. 1100s and early 1200s, all of which lie in the eastern part of the study area. Some Athapascan-age cobs have potential source areas in the Totah, Lobo Mesa, and Dinetah regions. One Gallo Cliff Dwelling cob has a strontium-isotope ratio that exceeds all measured soil-water values. Field sites for this cob may exist in association with Paleozoic and Precambrian rocks found 80-90 km from Chaco Canyon. Potential source areas for most Aztec Ruin cobs (many of which were found in rooms dating to the first half of the 13th-century) appear to be associated with a loess deposit that blankets the Mesa Verde and McElmo Dome regions.

  20. Westernmost Grand Canyon incision: Testing thermochronometric resolution

    Science.gov (United States)

    Fox, M.; Tripathy-Lang, A.; Shuster, D. L.; Winn, C.; Karlstrom, K.; Kelley, S.

    2017-09-01

    The timing of carving of Grand Canyon has been debated for over 100 years with competing endmember hypotheses advocating for either a 70 Ma (;old;) or distribution of radiogenic 4He (from the 238U, 235U and 232Th decay series) within an individual apatite crystal and thus are highly sensitive to the thermal history corresponding to landscape evolution. However, there are several complicating factors that make interpreting such data challenging in geologic scenarios involving reheating. Here, we analyze new data that provide measures of the cooling of basement rocks at the base of westernmost Grand Canyon, and use these data as a testbed for exploring the resolving power and limitations of 4He/3He data in general. We explore a range of thermal histories and find that these data are most consistent with a ;young; Grand Canyon. A problem with the recovered thermal history, however, is that burial temperatures are under predicted based on sedimentological evidence. A solution to this problem is to increase the resistance of alpha recoil damage to annealing, thus modifying He diffusion kinetics, allowing for higher temperatures throughout the thermal history. This limitation in quantifying radiation damage (and hence crystal retentivity) introduces non-uniqueness to interpreting time-temperature paths in rocks that resided in the apatite helium partial retention zone for long durations. Another source of non-uniqueness, is due to unknown U and Th distributions within crystals. We show that for highly zoned with a decrease in effective U of 20 ppm over the outer 80% of the radius of the crystal, the 4He/3He data could be consistent with an ;old; canyon model. To reduce this non-uniqueness, we obtain U and Th zonation information for separate crystals from the same rock sample through LA-ICP-MS analysis. The observed U and Th distributions are relatively uniform and not strongly zoned, thus supporting a ;young; canyon model interpretation of the 4He/3He data. Furthermore

  1. 3D View of Grand Canyon, Arizona

    Science.gov (United States)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as

  2. Submarine Tailings Disposal (STD—A Review

    Directory of Open Access Journals (Sweden)

    Bernhard Dold

    2014-07-01

    Full Text Available The mining industry is a fundamental industry involved in the development of modern society, but is also the world’s largest waste producer. This role will be enhanced in the future, because ore grades are generally decreasing, thus leading to increases in the waste/metal production ratio. Mine wastes deposited on-land in so-called tailings dams, impoundments or waste-dumps have several associated environmental issues that need to be addressed (e.g., acid mine drainage formation due to sulphide oxidation, geotechnical stability, among others, and social concerns due to land use during mining. The mining industry recognizes these concerns and is searching for waste management alternatives for the future. One option used in the past was the marine shore or shallow submarine deposition of this waste material in some parts of the world. After the occurrence of some severe environmental pollution, today the deposition in the deep sea (under constant reducing conditions is seen as a new, more secure option, due to the general thought that sulphide minerals are geochemically stable under the reduced conditions prevailing in the deep marine environment. This review highlights the mineralogical and geochemical issues (e.g., solubility of sulphides in seawater; reductive dissolution of oxide minerals under reducing conditions, which have to be considered when evaluating whether submarine tailings disposal is a suitable alternative for mine waste.

  3. Submarine melt rates under Greenland's ice tongues

    Science.gov (United States)

    Wilson, Nat; Straneo, Fiametta; Heimbach, Patrick; Cenedese, Claudia

    2017-04-01

    The few remaining ice tongues (ice-shelf like extensions) of Greenland's glaciers are undergoing rapid changes with potential implications for the stability of the ice sheet. Submarine melting is recognized as a major contributor to mass loss, yet the magnitude and spatial distribution of melt are poorly known or understood. Here, we use high resolution satellite imagery to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues: Ryder Glacier, Petermann Glacier and Nioghalvfjerdsbræ (79 North Glacier). We find that submarine plus aerial melt approximately balance the ice flux from the grounded ice sheet for the first two while at Nioghalvfjerdsbræ the total melt flux exceeds the inflow of ice indicating thinning of the ice tongue. We also show that melt rates under the ice tongues vary considerably, exceeding 60 m yr-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. Using derived melt rates, we test simplified melt parameterizations appropriate for ice sheet models and find the best agreement with those that incorporate ice tongue geometry in the form of depth and slope.

  4. What threat do turbidity currents and submarine landslides pose to submarine telecommunications cable infrastructure?

    Science.gov (United States)

    Clare, Michael; Pope, Edward; Talling, Peter; Hunt, James; Carter, Lionel

    2016-04-01

    The global economy relies on uninterrupted usage of a network of telecommunication cables on the seafloor. These submarine cables carry ~99% of all trans-oceanic digital data and voice communications traffic worldwide, as they have far greater bandwidth than satellites. Over 9 million SWIFT banks transfers alone were made using these cables in 2004, totalling 7.4 trillion of transactions per day between 208 countries, which grew to 15 million SWIFT bank transactions last year. We outline the challenge of why, how often, and where seafloor cables are broken by natural causes; primarily subsea landslides and sediment flows (turbidity currents and also debris flows and hyperpycnal flows). These slides and flows can be very destructive. As an example, a sediment flow in 1929 travelled up to 19 m/s and broke 11 cables in the NE Atlantic, running out for ~800 km to the abyssal ocean. The 2006 Pingtung earthquake triggered a sediment flow that broke 22 cables offshore Taiwan over a distance of 450 km. Here, we present initial results from the first statistical analysis of a global database of cable breaks and causes. We first investigate the controls on frequency of submarine cable breaks in different environmental and geological settings worldwide. We assess which types of earthquake pose a significant threat to submarine cable networks. Meteorological events, such as hurricanes and typhoons, pose a significant threat to submarine cable networks, so we also discuss the potential impacts of future climate change on the frequency of such hazards. We then go on to ask what are the physical impacts of submarine sediment flows on submerged cables? A striking observation from past cable breaks is sometimes cables remain unbroken, whilst adjacent cables are severed (and record powerful flows travelling at up to 6 m/s). Why are some cables broken, but neighbouring cables remain intact? We provide some explanations for this question, and outline the need for future in

  5. Turbulent ventilation of a street canyon

    DEFF Research Database (Denmark)

    Nielsen, Morten

    2000-01-01

    A selection of turbulence data corresponding to 185 days of field measurements has een analysed. The non-ideal building geometry influenced the circulation patterns in the street canyon and the largest average vertical velocities were observed in the wake of an unbroken line of buildings. The sta......A selection of turbulence data corresponding to 185 days of field measurements has een analysed. The non-ideal building geometry influenced the circulation patterns in the street canyon and the largest average vertical velocities were observed in the wake of an unbroken line of buildings...... small, and this suggests that most of the velocity fluctuations were fairly local and not caused by unsteady street vortices. The observed velocities scaled with the ambient wind speed except under low-wind conditions....

  6. Shear-wave velocity of slope sediments near Hudson Canyon from analysis of ambient noise

    Science.gov (United States)

    Miller, N. C.; Ten Brink, U. S.; Collins, J. A.; McGuire, J. J.; Flores, C. H.

    2014-12-01

    We present new ambient noise data that help constrain the shear strength of marine sediments on the continental slope north of Hudson Canyon on the U.S. Atlantic margin. Sediment shear strength is a key parameter in models of potentially tsunamigenic, submarine slope failures, but shear strength is difficult to measure in situ and is expected to evolve in time with changes in pore pressure. The ambient noise data were recorded by 11 short-period, ocean-bottom seismometers and hydrophones deployed in a ~1 by 1.5 km array for ~6 months on the continental slope. These high frequency (~0.1 - 50 Hz), narrow-aperture data are expected to record noise propagating as interface waves and/or resonating in the upper ~500 m of sediment. Propagation of interface waves is controlled by the shear-wave velocity of the sediment, which we measure by calculating lag-times in cross-correlations of waveforms recorded by pairs of receivers. These measurements of shear-wave velocity will be used to constrain shear strength. The data also appear to record wind-generated noise resonating in layered sediment. We expect this resonance to also be sensitive to shear-wave velocity, and spectral analysis and modeling of harmonics may provide a second constraint on sediment shear strength. Both the correlogram- and spectral-based measurements can be made using hour- to day-long segments of data, enabling us to constrain temporal evolution of shear-wave velocity and potential forcing mechanisms (e.g., tidal and storm loading and submarine groundwater discharge) through the ~6 month deployment.

  7. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    Science.gov (United States)

    2015-12-17

    propulsion technology first occurred many years ago: To help jumpstart the UK’s nuclear - powered submarine program, the United States transferred to the UK a... nuclear - powered attack submarines (SSNs), nuclear - powered cruise missile submarines (SSGNs), and nuclear - powered ballistic missile submarines (SSBNs). 2...2 In the designations SSN, SSGN, SSBN, and SSBN(X), the SS stands for submarine, N stands for nuclear - powered (meaning the ship is

  8. Ocean circulation promotes methane release from gas hydrate outcrops at the NEPTUNE Canada Barkley Canyon node

    Science.gov (United States)

    Thomsen, Laurenz; Barnes, Christopher; Best, Mairi; Chapman, Ross; Pirenne, Benoît; Thomson, Richard; Vogt, Joachim

    2012-08-01

    The NEPTUNE Canada cabled observatory network enables non-destructive, controlled experiments and time-series observations with mobile robots on gas hydrates and benthic community structure on a small plateau of about 1 km2 at a water depth of 870 m in Barkley Canyon, about 100 km offshore Vancouver Island, British Columbia. A mobile Internet operated vehicle was used as an instrument platform to monitor and study up to 2000 m2 of sediment surface in real-time. In 2010 the first mission of the robot was to investigate the importance of oscillatory deep ocean currents on methane release at continental margins. Previously, other experimental studies have indicated that methane release from gas hydrate outcrops is diffusion-controlled and should be much higher than seepage from buried hydrate in semipermeable sediments. Our results show that periods of enhanced bottom currents associated with diurnal shelf waves, internal semidiurnal tides, and also wind-generated near-inertial motions can modulate methane seepage. Flow dependent destruction of gas hydrates within the hydrate stability field is possible from enhanced bottom currents when hydrates are not covered by either seafloor biota or sediments. The calculated seepage varied between 40-400 μmol CH4 m-2 s-1. This is 1-3 orders of magnitude higher than dissolution rates of buried hydrates through permeable sediments and well within the experimentally derived range for exposed gas hydrates under different hydrodynamic boundary conditions. We conclude that submarine canyons which display high hydrodynamic activity can become key areas of enhanced seepage as a result of emerging weather patterns due to climate change.

  9. Management of demand based inventory aboard submarine tenders servicing attack (SSN) submarines

    OpenAIRE

    Ross, Timothy Joseph

    1990-01-01

    Approved for public release; distribution is unlimited. This thesis examines the computation of inventory levels based on demand history aboard Submarine Tenders that use the Shipboard Automated Data Processing System (SUADPS) for inventory control. The focus of the thesis was the workload and supply effectiveness issues associated with the processing of the SUADPS levels setting program. The objective of the thesis was to determine the effect on supply effectiveness and stock churn if the...

  10. Deformation microstructures and timing of a large submarine landslide drilled offshore Martinique (IODP Exp. 340)

    Science.gov (United States)

    Guyard, H.; Le Friant, A.; Brunet, M.; Boudon, G.; Emmanuel, L.; Caron, B.; Villemant, B.; Feuillet, N.

    2015-12-01

    Flank-instabilities constitute a recurrent process in the long-term evolution of many volcanoes. A very large submarine landslide deposit (~2100 km2, ~300 km3) drilled southwest Martinique island during the IODP Exp. 340 in 2012 is likely associated with one (or more) major volcanic flank collapse of Mount Pelée during the Late Pleistocene. A recent study revealed that this D1/D2 deposit is emergent in its central part, frontally confined, and mainly comprises remobilized seafloor sediments rather than debris avalanche material from the volcanic edifice (Brunet et al., subm). Here, we investigate the sedimentary microstructures and timing of deformation from the central (Hole 1400B, ~37 km from the coastline) and distal (Hole 1399A, ~70 km from the coastline) units of the D1/D2 deposit, in order to better understand the emplacement dynamics of such potentially tsunamigenic submarine landslides. High resolution CT-Scan analyses were continuously performed on more than 300 m of sediment cores, in order to characterize and distinguish the internal architecture and the complex deformation features of the sediments at each drilling site. The establishment of the stratigraphy, based on δ18O measurements and AMS 14C dating, is still in progress and may confirm the possible link between the submarine landslide deposits and the flank collapse scars observed on the subaerial part of Martinique. These new insights into the timing and emplacement processes of this large submarine landslide will have important implications for tsunami hazards. ReferenceBrunet, M., Le Friant, A., Boudon, G., Lafuerza, S., Talling, P., Hornbach, M., Lebas, E., Guyard, H., and IODP Expedition 340 science party, submitted. Composition, geometry and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochemistry, Geophysics, Geosystems.

  11. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons.

    Science.gov (United States)

    Tong, Nelson Y O; Leung, Dennis Y C

    2012-01-01

    A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.

  12. Genetic Analysis of Norovirus Strains that Caused Gastroenteritis Outbreaks Among River Rafters in the Grand Canyon, Arizona.

    Science.gov (United States)

    Kitajima, Masaaki; Iker, Brandon C; Magill-Collins, Anne; Gaither, Marlene; Stoehr, James D; Gerba, Charles P

    2017-06-01

    Toilet solid waste samples collected from five outbreaks among rafters in the Grand Canyon were subjected to sequencing analysis of norovirus partial capsid gene. The results revealed that a GI.3 strain was associated with one outbreak, whereas the other outbreaks were caused by GII.5 whose sequences shared >98.9% homology.

  13. Experimental modeling of gravity underflow in submarine channels

    Science.gov (United States)

    Islam, Mohammad Ashraful

    Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. Unlike natural rivers, few attempts have been made to explore the process of channel meandering in the submarine environment. This research focuses on resolving the flow field of submarine channels by conducting experiments in a large laboratory basin. Saline and particulate density flows were studied in a straight channel, a single bend sinuous channel with vertical sidewalls and a multiple-bend sinuous channel with sloping sidewalls. Instantaneous velocities in steady developed currents were measured using 3-component acoustic Doppler velocity probes. Excess fractional density was measured at selected locations by collecting water sample using a siphon rake. Turbulent kinetic energy and Reynolds stress components are derived from the instantaneous velocity data of the straight channel experiments. Structure functions for mean velocity, Reynolds stress and turbulent kinetic energy profiles are derived by fitting normalized data. The normalized Reynolds-averaged velocity shows excellent similarity collapse while the Reynolds-stress and the turbulent kinetic energy profiles display reasonable similarity. Vertical profiles of the turbulent kinetic energy display two peaks separated by a zone of low turbulence; the ratio of the maximum to the depth-averaged turbulent kinetic energy is approximately 1.5. Theoretical profile of turbulent kinetic energy is derived. Comparisons of experimentally and theoretically derived turbulent kinetic energy profiles show reasonable agreement except at the position of velocity maximum where the theoretical profile displays a very small value. Velocity profiles derived from the measurements with confined flow in the single bend channel reveal that channel curvature drives two helical flow cells, one

  14. Improved OTEC System for a Submarine Robot

    Science.gov (United States)

    Chao, Yi; Jones, Jack; Valdez, Thomas

    2010-01-01

    An ocean thermal energy conversion (OTEC), now undergoing development, is a less-massive, more-efficient means of exploiting the same basic principle as that of the proposed system described in "Alternative OTEC Scheme for a Submarine Robot" (NPO-43500), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 50. The proposed system as described previously would be based on the thawing-expansion/freezing-contraction behavior of a wax or perhaps another suitable phase-change material (PCM). The power generated by the system would be used to recharge the batteries in a battery- powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. At one phase of its operational cycle, the previously proposed system would utilize the surface ocean temperature (which lies between 15 and 30 C over most of the Earth) to melt a PCM that has a melting/freezing temperature of about 10 C. At the opposite phase of its operational cycle, the system would utilize the lower ocean temperature at depth (e.g., between 4 and 7 C at a depth of 300 m) to freeze the PCM. The melting or freezing would cause the PCM to expand or contract, respectively, by about 9 volume percent. The PCM would be contained in tubes that would be capable of expanding and contracting with the PCM. The PCM-containing tubes would be immersed in a hydraulic fluid. The expansion and contraction would drive a flow of the hydraulic fluid against a piston that, in turn, would push a rack-and-pinion gear system to spin a generator to charge a battery.

  15. A model for tidewater glacier undercutting by submarine melting

    Science.gov (United States)

    Slater, D. A.; Nienow, P. W.; Goldberg, D. N.; Cowton, T. R.; Sole, A. J.

    2017-03-01

    Dynamic change at the marine-terminating margins of the Greenland Ice Sheet may be initiated by the ocean, particularly where subglacial runoff drives vigorous ice-marginal plumes and rapid submarine melting. Here we model submarine melt-driven undercutting of tidewater glacier termini, simulating a process which is key to understanding ice-ocean coupling. Where runoff emerges from broad subglacial channels we find that undercutting has only a weak impact on local submarine melt rate but increases total ablation by submarine melting due to the larger submerged ice surface area. Thus, the impact of melting is determined not only by the melt rate magnitude but also by the slope of the ice-ocean interface. We suggest that the most severe undercutting occurs at the maximum height in the fjord reached by the plume, likely promoting calving of ice above. It remains unclear, however, whether undercutting proceeds sufficiently rapidly to influence calving at Greenland's fastest-flowing glaciers.

  16. Submarine Upward Looking Sonar Ice Draft Profile Data and Statistics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of upward looking sonar draft data collected by submarines in the Arctic Ocean. It includes data from both U.S. Navy and Royal Navy...

  17. Virtual Reality Training System for a Submarine Command Center

    National Research Council Canada - National Science Library

    Maxwell, Douglas B

    2008-01-01

    The invention as disclosed is a system that uses a combined real and virtual display interaction methodology to generate the visual appearance of submarine combat control rooms and allow interaction...

  18. Demersal fish distribution and habitat use within and near Baltimore and Norfolk Canyons, U.S. Middle Atlantic Slope

    Science.gov (United States)

    Ross, Steve W.; Rhode, Mike; Quattrini, Andrea M.

    2015-01-01

    Numerous submarine canyons along the United States middle Atlantic continental margin support enhanced productivity, diverse and unique habitats, active fisheries, and are vulnerable to various anthropogenic disturbances. During two cruises (15 Aug–2 Oct 2012 and 30 Apr–27 May 2013), Baltimore and Norfolk canyons and nearby areas (including two cold seeps) were intensively surveyed to determine demersal fish distributions and habitat associations. Overall, 34 ROV dives (234–1612 m) resulted in 295 h of bottom video observations and numerous collections. These data were supplemented by 40, 30-min bottom trawl samples. Fish observations were assigned to five general habitat designations: 1) sand-mud (flat), 2) sloping sand-mud with burrows, 3) low profile gravel, rock, boulder, 4) high profile, canyon walls, rocks or ridges, and 5) seep-mixed hard and soft substrata, the later subdivided into seven habitats based on amounts of dead mussel and rock cover. The influence of corals, sponges and live mussels (seeps only) on fish distributions was also investigated. Both canyon areas supported abundant and diverse fish communities and exhibited a wide range of habitats, including extensive areas of deep-sea corals and sponges and two nearby methane seeps (380–430 m, 1455–1610 m). All methods combined yielded a total of 123 species of fishes, 12 of which are either new records for this region or have new range data. Depth was a major factor that separated the fish faunas into two zones with a boundary around 1400 m. Fishes defining the deeper zone included Lycodes sp.,Dicrolene introniger, Gaidropsaurus ensis, Hydrolagus affinis, Antimora rostrata, andAldrovandia sp. Fishes in the deep zone did not exhibit strong habitat affinities, despite the presence of a quite rugged, extensive methane seep. We propose that habitat specificity decreases with increasing depth. Fishes in the shallower zone, characterized by Laemonema sp., Phycis chesteri, Nezumia bairdii, Brosme

  19. Studies on submarine control for periscope depth operations

    OpenAIRE

    Tolliver, John V.

    1996-01-01

    Approved for public release; distribution in unlimited. Requirements for submarine periscope depth operations have been increased by integration with carrier battle groups, littoral operations, and contributions to joint surveillance. Improved periscope depth performance is therefore imperative. Submarine control personnel rely on a large number of analog gauges and indications. An integrated digital display system could enhance the ergonomics of the human control interface and display add...

  20. Exercise Aboard Attack Submarines: Rationale and New Options

    Science.gov (United States)

    2004-08-18

    experience loss of physical fitness while underway. Bennett and co-workers (2) noted a 7% reduction of maximal oxygen consumption in non-exercising...Inc. designed and built a comprehensive resistance exercise device to help counteract muscle deconditioning during long term space flights (the SX... Physical activity aboard nuclear submarines as measured by pedometry. Groton: Naval Submarine Medical Research Laboratory, Report 1053, 1985, p. 12

  1. Are tilt measurements useful in detecting tsunamigenic submarine landslides?

    OpenAIRE

    Sascha Brune; Andrey Babeyko; Stephan V. Sobolev

    2009-01-01

    Large submarine landslides can generate dangerous tsunamis. Because of their long-period signal, detection of landslides by common seismological methods is difficult. Here we suggest a method of detecting submarine landslides by using an array of land-based tiltmeters. The displacement of a large volume of sediments during landsliding produces a detectable elastic response of the lithosphere. We propose a technique to calculate this response and to invert for tsunami relevant parameters like ...

  2. Cardiometabolic Health in Submariners Returning from a 3-Month Patrol

    Directory of Open Access Journals (Sweden)

    Heath G. Gasier

    2016-02-01

    Full Text Available Confined space, limited exercise equipment, rotating shift work and reduced sleep may affect cardiometabolic health in submariners. To test this hypothesis, 53 male U.S. Submariners (20–39 years were studied before and after a 3-month routine submarine patrol. Measures included anthropometrics, dietary and physical activity, biomarkers of cardiometabolic health, energy and appetite regulation, and inflammation. Before deployment, 62% of submariners had a body fat % (BF% ≥ 25% (obesity, and of this group, 30% met the criteria for metabolic syndrome. In obese volunteers, insulin, the homeostatic model assessment of insulin resistance (HOMA-IR, leptin, the leptin/adiponectin ratio, and pro-inflammatory chemokines growth-related oncogene and macrophage-derived chemokine were significantly higher compared to non-obese submariners. Following the patrol, a significant mean reduction in body mass (5% and fat-mass (11% occurred in the obese group as a result of reduced energy intake (~2000 kJ during the patrol; and, independent of group, modest improvements in serum lipids and a mean reduction in interferon γ-induced protein 10 and monocyte chemotactic protein 1 were observed. Since 43% of the submariners remained obese, and 18% continued to meet the criteria for metabolic syndrome following the patrol, the magnitude of weight loss was insufficient to completely abolish metabolic dysfunction. Submergence up to 3-months, however, does not appear to be the cause of obesity, which is similar to that of the general population.

  3. Solution of Supplee's submarine paradox through special and general relativity

    CERN Document Server

    Vieira, R S

    2016-01-01

    In 1989 Supplee described an apparent relativistic paradox on which a submarine seems to sink in a given frame while floating in another one. If the submarine density is adjusted to be the same as the water density (when both of them are at rest) and then it is put to move, the density of the submarine will become higher than that of the water, thanks to Lorentz contraction, and hence it sinks. However, in the submarine proper frame, is the water that becomes denser, so the submarine supposedly should float and we get a paradox situation. In this paper we analyze the submarine paradox in both a flat and a curved spacetime. In the case of a flat spacetime, we first show that any relativistic force field in special relativity can be written in the Lorentz form, so that it can always be decomposed into a static (electric-like) and a dynamic (magnetic-like) part. Taking into account the gravitomagnetic effects between the Earth and the water, a relativistic formulation of Archimedes principle can be established, ...

  4. Did a submarine landslide contribute to the 2011 Tohoku tsunami?

    KAUST Repository

    Tappin, David R.

    2014-09-28

    Many studies have modeled the Tohoku tsunami of March 11, 2011 as being due entirely to slip on an earthquake fault, but the following discrepancies suggest that further research is warranted. (1) Published models of tsunami propagation and coastal impact underpredict the observed runup heights of up to 40 m measured along the coast of the Sanriku district in the northeast part of Honshu Island. (2) Published models cannot reproduce the timing and high-frequency content of tsunami waves recorded at three nearshore buoys off Sanriku, nor the timing and dispersion properties of the waveforms at offshore DART buoy #21418. (3) The rupture centroids obtained by tsunami inversions are biased about 60 km NNE of that obtained by the Global CMT Project. Based on an analysis of seismic and geodetic data, together with recorded tsunami waveforms, we propose that, while the primary source of the tsunami was the vertical displacement of the seafloor due to the earthquake, an additional tsunami source is also required. We infer the location of the proposed additional source based on an analysis of the travel times of higher-frequency tsunami waves observed at nearshore buoys. We further propose that the most likely additional tsunami source was a submarine mass failure (SMF—i.e., a submarine landslide). A comparison of pre- and post-tsunami bathymetric surveys reveals tens of meters of vertical seafloor movement at the proposed SMF location, and a slope stability analysis confirms that the horizontal acceleration from the earthquake was sufficient to trigger an SMF. Forward modeling of the tsunami generated by a combination of the earthquake and the SMF reproduces the recorded on-, near- and offshore tsunami observations well, particularly the high-frequency component of the tsunami waves off Sanriku, which were not well simulated by previous models. The conclusion that a significant part of the 2011 Tohoku tsunami was generated by an SMF source has important implications for

  5. Chronology and evolution of a fluvial/canyon connection around the Last Glacial Maximum: The Bourcart canyon head (western Mediterranean)

    Science.gov (United States)

    Mauffrey, Marie-Aline; Berné, Serge; Gaudin, Matthieu; Jouet, Gwenael

    2013-04-01

    Deeply incised canyons have been described in the Gulf of Lions since the end of the 19th century. Recently, the role of axial incision, as a pathway of high-density flows initiated within streams and cutting across the main thalweg of canyons, has been proposed as a mechanism for canyon evolution, in this area and elsewhere (Baztan et al., 2005). In this study, we used a large data base of very-high resolution seismic profiles in order to determine the precise architecture of the Bourcart (Aude) canyon head. The accurate 3D geometry of the buried and recent incisions through the Bourcart canyon head allows us to draw the pattern of canyon connections with shelf incised valleys. Furthermore, time constraints (and relation with sea-level changes) were obtained through the correlation with the Promess 1 drill site situated in the vicinity of the Bourcart canyon, and with long piston cores retrieved on the continental shelf in the same area. Our results demonstrate the direct connection of fluvial system(s) to present (and buried) axial incisions, and show the progressive evolution of seismic facies from typical "valley-fill" to typical "confined channel-levee" systems. Streams from the East (possibly the Rhone), then from the West (possibly the Agly) of the Gulf of Lions successively fed the canyon head. An important phase of deposition occurred within the canyon head at the onset of sea-level rise, probably in relation with increased water and sediment flux from the Pyrenees during the early Deglacial period. We hypothesize that, during this period, Pyrenean streams seasonally experienced very high-concentration sediment loads, capable of generating high density (probably hyperpycnal) flows in the canyon head. Only such high-concentration flows may explain the meandering pattern of axial incisions observed at very shallow depths, within the canyon head. Reference: Baztan, J. et al., 2005, Marine and Petroleum Geology, 22, 805-826

  6. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2010-06-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the Secretary...

