WorldWideScience

Sample records for sublethal environmental stress

  1. Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates

    Science.gov (United States)

    Guex, Jean

    2006-02-01

    This paper describes the influence of high environmental stress on evolutionary trends in some selected Mesozoic ammonite lineages and some protists. During extinction periods, many ammonoids are affected by drastic simplifications of their shell geometry, ornamentation and suture line. We observe that relatively tightly coiled ammonites can give rise to highly evolute forms or uncoiled heteromorphs with simple ornamentation and almost ceratitic suture line—a phenomenon called "proteromorphosis". Such simplifications often correspond to a reappearance of ancestral geometries (primitive ornamentation, evolute coiling or uncoiling) which suggest that the evolutionary clock of these organisms can be reinitialized by extreme, sublethal, environmental stress such as giant volcanism (including its consequences on diverse pollutions and on climatic changes) and major regressive events.

  2. Response of larval fish, Leiostomus xanthurus, to environmental stress following sublethal cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Middaugh, D.P.; Davis, W.R.; Yoakum, R.L.

    1975-08-01

    The toxicity of cadmium to larval fish, Leiostomus xanthurus, was studied. An incipient LC/sub 50/ concentration of approximately 0.2 to 0.3 mg/l cadmium was first estimated. Subsequent short-term sublethal tests were conducted to determine the relationship of cadmium exposure and accumulated whole body residues of the metal on the response of larvae to thermal stress and low dissolved oxygen. Results of this study indicated a significant decrease (..cap alpha.. = 0.05, t-Test) in the critical thermal maximum (CTM) for larvae exposed to 0.5 and 0.8 mg/l cadmium for 96 hours at 20/sup 0/C. Significant decreases (..cap alpha.. = 0.05, chi/sup 2/) in survival of larvae subjected to a dissolved oxygen (DO) level of 1.6 mg/l after exposure to 0.5 and 0.8 mg/l cadmium were also observed.

  3. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  4. Effects of sublethal entrainment stresses on the vulnerability of juvenile bluegill sunfish to predation

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F.; Solomon, J.A.; Loar, J.M.

    1981-07-01

    This report provides a review of literature concerning the effects of sublethal stresses on predator-prey interactions in aquatic systems. In addition, the results of a preliminary laboratory study of the susceptibility of entrainment-stressed juvenile bluegill to striped bass predation are presented. Juvenile bluegill were exposed to thermal and physical entrainment stresses in the ORNL Power Plant Simulator and subsequently to predation by juvenile striped bass in a susceptibility to predation experimental design. None of the entrainment stresses tested (thermal shock, physical effects of pump and condenser passage, and combination of thermal and physical shock) was found to significantly increase predation rates as compared to controls, and no significant interactions between thermal and physical stresses were detected. The validity of laboratory predator-prey studies and the application of indirect mortality information for setting protective standards and predicting environmental impacts are discussed.

  5. Environmental stress

    Energy Technology Data Exchange (ETDEWEB)

    Evans, G.W. (ed.)

    1984-01-01

    Environmental stresses from noise, heat, air pollution, and crowding cause physical dysfunctions in people. Nineteen contributors review and integrate these stresses to show how they affect human needs in hospital, school, office, and neighborhood settings and how this information can be used to understand human behavior in the designed environment. The final section of the book explores how social science research can be used to influence public policy in the area of environmental decisions. The authors' concern focus on the limitations of laboratory research on behavioral responses to stress. 24 footnotes, 10 figures, 7 tables

  6. Does selective logging stress tropical forest invertebrates? Using fat stores to examine sublethal responses in dung beetles.

    Science.gov (United States)

    França, Filipe; Barlow, Jos; Araújo, Bárbara; Louzada, Julio

    2016-12-01

    The increased global demand for tropical timber has driven vast expanses of tropical forests to be selectively logged worldwide. While logging impacts on wildlife are predicted to change species distribution and abundance, the underlying physiological responses are poorly understood. Although there is a growing consensus that selective logging impacts on natural populations start with individual stress-induced sublethal responses, this literature is dominated by investigations conducted with vertebrates from temperate zones. Moreover, the sublethal effects of human-induced forest disturbance on tropical invertebrates have never been examined. To help address this knowledge gap, we examined the body fat content and relative abundance of three dung beetle species (Coleoptera: Scarabaeinae) with minimum abundance of 40 individuals within each examined treatment level. These were sampled across 34 plots in a before-after control-impact design (BACI) in a timber concession area of the Brazilian Amazon. For the first time, we present evidence of logging-induced physiological stress responses in tropical invertebrates. Selective logging increased the individual levels of fat storage and reduced the relative abundance of two dung beetle species. Given this qualitative similarity, we support the measurement of body fat content as reliable biomarker to assess stress-induced sublethal effects on dung beetles. Understanding how environmental modification impacts the wildlife has never been more important. Our novel approach provides new insights into the mechanisms through which forest disturbances impose population-level impacts on tropical invertebrates.

  7. Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio.

    Science.gov (United States)

    Hemalatha, Devan; Amala, Antony; Rangasamy, Basuvannan; Nataraj, Bojan; Ramesh, Mathan

    2016-11-01

    Extensive use of quinalphos, an organophosphorus pesticide, is likely to reach the aquatic environment and thereby posing a health concern for aquatic organisms. Oxidative stress and antioxidant responses may be good indicators of pesticide contamination in aquatic organisms. The data on quinalphos induced oxidative stress and antioxidant responses in carps are scanty. This study is aimed to assess the two sublethal concentrations of quinalphos (1.09 and 2.18 μL L -1 ) on oxidative stress and antioxidant responses of Cyprinus carpio for a period of 20 days. In liver, the malondialdehyde level was found to be significantly increased in both the concentrations. The results of the antioxidant parameters obtained show a significant increase in superoxide dismutase, catalase, and glutathione-S-transferase activity in liver of fish. These results demonstrate that environmentally relevant levels of the insecticide quinalphos can cause oxidative damage and increase the antioxidant scavenging capacity in C. carpio. This may reflect the potential role of these parameters as useful biomarkers for the assessment of pesticide contamination. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1399-1406, 2016. © 2015 Wiley Periodicals, Inc.

  8. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire

    Science.gov (United States)

    Rick G. Kelsey; Douglas J. Westlind

    2017-01-01

    The lethal temperature limit is 60 degrees Celsius (°C) for plant tissues, including trees, with lower temperatures causing heat stress. As fire injury increases on tree stems, there is an accompanying rise in tissue ethanol concentrations, physiologically linked to impaired mitochondrial oxidative phosphorylation energy production. We theorize that sublethal tissue...

  9. Effect of non-homogenous thermal stress during sub-lethal photodynamic antimicrobial chemotherapy

    Science.gov (United States)

    Gadura, N.; Kokkinos, D.; Dehipawala, S.; Cheung, E.; Sullivan, R.; Subramaniam, R.; Schneider, P.; Tremberger, G., Jr.; Holden, T.; Lieberman, D.; Cheung, T.

    2012-03-01

    Pathogens could be inactivated via a light source coupled with a photosensitizing agent in photodynamic antimicrobial chemotherapy (PACT). This project studied the effect of non-homogenous substrate on cell colony. The non-homogeneity could be controlled by iron oxide nano-particles doping in porous glassy substrates such that each cell would experience tens of hot spots when illuminated with additional light source. The substrate non-homogeneity was characterized by Atomic Force Microscopy, Transmission Electron Microscopy and Extended X-Ray Absorption Fine Structure at Brookhaven Synchrotron Light Source. Microscopy images of cell motion were used to study the motility. Laboratory cell colonies on non-homogenous substrates exhibit reduced motility similar to those observed with sub-lethal PCAT treatment. Such motility reduction on non-homogenous substrate is interpreted as the presence of thermal stress. The studied pathogens included E. coli and Pseudomonas aeruginosa. Non-pathogenic microbes Bacillus subtilis was also studied for comparison. The results show that sub-lethal PACT could be effective with additional non-homogenous thermal stress. The use of non-uniform illumination on a homogeneous substrate to create thermal stress in sub-micron length scale is discussed via light correlation in propagation through random medium. Extension to sub-lethal PACT application complemented with thermal stress would be an appropriate application.

  10. Low salinity enhances NI-mediated oxidative stress and sub-lethal toxicity to the green shore crab (Carcinus maenas).

    Science.gov (United States)

    Blewett, Tamzin A; Wood, Chris M

    2015-12-01

    Nickel (Ni) is a metal of environmental concern, known to cause toxicity to freshwater organisms by impairing ionoregulation and/or respiratory gas exchange, and by inducing oxidative stress. However, little is known regarding how nickel toxicity is influenced by salinity. In the current study we investigated the salinity-dependence and mechanisms of sub-lethal Ni toxicity in a euryhaline crab (Carcinus maenas). Crabs were acclimated to three experimental salinities--20, 60 and 100% seawater (SW)--and exposed to 3mg/L Ni for 24h or 96 h. Tissues were dissected for analysis of Ni accumulation, gills were taken for oxidative stress analysis (catalase activity and protein carbonyl content), haemolymph ions were analysed for ionoregulatory disturbance, and oxygen consumption was determined in exercised crabs after 96 h of Ni exposure. Total Ni accumulation was strongly dependant on salinity, with crabs from 20% SW displaying the highest tissue Ni burdens after both 24 and 96-h exposures. After 96 h of exposure, the highest accumulation of Ni occurred in the posterior (ionoregulatory) gills at the lowest salinity, 20% SW. Posterior gill 8 exhibited elevated protein carbonyl levels and decreased catalase activity after Ni exposure, but only in 20% SW. Similarly, decreased levels of haemolymph Mg and K and an increased level of Ca were recorded but only in crabs exposed to Ni for 96 h in 20% SW. Oxygen consumption after exercise was also inhibited in crabs exposed to Ni in 20% SW. These data show for the first time the simultaneous presence of all three modes of sub-lethal Ni toxicity in exposed animals, and indicate a strong salinity dependence of sub-lethal Ni toxicity to the euryhaline crab, C. maenas, a pattern that corresponded to tissue Ni accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Genetic regulation of allolysis in response to sub-lethal antibiotic stress in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    MANISHA DASH

    2014-11-01

    Full Text Available Dash M, Dash HR, Das S. 2014. Genetic regulation of allolysis in response to sub-lethal antibiotic stress in Streptococcus pneumoniae. Nusantara Bioscience 6: 111-117. Allolysis is the phenomenon of cell lysis induced by other cells of the same species. Gram-positive bacterium Streptococcus pneumoniae, a major human pathogen exhibits competence induced allolysis that increases the genetic recombination and enhances the virulence. During allolysis, a group of non-competent bacterial cells are lysed by another group of competent cells in the same culture. This process is regulated by com operon as well as bacteriocin. In this study, allolysis was induced in Streptococcus pneumoniae MTCC655 by sub-lethal dose of antibiotic (chloramphenicol and the mechanism of allolysis has been deduced by amplification of lytA, lytC and cbpD genes in the bacterium. The strain was found to be resistant to a number of antibiotics including amoxicillin, cefpodoxime, erythromycin and vancomycin. The early onset of allolysis induction from 7-9 h under normal conditions to 2-3 h by sub-lethal dose of chloramphenicol was observed.

  12. Stability of sublethal acid stress adaptation and induced cross protection against lauric arginate in Listeria monocytogenes.

    Science.gov (United States)

    Shen, Qian; Soni, Kamlesh A; Nannapaneni, Ramakrishna

    2015-06-16

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced in pH 5.0 tryptic soy broth supplemented with 0.6% yeast extract (TSB-YE) at 37 °C. Subsequently, the stability of acid stress adaptation, which was defined as the capacity to maintain its acquired acid adaptation after induction in the absence of sublethal acid stress, was determined at 37 °C, 22 °C or 4 °C in broth and in different food substrates. Then, the acid stress adaptation induced cross protection against lauric arginate (LAE) and its stability was investigated in TSB-YE, milk and carrot juice. Our findings show that the acid stress adaptation was stable at 4 °C up to 24h but was reversed at 37 °C or 22 °C within 2h. In the cross protection assay with LAE, the acid stress adapted cells had approximately 2 log CFU/ml greater survival than non-adapted cells in broth at 22 °C or in milk and carrot juice at 4 °C. The acid adaptation induced cross protection against LAE in L. monocytogenes was reversible within 1h at 4 °C in the absence of sublethal acid stress. Our findings suggest that the stability of acid adaptation in L. monocytogenes under cold conditions should be taken into account when the risk analysis is performed during food processing. Copyright © 2015. Published by Elsevier B.V.

  13. Sublethal effects on wood frogs chronically exposed to environmentally relevant concentrations of two neonicotinoid insecticides.

    Science.gov (United States)

    Robinson, Stacey A; Richardson, Sarah D; Dalton, Rebecca L; Maisonneuve, France; Trudeau, Vance L; Pauli, Bruce D; Lee-Jenkins, Stacey S Y

    2017-04-01

    Neonicotinoids are prophylactically used globally on a variety of crops, and there is concern for the potential impacts of neonicotinoids on aquatic ecosystems. The intensive use of pesticides on crops has been identified as a contributor to population declines of amphibians, but currently little is known regarding the sublethal effects of chronic neonicotinoid exposure on amphibians. The objective of the present study was to characterize the sublethal effect(s) of exposure to 3 environmentally relevant concentrations (1 μg/L, 10 μg/L, and 100 μg/L) of 2 neonicotinoids on larval wood frogs (Lithobates sylvaticus) using outdoor mesocosms. We exposed tadpoles to solutions of 2 commercial formulations containing imidacloprid and thiamethoxam, and assessed survival, growth, and development. Exposure to imidacloprid at 10 μg/L and 100 μg/L increased survival and delayed completion of metamorphosis compared with controls. Exposure to thiamethoxam did not influence amphibian responses. There was no significant effect of any treatment on body mass or size of the metamorphs. The results suggest that current usage of imidacloprid and thiamethoxam does not pose a threat to wood frogs. However, further assessment of both direct and indirect effects on subtle sublethal endpoints, and the influence of multiple interacting stressors at various life stages, is needed to fully understand the effects of neonicotinoids on amphibians. Environ Toxicol Chem 2017;36:1101-1109. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  14. Macroalgal extracts induce bacterial assemblage shifts and sublethal tissue stress in Caribbean corals.

    Science.gov (United States)

    Morrow, Kathleen M; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R; Paul, Valerie J

    2012-01-01

    Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways.

  15. Induction and stability of oxidative stress adaptation in Listeria monocytogenes EGD (Bug600) and F1057 in sublethal concentrations of H2O2 and NaOH.

    Science.gov (United States)

    De Abrew Abeysundara, Piumi; Nannapaneni, Ramakrishna; Soni, Kamlesh A; Sharma, Chander S; Mahmoud, Barakat

    2016-12-05

    Food processing and food handling environments may contain residual levels of sanitizers or cleaners which may trigger oxidative stress adaptation in Listeria monocytogenes. The aim of this study was to determine the induction and stability of oxidative stress adaptation in L. monocytogenes EGD (Bug600) (serotype 1/2a) and F1057 (serotype 4b) at different concentrations and times of sublethal oxidative stress induced by H2O2 or sublethal alkali stress induced by NaOH at 37°C. Both L. monocytogenes Bug600 and F1057 strains showed significantly higher survival in lethal oxidative stress (1000ppm H2O2) after pre-exposure to 50ppm H2O2 for 30min compared to control cells (no pre-exposure to H2O2). When the cells were pre-exposed to sublethal alkali stress by NaOH, the oxidative stress adaptation was induced within 5min in L. monocytogenes. The survival of both L. monocytogenes strains was increased by 2 to 4.5 logs in lethal oxidative stress when the cells were pre-exposed to sublethal alkali stress at pH9 from 5 to 120min by NaOH compared to control cells (no pre-exposure to sublethal alkali pH). Two other alkali reagents tested (KOH and NH4OH) also induced oxidative stress adaptation in L. monocytogenes. For both L. monocytogenes strains, the oxidative stress adaptation induced by sublethal H2O2 was reversible in 30min and that induced by sublethal alkali stress was reversible within 60min at 37°C in the absence of such sublethal stress. These findings show that sublethal oxidative or alkali stress conditions can induce oxidative stress adaptation that may increase the risk of survival of L. monocytogenes cells in lethal oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transmission electron microscopy study of Listeria monocytogenes serotype 1/2a cells exposed to sublethal heat stress and carvacrol

    Science.gov (United States)

    The objective of this study was to investigate the morphological changes that occurred in Listeria monocytogenes serotype 1/2a cells as visualized by transmission electron microscopy (TEM) after exposure to sublethal heat stress at 48°C for 60 min and in combination with lethal concentration of carv...

  17. Development of a New Technique to Assess Susceptibility to Predation Resulting from Sublethal Stresses (Indirect Mortality)

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F.

    2003-08-25

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. We evaluated a new technique for assessing indirect mortality, based on a behavioral response to a startling stimulus (akin to perceiving an approaching predator). We compare this technique to the standard predator preference test. The behavioral response is a rapid movement commonly referred to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. We subjected striped shiners and fathead minnows to varying intensities of either turbulence (10-, 20- or 30-min) or 2-min exposures to a fish anesthetic (100 or 200 mg/L of tricaine methanesulfonate), and evaluated their subsequent behavior. Individual fish were given a startle stimulus and filmed with a high-speed video camera. Each fish was startled and filmed twice before being stressed, and then at 1-, 5-, 15-, and 30-min post-exposure. The resulting image files were analyzed for a variety of behavioral measures including: presence of a response, time to first reaction, duration of reaction, time to formation of maximum C-shape, time to completion of C-shape, and completeness of C-shape. The most immediate measure of potential changes in fish behavior was whether stressed fish exhibited a startle response. For striped shiners, the number of fish not responding to the stimulus was significantly different

  18. Environmental Stress Screening Technology.

    Science.gov (United States)

    1985-10-01

    2402 04 47 11 TITLE (Includ& Security Classofication) Environmental Stress Screening Technology 12 PRSONAL AUTOR(S) Quartin, Herbert; Kube, Frank...Infrared (IR), Environmental Stress Screening, 09 03 Thermography, Acceptance Testing, Electronics 14 i _ .. .. 19 ABSTRACT (Continue on reverse of...become a necessity (Ref I and 2). A principal driver of the effectiveness of Environmental Stress Screening (ESS) is the ability to rapidly and

  19. Analysis of lethal and sublethal impacts of environmental disasters on sperm whales using stochastic modeling.

    Science.gov (United States)

    Ackleh, Azmy S; Chiquet, Ross A; Ma, Baoling; Tang, Tingting; Caswell, Hal; Veprauskas, Amy; Sidorovskaia, Natalia

    2017-08-01

    Mathematical models are essential for combining data from multiple sources to quantify population endpoints. This is especially true for species, such as marine mammals, for which data on vital rates are difficult to obtain. Since the effects of an environmental disaster are not fixed, we develop time-varying (nonautonomous) matrix population models that account for the eventual recovery of the environment to the pre-disaster state. We use these models to investigate how lethal and sublethal impacts (in the form of reductions in the survival and fecundity, respectively) affect the population's recovery process. We explore two scenarios of the environmental recovery process and include the effect of demographic stochasticity. Our results provide insights into the relationship between the magnitude of the disaster, the duration of the disaster, and the probability that the population recovers to pre-disaster levels or a biologically relevant threshold level. To illustrate this modeling methodology, we provide an application to a sperm whale population. This application was motivated by the 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico that has impacted a wide variety of species populations including oysters, fish, corals, and whales.

  20. The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares.

    Science.gov (United States)

    Sheriff, Michael J; Krebs, Charles J; Boonstra, Rudy

    2009-11-01

    1. Prey responses to high predation risk can be morphological or behavioural and ultimately come at the cost of survival, growth, body condition, or reproduction. These sub-lethal predator effects have been shown to be mediated by physiological stress. We tested the hypothesis that elevated glucocorticoid concentrations directly cause a decline in reproduction in individual free-ranging female snowshoe hares, Lepus americanus. We measured the cortisol concentration from each dam (using a faecal analysis enzyme immunoassay) and her reproductive output (litter size, offspring birth mass, offspring right hind foot (RHF) length) 30 h after birth. 2. In a natural monitoring study, we monitored hares during the first and second litter from the population peak (2006) to the second year of the decline (2008). We found that faecal cortisol metabolite (FCM) concentration in dams decreased 52% from the first to the second litter. From the first to the second litter, litter size increased 122%, offspring body mass increased 130%, and offspring RHF length increased 112%. Dam FCM concentrations were inversely related to litter size (r(2) = 0.19), to offspring birth mass (r(2) = 0.32), and to offspring RHF length (r(2) = 0.64). 3. In an experimental manipulation, we assigned wild-caught, pregnant hares to a control and a stressed group and held them in pens. Hares in the stressed group were exposed to a dog 1-2 min every other day before parturition to simulate high predation risk. At parturition, unsuccessful-stressed dams (those that failed to give birth to live young) and stressed dams had 837% and 214%, respectively, higher FCM concentrations than control dams. Of those females that gave birth, litter size was similar between control and stressed dams. However, offspring from stressed dams were 37% lighter and 16% smaller than offspring from control dams. Increasing FCM concentration in dams caused the decline of offspring body mass (r(2) = 0.57) and RHF (r(2) = 0.52). 4

  1. Environmental Stress Screening 2000

    Science.gov (United States)

    Gibbel, Mark

    1997-01-01

    The following identifies the authors of this report and the organizations that sponsored the effort conducted under the National Center for Manufacturing Sciences (NCMS) Environmental Stress Screening (ESS) 2000 Project.

  2. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    Science.gov (United States)

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  3. environmental stress indicators system

    African Journals Online (AJOL)

    EJIRO

    analyses on environmental stress and ecological impacts in Taiwan between the years of 1998 and ... environmental load. INTRODUCTION. Over a long period of time, human beings have over exploited the natural environment, exceeding the natural system's load .... architecture mineral substances, industrial mineral.

  4. Arsenic-induced sub-lethal stress reprograms human bronchial epithelial cells to CD61¯ cancer stem cells.

    Science.gov (United States)

    Chang, Qingshan; Chen, Bailing; Thakur, Chitra; Lu, Yongju; Chen, Fei

    2014-03-15

    In the present report, we demonstrate that sub-lethal stress induced by consecutive exposure to 0.25 µM arsenic (As3+) for six months can trigger reprogramming of the human bronchial epithelial cell (BEAS-2B) to form cancer stem cells (CSCs) without forced introduction of the stemness transcription factors. These CSCs formed from As3+-induced sub-lethal stress featured with an increased expression of the endogenous stemness genes, including Oct4, Sox2, Klf4, Myc, and others that are associated with the pluripotency and self-renewal of the CSCs. Flow cytometry analysis indicated that 90% of the CSC cells are CD61¯, whereas 100% of the parental cells are CD61+. These CD61¯ CSCs are highly tumorigenic and metastatic to the lung in xenotransplantation tests in NOD/SCID Il2rγ-/- mice. Additional tests also revealed that the CD61¯ CSCs showed a significant decrease in the expression of the genes important for DNA repair and oxidative phosphorylation. To determine the clinical relevance of the above findings, we stratified human lung cancers based on the level of CD61 protein and found that CD61low cancer correlates with poorer survival of the patients. Such a correlation was also observed in human breast cancer and ovarian cancer. Taken together, our findings suggest that in addition to the traditional approaches of enforced introduction of the exogenous stemness circuit transcription factors, sub-lethal stress induced by consecutive low dose As3+ is also able to convert non-stem cells to the CSCs.

  5. Protective effect of a laser-induced sub-lethal temperature rise on RPE cells from oxidative stress.

    Science.gov (United States)

    Iwami, Hisashi; Pruessner, Joachim; Shiraki, Kunihiko; Brinkmann, Ralf; Miura, Yoko

    2014-07-01

    Recently introduced new technologies that enable temperature-controlled laser irradiation on the RPE allowed us to investigate temperature-resolved RPE cell responses. In this study we aimed primarily to establish an experimental setup that can realize laser irradiation on RPE cell culture with the similar temperature distribution as in the clinical application, with a precise time/temperature history. With this setup, we conducted investigations to elucidate the temperature-dependent RPE cell biochemical responses and the effect of transient hyperthermia on the responses of RPE cells to the secondary-exposed oxidative stress. Porcine RPE cells cultivated in a culture dish (inner diameter = 30 mm) with culture medium were used, on which laser radiation (λ = 1940 nm, spot diameter = 30 mm) over 10 s was applied as a heat source. The irradiation provides a radially decreasing temperature profile which is close to a Gaussian shape with the highest temperature in the center. Power setting for irradiation was determined such that the peak temperature (Tmax) in the center of the laser spot at the cells reaches from 40 °C to 58 °C (40, 43, 46, 50, 58 °C). Cell viability was investigated with ethidium homodimer III staining at the time points of 3 and 24 h following laser irradiation. Twenty four hours after laser irradiation the cells were exposed to hydrogen peroxide (H2O2) for 5 h, followed by the measurement of intracellular glutathione, intracellular 4-hydroxynonenal (HNE) protein adducts, and secreted vascular endothelial growth factor (VEGF). The mean temperature threshold for RPE cell death after 3 h was found to be around 52 °C, and for 24 h around 50 °C with the current irradiation setting. A sub-lethal preconditioning on Tmax = 43 °C significantly induced the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, and decreased H2O2-induced increase of intracellular 4-HNE protein adducts. Although sub-lethal hyperthermia (Tmax

  6. Assessment of the lethal and sublethal effects of 20 environmental chemicals in zebrafish embryos and larvae by using OECD TG 212.

    Science.gov (United States)

    Horie, Yoshifumi; Yamagishi, Takahiro; Takahashi, Hiroko; Shintaku, Youko; Iguchi, Taisen; Tatarazako, Norihisa

    2017-10-01

    Fish embryo toxicity tests are used to assess the lethal and sublethal effects of environmental chemicals in aquatic organisms. Previously, we used a short-term toxicity test published by the Organization for Economic Co-operation and Development (test no. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages [OECD TG 212]) to assess the lethal and sublethal effects of aniline and several chlorinated anilines in zebrafish embryos and larvae. To expand upon this previous study, we used OECD TG 212 in zebrafish embryos and larvae to assess the lethal and sublethal effects of 20 additional environmental chemicals that included active pharmaceutical ingredients, pesticides, metals, aromatic compounds or chlorinated anilines. Zebrafish embryos (Danio rerio) were exposed to the test chemicals until 8 days post-fertilization. A delayed lethal effect was induced by 16 of the 20 test chemicals, and a positive correlation was found between heart rate turbulence and mortality. We also found that exposure to the test chemicals at concentrations lower than the lethal concentration induced the sublethal effects of edema, body curvature and absence of swim-bladder inflation. In conclusion, the environmental chemicals assessed in the present study induced both lethal and sublethal effects in zebrafish embryos and larvae, as assessed by using OECD TG 212. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Environmental Stress and Antibiotic Resistance in Food-Related Pathogens▿

    Science.gov (United States)

    McMahon, M. Ann S.; Xu, Jiru; Moore, John E.; Blair, Ian S.; McDowell, David A.

    2007-01-01

    This study investigated the possibility that sublethal food preservation stresses (high or low temperature and osmotic and pH stress) can lead to changes in the nature and scale of antibiotic resistance (ABR) expressed by three food-related pathogens (Escherichia coli, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus). The study found that some sublethal stresses significantly altered antibiotic resistance. Incubation at sublethal high temperature (45°C) decreased ABR. Incubation under increased salt (>4.5%) or reduced pH (<5.0) conditions increased ABR. Some of the pathogens continued to express higher levels of ABR after removal of stress, suggesting that in some cases the applied sublethal stress had induced stable increases in ABR. These results indicate that increased use of bacteriostatic (sublethal), rather than bactericidal (lethal), food preservation systems may be contributing to the development and dissemination of ABR among important food-borne pathogens. PMID:17142359

  8. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  9. Environmental stress, psychological stress and allostatic load.

    Science.gov (United States)

    Clark, Michael S; Bond, Malcolm J; Hecker, Jane R

    2007-01-01

    The mechanism by which chronic caregiving stress results in poor health is not well understood. The objective was to determine whether such a mechanism may be allostatic load, a novel concept specifying physiological systems that may suffer cumulative wear and tear following chronic stress, leading collectively to poor health. The study examines the association of allostatic load with environmental and psychological stress in the contexts of dementia caregiving and relinquishment of care, and is a 2-year longitudinal comparison of three groups: 80 new dementia spouse caregivers, 120 veteran caregivers, and 60 non-caregivers. Data comprised allostatic load markers and environmental and psychological stress measures. Cross-lagged analyses produced a statistically significant association between psychological stress and one allostatic load component (primary mediators). Psychological stress was a better predictor of primary mediators than environmental stress. Primary mediators rose with time for caregivers, but not for non-caregivers. A greater rise was evident for caregivers who had relinquished their role by the second year, although the level of psychological stress actually declined. Primary mediators are a key component of the relationship between allostatic load and prior stress. When allostatic load is treated as an outcome of stress, it is important to distinguish environmental and psychological stress.

  10. Evaluating sublethal indicators of stress in Asiatic clams (Corbicula fluminea) caged in an urban stream

    Energy Technology Data Exchange (ETDEWEB)

    Black, M.C.; Belin, J.I. [Univ. of Georgia, Athens, GA (United States). College of Agricultural and Environmental Sciences

    1998-12-31

    Freshwater bivalves have been used extensively to monitor chemical accumulation in field exposures, although little information is available on the use of biomarker measurements in field exposures with bivalves. DNA strand breakage, growth rate, condition index and percentage tissue water were measured in freshwater Asiatic clams (Corbicula fluminea) exposed in-situ in a stream that receives urban and industrial stormwater runoff and in a non-impacted reference stream. After 4 weeks exposure, DNA strand lengths in foot tissue from Trail Creek-exposed clams were significantly shorter than DNA from reference clams. These results suggest a reduction in DNA integrity in Trail Creek-exposed clams, possibly indicating exposure to genotoxic chemicals. No significant differences were observed in the growth rates of clams. However, a significant inverse relationship was detected between condition index and % tissue water for all clams. Furthermore, site-specific differences in percentage tissue water and condition indices were observed after 2 and 10 weeks exposure. For this study DNA strand breakage, condition indices, and tissue hydration appear to be more sensitive indicators of sublethal toxicity than growth.

  11. Environmental Stress Screening (ESS) Guide

    Science.gov (United States)

    1989-01-01

    Environmental Stress ", Screening (ES Gud -.-Authored By: William H. Homer, Project Manager.- t j Report Date: January 1989 Distribution unlimited... Environmental Stress Screening (ESS) Guide (U) 12. PERSONAL AUTHOR(S) William H. Homer, Project Manager, and Evaluation Research Corporation, McLean, VA 13a...to the planning, implementing, and monitoring of an Environmental Stress Screening (ESS).Plfrogram for Army Materiel Commao. (AMCylIroop Support

  12. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Science.gov (United States)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  13. Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression.

    Science.gov (United States)

    Siqueira Filho, E; Caixeta, E S; Pribenszky, C; Molnar, M; Horvath, A; Harnos, A; Franco, M M; Rumpf, R

    2011-01-01

    Sublethal stress treatment has been reported to enhance gametes' performance in subsequent procedures, such as cryopreservation. The aim of the present study was to evaluate the effect of different equilibration times between the termination of a sublethal hydrostatic pressure (HP) stress treatment and the initiation of vitrification on the post-thaw survival, continued in vitro development, hatching rate and gene expression of selected candidate genes of in vitro-produced (IVP) expanded bovine blastocysts. Day 7 IVP blastocysts were subjected to 600 bar pressure for 60 min at 32°C. Immediately after pressure treatment (HP0h) or after 1 or 2h incubation (HP1h and HP2h groups, respectively), embryos were either vitrified and warmed using the open pulled straw method, followed by 72 h in vitro culture or were stored at -80°C until gene expression analysis. Re-expansion and hatching rates after vitrification-warming were significantly (Pbovine embryos.

  14. Homologous stress adaptation, antibiotic resistance, and biofilm forming ability of Salmonella enterica serovar Heidelberg ATCC8326 on different food-contact surfaces following exposure to sublethal chlorine concentrations.

    Science.gov (United States)

    Obe, Tomi; Nannapaneni, Rama; Sharma, Chander Shekhar; Kiess, Aaron

    2018-01-13

    Salmonella enterica serovar Heidelberg (American Type Culture Collection; ATCC 8326) was examined for the ability to adapt to the homologous stress of chlorine through exposure to increasing chlorine concentrations (25 ppm daily increments) in tryptic soy broth (TSB). The tested strain exhibited an acquired tolerance to chlorine in TSB with the tolerant cells growing in concentrations up to 400 ppm. In addition, the chlorine stressed cells displayed rugose morphology on tryptic soy agar (TSA) plates at 37°C. The minimum inhibitory concentration (MIC) of chlorine for adapted (rugose and smooth) cells was determined to be 550 ppm and 500 ppm, respectively whereas the MIC for the control was 450 ppm. The biofilm forming ability of the adapted and control cells were examined on both plastic and stainless steel surface at room temperature and 37°C. The rugose variant, in contrast to the smooth (adapted and control) showed the ability to form strong biofilms (P ≤ 0.05) on a plastic surface at room temperature and 37°C. Rugose cells compared to smooth and control attached more (P ≤ 0.05) to steel surfaces as well. The possibility of cross-adaptation was examined by exposing the adapted and control cells to different antibiotics according to the Clinical & Laboratory Standards Institute guidelines. Adapted cells exhibited reduced susceptibility to some of the antibiotics tested as compared to control. The findings of this study suggest that exposure to sublethal chlorine concentration during the sanitization procedure can result in tolerant Salmonella cells. Chlorine may confer cross-protection that aids in the survival of the tolerant population to other environmental stresses. © 2018 Poultry Science Association Inc.

  15. Further tests of changes in fish escape behavior resulting from sublethal stresses associated with hydroelectric turbine passage

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, John G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2004-04-01

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. The most commonly used laboratory technique for assessing susceptibility to predation is the predator preference test. This report evaluates the field application of a new technique that may be valuable for assessing indirect mortality, based on changes in a behavioral response to a startling stimulus (akin to perceiving an approaching predator). The study compared the behaviors of 70 fish passed through the turbine and another 70 under control conditions (either transferred from the holding tank or injected into the Alden loop downstream of turbine). The resulting image files were analyzed for a variety of behavioral measures including: presence of a startle response, time to first reaction, duration of reaction, time to formation of the maximum C-shape, time to completion of the C-shape, completeness of the C-shape, direction of turn, and degree of turn. The data were evaluated for statistical significance and patterns of response were identified.

  16. Further Tests of Changes in Fish Escape Behavior Resulting from Sublethal Stresses Associated with Hydroelectric Turbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, M.G.

    2004-10-20

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. The most commonly used laboratory technique for assessing susceptibility to predation is the predator preference test. In this report, we evaluate the field application of a new technique that may be valuable for assessing indirect mortality, based on changes in a behavioral response to a startling stimulus (akin to perceiving an approaching predator). The behavioral response is a rapid movement commonly referred to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. Initial studies demonstrated that turbulence created in a small laboratory tank can alter escape behavior. As a next step, we converted our laboratory design to a more portable unit, transported it to Alden Research Laboratory in Holden, Massachusetts, and used it to test fish that passed uninjured through a pilot-scale turbine runner. Rainbow trout were either passed through the turbine or exposed to handling stresses, and their behavior was subsequently evaluated. Groups of five fish were given a startle stimulus (a visual and pressure wave cue) and filmed with a high-speed (500 frames per s) video camera. The reactions of each group of fish to the startle stimulus were filmed at nominally 1-, 5-, and 15-min post-exposure. We compared the behaviors of 70 fish passed through the turbine

  17. Impact of sublethal levels of environmental pollutants found in sewage sludge on a novel Caenorhabditis elegans model biosensor.

    Directory of Open Access Journals (Sweden)

    Debbie McLaggan

    Full Text Available A transgenic strain of the model nematode Caenorhabditis elegans in which bioluminescence reports on relative, whole-organism ATP levels was used to test an environmentally-relevant mixture of pollutants extracted from processed sewage sludge. Changes in bioluminescence, following exposure to sewage sludge extract, were used to assess relative ATP levels and overall metabolic health. Reproductive function and longevity were also monitored. A short (up to 8 h sublethal exposure of L4 larval stage worms to sewage sludge extract had a concentration-dependent, detrimental effect on energy status, with bioluminescence decreasing to 50-60% of the solvent control (1% DMSO. Following longer exposure (22-24 h, the energy status of the nematodes showed recovery as assessed by bioluminescence. Continuous exposure to sewage sludge extract from the L4 stage resulted in a shorter median lifespan relative to that of solvent or medium control animals, but only in the presence of 400-600 µM 5-fluoro-2'-deoxyuridine (FUdR, which was incorporated to inhibit reproduction. This indicated that FUdR increased lifespan, and that the effect was counteracted by SSE. Exposure to sewage sludge extract from the L1 stage led to slower growth and a delayed onset of egg laying. When L1 exposed nematodes reached the reproductive stage, no effect on egg laying rate or egg number in the uterus was observed. DMSO itself (1% had a significant inhibitory effect on growth and development of C. elegans exposed from the L1 stage and on reproduction when exposed from the L4 stage. Results demonstrate subtle adverse effects on C. elegans of a complex mixture of environmental pollutants that are present, individually, in very low concentrations and indicate that our biosensor of energy status is a novel, sensitive, rapid, quantitative, whole-organism test system which is suitable for high throughput risk assessment of complex pollutant mixtures.

  18. Heart rate as a sublethal indicator of thermal stress in juvenile freshwater mussels.

    Science.gov (United States)

    Pandolfo, Tamara J; Cope, W Gregory; Arellano, Consuelo

    2009-11-01

    Freshwater mussels (Unionoida) are one of the most sensitive and rapidly declining faunal groups in the world. Rising water temperatures, caused by industrial discharges, land development, or climate change can further challenge threatened unionid communities. The direct relationship between heart rate and temperature in ectotherms enables the use of heart rate as an indicator of whole-animal thermal stress. The purpose of this study was to assess the utility of heart rate as an indicator of thermal stress in freshwater mussels. Seven species of juvenile mussels (Lampsilis siliquoidea, Potamilus alatus, Ligumia recta, Ellipsaria lineolata, Megalonaias nervosa, Alasmidonta varicosa, and Villosa delumbis) were evaluated in response to a range of experimental temperatures (20-36 degrees C) at three acclimation temperatures (17, 22, and 27 degrees C). Heart rate was measured by direct visual observation through transparent mussel shells. The average heart rate for all 7 species at 20 degrees C was 55bpm, with a range from 38bpm (L. recta) to 65bpm (P. alatus). L. recta and V. delumbis exhibited significant changes in heart rate with increasing temperature at each of the three acclimation temperatures. The use of heart rate appears to be a suitable indicator of thermal stress in some unionid mussels.

  19. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Catherine J., E-mail: cjwalsh@mote.org [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Butawan, Matthew, E-mail: mattbutawan@outlook.com [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Yordy, Jennifer, E-mail: jennifer.e.balmer@gmail.com [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Ball, Ray, E-mail: Ray.Ball@lowryparkzoo.com [Lowry Park Zoo, 1101 W Sligh Ave, Tampa, FL 33604 (United States); Flewelling, Leanne, E-mail: Leanne.Flewelling@MyFWC.com [Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Ave SE, St. Petersburg, FL 33701 (United States); Wit, Martine de, E-mail: Martine.deWit@MyFWC.com [Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Ave SE, St. Petersburg, FL 33701 (United States); Bonde, Robert K., E-mail: rbonde@usgs.gov [U.S. Geological Survey, Sirenia Project, 7920 NE 71st Street, Gainesville, FL 32653 (United States)

    2015-04-15

    Highlights: • Sublethal brevetoxin exposure affects manatee immune function. • Plasma brevetoxin levels correlate with oxidative stress in rescued manatees. • Brevetoxin exposure affects lymphocyte proliferation in rescued manatees. • Plasma brevetoxin concentrations ranged from 0 to 19 ng PbTx-3 eq/mL. - Abstract: The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida’s southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p < 0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the

  20. Defenseive Structuring and Environmental Stress

    Science.gov (United States)

    Siegel, Bernard J.

    1970-01-01

    This essay explores a kind of adaptation, referred to as defenseive structuring, that recurs with great regularity among groups that perceive themselves as exposed to environmental stress of long duration with which they cannot cope directly and aggressively." (Author)

  1. Measuring Environmental Stress

    Science.gov (United States)

    Walker, John E.; Dahm, Douglas B.

    1975-01-01

    Infrared remote sensors, plus photometric interpretation and digital data analysis are being used to record the stresses on air, water, vegetation and soil. Directly recorded photographic information has been the most effective recording media for remote sensing. (BT)

  2. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  3. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress.

    Directory of Open Access Journals (Sweden)

    Erika Shor

    Full Text Available Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors.

  4. Rearing effect of biofloc on antioxidant and antimicrobial transcriptional response in Litopenaeus stylirostris shrimp facing an experimental sub-lethal hydrogen peroxide stress.

    Science.gov (United States)

    Cardona, Emilie; Saulnier, Denis; Lorgeoux, Bénédicte; Chim, Liet; Gueguen, Yannick

    2015-08-01

    This study compares the antioxidant and antimicrobial transcriptional expression of blue shrimps reared according to two different systems, BioFloc Technology (BFT) and Clear sea Water (CW) and their differential responses when facing an experimental sublethal hydrogen peroxide stress. After 30 days of rearing, juvenile shrimps were exposed to H2O2 stress at a concentration of 30 ppm during 6 h. The oxidative stress caused by H2O2 was examined in the digestive glands of the shrimp, in which antioxidant enzyme (AOE) and antimicrobial peptide (AMP) gene expression were analysed by quantitative real-time PCR. Results showed that rearing conditions did not affect the expression of genes encoding AOEs or AMPs. However, H2O2 stress induced a differential response in expression between shrimps from the two rearing treatments (BFT and CW). Comparative analysis of the expression profiles indicates that catalase transcripts were significantly upregulated by H2O2 stress for BFT shrimps while no change was observed for CW shrimps. In contrast, H2O2 caused down-regulation of superoxide dismutase and glutathione transferase transcripts and of the three AMP transcripts studied (penaeidin 2 and 3, and crustin) for CW shrimps, while no effect was observed on BFT shrimp transcript levels. These results suggested that BFT shrimps maintained antioxidant and AMP responses after stress and therefore can effectively protect their cells against oxidative stress, while CW shrimp immune competence seems to decrease after stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress.

    Science.gov (United States)

    Walsh, Catherine J; Butawan, Matthew; Yordy, Jennifer; Ball, Ray; Flewelling, Leanne; de Wit, Martine; Bonde, Robert K

    2015-04-01

    The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida's southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p<0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the wild impacts some immune function components, and thus, overall health, in the Florida manatee. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Enhanced Antimicrobial Activity Based on a Synergistic Combination of Sublethal Levels of Stresses Induced by UV-A Light and Organic Acids.

    Science.gov (United States)

    de Oliveira, Erick F; Cossu, Andrea; Tikekar, Rohan V; Nitin, Nitin

    2017-06-01

    The reduction of microbial load in food and water systems is critical for their safety and shelf life. Conventionally, physical processes such as heat or light are used for the rapid inactivation of microbes, while natural compounds such as lactic acid may be used as preservatives after the initial physical process. This study demonstrates the enhanced and rapid inactivation of bacteria based on a synergistic combination of sublethal levels of stresses induced by UV-A light and two food-grade organic acids. A reduction of 4.7 ± 0.5 log CFU/ml in Escherichia coli O157:H7 was observed using a synergistic combination of UV-A light, gallic acid (GA), and lactic acid (LA), while the individual treatments and the combination of individual organic acids with UV-A light resulted in a reduction of less than 1 log CFU/ml. Enhanced inactivation of bacteria on the surfaces of lettuce and spinach leaves was also observed based on the synergistic combination. Mechanistic investigations suggested that the treatment with a synergistic combination of GA plus LA plus UV-A (GA+LA+UV-A) resulted in significant increases in membrane permeability and intracellular thiol oxidation and affected the metabolic machinery of E. coli In addition, the antimicrobial activity of the synergistic combination of GA+LA+UV-A was effective only against metabolically active E. coli O157:H7. In summary, this study illustrates the potential of simultaneously using a combination of sublethal concentrations of natural antimicrobials and a low level of physical stress in the form of UV-A light to inactivate bacteria in water and food systems.IMPORTANCE There is a critical unmet need to improve the microbial safety of the food supply, while retaining optimal nutritional and sensory properties of food. Furthermore, there is a need to develop novel technologies that can reduce the impact of food processing operations on energy and water resources. Conventionally, physical processes such as heat and light are

  7. Oxidative stress from environmental pollutants.

    Science.gov (United States)

    Ahmad, S

    1995-01-01

    Recently progress has been made on O2 toxicity and pathology related to numerous environmental contaminants in insects. The pro-oxidants studied included: dioxin, paraquat, and an assorted array of quinones, 8-methoxypsorlen, arsenic, and mercury. The responses to these oxidants are diverse, but they arise from the reactive oxygen species. These pro-oxidants in insects cause lipid peroxidation, protein and enzyme oxidation, and GSH depletion. Potentially, they may also cause DNA oxidation, and form DNA adducts. Oxidative challenge is alleviated by antioxidant compounds, but more importantly by the induction of antioxidant enzymes, which are crucial for the termination of O2 radical cascade and lipid peroxidation chain reaction. Insects exhibit a wasting syndrome under sub-acute stress. In acute toxicity vital physiological processes impaired are hemolymph melanization and diuresis. Thus, insects resemble vertebrates in both the response to oxidative stress and its pathological consequences. These results raise the prospect that insects may serve as non-mammalian model species for monitoring the oxidative-stress component of environmental toxicity.

  8. Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus).

    Science.gov (United States)

    Nguyen, Phuc Trong Hong; Do, Huong Thi Thanh; Mather, Peter B; Hurwood, David A

    2014-12-01

    The effects of a range of different sublethal salinities were assessed on physiological processes and growth performance in the freshwater 'tra' catfish (Pangasianodon hypophthalmus) juveniles over an 8-week experiment. Fish were distributed randomly among 6 salinity treatments [2, 6, 10, 14 and 18 g/L of salinity and a control (0 g/L)] with a subsequent 13-day period of acclimation. Low salinity conditions from 2 to 10 g/L provided optimal conditions with high survival and good growth performance, while 0 g/L and salinities >14 g/L gave poorer survival rates (p Tra catfish do not appear to be efficient osmoregulators when salinity levels exceed 10 g/L, and at raised salinity levels, growth performance is compromised. In general, results of this study confirm that providing culture environments in the Mekong River Basin do not exceed 10 g/L salinity and that cultured tra catfish can continue to perform well.

  9. Stress response of the black coral Leiopathes glaberrima when exposed to sub-lethal amounts of crude oil and dispersant

    Directory of Open Access Journals (Sweden)

    Dannise V. Ruiz-Ramos

    2017-12-01

    Full Text Available The 2010 Deep Water Horizon oil well failure released billions of gallons of crude oil into the deep Gulf of Mexico, and, combined with chemical dispersants, this oil caused significant coral mortality. However, the mechanisms by which oil and dispersed oil impact deep marine fauna are not well understood. Here, we investigate the effects of oil and dispersed oil on a black coral common in the deep Gulf of Mexico, 'Leiopathes glaberrima. 'This coral occurs in several color morphs that show ecological and genetic differences. We hypothesized that dispersed oil would be more detrimental to coral health than oil alone and that this difference would be detectable in the gene expression response of the colonies even at sub-lethal concentrations. In two experiments, four and six colonies of red and white color morphs were exposed to oil, dispersant, and dispersed oil for a minimum of 96 hours. Visual assessment indicated that indeed dispersant and dispersed oil treatments were more damaging than oil alone, for target concentrations of 25 mg L–1. Decline in health was observed for all treatments, independently of color morphotype, but the decline was faster in the white colonies exposed to dispersant. The responses to the treatments were also investigated by monitoring gene expression after 24 hours of sub-lethal chemical exposure. Coral gene expression differed by chemical stressor. Interestingly, the polycyclic aromatic hydrocarbon biomarker gene, cytochrome P450, was only up-regulated in dispersed oil but not oil alone, suggesting that the dispersant increased the availability of such hydrocarbons in the tissue. The gene expression response was apparent at 24 hours when visual impacts were not (yet detectable. The use of chemical dispersants in oil-spill remediation may cause health declines in deep-water corals and deserves further study.

  10. Environmental stress and ovarian function

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.T.

    1986-02-01

    The female reproductive system is exposed to a great variety of environmental stresses. These include many noxious chemicals consumed either intentionally in the form of therapeutic and recreational drugs, or unwittingly as residues in the food we eat or pollutants in the air we breathe. These stresses and noxious agents influence ovarian function through actions at a number of sites and by diverse mechanisms. Sites of action include: the hypothalamo-hypophyseal system, resulting in disruption of the normal pattern of gonadotropin secretion; the ovary, resulting in direct destruction of the oocyte (ovotoxicity) or genetic damage (mutagenicity); and other organs, leading indirectly to altered ovarian function, e.g., through metabolic alterations that change the balance of feedback control of the hypothalamo-pituitary-ovarian system. Susceptibility of the ovaries to the different classes of agents depends on the stage of development at which exposure occurs. Consequences may be temporary and reversible when the source of the stress is removed, or permanent if exposure occurs at a critical stage in ovarian or hypothalamic differentiation.

  11. Environmental stress cracking of polymers

    Science.gov (United States)

    Mahan, K. I.

    1980-01-01

    A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.

  12. Ribosomal genes and heat shock proteins as putative markers for chronic, sublethal heat stress in Arctic charr: applications for aquaculture and wild fish.

    Science.gov (United States)

    Quinn, Nicole L; McGowan, Colin R; Cooper, Glenn A; Koop, Ben F; Davidson, William S

    2011-09-22

    Arctic charr thrive at high densities and can live in freshwater year round, making this species especially suitable for inland, closed containment aquaculture. However, it is a cold-water salmonid, which both limits where the species can be farmed and places wild populations at particular risk to climate change. Previously, we identified genes associated with tolerance and intolerance to acute, lethal temperature stress in Arctic charr. However, there remained a need to examine the genes involved in the stress response to more realistic temperatures that could be experienced during a summer heat wave in grow-out tanks that are not artificially cooled, or under natural conditions. Here, we exposed Arctic charr to sublethal heat stress of 15-18°C for 72 h, and gill tissues extracted before, during (i.e., at 72 h), immediately after cooling and after 72 h of recovery at ambient temperature (6°C) were used for gene expression profiling by microarray and qPCR analyses. The results revealed an expected pattern for heat shock protein expression, which was highest during heat exposure, with significantly reduced expression (approaching control levels) quickly thereafter. We also found that the expression of numerous ribosomal proteins was significantly elevated immediately and 72 h after cooling, suggesting that the gill tissues were undergoing ribosome biogenesis while recovering from damage caused by heat stress. We suggest that these are candidate gene targets for the future development of genetic markers for broodstock development or for monitoring temperature stress and recovery in wild or cultured conditions.

  13. Environmentally realistic exposure to weathered North Sea oil: Sublethal effects in Atlantic cod (Gadus morhua) and turbot (Scophthalmus maximus).

    Science.gov (United States)

    Holth, Tor Fredrik; Storset, Audun; Ribeiro, Anne Luise; Ólafsdóttir, Ásdís; Halldórsson, Halldór Pálmar; Hylland, Ketil

    2017-01-01

    With increasing oil and gas activities and transport in the Arctic, there is a need to understand how operational or accidental releases of substances affect marine organisms from a pristine environment. The aim of the current study was to describe and compare the responses of two marine fish species, Atlantic cod (Gadus morhua) and turbot (Scophthalmus maximus), following exposure to three levels (low, medium, high) of the water-soluble fraction of a North Sea crude oil for 16 days. The exposure system simulated environmental exposure by allowing clean seawater to percolate through gravel covered in weathered oil before being introduced to aquaria. Both polycyclic aromatic hydrocarbon (PAH) metabolite bile concentrations and cytochrome P4501A (CYP1A) levels and activity increased markedly in comparison with controls in both species, but there were no significant differences between the three exposures. Turbot possessed 4-5-fold higher concentrations of two PAH bile metabolites compared to Atlantic cod by day 8. In contrast, hepatic CYP1A activity in cod was consistently 2-6-fold higher than in turbot with increasing differences over the experimental period. Baseline DNA strand breaks in lymphocytes and kidney cells were low in both species, but was elevated for all treatments by day two. There were no marked indications of the treatments affecting immune functions in either species. This investigation demonstrated that there may be significant differences in responses between species receiving identical exposures and that DNA strand breaks in lymphocytes and kidney cells are sensitive to confinement stress. Data also indicate that some species, such as turbot, may adapt to treatments within days and weeks.

  14. Evaluating the stress response as a bioindicator of sub-lethal effects of crude oil exposure in wild house sparrows (Passer domesticus).

    Science.gov (United States)

    Lattin, Christine R; Ngai, Heather M; Romero, L Michael

    2014-01-01

    Petroleum can disrupt endocrine function in humans and wildlife, and interacts in particularly complex ways with the hypothalamus-pituitary-adrenal (HPA) axis, responsible for the release of the stress hormones corticosterone and cortisol (hereafter CORT). Ingested petroleum can act in an additive fashion with other stressors to cause increased mortality, but it is not clear exactly why--does petroleum disrupt feedback mechanisms, stress hormone production, or both? This laboratory study aimed to quantify the effects of ingested Gulf of Mexico crude oil on the physiological stress response of house sparrows (Passer domesticus). We examined baseline and stress-induced CORT, negative feedback, and adrenal sensitivity in house sparrows given a 1% oil or control diet (n = 12 in each group). We found that four weeks on a 1% oil diet did not alter baseline CORT titers or efficacy of negative feedback, but significantly reduced sparrows' ability to secrete CORT in response to a standardized stressor and adrenocorticotropin hormone injection, suggesting that oil damages the steroid-synthesizing cells of the adrenal. In another group of animals on the same 1% oil (n = 9) or control diets (n = 8), we examined concentrations of eight different blood chemistry parameters, and CORT in feathers grown before and during the feeding experiments as other potential biomarkers of oil exposure. None of the blood chemistry parameters differed between birds on the oil and control diets after two or four weeks of feeding, nor did feather CORT differ between the two groups. Overall, this study suggests that the response of CORT to stressors, but not baseline HPA function, may be a particularly sensitive bioindicator of sub-lethal chronic effects of crude oil exposure.