  7. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Science.gov (United States)

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  8. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2011-05-02

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group (TWG), a...

  9. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2013-02-04

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group...

  10. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2012-04-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... AMP includes a Federal advisory committee, the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and independent review panels. The technical work group is a subcommittee of the...

  11. Modeling the Effect of Wider Canyons on Urban Heating

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-04-01

    Full Text Available The k-? turbulence model is adopted in this study to simulate the impact of street canyon AR (Aspect Ratios on heating within street canyon. The two-dimensional model was validated for RANS (Reynolds Averaged Navier Stokes and energy transport equations. The validation process confirms that the results of the model for airtemperature and wind speed could be trusted. The application of the said model is carried out to ideal street canyons of ARs (ratio of building-height-to-street-width from 0.4 to 2 with the same boundary conditions. Notably, street canyon aspect ratio was calculated by varying the street width while keeping the building height constant. Results show that the weighted-average-air-temperature within AR 0.4 was around 0.8% (i.e. 2.4K higher than that within AR 2.0. Conversely, there was strong correlation (i.e., R2>0.9 between air temperature within the street canyon and street canyon AR. Results demonstrate stronger influence of vertical velocity on heating within street canyon. Evidently, increased vertical velocity decreased the temperatures. Conversely, temperatures were higher along the leeward side of the canyon in lower ARs.

  12. Mapping wilderness character in Sequoia and Kings Canyon National Parks

    Science.gov (United States)

    James Tricker; Peter Landres; Gregg Fauth; Paul Hardwick; Alex Eddy

    2014-01-01

    The Sequoia-Kings Canyon Wilderness was established in September of 1984 when President Ronald Reagan signed the California Wilderness Act (PL 98-425). In March 2009, President Barack Obama signed the Omnibus Public Land Management Act (PL 111-11) designating the John Krebs Wilderness and the Sequoia-Kings Canyon Wilderness Addition (all wholly contained within SEKI)....

  13. Submarine springs and coastal karst aquifers: A review

    Science.gov (United States)

    Fleury, Perrine; Bakalowicz, Michel; de Marsily, Ghislain

    2007-06-01

    SummaryThis article reports on current knowledge of coastal karst aquifers, in which conduit flow is dominant, and its aim is to characterise the functioning of these systems which are closely linked to the sea. First, earlier and recent studies of these aquifers are discussed. On the basis of their findings, it can be shown that two essential mechanisms are involved in the functioning of these systems, i.e., aquifer discharge through submarine springs and saline intrusion through conduits open to the sea. Then, the conditions that give rise to these aquifers are described and particular emphasis is placed on the influence of deep karstification when the sea level falls. The base-level variations are attributed to the glaciations or, in the specific case of the Mediterranean, to the salinity crisis in the Messinian period. It is this inherited structure, sometimes containing very deep conduits below sea level, that today conditions the aquifer flow. The flow in the conduits open to the sea depends on the hydraulic head gradient between the aquifer and the sea and is therefore a function of the water density and head losses in the aquifer. This survey of coastal karst aquifers has revealed some common characteristics that show the development and/or functional capacity of their karstic drainage networks. A classification of such systems into three categories is proposed with the aim of assisting in the decision-making concerning potential exploitation of water resources in coastal regions.

  14. Recent uplift of the Atlantic Atlas (offshore West Morocco): Tectonic arch and submarine terraces

    Science.gov (United States)

    Benabdellouahed, M.; Klingelhoefer, F.; Gutscher, M.-A.; Rabineau, M.; Biari, Y.; Hafid, M.; Duarte, J. C.; Schnabel, M.; Baltzer, A.; Pedoja, K.; Le Roy, P.; Reichert, C.; Sahabi, M.

    2017-06-01

    Re-examination of marine geophysical data from the continental margin of West Morocco reveals a broad zone characterized by deformation, active faults and updoming offshore the High Atlas (Morocco margin), situated next to the Tafelney Plateau. Both seismic reflection and swath-bathymetric data, acquired during Mirror marine geophysical survey in 2011, indicate recent uplift of the margin including uplift of the basement. This deformation, which we propose to name the Atlantic Atlas tectonic arch, is interpreted to result largely through uplift of the basement, which originated during the Central Atlantic rifting stage - or even during phases of Hercynian deformation. This has produced a large number of closely spaced normal and reverse faults, ;piano key faults;, originating from the basement and affecting the entire sedimentary sequence, as well as the seafloor. The presence of four terraces in the Essaouira canyon system at about 3500 meters water depth and ;piano key faults; and the fact that these also affect the seafloor, indicate that the Atlantic Atlas is still active north of Agadir canyon. We propose that recent uplift is causing morphogenesis of four terraces in the Essaouira canyon system. In this paper the role of both Canary plume migration and ongoing convergence between the African and Eurasian plates in the formation of the Atlantic Atlas are discussed as possibilities to explain the presence of a tectonic arch in the region. The process of reactivation of passive margins is still not well understood. The region north of Agadir canyon represents a key area to better understand this process.

  15. The fluorescent tracer experiment on Holiday Beach near Mugu Canyon, Southern California

    Science.gov (United States)

    Kinsman, Nicole; Xu, J. P.

    2012-01-01

    After revisiting sand tracer techniques originally developed in the 1960s, a range of fluorescent coating formulations were tested in the laboratory. Explicit steps are presented for the preparation of the formulation evaluated to have superior attributes, a thermoplastic pigment/dye in a colloidal mixture with a vinyl chloride/vinyl acetate copolymer. In September 2010, 0.59 cubic meters of fluorescent tracer material was injected into the littoral zone about 4 kilometers upcoast of Mugu submarine canyon in California. The movement of tracer was monitored in three dimensions over the course of 4 days using manual and automated techniques. Detailed observations of the tracer's behavior in the coastal zone indicate that this tracer successfully mimicked the native beach sand and similar methods could be used to validate models of tracer movement in this type of environment. Recommendations including how to time successful tracer studies and how to scale the field of view of automated camera systems are presented along with the advantages and disadvantages of the described tracer methodology.

  16. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  17. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, D.A.; Langenheim, V.E.

    1995-12-31

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting.

  18. The Black Canyon of the Gunnison: Today and Yesterday

    Science.gov (United States)

    Hansen, Wallace R.

    1965-01-01

    Since the early visit of Captain John William Gunnison in the middle of the last century, the Black Canyon of the Gunnison has stirred mixed apprehension and wonder in the hearts of its viewers. It ranks high among the more awesome gorges of North America. Many great western canyons are as well remembered for their brightly colored walls as for their airy depths. Not so the Black Canyon. Though it is assuredly not black, the dark-gray tones of its walls and the hazy shadows of its gloomy depths join together to make its name well deserved. Its name conveys an impression, not a picture. After the first emotional impact of the canyon, the same questions come to the minds of most reflective viewers and in about the following order: How deep is the Black Canyon, how wide, how does it compare with other canyons, what are the rocks, how did it form, and how long did it take? Several western canyons exceed the Black Canyon in overall size. Some are longer; some are deeper; some are narrower; and a few have walls as steep. But no other canyon in North American combines the depth, narrowness, sheerness, and somber countenance of the Black Canyon. In many places the Black Canyon is as deep as it is wide. Between The Narrows and Chasm View in the Black Canyon of the Gunnison National Monument (fig. 15) it is much deeper than wide. Average depth in the monument is about 2,000 feet, ranging from a maximum of about 2,700 feet, north of Warner Point (which also is the greatest depth anywhere in the canyon), to a minimum of about 1,750 feet at The Narrows. The stretch of canyon between Pulpit Rock and Chasm View, including The Narrows, though the shallowest in the monument, is also the narrowest, has some of the steepest walls, and is, therefore, among the most impressive segments of the canyon (fig. 3). Profiles of several well-known western canyons are shown in figure 1. Deepest of these by far is Hells Canyon of the Snake, on the Idaho-Oregon border. Clearly, it dwarfs the

  19. Submarine Landslides at Santa Catalina Island, California

    Science.gov (United States)

    Legg, M. R.; Francis, R. D.

    2011-12-01

    Santa Catalina Island is an active tectonic block of volcanic and metamorphic rocks originally exposed during middle Miocene transtension along the evolving Pacific-North America transform plate boundary. Post-Miocene transpression created the existing large pop-up structure along the major strike-slip restraining bend of the Catalina fault that forms the southwest flank of the uplift. Prominent submerged marine terraces apparent in high-resolution bathymetric maps interrupt the steep submarine slopes in the upper ~400 meters subsea depths. Steep subaerial slopes of the island are covered by Quaternary landslides, especially at the sea cliffs and in the blueschist metamorphic rocks. The submarine slopes also show numerous landslides that range in area from a few hectares to more than three sq-km (300 hectares). Three or more landslides of recent origin exist between the nearshore and first submerged terrace along the north-facing shelf of the island's West End. One of these slides occurred during September 2005 when divers observed a remarkable change in the seafloor configuration after previous dives in the area. Near a sunken yacht at about 45-ft depth where the bottom had sloped gently into deeper water, a "sinkhole" had formed that dropped steeply to 100-ft or greater depths. Some bubbling sand was observed in the shallow water areas that may be related to the landslide process. High-resolution multibeam bathymetry acquired in 2008 by CSU Monterey Bay show this "fresh" slide and at least two other slides of varying age along the West End. The slides are each roughly 2 hectares in area and their debris aprons are spread across the first terrace at about 85-m water depth that is likely associated with the Last Glacial Maximum sealevel lowstand. Larger submarine slides exist along the steep Catalina and Catalina Ridge escarpments along the southwest flank of the island platform. A prominent slide block, exceeding 3 sq-km in area, appears to have slipped more than

  20. Effects of symmetrical foundation on sound radiation from a submarine hull structure.

    Science.gov (United States)

    Li, Chenyang; Su, Jinpeng; Wang, Jian; Hua, Hongxing

    2015-11-01

    The effects of a passive noise control method for suppressing sound radiation from a submarine hull structure are investigated. The control method is realized by symmetrizing the foundation about the horizontal plane. The coupled finite element method and boundary element method are adopted to compute the acoustic characteristics of the submerged hull. From the numerical results, the symmetrical foundation has advantages in sound radiation reduction when the hull is subjected to the axial load, but has little influences in the vertical and transverse load cases. Using the modal decomposition technique, the contributions of each individual mode to the sound radiation are analyzed to reveal the mechanism of the control method.

  1. Relationship between work stress and health in submariners

    Directory of Open Access Journals (Sweden)

    Nan-nan JIANG

    2013-09-01

    Full Text Available Objective To explore the relationship between work stress and health in submariners. Methods In April 2008, 272 submariners trained in a navy base were selected as study subjects by random group sampling method, and tested by primary personal information questionnaire, self-rated health measurement scale (SRHMS, self-developed submariners' work stressors questionnaire, and work stress self-rated scale. Physical health, mental health and social health of submariners were analyzed, and scores were compared with the norm of reference scores. Correlations were analyzed respectively between 10 items of submariners' general information (including age, length of military service, education degree, years at the present post, times of receiving awards, on-duty hours, off-duty hours, hours of sleep, lost days of leave, positive attitude to work and their physical health score, mental health score, social health score, total health score, as well as between 15 submariners' work stressors (including workrelated risks, diet problems, high temperature, humidity and noise in workplace, shortage of clean clothes, illness, losing contact with outside, lack of information about the task, lacking supports from family members, relationship problems, lack of involvement in task decisions, boring and dull work, on duty, heavy work, high quality of work, coping with unexpected threat and their physical health score, mental health score, social health score and total health score. Results No significant difference was found between submariners' SRHMS total score and the normal referenced score (t=0.56, P>0.05, but the physical health score and mental health score were significantly lower than normal referenced scores respectively (t=–2.172, P<0.05; t=–3.299, P<0.01, and the social health score was significantly higher than normal referenced score (t=9.331, P<0.001. The age, length of military service, years at present post of submariners were related

  2. Integrated study of Mediterranean deep canyons: Novel results and future challenges

    Science.gov (United States)

    Canals, M.; Company, J. B.; Martín, D.; Sànchez-Vidal, A.; Ramírez-Llodrà, E.

    2013-11-01

    This volume compiles a number of scientific papers resulting from a sustained multidisciplinary research effort of the deep-sea ecosystem in the Mediterranean Sea. This started 20 years ago and peaked over the last few years thanks to a number of Spanish and European projects such as PROMETEO, DOS MARES, REDECO, GRACCIE, HERMES, HERMIONE and PERSEUS, amongst others. The geographic focus of most papers is on the NW Mediterranean Sea including the Western Gulf of Lion and the North Catalan margin, with a special attention to submarine canyons, in particular the Blanes and Cap de Creus canyons. This introductory article to the Progress in Oceanography special issue on “Mediterranean deep canyons” provides background information needed to better understand the individual papers forming the volume, comments previous reference papers related to the main topics here addressed, and finally highlights the existing relationships between atmospheric forcing, oceanographic processes, seafloor physiography, ecosystem response, and litter and chemical pollution. This article also aims at constituting a sort of glue, in terms of existing knowledge and concepts and novel findings, linking together the other twenty papers in the volume, also including some illustrative figures. The main driving ideas behind this special issue, particularly fitting to the study area of the NW Mediterranean Sea, could be summarized as follows: (i) the atmosphere and the deep-sea ecosystem are connected through oceanographic processes originating in the coastal area and the ocean surface, which get activated at the occasion of high-energy events leading to fast transfers of matter and energy to the deep; (ii) shelf indented submarine canyons play a pivotal role in such transfers, which involve dense water, sedimentary particles, organic matter, litter and chemical pollutants; (iii) lateral inputs (advection) from the upper continental margin contributes significantly to the formation of

  3. Comprehensive investigation of submarine slide zones and mass movements at the northern continental slope of South China Sea

    Science.gov (United States)

    Chen, Hongjun; Liang, Jin; Gong, Yuehua

    2018-02-01

    Multi-beam bathymetry and seismic sequence surveys in the northern slope of the South China Sea reveal detailed geomorphology and seismic stratigraphy characteristics of canyons, gullies, and mass movements. Modern canyons and gullies are roughly elongated NNW-SSW with U-shaped cross sections at water depths of 400-1000 m. Mass movements include slide complexes, slide scars, and debris/turbidity flows. Slide complexes and slide scars are oriented in the NE-SW direction and cover an area of about 1790 and 926 km2, respectively. The debris/turbidity flows developed along the lower slope. A detailed facies analysis suggests that four seismic facies exist, and the late Cenozoic stratigraphy above the acoustic basement can be roughly subdivided into three sequences separated by regional unconformities in the study area. The occurrence of gas hydrates is marked by seismic velocity anomalies, bottom-simulating reflectors, gas chimneys, and pockmarks in the study area. Seismic observations suggest that modern canyons and mass movements formed around the transition between the last glacial period and the current interglacial period. The possible existence and dissociation of gas hydrates and the regional tectonic setting may trigger instability and mass movements on the seafloor. Canyons may be the final result of gas hydrate dissociation. Our study aims to contribute new information that is applicable to engineering construction required for deep-water petroleum exploration and gas hydrate surveys along any marginal sea.

  4. From submarine to lacustrine groundwater discharge

    Science.gov (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Pöschke, Franziska; Nützmann, Gunnar; Rosenberry, Donald O.

    2017-01-01

    Submarine groundwater discharge (SGD) and its role in marine nutrient cycling are well known since the last decade. The freshwater equivalent, lacustrine groundwater discharge (LGD), is often still disregarded, although first reports of LGD are more than 50 years old. We identify nine different reasons why groundwater has long been disregarded in both freshwater and marine environments such as invisibility of groundwater discharge, the size of the interface and its difficult accessibility. Although there are some fundamental differences in the hydrology of SGD and LGD, caused primarily by seawater recirculation that occurs only in cases of SGD, there are also a lot of similarities such as a focusing of discharge to near-shore areas. Nutrient concentrations in groundwater near the groundwater–surface water interface might be anthropogenically enriched. Due to spatial heterogeneity of aquifer characteristics and biogeochemical processes, the quantification of groundwater-borne nutrient loads is challenging. Both nitrogen and phosphorus might be mobile in near-shore aquifers and in a lot of case studies large groundwater-borne nutrient loads have been reported.

  5. Design and analysis of submarine radome

    Science.gov (United States)

    Sandeep, C. Satya; Prasad, U. Shiva; Suresh, R.; Rathan, A.; Sravanthi, G.; Govardhan, D.

    2017-07-01

    Radomes are the electromagnetic windows that protect microwave sub-systems from the environmental effects. The major requirement of radome is its transparency to microwaves and for most of the cases mechanical properties are also equally important. Radome for underwater applications has to withstand high water pressure of the order of 45 bars. Composite materials owing to their high strength to weight ratio, high stiffness and better corrosion resistance are potential source for under water applications. The concept of 'tailoring' the material properties to suit the radome is obtained by selecting proper reinforcement, resin matrix and their compositions. The mechanical properties of composite material, evaluated by testing specimens as per ASTM standards, are utilized in designing the radome. The modulus properties calculated using classical theories of composite materials and compared with test results. ANSYS a Finite Element software package used to analyse the problem. As the cross sectional thickness of radome varies, the complexity in fabrication is overcome by adopting matched die techniques. The radome design and finite element analysis validation concluded by conducting the pressure test on radome. On the design a modal analysis is also carried to check for the natural frequency, So that resonance does not occur if the natural frequency of the radome coincides with the excitation frequency of the submarine Clinical information system (CIS) for UNRWA is a computerized distributed application that used in clinics which follows the United Nations Relief and Works Agency (UNRWA) to manage the clinical requirements and services.

  6. Submarine landslides of the Southern California Borderland

    Science.gov (United States)

    Lee, H.J.; Greene, H. Gary; Edwards, B.D.; Fisher, M.A.; Normark, W.R.

    2009-01-01

    Conventional bathymetry, sidescan-sonar and seismic-reflection data, and recent, multibeam surveys of large parts of the Southern California Borderland disclose the presence of numerous submarine landslides. Most of these features are fairly small, with lateral dimensions less than ??2 km. In areas where multibeam surveys are available, only two large landslide complexes were identified on the mainland slope- Goleta slide in Santa Barbara Channel and Palos Verdes debris avalanche on the San Pedro Escarpment south of Palos Verdes Peninsula. Both of these complexes indicate repeated recurrences of catastrophic slope failure. Recurrence intervals are not well constrained but appear to be in the range of 7500 years for the Goleta slide. The most recent major activity of the Palos Verdes debris avalanche occurred roughly 7500 years ago. A small failure deposit in Santa Barbara Channel, the Gaviota mudflow, was perhaps caused by an 1812 earthquake. Most landslides in this region are probably triggered by earthquakes, although the larger failures were likely conditioned by other factors, such as oversteepening, development of shelf-edge deltas, and high fluid pressures. If a subsequent future landslide were to occur in the area of these large landslide complexes, a tsunami would probably result. Runup distances of 10 m over a 30-km-long stretch of the Santa Barbara coastline are predicted for a recurrence of the Goleta slide, and a runup of 3 m over a comparable stretch of the Los Angeles coastline is modeled for the Palos Verdes debris avalanche. ?? 2009 The Geological Society of America.

  7. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  8. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  9. SUBMARINE LANDSLIDE AND LOCALIZED TSUNAMI POTENTIALITY OF MENTAWAI BASIN, SUMATRA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Haryadi Permana

    2017-07-01

    Full Text Available The new bathymetry and seismic data were acquired during the PreTI-Gap marine survey (February 15 to March 6, 2008. The survey was carried out along the NE margin of Mentawai Island using multi-beam swath bathymetry equipment, and 28-channels seismic streamer and four-airgun source. The first target was the Mega Island region near the epicenter of the 2007 great earthquake. The shallow bathymetry is characterized as a flat coral platform suggesting that 200 km elongated plateau is slowly subsiding without any active faults. Further north, from South Pagai to North of Siberut Islands, the seafloor morphology changes significantly. The deep and wide canyons or valleys produce very rough seafloor morphology between 50 and 1100 m water. In general, the submarine topography shows two break slopes at different depths. Between slope breaks, the undulating, hilly and circular features dominate, possibly caused by landslides. A push-up ridge is observed that dams the sediments eroded within a steep slope northeastward side. The seismic reflection data acquired along 14 dip seismic lines at the NE flank of Mentawai Islands, from Siberut to the South of Pagai Islands. We observed a set of southwestward dipping back thrust bounding the NE margin of the Mentawai Island. Keywords: submarine landslide, tsunami, Mentawai basin, Sumatra. Data batimetri dan seismik baru telah dihasilkan selama survey kelautan PreTi-Gap (15 Februari hingga 6 Maret 2008. Survei dilaksanakan sepanjang tepian timurlaut P. Mentawai menggunakan peralatan multibeam, seismic saluran ganda 28 kanal dengan sumber energi airgun. Sasaran pertama adalah memetakan kawasan pulau dekat pusat gempa tahun 2007. Kenampakan batimetri dangkal dicirikan dengan adanya dataran terumbu karang yang secara perlahan mengalami penurunan tanpa aktifitas sesar. Lebih jauh ke Utar, dari Pagai Selatan ke utara P. Siberut, morfologi dasar laut memperlihatkan perubahan secara signifikan, dimana lembah dasar laut

  10. NSMRL: A Small Command with A Huge Presence for the Submarine Force

    National Research Council Canada - National Science Library

    Daniel, J. C; Lamb, Jerry

    2005-01-01

    "To protect the health and enhance the performance of our warfighters through focused submarine, diving and surface research solutions" is the mission of the Naval Submarine Medical Research Laboratory (NSMRL...

  11. Seasonal Changing Effect on Airflow and Pollutant Dispersion Characteristics in Urban Street Canyons

    Directory of Open Access Journals (Sweden)

    Jingliang Dong

    2017-02-01

    Full Text Available In this study, the effect of seasonal variation on air flow and pollutant dispersion characteristics was numerically investigated. A three-dimensional urban canopy model with unit aspect ratio (H/D = 1 was used to calculate surface temperature distribution in the street canyon. Four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST during typical clear summer and winter days were selected to examine the air flow diurnal variation. The results revealed the seasonal variation significantly altered the street canyon microclimate. Compared with the street canyon surface temperature distribution in summer, the winter case showed a more evenly distributed surface temperature. In addition, the summer case showed greater daily temperature fluctuation than that of the winter case. Consequently, distinct pollutant dispersion patterns were observed between summer and winter scenarios, especially for the afternoon (1600 LST and night (2000 LST events. Among all studied time events, the pollutant removal performance of the morning (1000 LST and the night (2000 LST events were more sensitive to the seasonal variation. Lastly, limited natural ventilation performance was found during the summer morning and the winter night, which induced relatively high pollutant concentration along the pedestrian height level.

  12. Conduct and Support of Amphibious Operations from United States Submarines in World War II

    Science.gov (United States)

    2010-11-01

    twelfth war patrol of the Gato class submarine (See photos 1 and 2). They made history as the only Americans to conduct an offensive landing on a...Naval History Vol. 2, no. 1 (April 1, 2003), 1. 4 This monograph features five Gato class submarines, and three V-class submarines, but also addresses...1993), 67. 6 Photo 2: USS Barb (SS 220), representing the five Gato class submarines that participated in Operation Torch. Barb’s crew also

  13. Index of Submarine Medical Officer’s Qualification Theses 1944-1974

    Science.gov (United States)

    1976-04-01

    DEAD SPACE MEASUREMENTS BEFCRE AND 1968-3009 -- ESP IRATORY DEAD SPACE VARIAION TUDINVL---t b-0 9 INJURIES ON+ A SYLLABUS DEALING WITH THE MANAGEMENT OF...SUBARIkNE MEDICINEO A SYLLABUS OF.- SUBMARINE MEDICAL QUALIFICATION THESES U. S. NAVAL SJBMARINE MEDICAL CENTER SUBMARIN BASE, NEW LCNOOjN, GROTON...CARBON DIOXIDE ABSORBENT EVALUATION AND CANNISTER DESIGN *= SUBMARINE MDCLUALIFICATICN THESES U. -S.NAVAL SUBMARE MEDICAL CENTER SUBMARINE BASE, NEW LCNDON

  14. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    Science.gov (United States)

    2016-04-05

    Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress Ronald O’Rourke Specialist in Naval...Affairs April 5, 2016 Congressional Research Service 7-5700 www.crs.gov R41129 Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine...Replacement (SSBN[X]) Ballistic Missile Submarine Program Congressional Research Service Contents Introduction

  15. New hexactinellid sponges from deep Mediterranean canyons.

    Science.gov (United States)

    Boury-Esnault, Nicole; Vacelet, Jean; Dubois, Maude; Goujard, Adrien; Fourt, Maïa; Pérez, Thierry; Chevaldonné, Pierre

    2017-02-21

    During the exploration of the NW Mediterranean deep-sea canyons (MedSeaCan and CorSeaCan cruises), several hexactinellid sponges were observed and collected by ROV and manned submersible. Two of them appeared to be new species of Farrea and Tretodictyum. The genus Farrea had so far been reported with doubt from the Mediterranean and was listed as "taxa inquirenda" for two undescribed species. We here provide a proper description for the specimens encountered and sampled. The genus Tretodictyum had been recorded several times in the Mediterranean and in the near Atlantic as T. tubulosum Schulze, 1866, again with doubt, since the type locality is the Japan Sea. We here confirm that the Mediterranean specimens are a distinct new species which we describe. We also provide18S rDNA sequences of the two new species and include them in a phylogenetic tree of related hexactinellids.