  15. Evaluating the stress response as a bioindicator of sub-lethal effects of crude oil exposure in wild house sparrows (Passer domesticus.

    Directory of Open Access Journals (Sweden)

    Christine R Lattin

    Full Text Available Petroleum can disrupt endocrine function in humans and wildlife, and interacts in particularly complex ways with the hypothalamus-pituitary-adrenal (HPA axis, responsible for the release of the stress hormones corticosterone and cortisol (hereafter CORT. Ingested petroleum can act in an additive fashion with other stressors to cause increased mortality, but it is not clear exactly why--does petroleum disrupt feedback mechanisms, stress hormone production, or both? This laboratory study aimed to quantify the effects of ingested Gulf of Mexico crude oil on the physiological stress response of house sparrows (Passer domesticus. We examined baseline and stress-induced CORT, negative feedback, and adrenal sensitivity in house sparrows given a 1% oil or control diet (n = 12 in each group. We found that four weeks on a 1% oil diet did not alter baseline CORT titers or efficacy of negative feedback, but significantly reduced sparrows' ability to secrete CORT in response to a standardized stressor and adrenocorticotropin hormone injection, suggesting that oil damages the steroid-synthesizing cells of the adrenal. In another group of animals on the same 1% oil (n = 9 or control diets (n = 8, we examined concentrations of eight different blood chemistry parameters, and CORT in feathers grown before and during the feeding experiments as other potential biomarkers of oil exposure. None of the blood chemistry parameters differed between birds on the oil and control diets after two or four weeks of feeding, nor did feather CORT differ between the two groups. Overall, this study suggests that the response of CORT to stressors, but not baseline HPA function, may be a particularly sensitive bioindicator of sub-lethal chronic effects of crude oil exposure.

  16. Copia is transcriptionally responsive to environmental stress.

    OpenAIRE

    Strand, D J; McDonald, J F

    1985-01-01

    Adult Drosophila subjected to a variety of environmental stresses that induce classic Drosophila heat shock response simultaneously exhibit a rapid and significant rise in copia homologous transcripts. Levels of Drosophila Adh (alcohol dehydrogenase gene) and 18s ribosomal RNA were unaffected by environmental stress. Copia's ability to be induced by stress is correlated with the presence of sequences homologous to the heat shock promoter consensus sequence which appear to be appropriately pos...

  17. Environmental stress and epigenetic transgenerational inheritance.

    Science.gov (United States)

    Skinner, Michael K

    2014-09-05

    Previous studies have shown a wide variety of environmental toxicants and abnormal nutrition can promote the epigenetic transgenerational inheritance of disease. More recently a number of studies have indicated environmental stress can also promote epigenetic alterations that are transmitted to subsequent generations to induce pathologies. A recent study by Yao and colleagues demonstrated gestational exposure to restraint stress and forced swimming promoted preterm birth risk and adverse newborn outcomes generationally. This ancestral stress promoted the epigenetic transgenerational inheritance of abnormalities in the great-grand offspring of the exposed gestating female. Several studies now support the role of environmental stress in promoting the epigenetic transgenerational inheritance of disease. Observations suggest ancestral environmental stress may be a component of disease etiology in the current population.

  18. The effects of acute waterborne exposure to sublethal concentrations of molybdenum on the stress response in rainbow trout, Oncorhynchus mykiss.

    Directory of Open Access Journals (Sweden)

    Chelsea D Ricketts

    Full Text Available To determine if molybdenum (Mo is a chemical stressor, fingerling and juvenile rainbow trout (Oncorhynchus mykiss were exposed to waterborne sodium molybdate (0, 2, 20, or 1,000 mg l-1 of Mo and components of the physiological (plasma cortisol, blood glucose, and hematocrit and cellular (heat shock protein [hsp] 72, hsp73, and hsp90 in the liver, gills, heart, and erythrocytes and metallothionein [MT] in the liver and gills stress responses were measured prior to initiation of exposure and at 8, 24, and 96 h. During the acute exposure, plasma cortisol, blood glucose, and hematocrit levels remained unchanged in all treatments. Heat shock protein 72 was not induced as a result of exposure and there were no detectable changes in total hsp70 (72 and 73, hsp90, and MT levels in any of the tissues relative to controls. Both fingerling and juvenile fish responded with similar lack of apparent sensitivity to Mo exposure. These experiments demonstrate that exposure to waterborne Mo of up to 1,000 mg l(-1 did not activate a physiological or cellular stress response in fish. Information from this study suggests that Mo water quality guidelines for the protection of aquatic life are highly protective of freshwater fish, namely rainbow trout.

  19. Stress influences environmental donation behavior in men.

    Science.gov (United States)

    Sollberger, Silja; Bernauer, Thomas; Ehlert, Ulrike

    2016-01-01

    Stress has been found to have both positive and negative effects on prosocial behavior, suggesting the involvement of moderating factors such as context and underlying motives. In the present study, we investigated the conditions under which acute stress leads to an increase vs. decrease in environmental donation behavior as an indicator of prosocial behavior. In particular, we examined whether the effects of stress depended on preexisting pro-environmental orientation and stage of the donation decision (whether or not to donate vs. the amount to be donated). Male participants with either high (N=40) or low (N=39) pro-environmental orientation were randomly assigned to a social stress test or a control condition. Salivary cortisol was assessed repeatedly before and after stress induction. At the end of the experiment, all subjects were presented with an opportunity to donate a portion of their monetary compensation to a climate protection foundation. We found that stress significantly increased donation frequency, but only in subjects with low pro-environmental orientation. Congruously, their decision to donate was positively associated with cortisol response to the stress test and the emotion regulation strategy mood repair, as well as accompanied by an increase in subjective calmness. In contrast, among the participants who decided to donate, stress significantly reduced the donated amount of money, regardless of pro-environmental orientation. In conclusion, our findings suggest that acute stress might generally activate more self-serving motivations, such as making oneself feel better and securing one's own material interests. Importantly, however, a strong pro-environmental orientation partially prevented these effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Environmental stress and flowering time

    OpenAIRE

    Riboni, Matteo; Robustelli Test, Alice; Galbiati, Massimo; Tonelli, Chiara; Conti, Lucio

    2014-01-01

    Plants maximize their chances to survive adversities by reprogramming their development according to environmental conditions. Adaptive variations in the timing to flowering reflect the need for plants to set seeds under the most favorable conditions. A complex network of genetic pathways allows plants to detect and integrate external (e.g., photoperiod and temperature) and/or internal (e.g., age) information to initiate the floral transition. Furthermore different types of environmental stre...

  1. A single exposure to a sublethal pediocin concentration initiates a resistance-associated temporal cell envelope and general stress response in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Licht, Tine Rask

    2015-01-01

    was to determine if exposure to sublethal concentrations of pediocin-containing Lactobacillus plantarum WHE 92 supernatant could prime L. monocytogenes for resistance. By transcriptomic analysis, we found two, 55 and 539 genes differentially expressed after 10, 60 and 180 min of exposure to L. plantarum WHE 92...... resistant than wild types to L. plantarum WHE 92 supernatant. LisRK, SigB and SigL regulation and genes associated with resistance are involved in the temporal adaptive response to pediocin and all three regulatory systems affect pediocin resistance. Thus, a single exposure to a sublethal pediocin...

  2. Inoculation Stress Hypothesis of Environmental Enrichment

    Science.gov (United States)

    Crofton, Elizabeth J.; Zhang, Yafang; Green, Thomas A.

    2014-01-01

    One hallmark of psychiatric conditions is the vast continuum of individual differences in susceptibility vs. resilience resulting from the interaction of genetic and environmental factors. The environmental enrichment paradigm is an animal model that is useful for studying a range of psychiatric conditions, including protective phenotypes in addiction and depression models. The major question is how environmental enrichment, a non-drug and non-surgical manipulation, can produce such robust individual differences in such a wide range of behaviors. This paper draws from a variety of published sources to outline a coherent hypothesis of inoculation stress as a factor producing the protective enrichment phenotypes. The basic tenet suggests that chronic mild stress from living in a complex environment and interacting non-aggressively with conspecifics can inoculate enriched rats against subsequent stressors and/or drugs of abuse. This paper reviews the enrichment phenotypes, mulls the fundamental nature of environmental enrichment vs. isolation, discusses the most appropriate control for environmental enrichment, and challenges the idea that cortisol/corticosterone equals stress. The intent of the inoculation stress hypothesis of environmental enrichment is to provide a scaffold with which to build testable hypotheses for the elucidation of the molecular mechanisms underlying these protective phenotypes and thus provide new therapeutic targets to treat psychiatric/neurological conditions. PMID:25449533

  3. Environmental stresses disrupt telomere length homeostasis.

    Directory of Open Access Journals (Sweden)

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  4. Organelle redox autonomy during environmental stress.

    Science.gov (United States)

    Bratt, Avishay; Rosenwasser, Shilo; Meyer, Andreas; Fluhr, Robert

    2016-09-01

    Oxidative stress is generated in plants because of inequalities in the rate of reactive oxygen species (ROS) generation and scavenging. The subcellular redox state under various stress conditions was assessed using the redox reporter roGFP2 targeted to chloroplastic, mitochondrial, peroxisomal and cytosolic compartments. In parallel, the vitality of the plant was measured by ion leakage. Our results revealed that during certain physiological stress conditions the changes in roGFP2 oxidation are comparable to application of high concentrations of exogenous H2 O2 . Under each stress, particular organelles were affected. Conditions of extended dark stress, or application of elicitor, impacted chiefly on the status of peroxisomal redox state. In contrast, conditions of drought or high light altered the status of mitochondrial or chloroplast redox state, respectively. Amalgamation of the results from diverse environmental stresses shows cases of organelle autonomy as well as multi-organelle oxidative change. Importantly, organelle-specific oxidation under several stresses proceeded cell death as measured by ion leakage, suggesting early roGFP oxidation as predictive of cell death. The measurement of redox state in multiple compartments enables one to look at redox state connectivity between organelles in relation to oxidative stress as well as assign a redox fingerprint to various types of stress conditions. © 2016 John Wiley & Sons Ltd.

  5. Markers of environmental stress in forest trees

    Science.gov (United States)

    Rakesh Minocha

    1999-01-01

    Gradual long-term changes in soil and environmental factors due to human activity, may affect forest trees and lead to loss of forest productivity. In most cases, the symptoms of stress appear too late for their effects to be reversed through management and/or treatment.

  6. Environmental stress, facilitation, competition, and coexistence.

    Science.gov (United States)

    Hart, Simon P; Marshall, Dustin J

    2013-12-01

    The major theories regarding the combined influence of the environment and species interactions on population and community dynamics appear to conflict. Stress/ disturbance gradient models of community organization, such as the stress gradient hypothesis, emphasize a diminished role for competition in harsh environments whereas modern coexistence theory does not. Confusion about the role of species interactions in harsh environments is perpetuated by a disconnect between population dynamics theory and data. We linked theory and data using response surface experiments done in the field to parameterize mathematical, population-dynamic competition models. We replicated our experiment across two environments that spanned a common and important environmental stress gradient for determining community structure in benthic marine systems. We generated quantitative estimates of the effects of environmental stress on population growth rates and the direction and strength of intra- and interspecific interactions within each environment. Our approach directly addressed a perpetual blind spot in this field by showing how the effects of competition can be intensified in stressful environments even though the apparent strength of competition remains unchanged. Furthermore, we showed how simultaneous, reciprocal competitive and facilitative effects can stabilize population dynamics in multispecies communities in stressful environments.

  7. NASA flight electronics environmental stress screening survey

    Energy Technology Data Exchange (ETDEWEB)

    Marian, E.J.

    1983-12-01

    Data compiled by the Institute of Environmental Sciences were used to establish guidelines for identifying defective, abnormal, or marginal parts as well as manufacturing defects. These data are augmented with other available sources of similar information in conjunction with NASA centers data and presented in a form that may be useful to all NASA centers in planning and developing effective environmental stress screens. Information relative to thermal and vibration screens as the most effective methods for surfacing latent failures in electronic equipment at the component level is considered.

  8. Modeling and adapting production environmental stress testing

    OpenAIRE

    Wilson, Simon

    2009-01-01

    PUBLISHED This study describes the production sampling environmental stress test (PSEST) process and the offline analysis conducted. Some of the key characteristics and parameters of the test are outlined. The analytical process is based on two types of regression model, each of which links a dependent variable (the log of time to failure in each dwell, or the log of the number failed in each dwell) to independent variables such as temperature and age. These two types of regres...

  9. Breeding vegetables tolerant to environmental stress

    Energy Technology Data Exchange (ETDEWEB)

    Stoner, A.K.

    1978-12-01

    Much progress has been made in breeding vegetables tolerant to environmental stresses. However, in many cases the authors have only begun to exploit the potential of germplasm collections. Progress in breeding for stress tolerance will probably always be slow, but it can be maximized by improved support and better cooperation within and outside organizations. Better cooperation is needed among breeders and scientists of other disciplines and among breeders from different organizations. Vegetable breeders must also be willing to tackle and follow through on difficult problems. Many of the easier breeding problems have been solved. In instances where breeders are discouraged from working on difficult problems, the system needs to be changed to encourage and reward breeders. More effort must be devoted to developing stress tolerant vegetable cultivars if the US vegetable industry is to continue to meet consumer demands for reasonable priced, high-quality vegetables.

  10. Intralocus sexual conflict and environmental stress.

    Science.gov (United States)

    Berger, David; Grieshop, Karl; Lind, Martin I; Goenaga, Julieta; Maklakov, Alexei A; Arnqvist, Göran

    2014-08-01

    Intralocus sexual conflict (IaSC) occurs when selection at a given locus favors different alleles in males and females, placing a fundamental constraint on adaptation. However, the relative impact of IaSC on adaptation may become reduced in stressful environments that expose conditionally deleterious mutations to selection. The genetic correlation for fitness between males and females (rMF ) provides a quantification of IaSC across the genome. We compared IaSC at a benign (29°C) and a stressful (36°C) temperature by estimating rMF s in two natural populations of the seed beetle Callosobruchus maculatus using isofemale lines. In one population, we found substantial IaSC under benign conditions signified by a negative rMF (-0.51) and, as predicted, a significant reduction of IaSC under stress signified by a reversed and positive rMF (0.21). The other population displayed low IaSC at both temperatures (rMF : 0.38; 0.40). In both populations, isofemale lines harboring alleles beneficial to males but detrimental to females at benign conditions tended to show overall low fitness under stress. These results offer support for low IaSC under stress and suggest that environmentally sensitive and conditionally deleterious alleles that are sexually selected in males mediate changes in IaSC. We discuss implications for adaptive evolution in sexually reproducing populations. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. Preserving cell shape under environmental stress.

    Science.gov (United States)

    Cook, Boaz; Hardy, Robert W; McConnaughey, William B; Zuker, Charles S

    2008-03-20

    Maintaining cell shape and tone is crucial for the function and survival of cells and tissues. Mechanotransduction relies on the transformation of minuscule mechanical forces into high-fidelity electrical responses. When mechanoreceptors are stimulated, mechanically sensitive cation channels open and produce an inward transduction current that depolarizes the cell. For this process to operate effectively, the transduction machinery has to retain integrity and remain unfailingly independent of environmental changes. This is particularly challenging for poikilothermic organisms, where changes in temperature in the environment may impact the function of mechanoreceptor neurons. Thus, we wondered how insects whose habitat might quickly vary over several tens of degrees of temperature manage to maintain highly effective mechanical senses. We screened for Drosophila mutants with defective mechanical responses at elevated ambient temperatures, and identified a gene, spam, whose role is to protect the mechanosensory organ from massive cellular deformation caused by heat-induced osmotic imbalance. Here we show that Spam protein forms an extracellular shield that guards mechanosensory neurons from environmental insult. Remarkably, heterologously expressed Spam protein also endowed other cells with superb defence against physically and chemically induced deformation. We studied the mechanical impact of Spam coating and show that spam-coated cells are up to ten times stiffer than uncoated controls. Together, these results help explain how poikilothermic organisms preserve the architecture of critical cells during environmental stress, and illustrate an elegant and simple solution to such challenge.

  12. Preserving cell shape under environmental stress

    Science.gov (United States)

    Cook, Boaz; Hardy, Robert W.; McConnaughey, William B.; Zuker, Charles S.

    2008-01-01

    Maintaining cell shape and tone is crucial for the function and survival of cells and tissues. Mechanotransduction relies on the transformation of minuscule mechanical forces into high-fidelity electrical responses1 2 3. When mechanoreceptors are stimulated, mechanically sensitive cation channels open and produce an inward transduction current that depolarizes the cell. For this process to operate effectively, the transduction machinery has to retain integrity and remain unfailingly independent of environmental changes. This is particularly challenging for poikilothermic organisms, where changes in temperature in the environment may impact the function of mechanoreceptor neurons. Thus, we wondered how insects whose habitat might quickly vary over several tens of degrees of temperature manage to maintain highly effective mechanical senses. We screened for Drosophila mutants with defective mechanical responses at elevated ambient temperatures, and identified a gene, spam, whose role is to protect the mechanosensory organ from massive cellular deformation caused by heat-induced osmotic imbalance. Here, we show that Spam protein forms an extracellular shield that guards mechanosensory neurons from environmental insult. Remarkably, heterologously expressed Spam protein also endowed other cells with superb defense against physically- and chemically-induced deformation. We studied the mechanical impact of Spam-coating and show that spam-coated cells are up to ten times stiffer than uncoated-controls. Together, these results help explain how poikilothermic organisms preserve the architecture of critical cells during environmental stress, and illustrate an elegant and simple solution to such challenge. PMID:18297055

  13. Greenhouse gases, environmental stress and ecological analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, J.S.; Moghe, S.; Khanna, P. (National Environmental Engineering Research Institute, Nagpur (India). Computer Applications Division)

    1992-01-01

    It has been observed that ozone formation in the troposphere is predominantly restricted to late spring and summer. Ozone along with additional air pollutants induces long-lasting physiological and biochemical disturbances. During last few decades there has been tremendous increase in forest damage and decline in forest area all over the globe. Well known damage symptoms and empirical data on the physiological responses of plants to pollutants including greenhouse gases, have established the importance of role played by greenhouse gases in regard to growth and development of a tree. The complex interactions and resulting environmental stress have been studied and analysed through application of sensitivity analysis. Sensitivity analysis has been carried out for leaf, stem and root (state variables representing a tree) in terms of changes in conversion efficiency parameter for the foliage, assimilate partitioning coefficients, and co-efficients dependent upon losses due to mortality, grazing and litter fall. 14 refs., 4 figs.

  14. Environmental Stress Crazing and Cracking of Transparent Polymers

    Science.gov (United States)

    1989-02-01

    MTL TR 89-12 AD ENVIRONMENTAL STRESS CRAZING AND CRACKING OF TRANSPARENT POLYMERS k -A205 624 ALEX J. HSIEH and JANICE J. VANSELOW POLYMER RESEARCH...SubwLe) 5. TYPE OF REPORT & PERIOD COVERED Final Report ENVIRONMENTAL STRESS CRAZING AND CRACKING OF TRANSPARENT POLYMERS S. PERFORMING ORG. REPORT...behavior is called environmental stress crazing or cracking (ESC). Aggressive surface active agents can cause ductile materials to fracture brittlely

  15. Effects of Environmental Stress on Individual Decision Making

    Science.gov (United States)

    1987-12-15

    DEC 1987 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Effects of Environmental Stress on Individual Decision Making 5a...Title of Thesis: Effects of Environmental Stress on Individual Decision Making Name of Candidate: Monica H. Schaeffer Doctor of Philosophy Degree...Psychology Uniformed Services University of the Health Sciences ii Abstract Title of Dissertation: Effects of Environmental Stress on Individual

  16. Acute and sublethal toxicity of seepage waters from garbage dumps to permanent cell lines and primary cultures of hepatocytes from rainbow trout (Oncorhynchus mykiss): a novel approach to environmental risk assessment for chemicals and chemical mixtures.

    Science.gov (United States)

    Zahn, T; Hauck, C; Holzschuh, J; Braunbeck, T

    1995-01-01

    In order to evaluate the suitability of cytopathological criteria in isolated fish hepatocytes as endpoints in (eco)toxicological research, liver cells isolated from rainbow trout (Oncorhynchus mykiss) by collagenase perfusion were exposed in vitro for up to 5 days to sublethal dilutions of two seepage water samples collected from garbage dumps. Hepatocytes were analysed with respect to acute (lactate dehydrogenase leakage) and sublethal toxicity (electron microscopy, stereology). In addition, acute toxicity (24 h) was tested in the piscine fibrocytic cell line R1 by means of crystal violet staining and neutral red retention. Acute toxicity in R1 cells and isolated hepatocytes could only be documented for sample I at dilutions of 1:2 and 1:4. This difference in toxicity could be corroborated by cytological alterations in isolated hepatocytes, which could be documented for dilutions of 1:100 and 1:8 in samples I and II, respectively. Ultrastructural changes were time- and dose-dependent and included reduction of hepatocellular volume, disturbance of intracellular compartmentation, modified heterochromatin distribution, transformation of rough endoplasmic reticulum into concentric membrane whorls, proliferation of lysosomes and cytoplasmic vacuoles, as well as reduction of hepatocellular glycogen. Although several hepatocellular reactions were found after exposure to either sample, the syndrome of ultrastructural alterations allowed clear differentiation between the two samples. Results illustrate that cytological effects far below macroscopically detectable damage can be discovered not only in intact fish, but also in fish cell culture systems. On the basis of the data presented, a multi-tiered test procedure for aquatic toxicity assessment exclusively based on tests with fish cell culture systems is proposed: (1) rapid screening for acute toxicity with permanent cell lines; (2) short-term tests with more complex, yet more sensitive systems such as primary

  17. [Repair mechanism of frozen sublethally damaged Staphylococcus aureus].

    Science.gov (United States)

    Huang, Zhongmin; Lv, Haipeng; Ai, Zhilu; Wang, Na; Xie, Xinhua; Fan, Huiping; Pan, Zhili; Suo, Biao

    2015-11-04

    To study the repair mechanisms of frozen sublethally damaged Staphylococcus aurous cells. We resuscitated frozen sublethally damaged S. aureus at 37 degrees C for different time within 3 h. Meanwhile, we compared the morphological changes of the frozen sublethally damaged cells after 1 h of resuscitation using transmission electron microscopy assay (TEM). The expressions of the transcriptional attenuator MsrR (msrR), iron (Fe3+) ABC transporter ATP-binding protein (fhuC), and cytochrome b (cytB) genes were quantitatively analyzed by real-time fluorescence quantitative PCR (Real-time PCR) method. The content of cells outside leakage, active oxygen (ROS), and superoxide dismutase (SOD) activity were also determined by ultraviolet spectrophotometry. More than 99% of the frozen sublethally damaged S. aureus repaired after 3 h. The resuscitated cells expressed an equal resistance to high concentration of NaCl. Real-time PCR results showed that the msrR and fhuC genes expressions were down-regulated, whereas the cytB gene expression was up-regulated significantly. The frozen sublethally damaged S. aureus cellar surface ultrastructure significant changed during resuscitation. The cell surface became compact and sturdy from smooth and transparent. The cell leakage rate of ultraviolet absorption material gradually decreased. Meanwhile, the intracellular ROS level declined along with the decrease of SOD activity. Frozen sublethally damaged cells may regain the capability of resistance to high salt stress by repairing cell membrane integrity, reducing the content of ROS through gene regulation, inhibiting the toxicity of active oxygen to the cells. Meanwhile, the regulation of metabolism related genes (cytB) provides the energy for the requirement of cells, therefore, the frozen sublethally damaged cells were repaired finally.

  18. Changes in the Expression of Biofilm-Associated Surface Proteins in Staphylococcus aureus Food-Environmental Isolates Subjected to Sublethal Concentrations of Disinfectants

    Directory of Open Access Journals (Sweden)

    Lenka Cincarova

    2016-01-01

    Full Text Available Sublethal concentrations (sub-MICs of certain disinfectants are no longer effective in removing biofilms from abiotic surfaces and can even promote the formation of biofilms. Bacterial cells can probably adapt to these low concentrations of disinfectants and defend themselves by way of biofilm formation. In this paper, we report on three Staphylococcus aureus biofilm formers (strong B+++, moderate B++, and weak B+ that were cultivated with sub-MICs of commonly used disinfectants, ethanol or chloramine T, and quantified using Syto9 green fluorogenic nucleic acid stain. We demonstrate that 1.25–2.5% ethanol and 2500 μg/mL chloramine T significantly enhanced S. aureus biofilm formation. To visualize differences in biofilm compactness between S. aureus biofilms in control medium, 1.25% ethanol, or 2500 μg/mL chloramine T, scanning electron microscopy was used. To describe changes in abundance of surface-exposed proteins in ethanol- or chloramine T-treated biofilms, surface proteins were prepared using a novel trypsin shaving approach and quantified after dimethyl labeling by LC-LTQ/Orbitrap MS. Our data show that some proteins with adhesive functions and others with cell maintenance functions and virulence factor EsxA were significantly upregulated by both treatments. In contrast, immunoglobulin-binding protein A was significantly downregulated for both disinfectants. Significant differences were observed in the effect of the two disinfectants on the expression of surface proteins including some adhesins, foldase protein PrsA, and two virulence factors.

  19. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    Science.gov (United States)

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  20. Induction and stability of oxidative stress adaptation in Listeria monocytogenes EGD (Bug600) and F1057 in sublethal concentrations of H2O2 and NaOH

    Science.gov (United States)

    Food processing and food handling environments may contain residual levels of sanitizers or cleaners which may trigger oxidative stress adaptation in Listeria monocytogenes. The aim of this study was to determine the induction and stability of oxidative stress adaptation in L. monocytogenes EGD (Bug...

  1. Evaluating the Stress Response as a Bioindicator of Sub-Lethal Effects of Crude Oil Exposure in Wild House Sparrows (Passer domesticus)

    OpenAIRE

    Lattin, Christine R.; Ngai, Heather M.; Romero, L. Michael

    2014-01-01

    Petroleum can disrupt endocrine function in humans and wildlife, and interacts in particularly complex ways with the hypothalamus-pituitary-adrenal (HPA) axis, responsible for the release of the stress hormones corticosterone and cortisol (hereafter CORT). Ingested petroleum can act in an additive fashion with other stressors to cause increased mortality, but it is not clear exactly why--does petroleum disrupt feedback mechanisms, stress hormone production, or both? This laboratory study aime...

  2. Environmental stress in plants. Biochemical and physiological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, J.H.

    1989-01-01

    Environmental stresses represent the most limiting factors to agricultural productivity. Environmental stresses impact not only crops which are presently being cultivated, but also are significant barriers to the introduction of crop plants into areas which are not at this time being used for agriculture. A significant problem for agriculture in the world is the major variation in crop yields from year to year due to variations in environmental stresses such as drought, flooding, salinity, and high and low temperatures. Presently, the many advances being made in plant cell and molecular biology offer new approaches to elucidate the physiological, biochemical and genetic mechanisms of tolerance to environmental stresses. We believe within the early years of the twenty-first century that many genetic lines of agronomic plants will be improved by the introduction of stable genes that provide resistance to most stresses. These new and improved genetic lines of crop plants will greatly stabilize agricultural productivity worldwide. (orig./EF).

  3. Mechanisms of yeast resistance to environmental stress 

    Directory of Open Access Journals (Sweden)

    Agata Piecuch

    2013-04-01

    Full Text Available Changes in environmental conditions might be a stress factor for yeast cells. There are several mechanisms of stress tolerance, developed by the cell, which activate when the stress appears. Different transcription factors coordinate the expression of stress response genes. Msn2/4p regulate the expression of the general stress response. Heat shock defense involves heat shock proteins (Hsp, controlled by Hsf1p. Osmotic shock induces the MAP kinase cascade (HOG, whereas the oxidative stress response requires the YAP network. Fungicide resistance is mediated mainly by the activity of membrane transporters and changes in the structure of the plasma membrane. 

  4. Chronic environmental stress enhances tolerance to seasonal gradual warming in marine mussels.

    Directory of Open Access Journals (Sweden)

    Ionan Marigómez

    Full Text Available In global climate change scenarios, seawater warming acts in concert with multiple stress sources, which may enhance the susceptibility of marine biota to thermal stress. Here, the responsiveness to seasonal gradual warming was investigated in temperate mussels from a chronically stressed population in comparison with a healthy one. Stressed and healthy mussels were subjected to gradual temperature elevation for 8 days (1°C per day; fall: 16-24°C, winter: 12-20°C, summer: 20-28°C and kept at elevated temperature for 3 weeks. Healthy mussels experienced thermal stress and entered the time-limited survival period in the fall, became acclimated in winter and exhibited sublethal damage in summer. In stressed mussels, thermal stress and subsequent health deterioration were elicited in the fall but no transition into the critical period of time-limited survival was observed. Stressed mussels did not become acclimated to 20°C in winter, when they experienced low-to-moderate thermal stress, and did not experience sublethal damage at 28°C in summer, showing instead signs of metabolic rate depression. Overall, although the thermal threshold was lowered in chronically stressed mussels, they exhibited enhanced tolerance to seasonal gradual warming, especially in summer. These results challenge current assumptions on the susceptibility of marine biota to the interactive effects of seawater warming and pollution.

  5. Chronic environmental stress enhances tolerance to seasonal gradual warming in marine mussels.

    Science.gov (United States)

    Marigómez, Ionan; Múgica, Maria; Izagirre, Urtzi; Sokolova, Inna M

    2017-01-01

    In global climate change scenarios, seawater warming acts in concert with multiple stress sources, which may enhance the susceptibility of marine biota to thermal stress. Here, the responsiveness to seasonal gradual warming was investigated in temperate mussels from a chronically stressed population in comparison with a healthy one. Stressed and healthy mussels were subjected to gradual temperature elevation for 8 days (1°C per day; fall: 16-24°C, winter: 12-20°C, summer: 20-28°C) and kept at elevated temperature for 3 weeks. Healthy mussels experienced thermal stress and entered the time-limited survival period in the fall, became acclimated in winter and exhibited sublethal damage in summer. In stressed mussels, thermal stress and subsequent health deterioration were elicited in the fall but no transition into the critical period of time-limited survival was observed. Stressed mussels did not become acclimated to 20°C in winter, when they experienced low-to-moderate thermal stress, and did not experience sublethal damage at 28°C in summer, showing instead signs of metabolic rate depression. Overall, although the thermal threshold was lowered in chronically stressed mussels, they exhibited enhanced tolerance to seasonal gradual warming, especially in summer. These results challenge current assumptions on the susceptibility of marine biota to the interactive effects of seawater warming and pollution.

  6. Burn-In: Which Environmental Stress Screens Should be Used?

    Science.gov (United States)

    1981-03-01

    RADC-TR-81 47 In-House Report3 I \\ March 1981 , . BURN-IN: WHICH ENVIRONMENTAL STRESS SCREENS SHOULD BE USED Douglas Karam C=){ AMOVID FOR P .SLIC...PAOIL !Whn. Do.,. enered) RADC-TR-8l-87y____________ k` URN-;N: WHICH ENVIRONMENTAL ~ STRESS SCREENS 111-House R~eport ’ SHOULD BE USEPqiolm01.RPT Q§t 7... Environmental Stress Screening Debugging 10. ASSTRACT (continue on reverse side it mecoe.ary end identifly by 4leck number) ’?his report is based on a literature

  7. Impact of prenatal environmental stress on cortical development

    Directory of Open Access Journals (Sweden)

    Seiji eIshii

    2015-05-01

    Full Text Available Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS cells to demonstrate: 1. molecular mechanisms shared by various types of environmental stressors, 2. the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and 3. interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders.

  8. Impact of prenatal environmental stress on cortical development.

    Science.gov (United States)

    Ishii, Seiji; Hashimoto-Torii, Kazue

    2015-01-01

    Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS) cells to demonstrate: (1) molecular mechanisms shared by various types of environmental stressors, (2) the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and (3) interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders.

  9. Prion switching in response to environmental stress.

    Directory of Open Access Journals (Sweden)

    Jens Tyedmers

    2008-11-01

    Full Text Available Evolution depends on the manner in which genetic variation is translated into new phenotypes. There has been much debate about whether organisms might have specific mechanisms for "evolvability," which would generate heritable phenotypic variation with adaptive value and could act to enhance the rate of evolution. Capacitor systems, which allow the accumulation of cryptic genetic variation and release it under stressful conditions, might provide such a mechanism. In yeast, the prion [PSI(+] exposes a large array of previously hidden genetic variation, and the phenotypes it thereby produces are advantageous roughly 25% of the time. The notion that [PSI(+] is a mechanism for evolvability would be strengthened if the frequency of its appearance increased with stress. That is, a system that mediates even the haphazard appearance of new phenotypes, which have a reasonable chance of adaptive value would be beneficial if it were deployed at times when the organism is not well adapted to its environment. In an unbiased, high-throughput, genome-wide screen for factors that modify the frequency of [PSI(+] induction, signal transducers and stress response genes were particularly prominent. Furthermore, prion induction increased by as much as 60-fold when cells were exposed to various stressful conditions, such as oxidative stress (H2O2 or high salt concentrations. The severity of stress and the frequency of [PSI(+] induction were highly correlated. These findings support the hypothesis that [PSI(+] is a mechanism to increase survival in fluctuating environments and might function as a capacitor to promote evolvability.

  10. Plant resistance to cold stress: Mechanisms and environmental ...

    Indian Academy of Sciences (India)

    2004-10-28

    Oct 28, 2004 ... Home; Journals; Journal of Biosciences; Volume 29; Issue 4. Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening ... Keywords. Cold acclimation of plants; environmental signals; frost hardening; photoperiod; phytochrome; Scots pine ...

  11. Selective bioaccumulation of neonicotinoids and sub-lethal effects in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil.

    Science.gov (United States)

    Chevillot, Fanny; Convert, Yannice; Desrosiers, Mélanie; Cadoret, Nicole; Veilleux, Éloïse; Cabana, Hubert; Bellenger, Jean-Philippe

    2017-11-01

    In this study, we evaluated the bioaccumulation of neonicotinoid insecticides in the earthworm Eisenia andrei exposed to environmental concentrations (neonicotinoids by exposing earthworms to 7 neonicotinoids alone and in more complex mixtures of 54 pesticides then 69 organic contaminants (OCs) (54 pesticides and 15 pharmaceuticals). We applied long-term (56-day) toxicity tests to further evaluate the effect of OCs on earthworms. We monitored adult survival, adult DNA damage using a comet assay on earthworm coelomocyte cells, and reproduction performance (i.e. number of cocoons and number and dry weight of juveniles). A selective bioaccumulation of neonicotinoid insecticides in adult and juvenile earthworms was found. This bioaccumulation is concomitant with a significant increase in adult DNA damage and significant effects on reproduction when earthworms were exposed to neonicotinoid insecticides alone. This study reveals a new potential point of entry of neonicotinoid insecticides into the wildlife food chain and also shows that E. andrei reproduction could be affected by long-term exposure to environmental concentrations of OCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evolution under environmental stress at macro- and microscales.

    Science.gov (United States)

    Nevo, Eviatar

    2011-01-01

    Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589-610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717-745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) "Evolution Canyon"; 5) human brain evolution, and 6) global warming.

  13. Evolution Under Environmental Stress at Macro- and Microscales

    Science.gov (United States)

    Nevo, Eviatar

    2011-01-01

    Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589–610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717–745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) “Evolution Canyon”; 5) human brain evolution, and 6) global warming. PMID:21979157

  14. Environmental Stress: Usaha Mengatasi Stress yang Bersumber dari Lingkungan

    Directory of Open Access Journals (Sweden)

    Antonius Atosökhi Gea

    2011-04-01

    Full Text Available There are times where human relationships with the surrounding environment takes place in a state of balance, so as not to cause pressure against him for human life. But there is also time to balance the relationship is disturbed by various events that often exceed the limits of human adaptability. This last condition arises either by events beyond human control, such as natural disasters or events that arise as a result of human engagement itself, such as over-exploitation of nature and creation of various technology products. The events that happened outside the human self has become a source of stress, which is sometimes understood as external conditions that suppress human adaptation and demanding, and sometimes also understood as a human response to external conditions, which showed special signs, either on the physical, psychological as well as on the visible behavior. Faced with the events that potentially lead to stress, humans need to do assessments leading to a positive attitude toward the stimulus. In addition it should also be developed in ways that help to achieve the adaptation that produces a good balance and lower levels of stress itself. Better anticipation can also be reached in which humans make important changes, mainly related to the views and treatment of the natural environment, and attitudes in developing and utilizing technology, especially related to the negative impacts caused.  

  15. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments

    Science.gov (United States)

    Ioannidis, Pavlos; Hamamtzoglou, Anna; Schoonvaere, Karel; Francis, Frédéric; Meeus, Ivan; Smagghe, Guy; de Graaf, Dirk C.

    2017-01-01

    In this study, different context-dependent effects of imidacloprid exposure on the honey bee response were studied. Honey bees were exposed to different concentrations of imidacloprid during a time period of 40 days. Next to these variables, a laboratory-field comparison was conducted. The influence of the chronic exposure on gene expression levels was determined using an in-house developed microarray targeting different immunity-related and detoxification genes to determine stress-related gene expression changes. Increased levels of the detoxification genes encoding, CYP9Q3 and CYT P450, were detected in imidacloprid-exposed honey bees. The different context-dependent effects of imidacloprid exposure on honey bees were confirmed physiologically by decreased hypopharyngeal gland sizes. Honey bees exposed to imidacloprid in laboratory cages showed a general immunosuppression and no detoxification mechanisms were triggered significantly, while honey bees in-field showed a resilient response with an immune stimulation at later time points. However, the treated colonies had a brood and population decline tendency after the first brood cycle in the field. In conclusion, this study highlighted the different context-dependent effects of imidacloprid exposure on the honey bee response. These findings warn for possible pitfalls concerning the generalization of results based on specific experiments with short exposure times. The increased levels of CYT P450 and CYP9Q3 combined with an immune response reaction can be used as markers for bees which are exposed to pesticides in the field. PMID:28182641

  16. Environmental and perceived stress in Australian dental undergraduates: Preliminary outcomes

    Directory of Open Access Journals (Sweden)

    Shannon Astill

    2016-12-01

    Full Text Available Background. Dental students have reported a high prevalence of psychological stress and the causes are associated with the challenging dental environmental and demographic factors. This study aimed to conduct a preliminary investigation on dental students’ stress status, using a sample of first-to-third-year Bachelor of Dental Surgery students in an Australian university. Special interests included causes of dental environmental stress and access to help services. Methods. A sample of 145 students was surveyed with a modified Dental Environmental Survey and Depression Anxiety Stress Scale in 2014. The participants’ demographic information was also collected. Results. The response rate was 95.4%. Second-year (P = 0.042, third-year (P < 0.001 and employed students (P = 0.027 were more likely to report stress resulting from transition to clinical learning. Third-year students were more often stressed about communicating and approaching staff (P = 0.023 as well as different opinions between staff (P < 0.001 and reduced holidays (P < 0.001. Students that were younger than 21 years of age (P = 0.001, that were first years (P < 0.001, and that were not in a relationship (P = 0.010 more often found difficulty of course work stressful. Students who were not in a relationship more often considered learning manual dexterity a source of stress (P = 0.034. Students previously seeking professional help were more likely to be stressed (P = 0.010. Conclusion. Causes of dental environment stress varied among years of study and demographic backgrounds. Professional support to stressed students should be enhanced. Further investigation is indicated.

  17. Effects of nanomolar copper on water plants—Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George, E-mail: george.thomas@uni.kn [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: ha-jo.staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Wellenreuther, Gerd, E-mail: Gerd.wellenreuther@desy.de [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Dickinson, Bryan C., E-mail: bryan.dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: hendrik.kuepper@uni-konstanz.de [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-09-15

    Highlights: •We found different optimal Cu requirement for different physiological mechanisms. •Kinetics and concentration thresholds of damage mechanisms were established. •Cu toxicity caused internal Cu re-distribution and inhibition of Zn uptake. •Cu deficient plants released Cu, indicating lack of high-affinity Cu transporters. •Cu deficiency caused re-distribution of zinc in the plant. -- Abstract: Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO{sub 4}) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 2 nM Cu. Damage to the PSII reaction centre was the first target of Cu toxicity, followed by disturbed regulation of heat dissipation (NPQ). Only after that, electron transport through PSII (Φ{sub PSII}) was inhibited, and finally chlorophylls decreased. Copper accumulation in the plants was stable until 10 nM Cu in solution, but strongly increased at higher concentrations. The vein was the main storage site for Cu up to physiological concentrations (10 nM). At toxic levels it was also sequestered to the epidermis and mesophyll until export from the vein became inhibited, accompanied by inhibition of Zn uptake. Copper deficiency led to a complete stop of growth at “0” nM Cu after 6 weeks. This was accompanied by high starch accumulation although electron flow through PSII (Φ{sub PSII}) decreased from 2 weeks, followed by decrease in pigments and increase of non photochemical quenching (NPQ). Release of Cu from the plants below 10 nM Cu supply in the nutrient solution indicated lack of high-affinity Cu transporters, and on the tissue level copper deficiency led to a re-distribution of zinc.

  18. Effect of environmental stress factors on ectomycorrhizal fungi in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Willenborg, A.; Schmitz, D.; Lelley, J. (Research Inst. of Mushroom Cultivation, Krefeld (Germany, F.R.))

    1990-01-01

    The reaction of various ectomycorrhizal fungi to environmental stress factors was examined in a screening program. Tolerance to acid and heavy metals, resistance to antagonists, and reactions to automobile exhaust fumes were tested. Differences in reaction between the several ectomycorrhizal species and strains were observed. These results confirm that the susceptibility of ectomycorrhizal fungi to environmental stress factors varies from species to species, but also from strain to strain within a species. Pure culture synthesis with Picea abies showed the symbiotic potential of the selected fungi. 45 refs., 6 figs.

  19. The role of environmental stress on lower urinary tract symptoms.

    Science.gov (United States)

    Sanford, Melissa T; Rodriguez, Larissa V

    2017-05-01

    Lower urinary tract symptoms (LUTS) have been associated with comorbid conditions such as anxiety and depression. In addition, stress appears to influence the development or exacerbation of LUTS. This article seeks to review literature regarding the role of environmental stress on LUTS, focusing on findings presented in the last year. Numerous authors have published on the impact early childhood experiences, acute and chronic stress, and psychiatric illness play in the development of LUTS. The exact nature of the association between bladder symptoms and psychosocial measures remains unknown and is likely due to a complex interplay between heritability, psychosocial factors, and environmental stress. The proposed pathophysiological pathways involved in emotional states such as anxiety and depression, stress, and bladder function include activation of the hypothalamic-pituitary axis, dysregulation of the serotonergic pathways, and central sensitization. Recent work has additionally suggested that urinary syndromes involving abnormal or augmented sensory input, such as overactive bladder and interstitial cystitis/bladder pain syndrome, may be a spectrum of the same disorder. There are numerous developments in our understanding of the role of environmental stress on the development and exacerbation of LUTS with new developments both clinically and in translational basic science work. Clinicians must acknowledge the high prevalence of affective disorders in patients with LUTS and realize their potential therapeutic influence. Simply addressing mechanisms at the level of the bladder alone may fail in a subpopulation of patients with LUTS who may have significant psychosocial drivers of their symptoms.

  20. Mild environmental stress elicits mutations affecting fitness in Chlamydomonas.

    Science.gov (United States)

    Goho, S; Bell, G

    2000-01-01

    Cultures of Chlamydomonas were exposed to a range of relatively mild stresses for a period of 24 h. These stresses comprised high and low temperatures, osmotic stress, low pH, starvation and toxic stress. They were then allowed to recuperate for around ten vegetative generations under near-optimal conditions in unmodified minimal medium. Fitness was then assayed as the rate of division of isolated cells on agar. We found that there was a strong tendency for stressed cultures to have lower mean fitness and greater standardized variance in fitness than the negative controls which had been cultured throughout in unmodified minimal medium. The same tendency was shown, as expected, by positive controls which received mutagenic doses of ultraviolet irradiation. We concluded that the most reasonable interpretation of these observations is that mild stress increases the genomic rate of mutation. This appears to be the first time that this phenomenon has been noticed in eukaryotes. The response might be adaptive because lineages in which higher mutation rates are elicited by stress can be favourably selected through the production of a few mutants which are fortuitously well adapted to the stressful environment. Other interpretations are not excluded, however. Regardless of the mechanism involved, the elevation of mutation rates under stress will affect the rate of evolutionary response to environmental change and also the maintenance of sexuality. PMID:10687816

  1. The thyroid and environmental stress in mammals

    Science.gov (United States)

    Galton, V. A.

    1977-01-01

    The effects of hyperoxia at ambient pressure on thyroid function and thyroid hormone metabolism have been assessed. Thyroidal activity was depressed in mice and rats by exposure to hyperoxia, due at least in part to a decrease in the rate of secretion of pituitary thyrotropin. The effects of hyperoxia on the peripheral deiodination of thyroxine were dependent on the concentration of oxygen employed and/or the duration of exposure. When significant changes were observed a reduction in the rate of deiodination and in the deiodinative clearance of T sub 4 occurred. Hyperoxia also resulted in a marked fall in circulating T sub 4 concentration and a decrease in T sub 4-binding activity in serum. Many of these effects of hyperoxia were prevented by the concomitant administration of large amounts of Vitamin E. These decreases in thyroid function and T sub 4 metabolism were associated with a decrease in the rate of whole body oxygen consumption. It was concluded that the deleterious effects of oxygen in the rat were not due to an oxygen induced hyperthyroid state in the peripheral tissues. Thyroxine was shown to be essential for survival during acute cold stress.

  2. Proteomic responses of fruits to environmental stresses

    Directory of Open Access Journals (Sweden)

    Zhulong eChan

    2013-01-01

    Full Text Available Fruits and vegetables are extremely susceptible to decay and easily lose commercial value after harvest. Different strategies have been developed to control postharvest decay and prevent quality deterioration during postharvest storage, including cold storage, controlled atmosphere, and application of biotic and abiotic stimulus. In this review, mechanisms related to protein level responses of host side and pathogen side were characterized. Protein extraction protocols have been successfully developed for recalcitrant, low protein content fruit tissues. Comparative proteome profiling and functional analysis revealed that defense related proteins, energy metabolism and antioxidant pathway played important roles in fruits in response to storage conditions and exogenous elicitor treatments. Secretome of pathogenic fungi has been well investigated and the results indicated that hydrolytic enzymes were the key virulent factors for the pathogen infection. These protein level changes shed new light on interaction among fruits, pathogens and environmental conditions. Potential postharvest strategies to reduce risk of fruit decay were further proposed based on currently available proteomic data.

  3. Habitat diversity and adaptation to environmental stress in encysted ...

    Indian Academy of Sciences (India)

    2004-10-27

    Oct 27, 2004 ... Encysted embryos (cysts) of the brine shrimp, Artemia, provide excellent opportunities for the study of biochemical and biophysical adaptation to extremes of environmental stress in animals. Among other virtues, this organism is found in a wide variety of hypersaline habitats, ranging from deserts, to tropics, ...

  4. Environmental stress, displacement and the challenge of rights protection

    Directory of Open Access Journals (Sweden)

    Roger Zetter

    2014-02-01

    Full Text Available "Examination of migration histories and current politics in Kenya, Bangladesh, Vietnam, Ethiopia and Ghana sheds light on how rights are articulated for groups and individuals displaced in a context of environmental stress and climate change. Both migration and rights are sensitive issues in these case-study countries, and the conjunction of the two is especially sensitive."

  5. Environmental stress induces trinucleotide repeat mutagenesis in human cells

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A.; Yotnda, Patricia; Wilson, John H.

    2015-01-01

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)—the cause of multiple human diseases—have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential. PMID:25775519

  6. Responses of Yeast Biocontrol Agents to Environmental Stress

    Science.gov (United States)

    Sui, Yuan; Wisniewski, Michael; Droby, Samir

    2015-01-01

    Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance. PMID:25710368

  7. A transcription factor hierarchy defines an environmental stress response network.

    Science.gov (United States)

    Song, Liang; Huang, Shao-Shan Carol; Wise, Aaron; Castanon, Rosa; Nery, Joseph R; Chen, Huaming; Watanabe, Marina; Thomas, Jerushah; Bar-Joseph, Ziv; Ecker, Joseph R

    2016-11-04

    Environmental stresses are universally encountered by microbes, plants, and animals. Yet systematic studies of stress-responsive transcription factor (TF) networks in multicellular organisms have been limited. The phytohormone abscisic acid (ABA) influences the expression of thousands of genes, allowing us to characterize complex stress-responsive regulatory networks. Using chromatin immunoprecipitation sequencing, we identified genome-wide targets of 21 ABA-related TFs to construct a comprehensive regulatory network in Arabidopsis thaliana Determinants of dynamic TF binding and a hierarchy among TFs were defined, illuminating the relationship between differential gene expression patterns and ABA pathway feedback regulation. By extrapolating regulatory characteristics of observed canonical ABA pathway components, we identified a new family of transcriptional regulators modulating ABA and salt responsiveness and demonstrated their utility to modulate plant resilience to osmotic stress. Copyright © 2016, American Association for the Advancement of Science.

  8. Pesticides and Arthropods: Sublethal Effects and Demographic Toxicology

    Directory of Open Access Journals (Sweden)

    Dejan Marčić

    2007-01-01

    Full Text Available Insecticides and acaricides designed to control primary harmful insects and mites may also variously affect some other arthopods present in an (agroecosystem (e.g. secondary pests, predators, parasitoids, saprophytes, bioindicators, pollinators. Apart from insecticides and acaricides, arthropods may also be affected by the activity of other pesticides (fungicides, herbicides, etc.. Regardless of whether they are deemed desirable or not, the effects that pesticides have on arthopods need to be quantified as closely as possible through appropriate experimental procedures. Data acquired in tests designed to determined LD50/LC50 values are inadequate for evaluation of pesticide effectiveness in the field as pesticidesalso cause various sublethal effects, generally disregarded in such investigations. The sublethal effects of pesticides refer to any altered behaviour and/or physiology of individuals that have survived exposure to pesticides at doses/concentrations that can be lethal(within range causing mortality in an experimental population that exceeds mortality in an untreated population or sublethal (below that range. Pesticides affect locomotion and mobility, stimulate dispersion of arthropods from treated areas, complicate or prevent their navigation, orientation and ability to locate hosts, and cause changes in their feeding, mating and egg-laying patterns. Sublethal pesticide effects on arthropod physiology reflect on the life span, rate of development, fecundity and/or fertility, sex ratio and immunity of surviving individuals. Different parameters are being used in arthropod bioassays to determine sublethal effects (ED50/EC50, LOEC, NOEC, total effect index. Compared to acute toxicity tests, these parameters improve the quality of evaluation and create a more accurate view of the effects of a pesticide. However, such approach covers mainly fecundity/fertility alone, while all other sublethal effects remain unaccounted for. Besides, it

  9. Coronary flow and left ventricular function during environmental stress.

    Science.gov (United States)

    Erickson, H. H.; Adams, J. D.; Stone, H. L.; Sandler, H.

    1972-01-01

    A canine model was used to study the effects of different environmental stresses on the heart and coronary circulation. The heart was surgically instrumented to measure coronary blood flow, left ventricular pressure, and other cardiovascular variables. Coronary flow was recorded by telemetry. Physiologic data were processed and analyzed by analog and digital computers. By these methods the physiologic response to altitude hypoxia, carbon monoxide, hypercapnia, acceleration, exercise, and the interaction of altitude hypoxia and carbon monoxide were described. The effects of some of these stresses on the heart and coronary circulation are discussed.

  10. The behavior of Kevlar fibers under environmental-stress conditions

    Science.gov (United States)

    Perry, Mark Charles

    There are a myriad of mechanisms by which polymers can degrade and fail. It is therefore important to understand the physical mechanics, chemistry, their interactions, and kinetics. This pursuit becomes more than just "academic" because these mechanisms might just change with service conditions (i.e. environment and loading). If one does not understand these processes from the molecular to macroscopic scale it would be exceedingly difficult to gain information from accelerated testing because the mechanisms just might change from one condition to another. The purpose of this study was to probe these processes on scales ranging from molecular to macroscopic in environmental stress conditions. This study reports the results of environmental-stress degradation of Kevlar 49 fibers. The environmental agent of focus was the ubiquitous air pollutant complex NOsb{x}. Other materials and environments were investigated to a lesser extent for purposes of comparison. Mechanical property (i.e., short-term strength, modulus, and creep lifetime) degradation was examined using single fiber, yarn, and epoxy coated yarn (composite) specimens under environmental-stress conditions. Optical and scanning electron microscopes were employed to examine and compare the appearance of fracture features resulting from the various testing conditions. Atomic force microscopy augmented these studies with detailed topographical mappings and measures of the fracture surface frictional and modulus properties. Molecular processes (i.e., chain scission and other mechanical-chemical reactions) were probed by measures of changes in viscosity average molecular weight and the infrared spectra. It was demonstrated that environmental-stress degradation effects do occur in the Kevlar-NOsb{x} gas system. Strength decay in environmentally exposed unloaded fibers was demonstrated and a synergistic response in creep reduced fiber lifetimes by three orders of magnitude at moderate loadings. That is to say, the

  11. Fluxomics of the Eastern Oyster for Environmental Stress Studies

    Directory of Open Access Journals (Sweden)

    Andrey P. Tikunov

    2014-01-01

    Full Text Available The metabolism of 2-13C/15N-glycine and U-13C-glucose was determined in four tissue blocks (adductor muscle, stomach and digestive gland, mantle, and gills of the Eastern oyster (Crassostrea virginica using proton (1H and carbon-13 (13C nuclear magnetic resonance (NMR spectroscopy. The oysters were treated in aerated seawater with three treatments (5.5 mM U-13C-glucose, 2.7 mM 2-13C/15N-glycine, and 5.5 mM U-13C-glucose plus 2.7 mM 2-13C/15N-glycine and the relative mass balance and 13C fractional enrichments were determined in the four tissue blocks. In all tissues, glycine was metabolized by the glycine cycle forming serine exclusively in the mitochondria by the glycine cleavage system forming 2,3-13C-serine. In muscle, a minor amount of serine-derived pyruvate entered the Krebs cycle as substantiated by detection of a trace of 2,3-13C-aspartate. In all tissues, U-13C-glucose formed glycogen by glycogen synthesis, alanine by glycolysis, and glutamate and aspartate through the Krebs cycle. Alanine was formed exclusively from glucose via alanine transaminase and not glycine via alanine-glyoxylate transaminase. Based on isotopomer analysis, pyruvate carboxylase and pyruvate dehydrogenase appeared to be equal points for pyruvate entry into the Krebs cycle. In the 5.5 mM U-13C-glucose plus 2.7 mM 2-13C/15N-glycine emergence treatment used to simulate 12 h of “low tide”, oysters accumulated more 13C-labeled metabolites, including both anaerobic glycolytic and aerobic Krebs cycle intermediates. The aerobic metabolites could be the biochemical result of the gaping behavior of mollusks during emergence. The change in tissue distribution and mass balance of 13C-labeled nutrients (U-13C-glucose and 2-13C/15N-glycine provides the basis for a new quantitative fluxomic method for elucidating sub-lethal environmental effects in marine organisms called whole body mass balance phenotyping (WoMBaP.