  16. SUBMARINE MASS MOVEMENT AND LOCALIZED TSUNAMI POTENTIALITY OF MENTAWAI BASIN, SUMATERA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Haryadi Permana

    2017-07-01

    Full Text Available The new bathymetry and seismic data were acquired during the PreTI-Gap marine survey (February 15 to March 6, 2008. The survey was carried out along the NE margin of Mentawai Island using multi-beam swath bathymetry equipment, and 28-channels seismic streamer and four-airgun source. The first target was the Mega Island region near the epicenter of the 2007 great earthquake. The shallow bathymetry is characterized as a flat coral platform suggesting that 200 km elongated plateau is slowly subsiding without any active faults. Further north, from South Pagai to North of Siberut Islands, the seafloor morphology changes significantly. The deep and wide canyons or valleys produce very rough seafloor morphology between 50 and 1100 m water depth. In general, the submarine topography shows two break slopes at different depths. Between slope breaks, the undulating, hilly and circular features dominate, possibly caused by mass movement. A push-up ridge is observed that dams the sediments eroded within a steep slope northeastward side. The seismic reflection data acquired along 14 dip seismic lines at the NE flank of Mentawai Islands, from Siberut to the South of Pagai Islands. We observed a set of southwestward dipping back thrust bounding the NE margin of the Mentawai Island and the push-up ridge observed on bathymetric image, which suggest that Mentawai fault is not pure a strike slip fault, but consists of a set of back thrusts. Such kind of back thrust movement at the flank of Mentawai basin can trigger mass movement or landslide that can produce localized tsunami causing damages to Sumatera mainland such as Padang, Painan or northern Bengkulu provinces and Mentawai Islands. Therefore, it is important to re-design the tsunami warning system, especially in this region, in order to mitigate tsunami risk to coastal region of western Sumatera.

  17. BackscatterB [EM300]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  18. BackscatterC [7125]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  19. Folds--Monterey Canyon and Vicinity Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the folds for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is included in...

  20. Habitat Mapping Cruise - Hudson Canyon (HB0904, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives are to: 1) perform multibeam mapping of transitional and deepwater habitats in Hudson Canyon (off New Jersey) with the National Institute of Undersea...

  1. Pliocene diatoms from the Bryce Canyon Area, Utah

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    The diatomite deposits were collected at 6,650 foot elevation near Hillsdale (vicinity of Bryce Canyon National Park), Utah, Preliminary investigation showed that the deposits were of pliocene age and probably equivalent to the Salt Lake group...

  2. Faults--Monterey Canyon and Vicinity Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the faults for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is included in...

  3. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Science.gov (United States)

    2010-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon... the Dirty Devil River upstream of Utah Highway 95 bridge. (2) A person may not operate a PWC at speed...

  4. Paleoshorelines--Monterey Canyon and Vicinity Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the paleoshorelines for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is...

  5. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial

  6. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    Energy Technology Data Exchange (ETDEWEB)

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  7. Precursory geophysical, geodetic and geochemical signatures of a new 2012 submarine eruption off the northwestern coast of El Hierro, Canary Islands, Spain

    Science.gov (United States)

    Pérez, Nemesio M.; Somoza, Luis; González de Vallejo, Luis; Sagiya, Takeshi; León, Ricardo; Hernández, Pedro A.; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Gonzalez-Aller, Daniel; Sánchez de La Madrid, José Luis; Barrancos, José; Ibáñez, Jesús M.; Sumino, Hirochika

    2013-04-01

    Here we report precursory geophysical, geodetic, and geochemical signatures of a new submarine eruption off the northwestern coast of El Hierro, Canary Islands, which has been detected through acoustic imaging of submarine plumes on June 27, 2012, by the Spanish research vessel "Hespérides". Five distinct acoustic submarine plumes have been recognized in this area at water depths between 64 and 88 m along a submarine platform located in front of the Lomo Negro volcanic cone, northwestern of El Hierro. Submarine plums are characterized by vertical columns of high-amplitude values rising from seafloor. These acoustic imaging data clearly support a new submarine eruption in 2012 associated to the recent magmatic reactivation of El Hierro volcanic system. This new eruption event was preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥ 2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS permanent network (Nagoya University-ITER-GRAFCAN) at El Hierro with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity at HIE02, a geochemical station located in the northwestern of El Hierro, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) the highest observed corrected value of 3He/4He ratio in ground waters (8,5 Ra) from San Simón well at the northwestern of El Hierro on June 16, 2012. These precursory signals have revealed important to improve and optimize the detection of early warning signals of volcanic unrest episodes at El Hierro.

  8. Brighty, donkeys and conservation in the Grand Canyon.

    Science.gov (United States)

    Wills, John

    2006-09-01

    The Grand Canyon is a vast place. It is almost incomprehensible in size. And yet it can also seem strangely crowded. Millions of tourists flock to the Grand Canyon in northern Arizona every year. In 1999, almost 5 million people visited, the highest figure in Canyon history. And each one of them expected to see a wild, free and untrammelled landscape. Despite the obvious natural resources, this expectation has proved anything but easy to satisfy. The US National Park Service (NPS), responsible for the management of most large North American parks (along with several historic sites and museums), has struggled to make or keep the canyon "grand". Park rangers have grappled with a multitude of issues during the past century, including automobile congestion, drying of the Colorado River and uranium mining inside the park. Conservation has posed a unique set of challenges. On a fundamental level, "restoring" the Grand Canyon to its "original" wilderness setting has proved intensely problematic. In the field of wildlife management, restoring the Canyon to its pre-Columbian splendour has entailed some tough decisions--none more so than a 1976 plan to eliminate a sizeable population of feral burros (wild donkeys) roaming the preserve, animals classified as exotics by the NPS.

  9. Optimizing Street Canyon Orientation for Rajarhat Newtown, Kolkata, India

    Science.gov (United States)

    De, Bhaskar; Mukherjee, Mahua

    2017-12-01

    Air temperature in urban street canyons is increased due to the morphed urban geometry, increased surface area, decreased long wave radiation and evapo-transpiration, different thermo-physical properties of surface materials and anthropogenic heat which results in thermal discomfort. Outdoor thermal stress can be mitigated substantially by properly orienting the canyons. It is crucial for the urban planners and designers to orient street canyons optimally considering variable local climatic context. It is important especially for cities in warm humid climatic context as these cities receive higher insolation with higher relative humidity and low level macro wind flow. This paper examines influence of canyon orientation on outdoor thermal comfort and proposes the optimum canyon orientation for the Rajarhat Newtown, Kolkata - a city in warm humid climate zone. Different scenarios are generated with different orientations. Change in air temperature, wind speed, Mean Radiant Temperature (MRT) and Physiological Equivalent Temperature (PET) of different scenarios are compared to find out the optimum orientation by parametric simulation in ENVI_met. Analysing the simulation results it is observed that orientation angle between 30°-60° to north performs the best for the study area of the Rajarhat Newtown. The findings of this research will be helpful for the planners to orient the street canyons optimally for future development and extension of the Rajarhat Newtown, Kolkata.

  10. Geologic controls on submarine slope failure along the central U.S. Atlantic margin: Insights from the Currituck Slide Complex

    Science.gov (United States)

    Hill, Jenna C.; Brothers, Daniel S.; Craig, Bradley K.; ten Brink, Uri S.; Chaytor, Jason D.; Flores, Claudia

    2017-01-01

    Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with high-resolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide Complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (> 8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient ( 800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation, thus providing a

  11. Discerning Primary and Secondary Processes in the Volatile Geochemistry of Submarine Basalts

    Science.gov (United States)

    Hauri, E. H.

    2012-12-01

    but because addition of deep slab-derived fluids can often produce geochemical signatures that mimic the shallow assimilation of seawater-derived components in the crust. In these tectonic environments, deeply-trapped melt inclusions can often reveal compositions that permit distinguishing deep from shallow processes that influence the geochemistry of arc-related submarine basalts.

  12. Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba

    Science.gov (United States)

    Rodríguez-Algeciras, José; Tablada, Abel; Matzarakis, Andreas

    2017-07-01

    Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create

  13. Does calving matter? Evidence for significant submarine melt

    Science.gov (United States)

    Bartholomaus, Timothy C.; Larsen, Christopher F.; O’Neel, Shad

    2013-01-01

    During the summer in the northeast Pacific Ocean, the Alaska Coastal Current sweeps water with temperatures in excess of 12 °C past the mouths of glacierized fjords and bays. The extent to which these warm waters affect the mass balance of Alaskan tidewater glaciers is uncertain. Here we report hydrographic measurements made within Icy Bay, Alaska, and calculate rates of submarine melt at Yahtse Glacier, a tidewater glacier terminating in Icy Bay. We find strongly stratified water properties consistent with estuarine circulation and evidence that warm Gulf of Alaska water reaches the head of 40 km-long Icy Bay, largely unaltered. A 10–20 m layer of cold, fresh, glacially-modified water overlies warm, saline water. The saline water is observed to reach up to 10.4 °C within 1.5 km of the terminus of Yahtse Glacier. By quantifying the heat and salt deficit within the glacially-modified water, we place bounds on the rate of submarine melt. The submarine melt rate is estimated at >9 m d−1, at least half the rate at which ice flows into the terminus region, and can plausibly account for all of the submarine terminus mass loss. Our measurements suggest that summer and fall subaerial calving is a direct response to thermal undercutting of the terminus, further demonstrating the critical role of the ocean in modulating tidewater glacier dynamics.

  14. Submarine Construction in Germany (U-Bootbau in Deutschland),

    Science.gov (United States)

    1983-04-25

    the IKL sister firm, Maschinenbau Gabler GmbH, also founded by Prof. Gabler, which, unlike IKL (involved solely in development), is a hardware...snorkels, radar masts, as well as wharf and dockside connections, for IKL and various submarine yards. Moreover, Maschinenbau Gabler is engaged in

  15. Dissolved Nutrients from Submarine Groundwater in Flic en Flac ...

    African Journals Online (AJOL)

    Abstract—The aim of this study was to investigate dissolved nutrients in a submarine groundwater discharge (SGD) in Flic en Flac lagoon on the west coast of the volcanic island of Mauritius. The SGD enters Flic en Flac lagoon through a thin blanket of unconsolidated sediment through a fracture system and is concentrated ...

  16. Dissolved Nutrients from Submarine Groundwater in Flic en Flac ...

    African Journals Online (AJOL)

    The aim of this study was to investigate dissolved nutrients in a submarine groundwater discharge (SGD) in Flic en Flac lagoon on the west coast of the volcanic island of Mauritius. The SGD enters Flic en Flac lagoon through a thin blanket of unconsolidated sediment through a fracture system and is concentrated along the ...

  17. Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu

    2016-01-01

    A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen...

  18. 'Good Hunting': German submarine offensives and South African ...

    African Journals Online (AJOL)

    The first German submarine offensive in South African waters during 1942, Operation Eisbär, was aimed at striking a devastating blow to shipping off the South African coast. By the end of December 1942, an estimated 310 864 tons of shipping had been sunk through Operation Eisbär and the first U-cruiser operation alone.

  19. Cost Estimation Lessons Learned for Future Submarine Acquisition Programs

    Science.gov (United States)

    2010-02-17

    North Carolina and New Mexico 30 General Dynamics Electric Boat “U.S. Navy Awards General Dynamics $14 Billion Contract for Eight Virginia- Class...NAVSEA Program Executive officer, Submarines PMO 450, June 1995. “New SSN Program Life Cycle Cost Estimate.” Naval Center for Cost Analysis: GE-1300

  20. An ongoing large submarine landslide at the Japan trench

    Science.gov (United States)

    Nitta, S.; Kasaya, T.; Miura, S.; Kawamura, K.

    2013-12-01

    This paper deals with an active submarine landslide on a landward trench slope in the Japan trench. Studied area is located on the upper terrace ranging from 400 to 1200 m in water depth, off Sendai, northeast Japan. We have surveyed in detail the seabed topography using a multi narrow beam (hereafter MBES) and a subbottom profiler (hereafter SBP) during the cruise MR12-E02 of R/V Mirai. The survey lines were 12 lines in N-S, and 3 lines in E-W, and situated in the region from 141°45'E, 37°40'N to 142°33'E, 38°32'N. Moreover, we used multi-channel seismic profile by the cruise KR04-10 of R/V Kairei in the interpretation of the SBP results. In general, horseshoe-shaped depressions of about 100 km wide along the trench slope are arrayed along the Japan trench. It has thought that they were formed by large submarine landslides, but we could not understand critically the relationship between the depressions and the submarine landslides. Based on the survey results, we found signals of an active submarine landslide in the depression as follows. 1) We observed arcuate-shaped lineaments, which are sub-parallel to a horseshoe-shaped depression. The lineaments concentrate in the south region from 38°N at about 20 km wide. These lineaments are formed by deformation structures as anticlines, synclines and normal fault sense displacements. 2) Most of the synclines and anticlines are not buried to form the lineaments. 3) Normal faults cutting about 1 km deep are observed in a multi-channel seismic profile. The normal faults are located just below the arcuate-shaped lineaments, and are tilted eastward being the downslope direction. It indicates a large submarine landslide. We concluded that the arcuate-shaped lineaments were generated by surface sediment movement with the submarine landsliding. We think that the submarine landslide of about 20 km wide and about 1 km thick move continuously down the landward trench slope. This would be the formation process of the horseshoe

  1. Submarine landslide triggered by eruption recorded by in-situ hydrophone at NW Rota-1 submarine volcano, Mariana Arc (Invited)

    Science.gov (United States)

    Chadwick, B.; Dziak, R. P.; Embley, R. W.; Tunnicliffe, V.; Sherrin, J.; Cashman, K. V.; Deardorff, N.

    2010-12-01

    An expedition to NW Rota-1, Mariana Arc, in March 2010 with R/V Kilo Moana and ROV Jason found that the submarine volcano (summit depth 520 m) was still erupting more or less continuously as has been observed since 2004, In addition, the expedition also discovered that a major landslide had occurred since the last visit in April 2009, demonstrating the dynamic processes of eruption, collapse, and regrowth in the submarine arc environment. The dive observations reveal the responses of the volcano’s magmatic and hydrothermal systems to such a collapse, as well as how the resident chemosynthetic biological community has responded to the event. The morphologic changes from the landslide can be quantified by comparing multibeam bathymetric surveys between 2009 and 2010. The headwall of the slide is now ~100 m north of the former summit ridge where depth changes up to -90 m occurred between surveys. The slide excavated material from the upper southern slope of the volcano to a distance of 3.5 km downslope, and deposited material between 2-8 km from the summit down to at least 2800 m on the volcano flank. The area and volume of slide deposits (positive depth changes) are 7.1 x 106 m2 and 5.3 x 107 m3, respectively, and the maximum thickness is +42 m. The area and volume of material removed by the slide (negative depth changes) are 2.2 x 106 m2 and -4.1 x 107 m3, respectively. We have found no evidence for a local tsunami generated by this event. The changes in morphology near the summit show that the landslide primarily removed loose volcaniclastic deposits that had accumulated near the active eruptive vent, exposing an underlying stock-like core of resistant intrusive rocks and massive lavas at the summit. During March 2010, there were at least 5 active eruptive vents, located along a line 200-m long, that changed between active and inactive day-to-day and even hour-to-hour, suggesting that the near-surface magmatic plumbing system was still reorganizing after the

  2. Cyclic thermal behavior associated to the degassing process at El Hierro submarine volcano, Canary Islands.

    Science.gov (United States)

    Fraile-Nuez, E.; Santana-Casiano, J. M.; González-Dávila, M.

    2016-12-01

    One year after the ceasing of magmatic activity in the shallow submarine volcano of the island of El Hierro, significant physical-chemical anomalies produced by the degassing process as: (i) thermal anomalies increase of +0.44 °C, (ii) pH decrease of -0.034 units, (iii) total dissolved inorganic carbon, CT increase by +43.5 µmol kg-1 and (iv) total alkalinity, AT by +12.81 µmol kg-1 were still present in the area. These evidences highlight the potential role of the shallow degassing processes as a natural ecosystem-scale experiments for the study of significant effects of global change stressors on marine environments. Additionally, thermal time series obtained from a temporal yo-yo CTD study, in isopycnal components, over one of the most active points of the submarine volcano have been analyzed in order to investigate the behavior of the system. Signal processing of the thermal time series highlights a strong cyclic temperature period of 125-150 min at 99.9% confidence, due to characteristic time-scales revealed in the periodogram. These long cycles might reflect dynamics occurring within the shallow magma supply system below the island of El Hierro.

  3. Tsunamis caused by submarine slope failures along western Great Bahama Bank.

    Science.gov (United States)

    Schnyder, Jara S D; Eberli, Gregor P; Kirby, James T; Shi, Fengyan; Tehranirad, Babak; Mulder, Thierry; Ducassou, Emmanuelle; Hebbeln, Dierk; Wintersteller, Paul

    2016-11-04

    Submarine slope failures are a likely cause for tsunami generation along the East Coast of the United States. Among potential source areas for such tsunamis are submarine landslides and margin collapses of Bahamian platforms. Numerical models of past events, which have been identified using high-resolution multibeam bathymetric data, reveal possible tsunami impact on Bimini, the Florida Keys, and northern Cuba. Tsunamis caused by slope failures with terminal landslide velocity of 20 ms-1 will either dissipate while traveling through the Straits of Florida, or generate a maximum wave of 1.5 m at the Florida coast. Modeling a worst-case scenario with a calculated terminal landslide velocity generates a wave of 4.5 m height. The modeled margin collapse in southwestern Great Bahama Bank potentially has a high impact on northern Cuba, with wave heights between 3.3 to 9.5 m depending on the collapse velocity. The short distance and travel time from the source areas to densely populated coastal areas would make the Florida Keys and Miami vulnerable to such low-probability but high-impact events.

  4. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model

    Science.gov (United States)

    Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu

    2017-09-01

    Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.

  5. Exploring the submarine Graham Bank in the Sicily Channel

    Directory of Open Access Journals (Sweden)

    Mauro Coltelli

    2016-05-01

    Full Text Available In the Sicily Channel, volcanic activity has been concentrated mainly on the Pantelleria and Linosa islands, while minor submarine volcanism took place in the Adventure, Graham and Nameless banks. The volcanic activity spanned mostly during Plio-Pleistocene, however, historical submarine eruptions occurred in 1831 on the Graham Bank and in 1891 offshore Pantelleria Island. On the Graham Bank, 25 miles SW of Sciacca, the 1831 eruption formed the short-lived Ferdinandea Island that represents the only Italian volcano active in historical times currently almost completely unknown and not yet monitored. Moreover, most of the Sicily Channel seismicity is concentrated along a broad NS belt extending from the Graham Bank to Lampedusa Island. In 2012, the Istituto Nazionale di Geofisica e Vulcanologia (INGV carried out a multidisciplinary oceanographic cruise, named “Ferdinandea 2012”, the preliminary results of which represent the aim of this paper. The cruise goal was the mapping of the morpho-structural features of some submarine volcanic centres located in the northwestern side of the Sicily Channel and the temporary recording of their seismic and degassing activity. During the cruise, three OBS/Hs (ocean bottom seismometer with hydrophone were deployed near the Graham, Nerita and Terribile submarine banks. During the following 9 months they have recorded several seismo-acoustic signals produced by both tectonic and volcanic sources. A high-resolution bathymetric survey was achieved on the Graham Bank and on the surrounding submarine volcanic centres. A widespread and voluminous gas bubbles emission was observed by both multibeam sonar echoes and a ROV (remotely operated vehicle along the NW side of the Graham Bank, where gas and seafloor samples were also collected.

  6. Submarine Groundwater Discharge in Stony Brook Harbor, NY

    Science.gov (United States)

    Durand, J. M.; Young, C.; Wong, T.; Hanson, G. N.

    2012-12-01

    As nutrients can significantly impact coastal ecosystems, understanding their path to embayments and oceans is crucial. In Stony Brook Harbor (Long Island, NY), submarine groundwater discharge (SGD) is the only significant contribution of freshwater and thus constitutes the main pathway for nutrients, which may eventually reach Long Island Sound. Subterranean estuaries have been shown to be highly reactive zones where nitrogen attenuation can occur. Understanding the fate of nitrogen in Stony Brook Harbor requires knowing the volume of groundwater entering the bay as well as the amount of denitrification, in the context of the hydrogeological framework. This is achieved by combining electrical resistivity survey, water sampling in piezometers, point conductivity and seepage measurements. A Trident probe inserted 60 cm deep into the sediments allows measuring the conductivity and temperature of the sediments and the overlying seawater. In spring 2011, five Trident transects spreading across the head of the harbor were used as a preliminary study to reveal potential locations for SGD. Locations with significant difference between sediment and seawater temperature and/or conductivities were further investigated using an AGI SuperSting 8-channel receiver resistivity meter. Two ultrasonic seepage meters were deployed in May and July 2011 about 20 m below the low tide mark. Five piezometers were aligned parallel to one resistivity survey. Our resistivity data indicate superficial mixing in the intertidal zone. The freshwater extends quite far under the seafloor, above 67 meters after the low tide mark for one location. The freshwater/saltwater interface seems to be almost horizontal. The piezometer data agree relatively well with the resistivity data. The preliminary average seepage rates observed vary from 3 to 60 cm/d. The resistivity sections reveal the presence of a thin layer of high conductivity above the low tide mark. This matches the observation of a superficial

  7. Formation of the Grand Canyon 5 to 6 million years ago through integration of older palaeocanyons

    Science.gov (United States)

    Karlstrom, Karl E.; Lee, John P.; Kelley, Shari A.; Crow, Ryan S.; Crossey, Laura J.; Young, Richard A.; Lazear, Greg; Beard, L. Sue; Ricketts, Jason W.; Fox, Matthew; Shuster, David L.

    2014-03-01

    The timing of formation of the Grand Canyon, USA, is vigorously debated. In one view, most of the canyon was carved by the Colorado River relatively recently, in the past 5-6 million years. Alternatively, the Grand Canyon could have been cut by precursor rivers in the same location and to within about 200 m of its modern depth as early as 70-55 million years ago. Here we investigate the time of formation of four out of five segments of the Grand Canyon, using apatite fission-track dating, track-length measurements and apatite helium dating: if any segment is young, the old canyon hypothesis is falsified. We reconstruct the thermal histories of samples taken from the modern canyon base and the adjacent canyon rim 1,500 m above, to constrain when the rocks cooled as a result of canyon incision. We find that two of the three middle segments, the Hurricane segment and the Eastern Grand Canyon, formed between 70 and 50 million years ago and between 25 and 15 million years ago, respectively. However, the two end segments, the Marble Canyon and the Westernmost Grand Canyon, are both young and were carved in the past 5-6 million years. Thus, although parts of the canyon are old, we conclude that the integration of the Colorado River through older palaeocanyons carved the Grand Canyon, beginning 5-6 million years ago.

  8. Debris in the deep: Using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA

    Science.gov (United States)

    Schlining, Kyra; von Thun, Susan; Kuhnz, Linda; Schlining, Brian; Lundsten, Lonny; Jacobsen Stout, Nancy; Chaney, Lori; Connor, Judith

    2013-09-01

    Anthropogenic marine debris is an increasing concern because of its potential negative impacts on marine ecosystems. This is a global problem that will have lasting effects for many reasons, including: (1) the input of debris into marine environments is likely to continue (commensurate with population increase and globalization), (2) accumulation, and possibly retention, of debris will occur in specific areas due to hydrography and geomorphology, and (3) the most common types of debris observed to date will likely persist for centuries. Due to the technical challenges and prohibitive costs of conducting research in the deep sea, little is known about the abundance, types, sources, and impacts of human refuse on this vast habitat, and the extreme depths to which this debris is penetrating has only recently been exposed. We reviewed 1149 video records of marine debris from 22 years of remotely operated vehicle deployments in Monterey Bay, covering depths from 25 m to 3971 m. We characterize debris by type, examine patterns of distribution, and discuss potential sources and dispersal mechanisms. Debris was most abundant within Monterey Canyon where aggregation and downslope transport of debris from the continental shelf are enhanced by natural canyon dynamics. The majority of debris was plastic (33%) and metal (23%). The highest relative frequencies of plastic and metal observations occurred below 2000 m, indicating that previous studies may greatly underestimate the extent of anthropogenic marine debris on the seafloor due to limitations in observing deeper regions. Our findings provide evidence that submarine canyons function to collect debris and act as conduits for debris transport from coastal to deep-sea habitats.

  9. Water classification of the Colorado River Corridor, Grand Canyon, Arizona, 2013—Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data area classified maps of water in the Colorado River at a discharge of approximately 227 meters squared/second in Grand Canyon from Glen Canyon Dam to...

  10. Spatial Vegetation Data for Canyon De Chelly National Monument Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — The Canyon de Chelly National Monument Vegetation Map Database was developed as a primary product in the Canyon de Chelly National Monument Vegetation...

  11. Riparian vegetation classification of the Colorado River Corridor, Grand Canyon, Arizona, 2013—Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are classification maps of total riparian vegetation along the Colorado River in Grand Canyon from Glen Canyon Dam to Pearce Ferry in Arizona. The data...

  12. 2013 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): San Simeon, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Los Osos (2011), and San Simeon...

  13. 2011 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): Los Osos, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Los Osos (2011), and San Simeon...

  14. Swath sonar mapping of Earth's submarine plate boundaries

    Science.gov (United States)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  15. 76 FR 54487 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2011-09-01

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection with...

  16. 78 FR 54482 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2013-09-04

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... Canyon Dam Adaptive Management Work Group is in the public interest in connection with the performance of...

  17. Standardized methods for Grand Canyon fisheries research 2015

    Science.gov (United States)

    Persons, William R.; Ward, David L.; Avery, Luke A.

    2013-01-01

    This document presents protocols and guidelines to persons sampling fishes in the Grand Canyon, to help ensure consistency in fish handling, fish tagging, and data collection among different projects and organizations. Most such research and monitoring projects are conducted under the general umbrella of the Glen Canyon Dam Adaptive Management Program and include studies by the U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), the Arizona Game and Fish Department (AGFD), various universities, and private contractors. This document is intended to provide guidance to fieldworkers regarding protocols that may vary from year to year depending on specific projects and objectives. We also provide herein documentation of standard methods used in the Grand Canyon that can be cited in scientific publications, as well as a summary of changes in protocols since the document was first created in 2002.

  18. Development of early diagenetic silica and quartz morphologies — Examples from the Siri Canyon, Danish North Sea

    Science.gov (United States)

    Weibel, Rikke; Friis, Henrik; Kazerouni, Afsoon Moatari; Svendsen, Johan B.; Stokkendal, Jesper; Poulsen, Mette Lise K.

    2010-07-01

    The Siri Canyon has proved to be a perfect area for investigating various morphologies of diagenetic silica in sandstones. The development in silica morphologies can be observed from very shallow (˜ 1700 m) to increased burial depth (˜ 3000 m) and increased proximity to the Central Graben (distance from 0 to 65 km). Hydrocarbons and pore fluids, now found in the Siri Fairway, have (at least partly) originated from the Central Graben. The Siri Canyon is a submarine canyon system eroded into the uppermost chalk deposits and filled with Palaeogene hemipelagic and turbiditic marls and mudstones interbedded with sandstone units deposited from sandy mass-flows and sandy turbidites, which originated on the Stavanger Platform. Several hydrocarbon exploration and production wells have been drilled in the Siri Canyon, seven of which are included in this study (Nini-3, Nini-1, NA-2P, Sofie-1, Siri-4, Celilie-1A and Augusta-1). The reservoir sandstones in these wells all contain authigenic silica of various morphologies identified with a combination of traditional optical microscopy and scanning electron microscopy. The silica morphologies in some places are classic and well-documented in the literature, whereas others, at least to our knowledge, have never previously been described. Some of the silica morphologies presented here show gradual transition from one to another, and others are stand-alone forms without clear relationships to other forms. The silica morphologies can be expressed in the following way: Opal rims; characteristic of the initial phase of the silica diagenesis in most sandstone units in the Siri Canyon. Thick opal rims characterise the sandstone parts adjacent to the mudstone units in the Stine segment of the Siri Field. Microquartz (quartz crystals with a size of 1-5 µm); seen as coatings on the opal rims, both ordered and random. Cavity overgrowth; found as quartz outgrowths in circular and angular cavities formed by dissolution of early authigenic

  19. [Medical-physiological characteristics of combat training of nuclear-power submarine crews].

    Science.gov (United States)

    Dovgusha, V V; Myznikov, I L; Shalabodov, S A; Bumaĭ, O K

    2009-10-01

    The article presents an observe of general questions of peculiarities of military-professional activity of submarine staff These questions are defining value in ideology of medical supply of submarine troops of NAVY in now-days conditions. The article also presents the statistics of morbidity in long termed sails for last forty years, it's dynamics by different categories of sail staff, on different stages of combat training activity in dependence of perioditation of work cycle of submarine staff The authors have examined modern condition of medical supply of submarines; have presented statistics of quality indexes of health of submarine staff The authors have formed main problems of medical supply of submarines and have proposed ways of their solving on modern stage.

  20. Losses in armoured three-phase submarine cables

    DEFF Research Database (Denmark)

    Ebdrup, Thomas; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2014-01-01

    increases the losses in armoured cables compared to unarmoured cables. In this paper a thorough state of the art analysis is conducted on armour losses in three-phase armoured submarine power cables. The analysis shows that the IEC 60287-1-1 standard overestimates the armour losses which lead...... to the installation of cables with excessive phase conductor cross section. This paper also presents an example of the potential economic benefits of having a better knowledge of the losses introduced by the armour.......The number of offshore wind farms will keep increasing in the future as a part of the shift towards a CO2 free energy production. The energy harvested from the wind farm must be brought to shore, which is often done by using a three-phase armoured submarine power cable. The use of an armour...

  1. Review of the Diablo Canyon probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P. [Sandia National Lab., Albuquerque, NM (United States); Sabek, M.G. [Atomic Energy Authority, Nuclear Regulatory and Safety Center, Cairo (Egypt); Ravindra, M.K.; Johnson, J.J. [EQE Engineering, San Francisco, CA (United States)

    1994-08-01

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

  2. Improving Situational Awareness on Submarines Using Augmented Reality

    Science.gov (United States)

    2008-09-01

    COSO ) are several pages of guidance for the evolution available to the watch officer for reference. There are also Operating Procedures that the watch...officer must follow to ensure the safe ascent to PD. The COSOs are specific to the each CO. The OPs are specific to a class of submarine. The...evolution in the framework described above can provide valuable insight to the capabilities of the proposed system. This of course is a hypothetical

  3. Analysis of SSN 688 Class Submarine Maintenance Delays

    Science.gov (United States)

    2017-06-01

    errors an in-depth analysis into the job-level maintenance is required which is outside the scope of this analysis. 25 2. New Work Causes Late...attempting to determine the cause of this trend. Finally, this thesis proposes a solution to the systematic underestimation of availability durations by...illustrating the inherent error in the current equation and providing a notional equation to remove that error . 14. SUBJECT TERMS Submarine

  4. Submarine Pressure Hull Collapse Considering Corrosion and Penetrations

    Science.gov (United States)

    2010-11-01

    corrosion. Des valeurs de la pression d’écrasement sont calculées pour les diverses dimensions de la zone de corrosion, et ce, dans les cas de présence ou...Research & Development Canada DRDIM Director Research and Development Knowledge and Information Management OOC Out-of-circularity R&D Research...Support SLA (Mr. John Porter) 1 Project Manager , Submarine Scientific Support SLA (LCdr Wade Temple) 9 TOTAL LIST PART I LIST PART II: External

  5. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    DEFF Research Database (Denmark)

    Schmale, O.; Haeckel, M.; McGinnis, D. F.

    2011-01-01

    A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr(-1). The model predicts that the input of methane is largest at water depths between 600 and 700 m (7......% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e. g. through eruptions of deep......-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption...

  6. Submarine and Autonomous Vessel Proliferation: Implications for Future Strategic Stability at Sea

    Science.gov (United States)

    2012-12-01

    replace the Ohio- class SSBN and Virginia -class SSN to replace the Los Angeles class attack submarine. Although more sophisticated than their...predecessors and with some modifications to demands of the post-Cold War era and (in the Virginia class) an emphasis on littoral conflict, these purchases...Congressional Research Service analyst Amy Woolf observes: “With few submarines in the fleet, the Navy would have to reduce the number of submarines on

  7. The future of the ballistic missile submarine force in the Russian nuclear triad

    OpenAIRE

    Lesiw, Richard T.

    2008-01-01

    Approved for public release; distribution is unlimited This thesis analyzes the current status of the Russian Federation's ballistic missile submarine force. It reviews the history of the ballistic missile submarine force, its current status, and the implementation of plans currently in progress and as well as the advantages and disadvantages of maintaining a ballistic missile submarine force. This thesis also assesses the other two legs of the nuclear triad - the intercontinental balli...

  8. Gender Integration on U.S. Navy Submarines: Views of the First Wave

    Science.gov (United States)

    2015-06-01

    submarines is to perform seek-and-destroy missions on enemy ships and submarines, conduct surveillance and reconnaissance, provide covert troop insertion...not only the missile payload they were designed to carry but also extended periods at sea without resupply. In terms of berthing and sanitary ...officer berthing and sanitary 28 facilities on board Ohio class submarines, however, no significant modifications would be necessary in order to

  9. Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress

    Science.gov (United States)

    2016-02-12

    reactors or non- nuclear power sources such as diesel engines or fuel cells. All U.S. Navy submarines are nuclear - powered. A submarine’s use of...the Navy’s plan to design and procure a next - generation ballistic missile submarine called the Ohio Replacement Program or SSBN(X). 26...the next several years require these submarines to use up their nuclear fuel cores more quickly than the Navy now projects, then the amounts of time

  10. Introduction to the special issue on submarine geohazard records and potential seafloor instability

    Directory of Open Access Journals (Sweden)

    Song-Chuen Chen Jia-Jyun Dong

    2018-01-01

    Full Text Available Submarine landslides frequently occur in passive continental margins or active margins (Hampton et al. 1996; Wynn et al. 2000; Mienert et al. 2002; Korup et al. 2007; Twichell et al. 2009; Cukur et al. 2016. Submarine landslides have been studied extensively not only for scientific research but also for submarine geohazards. Submarine landslides could jeopardize marine infrastructures, such as offshore drilling platforms or submarine telecommunication cables, and could even trigger disastrous tsunamis (Bondevik et al. 2005; Harbitz et al. 2006; Hornbach et al. 2007, 2008; Hsu et al. 2008; Su et al. 2012; Tappin et al. 2014; Li et al. 2015. For instance, one disastrous tsunami hitting the coastal area of southwestern Taiwan in 1781 or 1782 was reported (Chen 1830; Hsu 1983; the tsunami event was probably generated by submarine landslides in the offshore area of southwestern Taiwan (Li et al. 2015. Moreover, several submarine landslides triggered by the 2006 Pingtung earthquake have induced turbidity currents off southwest Taiwan and destroyed about 14 submarine telecommunication cables off SW Taiwan (Hsu et al. 2008. The area of southwest Taiwan currently has a dense population (more than 3 million people in total, one deep-water Kaohsiung Port, several tanks of liquefied natural gas and a nuclear power plant on the coast (Fig. 1. Numerous submarine telecommunication cables exist off SW Taiwan. If a considerable tsunami event would hit again the costal area of SW Taiwan, the damage could very serious. Likewise, there are two nuclear power plants on the coast of northern Taiwan (Fig. 2, and the population in northern Taiwan has more than 10 million people. Submarine telecommunication cables also exist off northern Taiwan. In any case, it is important to understand the status of seafloor stability in the offshore areas of SW and NE Taiwan. For that, this special issue of submarine geohazard records and potential seafloor instability is aimed to

  11. Navy Virginia (SSN 774) Class Attack Submarine Procurement: Background and Issues for Congress

    Science.gov (United States)

    2016-10-25

    powered attack submarines (SSNs). The SSNs are general -purpose submarines that can (when appropriately equipped and armed) perform a variety of...signs of tampering. The defective elbow pipe, used to funnel steam from the reactor to the sub’s propulsion turbines and generators , showed evidence of...Congressional Research Service Summary The Navy has been procuring Virginia (SSN-774) class nuclear- powered attack submarines since FY1998. The two Virginia

  12. Fuel-cell-propelled submarine-tanker-system study

    Energy Technology Data Exchange (ETDEWEB)

    Court, K E; Kumm, W H; O' Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  13. Estimating the empirical probability of submarine landslide occurrence

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.; Mosher, David C.; Shipp, Craig; Moscardelli, Lorena; Chaytor, Jason D.; Baxter, Christopher D. P.; Lee, Homa J.; Urgeles, Roger

    2010-01-01

    The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.

  14. Pockmark morphology and turbulent buoyant plumes at a submarine spring

    Science.gov (United States)

    Buongiorno Nardelli, B.; Budillon, F.; Watteaux, R.; Ciccone, F.; Conforti, A.; De Falco, G.; Di Martino, G.; Innangi, S.; Tonielli, R.; Iudicone, D.

    2017-09-01

    The input flow of groundwater from the seabed to the coastal ocean, known as Submarine Groundwater Discharge (SGD), has been only recently recognized as an important component of continental margin systems. It potentially impacts physical, chemical and biological marine dynamics. Independently of its specific nature (seepage, submarine springs, etc.) or fluid chemical composition, a SGD is generally characterized by low flow rates, hence making its detection and quantification very difficult, and explaining why it has been somewhat neglected by the scientific community for a long time. Along with the growing interest for SGDs emerged the need for in-situ observations in order to characterize in details how these SGDs behave. In this work, we describe the morphology of a pockmark field, detected in the Southern Tyrrhenian Sea (Mediterranean Sea), and provide observational evidences of the presence of active submarine springs over the coastal shelf area. We describe the effect of the fluid seeps on the water column stratification close to the main plumes and in the neighbouring areas, providing quantitative estimates of the intensity of the turbulent mixing and discussing their potential impact on the seabed morphology and pockmark formation in the context of turbulent buoyant plumes analytical modelling.

  15. Long-term eruptive activity at a submarine arc volcano.

    Science.gov (United States)

    Embley, Robert W; Chadwick, William W; Baker, Edward T; Butterfield, David A; Resing, Joseph A; de Ronde, Cornel E J; Tunnicliffe, Verena; Lupton, John E; Juniper, S Kim; Rubin, Kenneth H; Stern, Robert J; Lebon, Geoffrey T; Nakamura, Ko-ichi; Merle, Susan G; Hein, James R; Wiens, Douglas A; Tamura, Yoshihiko

    2006-05-25

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes.

  16. Instability and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay

    Directory of Open Access Journals (Sweden)

    Eliane Gonthier

    2006-06-01

    Full Text Available Acoustic and core data have recently been collected on the shelf break and the upper part of the slope of the south Aquitaine continental margin. They reveal the major role played by mass-flow gravity processes in deposit erosion and redistribution, modelling of the sea-bed, and transfer of sediment toward the deep-sea. The study region is bounded in the south by the Capbreton canyon. The northern area, which shows a smooth morphology, is characterised by small-scale deformations due to sediment creep or low-amplitude slide processes. The deformations are associated with mini listric-like faults that bound packets of sediments in which the deposit geometry is typical of constructional sediment waves. These sediment waves result from the interaction of depositional and gravity deformation processes. In the southern area, closer to the canyon, wave-like structures are still present but mostly of smaller size. They only result from gravity deformation processes without any evidence of constructional processes. In the vicinity of the Capbreton canyon, the shelf break and upper slope have a much more uneven morphology with sedimentary reliefs, escarpments and depressions directed toward the canyon thalweg. The depressions look like slide scars, and could be the result of regressive slides initiated at the top of the canyon flank. The age of the sliding event responsible for the formation of the depression observed today could be middle to upper Quaternary. Since their formation, these depressions act as conduits that channel the transfer of shelf sediment into the canyon, as demonstrated by the occurrence of a meandering channel on the sea-floor of one depression.

  17. An analysis of the potential for Glen Canyon Dam releases to inundate archaeological sites in the Grand Canyon, Arizona

    Science.gov (United States)

    Sondossi, Hoda A.; Fairley, Helen C.

    2014-01-01

    The development of a one-dimensional flow-routing model for the Colorado River between Lees Ferry and Diamond Creek, Arizona in 2008 provided a potentially useful tool for assessing the degree to which varying discharges from Glen Canyon Dam may inundate terrestrial environments and potentially affect resources located within the zone of inundation. Using outputs from the model, a geographic information system analysis was completed to evaluate the degree to which flows from Glen Canyon Dam might inundate archaeological sites located along the Colorado River in the Grand Canyon. The analysis indicates that between 4 and 19 sites could be partially inundated by flows released from Glen Canyon Dam under current (2014) operating guidelines, and as many as 82 archaeological sites may have been inundated to varying degrees by uncontrolled high flows released in June 1983. Additionally, the analysis indicates that more of the sites currently (2014) proposed for active management by the National Park Service are located at low elevations and, therefore, tend to be more susceptible to potential inundation effects than sites not currently (2014) targeted for management actions, although the potential for inundation occurs in both groups of sites. Because of several potential sources of error and uncertainty associated with the model and with limitations of the archaeological data used in this analysis, the results are not unequivocal. These caveats, along with the fact that dam-related impacts can involve more than surface-inundation effects, suggest that the results of this analysis should be used with caution to infer potential effects of Glen Canyon Dam on archaeological sites in the Grand Canyon.

  18. Submarine topography and faulting in Bahia de Banderas, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Roman [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Mexico D.F (Mexico)

    2007-04-15

    A digital elevation model of Bahia de Banderas and its offshore continuation to the Middle America Trench (MAT) is built from a data set of 6872 bathymetric soundings. Two new, offshore basins and several, previously unknown faults within the bay are also identified. The south flank of Banderas canyon is considerably steeper than the north one. This asymmetry and the seismic activity present lead to propose that Banderas Canyon has a half-graben structure of the fault growth type, and reverse drag geometry, which originates in an extensional basin oriented N-S. The canyon is divided in two sections that trend in different directions. The older section of the canyon, trending E-W, is probably Late Miocene; the associated Banderas Fault is suggested to extend westward, down to the MAT along a section that complements that of the half-graben. The section of Banderas Canyon trending NE and continuing into Banderas Valley is identified as a younger portion of the structure. The older and the younger portions of the canyon appear to be active presently. A group of faults also trending NE seem to be associated with the change in direction of the canyon. These results support the hypothesis that the structure of Banderas Canyon is a half-graben, and they strengthen the idea that it is the limit between the region to the north that underwent extension in the Miocene, and the region to the south that did not experienced it. [Spanish] Un modelo digital de elevacion de Bahia de Banderas y su continuacion costa afuera hasta la Trinchera Mesoamericana se construye con 6872 sondeos batimetricos. Se identifi can dos nuevas cuencas costa afuera y tambien varias fallas, hasta ahora no reportadas, dentro de la bahia. El fl anco sur del Canon de Banderas es considerablemente mas empinado que el flanco norte. Esta asimetria, junto con la actividad sismica presente, lleva a proponer que el Canon de Banderas tiene una estructura de semi-graben del tipo de crecimiento de falla, con

  19. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins

    Science.gov (United States)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.

    2008-12-01

    Submarine geohazards are some of the most devastating natural events in terms of lives lost and economic impact. Earthquakes pose a big threat to society and infrastructure, but the understanding of their episodic generation is incomplete. Tsunamis are known for their potential of striking coastlines world-wide. Other geohazards originating below the sea surface are equally dangerous for undersea structures and the coastal population: submarine landslides and volcanic islands collapse with little warning and devastating consequences. The European scientific community has a strong focus on geohazards along European and nearby continental margins, especially given their high population densities, and long historic and prehistoric record of hazardous events. For example, the Mediterranean is surrounded by very densely-populated coastline and is the World's leading holiday destination, receiving up 30% of global tourism. In addition, its seafloor is criss-crossed by hydrocarbon pipelines and telecommunication cables. However, the governing processes and recurrence intervals of geohazards are still poorly understood. Examples include, but are not limited to, earthquakes and volcanic eruptions along the active tectonic margins of the Mediterranean and Sea of Marmara, landslides on both active and passive margins, and tsunamites and seismites in the sedimentary record that suggest a long history of similar events. The development of geophysical networks, drilling, sampling and long-term monitoring are crucial to the understanding of earthquake, landslide, and tsunami processes, and to mitigate the associated risks in densely populated and industrialized regions such as Europe. Scientific drilling, particularly in the submarine setting, offers a unique tool to obtain drill core samples, borehole measurements and long-term observations. Hence, it is a critical technology to investigate past, present, and possible future influences of hazardous processes in this area. The

  20. Results of radioactivity analysis made in Corsica following the navigation incident of the USS Hartford submarine; Resultats des analyses de radioactivite effectuees en Corse suite a l'incident de navigation du sous-marin USS Hartford

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    No radiological impact has been revealed in relation with the navigation incident of the Uss Hartford submarine at the north of Sardinia. The analysis have been made by the Institute of radiation protection and nuclear safety (I.R.S.N.).The Uss Hartford submarine had hit the bottom of the sea, on the 25. of october 2003, between the islands of Sardinia at a thirty kilometers distance in the south of Bonifacio. The accident had been declared to the public only on the 12. of November 2003. (N.C.)

  1. Late quaternary zonation of vegetation in the eastern grand canyon.

    Science.gov (United States)

    Cole, K

    1982-09-17

    Fossil assemblages from 53 packrat middens indicate which plant species were dominant during the last 24,000 years in the eastern Grand Canyon. Past vegetational patterns show associations that cannot be attributed to simple elevational displacement of the modern zones. A model emphasizing a latitudinal shift of climatic values is proposed.

  2. Condors back after long absence from Grand Canyon

    African Journals Online (AJOL)

    2007-03-02

    Mar 2, 2007 ... or even for UFOs. Benefield follows the birds closely. Condors are very curious and must be trained to stay away from humans. That requires hazing the birds by throwing pebbles at them or making noise when they get too close to the. Grand Canyon crowds. But visitors who get a glimpse of the scavengers ...

  3. Frequency and initiation of debris flows in Grand Canyon, Arizona

    Science.gov (United States)

    Griffiths, Peter G.; Webb, Robert H.; Melis, Theodore S.

    2004-12-01

    Debris flows from 740 tributaries transport sediment into the Colorado River in Grand Canyon, Arizona, creating rapids that control its longitudinal profile. Debris flows mostly occur when runoff triggers failures in colluvium by a process termed "the fire hose effect." Debris flows originate from a limited number of geologic strata, almost exclusively shales or other clay-rich, fine-grained formations. Observations from 1984 through 2003 provide a 20 year record of all debris flows that reached the Colorado River in Grand Canyon, and repeat photography provides a 100 year record of debris flows from 147 tributaries. Observed frequencies are 5.1 events/year from 1984 to 2003, and historic frequencies are 5.0 events/year from 1890 to 1983. Logistic regression is used to model historic frequencies based on drainage basin parameters observed to control debris flow initiation and transport. From 5 to 7 of the 16 parameters evaluated are statistically significant, including drainage area, basin relief, and the height of and gradient below debris flow source areas, variables which reflect transport distance and potential energy. The aspect of the river channel, which at least partially reflects storm movement within the canyon, is also significant. Model results are used to calculate the probability of debris flow occurrence at the river over a century for all 740 tributaries. Owing to the variability of underlying geomorphic controls, the distribution of this probability is not uniform among tributaries of the Colorado River in Grand Canyon.

  4. Grand Canyon Trekkers: School-Based Lunchtime Walking Program

    Science.gov (United States)

    Hawthorne, Alisa; Shaibi, Gabriel; Gance-Cleveland, Bonnie; McFall, Sarah

    2011-01-01

    The incidence of childhood overweight is especially troubling among low income Latino youth. Grand Canyon Trekkers (GCT) was implemented as a quasi-experimental study in 10 Title 1 elementary schools with a large Latino population to examine the effects of a 16-week structured walking program on components of health-related physical fitness: Body…

  5. Photocatalytic abatement results from a model street canyon.

    Science.gov (United States)

    Gallus, M; Ciuraru, R; Mothes, F; Akylas, V; Barmpas, F; Beeldens, A; Bernard, F; Boonen, E; Boréave, A; Cazaunau, M; Charbonnel, N; Chen, H; Daële, V; Dupart, Y; Gaimoz, C; Grosselin, B; Herrmann, H; Ifang, S; Kurtenbach, R; Maille, M; Marjanovic, I; Michoud, V; Mellouki, A; Miet, K; Moussiopoulos, N; Poulain, L; Zapf, P; George, C; Doussin, J F; Kleffmann, J

    2015-11-01

    During the European Life+ project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), photocatalytic remediation of nitrogen oxides (NOx), ozone (O3), volatile organic compounds (VOCs), and airborne particles on photocatalytic cementitious coating materials was studied in an artificial street canyon setup by comparing with a colocated nonactive reference canyon of the same dimension (5 × 5 × 53 m). Although the photocatalytic material showed reasonably high activity in laboratory studies, no significant reduction of NOx, O3, and VOCs and no impact on particle mass, size distribution, and chemical composition were observed in the field campaign. When comparing nighttime and daytime correlation plots of the two canyons, an average upper limit NOx remediation of ≤2% was derived. This result is consistent only with three recent field studies on photocatalytic NOx remediation in the urban atmosphere, whereas much higher reductions were obtained in most other field investigations. Reasons for the controversial results are discussed, and a more consistent picture of the quantitative remediation is obtained after extrapolation of the results from the various field campaigns to realistic main urban street canyon conditions.

  6. Thirty-five years at Pajarito Canyon Site

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, H.C.

    1981-05-01

    A history of the research activities performed at the Pajarito Canyon Site from 1946 to 1981 is presented. Critical assemblies described include: the Topsy assembly; Lady Godiva; Godiva 2; Jezebel; Flattop; the Honeycomb assembly for Rover studies; Kiwi-TNT; PARKA reactor; Big Ten; and Plasma Cavity Assembly.

  7. Measuring Longwave Radiative Flux Divergence in an Urban Canyon

    Science.gov (United States)

    Soux, A.; Oke, T. R.; Nunez, M.; Wilson, M.

    2003-12-01

    There has been very little measurement of longwave radiation divergence since the urban studies of Fuggle, Oke and Nunez in the mid 1970's or the rural work of Funk in the early 1960's. Although radiative divergence has been widely ignored for sometime there is the belief that it may play an important role in balancing nocturnal energy budgets in a range of environments. For example, in urban environments surface temperature relates well to the energy balance whereas air temperature does not, even in non-turbulent conditions. This is probably due at least in part to the effects of longwave divergence. To help answer issues related to longwave divergence a new dual-channel infrared radiometer (DCIR) has been developed. The DCIR, as the name implies, measures the directional infrared radiation in two wavebands and can, through differencing of the signals and further signal processing, give a direct measurement of longwave radiative flux divergence. The DCIR was deployed for the first time as part of a larger study (BUBBLE) of the urban boundary layer of Basel, Switzerland. The objective is to further study the thermal regime of a city at the canyon scale. To this end, a street canyon was carefully selected, in the city of Basel. The canyon surface and air volume were instrumented, including turbulent and conductive fluxes, and standard meteorological variables in addition to radiation. A unique data set was obtained to allow the complete energy balance of the canyon system to be evaluated without the need to resort to using residuals to quantify the magnitude of the longwave radiative flux divergence. Measured values of longwave flux-divergence are converted to cooling rates to compare with measured air temperature cooling. Preliminary results show that at the onset of canyon air-volume cooling, measured cooling rates are slightly lower than radiative cooling rates. The differences are less than 0.5° C. This contrasts sharply with previously measured above roof

  8. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Kathy; Sherwood, Sherri; Robinson, Rhonda

    2006-08-15

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  9. Biodiversity of suprabenthic peracarid assemblages from the Blanes Canyon region (NW Mediterranean Sea) in relation to natural disturbance and trawling pressure

    Science.gov (United States)

    Almeida, Mariana; Frutos, Inmaculada; Company, Joan B.; Martin, Daniel; Romano, Chiara; Cunha, Marina R.

    2017-03-01

    canyon wall, temporal fluctuations in diversity indices were only revealed in relation to the overall higher and more continued fishing pressure observed in the canyon wall fishing ground (Cara Norte/Sot site). Here, species richness and abundance declined with increasing fishing pressure but the lowest trophic and taxonomic diversities were observed under intermediate levels of disturbance. These findings underline (i) the differences between relatively low and highly motile taxa in terms of response to disturbance events; (ii) the differences between assemblages subjected to different levels of natural disturbance and trawling pressure, which modify the common bathymetric patterns of abundance and diversity often described from continental margins.

  10. Geologic framework of thermal springs, Black Canyon, Nevada and Arizona

    Science.gov (United States)

    Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black

  11. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil

    Science.gov (United States)

    Abreu-Harbich, Loyde V.; Labaki, Lucila C.; Matzarakis, Andreas

    2014-01-01

    Among several urban design parameters, the height-to-width ratio (H/W) and orientation are important parameters strongly affecting thermal conditions in cities. This paper quantifies changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presents urban guidelines concerning H/W ratios and green spaces to adapt urban climate change. The study focuses on thermal comfort issues of humans in urban areas and performs evaluation in terms of physiologically equivalent temperature (PET), based on long-term data. Meteorological data of air temperature, relative humidity, wind speed and solar radiation over a 7-year period (2003-2010) were used. A 3D street canyon model was designed with RayMan Pro software to simulate the influence of urban configuration on urban thermal climate. The following configurations and setups were used. The model canyon was 500 m in length, with widths 9, 21, and 44 m. Its height varied in steps of 2.5 m, from 5 to 40 m. The canyon could be rotated in steps of 15°. The results show that urban design parameters such as width, height, and orientation modify thermal conditions within street canyons. A northeast-southwest orientation can reduce PET during daytime more than other scenarios. Forestry management and green areas are recommended to promote shade on pedestrian areas and on façades, and to improve bioclimate thermal stress, in particular for H/W ratio less than 0.5. The method and results can be applied by architects and urban planners interested in developing responsive guidelines for urban climate issues.

  12. Paleoseismicity on the Dense Network of Holocene Submarine Faults in Beppu Bay, Southwest Japan

    Science.gov (United States)

    Shimazaki, K.; Matsuoka, H.; Okamura, M.; Chida, N.