  12. Environmental heat stress, hyperammonemia and nucleotide metabolism during intermittent exercise.

    Science.gov (United States)

    Mohr, Magni; Rasmussen, Peter; Drust, Barry; Nielsen, Bodil; Nybo, Lars

    2006-05-01

    This study investigated the influence of environmental heat stress on ammonia (NH3) accumulation in relation to nucleotide metabolism and fatigue during intermittent exercise. Eight males performed 40 min of intermittent exercise (15 s at 306+/-22 W alternating with 15 s of unloaded cycling) followed by five 15 s all-out sprints. Control trials were conducted in a 20 degrees C environment while heat stress trials were performed at an ambient temperature of 40 degrees C. Muscle biopsies and venous blood samples were obtained at rest, after 40 min of exercise and following the maximal sprints. Following exercise with heat stress, the core and muscle temperatures peaked at 39.5+/-0.2 and 40.2+/-0.2 degrees C to be approximately 1 degrees C higher (Pheat stress trial (PNH3 increased from 31+/-2 microM at rest to 93+/-6 at 40 min and 151+/-15 microM after the maximal sprints to be 34% higher than control (Pheat stress compared to control, while muscle glycogen, CP, ATP and IMP levels were similar across trials. In conclusion, altered levels of "classical peripheral fatiguing agents" does apparently not explain the reduced capacity for performing repeated sprints following intermittent exercise in the heat, whereas the augmented systemic NH3 response may be a factor influencing fatigue during exercise with superimposed heat stress.

  13. Impacts of Sublethal Mercury Exposure on Birds: A Detailed Review.

    Science.gov (United States)

    Whitney, Margaret C; Cristol, Daniel A

    Mercury is a ubiquitous environmental contaminant known to accumulate in, and negatively affect, fish-eating and oceanic bird species, and recently demonstrated to impact some terrestrial songbirds to a comparable extent. It can bioaccumulate to concentrations of >1 μg/g in tissues of prey organisms such as fish and insects. At high enough concentrations, exposure to mercury is lethal to birds. However, environmental exposures are usually far below the lethal concentrations established by dosing studies.The objective of this review is to better understand the effects of sublethal exposure to mercury in birds. We restricted our survey of the literature to studies with at least some exposures >5 μg/g. The majority of sublethal effects were subtle and some studies of similar endpoints reached different conclusions. Strong support exists in the literature for the conclusion that mercury exposure reduces reproductive output, compromises immune function, and causes avoidance of high-energy behaviors. For some endpoints, notably certain measures of reproductive success, endocrine and neurological function, and body condition, there is weak or contradictory evidence of adverse effects and further study is required. There was no evidence that environmentally relevant mercury exposure affects longevity, but several of the sublethal effects identified likely do result in fitness reductions that could adversely impact populations. Overall, 72% of field studies and 91% of laboratory studies found evidence of deleterious effects of mercury on some endpoint, and thus we can conclude that mercury is harmful to birds, and the many effects on reproduction indicate that bird population declines may already be resulting from environmental mercury pollution.

  14. Environmental heat stress, hyperammonemia and nucleotide metabolism during intermittent exercise

    DEFF Research Database (Denmark)

    Mohr, Magni; Rasmussen, Peter; Drust, Barry

    2006-01-01

    exercise with heat stress, the core and muscle temperatures peaked at 39.5±0.2 and 40.2±0.2°C to be ~ 1°C higher (P...Abstract  This study investigated the influence of environmental heat stress on ammonia (NH3) accumulation in relation to nucleotide metabolism and fatigue during intermittent exercise. Eight males performed 40 min of intermittent exercise (15 s at 306±22 W alternating with 15 s of unloaded cycling......) followed by five 15 s all-out sprints. Control trials were conducted in a 20°C environment while heat stress trials were performed at an ambient temperature of 40°C. Muscle biopsies and venous blood samples were obtained at rest, after 40 min of exercise and following the maximal sprints. Following...

  15. Using Arabidopsis Protoplasts to Study Cellular Responses to Environmental Stress.

    Science.gov (United States)

    Confraria, Ana; Baena-González, Elena

    2016-01-01

    Arabidopsis mesophyll protoplasts can be readily isolated and transfected in order to transiently express proteins of interest. As freshly isolated mesophyll protoplasts maintain essentially the same physiological characteristics of whole leaves, this cell-based transient expression system can be used to molecularly dissect the responses to various stress conditions. The response of stress-responsive promoters to specific stimuli can be accessed via reporter gene assays. Additionally, reporter systems can be easily engineered to address other levels of regulation, such as transcript and/or protein stability. Here we present a detailed protocol for using the Arabidopsis mesophyll protoplast system to study responses to environmental stress, including preparation of reporter and effector constructs, large scale DNA purification, protoplast isolation, transfection, treatment, and quantification of luciferase-based reporter gene activities.

  16. Empirical applications of an environmental stress indicator and the environmental efficiency revolution in Taiwan

    Directory of Open Access Journals (Sweden)

    Han-Shen Chen

    2013-09-01

    Full Text Available In this essay, the first aim is to apply the structure of material flow analysis (MFA and ecological footprint model to construct an environmental stress indicator. Secondly, an impact, population, affluence and technology (IPAT analysis is used to resolve indicators related to MFA and resource yield productivity. The research indicates following results: (1 The 2007 per capita ecological deficit in Taiwan is 6.3441 square hm.The figures reflect that productivity and life intensity of residents have exceeded the carrying capacity of Taiwan's ecological economic system. (2 Wealth becomes the most important factor in material needs and pollution discharge. (3 Environmental efficiency and ecological efficiency slowed down dramatically, demonstrating that use of resources and total amount of environmental stress stay at a developmental stage. Therefore, if proper measures are not adopted, the current weak sustainability will lead into the vicious circle which departs from sustainable development.

  17. Sex-specific selection under environmental stress in seed beetles.

    Science.gov (United States)

    Martinossi-Allibert, I; Arnqvist, G; Berger, D

    2017-01-01

    Sexual selection can increase rates of adaptation by imposing strong selection in males, thereby allowing efficient purging of the mutation load on population fitness at a low demographic cost. Indeed, sexual selection tends to be male-biased throughout the animal kingdom, but little empirical work has explored the ecological sensitivity of this sex difference. In this study, we generated theoretical predictions of sex-specific strengths of selection, environmental sensitivities and genotype-by-environment interactions and tested them in seed beetles by manipulating either larval host plant or rearing temperature. Using fourteen isofemale lines, we measured sex-specific reductions in fitness components, genotype-by-environment interactions and the strength of selection (variance in fitness) in the juvenile and adult stage. As predicted, variance in fitness increased with stress, was consistently greater in males than females for adult reproductive success (implying strong sexual selection), but was similar in the sexes in terms of juvenile survival across all levels of stress. Although genetic variance in fitness increased in magnitude under severe stress, heritability decreased and particularly so in males. Moreover, genotype-by-environment interactions for fitness were common but specific to the type of stress, sex and life stage, suggesting that new environments may change the relative alignment and strength of selection in males and females. Our study thus exemplifies how environmental stress can influence the relative forces of natural and sexual selection, as well as concomitant changes in genetic variance in fitness, which are predicted to have consequences for rates of adaptation in sexual populations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  18. Zebrafish embryo tolerance to environmental stress factors-Concentration-dose response analysis of oxygen limitation, pH, and UV-light irradiation.

    Science.gov (United States)

    Andrade, Thayres S; Henriques, Jorge F; Almeida, Ana Rita; Soares, Amadeu M V M; Scholz, Stefan; Domingues, Inês

    2017-03-01

    During the last century the increase in the mean global temperatures has been shown to impact on freshwater physicochemical parameters such as pH, dissolved oxygen, or ultraviolet (UV) light abundance. Changes in these parameters could modify the toxicity of environmental pollutants. Therefore, in the present study, the authors studied the tolerance (survival and sublethal endpoints) of zebrafish (Danio rerio) embryos to variations in pH (3-12), dissolved oxygen (3.9-237 μmol/L) and UV intensity (55-467 mW/m2 ) using selected endpoints. Sublethal endpoint assessment included the quantification of hatching success, developmental delay, reduction of body length, frequency of edema, and morphological abnormalities. Median lethal concentrations (LC50s; 96-h) of 3.68 and 10.21 were determined for acid and alkaline pH, respectively. Embryo survival appeared to be relatively resistant to oxygen depletion with a 96-h LC50 of 0.42 mg/L. However, concentrations of 6 mg/L and below caused edema and developmental retardations. Continuous exposure to UV radiation affected zebrafish development by reducing survival and hatching rate and triggering a series of developmental abnormalities such as pericardial edema and deformities. A 72-h LC50 of 227 mW/m2 was derived from intensity-response modeling. By generation of concentration-response parameters the authors' data provide a basis for the subsequent assessment of combined effect of environmental stress parameters and chemicals. Environ Toxicol Chem 2017;36:682-690. © 2016 SETAC. © 2016 SETAC.

  19. Biomonitor of Environmental Stress: Coral Trace Metal Analysis

    Science.gov (United States)

    Grumet, N.; Hughen, K.

    2006-12-01

    Tropical reef corals are extremely sensitive to changes in environmental conditions and, as a result of environmental degradation and global climate change, coral reefs around the globe are severely threatened. Increased human population and development in tropical regions is leading to higher turbidity and silt loading from terrestrial runoff, increased pesticides and nutrients from agricultural land-use and sewage, and the release of toxic trace metals to coastal waters from industrial pollution. The uptake of these metals and nutrients within the coral skeletal aragonite is a sensitive biomonitor of environmental stresses on coral health. We analyzed 18 trace metals from the surface of coral skeletons collected in Bermuda, Indonesia and Belize to assess a range of threats to coral reef health - including climate change, agricultural runoff and pesticides, and coastal development and tourism. This surface sample network also includes samples representing 4 different coral species. Trace metal analysis was performed on an inductively coupled plasma mass spectrometer (ICP-MS) to a high degree of accuracy and precision at extremely low (ppb) concentrations using a protocol we developed for samples less than 2 mg. Proper cleaning techniques were employed to minimize blank level concentrations for ultra-trace metal ICP-MS solution analysis. However, Zn/Ca and Ni/Ca concentrations remain below analytical detection limits. Initial results indicate that sea surface temperature proxies (e.g., Sr/Ca, B/Ca and Mg/Ca) display similar ratios between the different sites, whereas those metals associated with anthropogenic activities, such as Co, Pb and Cu, are site-specific and are linked to individual environmental stressors. Results from this study will be applied to down core trace metal records in the future. In doing so, we aim to understand the impacts of compounding environmental stresses on coral health, and to identify regional threshold values beyond which corals

  20. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Science.gov (United States)

    Hahn, Achim; Kilian, Joachim; Mohrholz, Anne; Ladwig, Friederike; Peschke, Florian; Dautel, Rebecca; Harter, Klaus; Berendzen, Kenneth W.; Wanke, Dierk

    2013-01-01

    Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt) can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA) and methyl-jasmonate (MeJA) responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR), e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner. PMID:23567274

  1. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  2. Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt

    NARCIS (Netherlands)

    Settachaimongkon, S.; Valenberg, van H.J.F.; Winata, V.; Wang, X.; Nout, M.J.R.; Hooijdonk, van A.C.M.; Zwietering, M.H.; Smid, E.J.

    2015-01-01

    The objective of this study was to investigate the effect of preculturing of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 under sublethal stress conditions on their survival and metabolite formation in set-yoghurt. Prior to co-cultivation with yoghurt starters in milk,

  3. Mortality, Temporary Sterilization, and Maternal Effects of Sublethal Heat in Bed Bugs

    Science.gov (United States)

    Rukke, Bjørn Arne; Aak, Anders; Edgar, Kristin Skarsfjord

    2015-01-01

    Adult bed bugs were exposed to the sublethal temperatures 34.0°C, 35.5°C, 37.0°C, 38.5°C, or 40.0°C for 3, 6, or 9 days. The two uppermost temperatures induced 100% mortality within 9 and 2 days, respectively, whereas 34.0°C had no observable effect. The intermediate temperatures interacted with time to induce a limited level of mortality but had distinct effects on fecundity, reflected by decreases in the number of eggs produced and hatching success. Adult fecundity remained low for up to 40 days after heat exposure, and the time until fertility was restored correlated with the temperature-sum experienced during heat exposure. Three or 6 days of parental exposure to 38.5°C significantly lowered their offspring’s feeding and moulting ability, which consequently led to a failure to continue beyond the third instar. Eggs that were deposited at 22.0°C before being exposed to 37.0°C for 3 or 6 days died, whereas eggs that were exposed to lower temperatures were not significantly affected. Eggs that were deposited during heat treatment exhibited high levels of mortality also at 34.0°C and 35.5°C. The observed negative effects of temperatures between 34.0°C and 40.0°C may be utilized in pest management, and sublethal temperature exposure ought to be further investigated as an additional tool to decimate or potentially eradicate bed bug populations. The effect of parental heat exposure on progeny demonstrates the importance of including maternal considerations when studying bed bug environmental stress reactions. PMID:25996999

  4. Sub-lethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis

    Science.gov (United States)

    Kohanski, Michael A.; DePristo, Mark A.; Collins, James J.

    2010-01-01

    Summary Antibiotic resistance arises through mechanisms such as selection of naturally occurring resistant mutants and horizontal gene transfer. Recently, oxidative stress has been implicated as one of the mechanisms whereby bactericidal antibiotics kill bacteria. Here we show that sub-lethal levels of bactericidal antibiotics induce mutagenesis, resulting in heterogeneous increases in the minimum inhibitory concentration for a range of antibiotics, irrespective of the drug target. This increase in mutagenesis correlates with an increase in ROS, and is prevented by the ROS scavenger thiourea and by anaerobic conditions, indicating that sub-lethal concentrations of antibiotics induce mutagenesis by stimulating the production of ROS. We demonstrate that these effects can lead to mutant strains that are sensitive to the applied antibiotic but resistant to other antibiotics. This work establishes a radical-based molecular mechanism whereby sub-lethal levels of antibiotics can lead to multidrug resistance, which has important implications for the widespread use and misuse of antibiotics. PMID:20159551

  5. Critical analysis of the maximum non inhibitory concentration (MNIC) method in quantifying sub-lethal injury in Saccharomyces cerevisiae cells exposed to either thermal or pulsed electric field treatments.

    Science.gov (United States)

    Kethireddy, V; Oey, I; Jowett, Tim; Bremer, P

    2016-09-16

    Sub-lethal injury within a microbial population, due to processing treatments or environmental stress, is often assessed as the difference in the number of cells recovered on non-selective media compared to numbers recovered on a "selective media" containing a predetermined maximum non-inhibitory concentration (MNIC) of a selective agent. However, as knowledge of cell metabolic response to injury, population diversity and dynamics increased, the rationale behind the conventional approach of quantifying sub-lethal injury must be scrutinized further. This study reassessed the methodology used to quantify sub-lethal injury for Saccharomyces cerevisiae cells (≈ 4.75 Log CFU/mL) exposed to either a mild thermal (45°C for 0, 10 and 20min) or a mild pulsed electric field treatment (field strengths of 8.0-9.0kV/cm and energy levels of 8, 14 and 21kJ/kg). Treated cells were plated onto either Yeast Malt agar (YM) or YM containing NaCl, as a selective agent at 5-15% in 1% increments. The impact of sub-lethal stress due to initial processing, the stress due to selective agents in the plating media, and the subsequent variation of inhibition following the treatments was assessed based on the CFU count (cell numbers). ANOVA and a generalised least squares model indicated significant effects of media, treatments, and their interaction effects (P<0.05) on cell numbers. It was shown that the concentration of the selective agent used dictated the extent of sub-lethal injury recorded owing to the interaction effects of the selective component (NaCl) in the recovery media. Our findings highlight a potential common misunderstanding on how culture conditions impact on sub-lethal injury. Interestingly for S. cerevisiae cells the number of cells recovered at different NaCl concentrations in the media appears to provide valuable information about the mode of injury, the comparative efficacy of different processing regimes and the inherent degree of resistance within a population. This

  6. Genome diversity in wild grasses under environmental stress

    Science.gov (United States)

    Fitzgerald, Timothy L.; Shapter, Frances M.; McDonald, Stuart; Waters, Daniel L. E.; Chivers, Ian H.; Drenth, Andre; Nevo, Eviatar; Henry, Robert J.

    2011-01-01

    Patterns of diversity distribution in the Isa defense locus in wild-barley populations suggest adaptive selection at this locus. The extent to which environmental selection may act at additional nuclear-encoded defense loci and within the whole chloroplast genome has now been examined by analyses in two grass species. Analysis of genetic diversity in wild barley (Hordeum spontaneum) defense genes revealed much greater variation in biotic stress-related genes than abiotic stress-related genes. Genetic diversity at the Isa defense locus in wild populations of weeping ricegrass [Microlaena stipoides (Labill.) R. Br.], a very distant wild-rice relative, was more diverse in samples from relatively hotter and drier environments, a phenomenon that reflects observations in wild barley populations. Whole-chloroplast genome sequences of bulked weeping ricegrass individuals sourced from contrasting environments showed higher levels of diversity in the drier environment in both coding and noncoding portions of the genome. Increased genetic diversity may be important in allowing plant populations to adapt to greater environmental variation in warmer and drier climatic conditions. PMID:22173638

  7. Sea urchin immune cells as sentinels of environmental stress.

    Science.gov (United States)

    Pinsino, Annalisa; Matranga, Valeria

    2015-03-01

    Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Oxidative Stress in Fish induced by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Anton Kováčik

    2017-05-01

    Full Text Available Environmental pollutants represent a risk factor for human and animals in all areas of occurrence. Environmental pollution caused by anthropogenic activities is a major problem in many countries. Numbers of studies deals with cumulation of xenobiotics in tissues but not all respond to the real impact on living organisms. Freshwater fishes are exposed to several anthropogenic contaminants. The most commonly studied are three metals: mercury (Hg, lead (Pb, cadmium (Cd. These contaminants could have several impacts to oxidative stress. In the normal healthy cell, ROS and pro-oxidant products are detoxified by antioxidant defences. Redox-active or Redox-inactive metals may cause an increase in production of reactive oxygen species (ROS. Mercury has a high affinity for thiol groups, and can non-specifically affect several enzymes, e. g. GSH (glutathione, which can induce GSH depletion and oxidative stress in tissue, also can induce lipid peroxidation, and mitochondrial dysfunction. The toxicity of Cd to aquatic species depends on speciation, with the free ion, Cd2+ concentration being proportional to bioavailability. Cadmium toxicity worsened of Ca, Na, and Mg ions homeostasis. Lead can be toxic to nervous and skeletal systems; at cellular level can cause apoptosis, also can affect mitochondria, neurotransmitters, and can substitute for Ca.

  9. An engineered yeast as a potential biosensor of environmental stress

    Energy Technology Data Exchange (ETDEWEB)

    Godon, C.; Quemeneur, E.; Chagvardieff, P.

    2004-07-01

    We developed a simple quantitative assay to detect stress activated nuclear translocation of nucleo-cytoplasmic protein in the yeast S. cerevisiae. The assay relies on the fusion of a transcription factor comprising the bacterial DNA binding domain (bDBD) and the activation domain of the yeast (yAD) to YAP1 and the {beta}-galactosidase gene placed under the promoter inducible by bDBD-yAD transcription factor. YAPI (yeast) is known to shuttle between the nucleus and the cytoplasm during oxidative stress. After stress, bDBD-yAD-YAP1 chimeric proteins localization can be simply quantified by measuring {beta}-galactosidase expression. We analysed H2O and mercury response. Very low mercury (down to 5 10-7 M) and H2O2 (5 10-5 M) concentrations activated the YAP1 translocation system. This quick and easy to use assay, based on yeast engineered for detection and quantization of translocation factor, may represent a suitable bio indicator to quantified environmental heavy metal exposure. (Author) 4 refs.

  10. REP sequences: Mediators of the environmental stress response?

    Science.gov (United States)

    Liang, Wenxing; Deutscher, Murray P

    2016-01-01

    Repetitive Extragenic Palindromic (REP) sequences are highly conserved, structured, 35- to 40-nt elements located at ∼500 positions around the Escherichia coli chromosome. They are found in intergenic regions and are transcribed together with their upstream genes. Although their stable stem-loop structures protect messages against exoribonuclease digestion, their primary function has remained unknown. Recently, we found that about half of all REP sequences have the potential to stall ribosomes immediately upstream of the termination codon, leading to endonucleolytic cleavage of the mRNA, and induction of the trans-translation process. As a consequence, the mRNA and almost completed protein are degraded, and protein production from the affected gene is down-regulated. The process is critically dependent on the location of the REP element, with an effect only if it is within 15 nt of the termination codon. Using nrdAB as a model, we found that its down-regulation is affected by RNA helicases. Elimination of 6 helicases lowered NrdA production further, whereas overexpression of any RNA helicase partially reversed the downregulation. UV stress completely reversed down-regulation of NrdA production. Analysis of genes containing a REP sequence within 15 nt of the termination codon revealed that most, if not all, are up-regulated by environmental stress, as are RNA helicases. Based on these findings, we propose that REP-dependent downregulation serves as a mechanism to allow a rapid response to environmental stresses whereby RNA helicases partially open the REP elements enabling ribosomes to complete translation immediately increasing protein production from the affected genes.

  11. Influence of a chronic environmental stress on radiation carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.G.; Jahn, A.

    1976-12-01

    The influence of a chronic environmental stress on the incidence of radiation-induced tumors, lens opacities, and survival times was determined. Female CFN rats were exposed to whole-body irradiation with either 300 rad of fission neutrons, 600 rad of 250 kV x rays, or sham irradiation. Within each irradiated group, rats were assigned to one of four environments: exposure to 25/sup 0/C until irradiated and immediately returned to (1) a 25/sup 0/C or (2) a 2/sup 0/C environment for duration of life; acclimation to a 2/sup 0/C environment for 40 days, irradiated, then returned to (3) a 2/sup 0/C or (4) a 25/sup 0/C environment. Postirradiation exposure to the 2/sup 0/C compared to the 25/sup 0/C environment reduced tumor incidence in the x- and neutron-irradiated groups, but reduced incidence of lens opacities only in the neutron-irradiated group. A 2/sup 0/C environment before and after irradiation produced similar results. Return of the 2/sup 0/C acclimated rats to a 25/sup 0/C environment increased incidence of tumors and lens opacities in the x-ray group, but reduced incidence of both in the neutron-irradiated rats. Chronic exposure to 2/sup 0/C reduced the tumor incidence of nonirradiated rats but did not change the incidence of lens opacities. Median life expectancy was reduced by exposure to the 2/sup 0/C environment. The data are consistent with the hypothesis that a chronic environmental stress initiated immediately after a carcinogen, in this study x or neutron radiation, may inhibit the malignant transformation. In view of other published data the stress-induced increase in metabolic rate may be an important factor in the inhibition.

  12. An Environmental Stress Index (ESI) as a Substitute for the Wet Bulb Globe Temperature (WBGT)

    Science.gov (United States)

    2001-02-01

    This report summarizes the development of a new environmental stress index (ESI) to asses heat stress. Two independent studies containing four...develop a new environmental stress index (ESI). Meteorological measurements were taken in three climatic zones (hot/wet, hot/dry, and extremely hot/dry

  13. Freshwater Fish Sublethal Tests: A Review of the Sublethal Tests

    Science.gov (United States)

    Pressure on animal testing has traditionally been the purview of mammalian toxicological science, but in the past few years, more attention is given also to environmental safety. As with higher vertebrate animal alternatives, balance between reduce animal use without impairing o...

  14. Environmental stress, inbreeding, and the nature of phenotypic and genetic variance in Drosophila melanogaster.

    Science.gov (United States)

    Fowler, Kevin; Whitlock, Michael C

    2002-01-01

    Fifty-two lines of Drosophila melanogaster founded by single-pair population bottlenecks were used to study the effects of inbreeding and environmental stress on phenotypic variance, genetic variance and survivorship. Cold temperature and high density cause reduced survivorship, but these stresses do not cause repeatable changes in the phenotypic variance of most wing morphological traits. Wing area, however, does show increased phenotypic variance under both types of environmental stress. This increase is no greater in inbred than in outbred lines, showing that inbreeding does not increase the developmental effects of stress. Conversely, environmental stress does not increase the extent of inbreeding depression. Genetic variance is not correlated with environmental stress, although the amount of genetic variation varies significantly among environments and lines vary significantly in their response to environmental change. Drastic changes in the environment can cause changes in phenotypic and genetic variance, but not in a way reliably predicted by the notion of 'stress'. PMID:11934358

  15. Marine environmental pollution stress detection through direct viable counts of bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Kenkre, V.D.; Verlecar, X.N.

    Direct viable counts (DVC) of bacteria were quantified from polluted and relatively less/non-polluted coastal locations during different seasons to assess whether they can be routinely monitored for an understanding of environmental stress(es...

  16. The influence of photodegradation on environmental stress cracking of polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Alexandre R.; Araujo, Elmo S. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail: rangelrs@yahoo.com.br; Medeiros, Eliton S. [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais]. E-mail: eliton@cnpdia.embrapa.br; Amorim, Karina L.E.; Rabello, Marcelo S.; Melo, Tomas J.A. [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia de Materiais]. E-mail: marcelo@dema.ufcg.edu.br

    2005-07-01

    In this work we aimed to investigate the influence of the photodegradation level on the environmental stress cracking (ESC) of polystyrene (PS). Tensile specimens were obtained by injection moulding, exposed to artificial ultraviolet (UV) radiation for different time intervals then submitted to ESC evaluation. It was observed that the previous photodegradation of PS accelerated the ESC. The micrographs showed that the internal mechanisms of deformation were changed. Further results indicated that the UV radiation modified the PS molar mass and because of the presence of oxygen during the exposure of the polymer to UV radiation, carbonyl groups were incorporated to the polymer structure. These modifications caused rising liquid absorption with the photodegradation level which may explain the ESC acceleration. (author)

  17. The Role of Solar and UV Radiation in Environmental Stress Assessment

    Science.gov (United States)

    2003-11-01

    The purpose of this study was to evaluate the role of solar and UV radiation components in environmental stress assessment and to test the...contribution of the UV radiation variable in a modified environmental stress index (ESI). Meteorological variables, including ambient temperature, wet bulb...calculate the wet bulb globe temperature (WBGT) and the environmental stress index (ESI). Accordingly, analysis of the weight for each parameter from

  18. Contribution of early environmental stress to alcoholism vulnerability

    Science.gov (United States)

    Campbell, Joannalee C.; Szumlinski, Karen K.; Kippin, Tod E.

    2011-01-01

    The most problematic aspects of alcohol abuse disorder are excessive alcohol consumption and the inability to refrain from alcohol consumption during attempted abstinence. The root causes that predispose certain individuals to these problems are poorly understood but are believed to be produced by a combination of genetic and environmental factors. Early environmental trauma alters neurodevelopmental trajectories that can predispose an individual to a number of neuropsychiatric disorders, including substance abuse. Prenatal stress (PNS) is a well-established protocol that produces perturbations in nervous system development, resulting in behavioral alterations that include hyperresponsiveness to stress, novelty, and psychomotor stimulant drugs (e.g., cocaine, amphetamine). Moreover, PNS animals exhibit enduring alterations in basal and cocaine-induced changes in dopamine and glutamate transmission within limbic structures, which exhibit pathology in drug addiction and alcoholism, suggesting that these alterations may contribute to an increased propensity to self-administer large amounts of drugs of abuse or to relapse after periods of drug withdrawal. Given that cocaine and alcohol have actions on common limbic neural substrates (albeit by different mechanisms), we hypothesized that PNS would elevate the motivation for, and consumption of, alcohol. Accordingly, we have found that male C57BL/6J mice subject to PNS exhibit higher operant responding and consume more alcohol during alcohol reinforcement as adults. Alterations in glutamate and dopamine neurotransmission within the forebrain structures appear to contribute to the PNS-induced predisposition to high alcohol intake and are induced by excessive alcohol intake. Accordingly, we are exploring the interactions between neurochemical changes produced by PNS and changes induced by consumption of alcohol in adulthood to model the biological bases of high vulnerability to alcohol abuse. PMID:19913199

  19. Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis

    National Research Council Canada - National Science Library

    Grégoire, Catherine-Alexandra; Bonenfant, David; Le Nguyen, Adalie; Aumont, Anne; Fernandes, Karl J L

    2014-01-01

    .... Typical EE paradigms are multifactorial, incorporating elements of physical exercise, environmental complexity, social interactions and stress, however the specific contributions of these variables...

  20. Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using ¹H NMR-based earthworm metabolomics.

    Science.gov (United States)

    Yuk, Jimmy; Simpson, Myrna J; Simpson, André J

    2012-07-01

    Endosulfan is an environmentally persistent pesticide and has been shown to be genotoxic, neurotoxic and carcinogenic to surrounding organisms. Earthworms are widely used in environmental metabolomic studies to assess soil ecotoxicity. Previous nuclear magnetic resonance (NMR)-based metabolomic studies have analyzed earthworm tissue extracts after exposure to endosulfan and identified some key metabolic indicators that can be used as biomarkers of stress. However, some metabolites may have been masked due to overlap with other metabolites in the tissue extract. Therefore, in this study, the coelomic fluid (CF) and the tissue extract of the earthworm, Eisenia fetida, were both investigated using ¹H NMR-based metabolomics to analyze their metabolic profile in response to endosulfan exposure at three sub-lethal (below LC₅₀) concentrations. Principal component analysis determined the earthworm CF and earthworm tissue extract to both have significant separation between the exposed and control at the two highest sub-lethal endosulfan exposures (1.0 and 2.0 μg cm⁻²). Alanine, glycine, malate, α-ketoglutarate, succinate, betaine, myo-inositol, lactate and spermidine in the earthworm CF and alanine, glutamine, fumarate, glutamate, maltose, melibiose, ATP and lactate in earthworm tissue extract were all detected as having significant fluctuations after endosulfan exposure. An increase in ATP production was detected by the increase activity in the citric acid cycle and by anaerobic metabolism. A significant decrease in the polyamine, spermidine after endosulfan exposure describes an apoptotic mode of protection which correlates to a previous endosulfan exposure study where DNA damage has been reported. This study highlights that earthworm CF is a complementary biological medium to tissue extracts and can be helpful to better understand the toxic mode of action of contaminants at sub-lethal levels in the environment.

  1. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations.

    Science.gov (United States)

    Martins, Suzana Cláudia Silveira; Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation.

  2. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations

    Directory of Open Access Journals (Sweden)

    Suzana Cláudia Silveira Martins

    2016-01-01

    Full Text Available There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation.

  3. Urban Environmental Stress and Behavioral Adaptation in Bhopal City of India

    OpenAIRE

    Parul Rishi; Gayatri Khuntia

    2012-01-01

    The study assessed the effect of the urban environmental stress on the subjective well-being of the people in Bhopal city of India. The objectives were to assess the perceived urban environmental stressors and to explore the coping strategies adopted by the people to combat the outcomes of Urban Environmental Stress. Perceived Urban Environmental stressors’ Scale (UES) and Urban Hassle Index were administered. The findings indicated that though people described their city as pleasant, a high ...

  4. Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality.

    Science.gov (United States)

    Gu, ZhiYa; Li, FanChi; Hu, JingSheng; Ding, Chao; Wang, Chaoqian; Tian, JiangHai; Xue, Bin; Xu, KaiZun; Shen, WeiDe; Li, Bing

    2017-03-01

    Silkworm (Bombyx mori) is an economically important insect. It is relatively less resistant to certain chemicals and environment exposures such as pesticides and pathogens. After pesticide exposures, the silkworms are more susceptible to microbial infections. The mechanism underlying the susceptibility might be related to immune response and oxidative stress. A sublethal dose of phoxim combined with Bombyx mori nucleopolyhedrovirus (BmNPV) elevated the silkworm mortality at 96 h. We found a higher content of H2 O2 and increased levels of genes related to oxidative stress and immune response after treatment with a sublethal dose of phoxim for 24 h or 48 h. However, such response decreased with longer pesticide treatment. Mortality increased by 44% when B. mori was exposed to combined treatment with BmNPV and phoxim rather than BmNPV alone. The level of examined immune-related and oxidative-stress-related genes significantly decreased in the combined treatment group compared with the BmNPV group. Our results indicated that, with long-term exposure to pesticides such as OPs, even at sublethal dose, the oxidative stress response and immune responses in silkworm were inhibited, which may lead to further immune impairment and accumulation of oxidative stress, resulting in susceptibility to the virus and harm to the silkworm. Our study provided insights for understanding the susceptibility to pathogen after pesticide exposures, which may promote the development of better pesticide controls to avoid significant economic losses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Treatment with Tyrosine a Neurotransmitter Precursor Reduces Environmental Stress in Humans

    Science.gov (United States)

    1989-01-01

    ELECTE Treatment with Tyrosine, DEC 0 1989 a Neurotransmitter Precursor, Reduces Environmental Stress in Humans LOUIS E. BANDERET* AND HARRIS R...Check List, and the Profile of Mood States. During exposure to the TYROSINE REDUCES ENVIRONMENTAL STRESS 761 MOOD STATES COGNITIVE, REACTION TIME

  6. Assessment of Eco-Environmental Stress in the Western Taiwan Straits Economic Zone

    Directory of Open Access Journals (Sweden)

    Longyu Shi

    2015-03-01

    Full Text Available Eco-environmental stress refers to the pressure borne by the environment in sustaining the pre-existing non-industrialized state and/or in counteracting adverse impacts caused by natural and human factors. The present article introduces the concept, research progress, and method for assessing eco-environmental stress. An eco-environmental stress index (ESI is established to assess the eco-environmental stress of 13 cities in the Western Taiwan Straits Economic Zone (hereafter referred to as the Economic Zone during the period from 2000 to 2010. The research provides a reference for the strategic planning of industrial development and environmental protection. The results show that the overall eco-environmental stress of the Economic Zone was slight and did not have significant change during the past 10 years. The cities with the most severe eco-environmental stress are distributed in the north and south of the Economic Zone. Most areas of Fujian Province have a low degree of eco-environmental stress, a situation that is being constantly improved. The regions with high atmospheric and water pollutant emissions are concentrated in the northern, middle, and southern coastal regions of the Economic Zone. The pollutant emissions of coastal cities are higher than those of inland cities. In the future, ecological restoration and compensation mechanisms should be established for regions where environmental protection and remediation is urgently needed.

  7. Influence of environmental stress on lipofuscin production. [Torpedo marmorata

    Energy Technology Data Exchange (ETDEWEB)

    Totaro, E.A.; Pisanti, F.A.; Cuomo, V.

    1986-01-01

    Because many heavy metals damage biological structures by the production of free radicals, the age pigments can also be considered as markers of environmental stress. In the Torpedo marmorata CNS the electric lobes show the presence of large quantities of age pigments. The morphology of the pigment granulations is typical: finely granular in younger animals, and grossly granular and digitate in older animals. Attempting to discover the conditions that favor the production and accumulation of age pigments derived from the lipoperoxidative effect induced by free radicals, they evaluated the defense mechanisms against free radical damage present in the torpedo central nervous system. They found: absence of vitamin E, low levels of glutathione, absence of 5-thiohistidine, low levels of superoxide dimutase (SOD) and glutathione peroxidase, and absence of glutathione reductase. In animals exposed to different levels of iron, copper and lead pollution, they have found a direct relationship between the quantity of age pigments present in the electric lobe and the level of pollution in the animal's environment. They have obtained similar results in fungi exposed to several heavy metals.

  8. Lethal and sublethal effects of an insect growth regulator, pyriproxyfen, on obliquebanded leafroller (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Sial, Ashfaq A; Brunner, Jay F

    2010-04-01

    The obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae), is one of the most destructive pests of tree fruit in Washington. The development of insecticide resistance in C. rosaceana has led us to explore new management tactics. The use of very low doses of insecticides that have strong sublethal effects represents an environmentally friendly option to improve existing integrated pest management (IPM) strategies. We tested the insect growth regulator pyriproxyfen to determine its lethal and sublethal effects on growth and development of C. rosaceana. A leaf-disk bioassay was used to test seven concentrations of pyriproxyfen ranging from 0 to 30 ppm on fifth-instar C. rosaceana. Male and female larvae were assessed separately for mortality as well as other parameters of growth and development. The LC, values for males and females were 2.4 and 4.8 ppm, respectively. The response to pyriproxyfen was concentration-dependent: only 5-6% of the larvae treated with the highest concentration emerged as morphologically normal adults compared with 86% emergence in the controls. The pupation and adult emergence was significantly delayed at concentrations higher than 1 ppm. The weights of C. rosaceana pupae and adults were significantly increased, whereas fecundity and fertility were significantly reduced at a sublethal concentration of 0.3 ppm. We conclude that both lethal and sublethal effects might exhibit significant impacts on the population dynamics of C. rosaceana in tree fruit orchards treated with low concentrations of pyriproxyfen.

  9. Woody plants in drylands: plastic responses to environmental stress

    NARCIS (Netherlands)

    Xu, L.|info:eu-repo/dai/nl/345500822

    2012-01-01

    Plants in drylands are exposed to a suite of stress factors. The most obvious stress factor is drought stress induced by a strongly negative balance between precipitation and potential evapotranspiration. Drylands are increasingly being used for grazing livestock and with increasing human

  10. Effects of environmental stress on forest crown condition in Europe. Part II: estimation of stress induced by meteorology and air pollutants

    NARCIS (Netherlands)

    Leeuwen, van E.P.; Hendriks, K.C.M.A.; Klap, J.M.; Vries, de W.; Jong, de E.; Erisman, J.W.

    2000-01-01

    In order to assess the relationship between environmental stress and crown condition of forest trees monitored since 1986 in Europe, estimates of stress factors, including temperature stress, drought stress and air pollution stress, were derived with the best data, methods and models currently

  11. Plant transcriptomics and responses to environmental stress: an ...

    Indian Academy of Sciences (India)

    Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses.

  12. Sublethal effects of manganese on the carbohydrate metabolism of ...

    African Journals Online (AJOL)

    Carbohydrate metabolism variables of Oreochromis mossambicuswere investigated after acute and chronic sublethal manganese exposure. The sublethal concentrations were determined from the LC50 value of manganese. After the exposures, the fish were carefully netted and blood was drawn from the caudal aorta.

  13. Salivary cortisol and self-reported stress among persons with environmental annoyance

    DEFF Research Database (Denmark)

    Carlsson, Frida; Persson, Roger; Karlson, Björn

    2006-01-01

    Increased vulnerability to stress has been suggested as a possible mechanism behind medically unexplained conditions such as sensitivity to electricity and common smells. This study examined whether subjective environmental annoyance among the general population is associated with increased physi...

  14. Effects of environmental stresses on the species composition of phytoplankton populations. Final report, 1 March 1979-15 July 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.; Sanders, J. G.

    1980-07-01

    Studies concerned with the impact of anthropogenic stress associated with coastally located power plants on the species composition of marine phytoplankton assemblages have been underway under this Contract for 24 months. The impact of three pollutants associated with power plant cooling water systems has been studied: copper, chlorine, and thermal elevation. The primary goal has been to determine whether chronic addition of these pollutants at sublethal levels can affect the species composition and the succession of dominant species in natural phytoplankton assemblages. Stresses have been studied both singly and in combination. In conjunction with these primary objectives, a number of related problems imvolving phytoplankton response to pollutants and to zooplankton grazing have been studied. These experiments have been performed both in the large volume enclosures outdoors, and in laboratory cultures under constant conditions.

  15. Intracellular proteins produced by mammalian cells in response to environmental stress

    Science.gov (United States)

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  16. Assessment of environmental stresses for enhanced microalgal biofuel production-an overview

    Directory of Open Access Journals (Sweden)

    Dan eCheng

    2014-07-01

    Full Text Available Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  17. The biology of environmental stress: molecular biomarkers in Sydney rock oysters (Saccostrea glomerata).

    Science.gov (United States)

    Raftos, D A; Melwani, A R; Haynes, P A; Muralidharan, S; Birch, G F; Amaral, V; Thompson, E L; Taylor, D A

    2016-09-14

    This review describes our recent work on environmental stress in Sydney rock oysters, focusing on the identification of molecular biomarkers for ecotoxicological analysis. We begin by describing the environmental pressures facing coastal estuaries in Australia, with particular reference to Sydney Harbour. After providing that context, we summarise our transcriptional and proteomic analyses of Sydney rock oysters responding to chemical contamination and other forms of environmental stress. This work has shown that the intracellular processes of oysters are highly responsive to environmental threats. Our data agree with the broader literature, which suggests that there is a highly conserved intracellular stress response in oysters involving a limited number of biological processes. We conclude that many effective molecular markers for environmental biomonitoring are likely to lie within these biological pathways.

  18. Analysis of environmental stress factors using an artificial growth system and plant fitness optimization.

    Science.gov (United States)

    Lee, Meonghun; Yoe, Hyun

    2015-01-01

    The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production.

  19. Analysis of Environmental Stress Factors Using an Artificial Growth System and Plant Fitness Optimization

    Directory of Open Access Journals (Sweden)

    Meonghun Lee

    2015-01-01

    Full Text Available The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production.

  20. Responses to environmental stresses in woody plants: key to survive and longevity.

    Science.gov (United States)

    Osakabe, Yuriko; Kawaoka, Akiyoshi; Nishikubo, Nobuyuki; Osakabe, Keishi

    2012-01-01

    Environmental stresses have adverse effects on plant growth and productivity, and are predicted to become more severe and widespread in decades to come. Especially, prolonged and repeated severe stresses affecting growth and development would bring down long-lasting effects in woody plants as a result of its long-term growth period. To counteract these effects, trees have evolved specific mechanisms for acclimation and tolerance to environmental stresses. Plant growth and development are regulated by the integration of many environmental and endogenous signals including plant hormones. Acclimation of land plants to environmental stresses is controlled by molecular cascades, also involving cross-talk with other stresses and plant hormone signaling mechanisms. This review focuses on recent studies on molecular mechanisms of abiotic stress responses in woody plants, functions of plant hormones in wood formation, and the interconnection of cell wall biosynthesis and the mechanisms shown above. Understanding of these mechanisms in depth should shed light on the factors for improvement of woody plants to overcome severe environmental stress conditions.

  1. Post-term birth as a response to environmental stress

    OpenAIRE

    Margerison-Zilko, Claire E.; Goodman, Julia M.; Anderson, Elizabeth; Gemmill, Alison; Catalano, Ralph A.

    2015-01-01

    Background and objectives: Despite growing interest in the role of maternal psychosocial stress as a determinant of preterm birth, no existing work has examined the relation between maternal stress and post-term birth (?42 weeks). We hypothesize that prolonging gestation past term may represent an adaptive strategy to a suboptimal environment. Methodology: We examined the relationship between exposure to the September 2001 terrorist attacks and odds of post-term birth in California. We calcul...

  2. Stress recovery during exposure to natural sounds and environmental noise

    OpenAIRE

    Alvarsson, Jesper, J.

    2009-01-01

    Research suggests that physiological stress reactions may be reduced by visual impressions from natural environments as compared to urban or built-up environments. The present experiment tested whether similar effects might be found by auditory stimulation. Forty university students were tested in an experiment with four consecutive recovery sessions after stressful mental arithmetic tests. The independent variables were type of sound during recovery. The sound was either a natural sound envi...

  3. Stress Recovery during Exposure to Nature Sound and Environmental Noise

    OpenAIRE

    Nilsson, Mats E.; Stefan Wiens; Alvarsson, Jesper J.

    2010-01-01

    Research suggests that visual impressions of natural compared with urban environments facilitate recovery after psychological stress. To test whether auditory stimulation has similar effects, 40 subjects were exposed to sounds from nature or noisy environments after a stressful mental arithmetic task. Skin conductance level (SCL) was used to index sympathetic activation, and high frequency heart rate variability (HF HRV) was used to index parasympathetic activation. Although HF HRV showed no ...

  4. Effects of environmental stress on forest crown condition in Europe. Part IV statistical analysis of relationships

    NARCIS (Netherlands)

    Klap, J.M.; Oude Voshaar, J.H.; Vries, de W.; Erisman, J.W.

    2000-01-01

    Site-specific estimates for various environmental stress factors were related with measured crown condition data at a systematic 16 x: 16 km(2) grid over Europe, according to previously stated hypotheses, using a multiple regression approach, including interactions, and lagged effects of stress

  5. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.

    Science.gov (United States)

    Kaur, Ranjeet; Kumar Bhunia, Rupam; Ghosh, Ananta Kumar

    2016-01-01

    Global food security is threatened by the severe environmental conditions that have reduced the worldwide crop yield. Plants possess inherent mechanisms to cope with the initial stress phase but to ensure their survival through harsh climate, the intervention of genetic engineering is desirable. We present a comprehensive review on the progress made in the field of developing environmental stress tolerant crops and the prospects that can be undertaken for achieving it. We review the effects of abiotic and biotic stresses on crop plants, and the use of different molecular genetic approaches to cope with these environmental stresses for establishment of sustainable agriculture. The various strategies employed in different crops have also been discussed. We also summarized the major patents in the field of plant stress tolerance that have been granted in the last five years. On the basis of these analyses, we propose that genetic engineering of crops is the preferred approach over the traditional methods for yielding healthier and viable agriculture in response to the different stressful environments. The wild progenitors of cultivated crop species can prove to be highly potential genetic resources in this regard and can be exploited to produce better crops that are relatively tolerant towards various environmental stresses. Thus, elucidation of genetic loci and deciphering the underlying mechanisms that confer tolerance to plants against stressful conditions followed by its successful introgression into elite, high-yielding crop varieties can be an effective way to engineer the crops for sustainable agriculture.

  6. Stress Recovery during Exposure to Nature Sound and Environmental Noise

    Directory of Open Access Journals (Sweden)

    Mats E. Nilsson

    2010-03-01

    Full Text Available Research suggests that visual impressions of natural compared with urban environments facilitate recovery after psychological stress. To test whether auditory stimulation has similar effects, 40 subjects were exposed to sounds from nature or noisy environments after a stressful mental arithmetic task. Skin conductance level (SCL was used to index sympathetic activation, and high frequency heart rate variability (HF HRV was used to index parasympathetic activation. Although HF HRV showed no effects, SCL recovery tended to be faster during natural sound than noisy environments. These results suggest that nature sounds facilitate recovery from sympathetic activation after a psychological stressor.

  7. Stress recovery during exposure to nature sound and environmental noise.

    Science.gov (United States)

    Alvarsson, Jesper J; Wiens, Stefan; Nilsson, Mats E

    2010-03-01

    Research suggests that visual impressions of natural compared with urban environments facilitate recovery after psychological stress. To test whether auditory stimulation has similar effects, 40 subjects were exposed to sounds from nature or noisy environments after a stressful mental arithmetic task. Skin conductance level (SCL) was used to index sympathetic activation, and high frequency heart rate variability (HF HRV) was used to index parasympathetic activation. Although HF HRV showed no effects, SCL recovery tended to be faster during natural sound than noisy environments. These results suggest that nature sounds facilitate recovery from sympathetic activation after a psychological stressor.

  8. Energy and environmental stress in aquatic systems. DOE symposium series 48

    Energy Technology Data Exchange (ETDEWEB)

    Thorp, J.H.; Gibbons, J.W. (eds.)

    1978-12-01

    This symposium, Energy and Environmental Stress in Aquatic Systems, served as a forum for discussions of the environmental effects of alternative sources of energy. This exchange of information promotes a proper perspective in which to make critical judgments affecting a country's energy and environmental policies. The symposium was ideal for comparing effects of various stressors and for enabling researchers in one discipline to become acquainted with those in another area. Individual entries were made for the separate papers.

  9. Hospital noise pollution: an environmental stress model to guide research and clinical interventions.

    Science.gov (United States)

    Topf, M

    2000-03-01

    Hospital noise pollution: an environmental stress model to guide research and clinical interventions This commentary provides an expanded environmental stress model. Conceptual relationships between ambient stressors, ambient stress, and health are detailed. A three-part intervention, enhancement of person-environment compatibility, is specified. Details are provided on how this approach to reducing environmental pollution/hazards and sustaining these changes may be influenced by sociopolitical values, technological advances, and motivation for control over hazards. Personal variables thought to mediate the impact of environmental stress on health, including intrinsic sensitivity to specific hazards, personality, restricted capacities, other stress, culture, personal preferences, stage of life, gender, and perceived social support, are highlighted. Research results on the stress and health effects of hospital noise on patients and nurses are summarized to provide support for the model. Future directions for research are recommended. Implications of the model for nursing, including an environmental activist role in an interdisciplinary effort to plan and implement noise abatement interventions, are described.

  10. Habitat diversity and adaptation to environmental stress in encysted ...

    Indian Academy of Sciences (India)

    Unknown

    adaptation implicated in the ecological success of Artemia is p26, a small heat shock protein that previous evi- dence indicates ... summarize recently published work on thermal tolerance and stress protein levels in embryos from the San. Francisco Bay ...... encouraged my participation in it and related projects at the Artemia ...

  11. Plant transcriptomics and responses to environmental stress: an ...

    Indian Academy of Sciences (India)

    abscissic acid signals (Hermans et al. 2010). Arabidopsis infected by pathogens and insects showed a high level of transcriptional modification. Infected plants overexpressed the stress-related genes. Salicylic acid, jasmonic acid and ethylene in orchestration have been identified as key play- ers in plant defense responses ...

  12. Environmental Stressors and Their Impact on Health and Disease with Focus on Oxidative Stress.

    Science.gov (United States)

    Münzel, Thomas; Daiber, Andreas

    2018-02-02

    Epidemiological, preclinical and interventional clinical studies have demonstrated that environmental stressors are associated with health problems, namely cardiovascular diseases. According to estimations of the World Health Organization (WHO), environmental risk factors account for an appreciable part of global deaths and life years spent with disability. This Forum addresses the impact of the environmental risk factors such as traffic noise exposure, air pollution by particulate matter (PM), mental stress/loneliness, and the life style risk factor (water-pipe) smoking on health and disease with focus on the cardiovascular system. We will critically discuss the use of observatory/modifiable biomarkers of oxidative stress and inflammation in environmental research on the aforementioned risk factors highlighting the need of exposome studies. Another focus will be on the epigenetic regulation via microRNAs in environmental stress upon exposure to noise and toxins/heavy metals as well as mental stress conditions, providing mechanistic insights into the modulation of microRNA signaling by oxidative stress, and vice versa the contribution of microRNAs to oxidative stress conditions. We will also provide an in-depth overview on the mechanistic pathways that lead to health problems (e.g., cardiovascular diseases) in response to environmental psychosocial stress, air pollution exposure in the form of ambient PM and diesel exhaust, traffic noise exposure, and the life style drug (water-pipe) smoking. Almost all stressors share the activation of the hypothalamic-pituitary-adrenocortical axis and of the sympathetic nervous system with subsequent onset of inflammation and oxidative stress, defining the here proposed therapeutic (antioxidant and exercise) strategies. Antioxid. Redox Signal. 00, 000-000.

  13. Early sex-dependent differences in response to environmental stress.

    Science.gov (United States)

    Pérez-Cerezales, Serafin; Ramos-Ibeas, Priscila; Rizos, Dimitrios; Lonergan, Pat; Bermejo-Alvarez, Pablo; Gutierrez-Adan, Alfonso

    2017-10-13

    Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases the effects are usually sex-specific. During preimplantation development, male and female embryos exhibit an extensive transcriptional dimorphism mainly driven by incomplete X-chromosome inactivation. These early developmental stages are crucial for the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant sex-dependent trajectories caused by sex-chromosomes and/or sex-hormones is essential to define diagnostic markers and prevention/intervention protocols.

  14. Molecular genetic approaches for environmental stress tolerant crop plants: Progress and prospects.

    Science.gov (United States)

    Kaur, Ranjeet; Ghosh, Ananta Kumar; Bhunia, Rupam Kumar

    2016-08-05

    Global food security is threatened by the severe environmental conditions that have reduced the worldwide crop yield. Plants possess inherent mechanisms to cope with the initial stress phase but to ensure their survival through harsh climate, the intervention of genetic engineering is desirable. Elucidation of genetic loci and deciphering the underlying mechanisms that confer tolerance to plants against stressful conditions followed by its successful introgression into elite, high-yielding crop varieties can be an effective way to engineer the crops for increasing productivity. This review provides an overview about the effects of abiotic and biotic stresses on crop plants and the use of genetic engineering approach to cope with these environmental stresses for a sustainable agriculture. Major patents in the field of plant stress tolerance in the last five years have also been summarized.

  15. Neural effects of social environmental stress - an activation likelihood estimation meta-analysis.

    Science.gov (United States)

    Mothersill, O; Donohoe, G

    2016-07-01

    Social environmental stress, including childhood abuse and deprivation, is associated with increased rates of psychiatric disorders such as schizophrenia and depression. However, the neural mechanisms mediating risk are not completely understood. Functional magnetic resonance imaging (MRI) studies have reported effects of social environmental stress on a variety of brain regions, but interpretation of results is complicated by the variety of environmental risk factors examined and different methods employed. We examined brain regions consistently showing differences in blood oxygen level-dependent (BOLD) response in individuals exposed to higher levels of environmental stress by performing a coordinate-based meta-analysis on 54 functional MRI studies using activation likelihood estimation (ALE), including an overall sample of 3044 participants. We performed separate ALE analyses on studies examining adults (mean age ⩾18 years) and children/adolescents (mean age environmental stress across multiple studies. These clusters incorporated several brain regions, among which the right amygdala was most frequently implicated. These findings suggest that a variety of social environmental stressors is associated with differences in the BOLD response of specific brain regions such as the right amygdala in both children/adolescents and adults. What remains unknown is whether these environmental stressors have differential effects on treatment response in these brain regions.