    2003-12-01

    Beppu Bay, approximately 30 km by 15 km in size, contains a complex network of Holocene submarine faults whose total length amounts to 230km. They are normal dip-slip fault with left-lateral strike-slip component. The maximum vertical offset accumulated in the past 7,300 years exceeds 20 m. A detailed study on paleoseismicity on one of the faults shows a feature of the time-predictable recurrence, i.e., the larger the vertical offset, the longer the following inter-event time. Branching features can be often recognized near the end of fault and the consistency in branching direction of neighboring faults suggest repeated rupture propagation in the same direction. A detailed examination of high-resolution seismic profiling of branch indicates a repeat of branching and a slow transition of rupture from an old branch to a new one. The central Beppu-Bay fault running WNW to ESE in the center of the bay forms the northern boundary of the major graben structure of the bay. The Asamigawa fault in the west of the bay, running parallel to the central Beppu-Bay fault, has been considered as the southern boundary, but its eastern continuation was not clear. Recent seismic profiling carried out by Chida et al. (2003) showed an existence of Holocene normal fault beneath the city of Oita whose population is 440,000 and interpreted it as a part of the southern boundary. Our high-resolution shallow-water profiling survey revealed the submarine portion of the southern boundary fault, filling a gap between two subaerial faults. We continuously sample marine sediments down to a subbottom depth of 20m by piston coring and correlate specific features of sediment, 20 volcanic ash layers, a few features of magnetic susceptibility and coarse fraction together with C-14 ages of echinoids, pelecypods, and plant remains on the both sides of a targe fault to estimate the date and vertical offset of paleoearthquakes.

  13. The Impact of the General Board of the Navy on Interwar Submarine Design

    Science.gov (United States)

    2009-06-12

    Navy had developed the Gato class submarine, which was successful independently operating in the vast Pacific Ocean in support of War Plan Orange. The...development of the Gato class submarine, which was successful independently operating in the vast Pacific Ocean in support of War Plan Orange. The...

  14. Procurements by the Non-Acoustic Anti-Submarine Warfare Program Through the Environmental Technologies Laboratory

    Science.gov (United States)

    1994-06-14

    General, DoD, on contract offloading, including Report No. 93-068, " Procurement of Services for the Non-Acoustic Anti-Submarine Warfare Program...contract administration in response to Audit Report No. 93-042. Report No. 93-068, " Procurement of Services for the Non-Acoustic Anti- Submarine Warfare

  15. Study on the locational criteria for submarine rock repositories of low and medium level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G. H.; Kang, W. J.; Kim, T. J. and others [Chungnam National Univ., Taejon (Korea, Republic of)

    1992-01-15

    Submarine repositories have significant advantages over their land counterparts locating close to the areas of daily human activities. Consequently, the construction of submarine repositories on the vast continental shelves around Korean seas is considered to be highly positive. In this context, the development of locational criteria primarily targeting the safety of submarine rock repositories is very important.The contents of the present study are: analyzing characteristics of marine environment: Search of potential hazards to, and environmental impact by, the submarine repositories; Investigation of the oceanographic, geochemical, ecological and sedimentological characteristics of estuaries and coastal seas. Locating potential hazards to submarine repositories by: Bibliographical search of accidents leading to the destruction of submarine structures by turbidity currents and other potentials; Review of turbidity currents. Consideration of environmental impact caused by submarine repositories: Logistics to minimize the environmental impacts in site selection; Removal and dispersion processes of radionuclides in sea water. Analyses of oceanographical characteristics of, and hazard potentials in, the Korean seas. Evaluation of the MOST 91-7 criteria for applicability to submarine repositories and the subsequent proposition of additional criteria.

  16. Submarine landslides on the north continental slope of the South China Sea

    Science.gov (United States)

    Wang, Weiwei; Wang, Dawei; Wu, Shiguo; Völker, David; Zeng, Hongliu; Cai, Guanqiang; Li, Qingping

    2018-02-01

    Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea (SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and over-pressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.

  17. The risk of hydrogen explosion in a submarine p.I Catalytic combustion of hydrogen

    Directory of Open Access Journals (Sweden)

    Kłos Ryszard

    2016-09-01

    Full Text Available The series of articles discuss issues related to conducting high risk projects on the example of modernisation of hydrogen incinerators on a submarine. The article depicts a technical problem situation connected with catalytic hydrogen combustion on a submarine.

  18. Paulomycin G, a New Natural Product with Cytotoxic Activity against Tumor Cell Lines Produced by Deep-Sea Sediment Derived Micromonospora matsumotoense M-412 from the Avilés Canyon in the Cantabrian Sea.

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; Pérez-Victoria, Ignacio; Martín, Jesús; de Pedro, Nuria; Cruz, Mercedes de la; Díaz, Caridad; Vicente, Francisca; Acuña, José L; Reyes, Fernando; García, Luis A; Blanco, Gloria

    2017-08-28

    The present article describes a structurally novel natural product of the paulomycin family, designated as paulomycin G (1), obtained from the marine strain Micromonospora matsumotoense M-412, isolated from Cantabrian Sea sediments collected at 2000 m depth during an oceanographic expedition to the submarine Avilés Canyon. Paulomycin G is structurally unique since-to our knowledge-it is the first member of the paulomycin family of antibiotics lacking the paulomycose moiety. It is also the smallest bioactive paulomycin reported. Its structure was determined using HRMS and 1D and 2D NMR spectroscopy. This novel natural product displays strong cytotoxic activities against different human tumour cell lines, such as pancreatic adenocarcinoma (MiaPaca_2), breast adenocarcinoma (MCF-7), and hepatocellular carcinoma (HepG2). The compound did not show any significant bioactivity when tested against a panel of bacterial and fungal pathogens.

  19. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  20. Maximizing the probability an aerial anti-submarine torpedo detects its target

    Science.gov (United States)

    Wang, Zhi-Jie

    2009-06-01

    As a result of the high speed of anti-submarine patrol aircraft as well as their wide range, high efficiency and other characteristics, aerial torpedoes released by anti-submarine patrol aircraft have become the key anti submarine tool. In order to improve operational efficiency, a deep study was made of the target detection probabilities for aerial torpedoes released by anti-submarine patrol aircraft. The operational modes of aerial torpedoes were analyzed and mathematical-simulation models were then established. The detection probabilities of three attacking modes were then calculated. Measures were developed for improving low probabilities of detection when attacking a probable target position. This study provides an important frame of reference for the operation of aerial torpedo released by anti-submarine patrol aircraft.

  1. Main devices design of submarine oil-water separation system

    Science.gov (United States)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-11-01

    In the process of offshore oil production, in order to thoroughly separate oil from produced fluid, solve the environment problem caused by oily sewage, and improve the economic benefit of offshore drilling, from the perspective of new oil-water separation, a set of submarine oil-water separation devices were designed through adsorption and desorption mechanism of the polymer materials for crude oil in this paper. The paper introduces the basic structure of gas-solid separation device, periodic separation device and adsorption device, and proves the rationality and feasibility of this device.

  2. Submarine glaciated landscapes of central and northern British Columbia, Canada

    Science.gov (United States)

    Shaw, John; Lintern, Gwyn

    2015-04-01

    Recent systematic multibeam sonar mapping and ground-truthing surveys in the fjords and coastal waters of central and northern British Columbia, Canada, provide information on glacial processes associated with the Cordilleran Ice Sheet, and also on postglacial processes that have strongly modified the glacial terrain. During the last glacial maximum, ice covered the Coast Range, except for nunataks. Convergent streamlined glacial landforms in the Strait of Georgia testify to a strong flow of ice towards the southeast, between Vancouver Island and the mainland. During ice retreat, thick deposits of acoustically stratified glaciomarine mud were deposited in glacially over deepened basins. Retreat through the Douglas Channel fjord system was punctuated by still stands, resulting in a series of submarine moraines. Postglacial processes have created a suite of landforms that mask the primary glacial terrain: 1) Fjord floors host thick deposits of acoustically transparent postglacial mud with highly variable distribution: banks up to 80-m thick are commonly adjacent to erosional zones with glaciomarine mud exposed at the seafloor; 2) In this region of high precipitation and snowpack melt, numerous cone-shaped Holocene fan deltas developed on the fjord sidewalls transport coarse sediment to the fjord floors. Larger deltas are developed at fjord heads, notably at Kitimat and Kildala; 3) Submarine slope failures in this tectonically active area have resulted in a suite of mass transport deposits on sidewalls and fjord floors. The very large submarine slope failures at Camano Sound and KitKat Inlet occurred on the steep, rear facets of large transverse moraines, and involved the failure of glaciomarine sediment that moved into deeper basins, perhaps as a retrogressive failure. The ages of these events are unknown, although the presence of postglacial mud in the slide scar at Caamano suggests that the event at that location occurred in the late glacial or early Holocene. Also

  3. Micro-tunneling as an alternative to submarine cable

    Energy Technology Data Exchange (ETDEWEB)

    Russo, D.A. [Seattle City Light, WA (United States); Hansen, D. [CH2M Hill, Bellevue, WA (United States)

    1994-12-31

    The geography that gives Seattle its beauty can pose unique challenges for the engineers attempting to provide service to the customers who live near or upon these features. Steep, wooded hills and greenbelts create familiar problems of construction and right-of-way maintenance. The waterways and adjoining shoreline zones present a more difficult set of requirements. When Seattle City Light determined it was necessary to install 2-26 KV feeders across the Salmon Bay waterway, they discovered that submarine cables could not be used. Shallow angle directional drilling and micro-tunneling were examined and it was fond that a microtunneled duct bank was the best method to use.

  4. New types of submarine groundwater discharge from a saliferous clay formation - the case of the Dead Sea

    Science.gov (United States)

    Siebert, Christian; Broder, Merkel; Thomas, Pohl; Yossi, Yechieli; Eldat, Hazan; Danny, Ionescu; Ulf, Mallast

    2017-04-01

    Along the coastline of the hyper-saline and dramatically dropping Dead Sea, fresh to highly saline groundwaters discharge abundantly from dry falling lakebed. During its history, the level and hence salinity of the lake strongly fluctuated, resulting in the deposition of an alternating sequence of clayey and chemical sediments (mainly halite, carbonates and sulfates), intercalated by thick beds of halite and of coarse clastics around wadi outlets, respectively. Due to the asymmetrical shape of the lake's basin, these strata are deposited unequally along the eastern and western flank, why only groundwaters coming from the west have to pass thick layers of these sediments on their way into the lake. On the base of trace elements (REE), element ratios, stable and radioisotopes and microbiological findings, the observed onshore and offshore springs revealed, freshwaters discharge from both Cretaceous limestone aquifers and efficiently dissolve the easily soluble halite and flush the interstitial brines from the saliferous clay formation, immediately after entering the sedimentary strata. Abundant microbial activity result in the widespread production of sulfuric acid, accelerating erosion of carbonates and sulfates. These processes result in a fast and striking karstification of the strata, enabling groundwaters to transcendent the fresh/saltwater interface trough open pipes. As results, submarine groundwater discharge (SGD) occurs randomly and in addition to terrestrial, submarine sinkholes develop very quickly too. Due to the variable maturity of the flow paths, salinity and chemical composition of SGD shows an extremely wide range, from potable water to TDS of >250 g/l. Submarine emerging groundwaters with salinities even higher then that of the Dead Sea and distinctly different chemical and isotopic composition form outlets, which are not known elsewhere and represent a novel and unique type of SGD, only observed in the Dead Sea yet.

  5. Numerical Study of Urban Canyon Microclimate Related to Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    Andrea de Lieto Vollaro

    2014-11-01

    Full Text Available In this study a microclimate analysis on a particular urban configuration: the—street canyon—has been carried out. The analysis, conducted by performing numerical simulations using the finite volumes commercial code ANSYS-Fluent, shows the flow field in an urban environment, taking into account three different aspect ratios (H/W. This analysis can be helpful in the study on urban microclimate and on the heat exchanges with the buildings. Fluid-dynamic fields on vertical planes within the canyon, have been evaluated. The results show the importance of the geometrical configuration, in relation to the ratio between the height (H of the buildings and the width (W of the road. This is a very important subject from the point of view of “Smart Cities”, considering the urban canyon as a subsystem of a larger one (the city, which is affected by climate changes.

  6. Vegetation and substrate on aeolian landscapes in the Colorado River corridor, Cataract Canyon, Utah

    Science.gov (United States)

    Draut, Amy E.; Gillette, Elizabeth R.

    2010-01-01

    Vegetation and substrate data presented in this report characterize ground cover on aeolian landscapes of the Colorado River corridor through Cataract Canyon, Utah, in Canyonlands National Park. The 27-km-long Cataract Canyon reach has undergone less anthropogenic alteration than other reaches of the mainstem Colorado River. Characterizing ecosystem parameters there provides a basis against which to evaluate future changes, such as those that could result from the further spread of nonnative plant species or increased visitor use. Upstream dams have less effect on the hydrology and sediment supply in Cataract Canyon compared with downstream reaches in Grand Canyon National Park. For this reason, comparison of these vegetation and substrate measurements with similar data from aeolian landscapes of Grand Canyon will help to resolve the effects of Glen Canyon Dam operations on the Colorado River corridor ecosystem.

  7. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon.

    Science.gov (United States)

    Flowers, R M; Farley, K A

    2012-12-21

    The Grand Canyon is one of the most dramatic features on Earth, yet when and why it was carved have been controversial topics for more than 150 years. Here, we present apatite (4)He/(3)He thermochronometry data from the Grand Canyon basement that tightly constrain the near-surface cooling history associated with canyon incision. (4)He/(3)He spectra for eastern Grand Canyon apatites of differing He date, radiation damage, and U-Th zonation yield a self-consistent cooling history that substantially validates the He diffusion kinetic model applied here. Similar data for the western Grand Canyon provide evidence that it was excavated to within a few hundred meters of modern depths by ~70 million years ago (Ma), in contrast to the conventional model in which the entire canyon was carved since 5 to 6 Ma.

  8. Seismicity and sedimentation rate effects on submarine slope stability

    Science.gov (United States)

    Ten Brink, U. S.; Andrews, B. D.; Miller, N. C.

    2016-12-01

    Large submarine mass-transport scars are commonly observed on continental margins, but are noticeably less abundant on margins that experience frequent earthquakes than on those that seldom experience them. This is a surprising observation, given that horizontal acceleration from earthquakes and associated strength loss from cyclic loading and liquefaction are commonly thought to provide the primary triggers for inducing failures and subsequent mass movements. Mapping submarine failure scars in ten margins worldwide, we find decreasing scar abundance with both increasing frequency of earthquakes and decreasing sedimentation rate. The decrease in scar abundance is interpreted to represent increasing slope stability. The increase in stability is non linear (power law with btectonic activity (salt diapirs, seamount subduction, etc.) leads to relatively rapid oversteepening of the slope, implying that the morphology of most margins is in fact, stable over many earthquake cycles. Note that the above correlation averages scar area and sedimentation rate over entire margin areas. Variations in sedimentation rate with time, such as over glacial-interglacial cycles, and intra-margin variations in seismic attenuation, sedimentation rate, composition, and pore pressure, have likely affected the abundance of slope failures in time and space.

  9. An Automatic Procedure for the Quantitative Characterization of Submarine Bedforms

    Directory of Open Access Journals (Sweden)

    Massimo Di Stefano

    2018-01-01

    Full Text Available A model for the extraction and quantitative characterization of submarine landforms from high-resolution digital bathymetry is presented. The procedure is fully automated and comprises two parts. The first part consists of an analytical model which extracts quantitative information from a Digital Elevation Model in the form of objects with similar parametric characteristics (terrain objects. The second part is a rule-based model where the terrain objects are reclassified into distinct landforms with well-defined three dimensional characteristics. For the focus of this work, the quantitative characterization of isolated dunes (height greater than 2 m is used to exemplify the process. The primary metrics used to extract terrain objects are the flatness threshold and the search radius, which are then used by the analytical model to identify the feature type. Once identified as dunes, a sequence of spatial analysis routines is applied to identify and compute metrics for each dune including length, height, width, ray of curvature, slope analysis for each stoss and lee side, and dune symmetry. Dividing the model into two parts, one scale-dependent and another centered around the shape of the landform, makes the model applicable to other submarine landforms like ripples, mega-ripples, and coral reefs, which also have well-defined three-dimensional characteristics.

  10. Fin propulsion on a human-powered submarine

    Science.gov (United States)

    Anderson, Iain A.; Pocock, Benjamin; Harbuz, Antoni; Algie, Cam; Vochezer, Daniel; Chao, Ryan; Lu, Benjamin

    2015-03-01

    Nearly all surface and underwater vessels are driven by screw propulsion; ideal for coupling to rotary engines and well understood after over a century of development. But most aquatic creatures use fins for swimming. Although there are sound evolutionary reasons why fish have fins and not propellers, they are nevertheless agile, fast and efficient. Although fish-like robots such as the MIT Robotuna are providing good insight into fin-based swimming there are advantages for using humans in the experimental device. Like an airplane test pilot they can write crash reports. We present preliminary observations for the human powered finned submarine: Taniwha. The sub participated in the 2nd European International Submarine races in Gosport UK where it received a trophy for "Best Non-Propeller Performance". Two sets of Hobie Mirage fin drives fixed to the upper and lower rear surfaces of the sub are pedaled by the pilot. The pilot also has two levers at the front, one to pitch a pair of dive planes and one for yawing a large rudder. Good speed, we estimate to be greater than 6 m/s is possible with these fins although we haven't explored their full potential. Straying too near the surface or bottom can lead to an instability, synonymous to a stall, such that control is lost. The mechanism for this will be discussed and solutions offered. Fish are 400 million years in front of us but one day we'll catch them.

  11. Are tilt measurements useful in detecting tsunamigenic submarine landslides?

    Science.gov (United States)

    Brune, Sascha; Babeyko, Andrey Y.; Sobolev, Stephan V.

    2009-06-01

    Large submarine landslides can generate dangerous tsunamis. Because of their long-period signal, detection of landslides by common seismological methods is difficult. Here we suggest a method of detecting submarine landslides by using an array of land-based tiltmeters. The displacement of a large volume of sediments during landsliding produces a detectable elastic response of the lithosphere. We propose a technique to calculate this response and to invert for tsunami relevant parameters like slide location, volume, and velocity. We exemplify our method by applying it to the Storegga slide west of Norway and other tsunamigenic landslide events. The parameter which can be most robustly estimated from tiltmeter array measurements is the product of slide volume and its velocity (slide tsunamigenic potential). This parameter also controls the amplitude of the generated tsunami wave. The inversion accuracy of this parameter and the estimated tsunami height near the coast depends on the noise level of tiltmeter measurements, distance of the tiltmeters from the slide, and slide tsunamigenic potential itself. The tsunamigenic potential of the most dangerous slides like Storegga can be estimated well by tiltmeters at the coast if the effective noise level does not exceed 50 nrad.

  12. A submarine fan in the Mesa Central, Mexico

    Science.gov (United States)

    Silva-Romo, G.; Arellano-Gil, J.; Mendoza-Rosales, C.; Nieto-Obregón, J.

    2000-10-01

    The contact between the Guerrero and Sierra Madre tectonostratigraphic terranes has been proposed to lie in the Mesa Central, east of the city of Zacatecas. Marine Triassic units have been assigned to the Guerrero Terrane. It is here proposed that this contact occurs to the west of the city of Zacatecas and the Triassic marine sequence assigned to the Sierra Madre Terrane. We analyzed the stratigraphic record and structural features of pre-Late Jurassic sequences at four localities in the Mesa Central. They contain a marine turbiditic Triassic unit, which includes La Bellena, Taray, and Zacatecas Formations, and a continental unit of probable Middle Jurassic age. Triassic sandstones were derived from a cratonic area, without the influence of arc volcanism. The sequences were affected by two phases of deformation. The Triassic formations are unconformably overlain by a continental volcano-sedimentary sequence that contains fragments of sandstones derived from the underlying unit. Sedimentologic characteristics of the Triassic unit fit a submarine fan model. The submarine fan developed at the continental margin of Pangaea during Triassic times. Turbidite associations in the San Rafael Area indicate a middle fan depositional environment, while in the Real de Catorce Area, they correspond to the distal part (basin plain facies). At La Ballena and Zacatecas the turbidite associations occur in the middle part and perhaps the external part of the fan.

  13. Feasibility study of submarine diesel exhaust valve interspace coating application

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, W.; Zhou, M.; Bibby, D.; Huang, J.

    2008-05-15

    This document described a feasibility study conducted to evaluate surface coating systems applied to the surface of a diesel exhaust valve interspace on a VICTORIA Class submarine. A series of laboratory studies were conducted to determine the physical characteristics of the coatings, which will be subjected to high service temperatures, diesel exhaust gas, and seawater. The valves were made of Q1N steel castings. The surface coatings were designed to provide corrosion resistance and thermal protection to the valves. As part of the study, a survey was conducted on various state-of-the-art surface coating systems. Coatings were rated on their ability to protect the Q10 steel surface from corrosion, high temperatures and seawater. An additional requirement was that the coatings should not produce high amounts of hydrogen. Plating trials were conducted with a nickel-based alloy (Ni-Cu-P) placed on Q1N steel substrates with a hypophosphite reducing agent. The results of X-ray diffraction (XRD) analyses suggested that the coatings can also be used to protect the external surfaces of various submarine components. 54 refs., 4 tabs., 10 figs.

  14. Los Alamos Canyon Ice Rink Parking Flood Plain Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2015-02-10

    The project location is in Los Alamos Canyon east of the ice rink facility at the intersection of West and Omega roads (Figure 1). Forty eight parking spaces will be constructed on the north and south side of Omega Road, and a lighted walking path will be constructed to the ice rink. Some trees will be removed during this action. A guardrail of approximately 400 feet will be constructed along the north side of West Road to prevent unsafe parking in that area.

  15. A review of proposed Glen Canyon Dam interim operating criteria

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

    1992-04-01

    Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

  16. A simple model for calculating air pollution within street canyons

    Science.gov (United States)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  17. 75 FR 26098 - Safety Zone; Under Water Clean Up of Copper Canyon, Lake Havasu, AZ

    Science.gov (United States)

    2010-05-11

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Under Water Clean Up of Copper Canyon, Lake....T11-179 to read as follows: Sec. 165.T11-179 Safety zone; Copper Canyon Clean Up, Lake Havasu, AZ. (a... establishing a temporary safety zone on the navigable waters of Lake Havasu in the Copper Canyon in support of...

  18. Landslide assessment of Newell Creek Canyon, Oregon City, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Growney, L.; Burris, L.; Garletts, D.; Walsh, K. (Portland State Univ., OR (United States). Dept. of Geology)

    1993-04-01

    A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of the perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].

  19. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    Science.gov (United States)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  20. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  1. Late Holocene earthquake history of the Brigham City segment of the Wasatch fault zone at the Hansen Canyon, Kotter Canyon, and Pearsons Canyon trench sites, Box Elder County, Utah

    Science.gov (United States)

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.

    2012-01-01

    Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our

  2. Occupational stress in submariners: the impact of isolated and confined work on psychological well-being.

    Science.gov (United States)

    Brasher, Kate S; Dew, Angela B C; Kilminster, Shaun G; Bridger, Robert S

    2010-03-01

    This study aimed to identify work-related and personal factors associated with occupational stress in submariners. Work and well-being questionnaires were distributed to 219 male submariners (mean age 34 years), as part of a larger cohort study involving a stratified sample of 4951 Royal Navy (RN) personnel. The stress rate in submariners was 40%; significantly higher than the stress rate in the general RN, although once demographic factors were controlled for in a matched control sample, this difference was no longer significant. A summary model accounted for 49% of the variance in submariner stress, with key differences emerging between the occupational factors associated with stress in submariners and in the general RN. The longitudinal nature of this study permits stress in submariners to be monitored over 5 years, which will provide valuable insights into the chronicity of stress in this specialised occupational group. STATEMENT OF RELEVANCE: This paper contributes to the current literature on the negative impact of working in isolated conditions. It is demonstrated that occupational stress in submarines can be partially explained using current theories of stress in the workplace. However, the constraints of a restricted environment introduce additional factors which can also be associated with occupational stress.

  3. UV Radiation in an Urban Canyon in Southeast Queensland

    Science.gov (United States)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  4. Compilation of PRF Canyon Floor Pan Sample Analysis Results

    Energy Technology Data Exchange (ETDEWEB)

    Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wahl, Jon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, Lawrence R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coffey, Deborah S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Garrett N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clark, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    On September 28, 2015, debris collected from the PRF (236-Z) canyon floor, Pan J, was observed to exhibit chemical reaction. The material had been transferred from the floor pan to a collection tray inside the canyon the previous Friday. Work in the canyon was stopped to allow Industrial Hygiene to perform monitoring of the material reaction. Canyon floor debris that had been sealed out was sequestered at the facility, a recovery plan was developed, and drum inspections were initiated to verify no additional reactions had occurred. On October 13, in-process drums containing other Pan J material were inspected and showed some indication of chemical reaction, limited to discoloration and degradation of inner plastic bags. All Pan J material was sealed back into the canyon and returned to collection trays. Based on the high airborne levels in the canyon during physical debris removal, ETGS (Encapsulation Technology Glycerin Solution) was used as a fogging/lock-down agent. On October 15, subject matter experts confirmed a reaction had occurred between nitrates (both Plutonium Nitrate and Aluminum Nitrate Nonahydrate (ANN) are present) in the Pan J material and the ETGS fixative used to lower airborne radioactivity levels during debris removal. Management stopped the use of fogging/lock-down agents containing glycerin on bulk materials, declared a Management Concern, and initiated the Potential Inadequacy in the Safety Analysis determination process. Additional drum inspections and laboratory analysis of both reacted and unreacted material are planned. This report compiles the results of many different sample analyses conducted by the Pacific Northwest National Laboratory on samples collected from the Plutonium Reclamation Facility (PRF) floor pans by the CH2MHill’s Plateau Remediation Company (CHPRC). Revision 1 added Appendix G that reports the results of the Gas Generation Rate and methodology. The scope of analyses requested by CHPRC includes the determination of

  5. Prediction of nuclear submariner adaptability from autonomic indices and Rorschach Inkblot responses. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Weybrew, B.B.; Molish, H.B.

    1986-09-09

    To identify the most valid predictors of submariner adaptability, the authors derived 23 indices from the responses of 170 nuclear submariners to the Rorschach Inkblot Test, 11 measures of Autonomic Nervous System (ANS) reactivity to contrived stress, and five adjustment criteria. Factor analysis of this 39x39 correlation matrix yielded two Rorschach Factors, one of which correlated with three criterion dimensions. Two unique factors were also discovered, one, a structured ANS factor, and the other, a complex criterion scale. Selected Rorschach scores and, to a lesser extent, certain ANS indices emanating from this study, may be usefully-valid predictors of the adaptability of nuclear submariners during long patrols.

  6. Particle sedimentation and diffusive convection in submarine clouds

    Science.gov (United States)

    Carazzo, G.; Jellinek, M.; Turchyn, A. V.