  16. Urban Environmental Stress and Behavioral Adaptation in Bhopal City of India

    Directory of Open Access Journals (Sweden)

    Parul Rishi

    2012-01-01

    Full Text Available The study assessed the effect of the urban environmental stress on the subjective well-being of the people in Bhopal city of India. The objectives were to assess the perceived urban environmental stressors and to explore the coping strategies adopted by the people to combat the outcomes of Urban Environmental Stress. Perceived Urban Environmental stressors’ Scale (UES and Urban Hassle Index were administered. The findings indicated that though people described their city as pleasant, a high level of stress was still perceived and its major reasons were found to be noise, waste accumulation, polluted air with smoke, and unhealthy environment in slums. The outcome of research suggests that the city planners should give equal priority to the natural resources and environment by various pollution management interventions and proper city planning. It is crucial for the well-being of the human beings to lower down the effect of stressors, so that the life in the city can be livable and of good quality. This paper provided guidelines for other metropolitan cities too for developing Environmental Competence and for generating mass awareness about the Urban Environmental Stress and its possible management options to help people develop Environmental Resilience and functional coping.

  17. The association of environmental heat stress with performance: analysis of the 2014 FIFA World Cup Brazil.

    Science.gov (United States)

    Nassis, George P; Brito, Joao; Dvorak, Jiri; Chalabi, Hakim; Racinais, Sebastien

    2015-05-01

    The 2014 FIFA World Cup Brazil included 64 matches in temperate to tropical environmental conditions. We analysed performance data in relation to the environmental conditions to identify potential association. Wet-bulb globe temperature (WBGT) parameters were obtained at the centre of the field 1 h before the start of play. Environmental stress was estimated (low, moderate and high) for each match using WBGT and relative humidity. Various physical and technical performance indices were recorded during each match (average of both teams). Over the 64 matches, 28 were played under low, 20 under moderate and 16 under high environmental stress. There was no difference in actual playing time (p=0.517), total distance covered (p=0.491), number of goals scored (p=0.485) and number of cards (p=0.618) between the matches played under different environmental stress categories. The number of sprints was lower in high than in moderate or low environmental stress (-10%, p<0.05) but peak speed was unaffected. The distance covered at high intensity was also lower under high (24.8±2.8 m/min/player) than low environmental stress (26.9±2.3 m/min/player, p=0.02). Number of passes was not different but the rate of successful passes was higher under high (76.8±4.4%) than low (73.6±10.8%) environmental stress (p=0.031). Top-level players seem to modulate their activity pattern during matches in a hot and humid environment (ie, less high-intensity but more low-intensity running and successful passes) to preserve the global match characteristics (ie, similar actual playing time, total distance covered, peak running speed and goals scored). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress

    OpenAIRE

    Lucas-Thompson, RG; Holman, EA

    2013-01-01

    We examined whether the oxytocin receptor gene (OXTR) single nucleotide polymorphism (SNP) rs53576 genotype buffers the combined impact of negative social environments (e.g., interpersonal conflict/constraint) and economic stress on post-traumatic stress (PTS) symptoms and impaired daily functioning following collective stress (September 11th terrorist attacks). Saliva was collected by mail and used to genotype 704 respondents. Participants completed Web-based assessments of pre-9/11 mental h...

  19. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants.

    Science.gov (United States)

    Lämke, Jörn; Bäurle, Isabel

    2017-06-27

    Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.

  20. Ultraviolet and environmental stresses involved in the induction and ...

    African Journals Online (AJOL)

    Ultraviolet takes up 7% of sunlight and it stimulates distinct responses in plant. Both UV-A and low influence of UV-B can induce the accumulation of anthocyanin via induction of the expression of anthocyanin biosynthesis genes. Besides, the modulation of anthocyanin by environmental and developmental factors has been ...

  1. Detoxication enzymes as indicators of environmental stress on fish

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.D. (Oak Ridge National Laboratory, TN (United States)); Stegeman, J.J. (Woods Hole Oceanographic Institution, MA (United States))

    1990-01-01

    Organisms possess several genetically mechanisms that cope with exposure to toxic contaminants in the environment. Two systems involved in the defense against xenobiotic compounds are the immune response and the induction of drug-metabolizing enzymes. Fish can metabolize foreign chemicals mainly by oxidation, reduction, hydrolysis, and conjugation reactions catalyzed by various enzymes, which are mainly localized in the liver but are also found in lower concentrations in other tissues. Metal-binding proteins (methallothioneins) also are induced by high concentrations of heavy metals. A major advantage of using the activity and quantity of these enzymes as indicators of stress instead of other biochemical measures is their sensitivity to specific types of pollutants. Efforts are being made to use enzyme activities in conjunction with other biological indicators, such as the immune response and histopathology of certain tissues, to evaluate integrated responses of organisms to chronic stress.

  2. RsbV of Listeria monocytogenes contributes to regulation of environmental stress and virulence.

    Science.gov (United States)

    Zhang, Zaichao; Meng, Qingling; Qiao, Jun; Yang, Lihong; Cai, Xuepeng; Wang, Guanglei; Chen, Chuangfu; Zhang, Lijuan

    2013-02-01

    SigmaB factor is an important regulatory factor for stress response in Gram-positive bacteria such as Listeria monocytogenes (L. monocytogenes), Staphylococcus aureus and Bacillus subtilis. However, the activity of SigmaB factor is regulated by RsbV factor. Currently, the functional studies of RsbV factor are mostly focused on non-pathogenic B. subtilis, but the roles of RsbV factor in pathogenic L. monocytogenes during the regulation of environmental stress and virulence are still unclear. In the study, a ∆RsbV mutant of L. monocytogenes was constructed to explore the regulatory role of RsbV in environmental stress and virulence. The environmental stress experiments indicated that the growth and survival capability of ∆RsbV mutant obviously decreased in stress of low temperature, osmotic pressure, alcohol and acid, compared with EGD strain. The macrophage infection experiment indicated that ∆RsbV mutant had weaker survival capability than EGD strain, and the expression of PrfA, actA, PlcA and LLO was down-regulated in infected cells. Animal inoculation experiments indicated that RsbV deletion significantly reduced the pathogenicity of L. monocytogenes. Our data demonstrate that, in addition to regulating tolerance under environmental stress conditions, RsbV also contributes to regulation of L. monocytogenes virulence.

  3. A global deltas typology of environmental stress and its relation to terrestrial hydrology

    Science.gov (United States)

    Tessler, Z. D.; Vorosmarty, C. J.; McDonald, K. C.; Schroeder, R.; Grossberg, M.; Gladkova, I.; Aizenman, H.

    2013-12-01

    River delta systems around the world are under varying degrees of environmental stress stemming from a variety of human impacts, both from upstream basin based activities and local impacts on the deltas themselves, as well as sea level rise. These stresses are known to affect rates of relative sea level rise by disrupting the delivery or deposition of sediment on the delta. We present a global database of several of these stresses, and investigate patterns of stress across delta systems. Several methods of aggregating the environmental stressors into an index score are also investigated. A statistical clustering analysis, which we refer to as a "global delta fingerprinting system", across the environmental stresses identifies systems under similar states of threat. Several deltas, including the Nile, are in unique clusters, while regional patterns are evident among deltas in Southeast Asia. These patterns are compared with observed surface inundation derived from SAR, NDVI from MODIS, river discharge estimates from the WBMplus numerical model, and ocean wave activity from WAVEWATCH III. Delta inundation sensitivity to river and coastal forcings are observed to vary with environmental stress and social indicators including population density and GDP.

  4. Effects of interspecific interaction-linked habitat factors on moose resource selection and environmental stress.

    Science.gov (United States)

    Bao, Heng; Fryxell, John M; Liu, Hui; Dou, Hongliang; Ma, Yingjie; Jiang, Guangshun

    2017-01-27

    Resource selection of herbivores is a complex ecological process that operates in relation to biological or non-biological factors, which may affect the feeding and movement, and subsequently their spatial distribution and environmental stress. Here, we estimated moose (Alces alces cameloides) resource selection for habitat variables and the effect of interspecific interactions related to roe deer (Capreolus pygargus bedfordi) on its population distribution and environmental stress in the Khingan Mountain region of northeast China at local and regional scales. Different response patterns of moose resource selection, spatial distribution, and environmental stress to interspecific interaction-linked habitat factors were shown at the two scales. A general ecological chain, response of moose to interspecific interaction-linked habitat factors, was exhibited at the regional scale, and at the local scale, heterogeneous responses, linkages of habitat selection and environmental stress of moose population might be driven by different interspecific interaction patterns. Our study firstly suggested that moose resource selection, food availability, diet quality, population density and environmental stress indicators were impacted by interactions with the distribution of other sympatric herbivore species and showed differences in ecological response chains at various spatial scales. These findings are useful for sympatric herbivore assembly conservation, habitat quality monitoring and management.

  5. Interactive effects of environmental stress and inbreeding on reproductive traits in a wild bird population.

    Science.gov (United States)

    Marr, A B; Arcese, P; Hochachka, W M; Reid, J M; Keller, L F

    2006-11-01

    1. Conservation biologists are concerned about the interactive effects of environmental stress and inbreeding because such interactions could affect the dynamics and extinction risk of small and isolated populations, but few studies have tested for these interactions in nature. 2. We used data from the long-term population study of song sparrows Melospiza melodia on Mandarte Island to examine the joint effects of inbreeding and environmental stress on four fitness traits that are known to be affected by the inbreeding level of adult birds: hatching success, laying date, male mating success and fledgling survival. 3. We found that inbreeding depression interacted with environmental stress to reduce hatching success in the nests of inbred females during periods of rain. 4. For laying date, we found equivocal support for an interaction between parental inbreeding and environmental stress. In this case, however, inbred females experienced less inbreeding depression in more stressful, cooler years. 5. For two other traits, we found no evidence that the strength of inbreeding depression varied with environmental stress. First, mated males fathered fewer nests per season if inbred or if the ratio of males to females in the population was high, but inbreeding depression did not depend on sex ratio. Second, fledglings survived poorly during rainy periods and if their father was inbred, but the effects of paternal inbreeding and rain did not interact. 6. Thus, even for a single species, interactions between the inbreeding level and environmental stress may not occur in all traits affected by inbreeding depression, and interactions that do occur will not always act synergistically to further decrease fitness.

  6. Maintenance of Positive Diversity-Stability Relations along a Gradient of Environmental Stress

    Science.gov (United States)

    Romanuk, Tamara N.; Vogt, Richard J.; Young, Angela; Tuck, Constance; Carscallen, Mather W.

    2010-01-01

    Background Environmental stress is widely considered to be an important factor in regulating whether changes in diversity will affect the functioning and stability of ecological communities. Methodology/Principal Findings We investigated the effects of a major environmental stressor (a decrease in water volume) on diversity-abundance and diversity-stability relations in laboratory microcosms composed of temperate multi-trophic rock pool communities to identify differences in community and functional group responses to increasing functional group richness along a gradient of environmental stress (low, medium, and high water volume). When a greater number of functional groups were present, communities were less temporally variable and achieved higher abundances. The stabilizing effect of increased functional group richness was observed regardless of the level of environmental stress the community was subjected too. Despite the strong consistent stabilizing effect of increased functional group richness on abundance, the way that individual functional groups were affected by functional group richness differed along the stress gradient. Under low stress, communities with more functional groups present were more productive and showed evidence of strong facilitative interactions. As stress increased, the positive effect of functional group richness on community abundance was no longer observed and compensatory responses became more common. Responses of individual functional groups to functional group richness became increasing heterogeneous are stress increased, prompting shifts from linear diversity-variability/abundance relations under low stress to a mix of linear and non-linear responses under medium and high stress. The strength of relations between functional group richness and both the abundances and temporal variability of functional groups also increased as stress increased. Conclusions/Significance While stress did not affect the relation between functional

  7. Maintenance of positive diversity-stability relations along a gradient of environmental stress.

    Directory of Open Access Journals (Sweden)

    Tamara N Romanuk

    Full Text Available BACKGROUND: Environmental stress is widely considered to be an important factor in regulating whether changes in diversity will affect the functioning and stability of ecological communities. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of a major environmental stressor (a decrease in water volume on diversity-abundance and diversity-stability relations in laboratory microcosms composed of temperate multi-trophic rock pool communities to identify differences in community and functional group responses to increasing functional group richness along a gradient of environmental stress (low, medium, and high water volume. When a greater number of functional groups were present, communities were less temporally variable and achieved higher abundances. The stabilizing effect of increased functional group richness was observed regardless of the level of environmental stress the community was subjected too. Despite the strong consistent stabilizing effect of increased functional group richness on abundance, the way that individual functional groups were affected by functional group richness differed along the stress gradient. Under low stress, communities with more functional groups present were more productive and showed evidence of strong facilitative interactions. As stress increased, the positive effect of functional group richness on community abundance was no longer observed and compensatory responses became more common. Responses of individual functional groups to functional group richness became increasing heterogeneous are stress increased, prompting shifts from linear diversity-variability/abundance relations under low stress to a mix of linear and non-linear responses under medium and high stress. The strength of relations between functional group richness and both the abundances and temporal variability of functional groups also increased as stress increased. CONCLUSIONS/SIGNIFICANCE: While stress did not affect the relation

  8. Sublethal effects of some botanical and chemical insecticides on the cotton whitefly, Bemisia tabaci (Hem: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Fatemeh Jafarbeigi

    2014-09-01

    Full Text Available In addition to direct mortalities caused by acute concentrations of insecticides, some biological traits of target pests may be also affected by sublethal doses. The cotton whitefly, Bemisia tabaci (Hem: Aleyrodidae is an important pest of a wide variety of agricultural crops across the world. The control of B. tabaci largely relies on wide application of chemical insecticides. In this study, we analyzed the life table parameters to evaluate the sublethal effect of three plant-derived insecticides (Fumaria parviflora (Fumariaceae, Teucrium polium (Lamiaceae, and Thymus vulgaris (Lamiaceae and two chemical insecticides (pymetrozin and neemarin on B. tabaci. The whiteflies were allowed to oviposit on plants infected with each of the five insecticides using leaf-dip method. The data were analyzed using the age-stage two-sex life table. We found significant differences in the gross reproductive rate (GRR, the net reproductive rat (R0, the intrinsic rate of increase (r and the finite rate of increase (λ of treated whiteflies compared to control. Our results showed that some biological traits of B. tabaci are affected by sub-lethal doses of the plant-derived extracts and that these effects are comparable to those of chemical insecticides. Given the detrimental effects of chemical insecticides on human, environment and non-target organisms, plant-derived insecticides may provide valuable environmentally friendly tools for pest management programs.

  9. Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure

    Science.gov (United States)

    2000-09-30

    Award No. N000149910024 http://lifesci.ucsb.edu/EEMB/faculty/nisbet LONG TERM GOALS The ecological effects of environmental stress occur within complex...those of real populations. We have also investigated how toxicants may affect the stability of the system. If the toxicant effect is primarily an...will be submitted in the near future. IMPACT/APPLICATIONS Our DEB modeling work aims to unify theory describing the effects of environmental stress on

  10. A Ferroxidase, Cfo1, Regulates Diverse Environmental Stress Responses of Cryptococcus neoformans through the HOG Pathway.

    Science.gov (United States)

    Lee, Kyung-Tae; Lee, Jang-Won; Lee, Dohyun; Jung, Won-Hee; Bahn, Yong-Sun

    2014-06-01

    The iron uptake and utilization pathways play a critical role in allowing human pathogens, including Cryptococcus neoformans, the causative agent of fatal meningoencephalitis, to survive within the mammalian body by competing with the host for iron. Here we show that the iron regulon is also required for diverse environmental stress responses and that in C. neoformans, it is regulated by the high-osmolarity glycerol response (HOG) pathway. Between CFO1 and CFO2, two ferroxidase genes in the iron regulon, CFO1 but not CFO2 was induced during oxidative and osmotic stress. Interestingly, we found that the HOG pathway repressed basal expression of both CFO1 and CFO2. Furthermore, when the HOG pathway was blocked, CFO2 also responded to oxidative and osmotic stress and the response of CFO1 was increased. We also established that CFO1 plays a major role in responding and adapting to diverse environmental stresses, including oxidative and genotoxic damage, osmotic fluctuations, heavy metal stress, and stress induced by cell membrane destabilizers. Therefore, our findings indicate that in C. neoformans, the iron uptake and utilization pathways are not only required for iron acquisition and survival, but also play a significant role in the environmental stress response through crosstalk with the HOG pathway.

  11. Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Kazuyuki Shimizu

    2013-12-01

    Full Text Available An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP, PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C- and nitrogen (N-limitations, where αKG inhibits enzyme I (EI of phosphotransferase system (PTS, thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient limitations and environmental stresses. As for oxidative stress, the TCA cycle both generates and scavenges the reactive oxygen species (ROSs, where NADPH produced at ICDH and the oxidative pentose phosphate pathways play an important role in coping with oxidative stress. Solvent resistant mechanism was also considered for the stresses caused by biofuels and biochemicals production in the cell.

  12. Sublethal consequences of urban life for wild vertebrates

    National Research Council Canada - National Science Library

    Gallagher, Austin J; Peiman, Kathryn S; de Bruijn, Robert; Cooke, Steven J; Birnie-Gauvin, Kim

    2016-01-01

    ... — while others have not. Here we present a review of the sublethal consequences of life in the city for wild vertebrates, and demonstrate that urban animals face an almost completely different set of physiological...

  13. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans.

    Science.gov (United States)

    Chen, Angela; Contreras, Lydia M; Keitz, Benjamin K

    2017-09-15

    The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation.IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms

  14. Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Yotnda, Patricia; Wilson, John H

    2016-07-31

    Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect. Thus, alt-NHEJ, which contributes to genetic mutability in cancer cells, also plays a novel role in environmental stress-induced TNR mutagenesis. Published by Elsevier Ltd.

  15. The microbial opsin homologue sop1 is involved in Sclerotinia sclerotiorum development and environmental stress response

    Directory of Open Access Journals (Sweden)

    Xueliang eLyu

    2016-01-01

    Full Text Available Microbial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin gene sop1 in the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further study showed sop1 was essential for growth, sclerotial development and full virulence of S. sclerotiorum. Sop1-silenced transformants were more sensitive to high salt stress, fungicides and high osmotic stress. However, they were more tolerant to oxidative stress compared with the wild-type strain, suggesting that sop1 is involved in different stress responses and fungicide resistance, which plays a role in the environmental adaptability of S. sclerotiorum. Furthermore, a Delta blast search showed that microbial opsins are not present in animals and almost all higher plants, indicating that as a predicted transmembrane protein, sop1 is a potential drug target for disease control of S. sclerotiorum.

  16. Behavioral responses of the estuarine calanoid copepod Eurytemora affinis to sub-lethal concentrations of waterborne pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Michalec, François-Gaël [Université Lille Nord de France, F-59000 Lille (France); USTL, LOG, Station Marine de Wimereux, F-62930 Wimereux (France); CNRS, UMR 8187, F-62930 Wimereux (France); National Taiwan Ocean University, Institute of Marine Biology, Keelung, Taiwan, ROC (China); Holzner, Markus [Institute of Environmental Engineering, ETH Zürich (Switzerland); Menu, Dominique [Université Lille Nord de France, F-59000 Lille (France); USTL, LOG, Station Marine de Wimereux, F-62930 Wimereux (France); CNRS, UMR 8187, F-62930 Wimereux (France); Hwang, Jiang-Shiou [National Taiwan Ocean University, Institute of Marine Biology, Keelung, Taiwan, ROC (China); Souissi, Sami, E-mail: sami.souissi@univ-lille1.fr [Université Lille Nord de France, F-59000 Lille (France); USTL, LOG, Station Marine de Wimereux, F-62930 Wimereux (France); CNRS, UMR 8187, F-62930 Wimereux (France)

    2013-08-15

    Highlights: •We studied the effects of sub-lethal exposure to pollutants on Eurytemora affinis swimming behavior. •Nonylphenol, cadmium and polycyclic aromatic hydrocarbons caused hyperactivity. •Effects were observable within 30 min of exposure and persisted during a depuration period. •The response resembles an escape reaction allowing copepods to evade stressful conditions. -- Abstract: Estuarine waters contain a variety of chemicals which affect to various extents the behavior of aquatic organisms. Little is known, however, on the behavioral response of copepods. The present study shows the results of laboratory experiments investigating the immediate effects of sub-lethal concentrations of three commonly found contaminants on the three-dimensional swimming behavior of the estuarine calanoid copepod Eurytemora affinis. Nonylphenol at 2 μg L{sup −1}, cadmium at 45 ng L{sup −1} and a mixture of low to medium molecular weight polycyclic aromatic hydrocarbons at 40 ng L{sup −1} all affected the swimming behavior of E. affinis adults, increasing both swimming speed and activity. In most cases, effects were observable within 30 min of exposure and persisted or faded during a period of depuration in uncontaminated water of similar duration. In ovigerous females exposed to Cd and PAHs, effects appeared to be more pronounced during the depuration period, suggesting that carrying ovisacs may impair recovery. We quantified differences in the distribution of swimming speed values by considering the relative frequencies of periods of break, slow and fast swimming and we observed a trend toward faster movements in the presence of pollutants. The degree of trajectory complexity, estimated through their fractal dimension, was unaffected by pollutants. Since both narcotic and non-narcotic pollutants induced hyperactivity, our results suggest that changes in behavior after a short-term exposure may be independent of the general mode of action of the chemicals. The

  17. Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Bui Xuan

    2012-10-01

    Full Text Available Abstract Background Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre-exposure to heat, starvation, oxidative or osmotic stresses encountered in the environment may affect the subsequent interaction of C. jejuni with free-living protozoa. To test this hypothesis, we examined the impact of environmental stress on expression of virulence-associated genes (ciaB, dnaJ, and htrA of C. jejuni and on its uptake by and intracellular survival within Acanthamoeba castellanii. Results Heat, starvation and osmotic stress reduced the survival of C. jejuni significantly, whereas oxidative stress had no effect. Quantitative RT-PCR experiments showed that the transcription of virulence genes was slightly up-regulated under heat and oxidative stresses but down-regulated under starvation and osmotic stresses, the htrA gene showing the largest down-regulation in response to osmotic stress. Pre-exposure of bacteria to low nutrient or osmotic stress reduced bacterial uptake by amoeba, but no effect of heat or oxidative stress was observed. Finally, C. jejuni rapidly lost viability within amoeba cells and pre-exposure to oxidative stress had no significant effect on intracellular survival. However, the numbers of intracellular bacteria recovered 5 h post-gentamicin treatment were lower with starved, heat treated or osmotically stressed bacteria than with control bacteria. Also, while ~1.5 × 103 colony forming unit/ml internalized bacteria could typically be recovered 24 h post-gentamicin treatment with control bacteria, no starved, heat treated or osmotically stressed bacteria could be recovered at this time point. Overall, pre-exposure of C. jejuni to environmental stresses did not promote intracellular survival in A. castellanii

  18. [Children of single mothers: health risks and environmental stress].

    Science.gov (United States)

    Scharte, M; Bolte, G

    2012-03-01

    In Germany the risk for relative poverty has increased profoundly during the last 15 years, especially among single parent families. As poverty is often associated with bad health we examined the physical and mental health as well as health-related behaviour, housing and environmental conditions in children with lone mothers versus children in couple families. In 3 cross-sectional surveys conducted during 2004-2007 in 3 cities and 3 rural areas in Bavaria data on 19 039 pre-school children (47% female) were collected. Health, behaviour and exposure assessment was based on parental reports. The 18 327 cases with complete information on family status were analysed. 10% of the children grew up with single mothers. Single mothers evaluated the general state of health of their children more often as moderate to very poor than couple parents (OR [95% CI]: male: 1.37 [1.07-1.77], female 1.77 [1.33-2.35]). Sons with single mothers were more often obese (1.44 [1.09-1.90]). They scored significantly higher in the SDQ total difficulties score (1.94 [1.44-2.62]), on the emotional problem scale (1.91 [1.40-2.59]) as well as on the hyperactivity scale (1.82 [1.35-2.47]) compared to boys from couple families. No difference was found in prosocial behaviour. Girls with single mothers revealed more often conduct problems 1.36 [1.02-1.81] compared to those from couple families. They also showed a significantly higher prevalence of asthma (2.06 [1.29-3.30]). Children living with their single mothers were less often members of sports clubs and the boys were less physical active. No difference was found regarding the consumption of fruits and vegetables. Single mother family was associated with children's environmental tobacco smoke exposure at home (2.03 [1.79-2.29]). Single mothers perceived higher environmental exposures to noise and air pollution, suffered more often from a lack of accessible green spaces in the neighbourhood and reported a higher traffic load on the residential

  19. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis.

    Science.gov (United States)

    Chen, Yihe; Chauhan, Sunil K; Lee, Hyun Soo; Stevenson, William; Schaumburg, Chris S; Sadrai, Zahra; Saban, Daniel R; Kodati, Shilpa; Stern, Michael E; Dana, Reza

    2013-04-03

    A majority of experimental data on dry eye disease (DED) immunopathogenesis have been derived from a murine model of DED that combines desiccating environmental stress with systemic muscarinic acetylcholine receptor (mAChR) inhibition. However, to our knowledge the effects of pharmacologic mAChR blockade on the pathogenesis of experimental DED have not been evaluated systemically. The purpose of our study was to investigate the differential effects of desiccating environmental stress and mAChR inhibition on the pathogenesis of DED. DED was induced in female C57BL/6 mice by exposure to a desiccating environment in the controlled-environment chamber or to systemic scopolamine, or by performing extraorbital lacrimal gland excision. Clinical disease was assessed using corneal fluorescein staining (CFS) and the cotton thread test (CTT). Corneal CD11b(+) and conjunctival CD3(+) T-cell infiltration were evaluated by flow cytometry. T-cells from draining cervical lymph nodes (CLN) and distant inguinal lymph nodes (ILN) were analyzed for Th1, Th2, Th17, and Treg responses by flow cytometry and ELISA. Desiccating environmental stress and systemic mAChR blockade induced similar clinical signs of DED. However, desiccating environmental stress imparted higher conjunctival CD3(+) T-cell infiltration, and greater Th17-cell activity and Treg dysfunction than mAChR blockade, while mAChR blockade decreased tear secretion to a greater extent than desiccating environmental stress. Systemic mAChR blockade attenuated Th17 activity and enhanced Th2 and Treg responses without affecting Th1 activity. In vivo inhibition of mAChRs variably affects CD4(+) T-cell subsets, and desiccating environmental stress and systemic mAChR blockade induce DED through different primary pathogenic mechanisms.

  20. Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants.

    Science.gov (United States)

    Baek, Dongwon; Chun, Hyun Jin; Yun, Dae-Jin; Kim, Min Chul

    2017-10-01

    The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation-induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways.

  1. Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions

    DEFF Research Database (Denmark)

    Ørsted, Michael; Malmendal, Anders; Muñoz, Joaquin

    2017-01-01

    Strong sexual dimorphism is commonly observed across species and e.g. trade-offs between reproduction and maintenance are thought to explain this dimorphism. Here we test how the metabolic and functional phenotypic responses to varying types of environmental stress differ in male and female...... rearing regimes were investigated using NMR metabolomics and assessed for body mass and viability. Our results showed that environmental stress leads to reduced sexual dimorphism in both metabolic composition and body mass compared to the level of dimorphism observed at benign conditions. This reduced...

  2. Environmental stress cracking causes severe failures in plastic parts; Das Spannungsrissverhalten von Kunststoffen - ein unterschaetzter Versagensmechanismus?

    Energy Technology Data Exchange (ETDEWEB)

    Schmachtenberg, E. [Institut fuer Kunststoffe im Maschinenbau, Universitaet GH Essen (Germany); Schoeche, N. [Institut fuer Kunststoffe im Maschinenbau, Bereich Werkstofftechnik, Universitaet GH Essen (Germany)

    1994-12-31

    Environmental stress cracking causes severe failures in plastic parts. In practice the reduction of the failure risk by design is complicated by a lack of standard characterisation data and a generally accepted interpretation criterion. This article describes the state of art in testing environmental stress cracking and the potential of standardization. (orig.) [Deutsch] Spannungsrissbildung ist eine haeufige Versagensursache von Kunststoffbauteilen. In der Konstruktion wird dieser Umstand jedoch nicht angemessen beruecksichtigt, weil einheitliche Kennwerte und ein allgemein anerkanntes Bewertungskriterium fehlen. In diesem Beitrag wird deshalb auf die gaengigen Pruefverfahren zur Charakterisierung des Spannungsrissverhaltens eingegangen und das Potential fuer eine Standardisierung aufgezeigt. (orig.)

  3. Environmental Social Stress, Paranoia and Psychosis Liability: A Virtual Reality Study.

    Science.gov (United States)

    Veling, Wim; Pot-Kolder, Roos; Counotte, Jacqueline; van Os, Jim; van der Gaag, Mark

    2016-11-01

    The impact of social environments on mental states is difficult to assess, limiting the understanding of which aspects of the social environment contribute to the onset of psychotic symptoms and how individual characteristics moderate this outcome. This study aimed to test sensitivity to environmental social stress as a mechanism of psychosis using Virtual Reality (VR) experiments. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra high risk for psychosis, 42 siblings of patients with psychosis, and 53 controls walked 5 times in a virtual bar with different levels of environmental social stress. Virtual social stressors were population density, ethnic density and hostility. Paranoia about virtual humans and subjective distress in response to virtual social stress exposures were measured with State Social Paranoia Scale (SSPS) and self-rated momentary subjective distress (SUD), respectively. Pre-existing (subclinical) symptoms were assessed with the Community Assessment of Psychic Experiences (CAPE), Green Paranoid Thoughts Scale (GPTS) and the Social Interaction Anxiety Scale (SIAS). Paranoia and subjective distress increased with degree of social stress in the environment. Psychosis liability and pre-existing symptoms, in particular negative affect, positively impacted the level of paranoia and distress in response to social stress. These results provide experimental evidence that heightened sensitivity to environmental social stress may play an important role in the onset and course of psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Rab from the white shrimp Litopenaeus vannamei: characterization and its regulation upon environmental stress.

    Science.gov (United States)

    Wang, Lei; Wang, Xiao-Rong; Liu, Jin; Chen, Chu-Xian; Liu, Yuan; Wang, Wei-Na

    2015-10-01

    With the destruction of the ecological environment, shrimp cultivation in China has been seriously affected by outbreaks of infectious diseases. Rab, which belong to small GTPase Ras superfamily, can regulate multiple steps in eukaryotic vesicle trafficking including vesicle budding, vesicle tethering, and membrane fusion. Knowledge of Rab in shrimp is essential to understanding regulation and detoxification mechanisms of environmental stress. In this study, we analyzed the functions of Rab from the Pacific white shrimp, Litopenaeus vannamei. Full-length cDNA of Rab was obtained, which was 751 bp long, with open reading frame encoding 206 amino acids. In this study, for the first time, the gene expression of Rab of L. vannamei was analyzed by quantitative real-time PCR after exposure to five kinds of environmental stresses (bacteria, pH, Cd, salinity and low temperature). The results demonstrate that Rab is sensitive and involved in bacteria, pH, and Cd stress responses and Rab is more sensitive to bacteria than other stresses. Therefore we infer that Rab may have relationship with the anti-stress mechanism induced by environment stress in shrimp and Rab could be used as critical biomarkers for environmental quality assessment.

  5. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen.

    Science.gov (United States)

    Kovacevic, Vera; Simpson, André J; Simpson, Myrna J

    2016-09-01

    Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ecological comparison of cellular stress responses among populations - normalizing RT-qPCR values to investigate differential environmental adaptations

    National Research Council Canada - National Science Library

    Koenigstein, Stefan; Pöhlmann, Kevin; Held, Christoph; Abele, Doris

    2013-01-01

    Rising temperatures and other environmental factors influenced by global climate change can cause increased physiological stress for many species and lead to range shifts or regional population extinctions...

  7. Environmental Proteomics: Changes in the Proteome of Marine Organisms in Response to Environmental Stress, Pollutants, Infection, Symbiosis, and Development

    Science.gov (United States)

    Tomanek, Lars

    2011-01-01

    Environmental proteomics, the study of changes in the abundance of proteins and their post-translational modifications, has become a powerful tool for generating hypotheses regarding how the environment affects the biology of marine organisms. Proteomics discovers hitherto unknown cellular effects of environmental stressors such as changes in thermal, osmotic, and anaerobic conditions. Proteomic analyses have advanced the characterization of the biological effects of pollutants and identified comprehensive and pollutant-specific sets of biomarkers, especially those highlighting post-translational modifications. Proteomic analyses of infected organisms have highlighted the broader changes occurring during immune responses and how the same pathways are attenuated during the maintenance of symbiotic relationships. Finally, proteomic changes occurring during the early life stages of marine organisms emphasize the importance of signaling events during development in a rapidly changing environment. Changes in proteins functioning in energy metabolism, cytoskeleton, protein stabilization and turnover, oxidative stress, and signaling are common responses to environmental change.

  8. Physiological determination of the impact of environmental stress on the activity of microbial biomass

    Energy Technology Data Exchange (ETDEWEB)

    Killham, K.

    1985-01-01

    Using /sup 14/C-glucose as substrate, the ratio of respired C:biomass-incorporated C was determined for microbial populations of soil and leaf litter after exposure of samples to a range of environmental stresses. The ratio was found to be a much more sensitive indicator of the impact of stress than either respiration or dehydrogenase activity which are currently most widely used for this purpose. The ratio decreased with increasing magnitude of stress, suggesting an increasing diversion of carbon from biosynthesis to maintenance energy requirements.

  9. Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana

    Science.gov (United States)

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana. PMID:23585834

  10. Novel approaches to alcohol rehabilitation: Modification of stress-responsive brain regions through environmental enrichment.

    Science.gov (United States)

    Pang, Terence Y; Hannan, Anthony J; Lawrence, Andrew J

    2018-02-22

    Relapse remains the most prominent hurdle to successful rehabilitation from alcoholism. The neural mechanisms underlying relapse are complex, but our understanding of the brain regions involved, the anatomical circuitry and the modulation of specific nuclei in the context of stress and cue-induced relapse have improved significantly in recent years. In particular, stress is now recognised as a significant trigger for relapse, adding to the well-established impact of chronic stress to escalate alcohol consumption. It is therefore unsurprising that the stress-responsive regions of the brain have also been implicated in alcohol relapse, such as the nucleus accumbens, amygdala and the hypothalamus. Environmental enrichment is a robust experimental paradigm which provides a non-pharmacological tool to alter stress response and, separately, alcohol-seeking behaviour and symptoms of withdrawal. In this review, we examine and consolidate the preclinical evidence that alcohol seeking behaviour and stress-induced relapse are modulated by environmental enrichment, and these are primarily mediated by modification of neural activity within the key nodes of the addiction circuitry. Finally, we discuss the limited clinical evidence that stress-reducing approaches such as mindfulness could potentially serve as adjunctive therapy in the treatment of alcoholism. Copyright © 2018. Published by Elsevier Ltd.

  11. The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana

    Science.gov (United States)

    Deng, Xing-Guang; Zhu, Tong; Zhang, Da-Wei; Lin, Hong-Hui

    2015-01-01

    Brassinosteroids (BRs), plant steroid hormones, play essential roles in modulating cell elongation, vascular differentiation, senescence, and stress responses. However, the mechanisms by which BRs regulate plant mitochondria and resistance to abiotic stress remain largely unclear. Mitochondrial alternative oxidase (AOX) is involved in the plant response to a variety of environmental stresses. In this report, the role of AOX in BR-induced tolerance against cold, polyethylene glycol (PEG), and high-light stresses was investigated. Exogenous applied brassinolide (BL, the most active BR) induced, while brassinazole (BRZ, a BR biosynthesis inhibitor) reduced alternative respiration and AOX1 expression in Nicotiana benthamiana. Chemical scavenging of H2O2 and virus-induced gene silencing (VIGS) of NbRBOHB compromised the BR-induced alternative respiratory pathway, and this result was further confirmed by NbAOX1 promoter analysis. Furthermore, inhibition of AOX activity by chemical treatment or a VIGS-based approach decreased plant resistance to environmental stresses and compromised BR-induced stress tolerance. Taken together, our results indicate that BR-induced AOX capability might contribute to the avoidance of superfluous reactive oxygen species accumulation and the protection of photosystems under stress conditions in N. benthamiana. PMID:26175355

  12. Environmental Effects of Electrically-Stressed Sulfur Hexafluoride

    Directory of Open Access Journals (Sweden)

    Palaiologopoulou Maria D.

    2012-10-01

    Full Text Available High Voltage (HV equipment such as power switches, current or voltage transformers, and flexible HV transmission lines insulated by pressurized SF6 (or SF6/N2 mixtures offer component compactness, high reliability and low maintenance demands compared to all conventionally insulating components (i.e. air, organic solid insulants, and mineral oils. Though SF6 insulation for HV applications was initially proposed during late ‘60s, it was spread worldwide rapidly due to offered significant economic advantages, and now SF6 GIS substations dominate the share in electrical networks in densely populated districts. However, it was in mid ‘90s when the first ecological concerns were brought about the SF6 gas use. These mainly stream out by either of the following facts: (i SF6 is a strong green-house gas with a global warming potential of almost 25,000 greater than that of CO2 and its molecules exhibit an exceptionally high lifetime in earth atmosphere estimated to vary between 750 and 2500 years, and (ii when electrically stressed (independent of temperature i.e. either high-power arcs developing at 20,000K during the switching actions, or corona discharges developing at 300K due to high electric field effects toxic byproducts may be formed, some having high cyto-toxicities i.e. S2F10, oxyfluorides, H2S and HF.

  13. A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus.

    Science.gov (United States)

    Hasenbein, Simone; Connon, Richard E; Lawler, Sharon P; Geist, Juergen

    2015-08-01

    Laboratory toxicity testing is the primary tool used for surface water environmental risk assessment; however, there are critical information gaps regarding the sublethal effects of pesticides. In 10-day exposures, we assessed the lethal and sublethal (motility and growth) toxicities of four commonly used pesticides, bifenthrin, permethrin, cyfluthrin, and chlorpyrifos, on two freshwater invertebrates, Chironomus dilutus and Hyalella azteca. Pyrethroids were more toxic than the organophosphate chlorpyrifos in both species. Bifenthrin was most toxic to H. azteca survival and growth. Cyfluthrin was most toxic to C. dilutus. However, cyfluthrin had the greatest effect on motility on both H. azteca and C. dilutus. The evaluated concentrations of chlorpyrifos did not affect C. dilutus motility or growth, but significantly impacted H. azteca growth. Motility served as the most sensitive endpoint in assessing sublethal effects at low concentrations for both species, while growth was a good indicator of toxicity for all four pesticides for H. azteca. The integration of sublethal endpoints in ambient water monitoring and pesticide regulation efforts could improve identification of low-level pesticide concentrations that may eventually cause negative effects on food webs and community structure in aquatic environments.

  14. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress.

    Science.gov (United States)

    Hollins, Sharon L; Cairns, Murray J

    2016-08-01

    The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Organellar Gene Expression and Acclimation of Plants to Environmental Stress.

    Science.gov (United States)

    Leister, Dario; Wang, Liangsheng; Kleine, Tatjana

    2017-01-01

    Organelles produce ATP and a variety of vital metabolites, and are indispensable for plant development. While most of their original gene complements have been transferred to the nucleus in the course of evolution, they retain their own genomes and gene-expression machineries. Hence, organellar function requires tight coordination between organellar gene expression (OGE) and nuclear gene expression (NGE). OGE requires various nucleus-encoded proteins that regulate transcription, splicing, trimming, editing, and translation of organellar RNAs, which necessitates nucleus-to-organelle (anterograde) communication. Conversely, changes in OGE trigger retrograde signaling that modulates NGE in accordance with the current status of the organelle. Changes in OGE occur naturally in response to developmental and environmental changes, and can be artificially induced by inhibitors such as lincomycin or mutations that perturb OGE. Focusing on the model plant Arabidopsis thaliana and its plastids, we review here recent findings which suggest that perturbations of OGE homeostasis regularly result in the activation of acclimation and tolerance responses, presumably via retrograde signaling.

  16. Brain neurotransmitters and hippocampal proteome in pigs under stress and environmental enrichment

    Directory of Open Access Journals (Sweden)

    Laura Arroyo

    2017-06-01

    Full Text Available Stress and wellbeing are psychological conditions that are mediated by the central nervous system. In the brain, stress is mediated mainly by the hypothalamus, which will activate the hypothalamic-pituitary-adrenal (HPA axis, leading to the secretion of cortisol, the paradigmatic stress hormone. Other brain areas as the amygdala, the hippocampus or the prefrontal cortex (PFC are involved in emotions such as happiness, anxiety and fear. Communication between brain areas is achieved by chemical neurotransmitters (NTs, which are secreted by presynaptic neurons to reach postsynaptic neurons, where they will cause a variation in membrane polarization and other cell signaling actions, leading to physiological responses. Amongst these NTs, catecholamines (noradrenaline and dopamine and serotonin play an important role. On the other hand, the adverse effects of stress may be counteracted by housing the individuals under environmental enrichment conditions. This long-term situation should have an effect, not only on NTs, but also on the brain proteome. Under the hypothesis that different stress situations will lead to changes in NT composition that will be specific for crucial brain areas, we have tested the effects of transport stress, handling stress at the slaughterhouse, and the stress-susceptible genotype (Ryr1 on the amine NT concentration in amygdala, hippocampus, PFC and hypothalamus of pigs. The effects of living under environmentally enriched or control conditions on the NT concentration in several brain regions and on the hippocampus proteome has been also analyzed. In conclusion, genetic factors as well as management conditions related to housing, transport and slaughterhouse alter in different degree the catecholaminergic and the serotoninergic neurotransmission in the brain, and give clues about how different individual types are able to react to external challenges. Likewise, environmental enrichment leads to changes in the proteome

  17. Global gradients of coral exposure to environmental stresses and implications for local management.

    Directory of Open Access Journals (Sweden)

    Joseph Maina

    Full Text Available BACKGROUND: The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. METHODOLOGY/PRINCIPAL FINDINGS: This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums, stress-reinforcing factors (sedimentation and eutrophication, and stress-reducing factors (temperature variability and tidal amplitude to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean or alternatively high reinforcing stress scores (the Middle East and the Western Australia. The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR, Central Pacific, Polynesia and the western Indian Ocean where the GBR was strongly associated with reinforcing stress. CONCLUSIONS/SIGNIFICANCE: Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of

  18. Zooplankton Responses In A Tropical System With Environmental Stress

    Directory of Open Access Journals (Sweden)

    Nelson Javier Aranguren Riaño

    2014-03-01

    Full Text Available Processes of environmental transformation that currently occur in the climatic change context generate changes in ecosystems and biological communities. ¿How populations respond to these stressors? ¿what effects could occur on taxonomic and ecological diversity? The taxonomic composition and structure of the zooplankton was analyzed with relationship to environmental changes in a tropical water reservoir located at 6º02`18``N and 73º29`16`` W. During four months, samples were taken weekly covering stations of low, medium, and high precipitation. A high degree of temporal variability was established, it associated with a short hydraulic retention time estimated at 8 days.  Nine species were collected, of which Keratella tropica tropica and Thermocyclops decipiens were the two most abundant and constant species. Found values of H’ diversity and S richness were considered low, corresponding to a little mature community associated with a fluctuating physical environment and supported by high variation coefficients of electrical conductivity and Sechhi disk transparency. Drastic variations on the system volume in short time lapses generate important changes in the physical expression of system with a direct effect on composition and structure of the zooplankton. In general, the response model of the zooplankton in the reservoir according to the statement by the intermediate disturbance hypothesis.  RESPUESTAS DEL ZOOPLANCTON EN UN SISTEMA TROPICAL CON ALTA TENSIÓN AMBIENTAL Los procesos de transformación ambiental que se dan en la actualidad, en un marco de cambio climático, generan modificaciones en los ecosistemas y comunidades biológicas, ¿Cómo responden las poblaciones a estos factores de tensión? ¿Qué efectos se darían sobre la diversidad taxonómica y ecológica? Se analizó la variación de la composición taxonómica y estructura del zooplancton en función de los cambios ambientales en un reservorio tropical ubicado a 6º

  19. Affective Role Expectations for Delinquent Youth in Environmental Stress-Challenge Programs.

    Science.gov (United States)

    Wichmann, Theodore F.

    Environmental stress-challenge programs for delinquent youths as an alternative to the juvenile justice system in the US have shown very favorable results, though little research has been done to determine why. In order to provide information about processes involved in such programs, a checklist of 40 affective role expectations for delinquent…

  20. Individual and Group Behavior in Educational Organizations under Environmental Stress. Final Report.

    Science.gov (United States)

    Terborg, James R.

    The purpose of this report was to consider factors that might be important for understanding how schools as organizations respond to environmental stress. Literature from psychology, sociology, education, and political science is reviewed and an attempt is made to integrate a diverse body of findings, using concepts from general systems theory and…

  1. The University of California Institute of Environmental Stress Marathon Field Studies

    Science.gov (United States)

    Maron, Michael B.

    2014-01-01

    In 1973, the Institute of Environmental Stress of the University of California-Santa Barbara, under the direction of Steven M. Horvath, began a series of field and laboratory studies of marathon runners during competition. As one of Horvath's graduate students, many of these studies became part of my doctoral dissertation. The rationale for…

  2. Environmental stress linked to consumption of maternally derived carotenoids in brown trout embryos (Salmo trutta).

    Science.gov (United States)

    Wilkins, Laetitia G E; Marques da Cunha, Lucas; Glauser, Gaëtan; Vallat, Armelle; Wedekind, Claus

    2017-07-01

    The yellow, orange, or red colors of salmonid eggs are due to maternally derived carotenoids whose functions are not sufficiently understood yet. Here, we studied the significance of naturally acquired carotenoids as maternal environmental effects during embryo development in brown trout (Salmo trutta). We collected eggs from wild females, quantified their egg carotenoid content, fertilized them in vitro in full-factorial breeding blocks to separate maternal from paternal effects, and raised 3,278 embryos singly at various stress conditions until hatching. We found significant sire effects that revealed additive genetic variance for embryo survival and hatching time. Dam effects were 5.4 times larger than these sire effects, indicating that maternal environmental effects play an important role in determining embryo stress tolerance. Of the eight pigment molecules that we targeted, only astaxanthin, zeaxanthin (that both affected egg redness), and lutein were detected above our confidence thresholds. No strong link could be observed between carotenoid content in unfertilized eggs and embryo mortality or hatching timing. However, the consumption of carotenoids during our stress treatment was negatively correlated to embryo survival among sib groups and explained about 14% of the maternal environmental variance. We conclude that maternally derived carotenoids play a role in the ability of embryos to cope with environmental stress, but that the initial susceptibility to the organic pollution was mainly determined by other factors.

  3. Evaluating effects of environmental stress on fish communities using multiresponse indicators

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Cada, G.F.; Greeley, M.S. Jr.; Shugart, L.R.

    1989-01-01

    Most traditional approaches for assessing the effects of environmental stress on fish involve the generation of species lists, the estimation of densities of organisms, the use of acute of chronic laboratory tests, or the measurement of single or a few stress responses. Most of these approaches provide limited information needed to address fundamental National Environmental Policy Act (NEPA) issues such as the consideration of alternative actions and cumulative impacts. Use of multiresponse indicators of stress at several levels of biological organization permits identification of biologically and ecologically relevant effect, possible early detection of environmental problems, evaluation of the effectiveness of environmental restoration actions, and possible insights into casual mechanisms between stress and effects that may be ultimately manifested at the population and community level. Responses at the biochemical, physiological, histopathological, bioenergetic, and population levels were used to assess the effects of chronic contamination loading on fish communities in some East Tennessee streams. Various biochemical/biomolecular responses provided direct evidence of toxicant exposure, while bioenergetic and histopathological indicators reflected impaired population growth and reproductive potential. Within the NEPA process, use of multiresponse indicators can be an effective approach for addressing remedial actions and cumulative impacts of multiple stressors on fish communities. 11 refs., 4 figs.

  4. Measurement of the responses of individuals to environmental stress and pollution: studies with bivalve mollusks

    Energy Technology Data Exchange (ETDEWEB)

    Bayne, B.L.; Moore, M.N.; Widdows, J.; Livingstone, D.R.; Salkeld, P.

    1979-08-08

    Recent studies conducted to determine the response of mussels to environmental stress and marine pollution are surveyed. Mathematic models that have been developed to describe behavioral and physiological responses of mussels to pollution are discussed. Effects of petroleum hydrocarbons on mussels are analyzed. The value of mussels as biological indicators of marine pollution is assessed. (6 graphs, 2 photos, 61 references, 5 tables)

  5. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  6. Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat cultivations.

    Science.gov (United States)

    Lieder, Sarah; Jahn, Michael; Koepff, Joachim; Müller, Susann; Takors, Ralf

    2016-01-01

    Cellular response to different types of stress is the hallmark of the cell's strategy for survival. How organisms adjust their cell cycle dynamics to compensate for changes in environmental conditions is an important unanswered question in bacterial physiology. A cell using binary fission for reproduction passes through three stages during its cell cycle: a stage from cell birth to initiation of replication, a DNA replication phase and a period of cell division. We present a detailed analysis of durations of cell cycle phases, investigating their dynamics under environmental stress conditions. Applying continuous steady state cultivations (chemostats), the DNA content of a Pseudomonas putida KT2440 population was quantified with flow cytometry at distinct growth rates. Data-driven modeling revealed that under stress conditions, such as oxygen deprivation, solvent exposure and decreased iron availability, DNA replication was accelerated correlated to the severity of the imposed stress (up to 1.9-fold). Cells maintained constant growth rates by balancing the shortened replication phase with extended cell cycle phases before and after replication. Transcriptome data underpin the transcriptional upregulation of crucial genes of the replication machinery. Hence adaption of DNA replication speed appears to be an important strategy to withstand environmental stress. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms

    Science.gov (United States)

    van Creveld, Shiri Graff; Rosenwasser, Shilo; Schatz, Daniella; Koren, Ilan; Vardi, Assaf

    2015-01-01

    Diatoms are ubiquitous marine photosynthetic eukaryotes that are responsible for about 20% of global photosynthesis. Nevertheless, little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a redox-sensitive green fluorescent protein sensor targeted to various subcellular organelles in the marine diatom Phaeodactylum tricornutum, to map the spatial and temporal oxidation patterns in response to environmental stresses. Specific organelle oxidation patterns were found in response to various stress conditions such as oxidative stress, nutrient limitation and exposure to diatom-derived infochemicals. We found a strong correlation between the mitochondrial glutathione (GSH) redox potential (EGSH) and subsequent induction of cell death in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), and a volatile halocarbon (BrCN) that mediate trophic-level interactions in marine diatoms. Induction of cell death in response to DD was mediated by oxidation of mitochondrial EGSH and was reversible by application of GSH only within a narrow time frame. We found that cell fate can be accurately predicted by a distinct life-death threshold of mitochondrial EGSH (−335 mV). We propose that compartmentalized redox-based signaling can integrate the input of diverse environmental cues and will determine cell fate decisions as part of algal acclimation to stress conditions. PMID:25083933

  8. Signaling linkage between environmental stress resistance and leaf senescence in Arabidopsis.

    Science.gov (United States)

    Seo, Pil Joon; Park, Chung-Mo

    2011-10-01

    Plants possess versatile strategies that permit efficient use of limited nutrient resources during senescing process. This metabolic adjustment is critical for prevention of diverse cellular damage and thus for reproductive success and offspring production, particularly under environmental stress conditions. However, it is largely unknown how age-dependent resistance to cellular damages is established and how it is influenced by environmental stress signals during senescing process. We found that the VNI2 (VND-INTERACTING 2) transcription factor, which belongs to the NAC (NAM/ATAF1, 2/CUC2) transcription factor family, plays a role in the age-dependent induction of stress resistance. The VNI2 transcription factor is transcriptionally induced during senescing process and regulates COR/RD genes by binding directly to their promoters. The COR/RD proteins play a role in the protection from diverse cellular damages during senescing process. Notably, the transcriptional activation activity of VNI2 is further elevated under high salinity. These results indicate that plants increase environmental stress resistance by inducing the VNI2 gene to assure their reproductive success, supporting signaling crosstalk between stress resistance response and senescing process. 

  9. An overview of the contribution of studies with cladocerans to environmental stress research

    Directory of Open Access Journals (Sweden)

    Albert Luiz Suhett

    2015-06-01

    Full Text Available Cladocerans are microcrustaceans component of the zooplankton in a wide array of aquatic ecosystems. These organisms, in particular the genus Daphnia, have been widely used model organisms in studies ranging from biomedical sciences to ecology. Here, we present an overview of the contribution of studies with cladocerans to understanding the consequences at different levels of biological organization of stress induced by environmental factors. We discuss how some characteristics of cladocerans (e.g., small body size, short life cycles, cyclic parthenogenesis make them convenient models for such studies, with a particular comparison with other major zooplanktonic taxa. Then we illustrate the contribution of cladocerans to stress research with examples encompassing stress responses spanning from the molecular to the populational level. Most worth of note are recent studies that presented evidence of beneficial consequences of mild stress caused by natural stressors (cross-tolerance, which may be passed along across generations, favoring individual survival and species persistence in fluctuating environments. This would be particularly relevant for environments prone to frequent natural environmental fluctuations, such as coastal lagoons and other shallow aquatic ecosystems. Based on reviewed studies, a conceptual model is presented summarizing the potential effects of a first stressor on the organism's resistance to a second one. We finish by highlighting some gaps on environmental stress research that could benefit from further studies using cladocerans as model organisms.

  10. The response of guinea pig airway epithelial cells and alveolar macrophages to environmental stress

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.S.; Palmer, E.; Welch, W.J.; Sheppard, D. (Lung Biology Center, Department of Medicine, University of California, San Francisco (United States))

    1991-08-01

    Cells lining the respiratory tract form an interface between the organism and the external environment and are repeatedly exposed to physical, chemical, and metabolic stresses. The authors examined the response of cultured guinea pig tracheal epithelial cells and alveolar macrophages to various forms of stress, including clinically and environmentally relevant metabolic stresses such as ozone and acid exposure. Classic stress treatments such as heat shock and sodium arsenite treatment induced the synthesis of 28, 32, 72, 73, 90, and 110 kD stress proteins similar to those observed in other cell types. In contrast, no significant changes in the pattern of protein synthesis were detected after exposure to ambient concentrations of ozone, although ozone exposure caused significant cytotoxicity to both cell types. Another potent oxidant, hydrogen peroxide, similarly did not induce appreciable stress protein synthesis. However, surface acidification of tracheal epithelial cells and alveolar macrophages caused the induction of 72 and 78 kD stress proteins. While stress proteins may play a role in the response of respiratory cells to certain injuries such as hyperthermia and surface acidification, they may not be important in the defense against ozone or other forms of oxidative injury.

  11. Responses to Environmental Stress in Plants Adapted to Mediterranean Gypsum Habitats

    Directory of Open Access Journals (Sweden)

    Josep V. LLINARES

    2015-03-01

    Full Text Available Gypsum areas are stressful environments inhabited by gypsophytes, plants that are exclusive for such habitats, and by plants that grow on gypsum but also on other soil types, the so-called gypsovags. To investigate possible differences between gypsovags and gypsophytes with respect to basic stress response mechanisms, two common osmolytes, glycine betaine and total soluble sugars, as well as monovalent (Na+ and K+ and bivalent (Ca2+ and Mg2+ cations, were quantified, under field conditions, in two Iberian endemic gypsophytes (Gypsophila struthium subsp. hispanica and Ononis tridentata and two common Mediterranean gypsovags (Rosmarinus officinalis and Helianthemum syriacum. Their spatial variation according to a topographic gradient and their temporal variation over a period of three successive seasons were correlated with climatic data and soil characteristics. This analysis confirmed that water stress is the main environmental stress factor in gypsum habitats, whereas the percentage of gypsum in the soil does not seem to play any relevant role in the activation of stress responses in plants. Glycine betaine may contribute to stress tolerance in the gypsophytes, but not in the gypsovags, according to the close correlation found between the level of this osmolyte and the gypsophily of the investigated taxa. Cation contents in the plants did not correlate with those present in the soil, but the gypsophytes have higher levels of Ca2+ and Mg2+ than the gypsovags, under all environmental conditions, which may represent an adaptation mechanism to their specific habitat.

  12. Environmental maternal effects mediate the resistance of maritime pine to biotic stress.

    Directory of Open Access Journals (Sweden)

    María Vivas

    Full Text Available The resistance to abiotic stress is increasingly recognised as being impacted by maternal effects, given that environmental conditions experienced by parent (mother trees affect stress tolerance in offspring. We hypothesised that abiotic environmental maternal effects may also mediate the resistance of trees to biotic stress. The influence of maternal environment and maternal genotype and the interaction of these two factors on early resistance of Pinus pinaster half-sibs to the Fusarium circinatum pathogen was studied using 10 mother genotypes clonally replicated in two contrasting environments. Necrosis length of infected seedlings was 16% shorter in seedlings grown from favourable maternal environment seeds than in seedlings grown from unfavourable maternal environment seeds. Damage caused by F. circinatum was mediated by maternal environment and maternal genotype, but not by seed mass. Mechanisms unrelated to seed provisioning, perhaps of epigenetic nature, were probably involved in the transgenerational plasticity of P. pinaster, mediating its resistance to biotic stress. Our findings suggest that the transgenerational resistance of pines due to an abiotic stress may interact with the defensive response of pines to a biotic stress.

  13. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeonghoon; Won, Eun-Ji [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Il-Chan; Yim, Joung Han [Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840 (Korea, Republic of); Lee, Su-Jae [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-10-15

    Highlights: • No mortality within 96 h even at a high intensity (1200 Gy). • A reduced fecundity of Brachionus koreanus at over 150 Gy with a decrease in lifespan. • Dose-dependent ROS increase with GST enzyme activity at sub-lethal doses. • Significant impact on life table parameters, particularly fecundity. • Significant up-regulation of DNA repair-associated genes at sublethal doses. - Abstract: To examine the effects of gamma radiation on marine organisms, we irradiated several doses of gamma ray to the microzooplankton Brachionus koreanus, and measured in vivo and in vitro endpoints including the survival rate, lifespan, fecundity, population growth, gamma ray-induced oxidative stress, and modulated patterns of enzyme activities and gene expressions after DNA damage. After gamma radiation, no individuals showed any mortality within 96 h even at a high intensity (1200 Gy). However, a reduced fecundity (e.g. cumulated number of offspring) of B. koreanus at over 150 Gy was observed along with a slight decrease in lifespan. At 150 Gy and 200 Gy, the reduced fecundity of the rotifers led to a significant decrease in population growth, although in the second generation the population growth pattern was not affected even at 200 Gy when compared to the control group. At sub-lethal doses, reactive oxygen species (ROS) levels dose-dependently increased with GST enzyme activity. In addition, up-regulations of the antioxidant and chaperoning genes in response to gamma radiation were able to recover cellular damages, and life table parameters were significantly influenced, particularly with regard to fecundity. DNA repair-associated genes showed significantly up-regulated expression patterns in response to sublethal doses (150 and 200 Gy), as shown in the expression of the gamma-irradiated B. koreanus p53 gene, suggesting that these sublethal doses were not significantly fatal to B. koreanus but induced DNA damages leading to a decrease of the population size.

  14. Paleolimnological evidence for increased sexual reproduction in chydorids (Chydoridae, Cladocera under environmental stress

    Directory of Open Access Journals (Sweden)

    Marina MANCA

    2011-08-01

    Full Text Available To investigate the extent to which anthropogenic perturbations such as eutrophication and trace metal pollution (i.e., environmental stress sensu Odum 1985 influence the reproductive modes of cladoceran populations, we analyzed the abundance of subfossils of the chydorids Alonella nana (Baird, 1850 and Alona affinis (Leydig, 1860 in sediment cores from three Finnish lakes. Reconstruction of lakes' pollutant history and the biological response of chydorids indicate that in two of the lakes the proportion of individuals reproducing sexually increased with environmental stressors. More specifically, A. nana responded to eutrophication in Lake Hampträsk with greater production of ephippia, while A. affinis responded to aluminum pollution or acidification in Lake Pieni Majaslampi. In contrast, the reference lake, Lake Iso Lehmälampi, showed no radical changes in sexual reproduction over the twomillennium long sediment record. We conclude that chydorids may use sexual reproduction as a strategy for overcoming unexpected environmental stresses.

  15. A Study of Effects of Hyperthermia on Large, Short-Haired Male Dogs: A Simulated Air Transport Environmental Stress

    Science.gov (United States)

    1977-03-01

    FAA-AM-77-8 A STUDY OF EFFECTS OF HYPERTHERMIA ON LARGE, SHORT-HAIRED MALE DOGS: A SIMULATED AIR TRANSPORT ENVIRONMENTAL STRESS G. D. Hanneman, D.V.M...EFFECTS OF HYPERTHERMIA ON LARGE, SHORT-HAIRED •[MALE DOGS: A SIMULATED AIR TRNPR S : ENVIRONMENTAL STRESS 4 M. 1N • . Introduction. In the past decade

  16. Effects of sublethal doses of crop protection agents on honey bee (Apis mellifera) global colony vitality and its potential link with aberrant foraging activity.

    Science.gov (United States)

    Beliën, T; Kellers, J; Heylen, K; Keulemans, W; Billen, J; Arckens, L; Huybrechts, R; Gobin, B

    2009-01-01

    Honey bees (Apis mellifera) are the most economically valuable pollinators of fruit crops worldwide. Taking into account bees' contributions to other flowering agricultural crops, about one-third of our total diet comes directly or indirectly from bee-pollinated plants. However, in recent years there increasingly have been worrisome alarm sounds on serious bee mortalities and mysterious disappearance of bees from beehives. Among several environmental factors (e.g. climate and bee pathogens), stress factors arising from agricultural practices can potentially play a role in bee losses. Detailed knowledge on the effects of plant protection products is essential to improve usage with minimal risks. In order to identify potential medium- and long-term effects, we followed up various sublethal contaminated hives during the prolongation of the fruit-growing season. More specifically, a large-scale experiment was conducted in which at four distinct locations (in the Limburg region of Belgium) four different bee colonies (representing three different contaminations -imidacloprid, fenoxycarb, indoxacarb- and a non-contaminated control hive) were thoroughly monitored every 2-7 days. Our observations point towards decays of overall colony vitality for several hives a couple of weeks after treatment, as indicated by a set of carefully assessed parameters including the total amount of active and dead bees, total surface of capped brood and overall colony weight. These outcomes could be linked to subtle differences in foraging activity between distinct hives. The implications of these results are discussed in terms of potential short-term and long-term consequences of disturbed foraging ability triggered by exaggerated exposure to sublethal doses of crop protection chemicals, and its potential impact on colony health.

  17. Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress

    DEFF Research Database (Denmark)

    Malmendal, Anders; Sørensen, Jesper Givskov; Overgaard, Johannes

    2013-01-01

    We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including gene...... expression, physiological traits, and organismal stress tolerance phenotype. Overall, we found that selection for environmental stress tolerance changes the metabolomic (1)H NMR fingerprint largely in a similar manner independent of the trait selected for, indicating that experimental evolution led...... to a general stress selection response at the metabolomic level. Integrative analyses across data sets showed little similarity when general correlations between selection effects at the level of the metabolome and gene expression were compared. This is likely due to the fact that the changes caused...

  18. Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components.

    Science.gov (United States)

    Maharana, Dusmant; Das, Priya Brata; Verlecar, Xivanand N; Pise, Navnath M; Gauns, Manguesh

    2015-12-01

    Oxidative stress parameters in relation to temperature and other factors have been analysed in Hypnea musciformis, the red seaweed from Anjuna beach, Goa, with an aim to understand its susceptibility to the changing seasons. The results indicate that elevated temperature, sunshine and dessication during peak summer in May enhanced the activity of lipid peroxide, hydrogen peroxide and antioxidants such as catalase, glutathione and ascorbic acid. Statistical tests using multivariate analysis of variance and correlation analysis showed that oxidative stress and antioxidants maintain significant relation with temperature, salinity, sunshine and pH at an individual or interactive level. The dissolved nitrates, phosphates and biological oxygen demand in ambient waters and the trace metals in seaweeds maintained sufficiently low values to provide any indication that could exert contaminant oxidative stress responses. The present field studies suggest that elevated antioxidant content in H. musciformis offer sufficient relief to sustain against harsh environmental stresses for its colonization in the rocky intertidal zone.

  19. Identification of sublethal toxicants in a BC coastal pulp and paper mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff, C.V.; Pickard, J.; Kinnee, K. [BC Research Inc., Vancouver, BC (Canada); Dwernychuk, W. [Hatfield Consultants Ltd., West Vancouver, BC (Canada); Birkholz, D. [EnviroTest Lab., Edmonton, AB (Canada); Kilback, D. [Pacifica Papers, Powell River, BC (Canada)

    2001-06-01

    BC Research Inc. conducted a toxicity identification evaluation to identify the different compounds comprised in the mill Outfall number 1 effluent. The Environmental Effects Monitoring program had determined that these compounds were responsible for sublethal effects to organisms. Echinoderm species like the sand dollar, Dendraster excentricus Eshscholtz, the purple sea urchin, Stronglyocentrotus purpuratus Stimpson, and the marine algae, Champia parvula had suffered toxicity caused by the mill effluent. The last several Environmental Effects Monitoring testing periods had shown the sublethal toxicity of the Outfall number 1 effluent to echinoderms was very consistent. Based on the high cost and shipping associated with the Champia bioassays, toxicity tests conducted during the peak spawning season of the sea urchin and the non significant difference between the sensitivity of the sand dollar and the purple sea urchin, the purple sea urchin was selected to evaluate the toxicity of the manipulated samples for the tests. The tests conducted were: a baseline toxicity test performed immediately upon receipt of the effluent sample, the pH adjustment filtration test to determine if the toxic compound can be removed using filtration, the pH adjustment aeration test to determine if volatile compounds in the sample are toxic, the pH adjustment solid phase extraction test to determine the level of toxicity from organic compounds and metal chelates that can be removed by solid phase extraction. The results indicated that it seems high molecular weight molecules were responsible for the sublethal toxicity observed. Two different sources could be responsible: lignin derived macromolecules, and polymer compounds used as flocculants and sizing agents. Further testing of the pulp mill effluent to identify the source of the toxic high molecular weight compounds was recommended. 22 refs., 4 tabs., 6 figs.

  20. Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast

    Science.gov (United States)

    2012-01-01

    Background Gene expression is controlled globally and at multiple levels in response to environmental stress, but the relationships among these dynamic regulatory changes are not clear. Here we analyzed global regulation during different stress conditions in fission yeast, Schizosaccharomyces pombe, combining dynamic genome-wide data on mRNA, translation, and protein profiles. Results We observed a strong overall concordance between changes in mRNAs and co-directional changes in translation, for both induced and repressed genes, in response to three conditions: oxidative stress, heat shock, and DNA damage. However, approximately 200 genes each under oxidative and heat stress conditions showed discordant regulation with respect to mRNA and translation profiles, with genes and patterns of regulation being stress-specific. For oxidative stress, we also measured dynamic profiles for 2,147 proteins, comprising 43% of the proteome. The mRNAs induced during oxidative stress strongly correlated with increased protein expression, while repressed mRNAs did not relate to the corresponding protein profiles. Overall changes in relative protein expression correlated better with changes in mRNA expression than with changes in translational efficiency. Conclusions These data highlight a global coordination and fine-tuning of gene regulation during stress that mostly acts in the same direction at the levels of transcription and translation. In the oxidative stress condition analyzed, transcription dominates translation to control protein abundance. The concordant regulation of transcription and translation leads to the expected adjustment in protein expression only for up-regulated mRNAs. These patterns of control might reflect the need to balance protein production for stress survival given a limited translational capacity. PMID:22512868

  1. GENETIC DIFFERENTIATION AND HETEROZYGOSITY IN PINYON PINE ASSOCIATED WITH RESISTANCE TO HERBIVORY AND ENVIRONMENTAL STRESS.

    Science.gov (United States)

    Mopper, Susan; Mitton, Jeffry B; Whitham, Thomas G; Cobb, Neil S; Christensen, Kerry M

    1991-06-01

    Arizona's Sunset Crater began erupting in 1064 AD and for the next 200 years buried over 2,000 km2 in ash, cinders, and lava. Soil analyses indicate that pinyon pines (Pinus edulis) currently colonizing the cinder fields are faced with a highly stressful environment. Many of these pinyons suffer chronic, intense insect herbivory that reduces plant growth and eliminates female cone production. In contrast, herbivory among pinyons growing in neighboring sandy-loam soils is minimal. Furthermore, numerous trees within the heavily infested cinder field population suffer relatively low herbivory and maintain normal growth and reproduction. We used four polymorphic enzymes to examine the relationship between herbivore attack, environmental stress and genotypes of the adjacent cinder field, and sandy-loam soil pinyon populations. Our results demonstrate that 1) resistant trees display significant genetic differences and are more heterozygous for two enzymes associated with herbivory than susceptible trees; and 2) the cinder-soil pinyons exhibit significant genetic differences and are more heterozygous for an enzyme associated with environmental stress than the neighboring sandy-loam soil pinyons. We conclude that heterozygosity of specific or closely linked loci may facilitate pinyon resistance to herbivory and environmental stress, and that strong selection across narrow geographic boundaries resulted in rapid genetic differentiation of pinyon populations. © 1991 The Society for the Study of Evolution.

  2. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2014-01-01

    In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved. © 2013 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  3. Effect of severe environmental thermal stress on redox state in salmon

    Directory of Open Access Journals (Sweden)

    Toshiki Nakano

    2014-01-01

    Full Text Available Fish are exposed to many kinds of environmental stressors and the chances of succumbing to infectious diseases may be increased a result. For example, an acute increase in temperature can induce numerous physiological changes in the body. In the present study, we examined the redox state in response to a severe acute stress resulting from heat shock in teleost coho salmon (Oncorhynchus kisutch. The plasma lipid peroxides levels in fish gradually increased after heat shock treatment. By 2.5 h post-heat stress, plasma glutathione (GSH levels had decreased, but they had returned to basal levels by 17.5 h post-stress. Plasma superoxide dismutase activities in stressed fish were significantly increased compared with those in control fish at 17.5 h post-stress, but had returned to basal levels by 48 h post-stress. Expression levels of hepatic GSH and heat shock protein 70 gradually increased after heat shock treatment. These results concerning the changing patterns of multiple important redox-related biomarkers suggest that severe thermal stressors can affect the redox state and induce oxidative stress in ectothermal animals, such as fish, in vivo. Hence, manipulation of appropriate thermal treatment may possibly be useful to control fish fitness.

  4. Effect of Surface Silicone Coating on Environmental Stress Cracking Resistance of Transparent Polycarbonate Parts

    Directory of Open Access Journals (Sweden)

    YAN Chenguang

    2016-10-01

    Full Text Available Environmental stress cracking(ESC behavior of silicone coated polycarbonate (PC in ethanol was studied. Stress relaxation of PC and PC/silicone coating under a combined action of ethanol and stress was measured by self-made three point bending equipment. After stress relaxation testing, crack morphology was observed by polarizing microscope. The results indicate that silicone coating is able to improve the stress cracking resistance of PC parts in ethanol. The coated PC shows slower stress relaxation rate and less number of cracks than pristine PC. It is mainly attributed to that the silicone coating can provide barrier effect to the absorption and diffusion of ethanol in PC substrate. Furthermore, the mechanical properties of flexible silicone coating matched fairly well with that of PC, so that the coating is uneasy to peel off from PC substrate during the ESC testing. The silicone coating has a favorable effect to protect PC substrate from ESC under the combined action of solvent and stress.

  5. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms

    Science.gov (United States)

    de Storme, Nico; Geelen, Danny

    2014-01-01

    In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved. PMID:23731015

  6. Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress.

    Directory of Open Access Journals (Sweden)

    Steven R Eichten

    2015-05-01

    Full Text Available DNA methylation is a chromatin modification that is sometimes associated with epigenetic regulation of gene expression. As DNA methylation can be reversible at some loci, it is possible that methylation patterns may change within an organism that is subjected to environmental stress. In order to assess the effects of abiotic stress on DNA methylation patterns in maize (Zea mays, seeding plants were subjected to heat, cold, and UV stress treatments. Tissue was later collected from individual adult plants that had been subjected to stress or control treatments and used to perform DNA methylation profiling to determine whether there were consistent changes in DNA methylation triggered by specific stress treatments. DNA methylation profiling was performed by immunoprecipitation of methylated DNA followed by microarray hybridization to allow for quantitative estimates of DNA methylation abundance throughout the low-copy portion of the maize genome. By comparing the DNA methylation profiles of each individual plant to the average of the control plants it was possible to identify regions of the genome with variable DNA methylation. However, we did not find evidence of consistent DNA methylation changes resulting from the stress treatments used in this study. Instead, the data suggest that there is a low-rate of stochastic variation that is present in both control and stressed plants.

  7. Sublethal toxicity and biotransformation of pyrene in Lumbriculus variegatus (Oligochaeta)

    Energy Technology Data Exchange (ETDEWEB)

    Maeenpaeae, K. [Faculty of Biosciences, University of Joensuu, FIN-80101 Joensuu (Finland)], E-mail: kimmo.maenpaa@joensuu.fi; Leppaenen, M.T.; Kukkonen, J.V.K. [Faculty of Biosciences, University of Joensuu, FIN-80101 Joensuu (Finland)

    2009-04-01

    The aim of this work was to study the toxicity and biotransformation of polyaromatic hydrocarbon (PAH) pyrene in the oligochaete aquatic worm, Lumbriculus variegatus. PAHs are ubiquitous environmental pollutants that pose a hazard to aquatic organisms, and metabolizing capability is poorly known in the case of many invertebrate species. To study the toxicity and biotransformation of pyrene, the worm was exposed for 15 days to various concentrations of water-borne pyrene. The dorsal blood vessel pulse rate was used as a sublethal endpoint. Pyrene biotransformation by L. variegatus was studied and the critical body residues (CBR) were estimated for pyrene toxicity. The toxicokinetics of pyrene uptake was evaluated. A combination of radiolabeled ({sup 14}C) and nonlabeled pyrene was used in the exposures, and liquid scintillation counting (LSC) and high-pressure liquid chromatography were employed in both water and tissue residue analyses. The results showed that L. variegatus was moderately able to metabolize pyrene to 1-hydroxypyrene (1-HP), thus demonstrating that the phase-I-like oxidizing enzyme system metabolizes pyrene in L. variegatus. The amount of the 1-HP was 1-2% of the amount of pyrene in the worm tissues. The exposure to pyrene reduced the blood vessel pulse rate significantly (p < 0.05), showing that pyrene had a narcotic effect. The estimated CBRs remained constant during the exposure time, varying from 0.120 to 0.174 mmol pyrene/kg worm wet weight. The bioconcentration factors (BCF) decreased as exposure concentration increased. It was suggested that the increased toxicity of pyrene accounted for the decrease in BCFs by lowering the activity of the organism.

  8. Differences in environmental stress response among yeasts is consistent with species-specific lifestyles.

    Science.gov (United States)

    Brion, Christian; Pflieger, David; Souali-Crespo, Sirine; Friedrich, Anne; Schacherer, Joseph

    2016-05-15

    Defining how organisms respond to environmental change has always been an important step toward understanding their adaptive capacity and physiology. Variation in transcription during stress has been widely described in model species, especially in the yeast Saccharomyces cerevisiae, which helped to shape general rules regarding how cells cope with environmental constraints, as well as to decipher the functions of many genes. Comparison of the environmental stress response (ESR) across species is essential to obtaining better insight into the common and species-specific features of stress defense. In this context, we explored the transcriptional landscape of the yeast Lachancea kluyveri (formerly Saccharomyces kluyveri) in response to diverse stresses, using RNA sequencing. We investigated variation in gene expression and observed a link between genetic plasticity and environmental sensitivity. We identified the ESR genes in this species and compared them to those already found in S. cerevisiae We observed common features between the two species, as well as divergence in the regulatory networks involved. Of interest, some changes were related to differences in species lifestyle. Thus we were able to decipher how adaptation to stress has evolved among different yeast species. Finally, by analyzing patterns of coexpression, we were able to propose potential biological functions for 42% of genes and also annotate 301 genes for which no function could be assigned by homology. This large data set allowed for the characterization of the evolution of gene regulation and provides an efficient tool for assessing gene function. © 2016 Brion et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Expression of steroid 5α-reductase isozymes in prostate of adult rats after environmental stress.

    Science.gov (United States)

    Sánchez, Pilar; Torres, Jesús M; Castro, Beatriz; Olmo, Asunción; del Moral, Raimundo G; Ortega, Esperanza

    2013-01-01

    The elevated incidence of prostate cancer and benign prostatic hypertrophy is a cause of increasing public health concern in the Western world. The normal and pathological growth of the prostate are both dependent on stimulation by dihydrotestosterone, which is synthesized from circulating testosterone by two 5α-reductase (5α-R) isozymes, 5α-reductase type 1 (5α-R1) and 5α-reductase type 2 (5α-R2). Both isozymes have been implicated in prostate disease. We used quantitative RT-PCR and immunohistochemistry, respectively, to quantify mRNA and protein levels of 5α-R isozymes in the ventral prostate of adult rats under environmental stress conditions analogous to those found in some common workplace situations, i.e. artificial light, excessive heat, and the sensation of immobility in a small space. Transcription and expression levels of both 5α-R isozymes were significantly higher in environmentally stressed rats than in unstressed rats. Increased 5α-R isozyme levels may play a role in the development or maintenance of prostate disease. Further research is warranted to explore these effects of environmental stress on human health and their implications for environmental and occupational health policies. © 2012 The Authors Journal compilation © 2012 FEBS.

  10. A theoretical model of the evolution of actuarial senescence under environmental stress.

    Science.gov (United States)

    Watson, H; Cohen, A A; Isaksson, C

    2015-11-01

    Free-living organisms are exposed to a wide range of stressors, all of which can disrupt components of stress-related and detoxification physiology. The subsequent accumulation of somatic damage is widely believed to play a major role in the evolution of senescence. Organisms have evolved sophisticated physiological regulatory mechanisms to maintain homeostasis in response to environmental perturbations, but these systems are likely to be constrained in their ability to optimise robustness to multiple stressors due to functional correlations among related traits. While evolutionary change can accelerate due to human ecological impacts, it remains to be understood how exposure to multiple environmental stressors could affect senescence rates and subsequently population dynamics and fitness. We used a theoretical evolutionary framework to quantify the potential consequences for the evolution of actuarial senescence in response to exposure to simultaneous physiological stressors--one versus multiple and additive versus synergistic--in a hypothetical population of avian "urban adapters". In a model in which multiple stressors have additive effects on physiology, species may retain greater capacity to recover, or respond adaptively, to environmental challenges. However, in the presence of high synergy, physiological dysregulation suddenly occurs, leading to a rapid increase in age-dependent mortality and subsequent population collapse. Our results suggest that, if the synergistic model is correct, population crashes in environmentally-stressed species could happen quickly and with little warning, as physiological thresholds of stress resistance are overcome. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Genome instability and epigenetic modification--heritable responses to environmental stress?

    Science.gov (United States)

    Boyko, Alex; Kovalchuk, Igor

    2011-06-01

    As sessile organisms, plants need to continuously adjust their responses to external stimuli to cope with changing growth conditions. Since the seed dispersal range is often rather limited, exposure of progeny to the growth conditions of parents is very probable. The plasticity of plant phenotypes cannot be simply explained by genetic changes such as point mutations, deletions, insertions and gross chromosomal rearrangements. Since many environmental stresses persist for only one or several plant generations, other mechanisms of adaptation must exist. The heritability of reversible epigenetic modifications that regulate gene expression without changing DNA sequence makes them an attractive alternative mechanism. In this review, we discuss recent advances in understanding how changes in genome stability and epigenetically mediated changes in gene expression could contribute to plant adaptation. We provide examples of environmentally induced transgenerational epigenetic effects that include the appearance of new phenotypes in successive generations of stressed plants. We also describe several cases in which exposure to stress leads to nonrandom heritable but reversible changes in stress tolerance in the progeny of stressed plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Climate variability and environmental stress in the Sudan-Sahel zone of West Africa

    DEFF Research Database (Denmark)

    Mertz, Ole; D'haen, Sarah Ann Lise; Maiga, Abdou

    2012-01-01

    , vegetation, and fauna, but more so in the 500–900 mm zones. Adaptation measures to counter environmental degradation included use of manure, reforestation, soil and water conservation, and protection of fauna and vegetation. The results raise concerns for future environmental management in the region......Environmental change in the Sudan-Sahel region of West Africa (SSWA) has been much debated since the droughts of the 1970s. In this article we assess climate variability and environmental stress in the region. Households in Senegal, Mali, Burkina Faso, Niger, and Nigeria were asked about climatic...... to household perceptions, observed rainfall patterns showed an increasing trend over the past 20 years. However, August rainfall declined, and could therefore potentially explain the contrasting negative household perceptions of rainfall trends. Most households reported degradation of soils, water resources...

  13. Dicer and Hsp104 Function in a Negative Feedback Loop to Confer Robustness to Environmental Stress

    Directory of Open Access Journals (Sweden)

    Daniele Oberti

    2015-01-01

    Full Text Available Epigenetic mechanisms can be influenced by environmental cues and thus evoke phenotypic variation. This plasticity can be advantageous for adaptation but also detrimental if not tightly controlled. Although having attracted considerable interest, it remains largely unknown if and how environmental cues such as temperature trigger epigenetic alterations. Using fission yeast, we demonstrate that environmentally induced discontinuous phenotypic variation is buffered by a negative feedback loop that involves the RNase Dicer and the protein disaggregase Hsp104. In the absence of Hsp104, Dicer accumulates in cytoplasmic inclusions and heterochromatin becomes unstable at elevated temperatures, an epigenetic state inherited for many cell divisions after the heat stress. Loss of Dicer leads to toxic aggregation of an exogenous prionogenic protein. Our results highlight the importance of feedback regulation in building epigenetic memory and uncover Hsp104 and Dicer as homeostatic controllers that buffer environmentally induced stochastic epigenetic variation and toxic aggregation of prionogenic proteins.

  14. Environmental and stressful factors affecting the occurrence of kidney stones and the kidney colic.

    Science.gov (United States)

    Kalaitzidis, Rigas G; Damigos, Dimitrios; Siamopoulos, Kostas C

    2014-09-01

    The first renal disease described from Hippocrates is nephrolithiasis with renal colic, which is the pain of stone passage and is also a common renal problem with easily recognizable characteristics. There has been much written about dietary factors, which have unequivocally been proved to play an important role in the formation of kidney stones. In this regard, it is of interest that the contribution of factors such as stressful events, life style, or occupation in the formation of kidney stones has not been well studied. This review examines the clinical evidence of the stressful events and other environmental factors affecting the occurrence of kidney stones.

  15. Human birth weight patterns as an indicator of populations subject to environmental stress

    Energy Technology Data Exchange (ETDEWEB)

    Curtiss, J.R.B.; Ginevan, M.E.; Brown, C.D.

    1981-01-01

    The present study was undertaken to address two questions of central importance to the possibility of using birth weight as a monitor of the health status of populations. First, can one discern consistent effects of known influencing factors while controlling for only a small number of other influencing factors. This is important because standard birth certificates provide only a few variables in addition to weight. If known effects are obscured by noise from unknown sources, the effects of environmental stress may likewise be obscured. Second, if known effects are discernable, do known stressed populations show predictable patterns of depressed birth weight.

  16. A gas-exchange system for assessing plant performance in response to environmental stress

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.E. Jr; Tingey, D.T.

    1979-10-01

    Anthropogenic stresses are increasingly common as environmental factors affecting the performance of plants in both natural and agro-ecosystems. There is a need to determine how these stresses may influence vital physiological processes in plants. This report documents the design, construction and performance of a whole-plant, gas-exchange system that can accurately monitor gas flux (e.g., carbon dioxide, water vapor, pollutants) between plants and the atmospheric environment. From these data, rates of key physiological processes--photosynthesis, transpiration, gaseous uptake and emission--can be assessed. Example studies are reported on the uptake of sulfur dioxide by plants and emissions of monoterpenes from plants.

  17. Microbiota and environmental stress: how pollution affects microbial communities in Manila clams.

    Science.gov (United States)

    Milan, M; Carraro, L; Fariselli, P; Martino, M E; Cavalieri, D; Vitali, F; Boffo, L; Patarnello, T; Bargelloni, L; Cardazzo, B

    2018-01-01

    Given the crucial role of microbiota in host development, health, and environmental interactions, genomic analyses focusing on host-microbiota interactions should certainly be considered in the investigation of the adaptive mechanisms to environmental stress. Recently, several studies suggested that microbiota associated to digestive tract is a key, although still not fully understood, player that must be considered to assess the toxicity of environmental contaminants. Bacteria-dependent metabolism of xenobiotics may indeed modulate the host toxicity. Conversely, environmental variables (including pollution) may alter the microbial community and/or its metabolic activity leading to host physiological alterations that may contribute to their toxicity. Here, 16s rRNA gene amplicon sequencing has been applied to characterize the hepatopancreas microbiota composition of the Manila clam, Ruditapes philippinarum. The animals were collected in the Venice lagoon area, which is subject to different anthropogenic pressures, mainly represented by the industrial activities of Porto Marghera (PM). Seasonal and geographic differences in clam microbiotas were explored and linked to host response to chemical stress identified in a previous study at the transcriptome level, establishing potential interactions among hosts, microbes, and environmental parameters. The obtained results showed the recurrent presence of putatively detoxifying bacterial taxa in PM clams during winter and over-representation of several metabolic pathways involved in xenobiotic degradation, which suggested the potential for host-microbial synergistic detoxifying actions. Strong interaction between seasonal and chemically-induced responses was also observed, which partially obscured such potentially synergistic actions. Seasonal variables and exposure to toxicants were therefore shown to interact and substantially affect clam microbiota, which appeared to mirror host response to environmental variation. It

  18. Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Lau Susanna KP

    2011-06-01

    Full Text Available Abstract Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches. Results L. hongkongensis possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two arc gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na+:H+ antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs. Conclusions The L. hongkongensis genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.

  19. Robustness of flux distribution in Shewanella oneidensis MR-1 under environmental stress and genetic perturbation

    Science.gov (United States)

    Feng, X.; Martin, H. G.; Keasling, J.; Tang, Y.

    2008-12-01

    The environmental important bacterium, Shewanella oneidensis MR-1, has the significantly different growth rates under normal growth (doubling time=3hrs) in the minimal lactate medium, salt stress (doubling time > 6 hrs), and enhanced growth with amino acids supplementation (doubling time transposon mutants using high throughput 13C isotopomer analysis method also indicates the robustness of central metabolism under genetic perturbations. These observations reveal a rigid physiology in the level of flux distribution in MR-1, in contrast to the significant change of transcriptomes and metabolite profiles under various growth conditions. This study provides evidence that microbial metabolism maintains metabolic stability under various environmental conditions, rather than being geared towards growth rate maximization.

  20. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress.

    Science.gov (United States)

    Gururani, Mayank Anand; Mohanta, Tapan Kumar; Bae, Hanhong

    2015-08-13

    Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS) generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants' responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers from elucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research.

  1. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress

    Directory of Open Access Journals (Sweden)

    Mayank Anand Gururani

    2015-08-01

    Full Text Available Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants’ responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers fromelucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research.

  2. Intertidal macrofauna and environmental stress at a riverine-marine boundary.

    Science.gov (United States)

    Conde, Anxo; Novais, Júlio M; Domínguez, Jorge

    2013-12-01

    A field experiment was carried out to test the effect of pore water salinity on the macrobenthic assemblages in an estuarine region of the Tagus estuary (Portugal) subjected to wide fluctuations in salinity. The conditions at the experimental site ranged from freshwater (minimum salinity 0.2) to mesohaline (maximum salinity 15.3). The experimental site was affected by an unexpected deposition of fluid mud during summer. Redundancy Analysis discriminated the experimental treatments along the first canonical ordination axis. The analysis also revealed an experimental gradient of increasing environmental stress, in which the minimal presence of organisms corresponded to treatments representing a high level of environmental stress. Sediment dynamics and saline fluctuations were the major factors that, together, determined the low macrofaunal abundance and species diversity at the experimental site. The most abundant macrofaunal species in this harsh environment were the polychaetes Hediste diversicolor and Streblospio shrubsolii. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Dysregulation of the SIRT1/OCT6 Axis Contributes to Environmental Stress-Induced Neural Induction Defects

    Directory of Open Access Journals (Sweden)

    Guoping Li

    2017-05-01

    Full Text Available Environmental stresses are increasingly acknowledged as core causes of abnormal neural induction leading to neural tube defects (NTDs. However, the mechanism responsible for environmental stress-triggered neural induction defects remains unknown. Here, we report that a spectrum of environmental stresses, including oxidative stress, starvation, and DNA damage, profoundly activate SIRT1, an NAD+-dependent lysine deacetylase. Both mouse embryos and in vitro differentiated embryonic stem cells (ESCs demonstrated a negative correlation between the expression of SIRT1 and that of OCT6, a key neural fate inducer. Activated SIRT1 radically deacetylates OCT6, triggers an OCT6 ubiquitination/degradation cascade, and consequently increases the incidence of NTD-like phenotypes in mice or hinders neural induction in both human and mouse ESCs. Together, our results suggest that early exposure to environmental stresses results in the dysregulation of the SIRT1/OCT6 axis and increases the risk of NTDs.

  4. Environmental Social Stress, Paranoia and Psychosis Liability: A Virtual Reality Study

    OpenAIRE

    Veling, Wim; Pot-Kolder, Roos; Counotte, Jacqueline; van Os, Jim; van der Gaag, Mark

    2016-01-01

    The impact of social environments on mental states is difficult to assess, limiting the understanding of which aspects of the social environment contribute to the onset of psychotic symptoms and how individual characteristics moderate this outcome. This study aimed to test sensitivity to environmental social stress as a mechanism of psychosis using Virtual Reality (VR) experiments. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra high risk for psychosis, 42 sibli...

  5. A people-centred perspective on climate change, environmental stress, and livelihood resilience in Bangladesh

    OpenAIRE

    Ayeb-Karlsson, Sonja; van der Geest, Kees; Ahmed, Istiakh; Huq, Saleemul; Warner, Koko

    2016-01-01

    The Ganges–Brahmaputra delta enables Bangladesh to sustain a dense population, but it also exposes people to natural hazards. This article presents findings from the Gibika project, which researches livelihood resilience in seven study sites across Bangladesh. This study aims to understand how people in the study sites build resilience against environmental stresses, such as cyclones, floods, riverbank erosion, and drought, and in what ways their strategies sometimes fail. The article applies...

  6. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress.

    Science.gov (United States)

    Yao, Bing; Cheng, Ying; Wang, Zhiqin; Li, Yujing; Chen, Li; Huang, Luoxiu; Zhang, Wenxin; Chen, Dahua; Wu, Hao; Tang, Beisha; Jin, Peng

    2017-10-24

    Chemical modifications on DNA molecules, such as 5-methylcytosine and 5-hydroxymethylcytosine, play important roles in the mammalian brain. A novel DNA adenine modification, N(6)-methyladenine (6mA), has recently been found in mammalian cells. However, the presence and function(s) of 6mA in the mammalian brain remain unclear. Here we demonstrate 6mA dynamics in the mouse brain in response to environmental stress. We find that overall 6mA levels are significantly elevated upon stress. Genome-wide 6mA and transcriptome profiling reveal an inverse association between 6mA dynamic changes and a set of upregulated neuronal genes or downregulated LINE transposon expression. Genes bearing stress-induced 6mA changes significantly overlap with loci associated with neuropsychiatric disorders. These results suggest an epigenetic role for 6mA in the mammalian brain as well as its potential involvement in neuropsychiatric disorders.

  7. Nuclear genome diversity in somatic cells is accelerated by environmental stress

    Science.gov (United States)

    Wang, Dong; Lloyd, Andrew H.; Timmis, Jeremy N.

    2012-01-01

    DNA transfer to the nucleus from prokaryotic ancestors of the cytoplasmic organelles (mitochondria and plastids) has occurred during endosymbiotic evolution in eukaryotes. In most eukaryotes, organelle DNA transfer to nucleus is a continuing process. The frequency of DNA transposition from plastid (chloroplast) to nucleus has been measured in tobacco plants (Nicotiana tabacum) experimentally. We have monitored the effects of environmental stress on the rate of DNA transfer from plastid to nucleus by exploiting nucleus-specific reporter genes in two transplastomic tobacco lines. DNA migration from plastids to the nucleus is markedly increased by mild heat stress. In addition, insertions of mitochondrial DNA into induced double-strand breaks are observed after heat treatment. These results show that movement of organelle DNA to the nucleus is remarkably increased by heat stress. PMID:22516813

  8. Duration of herbivore removal and environmental stress affect the ectomycorrhizae of pinyon pines

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, C.A.; Whitham, T.G. [Northern Arizona Univ., Flagstaff, AZ (United States)

    1995-10-01

    The mutualistic mycorrhizal symbionts of plants have shown mixed responses to herbivory; they either decrease, increase, or show no measureable change. We examined the ectomycorrhizal responses of pinyon pine (Pinus Edulis) exposed to 1 yr of simulated herbivory in two environments, one stressful and one less so. We also compared levels of ectomycorrhizal colonization and conelet production in pinyons from which an important insect herbivore had been removed from either 1 or 10 yr. Pinyons that grew in more stressful cinder soils experienced by a plant could affect whether mycorrhizal reductions results form herbivory. In addition the reductions in ectomycorrihizal colonization that resulted from chronic herbivory remained for a full year following herbivore removal even through conelet production increased 250-fold in the same time period. Our findings regarding the role of environmental stress and duration of herbivory in affecting mycorrhizal responses may help explain the variable responses found in other systems. 21 refs., 2 figs., 1 tab.

  9. Methylation of protein phosphatase 2A-Influence of regulators and environmental stress factors.

    Science.gov (United States)

    Creighton, Maria T; Kolton, Anna; Kataya, Amr R A; Maple-Grødem, Jodi; Averkina, Irina O; Heidari, Behzad; Lillo, Cathrine

    2017-10-01

    Protein phosphatase 2A catalytic subunit (PP2A-C) has a terminal leucine subjected to methylation, a regulatory mechanism conserved from yeast to mammals and plants. Two enzymes, LCMT1 and PME1, methylate and demethylate PP2A-C, respectively. The physiological importance of these posttranslational modifications is still enigmatic. We investigated these processes in Arabidopsis thaliana by mutant phenotyping, by global expression analysis, and by monitoring methylation status of PP2A-C under different environmental conditions. The lcmt1 mutant, possessing essentially only unmethylated PP2A-C, had less dense rosettes, and earlier flowering than wild type (WT). The pme1 mutant, with 30% reduction in unmethylated PP2A-C, was phenotypically comparable with WT. Approximately 200 overlapping genes were twofold upregulated, and 200 overlapping genes were twofold downregulated in both lcmt1 and pme1 relative to WT. Differences between the 2 mutants were also striking; 97 genes were twofold upregulated in pme1 compared with lcmt1, indicating that PME1 acts as a negative regulator for these genes. Analysis of enriched GO terms revealed categories of both abiotic and biotic stress genes. Furthermore, methylation status of PP2A-C was influenced by environmental stress, especially by hypoxia and salt stress, which led to increased levels of unmethylated PP2A-C, and highlights the importance of PP2A-C methylation/demethylation in environmental responses. © 2017 John Wiley & Sons Ltd.

  10. Environmental Stress Causes Lethal Neuro-Trauma during Asymptomatic Viral Infections.

    Science.gov (United States)

    Chow, Jonathan; Márka, Zsuzsa; Bartos, Imre; Márka, Szabolcs; Kagan, Jonathan C

    2017-07-12

    Asymptomatic infections often proceed undetected, yet can still prime the host to be sensitive to secondary environmental stress. While the mechanisms underlying disease caused by asymptomatic infections are unknown, it is believed that productive pathogen replication is required. We report that the environmental stress of carbon dioxide (CO2) anesthesia converts an asymptomatic rhabdovirus infection in Drosophila to one that is lethal. This lethality results from a pool of infectious virus in glial cells and is regulated by the antiviral RNAi pathway of the host. CO2 sensitivity is caused by the fusogenic activity of the viral glycoprotein, which results in fusion of neurons and glia. Expression of the viral glycoprotein, but not a fusion defective mutant, is sufficient to cause CO2 sensitivity, which can occur even in the absence of productive viral replication. These findings highlight how viral proteins, independent of pathogen replication, may predispose hosts to life-threatening environmental stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    Science.gov (United States)

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-11-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  12. Responses to social and environmental stress are attenuated by strong male bonds in wild macaques.

    Science.gov (United States)

    Young, Christopher; Majolo, Bonaventura; Heistermann, Michael; Schülke, Oliver; Ostner, Julia

    2014-12-23

    In humans and obligatory social animals, individuals with weak social ties experience negative health and fitness consequences. The social buffering hypothesis conceptualizes one possible mediating mechanism: During stressful situations the presence of close social partners buffers against the adverse effects of increased physiological stress levels. We tested this hypothesis using data on social (rate of aggression received) and environmental (low temperatures) stressors in wild male Barbary macaques (Macaca sylvanus) in Morocco. These males form strong, enduring, and equitable affiliative relationships similar to human friendships. We tested the effect of the strength of a male's top three social bonds on his fecal glucocorticoid metabolite (fGCM) levels as a function of the stressors' intensity. The attenuating effect of stronger social bonds on physiological stress increased both with increasing rates of aggression received and with decreasing minimum daily temperature. Ruling out thermoregulatory and immediate effects of social interactions on fGCM levels, our results indicate that male Barbary macaques employ a tend-and-befriend coping strategy in the face of increased environmental as well as social day-to-day stressors. This evidence of a stress-ameliorating effect of social bonding among males under natural conditions and beyond the mother-offspring, kin or pair bond broadens the generality of the social buffering hypothesis.

  13. Environmental Stress and Pathogen Dynamics in the Blue Crab Callinectes sapidus

    Science.gov (United States)

    Sullivan, T. J.; Neigel, J.; Gelpi, C. G.

    2016-02-01

    The blue crab Callinectes sapidus is an ecologically and economically valuable species along the Gulf of Mexico and Atlantic coasts of North America. Throughout its range, the blue crab encounters a diverse array of parasitic and pathogenic microorganisms that have episodic and occasionally severe impacts on population numbers and viability. This makes understanding factors that influence pathogen dynamics, such as host stress, an important priority. To explore the role of environmental stress on the susceptibility of blue crabs to pathogens we screened individuals collected during the summers of 2014 and 2015 for a number of infectious agents. We sampled three life stages (megalopae, juvenile, and adult) from multiple marsh and offshore locations in Louisiana. Duration of stressful environmental conditions at each location was quantified from hourly recordings provided by the Louisiana Coastwide Reference Monitoring System. Pathogenic microorganisms were detected in crabs from multiple locations and multiple years. Some of the variability in prevalence of infection can be explained by exposure to stressful extremes of temperature and salinity during summer months.

  14. Oxidative Stress and Ageing: The Influence of Environmental Pollution, Sunlight and Diet on Skin

    Directory of Open Access Journals (Sweden)

    Khimara Naidoo

    2017-01-01

    Full Text Available Skin ageing is a complex process that is determined by both intrinsic and extrinsic factors, which leads to a progressive loss of structure and function. There is extensive evidence indicating that oxidative stress induced by reactive oxygen species plays an important role in the process of human skin ageing. Mitochondria are the major source of cellular oxidative stress and are widely implicated in cutaneous ageing. Extrinsic skin ageing is driven to a large extent by environmental factors and external stressors such as ultraviolet radiation (UVR, pollution and lifestyle factors which have been shown to stimulate the production of reactive oxygen species and generate oxidative stress. The oxidative damage from these exogenous sources can impair skin structure and function, leading to the phenotypic features of extrinsic skin ageing. The following review highlights the current evidence surrounding the role of mitochondria and oxidative stress in the ageing process and the influence of environmental factors such as ultraviolet radiation, pollution and diet on skin ageing.

  15. Social vs. environmental stress models of depression from a behavioural and neurochemical approach.

    Science.gov (United States)

    Venzala, E; García-García, A L; Elizalde, N; Tordera, R M

    2013-07-01

    Major depression is a mental disorder often preceded by exposure to chronic stress or stressful life events. Recently, animal models based on social conflict such as chronic social defeat stress (CSDS) are proposed to be more relevant to stress-induced human psychopathology compared to environmental models like the chronic mild stress (CMS). However, while CMS reproduces specifically core depressive symptoms such as anhedonia and helplessness, CSDS studies rely on the analysis of stress-induced social avoidance, addressing different neuropsychiatric disorders. Here, we study comparatively the two models from a behavioural and neurochemical approach and their possible relevance to human depression. Mice (C57BL/6) were exposed to CMS or CSDS for six weeks and ten days. Anhedonia was periodically evaluated. A battery of test applied during the fourth week after the stress procedure included motor activity, memory, anxiety, social interaction and helplessness. Subsequently, we examined glutamate, GABA, 5-HT and dopamine levels in the prefrontal cortex, hippocampus and brainstem. CMS induced a clear depressive-like profile including anhedonia, helplessness and memory impairment. CSDS induced anhedonia, hyperactivity, anxiety and social avoidance, signs also common to anxiety and posttraumatic stress disorders. While both models disrupted the excitatory inhibitory balance in the prefrontal cortex, CMS altered importantly this balance in the brainstem. Moreover, CSDS decreased dopamine in the prefrontal cortex and brainstem. We suggests that while depressive-like behaviours might be associated to altered aminoacid neurotransmission in cortical and brain stem areas, CSDS induced anxiety behaviours might be linked to specific alteration of dopaminergic pathways involved in rewarding processes. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  16. Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: normalization by agomelatine

    Science.gov (United States)

    Boulle, F; Massart, R; Stragier, E; Païzanis, E; Zaidan, L; Marday, S; Gabriel, C; Mocaer, E; Mongeau, R; Lanfumey, L

    2014-01-01

    Stress-induced alterations in neuronal plasticity and in hippocampal functions have been suggested to be involved in the development of mood disorders. In this context, we investigated in the hippocampus the activation of intracellular signaling cascades, the expression of epigenetic markers and plasticity-related genes in a mouse model of stress-induced hyperactivity and of mixed affective disorders. We also determined whether the antidepressant drug agomelatine, a MT1/MT2 melatonergic receptor agonist/5-HT2C receptor antagonist, could prevent some neurobiological and behavioral alterations produced by stress. C57BL/6J mice, exposed for 3 weeks to daily unpredictable socio-environmental stressors of mild intensity, were treated during the whole procedure with agomelatine (50 mg kg−1 per day, intraperitoneal). Stressed mice displayed robust increases in emotional arousal, vigilance and motor activity, together with a reward deficit and a reduction in anxiety-like behavior. Neurobiological investigations showed an increased phosphorylation of intracellular signaling proteins, including Atf1, Creb and p38, in the hippocampus of stressed mice. Decreased hippocampal level of the repressive epigenetic marks HDAC2 and H3K9me2, as well as increased level of the permissive mark H3K9/14ac suggested that chronic mild stress was associated with increased gene transcription, and clear-cut evidence was further indicated by changes in neuroplasticity-related genes, including Arc, Bcl2, Bdnf, Gdnf, Igf1 and Neurod1. Together with other findings, the present data suggest that chronic ultra-mild stress can model the hyperactivity or psychomotor agitation, as well as the mixed affective behaviors often observed during the manic state of bipolar disorder patients. Interestingly, agomelatine could normalize both the behavioral and the molecular alterations induced by stress, providing further insights into the mechanism of action of this new generation antidepressant drug. PMID

  17. Sublethal effects of manganese on the haematology and ...

    African Journals Online (AJOL)

    Information concerning the sublethal effects of pollutants, such as metals, forms an integral part of ecosystem health assessment programmes and of procedures followed to develop water quality guidelines for environmetal protection. The data from this study were incorporated into a water quality index (RAUWaterz) ...

  18. Sublethal haematological effects of zinc on the freshwater fish ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... industrial and domestic wastes water discharges and animals where it ... that zinc could cause sub-acute effects that change fish behaviours. ... These include the sublethal effects of concentrations of water extracts of akee apple on C. gariepinus (Onusiriuka and Ufodike, 1998). Toxicity of cas- sava leaf ...

  19. Effects of sublethal doses of chlorfluazuron on the ovarian ...

    African Journals Online (AJOL)

    Therefore, it is concluded that sublethal doses of chlorfluazuron reduced the amounts of ovarian constituents during ovarian development and oogenesis in S. litura. These reductions increased with an increase in dose from LD10 to LD30. The effects of chlorfluazuron on the amounts of ovarian constituents are presumed to ...

  20. Histopathological effects of lethal and sub-lethal concentrations of ...

    African Journals Online (AJOL)

    The histopathological effects of lethal and sub-lethal concentrations of glyphosate on African catfish Clarias gariepinus were investigated. C. gariepinus juveniles were assessed in a static renewal bioassay for 96 hours (acute toxicity) and 28 days (chronic toxicity) using varying concentrations (0.0 mg/l 20.0 mg/l, 30.0 mg/l, ...

  1. Review: Sublethal effects of temperature on freshwater organisms ...

    African Journals Online (AJOL)

    Review: Sublethal effects of temperature on freshwater organisms, with special reference to aquatic insects. HF Dallas, V Ross-Gillespie. Abstract. Water temperature is a key variable affecting aquatic organisms. Understanding their response to elevated water temperatures is important for estimating upper thermal limits, ...

  2. Impact of sublethal concentration of triazophos on regulation of ...

    African Journals Online (AJOL)

    Exposure to sublethal doses of triazophos extract caused significant (p < 0.05) time and dose dependent reduction in the levels of total protein, acetylcholinesterase (AchE) and significant enhancement in the levels of total free amino acids, glutamine, adenosine monophosphate (AMP) deaminases, adenosine deaminases, ...

  3. Sublethal effects of industrial chemicals on fish fingerlings ( Tilapia ...

    African Journals Online (AJOL)

    Tilapia guineensis commonly found in the Niger Delta ecological zone of Nigeria was exposed to sublethal concentrations (1.56, 3.13 mg/l) of neatex (industrial detergent) and norust CR 486 (corrosion inhibitor) using the Organisation for Economic Cooperation and Development (OECD) # 203 protocol. At test termination ...

  4. Sublethal effects of carbaryl on embryonic and gonadal ...

    African Journals Online (AJOL)

    Sex reversal was delayed in the experimental groups, with a sex ratio of 13 females to 0 males, but the control group recorded 6 females to 8 males. These results suggest that sublethal doses of carbaryl in the environment, similar to those used in the current study, may have an adverse effect on the reproductive success of ...

  5. Effects Of Exposure To Sublethal Concentrations Of Azadirachta ...

    African Journals Online (AJOL)

    The physiological impairment on the fingerlings of Clarias gariepinus when exposed to sublethal concentrations of Azadirachta Indica was investigated. The fish were exposed to concentrations of 1.25, 2.50, 5.0, 10.0, 20.0 ML -1 for the period of 12 weeks. The crude protein content decreased with increased concentration ...

  6. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  7. Environmental enrichment reduces behavioural alterations induced by chronic stress in Japanese quail.

    Science.gov (United States)

    Laurence, A; Houdelier, C; Calandreau, L; Arnould, C; Favreau-Peigné, A; Leterrier, C; Boissy, A; Lumineau, S

    2015-02-01

    Animals perceiving repeated aversive events can become chronically stressed. Chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis can have deleterious consequences on physiological parameters (e.g. BW, blood chemistry) and behaviour (e.g. emotional reactivity, stereotypies, cognition). Environmental enrichment (EE) can be a mean to reduce animal stress and to improve welfare. The aim of this study was first, to assess the effects of EE in battery cages on the behaviour of young Japanese quail and second, to evaluate the impact of EE on quail exposed to chronic stress. The experiment involved quail housed in EE cages and submitted or not to a chronic stress procedure (CSP) (EE cages, control quail: n=16, CSP quail: n=14) and quail housed in standard cages and exposed or not to the CSP (standard non-EE cages, control quail: n=12, CSP quail: n=16). Our procedure consisted of repeated aversive events (e.g. ventilators, delaying access to food, physical restraint, noise) presented two to five times per 24 h, randomly, for 15 days. During CSP, EE improved quail's welfare as their stereotypic pacing decreased and they rested more. CSP decreased exploration in all quail. After the end of CSP, quail presented increased emotional reactivity in emergence test. However, the effect of EE varied with test. Finally, chronic stress effects on comfort behaviours in the emergence test were alleviated by EE. These results indicate that EE can alleviate some aspects of behavioural alterations induced by CSP.