    2013-12-01

    The longevity of submarine plumes generated by the release of hydrothermal fluids during crustal rupturing or by the rapid cooling of an erupting lava flow constrains the input of crustal-derived elements into the deep-ocean. Decades of observations of episodic "event plumes" suggest that a key process governing the dynamics of a submarine cloud spreading out laterally from a buoyant rising plume is the production of internal layering. Here, we use geological data on submarine clouds and a new experimental apparatus producing at laboratory scale turbulent, hot particle-laden plumes and clouds to show that this layering occurs where particle diffusive convection driven by the differential diffusion of heat and small mineral precipitates gives rise to a large scale double diffusive instability. We show that this "particle diffusive convection" can extend the longevity of an event plume to two years after its emplacement, allowing iron-sulfide minerals to dissolve and deliver iron to the deep-ocean. The very long residence time imposed by diffusive convective effects does not allow iron-oxide minerals to dissolve but may lead to the formation of iron-rich sediments at large distances from the point of emission. We develop a new theoretical model that includes both sedimentation and dissolution processes to quantify the potential amount of iron produced by the dissolution of iron-sulfide minerals settling through the cloud by diffusive convection. A key prediction is that hydrothermal systems could provide 75% of the global budget of dissolved iron in the deep-ocean. The consideration of scale-basin variations suggests that the Southern Hemisphere is probably the most impacted by hydrothermal iron, consistent with observations and global ocean models. Photographs showing the typical evolution of a lab-scale turbulent, hot particle-laden plume. At stage 1, the buoyant plume reaches a level of neutral buoyancy and spreads out laterally forming a neutrally buoyant cloud

  7. Use of Composite Fingerprinting Technique to Determine Contribution of Paria River Sediments to Dam-Release Flood Deposits in Marble Canyon, Grand Canyon, Az

    Science.gov (United States)

    Chapman, K.; Parnell, R. A.; Smith, M. E.; Grams, P. E.; Mueller, E. R.

    2015-12-01

    The 1963 closure of Glen Canyon Dam drastically reduced the downstream sediment supply and altered daily flow regimes of the Colorado River through Grand Canyon, resulting in significant sandbar erosion downstream of the dam. Dam-release floods, known as High Flow Experiments (HFEs), have occurred six times since 1996 and are intended to rebuild Grand Canyon sandbars using tributary-supplied sediment. In Marble Canyon (first 100 km of Grand Canyon) the targeted tributary is the Paria River which supplies approximately 90% of the annual suspended sediment flux through Marble Canyon; the same input contributed less than 6% prior to the dam. Annual topographic surveys have established that HFEs are effective at rebuilding sandbars. However, the long-term viability of using HFEs for sandbar maintenance is dependent on a sustainable source of sediments comprising HFE deposits. Significant use of non-tributary, main-stem sediments (i.e. pre-dam sand stored in eddies or the channel bed) in HFE deposits would indicate reliance on a limited resource, and diminishing returns in the ability of HFEs to rebuild sandbars. In this study, we sampled vertically throughout 12 bars in Marble Canyon to document temporal and downstream changes in the proportion of sediment sourced from the Paria River during the 2013 and 2014 HFEs. Preliminary data suggest that heavy mineral compositions and concentrations of Ti, S, Cr and Rb, all of which are influenced by grainsize, could be sufficiently capable of differentiating Paria-derived and main-stem sediments when combined into a composite fingerprint (CF). A multivariate mixing model using these CFs quantitatively determines the contribution of Paria-derived sediment in each HFE deposit sample. Mixing model endmembers for non-Paria sand include pre-dam flood deposits in Glen and Marble Canyons, and Marble Canyon dredge samples. These results elucidate the role of contemporary versus legacy sediment in long-term sandbar maintenance.

  8. Internal architecture of the proto-Kern Canyon Fault at Engineer's Point, Lake Isabella Dam site, Kern County, California

    Science.gov (United States)

    Martindale, Z. S.; Andrews, G. D.; Brown, S. R.; Krugh, W. C.

    2014-12-01

    The core of the Cretaceous (?) proto-Kern Canyon Fault (KCF) is exposed continuously for 1.25 km along Engineer's Point at Lake Isabella, Kern County, California. The proto-KCF is notable for (1) its long and complex history within, and perhaps preceding the Sierra Nevada batholith, and (2) hosting the Quaternary Kern Canyon Fault, an active fault that threatens the integrity of the Lake Isabella auxiliary dam and surrounding communities. We are investigating the internal architecture of the proto-KCF to explore its control on the likely behavior of the modern KCF. The proto-KCF is developed in the Alta Sierra biotite-granodiorite pluton. A traverse across Engineer's Point, perpendicular to the proto-KCF trace, reveals gradational increases in fracture density, fracture length, bulk alteration, and decreases in fracture spacing and grain size toward the fault core. Mapping of the fault core reveals two prominent and laterally extensive zones: (1) continuous foliated blastomylonitic granodiorite with steeply-dipping, anastomosing shear bands and minor mylonite planes, and (2) foliated orange and green fault breccia with intergranular gouge, strong C/S fabric, and a central gouge plane. The fault breccia zone is intruded by a lensoidal, post-deformation dacite dike, probably ca. 105 - 102 Ma (Nadin & Saleeby, 2008) and is weakly overprinted by a set of cross-cutting spaced, short, brittle fractures, often coated in calcite, which we infer to be genetically related to the modern KCF. We present our structural and lithological data that will be supported by mineralogical and geochemical analyses. E. Nadin & J. Saleeby (2008) Disruption of regional primary structure of the Sierra Nevada batholith by the Kern Canyon fault system, California: Geological Society of America Special Paper 438, p. 429-454.

  9. Pristine Samples of Silicon Carbide Separated From the Canyon Diablo Meteorite

    Science.gov (United States)

    Leung, I. S.; Winston, R.

    2008-12-01

    The Canyon Diablo is an iron meteorite whose collision with Earth created Meteor Crater in Arizona. In a study of a large block (53 kg) of this meteorite, Henri Moissan reported his findings of green, hexagonal crystals of silicon carbide (SiC) which was given the name moissanite the following year by George Kunz (1905). Moissan did not report finding the cubic form of SiC. Subsequently, many erroneous reports appeared when the polishing compound (synthetic SiC) was mistakenly considered by researchers as a natural mineral associated with, rather than a contaminant of many rock types. Hence, the occurrence of SiC in the Canyon Diablo remains in doubt, and any proposal to investigate this problem was discouraged and regarded as predictably unproductive. This notion hampered further work on abundant materials housed in museums. SiC grains have been found in primitive meteorites and interplanetary dust particles. Some have been identified as presolar grains. The significance of SiC in the Canyon Diablo cannot be revealed unless we have abundant data from pristine samples, enough for us to classify them into presolar or other types. We report here a simple method we used to separate SiC crystals from the meteorite. We chose samples containing a carbon nodule composed of graphite, diamond-lonsdaleite, and SiC grains in the iron matrix. We broke up the carbon nodule with a sharp tungsten carbide chisel and hammer. After removing the large metal fragments, we put a small amount of the fine black grains in a Petri dish with acetone, then swerved the dish to scatter the grains sparingly on the bottom of the dish. Under a binocular microscope, SiC crystals can be spotted easily by their adamantine luster, color (blue, green, beige, etc.), and high birefringence when placed between crossed polarizers of a petrographic microscope. We also X-rayed individual grains, and have identified several hexagonal polytype structures as well as the cubic form (3C polytype).

  10. Multi-scale evaluations of submarine groundwater discharge

    Directory of Open Access Journals (Sweden)

    M. Taniguchi

    2015-03-01

    Full Text Available Multi-scale evaluations of submarine groundwater discharge (SGD have been made in Saijo, Ehime Prefecture, Shikoku Island, Japan, by using seepage meters for point scale, 222Rn tracer for point and coastal scales, and a numerical groundwater model (SEAWAT for coastal and basin scales. Daily basis temporal changes in SGD are evaluated by continuous seepage meter and 222Rn mooring measurements, and depend on sea level changes. Spatial evaluations of SGD were also made by 222Rn along the coast in July 2010 and November 2011. The area with larger 222Rn concentration during both seasons agreed well with the area with larger SGD calculated by 3D groundwater numerical simulations.

  11. Risk assessment in submarine outfall projects: the case of Portugal.

    Science.gov (United States)

    Mendonça, Ana; Losada, Miguel Ángel; Reis, Maria Teresa; Neves, Maria Graça

    2013-02-15

    Submarine outfalls need to be evaluated as part of an integrated environmental protection system for coastal areas. Although outfalls are tight with the diversity of economic activities along a densely populated coastline being effluent treatment and effluent reuse a sign of economic prosperity, precautions must be taken in the construction of these structures. They must be designed so as to have the least possible impact on the environment and at the same time be economically viable. This paper outlines the initial phases of a risk assessment procedure for submarine outfall projects. This approach includes a cost-benefit analysis in which risks are systematically minimized or eliminated. The methods used in this study also allow for randomness and uncertainty. The input for the analysis is a wide range of information and data concerning the failure probability of outfalls and the consequences of an operational stoppage or failure. As part of this risk assessment, target design levels of reliability, functionality, and operationality were defined for the outfalls. These levels were based on an inventory of risks associated with such construction projects, and thus afforded the possibility of identifying possible failure modes. This assessment procedure was then applied to four case studies in Portugal. The results obtained were the values concerning the useful life of the outfalls at the four sites and their joint probability of failure against the principal failure modes assigned to ultimate and serviceability limit states. Also defined were the minimum operationality of these outfalls, the average number of admissible technical breakdowns, and the maximum allowed duration of a stoppage mode. It was found that these values were in consonance with the nature of the effluent (tourist-related, industrial, or mixed) as well as its importance for the local economy. Even more important, this risk assessment procedure was able to measure the impact of the outfalls on

  12. Imaging deformation in submarine thrust belts using seismic attributes

    Science.gov (United States)

    Iacopini, David; Butler, Robert W. H.

    2011-02-01

    Uncertainty exists as to the patterns of deformation that develop within submarine thrust belts. This case study uses a large-scale gravity-driven fold-thrust structure as an analogue for submarine fold thrust systems in general. Seismic attribute analysis and mapping provide ways of identifying complex fault patterns and associated deformation that are otherwise unresolved in conventional amplitude displays. These methods are developed and applied to a 3D dataset and used to investigate the geometry, internal architecture and the nature of the low signal/noise incoherency and discontinuities observed on the km-scale. Semblance (coherency), curvatures and spectral decomposition were all computed and used as attributes. Collectively these define volumes within the seismic data where the signal is greatly reduced — features termed here "disturbance geobodies". The study shows that thrust faults that, on conventional amplitude displays appear to be simple and continuous, are likely to consist of complex arrays of anastamosing fault strands. Adjacent to these composite fault zones are greater volumes of deformed rocks (disturbance geobodies) across which there are only minor stratal offsets. Similarly volumes of high stratal curvature coincide with disturbance geobodies, again interpreted as zones of weak, distributed deformation. These relationships between narrow thrust faults and broader zones of deformation are broadly comparable to those observed in outcrops within exhumed thrust systems. Application of the seismic imaging techniques developed here will improve the understanding of the localization of deformation in sedimentary successions with important implications for predicting fluid flow within other deep water structures such as subduction accretion complexes.

  13. Possible Connections Between the Coronado Bank Fault Zone and the Newport-Inglewood, Rose Canyon, and Palos Verdes Fault Zones Offshore San Diego County, California.

    Science.gov (United States)

    Sliter, R. W.; Ryan, H. F.

    2003-12-01

    High-resolution multichannel seismic-reflection and deep-tow Huntec data collected by the USGS were interpreted to map the Coronado Bank fault zone (CBFZ) offshore San Diego County, California. The CBFZ is comprised of several major strands (eastern, central, western) that change in both orientation and degree of deformation along strike. Between Coronado Bank and San Diego, the CBFZ trends N25W and occupies a narrow 7 km zone. Immediately north of La Jolla submarine canyon (LJSC), the easternmost strand changes orientation to almost due north and appears to be offset in a right-lateral sense across the canyon axis. The strand merges with a prominent fault that follows the base of the continental slope in about 600 m water depth. The central portion of the CBFZ is mapped as a negative flower structure and deforms seafloor sediment as far north as 15 km north of LJSC. Farther north, this structure is buried by more than 400 m of basin sediment. Along the eastern edge of the Coronado Bank, the western portion of the CBFZ is characterized by high angle normal faults that dip to the east. North of the Coronado Bank, the western segment follows the western edge of a basement high; it cuts through horizontal basin reflectors and in places deforms the seafloor. We mapped an additional splay of the CBFZ that trends N40W; it is only observed north and west of LJSC. Although the predominant trend of the CBFZ is about N40W, along strike deviations from this orientation of some of the strands indicate that these strands connect with other offshore fault zones in the area. Based on the limited data available, the trend of the CBFZ south of Coronado Bank suggests that it might connect with the Rose Canyon fault zone (RCFZ) that has been mapped in San Diego Bay. North of Coronado Bank, the CBFZ is a much broader fault zone (about 25 km wide) composed of diverging fault strands. The westernmost strand may merge with the western strand of the Palos Verdes fault zone (PVFZ) south of

  14. Did a "lucky shot" sink the submarine H.L. Hunley?

    Science.gov (United States)

    Lance, Rachel M; Warder, Henry; Bass, Cameron R Dale

    2017-01-01

    The H.L. Hunley was the first submarine to be successful in combat, sinking the Union vessel Housatonic outside Charleston Harbor in 1864 during the Civil War. However, despite marking a milestone in military history, little is known about this vessel or why it sank. One popular theory is the "lucky shot" theory: the hypothesis that small arms fire from the crew of the Housatonic may have sufficiently damaged the submarine to sink it. However, ballistic experiments with cast iron samples, analysis of historical experiments firing Civil War-era projectiles at cast iron samples, and calculation of the tidal currents and sinking trajectory of the submarine indicate that this theory is not likely. Based on our results, the "lucky shot" theory does not explain the sinking of the world's first successful combat submarine. Published by Elsevier B.V.

  15. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    NARCIS (Netherlands)

    Carroll, D.; Sutherland, D. A.; Hudson, B.; Moon, T.; Catania, G. A.; Shroyer, E. L.; Nash, J. D.; Bartholomaus, T. C.; Felikson, D.; Stearns, L. A.; Noël, B. P Y; van den Broeke, M. R.

    2016-01-01

    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we

  16. An Analysis of the Effectiveness of a New Watchstanding Schedule for U.S. Submariners

    National Research Council Canada - National Science Library

    Osborn, Christopher

    2004-01-01

    A need exists within the U.S. submarine force to employ an operational schedule that provides more sleep and that is in better alignment with human circadian rhythms, thus improving cognitive effectiveness...

  17. Fuel cell systems for submarines: from the first idea to serial production

    Science.gov (United States)

    Psoma, Angela; Sattler, Gunter

    The future submarines of Howaldtswerke-Deutsche Werft AG (HDW) will be equipped with fuel cell power plants for air independent propulsion. In the 1970s the decision for a fuel cell system on submarines was made. Tests in the 1980s confirmed the feasibility of fuel cells on submarines. Positive development results in the 1990s led to series production of fuel cell equipped submarines, which will be in operation from 2003 onwards. Strictly controlled development work was necessary to reach the goal of series production. The train of thought behind this process of development is described in this paper starting with the initial idea and ending with the description of the serial production of the fuel cell power plant. The future outlook gives an impression of current development work.

  18. Submarine Warfare in the 20th & 21st Centuries: A Bibliography

    National Research Council Canada - National Science Library

    Huygen, Michaele

    2003-01-01

    There are constant motions in the sea caused by atmospheric and seabed activities volcanic disruptions marine animals ships and submarines -- all of which create what is called the ambient noise level of the oceans...

  19. The risk of hydrogen explosion in a submarine p. IV The implementation of high risk projects

    Directory of Open Access Journals (Sweden)

    Kłos Ryszard

    2017-06-01

    Full Text Available This series of articles on high risk projects looks at the example of the modernisation of hydrogen incinerators on a submarine. The article describes problems connected with the management of such a project.

  20. Volume transport data from a submarine cable in the Florida Strait in 2014 (NODC Accession 0125429)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily mean and raw voltage volume transport data of the Florida Current collected with a submarine cable spanning from South Florida to the Grand Bahama Island in...

  1. A Statistical Analysis of the Impact of Marital Status on Nuclear Submarine Officer Retention

    National Research Council Canada - National Science Library

    Phelps, Matthew

    2001-01-01

    This thesis develops multivariate logit models to estimate the impact of marital status and the independent effect of dependent children on nuclear submarine officer retention beyond the minimum service requirement (MSR...

  2. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii

    Directory of Open Access Journals (Sweden)

    P.W. Swarzenski

    2017-06-01

    New hydrological insights for the region: Estimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d mass balance model. Such estimates were complemented with a novel thoron (220Rn, t1/2 = 56 s groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  3. Dance With the One That Brought You: Revitalizing Antisubmarine Warfare to Counter Chinese Diesel Submarines

    National Research Council Canada - National Science Library

    Farrell, Richard

    2003-01-01

    .... Navy needs to revitalize ASW, or risk losing the ability to gain sea control in strategic areas of the East Asian Littoral and South China Sea due to a rising Chinese diesel-electric submarine threat...

  4. Submarine Upward Looking Sonar Ice Draft Profile Data and Statistics, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of upward looking sonar sea ice draft data collected by submarines in the Arctic Ocean. It includes data from both U.S. Navy and Royal Navy...

  5. Navy Trident Submarine Conversion (SSGN) Program: Background and Issues for Congress

    National Research Council Canada - National Science Library

    O'Rourke, Ronald

    2005-01-01

    ...) into cruisemissile- carrying and special operations forces (SOF) support submarines (SSGNs). The total estimated cost of the program, which has been increasing over time, is now $4,018 million...

  6. A study on soil–structure interaction analysis in canyon-shaped ...

    Indian Academy of Sciences (India)

    the effects of canyon-shaped topography and geotechnical characteristics of the soil on the dynamic response of free surface ... ing a particle model with finite elements. The effects of canyon topographies and ... In the 2-D soil–structure interaction analysis under ground motion, formulations are made depending on relative ...

  7. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Science.gov (United States)

    2010-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  8. The Grand Canyon and Other Holes in the Ground. Natural Wonder Notebook.

    Science.gov (United States)

    Markle, Sandra

    1983-01-01

    The Grand Canyon, the natural wonder visited most often in the United States, is explored on foot, on burro, and by boat in this article. Learn about the canyon's different rock layers as well as its erosion, plant life, animal life, and water flow. (JM)

  9. 75 FR 10838 - Pacific Gas and Electric Company; Diablo Canyon Power Plant; Exemption

    Science.gov (United States)

    2010-03-09

    ... COMMISSION Pacific Gas and Electric Company; Diablo Canyon Power Plant; Exemption 1.0 Background Pacific Gas... DPR-82, which authorize operation of the Diablo Canyon Power Plant, Units Nos. 1 and 2 (DCPP). The... operating nuclear power plants, but noted that the Commission's regulations provide mechanisms for...

  10. 75 FR 10308 - Fire Management Plan, Final Environmental Impact Statement, Record of Decision, Grand Canyon...

    Science.gov (United States)

    2010-03-05

    ... Doc No: 2010-4414] DEPARTMENT OF THE INTERIOR National Park Service Fire Management Plan, Final... Impact Statement for the Fire Management Plan, Grand Canyon National Park. SUMMARY: Pursuant to the... availability of the Record of Decision for the Fire Management Plan, Grand Canyon National Park, Arizona. On...

  11. 75 FR 44809 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Science.gov (United States)

    2010-07-29

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) AGENCY: Bureau of Reclamation.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the Adaptive Management Work Group (AMWG), a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and...

  12. 76 FR 584 - Glen Canyon Dam Adaptive Management Program Work Group (AMWG)

    Science.gov (United States)

    2011-01-05

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Program Work Group (AMWG) AGENCY: Bureau of... Management Work Group (AMWG), a technical work group (TWG), a Grand Canyon Monitoring and Research Center.... Glen Knowles, Chief, Adaptive Management Work Group, Environmental Resources Division, Upper Colorado...

  13. 75 FR 20381 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Science.gov (United States)

    2010-04-19

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting (webinar conference call). SUMMARY: The Glen Canyon Dam Adaptive... technical work group (TWG), a monitoring and research center, and independent review panels. The AMWG makes...

  14. New thermochronometric constraints on the Tertiary landscape evolution of the central and eastern Grand Canyon, Arizona

    Science.gov (United States)

    Lee, John P.; Stockli, Daniel F.; Kelley, S.A.; Pederson, J.; Karlstrom, K.E.; Ehlers, T.A.

    2013-01-01

    Thermal histories are modeled from new apatite (U-Th)/He and apatite fission-track data in order to quantitatively constrain the landscape evolution of the Grand Canyon region. Fifty new samples and their associated thermochronometric ages are presented here. Samples span from Lee’s Ferry in the east to Quartermaster Canyon in the west and include four age-elevation transects into Grand Canyon and borehole samples from the Coconino Plateau. Twenty-seven samples are inversely modeled to provide continuous thermal histories. This represents the most extensive and complete dataset on patterns of long-term exhumation in the Grand Canyon region, and it enables us to constrain the timing and magnitude of erosion and also discriminate between canyon incision and broader planation. The new data suggest that the early Cenozoic landscape in eastern Grand Canyon was low in relief and does not indicate the presence of an early Cenozoic precursor to the modern Grand Canyon. However, there is evidence for the incision of a smaller-scale canyon across the Kaibab Uplift at 28–20 Ma. This middle-Cenozoic denudation event was accompanied by the removal of a majority of remaining Mesozoic strata west of the Kaibab Uplift. In contrast, just upstream in the area of Lee’s Ferry, ∼2 km of Mesozoic strata remained over the middle Cenozoic and were removed after 10 Ma.

  15. 78 FR 40381 - Establishment of Class E Airspace; Grand Canyon, AZ

    Science.gov (United States)

    2013-07-05

    ...This action establishes Class E airspace at the Grand Canyon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Grand Canyon, AZ, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Los Angeles Air Route Traffic Control Center (ARTCC). This improves the safety and management of IFR operations within the National Airspace System.

  16. Multi-core Fibers in Submarine Networks for High-Capacity Undersea Transmission Systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    Application of multi-core fibers in undersea networks for high-capacity submarine transmission systems is studied. It is demonstrated how different architectures of submerged branching unit affect network component counts in long-haul undersea transmission systems......Application of multi-core fibers in undersea networks for high-capacity submarine transmission systems is studied. It is demonstrated how different architectures of submerged branching unit affect network component counts in long-haul undersea transmission systems...

  17. They Have Not Yet Begun to Fight: Women in the United States Navy Submarine Fleet

    Science.gov (United States)

    2016-03-11

    Navy Nurse Corps in 1908. The Nurse Corps was highly educated for the time and maintained high professional standards.3 Regardless, the struggle to...nation’s navies who integrated women into their submarine fleets ahead of the U.S. Navy. Norway, Sweden , Australian, and Great Britain all...Nations such as Norway and Sweden have been incorporating females into their submarines since the mid-1980s. 39 Sweden has had female sailors

  18. The Close Aboard Bastion: a Soviet ballistic missile submarine deployment strategy

    OpenAIRE

    Kreitler, Walter M

    1988-01-01

    Approved for public release; distribution is unlimited This thesis describes and analyzes a possible deployment posture for the Soviet ballistic missile submarine force. It examines the proposition that the Soviet Navy will establish a point defense, labeled "Close Aboard Bastions" (CABs), for its ballistic missile submarine fleet within the Soviet claimed 12 nautical mile territorial sea. This is a logical derivation of the currently widely held view that the Soviets will estab...

  19. Response to Comments on "Apatite 4He/3He and (U-Th)/He Evidence for an Ancient Grand Canyon".

    Science.gov (United States)

    Flowers, R M; Farley, K A

    2013-04-12

    We reiterate that geological observations do not require Grand Canyon carving coeval with Colorado River integration. (U-Th)/He data from the western canyon, totaling 29 reproducible analyses from six samples and two labs, compellingly support an ancient canyon. Three dispersed analyses from one anomalous sample do not refute this conclusion, nor do the claimed shortcomings of our modeling have validity.

  20. Aerodynamic effects of trees on pollutant concentration in street canyons.

    Science.gov (United States)

    Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo

    2009-09-15

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.

  1. Reconstructing the Aliso Canyon natural gas leak incident

    Science.gov (United States)

    Duren, R. M.; Yadav, V.; Verhulst, K. R.; Thorpe, A. K.; Hopkins, F. M.; Prasad, K.; Kuai, L.; Thompson, D. R.; Wong, C.; Sander, S. P.; Mueller, K. L.; Nehrkorn, T.; Lee, M.; Hulley, G. C.; Johnson, W. R.; Aubrey, A. D.; Whetstone, J. R.; Miller, C. E.

    2016-12-01

    Natural gas is a key energy source and presents significant policy challenges including energy reliability and the potential for fugitive methane emissions. The well blowout reported in October 2015 at the Aliso Canyon underground gas storage facility near Porter Ranch, California and subsequent uncontrolled venting was the largest single anthropogenic methane source known to date. Multiple independent estimates indicate that this super-emitter source rivaled the normal methane flux of the entire South Coast Air Basin (SoCAB) for several months until the well was plugged. The complexity of the event and logistical challenges - particularly in the initial weeks - presented significant barriers to estimating methane losses. Additionally, accounting for total gas lost is necessary but not sufficient for understanding the sequence of events and the controlling physical processes. We used a tiered system of observations to assess methane emissions from the Aliso Canyon incident. To generate a complete flux time-series, we applied tracer-transport models and tracer-tracer techniques to persistent, multi-year atmospheric methane observations from a network of surface in-situ and remote-sensing instruments. To study the fine spatio-temporal structure of methane plumes and understand the changing source morphology, we conducted intensive mobile surface campaigns, deployed airborne imaging spectrometers, requested special observations from two satellites, and employed large eddy simulations. Through a synthesis analysis we assessed methane fluxes from Aliso Canyon before, during and after the reported incident. We compared our fine scale spatial data with bottom-up data and reports of activity at the facility to better understand the controlling processes. We coordinated with California stakeholder agencies to validate and interpret these results and to consider the potential broader implications on underground gas storage and future priorities for methane monitoring.

  2. Populating a Control Point Database: A cooperative effort between the USGS, Grand Canyon Monitoring and Research Center and the Grand Canyon Youth Organization

    Science.gov (United States)

    Brown, K. M.; Fritzinger, C.; Wharton, E.

    2004-12-01

    The Grand Canyon Monitoring and Research Center measures the effects of Glen Canyon Dam operations on the resources along the Colorado River from Glen Canyon Dam to Lake Mead in support of the Grand Canyon Adaptive Management Program. Control points are integral for geo-referencing the myriad of data collected in the Grand Canyon including aerial photography, topographic and bathymetric data used for classification and change-detection analysis of physical, biologic and cultural resources. The survey department has compiled a list of 870 control points installed by various organizations needing to establish a consistent reference for data collected at field sites along the 240 mile stretch of Colorado River in the Grand Canyon. This list is the foundation for the Control Point Database established primarily for researchers, to locate control points and independently geo-reference collected field data. The database has the potential to be a valuable mapping tool for assisting researchers to easily locate a control point and reduce the occurrance of unknowingly installing new control points within close proximity of an existing control point. The database is missing photographs and accurate site description information. Current site descriptions do not accurately define the location of the point but refer to the project that used the point, or some other interesting fact associated with the point. The Grand Canyon Monitoring and Research Center (GCMRC) resolved this problem by turning the data collection effort into an educational exercise for the participants of the Grand Canyon Youth organization. Grand Canyon Youth is a non-profit organization providing experiential education for middle and high school aged youth. GCMRC and the Grand Canyon Youth formed a partnership where GCMRC provided the logistical support, equipment, and training to conduct the field work, and the Grand Canyon Youth provided the time and personnel to complete the field work. Two data

  3. Ancho Canyon RF Collect, March 2, 2017: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Junor, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Layne, John Preston [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gamble, Thomas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Quintana, Bobby Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Snelson-Gerlicher, Catherine Mary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goorley, John Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-21

    We report the results from the March 2, 2017, Ancho Canyon RF collection. While bright electromagnetic signals were seen nearby the firing point, there were no detections of signals from the explosively-fired fuse at a collection point about 570m distant on the East Mesa. However, "liveness" tests of the East Mesa data acquisition system and checks of the timing both suggest that the collection system was working correctly. We examine possible reasons for the lack of detection. Principal among these is that the impulsive signal may be small compared to the radio frequency background on the East Mesa.