  8. Feedback Control of Snf1 Protein and Its Phosphorylation Is Necessary for Adaptation to Environmental Stress*

    Science.gov (United States)

    Hsu, Hsiang-En; Liu, Tzu-Ning; Yeh, Chung-Shu; Chang, Tien-Hsien; Lo, Yi-Chen; Kao, Cheng-Fu

    2015-01-01

    Snf1, a member of the AMP-activated protein kinase family, plays a critical role in metabolic energy control in yeast cells. Snf1 activity is activated by phosphorylation of Thr-210 on the activation loop of its catalytic subunit; following activation, Snf1 regulates stress-responsive transcription factors. Here, we report that the level of Snf1 protein is dramatically decreased in a UBP8- and UBP10-deleted yeast mutant (ubp8Δ ubp10Δ), and this is independent of transcriptional regulation and proteasome-mediated degradation. Surprisingly, most Snf1-mediated functions, including glucose limitation regulation, utilization of alternative carbon sources, stress responses, and aging, are unaffected in this strain. Snf1 phosphorylation in ubp8Δ ubp10Δ cells is hyperactivated upon stress, which may compensate for the loss of the Snf1 protein and protect cells against stress and aging. Furthermore, artificial elevation of Snf1 phosphorylation (accomplished through deletion of REG1, which encodes a protein that regulates Snf1 dephosphorylation) restored Snf1 protein levels and the regulation of Snf1 activity in ubp8Δ ubp10Δ cells. Our results reveal the existence of a feedback loop that controls Snf1 protein level and its phosphorylation, which is masked by Ubp8 and Ubp10 through an unknown mechanism. We propose that this dynamic modulation of Snf1 phosphorylation and its protein level may be important for adaptation to environmental stress. PMID:25947383

  9. Environmental Enrichment Blunts Ethanol Consumption after Restraint Stress in C57BL/6 Mice.

    Directory of Open Access Journals (Sweden)

    Priscila Marianno

    Full Text Available Elevated alcohol intake after abstinence is a key feature of the addiction process. Some studies have shown that environmental enrichment (EE affects ethanol intake and other reinforcing effects. However, different EE protocols may vary in their ability to influence alcohol consumption and stress-induced intake. The present study evaluated whether short (3 h or continuous (24 h EE protocols affect ethanol consumption after periods of withdrawal. Mice were challenged with stressful stimuli (24 h isolation and restraint stress to evaluate the effects of stress on drinking. Male C57BL/6 mice were subjected to a two-bottle choice drinking-in-the-dark paradigm for 15 days (20% ethanol and water, 2 h/day, acquisition phase. Control mice were housed under standard conditions (SC. In the first experiment, one group of mice was housed under EE conditions 24 h/day (EE24h. In the second experiment, the exposure to EE was reduced to 3 h/day (EE3h. After the acquisition phase, the animals were deprived of ethanol for 6 days, followed by 2 h ethanol access once a week. Animals were tested in the elevated plus maze (EPM during ethanol withdrawal. During the last 2 weeks, the mice were exposed to 24 h ethanol access. A 1-h restraint stress test was performed immediately before the last ethanol exposure. EE24h but not EE3h increased anxiety-like behavior during withdrawal compared to controls. Neither EE24h nor EE3h affected ethanol consumption during the 2 h weekly exposure periods. However, EE24h and EE3h mice that were exposed to acute restraint stress consumed less ethanol than controls during a 24 h ethanol access. These results showed that EE reduces alcohol intake after an acute restraint stress.

  10. Extracellular and cellular Hsp72 differ as biomarkers in acute exercise/environmental stress and recovery.

    Science.gov (United States)

    Lee, E C-H; Muñoz, C X; McDermott, B P; Beasley, K N; Yamamoto, L M; Hom, L L; Casa, D J; Armstrong, L E; Kraemer, W J; Anderson, J M; Maresh, C M

    2017-01-01

    Stress-inducible Hsp72 is a potential biomarker to track risk of exertional heat illness during exercise/environmental stress. Characterization of extracellular (eHsp72) vs cellular Hsp72 (iHsp72) responses is required to define the appropriate use of Hsp72 as a reliable biomarker. In each of four repeat visits, participants (n = 6 men, 4 trials; total n = 24): (a) passively dehydrated overnight, (b) exercised (2 h) with no fluid in a hot, humid environmental chamber, (c) rested and rehydrated (1 h), (d) maximally exercised for 0.5 h, and (e) returned after 24 h of at-home recovery and rehydration. We measured rectal temperature, hydration status (% body mass loss, urine markers, serum osmolality), and Hsp72 (ELISA, flow cytometry. eHsp72 (circulating) and iHsp72 (CD3+ PBMCs) correlated (P 15% above baseline, P < 0.05) decreased back to baseline levels by 1 h post-exercise, but iHsp72 expression continued to rise and remained elevated 24 h post-exercise (~2.5-fold baseline, P < 0.05). These data suggest that in addition to the classic physiological biomarkers of exercise heat stress, using cellular Hsp72 as an indicator of lasting effects of stress into recovery may be most appropriate for determining long-term effects of stress on risk for exertional heat illness. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros.

    Science.gov (United States)

    Haddi, Khalid; Mendes, Marcos V; Barcellos, Marcelo S; Lino-Neto, José; Freitas, Hemerson L; Guedes, Raul Narciso C; Oliveira, Eugênio E

    2016-01-01

    Environmental stress in newly-emerged adult insects can have dramatic consequences on their life traits (e.g., dispersion, survival and reproduction) as adults. For instance, insects sublethally exposed to environmental stressors (e.g., insecticides) can gain fitness benefits as a result of hormesis (i.e., benefits of low doses of compounds that would be toxic at higher doses). Here, we experimentally tested whether sublethal exposure to the insecticide imidacloprid would hormetically affect the sexual fitness of newly-emerged adults of the Neotropical brown stink bug Euschistus heros (Hemiptera: Heteroptera: Pentatomidae), which is the most abundant and prevalent insect pest in Neotropical soybean fields. We evaluated the sexual fitness of four couple combinations: unexposed couples, exposed females, exposed males, and exposed couples. Sublethal exposure to dry residues (i.e., contact) of imidacloprid (at 1% of recommended field rate) did not affect insect survival, but led to higher mating frequencies when at least one member of the couple was exposed. However, the average mating duration was shortened when only females were exposed to imidacloprid. Moreover, exposed males showed higher locomotory (walking) activity, lower respiration rates and induced higher fecundity rates when mated to unexposed females. Although the reproductive tracts of exposed males did not differ morphometrically from unexposed males, their accessory glands exhibited positive reactions for acidic and basic contents. Our findings suggest that males of the Neotropical brown stink bug hormetically increase their sexual fitness when cued by impending insecticidal stress in early adulthood.

  12. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros.

    Directory of Open Access Journals (Sweden)

    Khalid Haddi

    Full Text Available Environmental stress in newly-emerged adult insects can have dramatic consequences on their life traits (e.g., dispersion, survival and reproduction as adults. For instance, insects sublethally exposed to environmental stressors (e.g., insecticides can gain fitness benefits as a result of hormesis (i.e., benefits of low doses of compounds that would be toxic at higher doses. Here, we experimentally tested whether sublethal exposure to the insecticide imidacloprid would hormetically affect the sexual fitness of newly-emerged adults of the Neotropical brown stink bug Euschistus heros (Hemiptera: Heteroptera: Pentatomidae, which is the most abundant and prevalent insect pest in Neotropical soybean fields. We evaluated the sexual fitness of four couple combinations: unexposed couples, exposed females, exposed males, and exposed couples. Sublethal exposure to dry residues (i.e., contact of imidacloprid (at 1% of recommended field rate did not affect insect survival, but led to higher mating frequencies when at least one member of the couple was exposed. However, the average mating duration was shortened when only females were exposed to imidacloprid. Moreover, exposed males showed higher locomotory (walking activity, lower respiration rates and induced higher fecundity rates when mated to unexposed females. Although the reproductive tracts of exposed males did not differ morphometrically from unexposed males, their accessory glands exhibited positive reactions for acidic and basic contents. Our findings suggest that males of the Neotropical brown stink bug hormetically increase their sexual fitness when cued by impending insecticidal stress in early adulthood.

  13. Molecular Genetic Analysis of Human Endometrial Mesenchymal Stem Cells That Survived Sublethal Heat Shock

    Directory of Open Access Journals (Sweden)

    A. E. Vinogradov

    2017-01-01

    Full Text Available High temperature is a critical environmental and personal factor. Although heat shock is a well-studied biological phenomenon, hyperthermia response of stem cells is poorly understood. Previously, we demonstrated that sublethal heat shock induced premature senescence in human endometrial mesenchymal stem cells (eMSC. This study aimed to investigate the fate of eMSC-survived sublethal heat shock (SHS with special emphasis on their genetic stability and possible malignant transformation using methods of classic and molecular karyotyping, next-generation sequencing, and transcriptome functional analysis. G-banding revealed random chromosome breakages and aneuploidy in the SHS-treated eMSC. Molecular karyotyping found no genomic imbalance in these cells. Gene module and protein interaction network analysis of mRNA sequencing data showed that compared to untreated cells, SHS-survived progeny revealed some difference in gene expression. However, no hallmarks of cancer were found. Our data identified downregulation of oncogenic signaling, upregulation of tumor-suppressing and prosenescence signaling, induction of mismatch, and excision DNA repair. The common feature of heated eMSC is the silence of MYC, AKT1/PKB oncogenes, and hTERT telomerase. Overall, our data indicate that despite genetic instability, SHS-survived eMSC do not undergo transformation. After long-term cultivation, these cells like their unheated counterparts enter replicative senescence and die.

  14. Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii.

    Science.gov (United States)

    Gebhardt, Michael J; Gallagher, Larry A; Jacobson, Rachael K; Usacheva, Elena A; Peterson, Lance R; Zurawski, Daniel V; Shuman, Howard A

    2015-11-10

    The increasing emergence of antibiotic-resistant bacterial pathogens represents a serious risk to human health and the entire health care system. Many currently circulating strains of Acinetobacter baumannii exhibit resistance to multiple antibiotics. A key limitation in combating A. baumannii is that our understanding of the molecular mechanisms underlying the pathogenesis of A. baumannii is lacking. To identify potential virulence determinants of a contemporary multidrug-resistant isolate of A. baumannii, we used transposon insertion sequencing (TnSeq) of strain AB5075. A collection of 250,000 A. baumannii transposon mutants was analyzed for growth within Galleria mellonella larvae, an insect-based infection model. The screen identified 300 genes that were specifically required for survival and/or growth of A. baumannii inside G. mellonella larvae. These genes encompass both known, established virulence factors and several novel genes. Among these were more than 30 transcription factors required for growth in G. mellonella. A subset of the transcription factors was also found to be required for resistance to antibiotics and environmental stress. This work thus establishes a novel connection between virulence and resistance to both antibiotics and environmental stress in A. baumannii. Acinetobacter baumannii is rapidly emerging as a significant human pathogen, largely because of disinfectant and antibiotic resistance, causing lethal infection in fragile hosts. Despite the increasing prevalence of infections with multidrug-resistant A. baumannii strains, little is known regarding not only the molecular mechanisms that allow A. baumannii to resist environmental stresses (i.e., antibiotics and disinfectants) but also how these pathogens survive within an infected host to cause disease. We employed a large-scale genetic screen to identify genes required for A. baumannii to survive and grow in an insect disease model. While we identified many known virulence

  15. Fluctuating asymmetry and environmental stress: understanding the role of trait history.

    Directory of Open Access Journals (Sweden)

    Greet De Coster

    Full Text Available While fluctuating asymmetry (FA; small, random deviations from perfect symmetry in bilaterally symmetrical traits is widely regarded as a proxy for environmental and genetic stress effects, empirical associations between FA and stress are often weak or heterogeneous among traits. A conceptually important source of heterogeneity in relationships with FA is variation in the selection history of the trait(s under study, i.e. traits that experienced a (recent history of directional change are predicted to be developmentally less stable, potentially through the loss of canalizing modifiers. Here we applied X-ray photography on museum specimens and live captures to test to what extent the magnitude of FA and FA-stress relationships covary with directional shifts in traits related to the flight apparatus of four East-African rainforest birds that underwent recent shifts in habitat quality and landscape connectivity. Both the magnitude and direction of phenotypic change varied among species, with some traits increasing in size while others decreased or maintained their original size. In three of the four species, traits that underwent larger directional changes were less strongly buffered against random perturbations during their development, and traits that increased in size over time developed more asymmetrically than those that decreased. As we believe that spurious relationships due to biased comparisons of historic (museum specimens and current (field captures samples can be ruled out, these results support the largely untested hypothesis that directional shifts may increase the sensitivity of developing traits to random perturbations of environmental or genetic origin.

  16. Expression and Enzyme Activity of Catalase in Chilo suppressalis (Lepidoptera: Crambidae) Is Responsive to Environmental Stresses.

    Science.gov (United States)

    Lu, Yanhui; Bai, Qi; Zheng, Xusong; Lu, Zhongxian

    2017-08-01

    Catalase (CAT) is an important antioxidant enzyme that protects organisms against oxidative stresses by eliminating hydrogen peroxide. In this study, we cloned and characterized a full-length cDNA of CAT from Chilo suppressalis (CsCAT) and examined the influence of environmental stresses on CsCAT expression and enzyme activity. The cDNA contains a 1659-bp open reading frame encoding a polypeptide of 553 amino acids most closely related (90.14%) to Papilio polytes catalases. The CsCAT was expressed in all developmental stages with the highest expression in the fat body, and the CsCAT enzyme activity closely mirrored its observed mRNA expression patterns. The CsCAT mRNA was up-regulated when the larvae were exposed to high temperature (≥30 °C), insecticides (abamectin and chlorantraniliprole), chemicals (H2O2, CHP, CdCl2, and CuSO4), and a dead-end trap plant (vetiver grass), and the CsCAT enzyme activity again mirrored the observed CsCAT expression patterns. These results suggest that up-regulation of CsCAT may enhance the defense response of C. suppressalis by weakening the effects of environmental stresses, and provide insight into the role of CsCAT during development of C. suppressalis. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress

    Science.gov (United States)

    Holland, Sara L; Reader, Tom; Dyer, Paul S; Avery, Simon V

    2014-01-01

    Populations of genetically uniform microorganisms exhibit phenotypic heterogeneity, where individual cells have varying phenotypes. Such phenotypes include fitness-determining traits. Phenotypic heterogeneity has been linked to increased population-level fitness in laboratory studies, but its adaptive significance for wild microorganisms in the natural environment is unknown. Here, we addressed this by testing heterogeneity in yeast isolates from diverse environmental sites, each polluted with a different principal contaminant, as well as from corresponding control locations. We found that cell-to-cell heterogeneity (in resistance to the appropriate principal pollutant) was prevalent in the wild yeast isolates. Moreover, isolates with the highest heterogeneity were consistently observed in the polluted environments, indicating that heterogeneity is positively related to survival in adverse conditions in the wild. This relationship with survival was stronger than for the property of mean resistance (IC50) of an isolate. Therefore, heterogeneity could be the major determinant of microbial survival in adverse conditions. Indeed, growth assays indicated that isolates with high heterogeneities had a significant competitive advantage during stress. Analysis of yeasts after cultivation for ≥ 500 generations additionally showed that high heterogeneity evolved as a heritable trait during stress. The results showed that environmental stress selects for wild microorganisms with high levels of phenotypic heterogeneity. PMID:24000788

  18. Energy expenditure in preterm infants during periods of environmental stress in the neonatal intensive care unit.

    Science.gov (United States)

    Peng, Niang-Huei; Bachman, Jean; Chen, Chau-Huei; Huang, Li-Chi; Lin, Hong-Chin; Li, Tsai-Chung

    2014-10-01

    To explore the energy expenditure (EE) in a group of preterm infants during the periods of environmental stress, and to explore the relationship between EE and physiological stress signals of preterm infants. Research design was an explorative secondary analysis of 4164 research data from 37 preterm infants which included physiological signals and environmental stressors in neonatal intensive care units. The current study investigated the data of EE calculated using heart-rate-based EE estimate. A significantly positive relationship between EE and different levels of nursing intervention was found (P < 0.005). In addition, there was a significantly negative relationship between EE and oxygen saturation (P < 0.001). These research results confirmed that environmental stressors may impact the growth and developmental outcomes in preterm infants by increasing their EE. Neonatal clinicians should minimize excessive stimulations in order to conserve energy for the growth and developmental needs of preterm infants. Research found a significant relationship between an increase in EE and a decrease in oxygen saturation in preterm infants. The authors further hypothesized that EE of preterm infants may be predicted by estimating the oxygen saturation. Further study using different research methods and an enlarged sample size is needed. © 2013 The Authors. Japan Journal of Nursing Science © 2013 Japan Academy of Nursing Science.

  19. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress.

    Science.gov (United States)

    He, Xiaolin; Sun, Zhongqin; He, Kanglai; Guo, Shuyuan

    2017-04-01

    Parasporal crystals synthesized by Bacillus thuringiensis (Bt) have been widely used as microbial pesticides because of their toxicity to the larval stages of specific insects. However, parasporal crystals can be damaged by environmental stresses, such as high temperature, ultraviolet radiation, and desiccation. To reduce environmental susceptibility of parasporal crystals and extend the duration of their activity, we developed a new type of protection by making microcapsules of crystals (MCs). The microcapsules were self-assembled by alternate deposition (layer by layer) of low-cost chitosan and sodium alginate (or sodium carboxymethyl cellulose) on the crystal surface. Crystal toxins (Cry1Ac) were released from microcapsules at pH values above 9.0. Bioassay results demonstrated that microencapsulated preparations had larvicidal toxicity equivalent to the non-encapsulated form. Microencapsuled crystals were protected from environmental stresses such as high temperature and desiccation. The results indicate that microcapsule protection can enhance the efficacy of Bt in pest control, especially to Lepidoptera larvae that have a alkaline midgut.

  20. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.

    Science.gov (United States)

    Fang, Yuan; Mercer, Ryan G; McMullen, Lynn M; Gänzle, Michael G

    2017-10-01

    The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH induction by acid differs from that of induction by H2O2 H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage.IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single-cell level; membrane permeability and an indication of SOS response to environmental stress were additionally assessed. H2O2 and mitomycin C induced

  1. [Environmental uncertainty and arousal/stress as the direct determinants of animal behaviour].

    Science.gov (United States)

    Popov, S V

    2010-01-01

    A model of direct behavioural mechanisms is suggested. The suggestion is founded on the following prerequisites: the law of optimum arousal by Yerkes-Dodson; the data on animals' purposeful striving towards the optimum; and the data on effect of stimuli uncertainty (unpredictability and/or uncontrollability) on susceptibility to the stimuli. The key postulate of the model is animals' ability to affect the environment uncertainty with their behaviour and, hence, to change their susceptibility to various stimuli and optimize their stress/arousal level. This function of behaviour had never been discussed and seems to be rather important for proximal behavioural mechanisms and for forming direct motives of behaviour. Optimization of arousal level may be viewed as "universal benefit" at the level of direct behavioural mechanisms (similar to "joint genetic fitness" at the level of evolutional mechanisms). Within the model framework it is possible to take up some sophisticated aspects of ethology such as social relations forming, "begging for punishment", "zoo stereotypy", and so on. Among verifiable predictions that can be derived from its analysis, the following ones are worthwhile: (1) the stronger of two similar social relations cannot be more stressful than the weaker one; (2) the intensity of marking activity never increases as arousal/stress level decreases; (3) stress/arousal level of an animal having been experienced "zoo stereotypy" for a long time can never be higher than that of a conspecific individual showing the behaviour for the first time; (4) the rate of "begging for punishment" behaviour of an individual should positively correlate with environmental uncertainty; (5) arousal/stress level of an individual looking for novelty can never be higher than arousal/stress level of the same individual when avoiding novelty; (6) the striving of a specimen for displaying the behaviour promoting an increase in uncertainty can be suppressed by raising the

  2. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Xiaodong Zai

    2017-11-01

    homeostasis and metabolic balance under stress. In conclusion, our results provide a better understanding of the global metabolic adaptations of B. abortus associated with distinct environmental stresses. The identification of proteins necessary for stress resistance is crucial toward elucidating the infectious process in order to control brucellosis, and may facilitate the discovery of novel therapeutic targets and effective vaccines.

  3. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses.

    Science.gov (United States)

    Zai, Xiaodong; Yang, Qiaoling; Yin, Ying; Li, Ruihua; Qian, Mengying; Zhao, Taoran; Li, Yaohui; Zhang, Jun; Fu, Ling; Xu, Junjie; Chen, Wei

    2017-01-01

    balance under stress. In conclusion, our results provide a better understanding of the global metabolic adaptations of B. abortus associated with distinct environmental stresses. The identification of proteins necessary for stress resistance is crucial toward elucidating the infectious process in order to control brucellosis, and may facilitate the discovery of novel therapeutic targets and effective vaccines.

  4. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods.

    Science.gov (United States)

    Teets, Nicholas M; Denlinger, David L

    2014-01-01

    Abiotic stress is one of the primary constraints limiting the range and success of arthropods, and nowhere is this more apparent than Antarctica. Antarctic arthropods have evolved a suite of adaptations to cope with extremes in temperature and water availability. Here, we review the current state of knowledge regarding the environmental physiology of terrestrial arthropods in Antarctica. To survive low temperatures, mites and Collembola are freeze-intolerant and rely on deep supercooling, in some cases supercooling below -30°C. Also, some of these microarthropods are capable of cryoprotective dehydration to extend their supercooling capacity and reduce the risk of freezing. In contrast, the two best-studied Antarctic insects, the midges Belgica antarctica and Eretmoptera murphyi, are freeze-tolerant year-round and rely on both seasonal and rapid cold-hardening to cope with decreases in temperature. A common theme among Antarctic arthropods is extreme tolerance of dehydration; some accomplish this by cuticular mechanisms to minimize water loss across their cuticle, while a majority have highly permeable cuticles but tolerate upwards of 50-70% loss of body water. Molecular studies of Antarctic arthropod stress physiology are still in their infancy, but several recent studies are beginning to shed light on the underlying mechanisms that govern extreme stress tolerance. Some common themes that are emerging include the importance of cuticular and cytoskeletal rearrangements, heat shock proteins, metabolic restructuring and cell recycling pathways as key mediators of cold and water stress in the Antarctic.

  5. Metabolic changes in Citrus leaf volatiles in response to environmental stress.

    Science.gov (United States)

    Asai, Tomonori; Matsukawa, Tetsuya; Kajiyama, Shin'ichiro

    2016-02-01

    Citrus plants are well known as a rich source of VOCs, and several have important roles in defense responses. However, how VOCs are regulated in response to environmental stress is not yet well understood. In this study, we investigated dynamic changes of VOCs present in leaves of seven Citrus species (Citrus sinensis, C. limon, C. paradisi, C. unshiu, C. kinokuni, C. grandis, and C. hassaku) in response to mechanical wounding, jasmonic acid (JA), and salicylic acid (SA) as determined by gas chromatography/mass spectrometric analysis followed by multivariate analysis (principal component analysis, PCA, and orthogonal partial least squares-discriminant analysis, OPLS-DA). PCA and OPLS-DA suggested that changes in VOC profiles against stress stimuli were much diverse among Citrus species. OPLS-DA showed that C6 volatiles, such as hexanal and trans-2-hexenal, were induced in response to JA and SA stimuli in C. sinensis and C. grandis, while the other VOCs were decreased under all tested stress conditions. α-Farnesene was induced in all species except C. hassaku after wounding or JA treatment. In addition, α-farnesene was also induced in response to SA stimuli in C. unshiu and C. kinokuni. Therefore these volatiles can be candidates of the common stress biomarkers in Citrus. Our results will give a new insight into defense mechanisms in Citrus species. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress.

    Science.gov (United States)

    Sawant, Prachi; Eissenberger, Kristina; Karier, Laurence; Mascher, Thorsten; Bramkamp, Marc

    2016-09-01

    In ever-changing natural environments, bacteria are continuously challenged with numerous biotic and abiotic stresses. Accordingly, they have evolved both specific and more general mechanisms to counteract stress-induced damage and ensure survival. In the soil habitat of Bacillus subtilis, peptide antibiotics and bacteriophages are among the primary stressors that affect the integrity of the cytoplasmic membrane. Dynamin-like proteins (DLPs) play a major role in eukaryotic membrane re-modelling processes, including antiviral activities, but the function of the corresponding bacterial homologues was so far poorly understood. Here, we report on the protective function of a bacterial DLP, DynA from B. subtilis. We provide evidence that DynA plays an important role in a membrane surveillance system that counteracts membrane pore formation provoked by antibiotics and phages. In unstressed cells, DynA is a highly dynamic membrane-associated protein. Upon membrane damage, DynA localizes into large and static assemblies, where DynA acts locally to counteract stress-induced pores, presumably by inducing lipid bilayer fusion and sealing membrane gaps. Thus, lack of DynA increases the sensitivity to antibiotic exposure and phage infection. Taken together, our work suggests that DynA, and potentially other bacterial DLPs, contribute to the innate immunity of bacteria against membrane stress. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  8. Conservation of Modules but not Phenotype in Bacterial Response to Environmental Stress

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, Sonia; Joachimiak, Marcin; Joyner, Dominique; Chakraborty, Romy; Baumohl, Jason; Dehal, Paramvir; Arkin, Adam; Hazen, Terry; Alm, Eric

    2010-05-17

    Microbes live in changing environments and change their phenotype via gene regulation in response. Although this transcriptional response is important for fitness, very little is known about how it evolves in microbes. We started by asking a number of high-level questions about the evolution of transcriptional phenotype: (1) To what extent is transcriptional response conserved, i.e. do conserved genes respond similarly to the same condition; (2) To what extent are transcriptional modules conserved; and (3) Does there exist a general stress response to a variety of stressors? To illuminate these questions, we analyzed more than 500 microarray experiments across the bacterial domain. We looked for conservation of transcriptional regulation both in close sister species and vastly divergent clades. In addition, we produced and analyzed an extensive in-house compendium of environmental stress data in three metal-reducing bacteria.

  9. Leaf movement, photosynthesis and resource use efficiency responses to multiple environmental stress in Glycine max (soybean)

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L.M.G.

    1993-01-01

    Increases in the concentration of greenhouse gases in the atmosphere, may cause a significant increase in temperature, with implications for general wind patterns and precipitation. Reductions in stratospheric ozone will result in increased levels of UV-B reaching earth's surface. During their lifetime plants must deal with a variety of co-occurring environmental stresses. Accordingly, studies into plant responses to multiple environmental factors is important to our understanding of limits to their growth, productivity, and distribution. Heliotropic leaf movements are a generalized plant response to environmental stresses, and the pattern of these movements can be altered by resource availability (e.g., water, and nitrogen). Previous greenhouse and field studies have demonstrated damaging effects of UV-B radiation in crop species, including soybean. Documented in this paper are Leaf movement and gas exchange responses of four soybean cultivars with different sensitivity to UV-B radiation to enhanced levels of UV-B, and modifications of these responses caused by water stress and nitrogen fertilization. UV-B radiation had no effect on the patterns of leaf orientation in soybean; however, a ranking of the cultivars based on midday leaf angles was the same as the ranking of these cultivars based on their sensitivity to UV-B radiation. Water and nitrogen altered the leaf movement patterns of soybeans. Gas exchange parameters in all four cultivars responded in a similar fashion to changes in leaf water potential. Reductions in water availability resulted in lower discrimination. Nitrogen fertilization in cv Forrest, also resulted in lower discrimination, especially under low water regimes, indicating a higher water use efficiency for fertilized plants. UV-B radiation resulted in lower discrimination in the UV-B sensitive CNS cultivar, indicating a stronger stomatal limitation to photosynthesis under increased UV-B levels.

  10. Color-pattern evolution in response to environmental stress in butterflies

    Directory of Open Access Journals (Sweden)

    Atsuki eHiyama

    2012-02-01

    Full Text Available It is generally accepted that butterfly wing color patterns have ecological and behavioral functions that evolved through natural selection. However, particular wing color patterns may physiologically be produced in response to environmental stress without significant function. These patterns would represent an extreme expression of phenotypic plasticity and can eventually be fixed genetically in a population. Here, three such cases in butterflies are concisely reviewed and their possible mechanisms of genetic assimilation are discussed. First, certain modified color pattern of Vanessa indica induced by temperature treatments resembles the natural color patterns of its closely related species of the genus Vanessa (sensu stricto. Second, a different type of color-pattern modification can be induced in Vanessa cardui as a result of a general stress response, which is very similar to the natural color pattern of its sister species Vanessa kershawi. Third, a field observation was reported, together with experimental support, to show that the color-pattern diversity of a regional population of Zizeeria maha increased at the northern range margin of this species in response to temperature stress. In these three cases, modified color patterns are unlikely to have significant functions, and these cases suggest that phenotypic plasticity plays an important role in butterfly wing color-pattern evolution. A neutral or non-functional trait can be assimilated genetically if it is linked, like a parasitic trait, with another functional trait. In addition, it is possible that environmental stress causes epigenetic modifications of genes related to color patterns and that their transgenerational inheritance facilitates the process of genetic assimilation of a neutral or non-functional trait.

  11. An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients

    Science.gov (United States)

    Zwerschke, Nadescha; Bollen, Merle; Molis, Markus; Scrosati, Ricardo A.

    2013-12-01

    Environmental stress is a major factor structuring communities. An environmental stress model (ESM) predicts that overall species richness and diversity should follow a unimodal trend along the full stress gradient along which assemblages from a regional biota can occur (not to be confused with the intermediate disturbance hypothesis, which makes predictions only for basal species along an intermediate-to-high stress range). Past studies could only provide partial support for ESM predictions because of the limited stress range surveyed or a low sampling resolution. In this study, we measured overall species richness and diversity (considering all seaweeds and invertebrates) along the intertidal elevation gradient on two wave-sheltered rocky shores from Helgoland Island, on the NE Atlantic coast. In intertidal habitats, tides cause a pronounced gradient of increasing stress from low to high elevations. We surveyed up to nine contiguous elevation zones between the lowest intertidal elevation (low stress) and the high intertidal boundary (high stress). Nonlinear regression analyses revealed that overall species richness and diversity followed unimodal trends across elevations on the two studied shores. Therefore, our study suggests that the ESM might constitute a useful tool to predict local richness and diversity as a function of environmental stress. Performing tests on other systems (marine as well as terrestrial) should help to refine the model.

  12. Clinical methods for the assessment of the effects of environmental stress on fish health

    Science.gov (United States)

    Wedemeyer, Gary A.; Yasutake, William T.

    1977-01-01

    Clinical methods are presented for biological monitoring of hatchery and native fish populations to assess the effects of environmental stress on fish health. The choice of methods is based on the experience of the authors and the judgment of colleagues at fishery laboratories of the U.S. Fish and Wildlife Service. Detailed analysis methods, together with guidelines for sample collection and for the interpretation of results, are given for tests on blood (cell counts, chloride, cholesterol, clotting time, cortisol, glucose, hematocrit, hemoglobin, lactic acid, methemoglobin, osmolality, and total protein); water (ammonia and nitrite content); and liver and muscle (glycogen content).

  13. Inner-City High School Teachers: The Relationship of Personality Traits and Teaching Style to Environmental Stress.

    Science.gov (United States)

    Parkay, Forrest W.

    1980-01-01

    Studies how teachers respond to environmental stress and whether certain personality traits are related to these response patterns. Concludes that generalized personality traits are indicative of teaching styles that emerge in response to anxiety-provoking environmental conditions. Tables included. (Author/JLF)

  14. Modeling the survival responses of a multi-component biofilm to environmental stress

    Science.gov (United States)

    Carles Brangarí, Albert; Manzoni, Stefano; Sanchez-Vila, Xavier; Fernàndez-Garcia, Daniel

    2017-04-01

    Biofilms are consortia of microorganisms embedded in self-produced matrices of biopolymers. The survival of such communities depends on their capacity to improve the environmental conditions of their habitat by mitigating, or even benefitting from some adverse external factors. The mechanisms by which the microbial habitat is regulated remain mostly unknown. However, many studies have reported physiological responses to environmental stresses that include the release of extracellular polymeric substances (EPS) and the induction of a dormancy state. A sound understanding of these capacities is required to enhance the knowledge of the microbial dynamics in soils and its potential role in the carbon cycle, with significant implications for the degradation of contaminants and the emission of greenhouse gases, among others. We present a numerical analysis of the dynamics of soil microbes and their responses to environmental stresses. The conceptual model considers a multi-component heterotrophic biofilm made up of active cells, dormant cells, EPS, and extracellular enzymes. Biofilm distribution and properties are defined at the pore-scale and used to determine nutrient availability and water saturation via feedbacks of biofilm on soil hydraulic properties. The pore space micro-habitat is modeled as a simplified pore-network of cylindrical tubes in which biofilms proliferate. Microbial compartments and most of the carbon fluxes are defined at the bulk level. Microbial processes include the synthesis, decay and detachment of biomass, the activation/deactivation of cells, and the release and reutilization of EPS. Results suggest that the release of EPS and the capacity to enter a dormant state offer clear evolutionary advantages in scenarios characterized by environmental stress. On the contrary, when the conditions are favorable, the diversion of carbon into the production of the aforementioned survival mechanisms does not confer any additional benefit and the population

  15. Combat Exposure Severity as a Moderator of Genetic and Environmental Liability to Posttraumatic Stress Disorder

    Science.gov (United States)

    Wolf, Erika J.; Mitchell, Karen S.; Koenen, Karestan C.; Miller, Mark W.

    2014-01-01

    Background Twin studies of veterans and adults suggest that approximately 30–46% of the variance in posttraumatic stress disorder (PTSD) is attributable to genetic factors. The remaining variance is attributable to the non-shared environment, which, by definition, includes combat exposure. This study used a gene by measured environment twin design to examine if the effect of genetic and environmental factors that contribute to the etiology PTSD were dependent on level of combat exposure. Methods The sample was drawn from the Vietnam Era Twin Registry and included 620 male-male twin pairs who served in the U.S. Military in South East Asia during the Vietnam War era. Analyses were based on data from a clinical diagnostic interview of lifetime PTSD symptoms and a self-report measure of combat exposure. Results Biometric modeling revealed that the effect of genetic and non-shared environment factors on PTSD varied as a function of level of combat exposure such that the association between these factors and PTSD was stronger at higher levels of combat exposure. Conclusions Combat exposure may act as a catalyst that augments the impact of hereditary and environmental contributions to PTSD. Individuals with the greatest exposure to combat trauma were at increased risk for PTSD as a function of both genetic and other environmental factors. Additional work is needed to determine the biological and environmental mechanisms driving these associations. PMID:24001428

  16. From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis

    Directory of Open Access Journals (Sweden)

    Ward Alister C

    2007-10-01

    Full Text Available Abstract Background Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures. Results We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions. Conclusion This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat

  17. Effect of Environmental Stresses on Growth Pattern, Biofilm Formation and Biochemical Characteristics of Mycobacterium marinum CCUG20998

    Directory of Open Access Journals (Sweden)

    Mohammad Faezi Ghasemi

    2016-08-01

    Full Text Available Background Mycobacterium marinum is a ubiquitous, slow-growing nontuberclosis Mycobacterium (NTM, it can causes disseminated granulomatous infections in fish. Outbreaks in fisheries can be financially devastating and can also increase the chance of human exposure. Objectives The aim of this work was evaluating the effects of some environmental stresses on M. marinum CCUG 20998. Methods In this descriptive-analytic study M. marinum CCUG 20998 was subjected to different conditions of environmental stresses such as pH, oxidative, osmotic pressure, and temperatures. The effects of stresses were studied on growth, biofilm formation, and cell division and biochemical characteristics of M. marinum CCUG 20998.The growth data were analyzed by measuring colony forming unit (CFU using SPSS software version 19. Results The results showed that sodium chloride and hydrogen peroxide at %10 and 9600 ppm concentrations inhibit. Marinum CCUG 20998 growths, respectively. Tolerance to pH = 11 and temperature at 82.5°C was detectable. Also, environmental stresses could affects on some biochemical characteristics of M. marinum CCUG 20998. Biofilm formation reduced upon using all stress conditions. Conclusions Bacteria are able to adapt to dramatically different environments, In the case of mycobacteria, there is direct correlation between stress and pathogenicity. The results obtained from this study provided useful information on survival and tolerance of M. marinum CCUG 20998 to different environmental conditions. Survival under stress conditions might not reflect the in vivo situation where host factors also contribute to establishment of the organism during infection.

  18. Dissociation of the H3K36 demethylase Rph1 from chromatin mediates derepression of environmental stress-response genes under genotoxic stress in Saccharomyces cerevisiae

    Science.gov (United States)

    Liang, Chung-Yi; Wang, Long-Chi; Lo, Wan-Sheng

    2013-01-01

    Cells respond to environmental signals by altering gene expression through transcription factors. Rph1 is a histone demethylase containing a Jumonji C (JmjC) domain and belongs to the C2H2 zinc-finger protein family. Here we investigate the regulatory network of Rph1 in yeast by expression microarray analysis. More than 75% of Rph1-regulated genes showed increased expression in the rph1-deletion mutant, suggesting that Rph1 is mainly a transcriptional repressor. The binding motif 5′-CCCCTWA-3′, which resembles the stress response element, is overrepresented in the promoters of Rph1-repressed genes. A significant proportion of Rph1-regulated genes respond to DNA damage and environmental stress. Rph1 is a labile protein, and Rad53 negatively modulates Rph1 protein level. We find that the JmjN domain is important in maintaining protein stability and the repressive effect of Rph1. Rph1 is directly associated with the promoter region of targeted genes and dissociated from chromatin before transcriptional derepression on DNA damage and oxidative stress. Of interest, the master stress-activated regulator Msn2 also regulates a subset of Rph1-repressed genes under oxidative stress. Our findings confirm the regulatory role of Rph1 as a transcriptional repressor and reveal that Rph1 might be a regulatory node connecting different signaling pathways responding to environmental stresses. PMID:23985319

  19. Insight into post-transcriptional gene regulation: stress-responsive microRNAs and their role in the environmental stress survival of tolerant animals.

    Science.gov (United States)

    Biggar, Kyle K; Storey, Kenneth B

    2015-05-01

    Living animals are constantly faced with various environmental stresses that challenge normal life, including: oxygen limitation, very low or high temperature, as well as restriction of water and food. It has been well established that in response to these stresses, tolerant organisms regularly respond with a distinct suite of cellular modifications that involve transcriptional, translational and post-translational modification. In recent years, a new mechanism of rapid and reversible transcriptome regulation, via the action of non-coding RNA molecules, has emerged into post-transcriptional regulation and has since been shown to be part of the survival response. However, these RNA-based mechanisms by which tolerant organisms respond to stressed conditions are not well understood. Recent studies have begun to show that non-coding RNAs control gene expression and translation of mRNA to protein, and can also have regulatory influence over major cellular processes. For example, select microRNAs have been shown to have regulatory influence over the cell cycle, apoptosis, signal transduction, muscle atrophy and fatty acid metabolism during periods of environmental stress. As we are on the verge of dissecting the roles of non-coding RNA in environmental stress adaptation, this Commentary summarizes the hallmark alterations in microRNA expression that facilitate stress survival. © 2015. Published by The Company of Biologists Ltd.

  20. Sublethal amounts of Origanum vulgare L. essential oil and carvacrol cause injury and changes in membrane fatty acid of Salmonella Typhimurium cultivated in a meat broth.

    Science.gov (United States)

    Luz, Isabelle da Silva; de Melo, Adma Nadja Ferreira; Bezerra, Taliana Kênia Alves; Madruga, Marta Suely; Magnani, Marciane; de Souza, Evandro Leite

    2014-05-01

    This study aimed to evaluate whether sublethal concentrations of the essential oil of Origanum vulgare L. (OVEO) and its major compound carvacrol (CAR) cause injury to the cell membrane and outer membrane of Salmonella enterica serovar Typhimurium ATCC 14028 grown in a meat broth and to assess the effect of these substances on membrane fatty acid (FA) composition. Exposure of Salmonella Typhimurium ATCC 14028 to sublethal concentrations of OVEO or CAR caused damage to the cytoplasmic membrane and outer membrane. OVEO- and CAR-treated cells showed lower amounts of saturated FA than nontreated cells. Changes in membrane FA composition were mainly related to an increase of C16:1ω7c, C16:1ω7t, and C18:2ω6c, and to a decrease of C16:0, C17:0 cyclo, and C19:0 cyclo. These results indicate that exposure to sublethal concentrations of OVEO or CAR caused sublethal injury Salmonella Typhimurium ATCC 14028 and suggest that an adaptive response to these stresses is related to increased synthesis of unsaturated FA and cis-trans isomerization.

  1. Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii

    Science.gov (United States)

    Gallagher, Larry A.; Jacobson, Rachael K.; Usacheva, Elena A.; Peterson, Lance R.; Zurawski, Daniel V.; Shuman, Howard A.

    2015-01-01

    ABSTRACT The increasing emergence of antibiotic-resistant bacterial pathogens represents a serious risk to human health and the entire health care system. Many currently circulating strains of Acinetobacter baumannii exhibit resistance to multiple antibiotics. A key limitation in combating A. baumannii is that our understanding of the molecular mechanisms underlying the pathogenesis of A. baumannii is lacking. To identify potential virulence determinants of a contemporary multidrug-resistant isolate of A. baumannii, we used transposon insertion sequencing (TnSeq) of strain AB5075. A collection of 250,000 A. baumannii transposon mutants was analyzed for growth within Galleria mellonella larvae, an insect-based infection model. The screen identified 300 genes that were specifically required for survival and/or growth of A. baumannii inside G. mellonella larvae. These genes encompass both known, established virulence factors and several novel genes. Among these were more than 30 transcription factors required for growth in G. mellonella. A subset of the transcription factors was also found to be required for resistance to antibiotics and environmental stress. This work thus establishes a novel connection between virulence and resistance to both antibiotics and environmental stress in A. baumannii. PMID:26556274

  2. Does environmental enrichment reduce stress? An integrated measure of corticosterone from feathers provides a novel perspective.

    Directory of Open Access Journals (Sweden)

    Graham D Fairhurst

    Full Text Available Enrichment is widely used as tool for managing fearfulness, undesirable behaviors, and stress in captive animals, and for studying exploration and personality. Inconsistencies in previous studies of physiological and behavioral responses to enrichment led us to hypothesize that enrichment and its removal are stressful environmental changes to which the hormone corticosterone and fearfulness, activity, and exploration behaviors ought to be sensitive. We conducted two experiments with a captive population of wild-caught Clark's nutcrackers (Nucifraga columbiana to assess responses to short- (10-d and long-term (3-mo enrichment, their removal, and the influence of novelty, within the same animal. Variation in an integrated measure of corticosterone from feathers, combined with video recordings of behaviors, suggests that how individuals perceive enrichment and its removal depends on the duration of exposure. Short- and long-term enrichment elicited different physiological responses, with the former acting as a stressor and birds exhibiting acclimation to the latter. Non-novel enrichment evoked the strongest corticosterone responses of all the treatments, suggesting that the second exposure to the same objects acted as a physiological cue, and that acclimation was overridden by negative past experience. Birds showed weak behavioral responses that were not related to corticosterone. By demonstrating that an integrated measure of glucocorticoid physiology varies significantly with changes to enrichment in the absence of agonistic interactions, our study sheds light on potential mechanisms driving physiological and behavioral responses to environmental change.

  3. Does Environmental Enrichment Reduce Stress? An Integrated Measure of Corticosterone from Feathers Provides a Novel Perspective

    Science.gov (United States)

    Fairhurst, Graham D.; Frey, Matthew D.; Reichert, James F.; Szelest, Izabela; Kelly, Debbie M.; Bortolotti, Gary R.

    2011-01-01

    Enrichment is widely used as tool for managing fearfulness, undesirable behaviors, and stress in captive animals, and for studying exploration and personality. Inconsistencies in previous studies of physiological and behavioral responses to enrichment led us to hypothesize that enrichment and its removal are stressful environmental changes to which the hormone corticosterone and fearfulness, activity, and exploration behaviors ought to be sensitive. We conducted two experiments with a captive population of wild-caught Clark's nutcrackers (Nucifraga columbiana) to assess responses to short- (10-d) and long-term (3-mo) enrichment, their removal, and the influence of novelty, within the same animal. Variation in an integrated measure of corticosterone from feathers, combined with video recordings of behaviors, suggests that how individuals perceive enrichment and its removal depends on the duration of exposure. Short- and long-term enrichment elicited different physiological responses, with the former acting as a stressor and birds exhibiting acclimation to the latter. Non-novel enrichment evoked the strongest corticosterone responses of all the treatments, suggesting that the second exposure to the same objects acted as a physiological cue, and that acclimation was overridden by negative past experience. Birds showed weak behavioral responses that were not related to corticosterone. By demonstrating that an integrated measure of glucocorticoid physiology varies significantly with changes to enrichment in the absence of agonistic interactions, our study sheds light on potential mechanisms driving physiological and behavioral responses to environmental change. PMID:21412426

  4. Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions

    Science.gov (United States)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.

  5. Biomarkers of environmental stress in gills of Pinna nobilis (Linnaeus 1758) from Balearic Island.

    Science.gov (United States)

    Natalotto, Antonino; Sureda, Antoni; Maisano, Maria; Spanò, Nunziacarla; Mauceri, Angela; Deudero, Salud

    2015-12-01

    In aquatic environments, bivalve molluscs are used as sentinel species for environmental biomonitoring. In this study Pinna nobilis specimens, the biggest Mediterranean bivalve, were collected in the Magaluf bay (Mallorca), a touristic location and in a pristine area of the Cabrera National Park as the control location. Histological and histochemical analysis in gills of specimens sampled from Magaluf exhibited evident tissue alterations with high presence of haemocytes. Lower acetylcholinesterase (AChE) activity and protein expression were also found in the gills of specimens collected from Magaluf compared with the control area. The determination of antioxidant enzyme activities, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, showed a higher activities of these antioxidant enzymes and total glutathione content in samples from Magaluf bay than in Cabrera. In conclusion, the present study demonstrated that human activities result in morphological tissue alterations and a reduced AChE activity in gills of P. nobilis. Moreover, these stressful environmental conditions induced an adaptive response in P. nobilis as evidenced by increased antioxidant defences and a decreased AChE activity. The human activities induce oxidative stress in P. nobilis as evidenced by increased antioxidant defences and a decreased acetylcholinesterase activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Desiccation: An environmental and food industry stress that bacteria commonly face.

    Science.gov (United States)

    Esbelin, Julia; Santos, Tiago; Hébraud, Michel

    2018-02-01

    Water is essential for all living organisms, for animals as well as for plants and micro-organisms. For these latter, the presence of water or a humid environment with a high air relative humidity (RH) is necessary for their survival and growth. Thus, variations in the availability of water or in the air relative humidity constitute widespread environmental stresses which challenge microorganisms, and especially bacteria. Indeed, in their direct environment, bacteria are often faced with conditions that remove cell-bound water through air-drying of the atmosphere. Bacterial cells are subject to daily or seasonal environmental variations, sometimes going through periods of severe desiccation. This is also the case in the food industry, where air dehumidification treatments are applied after the daily cleaning-disinfection procedures. In plants producing low-water activity products, it is also usual to significantly reduce or eliminate water usage. Periodic desiccation exposure affects bacteria viability and so they require strategies to persist. Negative effects of desiccation are wide ranging and include direct cellular damage but also changes in the biochemical and biophysical properties of cells for which planktonic cells are more exposed than cells in biofilm. Understanding the mechanisms of desiccation adaptation and tolerance has a biological and biotechnological interest. This review gives an overview of the factors influencing desiccation tolerance and the biological mechanisms involved in this stress response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Suppression of a methionine synthase by calmodulin under environmental stress in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Kim, Jiyoung; Oh, Junsang; Yoon, Deok-Hyo; Sung, Gi-Ho

    2017-10-01

    Methionine synthase (MetE, EC 2.1.1.14) catalyses the final step in the methionine biosynthetic pathway. Methionine biosynthesis plays a major role in protein biogenesis and is the source of S-adenosyl methionine (SAM), the universal donor of methyl groups. In this study, we demonstrated that BbMetE acts as a typical MetE enzyme in the entomopathogenic fungus Beauveria bassiana. In addition, we found that BbMetE binds to calmodulin (CaM) in vitro and in vivo. The functional role of CaM binding to BbMetE was to negatively regulate BbMetE activity in B. bassiana. Our proton-nuclear magnetic resonance data revealed that CaM inhibitor W-7 increases methionine content in B. bassiana, suggesting that CaM negatively regulates the BbMetE activity. Environmental stress stimuli such as salt, H2 O2 and heat suppressed BbMetE activity in B. bassiana. W-7 reversed this effect, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbMetE plays an important role in methionine biosynthesis, which is mediated by environmental stress stimuli via the CaM signalling pathway. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Effect of environmental stress on cell surface and membrane fatty acids of Lactobacillus plantarum.

    Science.gov (United States)

    Haddaji, Najla; Mahdhi, Abdel Kaim; Ismaiil, Manel Ben; Bakhrouf, Amina

    2017-11-01

    Adhesion has been regarded as one of the basic features of probiotics. We undertake this study in the aim to give new insight about the change in cellular physiological state under heat and acid treatments of Lactobacillus plantarum. Different cell properties have been investigated such as adhesive ability to abiotic surfaces, the cell surface hydrophobicity and the fatty acids profiles. The results of cell surface properties and Gas chromatography analysis demonstrated a modification in term adhesive ability and fatty acid (FA) composition of the tested strain under stressful conditions. In fact, after the exposure of the strain to heat and acid treatments, an increase in the hydrophobicity level and the adhesion capacity on HeLa cells was shown. Our findings revealed that high temperature and low pH change the fatty acids profiles of the treated cells, especially the proportions of unsaturated and saturated fatty acid. In this context, our data revealed that the unsaturated FA-to-saturated FA ratio was increased significantly (P < 0.05) for stressed strains compared with control cells. The results of the present finding suggest that the tested strain have suffered changes like the modifications on bacterial membrane as a cellular response to survive the hard environmental conditions, allowing them to withstand harsh conditions and sudden environmental changes to survive under.

  9. The RNA chaperone Hfq enables the environmental stress tolerance super-phenotype of Pseudomonas putida.

    Science.gov (United States)

    Arce-Rodríguez, Alejandro; Calles, Belén; Nikel, Pablo I; de Lorenzo, Víctor

    2016-10-01

    The natural physiological regime of the soil bacterium Pseudomonas putida involves incessant exposure to endogenous metabolic conflicts and environmental physicochemical insults. Yet, the role of assisted small RNA-mRNA pairing in the stress tolerance super-phenotype that is the trademark of this bacterium has not been accredited. We have thoroughly explored the physiological consequences -in particular those related to exogenous stress - of deleting the hfq gene of P. putida, which encodes the major RNA chaperone that promotes sRNA-target mRNA interactions. While the overall trend was a general weakening of every robustness descriptor of the Δhfq strain, growth parameters and production of central metabolic enzymes were comparatively less affected than other qualities that depend directly on energy status (e.g. motility, DNA repair). The overall catalytic vigour of the mutant decreased to < 20% than the wild-type strain, as estimated from the specific growth rate of cells carrying the catabolic TOL plasmid pWW0 for m-xylene biodegradation. Several loss-of-function phenotypes could be traced to the effect of the Δhfq deletion on the intracellular contents of the stationary sigma factor RpoS. It thus seems that Hfq, while not indispensable for any essential function, contributes to shape the environmental lifestyle of P. putida. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant.

    Science.gov (United States)

    Conklin, P L; Williams, E H; Last, R L

    1996-01-01

    L-ascorbic acid (vitamin C) is a powerful reducing agent found in millimolar concentrations in plants, and is proposed to play an important role in scavenging free radicals in plants and animals. However, surprisingly little is known about the role of this antioxidant in plant environmental stress adaptation or ascorbate biosynthesis. We report the isolation of soz1, a semi-dominant ozone-sensitive mutant that accumulates only 30% of the normal ascorbate concentration. The results of genetic approaches and feeding studies show that the ascorbate concentration affects foliar resistance to the oxidizing gas ozone. Consistent with the proposed role for ascorbate in reactive oxygen species detoxification, lipid peroxides are elevated in soz1, but not in wild type following ozone fumigation. We show that the soz1 mutant is hypersensitive to both sulfur dioxide and ultraviolet B irradiation, thus implicating ascorbate in defense against varied environmental stresses. In addition to defining the first ascorbate deficient mutant in plants, these results indicate that screening for ozone-sensitive mutants is a powerful method for identifying physiologically important antioxidant mechanisms and signal transduction pathways. Analysis of soz1 should lead to more information about the physiological roles and metabolism of ascorbate. Images Fig. 1 Fig. 2 Fig. 4 PMID:8790441

  11. LLNL and TRW extend benchmark environmental stress testing for two alternative printed board cleaners

    Energy Technology Data Exchange (ETDEWEB)

    Hersey, R.J. Jr.; Meltzer, M.; Hofstad, H.W.; Lawrence, M.; Sanborn, R. [Lawrence Livermore National Lab., CA (United States); Arauco, H. [TRW, Inc., Redondo Beach, CA (United States). Electronic Technology Div.

    1995-03-01

    TRW Corporation and LLNL jointly conducted a testing program to evaluate the effectiveness of non-CFC defluxing chemistries on printed boards designed for high reliability military and aerospace applications. TRW assessed existing data for alternative chemistries, selected candidates for further testing, implemented the cleaning processes, and performed ionic conductivity testing on the spent solvents. LLNL designed and fabricated special circuit boards with interdigitated comb patterns to allow insulation resistance (IR) measurements under selected soldered components. LLNL designed the test and measurement setup and conducted accelerated environmental stress testing of flux residues for 28 days following cleaning. Statistical analyses of the IR measurements were correlated with visual observations and spectroscopic (FTIR) measurements. Performance of the alternative chemistries was compared with that of a standard CFC cleaning agent also included in the test program. The program was designed to follow the same environmental stress and electrical measurement requirements as the IPC/DOD/EPA Ad Hoc Solvent Working Group`s benchmark 7-day test plan, but with certain minor modifications and extension to 28 days.

  12. The effect of positioning on preterm infants' sleep-wake states and stress behaviours during exposure to environmental stressors.