  4. An exhumed Late Paleozoic canyon in the rocky mountains

    Science.gov (United States)

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  5. Submarine channel evolution linked to rising salt domes, Gulf of Mexico, USA

    Science.gov (United States)

    Carter, Rachel C.; Gani, M. Royhan; Roesler, Toby; Sarwar, Abu K. M.

    2016-08-01

    An examination of halokinetics and channel evolution together in a deepwater system provides an opportunity to investigate how submarine channel morphology is locally affected by rising salt domes. The study area is located in the northern Gulf of Mexico (GOM), directly off the Louisiana continental slope in a prominent salt dome region. The influence of salt growth on submarine channel evolution is relatively understudied, particularly in the GOM. Utilizing high-resolution 3D seismic and well data and seismic geomorphology techniques, a long-lived (~ 3 Myr) Plio-Pleistocene submarine channel system has been investigated to show a relationship between variable phases of salt motion and planform morphology of preserved submarine channels. Our data suggest that local salt motion acts as a driver for submarine channel evolution. During the late Pliocene, when salt moved upward at a relatively fast rate, channels show distinct entrenchment with narrow channel belts and overall less sinuosity. When salt motion slowed down at the beginning of the Pleistocene, channels aggraded rapidly with preserved levees, and moved toward an equilibrium state with the expansion of channel belt widths. As our results indicate, the rate of salt diapirism exerted a first-order control on channel location and morphology and distribution of reservoir-prone units. This study cautions against readily invoking allogenic factors (e.g., sea level and climate) in explaining changes in submarine channel behavior and associated fan sedimentation, particularly in regions with salt tectonics.

  6. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii

    Science.gov (United States)

    Swarzenski, Peter W.; Dulai, H.; Kroeger, K.D.; Smith, C.G.; Dimova, N.; Storlazzi, C. D.; Prouty, N.G.; Gingerich, S.B.; Glenn, C. R.

    2016-01-01

    Study regionThe study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef.Study focusCoastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii.New hydrological insights for the regionEstimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn,t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  7. Can submarine groundwater discharge be a major source of mercury input to north Gulf of Mexico?

    Science.gov (United States)

    Du, X.; Das, R.; Odom, L.

    2009-12-01

    Atmosphere deposition is generally regarded to be the primary source of mercury in the open ocean. Bone et al., 2007 measured an order of magnitude higher mercury concentration (0.47-1.9 nM of Hg m-2 day-1) in the submarine ground water discharge to the Waquoit Bay (Massachusetts), than the atmospheric deposition rate for the northeastern U.S and far greater than the dissolved Hg introduced through riverine input. This is a report initial findings of an investigation begun in April, 2009 to study what role submarine groundwater discharge along the northern Gulf of Mexico coast (Florida) might have in supplying dissolved mercury and methylmercury to gulf waters. Initial efforts have concentrated on part of a pristine and previously studied (Santos et al., 2008) subterranean estuary. The subterranean estuary is the zone in which encroaching seawater mixes with groundwater from land-based recharge. We collected water samples from five permanent PVC wells over small spatial scales (~ 10 m), sampling the subterranean estuary water at 4 m depth. Fresh groundwater and sea water were collected as well. Within the narrow subterranean estuary zone of the study area, both total dissolved mercury and methylmercury filtered samples reach concentrations nearly two orders of magnitude higher than that in either of the presumed end members (groundwater and seawater). Peak concentrations are approximately in the center of the zone (total mercury = 99.7 pM; methylmercury=16.9 pM). By comparison, Sunderland et al. (2009) found methylmercury concentration in North Pacific Ocean water to be 0.33pM. Isotopic measurements of mercury across the subterranean estuary zone reveal a mass-dependent fractionation pattern of heavy isotope enrichment increasing from δ202Hg = 0.1 (landward) to 1.1 (seaward). { δ202Hg = [(202Hg/200Hg)water/(202Hg/200Hg)NIST3133] -1x1000} Because of the low concentrations, isotopic measurements of seawater and groundwater are not presently available. While no

  8. Submarine landslides in contourite drifts along the Pianosa Ridge (Northern Tyrrhenian Sea): A geotechnical approach.

    Science.gov (United States)

    Miramontes Garcia, Elda; Sultan, Nabil; Garziglia, Sebastien; Jouet, Gwenael; Cauquil, Eric; Cattaneo, Antonio

    2016-04-01

    The Pianosa Ridge is a tectonic structure in the Northern Tyrrhenian Sea that forms the eastern flank of the Corsica trough (between Corsica and the Tuscan shelf). It is characterised by the presence of submarine landslides within the Pianosa Contourite Depositional System. Multibeam bathymetry, High-Resolution-72 channel (50-250 Hz) and CHIRP (3200-5200 Hz) seismic reflection profiles, collected during cruises PRISME2 and PRISME3 in 2013, revealed that bottom currents created a heterogeneous sedimentation pattern, resulting in zones of preferential deposition (drifts) and zones of erosion and/or non-deposition (moat and abraded surfaces). The sector where the largest submarine landslides took place is characterised by the presence of a plastered drift, a sediment body with a maximum thickness in the mid-low continental slope and a moat at the toe of the slope. Calypso piston cores and piezocone CPTu data acquired during the PRISME3 cruise in 2013 also provide valuable information about the lithology, geomechanical properties and stress history of contourite drifts and of the shallowest submarine landslide, named Pianosa Slump. Contourites in this area are mostly muddy, with coarser layers deposited during sea level falls. During sea level low-stands sedimentation rates (up to 115 cm•kyr-1 in the plastered drift) are higher than during sea level high-stands (20 cm•kyr-1 in the plastered drift). The plastered drift is underconsolidated with Overconsolidation Ratios (OCR) that range between 0.5 and 0.8. The Pianosa Slump formed in the plastered drift at 43-50 kyr BP has a volume of 2.62 km3, and it is covered by 17-20 m of sediment. The basal shear surface of the Pianosa Slump, at 30-56 m below the present-day seafloor, is correlated with a sediment layer characterised by the presence of zeolite minerals (up to 4% of sediment volume), high water content, low density, high compressibility, high permeability, high undrained shear strength and a post-peak strain

  9. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    Directory of Open Access Journals (Sweden)

    O. Schmale

    2011-04-01

    Full Text Available A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr−1. The model predicts that the input of methane is largest at water depths between 600 and 700 m (7% of the total input, suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e.g. through eruptions of deep-water mud volcanoes or submarine landslides at intermediate water depths on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption and that the upward flux of methane is strongly hampered by the pronounced density stratification of the Black Sea water column. For instance, an assumed input of methane of 179 Tg CH4 d−1 (equivalent to the amount of methane released by 1000 mud volcano eruptions at a water depth of 700 m will only marginally influence the sea/air methane flux increasing it by only 3%.

  10. Evidence for Submarine Groundwater Discharge into the Black Sea—Investigation of Two Dissimilar Geographical Settings

    Directory of Open Access Journals (Sweden)

    Michael Schubert

    2017-06-01

    Full Text Available The sustainable management of coastal marine environments requires a comprehensive understanding of the processes related to material transport from land to coastal sea. Besides surface water discharge (e.g., rivers and storm drains, submarine groundwater discharge (SGD plays a key role since it provides a major pathway for solute and particulate transport of contaminants and nutrients, both having considerable potential to cause deterioration of the overall ecological status of coastal environments. The aim of the presented study was the investigation of SGD in two exemplary and dissimilar areas at the Black Sea coast, one in the west (Romania and one in the east (Georgia. The approach included the assessment of the geological/geographical setting regarding the potential of SGD occurrence, the use of environmental tracer data (222Rn, δ18O, δ2H, salinity, and the evaluation of sea surface temperature patterns near the coastline using satellite data. Besides the individual site specific results, the study revealed that a combined evaluation of tracer data and satellite based information allows SGD localization with satisfying precision. A downscaling approach starting with large scale satellite data is generally recommended, continuing with medium scale tracer patterns and ending with local spot sampling.

  11. On the geotechnical characterisation of the polluted submarine sediments from Taranto.

    Science.gov (United States)

    Vitone, Claudia; Federico, Antonio; Puzrin, Alexander M; Ploetze, Michael; Carrassi, Elettra; Todaro, Francesco

    2016-07-01

    This paper reports the results of the first geomechanical laboratory experiments carried out on the polluted submarine clayey sediments of the Mar Piccolo in Taranto (South of Italy). The study had to face with extreme difficulties for the very soft consistency of the sediments and the contaminants. The mineralogy, composition and physical properties of the sediments were analysed, along with their compression and shearing behaviour. The investigation involved sediments up to about 20 m below the seafloor, along three vertical profiles in the most polluted area of the Mar Piccolo, facing the Italian Navy Arsenal. The experimental results were used to derive a preliminary geotechnical model of the site, necessary for the selection and design of the most sustainable in situ mitigation solutions. Moreover, the experimental data reveal that the clayey sediments of the most polluted top layer do not follow the classical geotechnical correlations for normally consolidated deposits. This seems to open interesting perspectives about the effects of pollutants on the geotechnical behaviour of the investigated sediments.

  12. Spatial and Temporal Variation in DeSoto Canyon Macrofaunal Community Structure

    Science.gov (United States)

    Baco-Taylor, A.; Shantharam, A. K.

    2016-02-01

    Sediment-dwelling macrofauna (polychaetes, bivalves, and assorted crustaceans ≥ 300 µm) have long served as biological indicators of ecosystem stress. As part of evaluating the 2010 impact from the Deepwater Horizon blowout, we sampled 12 sites along and transverse to the DeSoto Canyon axis, Gulf of Mexico, as well as 2 control sites outside the Canyon. Sites ranged in depth from 479-2310 m. Three of the sites (PCB06, S36, and XC4) were sampled annually from 2012-2014. We provide an overview of the macrofauna community structure of canyon and non-canyon sites, as well as trends in community structure and diversity at the time-series sites. Compositionally, polychaetes dominated the communities, followed by tanaid crustaceans and bivalves. The total number of individuals was not significantly correlated with depth while the total number of taxa and species richness were. Rarefaction shows the deepest station, XC4 (2310 m) had the lowest diversity while NT800 (a non-canyon control at 800m) had the highest. Multivariate analysis shows the canyon assemblages fall into eight clusters with the non-canyon stations forming a separate ninth cluster, indicating a detectable difference in canyon and non-canyon communities. Time series stations show an increase in diversity from 2012-2014 with a strong overlap in community structure in 2013 and 2014 samples. Environmental analysis, via BEST, using data from 10 canyon sites and the controls, indicated depth in combination with latitude explain the most variation in macrofaunal community structure.

  13. The destructive 1946 Unimak near-field tsunami: New evidence for a submarine slide source from reprocessed marine geophysical data

    Science.gov (United States)

    von Huene, Roland; Kirby, Stephen; Miller, John; Dartnell, Peter

    2014-10-01

    The Mw 8.6 earthquake in 1946 off the Pacific shore of Unimak Island at the end of the Alaska Peninsula generated a far-field tsunami that crossed the Pacific to Antarctica. Its tsunami magnitude, 9.3, is comparable to the 9.1 magnitude of the 2011 Tohoku tsunami. On Unimak Island's Pacific shore, a runup of 42 m destroyed the lighthouse at Scotch Cap. Elsewhere, localized tsunamis with such high runups have been interpreted as caused by large submarine landslides. However, previous to this study, no landslide large enough to generate this runup was found in the area that is limited by the time interval between earthquake shaking and tsunami inundation at Scotch Cap. Reworking of a seismic reflection transect and colocated multibeam bathymetric surveys reveal a landslide block that may explain the 1946 high runup. It is seaward of Scotch Cap on the midslope terrace and within the time-limited area.

  14. A model for sediment capacity of turbidity currents considering sediment-fluid interactions with application to longitudinal equilibrium profile of submarine channels

    Science.gov (United States)

    Naruse, H.

    2016-12-01

    Leveed submarine channels are one of the characteristic architectural elements of submarine fans. Comparing to alluvial rivers, leveed submarine channels are stable and thus turbidity currents inside channels can be supposed to flow at quasi-equilibrium condition. Here, this study proposes a model of sediment concentration of turbidity currents in equilibrium condition (i.e. sediment capacity). The model considers turbulence-suppression effect by density stratification of suspended sediments and concentration-related processes such as hindered settling. The model predicts that turbidity currents can have two different values of sediment capacity: high-concentration and low-concentration capacity. High concentration capacity is attained by positive feedback effect of hindered settling, in which settling velocity of sediment decreases as concentration increases. On the other hand, when density stratification effect becomes dominant, turbidity currents have only low-concentration capacity because the effect has negative feedback effect (sediment entrainment decreases as concentration increases). The initial condition of turbidity currents is a critical factor to determine which condition the flows finally reach. We applied our capacity model to predict the equilibrium profile of submarine channels. The equilibrium profile is here defined as profiles where turbidity currents bypass or deposit uniformly. Grain-size distribution is approximated to two size classes: channel-forming sands and levee-forming muddy sediments. The model can predict shape and length of leveed channels in the equilibrium condition. As a result, it was revealed that the profile varies depending on four variables: aggradation rates, sand/mud ratio in suspended load, total sediment discharge and flow discharge. Sand-prone flows produce short and highly inclined channels whereas mud-prone flows produce long and low-inclination channels. Also, the model implies that long-lived channels are difficult

  15. Apatite 4He/3He thermochronometry evidence for an ancient Grand Canyon, Colorado Plateau, USA

    Science.gov (United States)

    Flowers, R. M.; Farley, K. A.

    2012-12-01

    The very existence of Grand Canyon inspires questions about why canyons are carved, how drainage systems and landscapes evolve, and how these processes relate to the elevation gain of plateaus. Yet when and why Grand Canyon was carved have been extraordinarily controversial for more than 150 years. Over the last several decades, the dominant view for the origin of the canyon is one of rapid incision at 5-6 Ma, when detritus derived from the upstream reaches of the Colorado River system appeared in Grand Wash Trough at the Colorado River's western exit from the Colorado Plateau. The absence of such diagnostic deposits prior to 6 Ma has been used to argue that Grand Canyon was not yet excavated (e.g., Karlstrom et al., 2008). However, a variety of data hint at a more ancient age for part or all of the canyon, and it has been proposed that a smaller drainage basin in largely carbonate lithologies could explain the absence of pre-6 Ma Colorado River clastics in Grand Wash Trough even if a significant Grand Canyon were present. Most recently, apatite (U-Th)/He (AHe) thermochronometry data from western Grand Canyon were used to infer excavation of this area to within several hundred meters of its modern depth by ca. 70 Ma (Wernicke, 2011), an interpretation in direct conflict with the young canyon model. The unexpected implications of the initial Grand Canyon AHe work motivated the apatite 4He/3He and U-Th zonation study presented here. Apatite 4He/3He thermochronometry provides information about the spatial distribution of radiogenic 4He in an apatite crystal that can better constrain a sample's cooling history. A key premise of AHe and 4He/3He spectra interpretation is that the He kinetic model used is accurate. We first investigate whether differing 4He/3He spectra for apatites of variable AHe date, radiation damage, and U-Th zonation from eastern Grand Canyon yield mutually consistent thermal history results using the RDAAM kinetic model, which must be true if the

  16. Long-term flow monitoring of submarine gas emanations

    Science.gov (United States)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system

  17. Trial by fire: underbalanced drilling for Horseshoe Canyon coals

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, K. [Nexen Inc., Calgary, AB (Canada)

    2008-07-01

    Four wells were drilled in August 2007 in the lower portion of Horseshoe Canyon. These wells were underbalanced and used air as the drilling fluid. The purpose was to establish the feasibility of under-reaming. This presentation discussed under balanced drilling for Horseshoe Canyon coals. It presented a review of the project and discussed the various project phases. Phase one involved under balanced drilling and under-reaming. The presentation of this phase addressed risk management; review of results; lessons learned; and recommended practices. An illustration of the risk management process was offered. This illustration included identification of hazards, categorization, evaluation, management, and communication. A risk matrix was also provided. Phase two was also presented which included a discussion of planning considerations; revised risk management; underbalanced redesign; and implementation. It was concluded that in order to eliminate the risk, oxygen must be removed or lowered to less than four per cent. It was also found that caution must be used when evaluating whether downhole conditions are in the explosive envelope. figs.

  18. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    Science.gov (United States)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  19. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  20. Hiker Fatality From Severe Hyponatremia in Grand Canyon National Park.

    Science.gov (United States)

    Myers, Thomas M; Hoffman, Martin D

    2015-09-01

    We present the case of a hiker who died of severe hyponatremia at Grand Canyon National Park. The woman collapsed on the rim shortly after finishing a 5-hour hike into the Canyon during which she was reported to have consumed large quantities of water. First responders transported her to the nearest hospital. En route, she became unresponsive, and subsequent treatment included intravenous normal saline. Imaging and laboratory data at the hospital confirmed hypervolemic hyponatremia with encephalopathy. She never regained consciousness and died of severe cerebral edema less than 24 hours later. We believe this is the first report of a fatality due to acute hyponatremia associated with hiking in a wilderness setting. This case demonstrates the typical pathophysiology, which includes overconsumption of fluids, and demonstrates the challenges of diagnosis and the importance of appropriate acute management. Current treatment guidelines indicate that symptomatic exercise-associated hyponatremia should be acutely managed with hypertonic saline and can be done so without concern over central pontine myelinolysis, whereas treatment with high volumes of isotonic fluids may delay recovery and has even resulted in deaths. Copyright © 2015 Wilderness Medical Society. All rights reserved.

  1. Tertiary Normal Faulting in the Canyon Range, Eastern Sevier Desert.

    Science.gov (United States)

    Wills; Anders

    1999-11-01

    The contact between pre-Mesozoic and Tertiary rocks in the western Canyon Range, west-central Utah, has been interpreted as a large, low-angle normal fault that marks the breakaway zone of the hypothesized, basin-forming Sevier Desert detachment. Recent fieldwork suggests that the contact may in fact be depositional along much or all of its length. Deformational fabric in the supposed footwall likely traces to the Mesozoic Sevier orogeny rather than to Tertiary detachment faulting. Kinematic indicators at the range front are not generally consistent with low-angle normal-fault motion; instead, well-exposed high-angle faults are the dominant range-bounding structures. The Tertiary conglomerates of the western Canyon Range foothills, previously viewed as an evolving syntectonic deposit related to detachment faulting, are here reinterpreted as three distinct units that reflect different periods and tectonic settings. The pattern in these conglomerates, and in fault-offset gravity-slide deposits that mantle the western foothills, is consistent with block faulting and rotation along several generations of high-angle structures. Local seismic-reflection data lend qualitative support to this interpretation, and underscore the need to consider alternative working hypotheses for evolution of the Sevier Desert basin.

  2. Comment on "Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon".

    Science.gov (United States)

    Karlstrom, Karl E; Lee, John; Kelley, Shari; Crow, Ryan; Young, Richard A; Lucchitta, Ivo; Beard, L Sue; Dorsey, Rebecca; Ricketts, Jason W; Dickinson, William R; Crossey, Laura

    2013-04-12

    Flowers and Farley (Reports, 21 December 2012, p. 1616; published online 29 November 2012) propose that the Grand Canyon is 70 million years old. Starkly contrasting models for the age of the Grand Canyon-70 versus 6 million years-can be reconciled by a shallow paleocanyon that was carved in the eastern Grand Canyon 25 to 15 million years ago (Ma), negating the proposed 70 Ma and 55 Ma paleocanyons. Cooling models and geologic data are most consistent with a 5 to 6 Ma age for western Grand Canyon and Marble Canyon.

  3. Lung deposited surface area concentrations in a street canyon

    Science.gov (United States)

    Kuuluvainen, Heino; Hietikko, Riina; Järvinen, Anssi; Saukko, Erkka; Irjala, Matti; Niemi, Jarkko V.; Timonen, Hilkka; Keskinen, Jorma; Rönkkö, Topi

    2017-04-01

    Street canyons are interesting environments with respect to the dispersion of traffic emissions and human exposure. Pedestrians may be exposed to relatively high concentrations of fine particles and the vertical dispersion affects the human exposure above the ground level in buildings. Previously, particle concentrations have been measured in street canyons at a few different heights (Marini et al., 2015). The information on the lung deposited surface area (LDSA) concentration, which is a relevant metric for the negative health effects, is very limited even at the ground level of street canyons (Kuuluvainen et al., 2016). More information especially on the vertical dispersion and the ground level concentrations is needed, for instance, for the use of urban planning and the design of ventilation systems in buildings. Measurements were carried out in a busy street canyon in Helsinki, Finland, at an urban super-site measurement station (Mäkelänkatu 50). The data included vertical concentration profiles measured in an intensive measurement campaign with a Partector (Naneos GmbH) installed into a drone, long-term measurements with an AQ Urban particle sensor (Pegasor Ltd.), and an extensive comparison measurement in the field with different devices measuring the LDSA. These devices were an AQ Urban, Partector, DiSCmini (Testo AG), NSAM (TSI Inc.), and an ELPI+ (Dekati Ltd.). In addition, continuous measurements of gas phase components, particle size distributions, and meteorology were run at the supersite. The vertical profile measurements were con-ducted in November 2016 during two days. In the measurements, the drone was flown from the ground level to an altitude of 50 or 100 m, which is clearly above the roof level of the buildings. Altogether, 48 up-and-down flights were conducted during the two days. The vertical profiles were supported by continuous measurements at the ground level on both sides of the street canyon. The long-term measurements were conducted

  4. Using Google Earth for Submarine Operations at Pavilion Lake

    Science.gov (United States)

    Deans, M. C.; Lees, D. S.; Fong, T.; Lim, D. S.

    2009-12-01

    During the July 2009 Pavilion Lake field test, we supported submarine "flight" operations using Google Earth. The Intelligent Robotics Group at NASA Ames has experience with ground data systems for NASA missions, earth analog field tests, disaster response, and the Gigapan camera system. Leveraging this expertise and existing software, we put together a set of tools to support sub tracking and mapping, called the "Surface Data System." This system supports flight planning, real time flight operations, and post-flight analysis. For planning, we make overlays of the regional bedrock geology, sonar bathymetry, and sonar backscatter maps that show geology, depth, and structure of the bottom. Placemarks show the mooring locations for start and end points. Flight plans are shown as polylines with icons for waypoints. Flight tracks and imagery from previous field seasons are embedded in the map for planning follow-on activities. These data provide context for flight planning. During flights, sub position is updated every 5 seconds from the nav computer on the chase boat. We periodically update tracking KML files and refresh them with network links. A sub icon shows current location of the sub. A compass rose shows bearings to indicate heading to the next waypoint. A "Science Stenographer" listens on the voice loop and transcribes significant observations in real time. Observations called up to the surface immediately appear on the map as icons with date, time, position, and what was said. After each flight, the science back room immediately has the flight track and georeferenced notes from the pilots. We add additional information in post-processing. The submarines record video continuously, with "event" timestamps marked by the pilot. We cross-correlate the event timestamps with position logs to geolocate events and put a preview image and compressed video clip into the map. Animated flight tracks are also generated, showing timestamped position and providing timelapse

  5. Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon

    Science.gov (United States)

    Ballent, A.; Pando, S.; Purser, A.; Juliano, M. F.; Thomsen, L.

    2013-12-01

    With knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of benthic plastics from land sources within the ocean are possible. Here we investigated the hydrodynamic behavior (density, settling velocity and resuspension characteristics) of non-buoyant preproduction plastic pellets in the laboratory. From these results we used the MOHID modelling system to predict what would be the likely transport and deposition pathways of such material in the Nazaré Canyon (Portugal) during the spring/summer months of 2009 and the autumn/winter months of 2011. Model outputs indicated that non-buoyant plastic pellets would likely be transported up and down canyon as a function of tidal forces, with only a minor net down canyon movement resulting from tidal action. The model indicated that transport down canyon was likely greater during the autumn/winter, primarily as a result of occasional mass transport events related to storm activity and internal wave action. Transport rates within the canyon were not predicted to be regular throughout the canyon system, with stretches of the upper canyon acting more as locations of pellet deposition than conduits of pellet transport. Topography and the depths of internal wave action are hypothesized to contribute to this lack of homogeneity in predicted transport.

  6. Modern landscape processes affecting archaeological sites along the Colorado River corridor downstream of Glen Canyon Dam, Glen Canyon National Recreation Area, Arizona

    Science.gov (United States)

    East, Amy E.; Sankey, Joel B.; Fairley, Helen C.; Caster, Joshua J.; Kasprak, Alan

    2017-08-29

    The landscape of the Colorado River through Glen Canyon National Recreation Area formed over many thousands of years and was modified substantially after the completion of Glen Canyon Dam in 1963. Changes to river flow, sediment supply, channel base level, lateral extent of sedimentary terraces, and vegetation in the post-dam era have modified the river-corridor landscape and have altered the effects of geologic processes that continue to shape the landscape and its cultural resources. The Glen Canyon reach of the Colorado River downstream of Glen Canyon Dam hosts many archaeological sites that are prone to erosion in this changing landscape. This study uses field evaluations from 2016 and aerial photographs from 1952, 1973, 1984, and 1996 to characterize changes in potential windblown sand supply and drainage configuration that have occurred over more than six decades at 54 archaeological sites in Glen Canyon and uppermost Marble Canyon. To assess landscape change at these sites, we use two complementary geomorphic classification systems. The first evaluates the potential for aeolian (windblown) transport of river-derived sand from the active river channel to higher elevation archaeological sites. The second identifies whether rills, gullies, or arroyos (that is, overland drainages that erode the ground surface) exist at the archaeological sites as well as the geomorphic surface, and therefore the relative base level, to which those flow paths drain. Results of these assessments are intended to aid in the management of irreplaceable archaeological resources by the National Park Service and stakeholders of the Glen Canyon Dam Adaptive Management Program.

  7. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China.

    Science.gov (United States)

    Tang, Yuan; Lian, Bin

    2012-06-01

    The endolithic environment, the tiny pores and cracks in rocks, buffer microbial communities from a number of physical stresses, such as desiccation, rapid temperature variations, and UV radiation. Considerable knowledge has been acquired about the diversity of microorganisms in these ecosystems, but few culture-independent studies have been carried out on the diversity of fungi to date. Scanning electron microscopy of carbonate rock fragments has revealed that the rock samples contain certain kinds of filamentous fungi. We evaluated endolithic fungal communities from bare dolomite and limestone rocks collected from Nanjiang Canyon (a typical karst canyon in China) using culture-independent methods. Results showed that Ascomycota was absolutely dominant both in the dolomite and limestone fungal clone libraries. Basidiomycota and other eukaryotic groups (Bryophyta and Chlorophyta) were only detected occasionally or at low frequencies. The most common genus in the investigated carbonate rocks was Verrucaria. Some other lichen-forming fungi (e.g., Caloplaca, Exophiala, and Botryolepraria), Aspergillus, and Penicillium were also identified from the rock samples. The results provide a cross-section of the endolithic fungal communities in carbonate rocks and help us understand more about the role of microbes (fungi and other rock-inhabiting microorganisms) in rock weathering and pedogenesis.

  8. Submarine pyroclastic deposits in Tertiary basins, NE Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Kralj

    2013-12-01

    Full Text Available In Tertiary basins of NE Slovenia, Upper Oligocene volcanic activity occurred in a submarine environment that experienced contemporaneous clastic sedimentation. Pyroclastic deposits are essentially related to gas- and watersupported eruption-fed density currents. At Trobni Dol, the Lako Basin, an over 100 m thick deposit formed by a sigle sustained volcanic explosion that fed gas-supported pyroclastic flow. Diagnostic features are large matrixshard content, normal grading of pumice lapilli, collapsed pumice lapilli and the presence of charcoal. In the Smrekovec Volcanic Complex, several but only up to 5 m thick deposits related to eruption-fed gassupported pyroclastic flows occur. Deposits settled from water-supported eruption-fed density currents form fining- and thinning-upward sedimentary units which resemble the units of volcaniclastic turbidites. Pyroclastic deposits related to gas- and water-supported density currents occur in an up to 1000 m thick succession composed of coherent volcanics, autoclastic, pyroclastic, reworked volcaniclastic and mixed volcaniclastic-siliciclastic deposits that indicate a complex explosive and depositional history of the Smrekovec Volcanic Complex.

  9. Breathing modes of Kolumbo submarine volcano (Santorini, Greece).

    Science.gov (United States)

    Bakalis, Evangelos; Mertzimekis, Theo J; Nomikou, Paraskevi; Zerbetto, Francesco

    2017-04-13

    Submarine volcanoes, such as Kolumbo (Santorini, Greece) are natural laboratories for fostering multidisciplinary studies. Their investigation requires the most innovative marine technology together with advanced data analysis. Conductivity and temperature of seawater were recorded directly above Kolumbo's hydrothermal vent system. The respective time series have been analyzed in terms of non-equilibrium techniques. The energy dissipation of the volcanic activity is monitored by the temperature variations of seawater. The venting dynamics of chemical products is monitored by water conductivity. The analysis of the time series in terms of stochastic processes delivers scaling exponents with turning points between consecutive regimes for both conductivity and temperature. Changes of conductivity are shown to behave as a universal multifractal and their variance is subdiffusive as the scaling exponents indicate. Temperature is constant over volcanic rest periods and a universal multifractal behavior describes its changes in line with a subdiffusive character otherwise. The universal multifractal description illustrates the presence of non-conservative conductivity and temperature fields showing that the system never retains a real equilibrium state. The existence of a repeated pattern of the combined effect of both seawater and volcanic activity is predicted. The findings can shed light on the dynamics of chemical products emitted from the vents and point to the presence of underlying mechanisms that govern potentially hazardous, underwater volcanic environments.

  10. High-efficiency airfoil rudders applied to submarines

    Directory of Open Access Journals (Sweden)

    ZHOU Yimei

    2017-03-01

    Full Text Available Modern submarine design puts forward higher and higher requirements for control surfaces, and this creates a requirement for designers to constantly innovate new types of rudder so as to improve the efficiency of control surfaces. Adopting the high-efficiency airfoil rudder is one of the most effective measures for improving the efficiency of control surfaces. In this paper, we put forward an optimization method for a high-efficiency airfoil rudder on the basis of a comparative analysis of the various strengths and weaknesses of the airfoil, and the numerical calculation method is adopted to analyze the influence rule of the hydrodynamic characteristics and wake field by using the high-efficiency airfoil rudder and the conventional NACA rudder comparatively; at the same time, a model load test in a towing tank was carried out, and the test results and simulation calculation obtained good consistency:the error between them was less than 10%. The experimental results show that the steerage of a high-efficiency airfoil rudder is increased by more than 40% when compared with the conventional rudder, but the total resistance is close:the error is no more than 4%. Adopting a high-efficiency airfoil rudder brings much greater lifting efficiency than the total resistance of the boat. The results show that high-efficiency airfoil rudder has obvious advantages for improving the efficiency of control, giving it good application prospects.

  11. Sea-level-induced seismicity and submarine landslide occurrence

    Science.gov (United States)

    Brothers, Daniel S.; Luttrell, Karen M.; Chaytor, Jason D.

    2013-01-01

    The temporal coincidence between rapid late Pleistocene sea-level rise and large-scale slope failures is widely documented. Nevertheless, the physical mechanisms that link these phenomena are poorly understood, particularly along nonglaciated margins. Here we investigate the causal relationships between rapid sea-level rise, flexural stress loading, and increased seismicity rates along passive margins. We find that Coulomb failure stress across fault systems of passive continental margins may have increased more than 1 MPa during rapid late Pleistocene–early Holocene sea-level rise, an amount sufficient to trigger fault reactivation and rupture. These results suggest that sea-level–modulated seismicity may have contributed to a number of poorly understood but widely observed phenomena, including (1) increased frequency of large-scale submarine landslides during rapid, late Pleistocene sea-level rise; (2) emplacement of coarse-grained mass transport deposits on deep-sea fans during the early stages of marine transgression; and (3) the unroofing and release of methane gas sequestered in continental slope sediments.

  12. NESTOR - Neutrino Extended Submarine Telescope with Oceanographic Research

    CERN Document Server

    2002-01-01

    {\\bf NESTOR} is a deep-sea neutrino telescope that is being deployed in the Mediterranean off the south-west coast of the Peleponnese in Greece. Neutrinos, when they interact in the earth below or in the seawater around the detector, produce muons that can be observed by the Cherenkov radiation, which they emit. At an operating depth of 4000 metres, the detector is effectively shielded from muons produced in atmospheric interactions. {\\bf The site:} A major feature of the Ionian Sea floor is the Hellenic Trench, the deepest in the Mediterranean, which in places exceeds 5000 meters. It runs close to the western coast of the Peleponnese and is protected on its western side by the submarine Eastern Mediterranean Ridge. It is far from big city pollution or the effluent of major river systems flowing into the Mediterranean and is protected from deep-water perturbations.\\\\ The NESTOR site is located on a broad plateau some 8 $\\times$ 9 kilometres in area on the eastern side of the Hellenic Trench at a mean depth of...

  13. Ecostructuring of marine nematode communities by submarine groundwater discharge.

    Science.gov (United States)

    Grzelak, Katarzyna; Tamborski, Joseph; Kotwicki, Lech; Bokuniewicz, Henry

    2018-02-02

    Inputs of submarine groundwater discharge (SGD) to the coastal ocean may alter local and regional-scale biology. Here, we report on nematode assemblages along the north shore of Long Island, NY. We test if nematode communities differed between sites impacted by mixed fresh-saline SGD and where SGD is exclusively saline. Diversity of nematodes was low at sites impacted by fresh SGD and communities were dominated by a few opportunistic genera. Moreover, a set of typical freshwater nematode genera restricted to impacted sites was observed. Their presence in the marine coastal zone is exceptional and underlines the structuring role that fresh SGD plays in the local ecosystem. Saline SGD structured nematode assemblages differently compared to sites impacted by fresh SGD. The number of nematode genera was markedly higher at saline SGD sites, with a different community structure. This study highlights the importance to which inputs of fresh SGD may have on local ecosystem diversity in marine coastal environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Breathing modes of Kolumbo submarine volcano (Santorini, Greece)

    Science.gov (United States)

    Bakalis, Evangelos; Mertzimekis, Theo J.; Nomikou, Paraskevi; Zerbetto, Francesco

    2017-04-01

    Submarine volcanoes, such as Kolumbo (Santorini, Greece) are natural laboratories for fostering multidisciplinary studies. Their investigation requires the most innovative marine technology together with advanced data analysis. Conductivity and temperature of seawater were recorded directly above Kolumbo’s hydrothermal vent system. The respective time series have been analyzed in terms of non-equilibrium techniques. The energy dissipation of the volcanic activity is monitored by the temperature variations of seawater. The venting dynamics of chemical products is monitored by water conductivity. The analysis of the time series in terms of stochastic processes delivers scaling exponents with turning points between consecutive regimes for both conductivity and temperature. Changes of conductivity are shown to behave as a universal multifractal and their variance is subdiffusive as the scaling exponents indicate. Temperature is constant over volcanic rest periods and a universal multifractal behavior describes its changes in line with a subdiffusive character otherwise. The universal multifractal description illustrates the presence of non-conservative conductivity and temperature fields showing that the system never retains a real equilibrium state. The existence of a repeated pattern of the combined effect of both seawater and volcanic activity is predicted. The findings can shed light on the dynamics of chemical products emitted from the vents and point to the presence of underlying mechanisms that govern potentially hazardous, underwater volcanic environments.

  15. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    Science.gov (United States)

    Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed.

  16. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands.

    Directory of Open Access Journals (Sweden)

    Isabel Ferrera

    Full Text Available The submarine volcanic eruption occurring near El Hierro (Canary Islands in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012. Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m, coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria. Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer

  17. Biological response to geochemical and hydrological processes in a shallow submarine cave

    Directory of Open Access Journals (Sweden)

    M. RADOLOVIĆ

    2015-04-01

    Full Text Available The Croatian coastal karst abounds in submerged caves that host a variety of environmental conditions depending on the geomorphology, depth and submarine groundwater discharge. One example is the Y-Cave, a shallow, mostly submerged, horizontal cave on Dugi Otok Island, on the eastern Adriatic coast. This study was aimed at examining the temporal and spatial variability of the marine cave environment, including temperature, salinity, light intensity, cave morphology and hydrodynamism, along with the dissolutional effect caused by the mixing of sea and freshwater. The general distribution of organisms in the Y-Cave was positively correlated to the light gradient and reduced water circulation, thus the highest species diversity and abundance were recorded in the front part of the cave. The phylum Porifera was the most dominant group, and the poriferan species diversity in the cave ranks among the ten highest in the Mediterranean. The middle part of the cave, although completely dark, hosts an abundant population of the gastropod Homalopoma sanguineum and clusters of the gregarious brachiopod Novocrania anomala, whose presence could be connected to tidal hydrodynamics. The absence/scarcity of sessile marine organisms and pronounced corrosion marks at shallow depths inside the cave suggest a freshwater impact in the upper layers of the water column. A year long experiment with carbonate tablets revealed three different, independent ongoing processes affected by the position in the cave: bioaccumulation, dissolution and mechanical erosion. The results of long-term temperature readings also revealed water column stratification within the cave, which was not disturbed by either tidal or wave action. The shallow, partly submerged and relatively small Y-Cave is characterised by a suite of complex environmental conditions, which, together with the resulting distribution of organisms, are unique to this cave.

  18. Influence of habitat heterogeneity on the community structure of deep-sea harpacticoid communities from a canyon and an escarpment site on the continental rise off California

    Science.gov (United States)

    Thistle, David; Sedlacek, Linda; Carman, Kevin R.; Barry, James P.

    2017-05-01

    The sediment-covered deep-sea floor was initially thought to be environmentally homogeneous. Recent work has shown otherwise, and deep-sea ecologists have been searching for ecologically important environmental heterogeneities on different spatial and temporal scales, with particular interest in canyons. Here we report results for harpacticoid copepods from a site at 3262 m depth in the axis of Monterey Canyon and one on an escarpment 46 km away at 3090 m depth. Multivariate community analyses revealed significant differences between sites in community structure. Absolute abundance, the ratio of subadult copepodites to adults, species density, the proportion of the harpacticoid individuals that emerged, and the proportion that lived in tubes were significantly lower at the canyon site than at the escarpment site. The proportion of the harpacticoid individuals that belonged to the surface-dweller life-style group was significantly higher than at the escarpment site. These marked differences imply that ecologically important environmental heterogeneities exist. We speculate that differences between the sites in food conditions and sediment grain-size distributions are among them.

  19. Nearshore temperature findings for the Colorado River in Grand Canyon, Arizona: possible implications for native fish

    Science.gov (United States)

    Ross, Robert P.; Vernieu, William S.

    2013-01-01

    Since the completion of Glen Canyon Dam, Arizona, in 1963, downstream water temperatures in the main channel of the Colorado River in Glen, Marble, and Grand Canyons are much colder in summer. This has negatively affected humpback chub (Gila cypha) and other native fish adapted to seasonally warm water, reducing main-channel spawning activity and impeding the growth and development of larval and juvenile fish. Recently published studies by U.S. Geological Survey scientists found that under certain conditions some isolated nearshore environments in Grand Canyon allow water to become separated from the main-channel current and to warm, providing refuge areas for the development of larval and juvenile fish.

  20. Long-term change along the Colorado River in Grand Canyon National Park (1889-2011)

    Science.gov (United States)

    Webb, R.H.; Belnap, J.; Scott, M. L.; Friedman, J. M.; Esque, T. C.

    2013-01-01

    The Colorado River and its riverine resources have undergone profound changes since completion of Glen Canyon Dam in 1963, as every river runner with any history in Grand Canyon will attest. Long-term monitoring data are difficult to obtain for high-value resource areas (Webb et al. 2009), particularly in remote parts of national parks, yet these data are important to determining appropriate actions for restoration of resources and (or) potential modifications of flow releases on regulated rivers. The river corridor through the bottom of Grand Canyon creates a challenging environment for change-detection monitoring techniques (Belnap et al. 2008).

  1. Characterizing Volcanic Processes using Near-bottom, High Resolution Magnetic Mapping of the Caldera and Inner Crater of the Kick'em Jenny Submarine Volcano

    Science.gov (United States)

    Ruchala, T. L.; Chen, M.; Tominaga, M.; Carey, S.

    2016-12-01

    Kick'em Jenny (KEJ) is an active submarine volcano located in the Lesser Antilles subduction zone, 7.5 km north of the Caribbean island Grenada. KEJ, known as one of the most explosive volcanoes in Caribbean, erupted 12 times since 1939 with recent eruptions in 2001 and possibly in 2015. Multiple generations of submarine landslides and canyons have been observed in which some of them can be attributed to past eruptions. The structure of KEJ can be characterized as a 1300 m high conical profile with its summit crater located around 180 m in depth. Active hydrothermal venting and dominantly CO2 composition gas seepage take place inside this 250m diameter crater, with the most activity occurring primarily within a small ( 70 x 110 m) depression zone (inner crater). In order to characterize the subsurface structure and decipher the processes of this volcanic system, the Nautilus NA054 expedition in 2014 deployed the underwater Remotely Operated Vehicle (ROV) Hercules to conduct near-bottom geological observations and magnetometry surveys transecting KEJ's caldera. Raw magnetic data was corrected for vehicle induced magnetic noise, then merged with ROV to ship navigation at 1 HZ. To extract crustal magnetic signatures, the reduced magnetic data was further corrected for external variations such as the International Geomagnetic Reference Field and diurnal variations using data from the nearby San Juan Observatory. We produced a preliminary magnetic anomaly map of KEJ's caldera for subsequent inversion and forward modeling to delineate in situ magnetic source distribution in understanding volcanic processes. We integrated the magnetic characterization of the KEJ craters with shipboard multibeam, ROV visual descriptions, and photomosaics. Initial observations show the distribution of short wavelength scale highly magnetized source centered at the north western part of the inner crater. Although locations of gas seeps are ubiquitous over the inner crater area along ROV

  2. Investigation of high-temperature, igneous-related hydraulic fracturing as a reservoir control in the Blackburn and Grant Canyon/Bacon Flat oil fields, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.

    1991-01-01

    Research in progress to evaluate natural, igenous-related hydrothermal fracturing as a reservoir control in two eastern Nevada oil fields has revealed evidence of a far more comprehensive role for moderate- to high-temperature hydrothermal systems in Basin-and-Range oil-reservoir evolution. Fluid-inclusion and petrographic studies have shown that (now) oil-bearing dolomite breccias of the Blackburn field (Pine Valley, Eureka County) were formed when overpressured, magmatically-heated, high-temperature (>350{degrees}C) hydrothermal brines explosively ruptured their host rocks; similar studies of texturally identical breccias of the Grant Canyon/Bacon Flat field (Railroad Valley, Nye County) so far do not support such an explosive origin. At Grant Canyon, however, hydrothermal, breccia-cementing quartz hosts primary oil, aqueous/oil, and aqueous fluid inclusions (homogenization temperature = 120{degrees}C) which document a direct geothermal connection for oil migration and entrapment. Moreover, at both Blackburn and Grant Canyon/Bacon Flat, the oil reservoirs are top- and side-sealed by hydrothermally altered Tertiary ignimbrites and epiclastic rocks. Contemporary geothermal activity is also apparent at grant Canyon/Bacon Flat, where subsurface water temperatures reach 171{degrees}C, and at Blackburn, above which a petroleum-providing hot spring issues at a temperature of 90{degrees}C. We suggest that in the Basin and Range province, hydrothermal systems may have: (1) matured oil from otherwise submature source rocks; (2) transported oil to ultimate entrapment sites by convection in moderate-to high-temperature fluids; and (3) sealed reservoir traps through hydrothermal alteration of overlying Tertiary caprocks. 69 refs., 11 figs., 1 tab.

  3. The Enemy Below - The Global Diffusion of Submarines and Related Technology

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, K G

    2002-09-05

    The end of the Cold War seemed to create a more peaceful international environment. September 11 reminded us of the dangers of complacency. Indeed, even before September 11 US forces had intervened in a number of wars and crises, including Panama, the Persian Gulf War, Somalia, Rwanda, Bosnia, Kosovo, several Taiwan Straits crises, the North Korea nuclear weapons crisis, and most recently Afghanistan. US ability to intervene in remote areas of the world is often dependent on the Navy's ability to project power ashore. As a result, US ability to influence events in crisis situations, especially between or among nuclear powers, may become more difficult along with our ability to conduct littoral warfare. Although the numbers of potentially hostile submarines have declined with the end of the Cold War, US anti-submarine warfare capabilities have also declined. Moreover, foreign submarines and related technologies are likely to diffuse globally. New technologies like Air Independent Propulsion (AIP), improved weapons and sensors will make conventional submarines more dangerous, and the spread of nuclear submarines even to a few more countries raise political, military, environmental, and safety concerns. Submarines are one of the key weapon systems used alone or in combination with other weapon systems such as coastal defense missiles, aircraft, and other sea-based missile platforms to deny US ability to project power ashore, Thus, other countries who wish to deny the US the ability to interfere with their regional or even global ambitions may emphasize the acquisition and/or development of submarines. As the world become more multipolar over the longer term, as the Chinese believe it will, countries such as Russia, China. etc., may be able to acquire the submarine capabilities to challenge us not just regionally, but in blue waters. To the extent that our alliance relationships require US naval access or superiority to sustain them, then our erstwhile friendly

  4. Influence of stiffness constant of stern bearing on vibration and acoustic radiation of whole submarine

    Directory of Open Access Journals (Sweden)

    WANG Lucai

    2018-02-01

    Full Text Available [Objectives] This paper studies the influence of the stiffness constant of a stern bearing on the vibration and acoustic radiation of a whole submarine.[Methods] Based on the form of SUBOFF, a whole submarine model is established in which the structures of the propeller and shaft are first formed in solid elements. Through calculating and comparing the structural vibration and acoustic radiation driven by a vertically excited force, the influence of the elastic coefficient of the stern bearing on the vibroacoustic of the overall submarine structure is mainly considered. [Results] It is demonstrated that the reduction of the elastic coefficient of the stern bearing leads to the convergence of structural vibration and acoustic radiation to the second order overall bending modal frequency, and the frequency gradually becomes lower, which can benefit the vibroacoustic reduction of submarines at frequencies higher than the second order overall bending modal frequency. [Conclusions] These results provide a reference for the acoustic design of submarine structures.

  5. Multicriteria decision analysis applied to Glen Canyon Dam

    Science.gov (United States)

    Flug, M.; Seitz, H.L.H.; Scott, J.F.

    2000-01-01

    Conflicts in water resources exist because river-reservoir systems are managed to optimize traditional benefits (e.g., hydropower and flood control), which are historically quantified in economic terms, whereas natural and environmental resources, including in-stream and riparian resources, are more difficult or impossible to quantify in economic terms. Multicriteria decision analysis provides a quantitative approach to evaluate resources subject to river basin management alternatives. This objective quantification method includes inputs from special interest groups, the general public, and concerned individuals, as well as professionals for each resource considered in a trade-off analysis. Multicriteria decision analysis is applied to resources and flow alternatives presented in the environmental impact statement for Glen Canyon Dam on the Colorado River. A numeric rating and priority-weighting scheme is used to evaluate 29 specific natural resource attributes, grouped into seven main resource objectives, for nine flow alternatives enumerated in the environmental impact statement.

  6. Web-based Interactive Landform Simulation Model - Grand Canyon

    Science.gov (United States)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  7. RECALIBRATION OF H CANYON ONLINE SPECTROPHOTOMETER AT EXTENDED URANIUM CONCENTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R

    2008-10-29

    The H Canyon online spectrophotometers are calibrated for measurement of the uranium and nitric acid concentrations of several tanks in the 2nd Uranium Cycle.[1] The spectrometers, flow cells, and prediction models are currently optimized for a process in which uranium concentrations are expected to range from 0-15 g/L and nitric acid concentrations from 0.05-6 M. However, an upcoming processing campaign will involve 'Super Kukla' material, which has a lower than usual enrichment of fissionable uranium. Total uranium concentrations will be higher, spanning approximately 0-30 g/L U, with no change in the nitric acid concentrations. The new processing conditions require the installation of new flow cells with shorter path lengths. As the process solutions have a higher uranium concentration, the shorter path length is required to decrease the absorptivity to values closer to the optimal range for the instrument. Also, new uranium and nitric acid prediction models are required to span the extended uranium concentration range. The models will be developed for the 17.5 and 15.4 tanks, for which nitric acid concentrations will not exceed 1 M. The restricted acid range compared to the original models is anticipated to reduce the measurement uncertainty for both uranium and nitric acid. The online spectrophotometers in H Canyon Second Uranium Cycle were modified to allow measurement of uranium and nitric acid for the Super Kukla processing campaign. The expected uranium concentrations, which are higher than those that have been recently processed, required new flow cells with one-third the optical path length of the existing cells. Also, new uranium and nitric acid calibrations were made. The estimated reading uncertainties (2{sigma}) for Tanks 15.4 and 17.5 are {approx}5% for uranium and {approx}25% for nitric acid.

  8. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  9. The Keelung Submarine Volcano in the near-shore area of northern Taiwan and its tectonic implication

    Science.gov (United States)

    Tsai, Ching-Hui; Hsu, Shu-Kun; Lin, Shiao-Shan; Yang, Tsanyao F.; Wang, Shiou-Ya; Doo, Wen-Bin; Lee, Hsiao-Fen; Lan, Tefang; Huang, Jian-Cheng; Liang, Chin-Wei

    2017-11-01

    The Taiwan mountain belt has been created due to the collision between the Philippine Sea Plate and the Eurasian Plate. Northernmost Taiwan and its offshore area are now under post-collisional collapse. The post-collisional magmatism is distributed around northern Taiwan. Here we first report a submarine volcano, named Keelung Submarine Volcano, existing in the near-shore area of northern Taiwan. The high 3He/4He ratios in the collected seawater samples suggest that the magma of the Keelung Submarine Volcano is derived from a mantle source. Geometrically, both the Keelung Submarine Volcano and the Tatun Volcano Group are situated above the western border of the subducted Philippine Sea Plate and may have a same magma source. Both volcanic areas belong to the northern Taiwan volcanic zone, instead of the Ryukyu volcanic front. The Keelung Submarine Volcano has been rotated clockwise ∼48° after its formation, which implies that the Keelung Submarine Volcano has formed before the Luzon arc collided against northern Taiwan. Consequently, the post-collisional model to explain the formation of the northern Taiwan volcanic zone is questionable. As indicated by numerous shallow earthquakes and persistent emissions of the volcanic gases out of the seafloor around the volcanic cone, the Keelung Submarine Volcano is as active as the Tatun Volcano Group. For the sake of volcanic hazard assessment, it is essential to monitor the activity of the Keelung Submarine Volcano.

  10. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    Science.gov (United States)

    2015-09-01

    1 – Hydrodynamics”, Defence Science and Technology Organisation Technical Report DSTO-TR-1622, 2004. UNCLASSIFIED DST-Group-TN-1449 UNCLASSIFIED...17 7. Joubert, P.N., “Some Aspects of Submarine Design Part 2– Shape of a Submarine 2026”, Defence Science and Technology Organisation Technical

  11. Southwestern Riparian Plant Trait Matrix, Colorado River, Grand Canyon, Arizona, 2014 - 2016—Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information on the physical traits and environmental tolerances of plant species occurring along the lower Colorado River through Grand Canyon....

  12. Seismic evidence of conjugate normal faulting: The 1994 Devil Canyon earthquake sequence near Challis, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Suzette M. [Boise State Univ., ID (United States)

    1994-08-01

    Aftershock hypocenters of the 1984 Devil Canyon, Idaho earthquake indicate the sequence was associated with conjugate normal faulting on two northwest-striking normal faults that bound the Warm Spring Creek graben.

  13. Transportation Analysis and Feasibility Study : Sabino Canyon Recreation Area, Coronado National Forest

    Science.gov (United States)

    2010-02-28

    The goal of this report is to identify potential transportation solutions to issues that have been identified : at Sabino Canyon. Examples of future transportation systems are provided to show a variety of future : transportation conditions within th...

  14. BackscatterA [USGS SWATH]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  15. BackscatterD [CSUMB Swath]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  16. Accuracy Assessment Points for Canyon De Chelly National Monument Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — The Canyon de Chelly National Monument Accuracy Assessment Observation Location executable shapefile (cachaa.exe) was developed as a Geographic Information Systems...

  17. Deepwater Canyons 2012: Pathways to the Abyss on NOAA Ship Nancy Foster between 20120815 and 20121001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mid-Atlantic Deep-Water Canyons project is co-funded by the Bureau of Ocean Energy Management (BOEM) and NOAA's Office of Ocean Exploration and Research (which...

  18. Accuracy Assessment Points for Walnut Canyon National Monument Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This spatial dataset in ESRI Coverage format maps accuracy assessment point locations for the vegetation map at Walnut Canyon National Monument and in the...

  19. Geology and geomorphology--Monterey Canyon and Vicinity Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is included in...

  20. Spatial Vegetation Data for Walnut Canyon National Monument Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This metadata is for the vegetation and land-use geo-spatial database for Walnut Canyon National Monument and surrounding areas. The project is authorized as part of...