    Science.gov (United States)

    Peng, Niang-Huei; Chen, Li-Li; Li, Tsai-Chung; Smith, Marlaine; Chang, Yu-Shan; Huang, Li-Chi

    2014-12-01

    Previous studies separately examined the effects of positioning or environmental stressors on preterm infants' sleep and stress. Since positioning and environmental stressors occur simultaneously during infant hospitalization exploring these variables in the same study may offer new insights. A quasi-experimental study by one-group interrupted time-series design. In the current study, a total of 22 preterm infants were enrolled. Each infant was moved to either the supine or prone position for an hour at a time. Infants were videotaped and the sleep-wake states, stress behaviours and environmental conditions (light, noise and stimulation/handling) were recorded during the observation period. A total of 80 observations from 22 infants were accrued. In the supine position, preterm infants demonstrated more frequent waking states after adjusting for various environmental stressors (p position after adjusting for various environmental stressors (p position is a more favourable position for facilitating sleep and reducing stress for preterm infants exposed to varying environmental stressors. Preterm infants present different stress behaviours in response to varying types of environmental stimuli. © The Author(s) 2013.

  13. Direct and Indirect Effects of Child Abuse and Environmental Stress: A Lifecourse Perspective on Adversity and Depressive Symptoms.

    Science.gov (United States)

    Sousa, Cindy; Mason, W Alex; Herrenkohl, Todd I; Prince, Dana; Herrenkohl, Roy C; Russo, M Jean

    2017-08-17

    There is a great deal of evidence about the mental health implications of physical child abuse and environmental stressors, or hardships that people experience at the household and neighborhood level (e.g., neighborhood violence; economic hardship, substance abuse, or conflict among family members). Yet, studies often focus on either abuse or environmental stress, not both, or examine abuse and environmental stressors as a combined set of experiences. Less is known, therefore, about how child abuse and environmental stress might work as either distinct or interrelated risks to diminish mental health over time. In this longitudinal study, we used path analyses to examine the cumulative effects of physical child abuse and environmental stressors on adult depressive symptoms among a sample of children followed into adulthood (N = 356). The goal was to assess whether chronic physical child abuse remains an independent predictor of adult outcomes once we accounted for the cumulative effects of household and neighborhood stressors across the lifecourse. Cumulative measures of physical child abuse and environmental stress each independently predicted a higher likelihood of adult depressive symptoms (ß = .122, p environmental stress on the relationship between cumulative physical abuse and adult depressive symptoms were marginally statistically significant. Results add to literature that examines child abuse, adversity, and lifecourse perspectives on health. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Feeding Inhibition: the Ups and Downs of Sublethal Effects on Grazers and Detritivores

    Science.gov (United States)

    Alexander, A.; Culp, J.; Liber, K.; Baird, D.

    2005-05-01

    Sublethal impacts are likely the primary mechanism of exposure for the aquatic community in the case of soluble agricultural pesticides. This study examines the effects of pulsed exposures of the common insecticide, imidacloprid, on the feeding and growth of the mayfly Epeorus longimanus, and the oligochaete, Lumbriculus variegatus. Examining the effects of pulsed exposures of imidacloprid is particularly relevant due to the soluble (0.51g/L) nature of this compound. Recovery experiments were conducted by exposing mayflies and oligochaetes to an environmentally realistic range (0, 0.1, 0.5, 1, 5, 10 ppb) of concentrations for a short period. Effects on feeding were measured by quantifying the foodstuffs consumed by mayflies and egested by oligochaetes. In tandem with the feeding experiments, a series of artificial stream experiments were undertaken that demonstrate the changes in growth and abundance of adult mayflies in response to this common insecticide stressor.

  15. Selenocysteine modulates resistance to environmental stress and confers anti-aging effects in C. elegans

    Directory of Open Access Journals (Sweden)

    Jun-Sung Kim

    Full Text Available OBJECTIVE: The free radical theory of aging suggests that cellular oxidative damage caused by free radicals is a leading cause of aging. In the present study, we examined the effects of a well-known anti-oxidant amino acid derivative, selenocysteine, in response to environmental stress and aging using Caenorhabditis elegans as a model system. METHOD: The response to oxidative stress induced by H2O2 or ultraviolet irradiation was compared between the untreated control and selenocysteine-treated groups. The effect of selenocysteine on lifespan and fertility was then determined. To examine the effect of selenocysteine on muscle aging, we monitored the change in motility with aging in both the untreated control and selenocysteine-treated groups. RESULTS: Dietary supplementation with selenocysteine significantly increased resistance to oxidative stress. Survival after ultraviolet irradiation was also increased by supplementation with selenocysteine. Treatment with selenocysteine confers a longevity phenotype without an accompanying reduction in fertility, which is frequently observed in lifespan-extending interventions as a trade-off in C. elegans. In addition, the age-related decline in motility was significantly delayed by supplementation of selenocysteine. CONCLUSION: These findings suggest that dietary supplementation of selenocysteine can modulate response to stressors and lead to lifespan extension, thus supporting the free radical theory of aging.

  16. Oxidative Stress and Inflammation Induced by Environmental and Psychological Stressors: A Biomarker Perspective.

    Science.gov (United States)

    Ghezzi, Pietro; Floridi, Luciano; Boraschi, Diana; Cuadrado, Antonio; Manda, Gina; Levic, Snezana; D'Acquisto, Fulvio; Hamilton, Alice; Athersuch, Toby J; Selley, Liza

    2017-06-15

    The environment can elicit biological responses such as oxidative stress (OS) and inflammation as a consequence of chemical, physical, or psychological changes. As population studies are essential for establishing these environment-organism interactions, biomarkers of OS or inflammation are critical in formulating mechanistic hypotheses. Recent Advances: By using examples of stress induced by various mechanisms, we focus on the biomarkers that have been used to assess OS and inflammation in these conditions. We discuss the difference between biomarkers that are the result of a chemical reaction (such as lipid peroxides or oxidized proteins that are a result of the reaction of molecules with reactive oxygen species) and those that represent the biological response to stress, such as the transcription factor NRF2 or inflammation and inflammatory cytokines. The high-throughput and holistic approaches to biomarker discovery used extensively in large-scale molecular epidemiological exposome are also discussed in the context of human exposure to environmental stressors. We propose to consider the role of biomarkers as signs and to distinguish between signs that are just indicators of biological processes and proxies that one can interact with and modify the disease process. Antioxid. Redox Signal. 00, 000-000.

  17. Role of Free Radicals, Oxidative Stress and Xenobiotics in Carcinogenesis by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Dibyajyoti Saha

    2014-09-01

    Full Text Available Carcinogenesis by many small molecular weight chemicals involves either a direct action of the chemical on cellular DNA or metabolism of the parent chemical to an active or ultimate form, which can than react with cellular DNA to produce a permanent chemical change in a DNA structure. A free radical is an atom or molecule that has one or more unpaired electron(s. These are highly reactive species capable of wide spread, indiscriminate oxidation and per oxidation of proteins, lipids and DNA which can lead to significant cellular damage and even tissue and/or organ failure. . Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. Xenobiotics are a compound that is foreign to the body. Xenobiotics can produce a variety of biological effects, including pharmacologic responses, toxicity, genes, immunologic reactions and cancer. Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. This communication highlights the role of carcinogens as environmental pollutants with the possible mechanism of free radicals, oxidative stress and xenobiotics.

  18. Selenocysteine modulates resistance to environmental stress and confers anti-aging effects in C. elegans.

    Science.gov (United States)

    Kim, Jun-Sung; Kim, So-Hyeon; Park, Sang-Kyu

    2017-08-01

    The free radical theory of aging suggests that cellular oxidative damage caused by free radicals is a leading cause of aging. In the present study, we examined the effects of a well-known anti-oxidant amino acid derivative, selenocysteine, in response to environmental stress and aging using Caenorhabditis elegans as a model system. The response to oxidative stress induced by H2O2 or ultraviolet irradiation was compared between the untreated control and selenocysteine-treated groups. The effect of selenocysteine on lifespan and fertility was then determined. To examine the effect of selenocysteine on muscle aging, we monitored the change in motility with aging in both the untreated control and selenocysteine-treated groups. Dietary supplementation with selenocysteine significantly increased resistance to oxidative stress. Survival after ultraviolet irradiation was also increased by supplementation with selenocysteine. Treatment with selenocysteine confers a longevity phenotype without an accompanying reduction in fertility, which is frequently observed in lifespan-extending interventions as a trade-off in C. elegans. In addition, the age-related decline in motility was significantly delayed by supplementation of selenocysteine. These findings suggest that dietary supplementation of selenocysteine can modulate response to stressors and lead to lifespan extension, thus supporting the free radical theory of aging.

  19. A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes

    Science.gov (United States)

    Slavov, Nikolai; Airoldi, Edoardo M.; van Oudenaarden, Alexander; Botstein, David

    2012-01-01

    The respiratory metabolic cycle in budding yeast (Saccharomyces cerevisiae) consists of two phases that are most simply defined phenomenologically: low oxygen consumption (LOC) and high oxygen consumption (HOC). Each phase is associated with the periodic expression of thousands of genes, producing oscillating patterns of gene expression found in synchronized cultures and in single cells of slowly growing unsynchronized cultures. Systematic variation in the durations of the HOC and LOC phases can account quantitatively for well-studied transcriptional responses to growth rate differences. Here we show that a similar mechanism—transitions from the HOC phase to the LOC phase—can account for much of the common environmental stress response (ESR) and for the cross-protection by a preliminary heat stress (or slow growth rate) to subsequent lethal heat stress. Similar to the budding yeast metabolic cycle, we suggest that a metabolic cycle, coupled in a similar way to the ESR, in the distantly related fission yeast, Schizosaccharomyces pombe, and in humans can explain gene expression and respiratory patterns observed in these eukaryotes. Although metabolic cycling is associated with the G0/G1 phase of the cell division cycle of slowly growing budding yeast, transcriptional cycling was detected in the G2 phase of the division cycle in fission yeast, consistent with the idea that respiratory metabolic cycling occurs during the phases of the cell division cycle associated with mass accumulation in these divergent eukaryotes. PMID:22456505

  20. Jasmonates: signal transduction components and their roles in environmental stress responses.

    Science.gov (United States)

    Goossens, Jonas; Fernández-Calvo, Patricia; Schweizer, Fabian; Goossens, Alain

    2016-08-01

    Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.

  1. Genomic and physical analysis of Rnr1-containing autophagosomes during environmental stress

    Science.gov (United States)

    Danon, Tamir

    The Ribonucleotide Reductase Complex (RNR), a tetramer composed of 2 large (Rnr1-Rnr1 or Rnr1-Rnr3) and 2 small (Rnr2-Rnr4) subunits, is a key regulatory node in cell growth because it controls the rate-limiting step in the synthesis of DNA. Using Green Fluorescent tagged proteins and high content imaging we show that only Rnr1-GFP will form 700-800 nm2 foci under normal growth conditions, with the number of foci increasing in response to environmental stress. Rnr1-GFP foci formation is dependent on functional autophagy pathway and we hypothesized that a key lysine residue only found in Rnr1 (K853) is used together with the post-translational modification acetylation to regulate Rnr1 targeting into the autophagosome. Using the genetically engineered mutants Rnr1-K853A-GFP and Rnr1-K853Q-GFP, which mimic constitutive de-acetylation and constitutive acetylation, respectively, we show that K853 is a key residue in Rnr1 for regulating foci size, basal levels and stress-induced numbers. Further, data from phenotypic studies support the idea that K853 is a key regulatory point for both the DNA damage and nutrient stress responses. Autophagy pathways are disrupted during cancer development and our mechanistic information provides insights into its control of the therapeutically important DNA damage response.

  2. Effect of environmental and stress intensity factors on IGA/SCC of nickel-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, H.; Kawamura, H. (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.)

    1993-12-01

    Inconel alloy 600 has been used for PWR Steam Generator (SG) tubes due to its superior corrosion resistance and excellent thermal conductivity. However, it is reported that Intergranular Attack and Stress Corrosion Cracking (IGA/SCC) has occurred in the crevices between the tube and tube sheet or tube support plate. Therefore, it is important to clarify the IGA/SCC initiation and propagation behaviors and establish the countermeasure against IGA/SCC. This report describes the effect of environmental and stress intensity factors on the IGA/SCC initiation and propagation behaviors in the alloy 600 tube. The main results are as follows: (1) IGA/SCC test results showed that IGA/SCC crack did not propagate rapidly within the stress intensity factor range in which the crack tip of tube is loaded under PWR secondary condition. (2) SG model boiler test revealed that IGA/SCC propagation rate is slow, i.e., 10[sup -3] to 10[sup -2] [mu]m/hr. (author).

  3. Single cell super-resolution imaging of E. coli OmpR during environmental stress.

    Science.gov (United States)

    Foo, Yong Hwee; Spahn, Christoph; Zhang, Hongfang; Heilemann, Mike; Kenney, Linda J

    2015-10-01

    Two-component signaling systems are a major strategy employed by bacteria, and to some extent, yeast and plants, to respond to environmental stress. The EnvZ/OmpR system in E. coli responds to osmotic and acid stress and is responsible for regulating the protein composition of the outer membrane. EnvZ is a histidine kinase located in the inner membrane. Upon activation, it is autophosphorylated by ATP and subsequently, it activates OmpR. Phosphorylated OmpR binds with high affinity to the regulatory regions of the ompF and ompC porin genes to regulate their transcription. We set out to visualize these two-components in single bacterial cells during different environmental stress conditions and to examine the subsequent modifications to the bacterial nucleoid as a result. We created a chromosomally-encoded, active, fluorescent OmpR-PAmCherry fusion protein and compared its expression levels with RNA polymerase. Quantitative western blotting had indicated that these two proteins were expressed at similar levels. From our images, it is evident that OmpR is significantly less abundant compared to RNA polymerase. In cross-sectional axial images, we observed OmpR molecules closely juxtaposed near the inner membrane during acidic and hyposomotic growth. In acidic conditions, the chromosome was compacted. Surprisingly, under acidic conditions, we also observed evidence of a spatial correlation between the DNA and the inner membrane, suggesting a mechanical link through an active DNA-OmpR-EnvZ complex. This work represents the first direct visualization of a response regulator with respect to the bacterial chromosome.

  4. Exercise, immune function and respiratory infection: An update on the influence of training and environmental stress.

    Science.gov (United States)

    Walsh, Neil P; Oliver, Samuel J

    2016-02-01

    This review outlines recent advancements in the understanding of athlete immune health. Controversies discussed include whether high levels of athletic training and environmental stress (for example, heat acclimation, cryotherapy and hypoxic training) compromise immunity and increase upper respiratory tract infection (URTI). Recent findings challenge early exercise immunology doctrine by showing that international athletes performing high-volume training suffer fewer, not greater, URTI episodes than lower-level performers and URTI incidence decreases, not increases, around the time of competition compared with heavy training. Herein we raise the possibility of host genetic influences on URTI and modifiable behavioural and training-related factors underpinning these recent observations. Continued controversy concerns the proportion of URTI symptoms reported by athletes that are due to infectious pathogens, airway inflammation or as yet unknown causes and indeed whether the proportion differs in athletes and non-athletes. Irrespective of the cause of URTI symptoms (infectious or non-infectious), experts broadly agree that self-reported URTI hinders high-volume athletic training but, somewhat surprisingly, less is known about the influence on athletic performance. In athletes under heavy training, both innate and acquired immunity are often observed to decrease, typically 15-25%, but whether relatively modest changes in immunity increase URTI susceptibility remains a major gap in knowledge. With the exception of cell-mediated immunity that tends to be decreased, exercising in environmental extremes does not provide an additional threat to immunity and host defence. Recent evidence suggests that immune health may actually be enhanced by regular intermittent exposures to environmental stress (for example, intermittent hypoxia training).

  5. Evidence of volcanic induced environmental stress during the end-Triassic event

    Science.gov (United States)

    Lindström, Sofie; Sanei, Hamed; van de Schootbrugge, Bas; Krarup Pedersen, Gunver; Dybkjær, Karen; van der Weijst, Carolien; Hovedskov Hansen, Katrine

    2015-04-01

    The end-Triassic biotic crisis is generally explained by massive input of CO2 and/or methane to the atmosphere linked to the formation of the Central Atlantic Magmatic Province. Such massive volcanism can be compared to industrial pollution releasing large amounts of the greenhouse gases CO2 and SO2 to the atmosphere. Indeed, the fossil record provides evidence of major perturbations in the δ13C-record of both calcareous and organic material. In the marine realm loss of calcifying organisms provides evidence of ocean acidification due to the increased pCO2, while in the terrestrial realm physiological responses in fossil plants indicate intense global warming across the Triassic-Jurassic boundary. Changing climatic conditions is further indicated by charcoal records from Greenland, Denmark, Sweden and Poland showing increased wildfire activity. Increased reworking of palynological material and marked changes in fluvial style in terrestrial successions seem to indicate an increased hydrological cycle. Here we examine and compare two proxies, Mercury and palynology, that may both, each in their own way, indicate volcanic induced environmental stress. Mercury (Hg) is one of the most toxic elements on the planet, with volcanic emissions being the largest natural input to the Hg-cycle. The temporal distribution of Hg in relation to organic matter can provide evidence of atmospheric Hg loading on the marine ecosystem. In the terrestrial realm, pollen and spores are known to be sensitive bioindicators of atmospheric pollution and environmental stress. Quantitive abundances of aberrant, and thus probably non-viable, pollen and spores are often used to assess environmental impact on polluted sites today. We present, compare and discuss Hg and aberrant spore/pollen records from the stratigraphically well-constrained Triassic-Jurassic boundary succession at Stenlille in the Danish Basin, and the possible impact of these data on the interpretation of events during end

  6. Living under stressful conditions: Fish life history strategies across environmental gradients in estuaries

    Science.gov (United States)

    Teichert, Nils; Pasquaud, Stéphanie; Borja, Angel; Chust, Guillem; Uriarte, Ainhize; Lepage, Mario

    2017-03-01

    The life history strategies of fishes can be defined by specific combinations of demographic traits that influence species performances depending on environmental features. Hence, the constraints imposed by the local conditions restrict the range of successful strategies by excluding species poorly adapted. In the present study, we compared the demographic strategies of fish caught in 47 estuaries of the North East Atlantic coast, aiming to determine the specific attributes of resident species and test for changes in trait associations along the environmental gradients. Eight demographic traits were considered to project our findings within a conceptual triangular model, composed on three endpoint strategies: (i) periodic (large size, long generation time, high fecundity); (ii) opportunistic (small size, short generation time, high reproductive effort); and (iii) equilibrium (low fecundity, large egg size, parental care). We demonstrated that various life history strategies co-exist in estuaries, but equilibrium species were scarce and restricted to euhaline open-water. Resident species form a specialised assemblage adapted to high spatiotemporal variability of estuarine conditions, i.e. opportunistic attributes associated with parental care. Even with these singular attributes, our findings revealed changes in distribution of resident species across the estuarine gradients linked to their life history traits. Among other patterns, the diversity of life history strategies significantly decreased from euhaline to oligohaline areas and along gradient of human disturbances. These trends were associated with a convergence of species traits toward short generation times, suggesting that long-lived species with late maturation are more severely impacted by disturbance and environmental stress.

  7. Oxidative DNA damage in digestive gland of mussel Perna perna as indicator of environmental stress

    Directory of Open Access Journals (Sweden)

    Marisa Helena Gennari de Medeiros

    2004-05-01

    Full Text Available In this work, the levels of DNA damage (8-oxo-7,8-dihidro-2’-desoxiguanosina, 8-oxodGuo were evaluated in digestive glands of mussels exposed to different metals for 24 hours, as well as in coastal and farmed mussels. These experiments were carried out in order to evaluate the influence of uncontrolled abiotic factors on the production of 8-oxodGuo in mussels, since such lesions are extensively used as an indication of environmental contamination. Mussels exposed to lead or cadmium showed higher levels of oxidative DNA damage compared to the control group, and no difference was observed in mussels exposed to iron, indicating that metals can increase the levels of 8-oxodGuo in these organisms. On the other hand, wild mussels showed higher levels of 8-oxodGuo than farmed mussels, probably associated with high wave incidence and tidal oscilations. This data indicates that metals can increase 8-oxodGuo levels in mussels, but it also indicates that other environmental factors are capable of provoking such increases. Thus, for more appropriate use of DNA oxidative damage as a stress index related to the environmental contamination by pollutants such as metals, the sampling conditions should be considered, since this influences the observed results.

  8. Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available BACKGROUND: Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae, an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C and cold (5±1°C acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau.

  9. DsHsp90 is involved in the early response of Dunaliella salina to environmental stress.

    Science.gov (United States)

    Wang, Si-Jia; Wu, Ming-Jie; Chen, Xiang-Jun; Jiang, Yan; Yan, Yong-Bin

    2012-01-01

    Heat shock protein 90 (Hsp90) is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis of the eukaryotic cells. By interacting with various client proteins, Hsp90 is involved in diverse physiological processes such as signal transduction, cell mobility, heat shock response and osmotic stress response. In this research, we cloned the dshsp90 gene encoding a polypeptide composed of 696 amino acids from the halotolerant unicellular green algae Dunaliella salina. Sequence alignment indicated that DsHsp90 belonged to the cytosolic Hsp90A family. Further biophysical and biochemical studies of the recombinant protein revealed that DsHsp90 possessed ATPase activity and existed as a dimer with similar percentages of secondary structures to those well-studied Hsp90As. Analysis of the nucleotide sequence of the cloned genomic DNA fragment indicated that dshsp90 contained 21 exons interrupted by 20 introns, which is much more complicated than the other plant hsp90 genes. The promoter region of dshsp90 contained putative cis-acting stress responsive elements and binding sites of transcriptional factors that respond to heat shock and salt stress. Further experimental research confirmed that dshsp90 was upregulated quickly by heat and salt shock in the D. salina cells. These findings suggested that dshsp90 might serve as a component of the early response system of the D. salina cells against environmental stresses.

  10. Living to the range limit: consumer isotopic variation increases with environmental stress.

    Science.gov (United States)

    Reddin, Carl J; O'Connor, Nessa E; Harrod, Chris

    2016-01-01

    Theoretically, each species' ecological niche is phylogenetically-determined and expressed spatially as the species' range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition. We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N) were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N. There was an increase in isotopic variation at high shore levels, where E. peruviana's preferred resource, tide-deposited particulate organic matter (POM), appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore. Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition may be a direct factor in setting their range limit.

  11. Living to the range limit: consumer isotopic variation increases with environmental stress

    Directory of Open Access Journals (Sweden)

    Carl J. Reddin

    2016-06-01

    Full Text Available Background: Theoretically, each species’ ecological niche is phylogenetically-determined and expressed spatially as the species’ range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition. Methods: We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N. Results: There was an increase in isotopic variation at high shore levels, where E. peruviana’s preferred resource, tide-deposited particulate organic matter (POM, appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore. Discussion: Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition may be a direct factor in setting their range limit.

  12. Environmental stress correlates with increases in both genetic and residual variances: A meta-analysis of animal studies.

    Science.gov (United States)

    Rowiński, Piotr K; Rogell, Björn

    2017-05-01

    Adaptive evolutionary responses are determined by the strength of selection and amount of genetic variation within traits, however, both are known to vary across environmental conditions. As selection is generally expected to be strongest under stressful conditions, understanding how the expression of genetic variation changes across stressful and benign environmental conditions is crucial for predicting the rate of adaptive change. Although theory generally predicts increased genetic variation under stress, previous syntheses of the field have found limited support for this notion. These studies have focused on heritability, which is dependent on other environmentally sensitive, but nongenetic, sources of variation. Here, we aim to complement these studies with a meta-analysis in which we examine changes in coefficient of variation (CV) in maternal, genetic, and residual variances across stressful and benign conditions. Confirming previous analyses, we did not find any clear direction in how heritability changes across stressful and benign conditions. However, when analyzing CV, we found higher genetic and residual variance under highly stressful conditions in life-history traits but not in morphological traits. Our findings are of broad significance to contemporary evolution suggesting that rapid evolutionary adaptive response may be mediated by increased evolutionary potential in stressed populations. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 9. Alleviation of environmental stress on renewable resource productivity

    Energy Technology Data Exchange (ETDEWEB)

    Howell, G. S.

    1982-09-01

    It is pointed out that temperature and water stress are the key factors that will be influenced by a rise in ambient CO/sub 2/ concentration. Improvement of the capacity of crop plants to withstand water and temperature stress will require an undergirding effort in basic research, to support required advances in plant breeding and development of novel crop management systems. The most important considerations for future research on environmental stress in crops are: the need for interdisciplinary approaches in all aspects of stress research; the need for centralized stress testing capabilities; plant-breeding, the long-term solution with greatest potential benefit and least cost; improvement in management techniques, becoming more effective as increased attention is directed to the management of specific genotypes; the need for understanding of more stress effects closer to the optimum than to lethality; the need to optimize rather than maximize production; the need for understanding different stress effects during different, critical developmental stages; the need for development of usable, physiologically-based crop models to serve as predictive tools for agronomists and breeders; the recognition that improvement options in annual crops are greater than in perennial crops; efforts to culture perennial crops as annuals as a means of avoiding winter stress; and the need for a major effort to devise techniques to shorten the breeding cycle in perennials so that genetic solutions can be more readily employed.

  14. Dynamic changes in eIF4F-mRNA interactions revealed by global analyses of environmental stress responses.

    Science.gov (United States)

    Costello, Joseph L; Kershaw, Christopher J; Castelli, Lydia M; Talavera, David; Rowe, William; Sims, Paul F G; Ashe, Mark P; Grant, Christopher M; Hubbard, Simon J; Pavitt, Graham D

    2017-10-27

    Translation factors eIF4E and eIF4G form eIF4F, which interacts with the messenger RNA (mRNA) 5' cap to promote ribosome recruitment and translation initiation. Variations in the association of eIF4F with individual mRNAs likely contribute to differences in translation initiation frequencies between mRNAs. As translation initiation is globally reprogrammed by environmental stresses, we were interested in determining whether eIF4F interactions with individual mRNAs are reprogrammed and how this may contribute to global environmental stress responses. Using a tagged-factor protein capture and RNA-sequencing (RNA-seq) approach, we have assessed how mRNA associations with eIF4E, eIF4G1 and eIF4G2 change globally in response to three defined stresses that each cause a rapid attenuation of protein synthesis: oxidative stress induced by hydrogen peroxide and nutrient stresses caused by amino acid or glucose withdrawal. We find that acute stress leads to dynamic and unexpected changes in eIF4F-mRNA interactions that are shared among each factor and across the stresses imposed. eIF4F-mRNA interactions stabilised by stress are predominantly associated with translational repression, while more actively initiating mRNAs become relatively depleted for eIF4F. Simultaneously, other mRNAs are insulated from these stress-induced changes in eIF4F association. Dynamic eIF4F-mRNA interaction changes are part of a coordinated early translational control response shared across environmental stresses. Our data are compatible with a model where multiple mRNA closed-loop complexes form with differing stability. Hence, unexpectedly, in the absence of other stabilising factors, rapid translation initiation on mRNAs correlates with less stable eIF4F interactions.

  15. Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel.

    Science.gov (United States)

    Malanga, Gabriela; Estevez, Maria Susana; Calvo, Jorge; Puntarulo, Susana

    2004-09-20

    The aim of this work was to study the oxidative profile of digestive glands of two limpets species (Nacella (Patinigera) magellanica and Nacella (Patinigera) deaurata) exposed to different environmental conditions. The intertidal population of N. (P.) magellanica is subjected to a wide variety of stresses not experienced by N. (P.) deaurata. Although a typical electron paramagnetic resonance (EPR) spectrum of ascorbyl radical in digestive gland from both limpets was observed, neither ascorbyl radical content nor the ascorbyl radical content/ascorbate content ratio was significantly different, suggesting that the difference in the environmental conditions did not appear to be responsible for developing alterations in the oxidative status of both organisms at the hydrophilic level (e.g. cytosol). Lipid peroxidation in the digestive glands was estimated, both as the content of thiobarbituric acid reactive substances (TBARS) and as the content of lipid radicals assessed by EPR, in both organisms. TBARS and lipid radical content were 34.8 and 36.5%, respectively, lower in N. (P.) magellanica as compared to N. (P.) deaurata. On the other hand, total iron content and the rate of generation of superoxide anion were 47.9 and 51.4%, respectively, lower in N. (P.) magellanica as compared to N. (P.) deaurata. The activity of catalase and superoxide dismutase (SOD) was 35.3 and 128.6% higher in N. (P.) magellanica as compared to N. (P.) deaurata, respectively. No significant differences were determined between the digestive glands of both molluscs regarding the content of total thiols. alpha-Tocopherol and beta-carotene content were significantly lower in N. (P.) magellanica as compared to N. (P.) deaurata. A distinctive EPR signal for the adduct Fe--MGD--NO (g = 2.03 and a(N) = 12.5 G) was detected in the homogenates of digestive glands of both limpets. A significant difference in the content of the Fe-MGD-NO adduct in digestive glands from N. (P.) magellanica and N. (P

  16. Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel

    Energy Technology Data Exchange (ETDEWEB)

    Malanga, Gabriela; Estevez, Maria Susana; Calvo, Jorge; Puntarulo, Susana

    2004-09-20

    The aim of this work was to study the oxidative profile of digestive glands of two limpets species (Nacella (Patinigera) magellanica and Nacella (Patinigera) deaurata) exposed to different environmental conditions. The intertidal population of N. (P.) magellanica is subjected to a wide variety of stresses not experienced by N. (P.) deaurata. Although a typical electron paramagnetic resonance (EPR) spectrum of ascorbyl radical in digestive gland from both limpets was observed, neither ascorbyl radical content nor the ascorbyl radical content/ascorbate content ratio was significantly different, suggesting that the difference in the environmental conditions did not appear to be responsible for developing alterations in the oxidative status of both organisms at the hydrophilic level (e.g. cytosol). Lipid peroxidation in the digestive glands was estimated, both as the content of thiobarbituric acid reactive substances (TBARS) and as the content of lipid radicals assessed by EPR, in both organisms. TBARS and lipid radical content were 34.8 and 36.5%, respectively, lower in N. (P.) magellanica as compared to N. (P.) deaurata. On the other hand, total iron content and the rate of generation of superoxide anion were 47.9 and 51.4%, respectively, lower in N. (P.) magellanica as compared to N. (P.) deaurata. The activity of catalase and superoxide dismutase (SOD) was 35.3 and 128.6% higher in N. (P.) magellanica as compared to N. (P.) deaurata, respectively. No significant differences were determined between the digestive glands of both molluscs regarding the content of total thiols. {alpha}-Tocopherol and {beta}-carotene content were significantly lower in N. (P.) magellanica as compared to N. (P.) deaurata. A distinctive EPR signal for the adduct Fe-MGD-NO (g = 2.03 and a{sub N} = 12.5 G) was detected in the homogenates of digestive glands of both limpets. A significant difference in the content of the Fe-MGD-NO adduct in digestive glands from N. (P.) magellanica and N. (P

  17. Environmental Factors’ Effect on Stress Reduction of Employees: A Case Study on Farhangian University Staff in Tehran

    Directory of Open Access Journals (Sweden)

    Pegah Payedar Ardakani

    2017-06-01

    Full Text Available One of the most important issues the contemporary societies encounter is the job stress. There are various factors affecting it, but not enough researches have been done on the role that environmental factors play. This paper presents an experimental study with 100 participants on the influence of environmental factors on employees’ stress level. This method uses information derived from field observations and answers to questionnaires distributed to employees and officials who are in the top management of the central organization of Farhangian University, Tehran branch. The results demonstrate that color, window, lighting and brightness, landscape, communications and interactions, flexibility, thermal convenience, noise convenience, cleanness, physical activity, privacy and accessibility play an important role in the stress of employees, suggesting that the architectures and designers should consider the aforementioned factors so they can create dynamic and pleasant office environments devoid of any stress.

  18. Life at the Limits: Capacities of Isolated and Cultured Lichen Symbionts to Resist Extreme Environmental Stresses

    Science.gov (United States)

    de Vera, J.-P.; Rettberg, P.; Ott, S.

    2008-10-01

    Lichens are described as a symbiosis formed by a myco- and photobiont, capable of colonizing habitats where their separate symbionts would not be able to survive. Space simulation studies on the separated symbionts of the lichen Xanthoria elegans have been performed to test their capacity to resist the most extreme conditions. The isolated cultured symbiont cells were exposed to different doses of the UV spectrum, and to vacuum. Cultures of both symbionts were analysed by specific vitality tests (LIVE/DEAD-staining detected by Confocal Laser Scanning Microscopy). Growth capacity of symbiont cultures on different media was analysed after exposure to extreme environmental stresses. The data obtained support the hypothesis that the symbiotic state considerably enhances the ability of the respective symbionts to survive exposure to extreme conditions, including the conditions of space simulation. Species such as X. elegans may, therefore, be suitable for use as model organisms in exobiological studies.

  19. Early remote laser detection of vegetation damage caused by certain environmental stress factors

    Science.gov (United States)

    Chappelle, Emmett W.; Mcmurtrey, James E., III

    1989-01-01

    The fluorescence spectra of plants excited with a pulsed nitrogen laser beam emitting at 337 nm were found to be related to plant type, as well as with changes in the physiology of the plant as the result of various kinds of environmental stress. The plant types which were studied included herbaceous dicots, monocots, hardwoods, and conifers. These plant types could be identified on the basis of differences in either the number of fluorescent bands, or the relative intensity of the bands. The dicots and monocots had fluorescent maxima at 440, 685, and 740 nm. The monocots could be distinguished from the dicots by virtue of having a much higher 440 nm/685 nm ratio. Hardwoods and conifers had an additional fluorescence band at 525 nm, but healthy conifers did not have a band at 685 nm.

  20. 2-level environmental-stress-screening (ESS) model: A mixed-distribution approach

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, R.K.; Dietrich, D.L.

    1994-03-01

    Environmental stress screening (ESS) is used to reduce, if not eliminate, the occurrence of some types of failures from the field by fixing them before the product is deployed. This paper models a 2-level ESS program where screening is performed at the part & unit levels. The parts are screened for a specified duration before being assembled into a unit. Defects induced during the assembly process are screened at the unit level. These parts & connections are assumed to come from either a good or a substandard population, and their times-to-failure distributions are modeled by mixed distributions. The optimal screening durations are obtained by minimizing the life-cycle cost. The model is simple to use and its viability is illustrated using mixed exponential distributions. The implementation of screens at various levels depends on costs and failure distribution characteristics. 13 refs.

  1. Mechanical properties and environmental stress cracking resistance of rubber toughened polyester/kenaf composite

    Directory of Open Access Journals (Sweden)

    2010-02-01

    Full Text Available In this study rubber-toughened polyester-kenaf fibre composites were prepared by adding various percentages of kenaf fibre in unsaturated polyester resin and subsequently cross linked using a mixture of organic peroxide methyl ethyl ketone and cobalt octanoate. Three percent (3% of liquid natural rubber (LNR were added as a toughening agent. The mechanical properties of the composites were evaluated by impact and flexural testing. Environmental stress cracking resistance (ESCR of polyester-kenaf composite in acid and base medium was also studied. It was found that the addition of LNR increased impact strength by about 66% and flexural strength by 70%. Measurement of ESCR shows that the composite has the fastest diffusion rate in acid medium, followed by that in base medium and then without medium. Bonding mechanisms were assessed by scanning electron microscope and FTIR analysis.

  2. Polarization and mode changes depending on the environmental stress in single mode fibers

    Science.gov (United States)

    Namkung, Juock; Hoke, Mike; Wilkins, Gregory; Werniki, Chris

    2009-05-01

    The research discussed below describes experiments and computer simulations involving propagation of polarized radiation in optical fiber cables designed for use in aircraft environments. The main concern of this effort is optical fiber link systems that are installed in military aircraft. Propagation of polarized radiation in a single mode fiber can be theoretically described with electromagnetic field equations for a bounded system. The state of propagation of the radiation polarization will be affected by environmental stress and strain on the fiber, by imperfections within the fiber, cracks or breaks in the fiber across the fiber optical axis, and by a variety of discontinuities at fiber connectors. The transmission, reflection, and scattering of radiation within an optical fiber affected by these various effects results in mode changing of propagating radiation within the fiber. Mode changing effects by imperfection in the fiber link system have been experimentally measured. The experimental results discussed below are preliminary results and applicable to modeling techniques in the future.

  3. The impact of environmental stressors and types of work contract on occupational stress.

    Science.gov (United States)

    Corrêa, Ana Paula; Ferreira, Maria Cristina

    2011-05-01

    This study aimed to investigate the impact of seven environmental stressors (role conflict, work overload, interpersonal difficulties, work-family conflict, work instability, lack of autonomy and pressure of responsibility) and the nature of the employment contract (permanent or atypical) on three psychological reactions to occupational stress (job satisfaction, positive emotions, and negative emotions at work). 305 Brazilian workers from both sexes participated in this research, distributed between permanent and atypical workers. The results showed that the role conflict and the work overload had a negative impact on job satisfaction. The role conflict had a negative impact on the positive emotions at work, while the pressure of responsibility interfered positively in it. The work overload interfered positively in the negative emotions at work, while the pressure of responsibility interfered negatively in it. The type of contract did not affect significantly any one of the dependent variables. The implications of the results for future research are discussed.

  4. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  5. Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications.

    Science.gov (United States)

    Protopopova, Marina V; Pavlichenko, Vasiliy V; Menzel, Ralph; Putschew, Anke; Luckenbach, Till; Steinberg, Christian E W

    2014-12-01

    The species-rich, endemic amphipod fauna of Lake Baikal does not overlap with the common Palearctic fauna; however, the underlying mechanisms for this are poorly understood. Considering that Palearctic lakes have a higher relative input of natural organic compounds with a dominance of humic substances (HSs) than Lake Baikal, we addressed the question whether HSs are candidate factors that affect the different species compositions in these water bodies. We hypothesized that interspecies differences in stress defense might reveal that Baikalian amphipods are inferior to Palearctic amphipods in dealing with HS-mediated stress. In this study, two key mechanisms of general stress response were examined: heat-shock protein 70 (HSP70) and multixenobiotic resistance-associated transporters (ABCB1). The results of quantitative polymerase chain reaction (qPCR) showed that the basal levels (in 3-day acclimated animals) of hsp70 and abcb1 transcripts were lower in Baikalian species (Eulimnogammarus cyaneus, Eulimnogammarus verrucosus, Eulimnogammarus vittatus-the most typical littoral species) than in the Palearctic amphipod (Gammarus lacustris-the only Palearctic species distributed in the Baikalian region). In the amphipods, the stress response was induced using HSs at 10 mg L(-1) dissolved organic carbon, which was higher than in sampling sites of the studied species, but well within the range (3-10 mg L(-1)) in the surrounding water bodies populated by G. lacustris. The results of qPCR and western blotting (n = 5) showed that HS exposure led to increased hsp70/abcb1 transcripts and HSP70 protein levels in G. lacustris, whereas these transcript levels remained constant or decreased in the Baikalian species. The decreased level of stress transcripts is probably not able to confer an effective tolerance to Baikalian species against further environmental stressors in conditions with elevated HS levels. Thus, our results suggest a greater robustness of Palearctic amphipods and

  6. Treating Stress-Related Pain with the Flotation Restricted Environmental Stimulation Technique: Are There Differences between Women and Men?

    OpenAIRE

    Sven Å Bood; Anette Kjellgren; Torsten Norlander

    2009-01-01

    The aim of the present study was to explore, for the first time, sex differences among patients diagnosed with stress-related pain before and after flotation restricted environmental stimulation technique (REST) treatment, delivered 12 times during seven weeks. The present study included 88 patients (69 women, 19 men) from three different studies (post hoc analysis). They had been diagnosed by a physician as having chronic stress-related muscle tension pain. The analyses indicated that the fl...

  7. Organismal climatology: analyzing environmental variability at scales relevant to physiological stress.

    Science.gov (United States)

    Helmuth, Brian; Broitman, Bernardo R; Yamane, Lauren; Gilman, Sarah E; Mach, Katharine; Mislan, K A S; Denny, Mark W

    2010-03-15

    Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species' range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different from those that set limits today. We quantitatively examine a nine-year time series of temperature records relevant to the body temperatures of intertidal mussels as measured using biomimetic sensors. Specifically, we explore how a 'climatology' of body temperatures, as opposed to long-term records of habitat-level parameters such as air and water temperatures, can be used to extrapolate meaningful spatial and temporal patterns of physiological stress. Using different metrics that correspond to various aspects of physiological stress (seasonal means, cumulative temperature and the return time of extremes) we show that these potential environmental stressors do not always occur in synchrony with one another. Our analysis also shows that patterns of animal temperature are not well correlated with simple, commonly used metrics such as air temperature. Detailed physiological studies can provide guidance to predicting the effects of global climate change on natural ecosystems but only if we concomitantly record, archive and model environmental signals at appropriate scales.

  8. Differential proteomic response of Sydney rock oysters (Saccostrea glomerata) to prolonged environmental stress.

    Science.gov (United States)

    Melwani, A R; Thompson, E L; Raftos, D A

    2016-04-01

    Exposure to prolonged environmental stress can have impacts on the cellular homeostasis of aquatic organisms. The current study employed two-dimensional electrophoresis (2-DE) to test whether exposure to impaired water quality conditions in the Sydney Harbour estuary has significantly altered the proteomes of the resident Sydney rock oyster (Saccostrea glomerata). Adult S. glomerata were sampled from four bays in the estuary. Each bay consisted of a "high-impact" site adjacent to point sources of chemical contamination (e.g., storm drains/canals or legacy hotspots) and a "low-impact" site located ∼5km away from point sources. A mixture of environmental stressors differed significantly between high- and low-impact sites. Specifically, PAHs, PCBs, tributyltin, Pb, and Zn were significantly elevated in oyster tissues from high-impact sites, together with depleted dissolved oxygen and low pH in the water column. A 2-DE proteomics analysis subsequently identified 238 protein spots across 24 2-DE gels, of which 27-50 spots differed significantly in relative intensity between high- and low-impact sites per bay. Twenty-five percent of the differential spots were identified in more than one bay. The identities of 80 protein spots were determined by mass spectrometry. HSP 70, PPIB, and radixin were the three most highly expressed differential proteins. Despite the largely unique proteomes evident in each bay, functional annotations revealed that half of the differentially expressed proteins fell into just two subcellular functional categories-energy metabolism and the cytoskeleton. These findings provide a framework to further investigate adaptation of cellular mechanisms to prolonged stress in S. glomerata. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis.

    Science.gov (United States)

    Grégoire, Catherine-Alexandra; Bonenfant, David; Le Nguyen, Adalie; Aumont, Anne; Fernandes, Karl J L

    2014-01-01

    Environmental enrichment (EE) exerts powerful effects on brain physiology, and is widely used as an experimental and therapeutic tool. Typical EE paradigms are multifactorial, incorporating elements of physical exercise, environmental complexity, social interactions and stress, however the specific contributions of these variables have not been separable using conventional housing paradigms. Here, we evaluated the impacts of these individual variables on adult hippocampal neurogenesis by using a novel "Alternating EE" paradigm. For 4 weeks, adult male CD1 mice were alternated daily between two enriched environments; by comparing groups that differed in one of their two environments, the individual and combinatorial effects of EE variables could be resolved. The Alternating EE paradigm revealed that (1) voluntary running for 3 days/week was sufficient to increase both mitotic and post-mitotic stages of hippocampal neurogenesis, confirming the central importance of exercise; (2) a complex environment (comprised of both social interactions and rotated inanimate objects) had no effect on neurogenesis itself, but enhanced depolarization-induced c-Fos expression (attributable to social interactions) and buffered stress-induced plasma corticosterone levels (attributable to inanimate objects); and (3) neither social isolation, group housing, nor chronically increased levels of plasma corticosterone had a prolonged impact on neurogenesis. Mouse strain, handling and type of running apparatus were tested and excluded as potential confounding factors. These findings provide valuable insights into the relative effects of key EE variables on adult neurogenesis, and this "Alternating EE" paradigm represents a useful tool for exploring the contributions of individual EE variables to mechanisms of neural plasticity.

  10. The effects of mid-Phanerozoic environmental stress on bryozoan diversity, paleoecology, and paleogeography

    Science.gov (United States)

    Powers, Catherine M.; Bottjer, David J.

    2009-02-01

    Evidence of sustained environmental degradation associated with the end-Guadalupian, end-Permian, and end-Triassic extinctions has been inferred from numerous geochemical and sedimentological studies, but the long-term impacts of this extinction-associated stress on the evolutionary trajectories of marine invertebrates have not been explored. An examination of the diversity, extinction, paleoenvironmental range, and geographical distribution of marine stenolaemate bryozoans during the Permian to Jurassic interval provides striking new evidence of the taxonomic and ecological influence of these mid-Phanerozoic extinctions on one of the most abundant components of the Paleozoic Fauna. Elevated bryozoan extinction rates during the Late Permian and Late Triassic were coupled with major changes in their habitats. Bryozoans gradually disappeared from deep-water offshore settings during the Late Permian and from nearshore and offshore settings during the Late Triassic. Re-colonization of these environments in the wake of each crisis was delayed but coupled with increases in global generic diversity. The taxonomic effects of the end-Guadalupian extinction were milder than previously described, even though ecologically bryozoans were becoming restricted to nearshore settings. The end-Permian mass extinction remained the largest for bryozoans, drastically reducing global and assemblage generic diversity and triggering a permanent change in their paleoenvironmental preferences from nearshore to mid-shelf settings. The 285 Myr dominance of stenolaemate bryozoans ended during the Late Triassic when all but one order (Cyclostomata) became extinct, initiating a taxonomic switch between stenolaemate and gymnolaemate bryozoans. Moreover, spatio-temporal variations in the paleoenvironmental history of bryozoans imply that Late Permian and Late Triassic marine environmental instability resulted largely from some stressful deep-water phenomenon. High extinction rates in nearshore

  11. Untangling the Influences of Voluntary Running, Environmental Complexity, Social Housing and Stress on Adult Hippocampal Neurogenesis

    Science.gov (United States)

    Grégoire, Catherine-Alexandra; Bonenfant, David; Le Nguyen, Adalie; Aumont, Anne; Fernandes, Karl J. L.

    2014-01-01

    Environmental enrichment (EE) exerts powerful effects on brain physiology, and is widely used as an experimental and therapeutic tool. Typical EE paradigms are multifactorial, incorporating elements of physical exercise, environmental complexity, social interactions and stress, however the specific contributions of these variables have not been separable using conventional housing paradigms. Here, we evaluated the impacts of these individual variables on adult hippocampal neurogenesis by using a novel “Alternating EE” paradigm. For 4 weeks, adult male CD1 mice were alternated daily between two enriched environments; by comparing groups that differed in one of their two environments, the individual and combinatorial effects of EE variables could be resolved. The Alternating EE paradigm revealed that (1) voluntary running for 3 days/week was sufficient to increase both mitotic and post-mitotic stages of hippocampal neurogenesis, confirming the central importance of exercise; (2) a complex environment (comprised of both social interactions and rotated inanimate objects) had no effect on neurogenesis itself, but enhanced depolarization-induced c-Fos expression (attributable to social interactions) and buffered stress-induced plasma corticosterone levels (attributable to inanimate objects); and (3) neither social isolation, group housing, nor chronically increased levels of plasma corticosterone had a prolonged impact on neurogenesis. Mouse strain, handling and type of running apparatus were tested and excluded as potential confounding factors. These findings provide valuable insights into the relative effects of key EE variables on adult neurogenesis, and this “Alternating EE” paradigm represents a useful tool for exploring the contributions of individual EE variables to mechanisms of neural plasticity. PMID:24465980

  12. Dysregulation of the SIRT1/OCT6 Axis Contributes to Environmental Stress-Induced Neural Induction Defects.

    Science.gov (United States)

    Li, Guoping; Jiapaer, Zeyidan; Weng, Rong; Hui, Yi; Jia, Wenwen; Xi, Jiajie; Wang, Guiying; Zhu, Songcheng; Zhang, Xin; Feng, Dandan; Liu, Ling; Zhang, Xiaoqing; Kang, Jiuhong

    2017-05-09

    Environmental stresses are increasingly acknowledged as core causes of abnormal neural induction leading to neural tube defects (NTDs). However, the mechanism responsible for environmental stress-triggered neural induction defects remains unknown. Here, we report that a spectrum of environmental stresses, including oxidative stress, starvation, and DNA damage, profoundly activate SIRT1, an NAD+-dependent lysine deacetylase. Both mouse embryos and in vitro differentiated embryonic stem cells (ESCs) demonstrated a negative correlation between the expression of SIRT1 and that of OCT6, a key neural fate inducer. Activated SIRT1 radically deacetylates OCT6, triggers an OCT6 ubiquitination/degradation cascade, and consequently increases the incidence of NTD-like phenotypes in mice or hinders neural induction in both human and mouse ESCs. Together, our results suggest that early exposure to environmental stresses results in the dysregulation of the SIRT1/OCT6 axis and increases the risk of NTDs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Environmental stress-corrosion cracking of fiberglass: lessons learned from failures in the chemical industry.

    Science.gov (United States)

    Myers, T J; Kytömaa, H K; Smith, T R

    2007-04-11

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future.

  14. Environmental stress cracking in gamma-irradiated polycarbonate - A diffusion approach

    Science.gov (United States)

    Silva, Pietro Paolo J. C. de O.; Araújo, Patricia L. B.; da Silveira, Leopoldo B. B.; Araújo, Elmo S.

    2017-01-01

    Polycarbonate (PC) is an engineering polymer which presents interesting properties. This material has been also used in medical devices, which is frequently exposed to gamma radiosterilization and to chemical agents. This may produce significant changes in polymer structure, leading to failure in service. The present work brings about a new approach on environmental stress cracking (ESC) processes elucidation in 100 kGy gamma-irradiated PC, by evaluating the diffusion process of methanol or 2-propanol in test specimens and determining the diffusion parameters on solvent-irradiated polymer systems. A comparison of diffusion parameters for both solvents indicated that methanol has a considerable ESC action on PC, with diffusion parameter of 7.5×10-14±1% m2 s-1 for non-irradiated PC and 7.8×10-14±2.8% m2 s-1 for PC irradiated at 100 kGy. In contrast, 2-propanol did not act as an ESC agent, as it did promote neither swelling nor cracks in the test specimens. These results were confirmed by visual analysis and optical microscopy. Unexpectedly, structural damages evidenced in tensile strength tests suggested that 2-propanol is as aggressive as methanol chemical for PC. Moreover, although some manufacturers indicate the use of 2-propanol as a cleaning product for PC artifacts, such use should be avoided in parts under mechanical stress.

  15. A novel AhR ligand, 2AI, protects the retina from environmental stress.

    Science.gov (United States)

    Gutierrez, Mark A; Davis, Sonnet S; Rosko, Andrew; Nguyen, Steven M; Mitchell, Kylie P; Mateen, Samiha; Neves, Joana; Garcia, Thelma Y; Mooney, Shaun; Perdew, Gary H; Hubbard, Troy D; Lamba, Deepak A; Ramanathan, Arvind

    2016-07-01

    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2'-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice.

  16. Environmental stress-corrosion cracking of fiberglass: Lessons learned from failures in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.J. [Exponent Inc., 21 Strathmore Road, Natick, MA 01760 (United States)]. E-mail: tmyers@exponent.com; Kytoemaa, H.K. [Exponent Inc., 21 Strathmore Road, Natick, MA 01760 (United States); Smith, T.R. [Exponent Inc., 3401 Market Street, Suite 300, Philadelphia, PA 19104 (United States)

    2007-04-11

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future.

  17. Assessment of red clover (Trifolium pratense L. productivity in environmental stress

    Directory of Open Access Journals (Sweden)

    Marijana Tucak

    2016-12-01

    Full Text Available The frequency of extreme climatic events has increased due to global climate change. The objectives of this research were to investigate the influence of climatic conditions (precipitation and temperature on productivity of red clover cultivars and populations with a different genetic background and to identify those with high forage yield potential in environmental stress. Twenty-three red clover cultivars and populations of different geographical origin were studied during two consecutive growing seasons (2012 – extremely dry weather conditions, 2013 – humid weather conditions at the Agricultural Institute Osijek, Croatia. A field experiment was performed as a randomized block design with three replicates. Green mass and dry matter yield and plant height were measured in both growing seasons, whereas the seed yield was determined in the first year only. Results indicated the stability or adaptability of evaluated red clover cultivars and populations to a dry or humid weather production conditions. Croatian populations (CD-3, TP-2, TP-7 and cultivar Viva, Serbian cultivar K-17 and German cultivar Taifun exhibited the highest forage yield potential under both, dry and humid growing conditions and represent a valuable material to be used in red clover breeding programs dealing with tolerance to abiotic stress.

  18. Effect of environmental stress on regulation of gene expression in the yeast

    Science.gov (United States)

    Gross, Eitan

    2015-07-01

    Several mathematical models have been proposed to predict the activation state of a transcription factor (TF) from the expression levels of its target genes. This inference problem is complicated however due to the fact that different genes may be regulated by different activation schemes (linear, exponential, sigmoidal, etc.). In addition to transcription regulation, the rate of gene expression at any instantaneous point in time is also determined by the independent rates of baseline production and degradation. Consequently, the set of solutions to any model equations describe an infinite number of trajectories in probability space, thus rendering the problem NP-hard. In the current study we used a Gaussian process (GP) approach to address this inverse problem. Experimental gene expression data were modeled by a putative linear activation scheme and discrepancy between theory and experiment was modeled by a GP. Model hyperparameters were calculated using maximum likelihood estimates to generate continuous TF state-space profiles. Identifiability of model parameters was optimized by obtaining TF state-space functions for multiple genes simultaneously. We found that model parameters were sensitive to environmental stress conditions, producing different state-space profiles for different stresses.

  19. Environmental stresses and strains in an extreme situation: the repair of electrometallurgy furnaces.

    Science.gov (United States)

    Chaurel, C; Mercier-Gallay, M; Stoklov, M; Romazini, S; Perdrix, A

    1993-01-01

    Whenever continuous casting furnace breaks down, the emergency intervention necessary to repair it has to be carried out under exceptional environmental conditions caused mainly by heat, as the furnace must be stopped for the shortest possible time. In this study, we aimed to evaluate the stresses and strains to which boilermakers are subjected during the replacement of an electrode element of a 20 MW furnace. The thermal stress was evaluated by the wet bulb globe temperature (WBGT) index. CO2 was measured continuously at the furnace periphery and sporadically in the center of the furnace using an electrochemical method, while CO was also measured in both areas, using Dräger tubes. Dusts were sampled by a CPM3 (Andersen particle fractionating sampler) and a CIP10 (personal sampler). The strain was evaluated by continuous ECG recording with an Aclan IFC 85, breathing performance was assessed with an HI 298 microspirometer, and blood oxygen saturation was evaluated using a Biox oximeter. Thermal stresses are extreme: WBGT was 55 degrees C in the furnace center and 34 degrees C in the furnace periphery. In spite of the ventilation, the reduction in heat during the 6 h of the intervention was negligible and did not provide sufficient cooling. The analysis of gases and dusts were of minor interest, although the mean CO level at the furnace periphery was 40 ppm, with a peak level of 140 ppm in furnace center. CO2 and SO2 levels did not exceed TLV-TWA and TLV-Stel values.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Impact of rli87 gene deletion on response of Listeria monocytogenes to environmental stress.

    Science.gov (United States)

    Kun, Xie; Qingling, Meng; Qiao, Jun; Yelong, Peng; Tianli, Liu; Cheng, Chen; Yu, Ma; Zhengxiang, Hu; Xuepeng, Cai; Chuangfu, Chen

    2014-10-01

    Listeria monocytogenes (LM) is a zoonotic pathogen that widely adapts to various environments. Recent studies have found that noncoding RNAs (ncRNAs) play regulatory roles in LM responses to environmental stress. To understand the role of ncRNA rli87 in the response regulation, a rli87 deletion strain LM-Δrli87 was constructed by homologous recombination and tested for stress responses to high temperature, low temperature, high osmotic pressure, alcohol, acidity, alkaline and oxidative environments, along with LM EGD-e strain (control). The results showed that compared with LM EGD-e, LM-Δrli87 grew faster (P  0.05) in acidic and high osmatic pressure (10% NaCl) conditions. When cultured in medium containing 3.8% ethanol, the growth was not significantly different between the two strains (P > 0.05). When cultured at pH 9, they had similar growth rates in the first 5 h (P > 0.05), but the rates were significantly different after 6 h (P < 0.05). The expression of rsbV, rsbW, hpt, clpP, and ctsR was upregulated in LM-∆rli87 compared with LM EGD-e at pH 9, indicating that the rli87 gene regulated the expression of the five genes in alkaline environment. Our results suggest that the rli87 gene has an important regulatory role in LM's response to temperature (30 and 42 °C), alkaline stresses. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Sublethal effect of neem extract on mediterranean fruit fly adults

    Directory of Open Access Journals (Sweden)

    Márcio Alves Silva

    2013-03-01

    Full Text Available The sublethal effect of extracts of Azadirachta indica on Ceratitis capitata was evaluated. Two pairs of flies were treated in plastic tubes with cotton placed in plastic cages. An artificial diet (hydrolyzed protein + sugar was provided ad libitum. The extracts affected significantly the longevity of C. capitata. The pre-oviposition period were not significantly affected by the extracts. The A. indica branches extracted with dichloromethane (888 ppm affected significantly the fecundity and fertility, reducing the number of eggs laid to approximately 80 % and the egg hatching by 30 % at the 8th day. Therefore, the neem branches extracted with dichloromethane affected the reproduction of C. capitata.

  2. Universal Stress Proteins as New Targets for Environmental and Therapeutic Interventions of Schistosomiasis

    Directory of Open Access Journals (Sweden)

    Priscilla Masamba

    2016-09-01

    Full Text Available In spite of various control measures and eradication methods that have been in progress, schistosomiasis still prevails as one of the most prevalent debilitating parasitic diseases, typically affecting the poor and the underprivileged that are predominantly concentrated in sub-Saharan Africa. The parasitic schistosome blood fluke responsible for causing the disease completes its complex developmental cycle in two hosts: humans and freshwater snails, where they physically undergo gross modifications to endure the different conditions associated with each host. Just like any other organism, the worm possesses mechanisms that help them respond to environmental insults. It has been hypothesized that a special class of proteins known as Universal Stress Proteins (USPs are up-regulated during sudden environmental changes, thus assisting the worm to tolerate the unfavourable conditions associated with its developmental cycle. The position of praziquantel as the drug of choice against all schistosome infections has been deemed vulnerable due to mounting concerns over drug pressure and so the need for alternative treatment is now a matter of urgency. Therefore, this review seeks to explore the associations and possible roles of USPs in schistosomiasis as well as the functioning of these proteins in the schistosomulae stage in order to develop new therapeutic interventions against this disease.

  3. L-Lactic acid production benefits from reduction of environmental osmotic stress through neutralizing agent combination.

    Science.gov (United States)

    Tian, Xiwei; Wang, Yonghong; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2014-09-01

    This paper hinged on the combination effect of two different neutralizing agents Ca(OH)2 and NH4OH on the production of L-lactic acid by Lactobacillus paracasei. Present study quantitatively indicated that environmental osmotic pressure (844-1,772 mOsm/kg) exerted minor influence on L-lactic acid production, but a critical level fell on approximately 3,000 mOsm/kg which restricted L-lactic acid production significantly. Once osmotic pressure exceeded 3,600 mOsm/kg, L-lactic acid production ran aground. A new and efficient neutralizing agent-adding strategy was established in this study to procure 2.21-fold enhancement (5.94 g/l/h) relative to previous productivity of L-lactic acid with NH4OH as neutralizing agent via batch cultivation. It was, therefore, speculated that inhibition effect in the late phase of the fermentation might be in large part attributed to the dramatic increase of environmental osmotic stress, other than cumulative effect of lactate concentration itself.

  4. Macrobenthic community structure in a Brazilian chocked lagoon system under environmental stress

    Directory of Open Access Journals (Sweden)

    Carla Lima Torres Mendes

    2011-06-01

    Full Text Available Saquarema-Jaconé lagoonal system (SJLS comprises a sequence of five interconnected shallow brackish lagoons with access to the sea by a single permanent tidal channel. It is a eutrophic system, receiving constant input of organic load from its urbanized catchments. The relationship between several environmental variables and the spatial-temporal distribution of the benthic macrofauna was assessed during four seasonal samplings (dry and wet periods of 2007-2009. Sediment replicates were sampled at seven sites for biological identification and analyzes of organic matter, carbonates, phytopigments, grain size and heavy metals. Salinity, dissolved oxygen and redox potential were measured in situ. SJLS was characterized by sandy bottoms with very reducing conditions. Redox potential significantly discriminated between the dry and wet periods and anoxic conditions were observed in the latter. No significant seasonal differences were observed in the macrofauna. A total of 37 taxa were identified, of which Capitella sp, oligochaetes and Laeonereis culveri (Webster, 1880 were the dominant, representing the early stage of community recovery following dystrophic crises. The faunistic pattern seems to be determined by complex combinations of silt+clay with salinity, organic matter and redox potential. On the other hand, the low concentrations of heavy metals found did not seem to influence the structure and distribution of the biota. SJLS is undergoing persistent environmental stress, dominated by first-order opportunistic species linked to organically enriched sediments.

  5. Woodland recovery following drought-induced tree mortality across an environmental stress gradient.

    Science.gov (United States)

    Redmond, Miranda D; Cobb, Neil S; Clifford, Michael J; Barger, Nichole N

    2015-10-01

    Recent droughts and increasing temperatures have resulted in extensive tree mortality across the globe. Understanding the environmental controls on tree regeneration following these drought events will allow for better predictions of how these ecosystems may shift under a warmer, drier climate. Within the widely distributed piñon-juniper woodlands of the southwestern USA, a multiyear drought in 2002-2004 resulted in extensive adult piñon mortality and shifted adult woodland composition to a juniper-dominated, more savannah-type ecosystem. Here, we used pre- (1998-2001) and 10-year post- (2014) drought stand structure data of individually mapped trees at 42 sites to assess the effects of this drought on tree regeneration across a gradient of environmental stress. We found declines in piñon juvenile densities since the multiyear drought due to limited new recruitment and high (>50%) juvenile mortality. This is in contrast to juniper juvenile densities, which increased over this time period. Across the landscape, piñon recruitment was positively associated with live adult piñon densities and soil available water capacity, likely due to their respective effects on seed and water availability. Juvenile piñon survival was strongly facilitated by certain types of nurse trees and shrubs. These nurse plants also moderated the effects of environmental stress on piñon survival: Survival of interspace piñon juveniles was positively associated with soil available water capacity, whereas survival of nursed piñon juveniles was negatively associated with perennial grass cover. Thus, nurse plants had a greater facilitative effect on survival at sites with higher soil available water capacity and perennial grass cover. Notably, mean annual climatic water deficit and elevation were not associated with piñon recruitment or survival across the landscape. Our findings reveal a clear shift in successional trajectories toward a more juniper-dominated woodland and highlight the

  6. Failure processes in polymers: Environmental stress crack growth and adhesion of elastomeric copolymers to polypropylene

    Science.gov (United States)

    Ayyer, Ravishankar

    In CHAPTER 1 slow crack propagation in MDPE pipe was studied in air and Igepals at 50°C to determine the possibility for fatigue to creep correlation in environmental liquids. The stepwise fatigue crack growth in air was preserved in Igepal solutions. Lifetime in Igepal was affected to a much smaller extent as compared to air. The correlation in air was previously established primarily for tests at 21°C. The stepwise mechanism was verified in air at 50°C. The crack growth rate under various loading conditions was related to the maximum stress and R-ratio by a power law relationship. Alternatively a strain rate approach reliably correlated fatigue and creep in air at 50°C except at R=0.1 and frequency less than 1 Hz. In CHAPTER 2 the effect of concentration of Igepal CO 630 on slow crack propagation in MDPE pipe was investigated to determine whether the mechanism was conserved in creep and fatigue as required for the fatigue-to-creep correlation. The mechanism of crack propagation and lifetimes in creep and fatigue at R=0.1 at 50°C were compared to those in air and water. The fatigue and creep behavior followed the same stepwise crack growth mechanism as in air at all the concentrations used. As the concentration increased to 0.01 vol. %, the creep lifetime decreased significantly whereas the lifetime in fatigue gradually increased. At higher concentrations the lifetime was similar in creep and fatigue. In CHAPTER 3 effect of R-ratio on kinetics and mechanism of environmental fatigue and creep crack growth was analyzed in an attempt to predict the environmental stress crack resistance at 50°C. Same methodology was used as previously established for fatigue to creep formulation in air at 50°C. The stepwise mechanism of crack growth in air was conserved in Igepal solutions as R-ratio approached to unity (creep) with few exceptions. At higher R-ratio, the lifetime decreased systematically in Igepal solutions relative to air and was defined as 'Igepal transition

  7. Response of alternative splice isoforms of OsRad9 gene from Oryza sativa to environmental stress.

    Science.gov (United States)

    Li, Rui; Wang, Wenguo; Li, Fosheng; Wang, Qingwei; Wang, Shenghua; Xu, Ying; Chen, Fang

    2017-07-14

    Rad9 protein plays an important role in cell-cycle checkpoint signal transduction in human and yeast cells, but knowledge about Rad9 in plants is limited. This study reports that the Rad9 gene of rice can generate the transcript products OsRad9.1 and OsRad9.2 through alternative splicing. OsRad9.1, with all nine exons, is the main cell-cycle checkpoint protein involved in the response of rice to genotoxic stresses (ultraviolet radiation and antibiotic stress), environmental stresses (drought, salt, and heavy metal stress), and auxin stimuli (2,4-D, IAA, and IBA). Meanwhile, transcript isoform OsRad9.2, which lost exon7 and exon8, showed different preferential stimulation effects on these stresses and pollen development duration. These results might indicat that besides the monitoring and repair of DNA damage, Rad9 might involve in the development of pollen.

  8. Impact of environmental stress on cancer risk: a case study of an urban residential neighbourhood in Lagos metropolis.

    Science.gov (United States)

    Adebamowo, M A

    2009-06-01

    The study aims at examining an aspect of environmental thermal stress as an important contributing factor to cancer risk in an urban residential neighbourhood using Sogunle Community Ikeja, Lagos as a case study. Several studies have established the link between thermal stress and cancer risk. In this study, thermal stress was assessed using the predicted mean vote (PMV), and subjective thermal response; the thermal sensation vote (TSV). The PMV and TSV were obtained by collecting data from occupants of 64 houses in Sogunle Community. Objective measurements of climatic variables were obtained using electronic instruments while subjective measurements were obtained through structured questionnaire.Our findings showed that majority of the people studied are living in a condition of thermal stress and this may be associated with increased cancer risk. The study concludes by examining the role of architects in eradicating thermal stress thus leading to reduction of cancer risk and to a safe and healthy environment.

  9. Effects of environmental stress during pregnancy on maternal and fetal plasma corticosterone and progesterone in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, D.E.; Rhees, R.W.; Williams, S.R.; Kurth, S.M.

    1986-03-01

    Prenatal stress applied during a presumed critical period (third trimester) for sexual differentiation of the brain has been shown to alter development and influence sexual behavior. This experiment was designed to study the effects of environmental stress (restraint/illumination/heat) on maternal and fetal plasma corticosterone and progesterone titers. These hormones were studied since corticosterone has been shown to alter brain differentiation and progesterone has anti-androgen properties and since the secretion of both from the adrenal cortex is stimulated by ACTH. Plasma corticosterone and progesterone titers of both stressed and control gravid rats and their fetuses were measured on gestational days 18 and 20 by radioimmunoassay. Prenatal stress significantly reduced fetal body weight and fetal adrenal weight. Maternal pituitary weight was significantly increased. Prenatal stress caused a significant elevation in maternal corticosterone and progesterone titers and in fetal corticosterone titers. There was no difference between prenatal stressed and control fetal plasma progesterone levels. These data demonstrate that environmental stress significantly increases adrenal activity beyond that brought about naturally by pregnancy, and therefore may modify sequential hormonal events during fetal development.

  10. Induced damage in Carrara Marble as a result of long-term low-magnitude environmental stresses

    Science.gov (United States)

    Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael; Walter, Jens M.

    2015-04-01

    Damage of intact rock is commonly driven by the interaction of long-term low-magnitude external environmental stresses in combination with surface chemistry, rather than short-term loading in excess of intact rock strength. In order to determine the contribution of environmental stresses to the propagation of micro- and macroscopic fractures under natural environmental conditions we undertook long-term three-point bending tests on large size Carrara Marble specimens. The interaction of mechanical stresses induced by external loading and corrosive conditions (e.g. the presence of water) at the tip of a pre-existing crack is termed stress corrosion. We investigate stress corrosion below saw cut notches in wet and dry samples of Carrara Marble (M1-5, each 10cm x 10cm x 110cm). These were pre-loaded to about 66% of their assumed ultimate strength (determined by the fracture toughness (Kic) calculated for the crack tip). Two marble beams (M1, M3) were initially loaded to 22% and three (M2, M4, M5) to 55% of Kic. CaC03 saturated water was continuously dripped in the notch of samples --M1-4 to create corrosive conditions, while M5 was kept dry. After a three-week bedding period, loading on sample M1 was increased to 55%, M2 and M5 to 77% and M3 and M4 to 85% of Kic respectively. The tests were interrupted prior to failure of the specimens in order to allow the assessment of the crack-tip structure. During the testing period we used classical strain gages and acoustic emission sensors to measure strain and elastic stress changes through coda wave interferometry. Temperature and humidity were monitored and the outflowing fluid was collected for future analysis, throughout. The effect of induced damage on residual intrinsic stresses was evaluated using neutron diffraction on the SALSA instrument at the Institute Laue-Langevin (ILL, Grenoble, France), while texture measurements were undertaken using the X-ray goniometer at the Geoscience Center, University Göttingen, and

  11. Dunaliella spp. Under Environmental Stress: Enhancing Lipid Production and Optimizing Harvest

    Science.gov (United States)

    Mixson, Stephanie Marie

    Agricultural crops including corn, sugar cane, and oil palm have been investigated as potential sources for biofuel; however, they produce only a fraction of the oil percent biomass as compared to that of microalgae. Growth and lipid production by microalgae is regulated by a variety of environmental factors, including light intensity, availability of nutrients, temperature regime and salinity. We assessed 14 strains of the saltwater algae Dunaliella spp. (Teodoresco) in unialgal cultures within four species to determine a best strain or strain(s) as potential feedstock for biofuels. The taxonomy of these 14 strains was elucidated by comparing both physiological characteristics and the ITS2 and 18S regions. After careful analysis, the data suggest that the 14 strains grouped within four species: D. tertiolecta, D. pseudosalina, D. salina, and D. viridis. In addition, the isolation and accurate quantification of neutral lipids in Dunaliella was developed from existing techniques. Nile Red was optimized as a qualitative stain to rapidly screen and visualize neutral lipids. Direct transesterification was determined to be the best quantitative method because it yielded high amounts of neutral lipids with precise and reproducible results when compared to conventional extraction methods. Seven strains were selected for further efforts to enhance lipid production using salinity stress, nutrient limitation, pH stress, continuous light, and bubbling with carbon dioxide (CO2). High salinity yielded the maximum total fatty acid (FA) content (up to 65% by dry weight) in comparison to controls (˜10-25% total FAs). High pH x low salinity, low pH, and continuous light x CO2 yielded near maximum FA content (56%, 43%, and 42%, respectively). Nitrogen and/or phosphorus limitation and 12:12 (light:dark photoperiod) x CO 2 did not significantly enhance FA production (23% and 31%, respectively). Results were strain-specific with high intraspecific variation observed within each

  12. Stress

    Science.gov (United States)

    ... natural disaster. This type of stress can cause post-traumatic stress disorder (PTSD). Different people may feel stress in different ways. Some people experience digestive symptoms. Others may have headaches, sleeplessness, depressed mood, anger, ...

  13. Sublethal effect of imidacloprid on Solenopsis invicta (Hymenoptera: Formicidae) feeding, digging, and foraging behavior

    Science.gov (United States)

    There is increasing evidence that exposure to neonicotinoid insecticides at sublethal levels impairs colonies of honeybee and other pollinators. Recently, it was found that sublethal contamination with neonicotinoids also affect growth and behavior of ants. In this study, we exposed red imported fi...

  14. Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid

    NARCIS (Netherlands)

    Blacquiere, T.

    2010-01-01

    Imidacloprid is a commonly used systemic insecticide which can induce several sublethal effects. Previous research has not shown any increased mortality in bees that were fed with sublethal doses. However, there is very little research conducted with the focus on survival rate of honeybees in the

  15. Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts

    NARCIS (Netherlands)

    Ashauer, R.; Agatz, A.; Albert, C.; Ducrot, V.; Galic, N.G.; Hendriks, J.; Jager, T.; Kretschmann, A.; O'Connor, I.; Rubach, M.N.; Nyman, M.; Schmitt, W.; Stadnicka, J.; Brink, van den P.J.

    2011-01-01

    We report on the advantages and problems of using toxicokinetic-toxicodynamic (TKTD) models for the analysis, understanding, and simulation of sublethal effects. Only a few toxicodynamic approaches for sublethal effects are available. These differ in their effect mechanism and emphasis on linkages

  16. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    This study also evaluated the sublethal effects of cadmium, manganese, lead, zinc and iron in plasma samples utilising plasma electrolyte parameters as a biomarker using an albino mice model, M. musculus. Mice were subjected to sublethal concentrations of the selected heavy metals (1/10th of 96 hrLC50). Blood plasma ...

  17. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  18. Investigation into the potential of sub-lethal photodynamic antimicrobial chemotherapy (PACT) to reduce susceptibility of meticillin-resistant Staphylococcus aureus (MRSA) to antibiotics

    Science.gov (United States)

    Cassidy, C. M.; Donnelly, R. F.; Tunney, M. M.

    2009-06-01

    In PACT, a combination of a sensitising drug and visible light cause the selective destruction of microbial cells via singlet oxygen production. As singlet oxygen is a non-specific oxidizing agent and is only present during illumination, development of resistance to this treatment is thought to be unlikely. However, in response to oxidative stress, bacteria can up-regulate oxidative stress genes and associated antibiotic resistance genes. The up-regulation of these genes and potential transfer of genetic material may result in a resistant bacterial population. This study determined whether treatment of clinically isolated meticillin resistant Staphylococcus aureus (MRSA) strains with sub-lethal doses of methylene blue (MB) and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP)-PACT resulted in reduced susceptibility to antibiotics and previously lethal PACT. Exposure of strains to sub-lethal doses of photosensitizer in combination with light had no effect on susceptibility to previously lethal photosensitization. Furthermore, exposure to sub-lethal concentrations of both photosensitizers caused no significant changes in the minimum inhibitory concentration (MIC) for each strain tested. Any differences in susceptibility were not significant as they did not cross breakpoints between resistant and susceptible for any organism or antibiotic tested. Therefore, PACT remains an attractive alternative option for treatment of MRSA infections.

  19. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review.

    Science.gov (United States)

    Vyrides, Ioannis; Stuckey, David C

    2017-11-01

    This study reviews the addition of compatible solutes to biological systems as a strategy to counteract osmolarity and other environmental stresses. At high osmolarity many microorganisms accumulate organic solutes called "compatible solutes" in order to balance osmotic pressure between the cytoplasm and the environment. These organic compounds are called compatible solutes because they can function inside the cell without the need for special adaptation of the intracellular enzymes, and also serve as protein stabilizers in the presence of high ionic strength. Moreover, the compatible solutes strategy is regularly being employed by the cell, not only under osmotic stress at high salinity, but also under other extreme environmental conditions such as low temperature, freezing, heat, starvation, dryness, recalcitrant compounds and solvent stresses. The accumulation of these solutes from the environment has energetically a lower cost than de novo synthesis. Based on this cell mechanism several studies in the field of environmental biotechnology (most of them on biological wastewater treatment) employed this strategy by exogenously adding compatible solutes to the wastewater or medium in order to alleviate environmental stress. This current paper critically reviews and evaluates these studies, and examines the future potential of this approach. In addition to this, a strategy for the successful implementation of compatible solutes in biological systems is proposed.

  20. Species richness and diversity in different functional groups across environmental stress gradients : A model for marine rocky shores

    NARCIS (Netherlands)

    Scrosati, Ricardo A.; van Genne, Barbara; Heaven, Christine S.; Watt, Cortney A.

    We present a model predicting how the species richness and diversity within benthic functional groups should vary across the full environmental stress gradient across which a regional biota from marine rocky shores can occur. Built upon previous models, our model makes predictions for sessile

  1. "Survival in air" of the blue mussel Mytilus edulis L. as a sensitive response to pollution-induced environmental stress

    NARCIS (Netherlands)

    Eertman, R.H.M.; Wagenvoort, A.J.; Hummel, H.; Smaal, A.C.

    1993-01-01

    Mussels, Mytilus edulis, were exposed for periods of 6 weeks at various locations in Dutch coastal waters during 1989 and 1990. “Survival in air” showed to be a sensitive response parameter for indicating pollution induced environmental stress in transplanted mussels sampled from eight field sites.

  2. Inferences on the biochemical and environmental regulation of universal stress proteins from Schistosomiasis parasites

    Directory of Open Access Journals (Sweden)

    Mbah AN

    2013-05-01

    Full Text Available Andreas N Mbah,1,2 Ousman Mahmud,1 Omotayo R Awofolu,2 Raphael D Isokpehi11Center for Bioinformatics and Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA; 2Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South AfricaBackground: Human schistosomiasis is a freshwater snail-transmitted disease caused by parasitic flatworms of the Schistosoma genus. Schistosoma haematobium, Schistosoma mansoni, and Schistosoma japonicum are the three major species infecting humans. These parasites undergo a complex developmental life cycle, in which they encounter a plethora of environmental signals. The presence of genes encoding the universal stress protein (USP domain in the genomes of Schistosoma spp. suggests these flatworms are equipped to respond to unfavorable conditions. Though data on gene expression is available for USP genes, their biochemical and environmental regulation are incompletely understood. The identification of additional regulatory molecules for Schistosoma. USPs, which may be present in the human, snail, or water environments, could also be useful for schistosomiasis interventions.Methods: We developed a protocol that includes a visual analytics stage to facilitate integration, visualization, and decision making, from the results of sequence analyses and data collection on a set of 13 USPs from S. mansoni and S. japonicum.Results: Multiple sequence alignment identified conserved sites that could be key residues regulating the function of USPs of the Schistosoma spp. Based on the consistency and completeness of sequence annotation, we prioritized for further research the gene for a 184-amino-acid-long USP that is present in the genomes of the three human-infecting Schistosoma spp. Calcium, zinc, and magnesium ions were predicted to interact with the protein product of the gene.Conclusion: Given that the initial effects of

  3. Altered expression of iron regulatory proteins with aging is associated with transient hepatic iron accumulation after environmental heat stress.

    Science.gov (United States)

    Bloomer, Steven A; Han, Okhee; Kregel, Kevin C; Brown, Kyle E

    2014-01-01

    An increasing body of evidence suggests that dysregulation of iron metabolism contributes to age-related pathologies. We have previously observed increased hepatic iron with aging, and that environmental heat stress stimulates a further increase in iron and oxidative liver injury in old rats. The purpose of this study was to determine a mechanism for the increase in hepatic iron in old rats after heat stress. Young (6 mo) and old (24 mo) Fischer 344 rats were exposed to two heating bouts separated by 24 h. Livers were harvested after the second heat stress, and protein levels of the iron import protein, transferrin receptor-1 (TFR1), and the iron export protein, ferroportin (Fpn) were determined by immunoblot. In the nonheated condition, old rats had lower TFR1 expression, and higher Fpn expression. After heat stress, TFR1 declined in the old rats, and iron chelation studies demonstrated that this decline was dependent on a hyperthermia-induced increase in iron. TFR1 did not change in the young rats after heat stress. Since TFR1 is inversely regulated by iron, our results suggest that the increase in intracellular iron with aging and heat stress lower TFR1 expression. Fpn expression increased in both age groups after heat stress, but this response was delayed in old rats. This delay in the induction of an iron exporter suggests a mechanism for the increase in hepatic iron and oxidative injury after heat stress in aged organisms. © 2013.

  4. Chronic environmental stress and the temporal course of depression and panic disorder: A trait-state-occasion modeling approach.

    Science.gov (United States)

    Conway, Christopher C; Rutter, Lauren A; Brown, Timothy A

    2016-01-01

    Both acute stressful life events and ongoing strains are thought to confer vulnerability to emotional disorders. Unremitting stressful conditions may be particularly pathogenic, but prior research has struggled to delimit chronic versus transient stressful experiences. We aimed to isolate stable stressors-theorized to be indicators of a latent stress proneness trait-and to examine their effects on the temporal course of depression and panic disorder. We recruited 677 patients diagnosed with an emotional disorder and administered interviews for psychopathology and life stress 3 times over 12-month intervals. Trait-state-occasion modeling revealed that 74% of the variance in life stress was stable over the follow-up period. These stable stressors were associated with a more refractory course of depression and, to a smaller degree, panic disorder over time. In addition, neither gender nor participation in cognitive-behavioral therapy affected the persistence of environmental stress over the study time frame. We discuss implications of these findings for explaining depression recurrence, improving psychological interventions for emotional disorders, and the measurement and evaluation of stress proneness. (c) 2016 APA, all rights reserved.

  5. Can biotic indicators distinguish between natural and anthropogenic environmental stress in estuaries?

    Science.gov (United States)

    Tweedley, J. R.; Warwick, R. M.; Potter, I. C.

    2015-08-01

    Because estuaries are naturally stressed, due to variations in salinity, organic loadings, sediment stability and oxygen concentrations over both spatial and temporal scales, it is difficult both to set baseline reference conditions and to distinguish between natural and anthropogenic environmental stresses. This contrasts with the situation in marine coastal and offshore locations. A very large benthic macroinvertebrate dataset and matching concentrations for seven toxic heavy metals (i.e. Cr, Ni, Cu, Zn, Cd, Hg and Pb), compiled over three years as part of the UK's National Marine Monitoring Programme (NMMP) for 27 subtidal sites in 16 estuaries and 34 coastal marine sites in the United Kingdom, have been analysed. The results demonstrate that species composition and most benthic biotic indicators (number of taxa, overall density, Shannon-Wiener diversity, Simpson's index and AZTI's Marine Biotic Index [AMBI]) for sites in estuarine and coastal areas were significantly different, reflecting natural differences between these two environments. Shannon-Wiener diversity and AMBI were not significantly correlated either with overall heavy metal contaminant loadings or with individual heavy metal concentrations ('normalized' as heavy metal/aluminium ratios) in estuaries. In contrast, average taxonomic distinctness (Δ+) and variation in taxonomic distinctness (Λ+) did not differ significantly between estuarine and coastal environments, i.e. they were unaffected by natural differences between these two environments, but both were significantly correlated with overall heavy metal concentrations. Furthermore, Δ+ was correlated significantly with the Cu, Zn, Cd, Hg and Pb concentrations and Λ+ was correlated significantly with the Cr, Ni, Cu, Cd and Hg concentrations. Thus, one or both of these two taxonomic distinctness indices are significantly correlated with the concentrations for each of these seven heavy metals. These taxonomic distinctness indices are therefore

  6. Species richness and diversity across rocky intertidal elevation gradients in Helgoland: testing predictions from an environmental stress model

    Science.gov (United States)

    Scrosati, Ricardo A.; Knox, Amanda S.; Valdivia, Nelson; Molis, Markus

    2011-06-01

    Environmental stress affects species richness and diversity in communities, but the precise form of the relationship is unclear. We tested an environmental stress model (ESM) that predicts a unimodal pattern for total richness and diversity in local communities across the full stress gradient where a regional biota can occur. In 2008, we measured richness and diversity (considering all macrobenthic species) across the entire intertidal range on three rocky shores on Helgoland Island, Germany. Intertidal elevation is known to be positively related to abiotic stress. Since Helgoland is between the northern and southern biogeographic boundaries for the cold-temperate NE Atlantic intertidal biota, it exhibits low stress levels for this biota at low elevations and high stress at high elevations because of long (>6 h) emersion times. Thus, we predicted a unimodal trend for richness and diversity across elevation. On all three shores, richness increased from high to middle elevations, but remained similar between middle and low elevations. Diversity followed the same trend on one shore and different trends (although also non-unimodal) on the other two. Evenness explained the trend differences between richness and diversity. Overall, our study yielded little support for the ESM. Reasons for richness and diversity not decreasing at low elevations may be related to influences of mostly subtidal species, Helgoland's intertidal range, or sampling resolution. Our study also suggests that the ESM must be developed further to differentiate between richness and diversity. We offer recommendations to improve future ESM research using intertidal systems.

  7. Environmental Factors Contribute to β Cell Endoplasmic Reticulum Stress and Neo-Antigen Formation in Type 1 Diabetes

    Science.gov (United States)

    Marré, Meghan L.; Piganelli, Jon D.

    2017-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. There are many β cell proteins that are targeted by autoreactive T cells in their native state. However, recent studies have demonstrated that many β cell proteins are recognized as neo-antigens following posttranslational modification (PTM). Although modified neo-antigens are well-established targets of pathology in other autoimmune diseases, the effects of neo-antigens in T1D progression and the mechanisms by which they are generated are not well understood. We have demonstrated that PTM occurs during endoplasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to the high rate of insulin production in response to dynamic glucose sensing. In the context of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress and protein PTM do not cause T1D in every genetically susceptible individual, suggesting the contribution of additional factors. Indeed, many environmental factors, such as viral infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the mechanisms by which these factors lead to disease onset remain unknown. Since these environmental factors also cause ER stress, exposure to these factors may enhance production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological ER stress and the stress that is induced by environmental factors may lead to breaks in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This Hypothesis and Theory article summarizes what is currently known about ER stress and protein PTM in autoimmune diseases including T1D and proposes a role for

  8. Validation of Environmental Stress Index by Measuring Infrared Radiation as a Substitute for Solar Radiation in Indoor Workplaces

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2016-09-01

    Full Text Available Background The exposure of individuals to heat at different jobs warrants the use of heat stress evaluation indices. Objectives The aim of this study was to validate environmental stress index using an infrared radiation (IR measurement instrument as a substitute for pyranometer in indoor workplaces. Methods This study was conducted on 2303 indoor workstations in different industries in Isfahan, Iran, during July, August, and September in 2012. The intensity of the Infrared Radiation (IR (w/m2 was measured at five-centimeter distances in six different directions, above, opposite, right, left, behind and below the globe thermometer. Then, the dry globe temperature (Ta, wet globe temperature (Tnw, globe temperature (Tg and relative humidity (RH were also simultaneously measured. The data were analyzed using correlation and regression by the SPSS18 software. Results The study results indicate that a high correlation (r = 0.96 exists between the environmental stress index (ESI and the values of wet bulb globe temperature (P < 0.01. According to the following equation, WBGT = 1.086 × ESI - 1.846, the environmental stress index is able to explain 91% (R2 = 0.91 of the WBGT index variations (P < 0.01. Conclusions Based on the results, to study heat stress in indoor workplaces when the WBGT measurement instrument is not available and also in short-term exposures (shorter than 30 minutes when measuring the wet bulb globe temperature shows a considerable error, it is possible to calculate the environmental stress index and accordingly to the WBGT index, by measuring the parameters of dry bulb temperature (Ta, relative humidity (RH, and infrared radiation intensity that can be easily measured in a short time.

  9. Calcification intensity in planktonic Foraminifera reflects ambient conditions irrespective of environmental stress

    Science.gov (United States)

    Weinkauf, M. F. G.; Moller, T.; Koch, M. C.; Kučera, M.

    2013-10-01

    Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralization of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We took advantage of this natural experiment and investigated the reaction of calcification intensity, expressed as mean area density (MAD), of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126-121 ka) in a sediment core from the Levantine Basin. We observed a significant relationship between MAD and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface-dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at similar conditions during the present-day. These results indicate that the high-salinity environment of the glacial Mediterranean Sea prior to

  10. Calcification intensity in planktonic Foraminifera reflects ambient conditions irrespective of environmental stress

    Directory of Open Access Journals (Sweden)

    M. F. G. Weinkauf

    2013-10-01

    Full Text Available Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralization of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We took advantage of this natural experiment and investigated the reaction of calcification intensity, expressed as mean area density (MAD, of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka in a sediment core from the Levantine Basin. We observed a significant relationship between MAD and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface-dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at similar conditions during the present-day. These results indicate that the high-salinity environment of the glacial

  11. Environmental stress on establishment and growth in Fagus sylvatica L. and Quercus robur L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Loef, Magnus [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden). Southern Swedish Forest Research Centre

    1999-04-01

    In this thesis, the growth response to different environmental stresses in beech (Fagus sylvatica L.) and oak (Quercus robur L.) seedlings was studied in relation to site preparation and use of shelterwood. Growth and survival were compared between beech, oak and Norway spruce (Picea abies L. Karst.) seedlings under similar conditions. In a field experiment, with herbicide, herbicide plus fertilization and mowing as treatments, interference from herbaceous vegetation was mainly below ground. Furthermore, soil water is probably the growth factor of greatest importance for establishing beech and oak on fertile sites in southern Sweden. In pot experiments carried out in a climatic chamber both previous and current-year drought influenced growth in beech in the current year, and it was concluded that previous environmental conditions must be taken into consideration to understand growth of seedlings in the current year. Episodic drought resulted in long recovery periods in beech transpiration after rewatering, but also after-effects on transpiration. Thus, short periods of drought may still influence growth afterwards when the soil is rewetted. In field experiments, soil disturbance by patch scarification, mixing of humus with mineral soil and deep cultivation of soil did not increase growth in seedlings compared to untreated soil or where chemical vegetation control was carried out. When, vegetation was efficiently controlled by using a shelterwood of Norway spruce, survival of beech, oak and Norway spruce seedlings planted under the shelterwood trees was high. There was no difference in growth between beech and oak seedlings under the shelterwood. On an open site, oak had a shorter period of transplanting shock, higher growth during interference from vegetation and deeper roots than beech. Thus, beech need more intense site preparation for successful establishment. Herbivory by pine weevil was lower on beech and oak than on Norway spruce. Less efforts are therefore

  12. Environmental stress and reproduction in Drosophila melanogaster: starvation resistance, ovariole numbers and early age egg production

    Directory of Open Access Journals (Sweden)

    Soundararajan Usha

    2006-07-01

    Full Text Available Abstract Background The Y model of resource allocation predicts a tradeoff between reproduction and survival. Environmental stress could affect a tradeoff between reproduction and survival, but the physiological mechanisms underlying environmental mediation of the tradeoff are largely unknown. One example is the tradeoff between starvation resistance and early fecundity. One goal of the present study was to determine if reduced early age fecundity was indeed a robust indirect response to selection for starvation resistance, by investigation of a set of D. melanogaster starvation selected lines which had not previously been characterized for age specific egg production. Another goal of the present study was to investigate a possible relationship between ovariole number and starvation resistance. Ovariole number is correlated with maximum daily fecundity in outbred D. melanogaster. Thus, one might expect that a negative genetic correlation between starvation resistance and early fecundity would be accompanied by a decrease in ovariole number. Results Selection for early age female starvation resistance favored survival under food deprivation conditions apparently at the expense of early age egg production. The total number of eggs produced by females from selected and control lines was approximately the same for the first 26 days of life, but the timing of egg production differed such that selected females produced fewer eggs early in adult life. Females from lines selected for female starvation resistance exhibited a greater number of ovarioles than did unselected lines. Moreover, maternal starvation resulted in progeny with a greater number of ovarioles in both selected and unselected lines. Conclusion Reduced early age egg production is a robust response to laboratory selection for starvation survival. Ovariole numbers increased in response to selection for female starvation resistance indicating that ovariole number does not account for

  13. Biofilm formation by Fusarium oxysporum f. sp. cucumerinum and susceptibility to environmental stress.

    Science.gov (United States)

    Peiqian, Li; Xiaoming, Pu; Huifang, Shen; Jingxin, Zhang; Ning, Huang; Birun, Lin

    2014-01-01

    To the authors' knowledge, most studies on biofilm formation have focused on bacteria and yeasts. So far, biofilm formation by fungal plant pathogen has not been reported. In this study, the biofilm-forming capacity of Fusarium oxysporum f. sp. cucumerinum was evaluated. For biofilm quantification, a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay was used to observe metabolic activity. Fluorescence and confocal scanning laser microscopy revealed that the biofilms have a highly heterogeneous architecture composed of robust hyphae and extracellular polysaccharide materials. Additionally, the influence of physical factors on F. oxysporum biofilm formation and the susceptibility of biofilms to environmental stress was investigated. Biofilms were less susceptible to heat, cold, UV light and three fungicides than were their planktonic counterparts. Our findings may provide a novel perspective on the pathogenic mechanism associated with biofilms of F. oxysporum f. sp. cucumerinum. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. A Non-canonical Melanin Biosynthesis Pathway Protects Aspergillus terreus Conidia from Environmental Stress.

    Science.gov (United States)

    Geib, Elena; Gressler, Markus; Viediernikova, Iuliia; Hillmann, Falk; Jacobsen, Ilse D; Nietzsche, Sandor; Hertweck, Christian; Brock, Matthias

    2016-05-19

    Melanins are ubiquitous pigments found in all kingdoms of life. Most organisms use them for protection from environmental stress, although some fungi employ melanins as virulence determinants. The human pathogenic fungus Aspergillus fumigatus and related Ascomycetes produce dihydroxynaphthalene- (DHN) melanin in their spores, the conidia, and use it to inhibit phagolysosome acidification. However, biosynthetic origin of melanin in a related fungus, Aspergillus terreus, has remained a mystery because A. terreus lacks genes for synthesis of DHN-melanin. Here we identify genes coding for an unusual NRPS-like enzyme (MelA) and a tyrosinase (TyrP) that A. terreus expressed under conidiation conditions. We demonstrate that MelA produces aspulvinone E, which is activated for polymerization by TyrP. Functional studies reveal that this new pigment, Asp-melanin, confers resistance against UV light and hampers phagocytosis by soil amoeba. Unexpectedly, Asp-melanin does not inhibit acidification of phagolysosomes, thus likely contributing specifically to survival of A. terreus conidia in acidic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic Artemia model.

    Science.gov (United States)

    Norouzitallab, Parisa; Baruah, Kartik; Vandegehuchte, Michiel; Van Stappen, Gilbert; Catania, Francesco; Vanden Bussche, Julie; Vanhaecke, Lynn; Sorgeloos, Patrick; Bossier, Peter

    2014-08-01

    The notion that phenotypic traits emerging from environmental experiences are heritable remains under debate. However, the recent report of nonmendelian transgenerational epigenetic inheritance, i.e., the inheritance of traits not determined by the DNA sequence, might make such a phenomenon plausible. In our study, by carrying out common garden experiments, we could provide clear evidences that, on exposure to nonlethal heat shocks, a parental population of parthenogenetic (all female) Artemia (originating from one single female) experiences an increase in levels of Hsp70 production, tolerance toward lethal heat stress, and resistance against pathogenic Vibrio campbellii. Interestingly, these acquired phenotypic traits were transmitted to three successive generations, none of which were exposed to the parental stressor. This transgenerational inheritance of the acquired traits was associated with altered levels of global DNA methylation and acetylated histones H3 and H4 in the heat-shocked group compared to the control group, where both the parental and successive generations were reared at standard temperature. These results indicated that epigenetic mechanisms, such as global DNA methylation and histones H3 and H4 acetylation, have particular dynamics that are crucial in the heritability of the acquired adaptive phenotypic traits across generations. © FASEB.

  16. Introduction to the symposium "Comparative proteomics of environmental and pollution stress".

    Science.gov (United States)

    Tomanek, Lars

    2012-11-01

    The study of the proteome in response to environmental change is beginning to generate a number of new hypotheses about how organisms respond and adapt to a variety of stressors. The contributions to this symposium highlight how comparisons at the levels of species, populations, and tissues provide exciting new perspectives on the diversity of biochemical responses involved in the tolerance of stress. Despite limited genomic information, a number of studies of nonmodel organisms provide insights that are only accessible through a systems approach like proteomics. The realization that these systemic responses differ among closely related species, populations, and tissues illustrates the potential importance of the proteome to an organism's evolutionary response to a rapidly changing environment. Changes in an organism's proteome may occur as early as during the first stages of development and continue through acclimatization of the adult and adaptation of the following generations. A proteomic approach can also demonstrate how pollutants have systemic effects that may be counter-intuitive to expectations, emphasizing how isolating a single mode of action for a pollutant, e.g., xeno-androgen, is often inadequate. To continue with the progress made, we need a critical evaluation of the experimental designs used in proteomics studies, a reevaluation of some of the statistical analyses, and new technical advances in order to identify a greater number of proteins. The contributions to the current symposium offer the novice a starting point for assessing the potential of proteomics to generate novel hypotheses about how organisms interact with their environment.

  17. Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate.

    Science.gov (United States)

    Liu, Weilin; Liu, Wei; Ye, Aiqian; Peng, Shengfeng; Wei, Fuqiang; Liu, Chengmei; Han, Jianzhong

    2016-04-01

    In this study, liposomes (LPs), chitosan (CH) coated LPs, sodium alginate (AL) and CH multilayered LPs (AL-CH-LPs) were developed based on the electrostatic interaction between charged polysaccharides at a certain pH. The increase of polymer layers on LPs led to a monotonic increase in size from ∼600 (LPs) to ∼1810 nm (AL-CH-LPs) and negative charge from -12.5 to -25.2 mV, regarded as a consequence of the formation of gradually expanded structures by cationic CH and anionic AL. The environmental stress including pH, storage and ionic strength (10-200 mM NaCl) had significant impact on the appearance and the particle size of the double-layered liposome (AL-CH-LPs). Furthermore, LPs showed the highest release rate of hydrophilic model ingredient (vitamin C) under gastrointestinal conditions, while the polymers had a capacity to reduce the vitamin C release in simulated intestinal fluid. This work provided useful information on the potential application of CH and AL based delivery systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae).

    Science.gov (United States)

    Connon, Richard E; Geist, Juergen; Pfeiff, Janice; Loguinov, Alexander V; D'Abronzo, Leandro S; Wintz, Henri; Vulpe, Christopher D; Werner, Inge

    2009-12-15

    The delta smelt (Hypomesus transpacificus) is a pelagic fish species listed as endangered under both the USA Federal and Californian State Endangered Species Acts and considered an indicator of ecosystem health in its habitat range, which is limited to the Sacramento-San Joaquin estuary in California, USA. Anthropogenic contaminants are one of multiple stressors affecting this system, and among them, current-use insecticides are of major concern. Interrogative tools are required to successfully monitor effects of contaminants on the delta smelt, and to research potential causes of population decline in this species. We have created a microarray to investigate genome-wide effects of potentially causative stressors, and applied this tool to assess effects of the pyrethroid insecticide esfenvalerate on larval delta smelt. Selected genes were further investigated as molecular biomarkers using quantitative PCR analyses. Exposure to esfenvalerate affected swimming behavior of larval delta smelt at concentrations as low as 0.0625 mug.L-1, and significant differences in expression were measured in genes involved in neuromuscular activity. Alterations in the expression of genes associated with immune responses, along with apoptosis, redox, osmotic stress, detoxification, and growth and development appear to have been invoked by esfenvalerate exposure. Swimming impairment correlated significantly with expression of aspartoacylase (ASPA), an enzyme involved in brain cell function and associated with numerous human diseases. Selected genes were investigated for their use as molecular biomarkers, and strong links were determined between measured downregulation in ASPA and observed behavioral responses in fish exposed to environmentally relevant pyrethroid concentrations. The results of this study show that microarray technology is a useful approach in screening for, and generation of molecular biomarkers in endangered, non-model organisms, identifying specific genes that can be

  19. Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae

    Directory of Open Access Journals (Sweden)

    Wintz Henri

    2009-12-01

    Full Text Available Abstract Background The delta smelt (Hypomesus transpacificus is a pelagic fish species listed as endangered under both the USA Federal and Californian State Endangered Species Acts and considered an indicator of ecosystem health in its habitat range, which is limited to the Sacramento-San Joaquin estuary in California, USA. Anthropogenic contaminants are one of multiple stressors affecting this system, and among them, current-use insecticides are of major concern. Interrogative tools are required to successfully monitor effects of contaminants on the delta smelt, and to research potential causes of population decline in this species. We have created a microarray to investigate genome-wide effects of potentially causative stressors, and applied this tool to assess effects of the pyrethroid insecticide esfenvalerate on larval delta smelt. Selected genes were further investigated as molecular biomarkers using quantitative PCR analyses. Results Exposure to esfenvalerate affected swimming behavior of larval delta smelt at concentrations as low as 0.0625 μg.L-1, and significant differences in expression were measured in genes involved in neuromuscular activity. Alterations in the expression of genes associated with immune responses, along with apoptosis, redox, osmotic stress, detoxification, and growth and development appear to have been invoked by esfenvalerate exposure. Swimming impairment correlated significantly with expression of aspartoacylase (ASPA, an enzyme involved in brain cell function and associated with numerous human diseases. Selected genes were investigated for their use as molecular biomarkers, and strong links were determined between measured downregulation in ASPA and observed behavioral responses in fish exposed to environmentally relevant pyrethroid concentrations. Conclusions The results of this study show that microarray technology is a useful approach in screening for, and generation of molecular biomarkers in endangered

  20. Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi.

    Science.gov (United States)

    Medina, Angel; Schmidt-Heydt, Markus; Rodríguez, Alicia; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2015-08-01

    This paper examines the impact that single and interacting environmental stress factors have on tolerance mechanisms, molecular ecology and the relationship with secondary metabolite production by a group of mycotoxigenic species of economic importance. Growth of these fungi (Aspergillus flavus, A.ochraceus, A.carbonarius, Penicillium nordicum and P. verrucosum) is influenced by water and temperature interactions and type of solute used to induce water stress. Such abiotic stresses are overcome by the synthesis of increased amounts of low molecular weight sugar alcohols, especially glycerol and erythritol, to enable them to remain active under abiotic stress. This is accompanied by increased expression of sugar transporter genes, e.g., in A. flavus, which provides the nutritional means of tolerating such stress. The optimum conditions of water activity (a w) × temperature stress for growth are often different from those for secondary metabolite production. The genes for toxin production are clustered together and their relative expression is influenced by abiotic interacting stress factors. For example., A. flavus synthesises aflatoxins under water stress in non-ionic solutes. In contrast, P. nordicum specifically occupies a high salt (0.87 a w = 22% NaCl) niche such as cured meats, and produces ochratoxin A (OTA). There is differential and temporal expression of the genes in the secondary metabolite clusters in response to a w × temperature stress. We have used a microarray and integrated data on growth, relative expression of key genes in the biosynthetic pathways for secondary metabolite production and toxin production using a mixed growth model. This was used to correlate these factors and predict the toxin levels produced under different abiotic stress conditions. This system approach to integrate these different data sets and model the relationships could be a powerful tool for predicting the relative toxin production under extreme stress conditions

  1. Radish (Raphanus sativus L) - a model for studying plant responses to air pollutants and other environmental stresses

    Energy Technology Data Exchange (ETDEWEB)

    Kostkarick, R.; Manning, W.J. (Technischer Ueberwachungs-Verein Sudwest, Filderstadt (Germany). Fachgruppe fuer Oekologie)

    1993-01-01

    The use of [ital Raphanus sativus L.] as a model crop for studies on plant response to environmental stresses is reviewed with emphasis on the effects of different atmospheric pollutants (O[sub 3], SO[sub 2], NO[sub 2], acidic precipitation) and their combinations. Responses to temperature, light supply, water stress, and atmospheric CO[sub 2] are also studied and discussed. In addition, the references reviewed are evaluated in terms of their experimental protocols on growth conditions and recommendations for optimal ranges of environmental and cultural variables, i.e. light, temperature, nutrient supply are given. Its distinct pattern of biomass partitioning, the small dimensions along with short and easy culture make radish an excellent experimental plant. The fleshy below-ground storage organ, formed by the hypocotyl and upper radicle, acts as the major sink during vegetative development. Abundant assimilate supply due to elevated levels of CO[sub 2] along with high irradiation frequently promote hypocotyl growth more than shoot growth, whereas under conditions of stress shoot growth is maintained at the expense of the hypocotyl. This makes the hypocotyl:shoot ratio of radish a very sensitive and suitable indicator for various environmental stresses. Potential weaknesses and short-comings of radish in its role as a model crop, particularly the high variability of injury and growth responses, are discussed along with possible solutions. Future research needs are derived from the summarized results presented and from some disparities among findings within the literature reviewed.

  2. International workshop on integrated approaches to the study of environmental stress on plant growth, February 10--12, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Monney, H.A. (Stanford Univ., CA (USA). Dept. of Biological Sciences); Winner, W.E. (Oregon State Univ., Corvallis, OR (USA). Dept. of General Science); Pell, E.J. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Plant Pathology)

    1988-01-01

    We proposed a workshop designed to evaluate current approaches to the study of stresses on plant growth. The purpose of this meeting was to use a workshop format to examine, discuss, and evaluate the available approaches for developing a comprehensive understanding of stress responses. We focused on the responses of plants to multiple stresses, the responses of a number of species with life history strategies ranging from annual plants to evergreen plants, and the links between stress-caused changes in metabolism and changes in growth. The meeting was organized to initiate the development of a unified approach for determining plant responses to stresses. This report consists of a discussion of concepts underlying the need for developing a unified approach to the study of stress effects on plant growth. In addition, we discuss the time frame for environmental change and plant response, as well as the processes by which plants compensate to stresses. We describe the organization of a scientific conference and outline plans for publishing a book based upon ideas developed from the conference. Finally, we present conclusions drawn from this effort.

  3. Sublethal effects of waterborne herbicides in tropical freshwater fish.

    Science.gov (United States)

    Rossi, Stéfani Cibele; Dreyer da Silva, Manuela; Piancini, Laercio Dante Stein; Oliveira Ribeiro, Ciro Alberto; Cestari, Marta Margarete; Silva de Assis, Helena Cristina

    2011-12-01

    The study evaluated the sublethal effects of the herbicides glyphosate (Roundup) and diuron (Hexaron) and the mixture of them, used extremely in agriculture, through biomarkers in fish. The glutathione S-transferase activity increased (74%) and catalase activity decreased (37%) at the higher exposure concentration of Hexaron in comparison to the control group, suggesting an activation of this metabolism route. Membrane damage was observed at the higher exposure of Roundup and in the mixture group compared to the control group, which can be related to the nuclear alterations observed in these exposed groups. The cholinesterase activity was also inhibited (37%) in mixture group compared to the control group and no gill morphology damage was found. The results suggested a potential synergic effect in some analysed parameters.

  4. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould.

    Science.gov (United States)

    Nevarez, Laurent; Vasseur, Valérie; Debaets, Stella; Barbier, Georges

    2010-01-01

    Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things?

    Science.gov (United States)

    Lesser, M. P.

    2013-03-01

    Historically, the response of marine invertebrates to their environment, and environmentally induced stress, has included some measurement of their physiology or metabolism. Eventually, this approach developed into comparative energetics and the construction of energetic budgets. More recently, coral reefs, and scleractinian corals in particular, have suffered significant declines due to climate change-related environmental stress. In addition to a number of physiological, biophysical and molecular measurements to assess "coral health," there has been increased use of energetic approaches that have included the measurement of specific biochemical constituents (i.e., lipid concentrations) as a proxy for energy available to assess the potential outcomes of environmental stress on corals. In reading these studies, there appears to be some confusion between energy budgets and carbon budgets. Additionally, many assumptions regarding proximate biochemical composition, metabolic fuel preferences and metabolic quotients have been made, all of which are essential to construct accurate energy budgets and to convert elemental composition (i.e., carbon) to energy equivalents. Additionally, models of energetics such as the metabolic theory of ecology or dynamic energy budgets are being applied to coral physiology and include several assumptions that are not appropriate for scleractinian corals. As we assess the independent and interactive effects of multiple stressors on corals, efforts to construct quantitative energetic budgets should be a priority component of realistic multifactor experiments that would then improve the use of models as predictors of outcomes related to the effects of environmental change on corals.

  6. One stimulus-Two responses: Host and parasite life-history variation in response to environmental stress.

    Science.gov (United States)

    Gleichsner, Alyssa M; Cleveland, Jessica A; Minchella, Dennis J

    2016-11-01

    Climate change stressors will place different selective pressures on both parasites and their hosts, forcing individuals to modify their life-history strategies and altering the distribution and prevalence of disease. Few studies have investigated whether parasites are able to respond to host stress and respond by varying their reproductive schedules. Additionally, multiple environmental stressors can limit the ability of a host to respond adaptively to parasite infection. This study compared both host and parasite life-history parameters in unstressed and drought-stressed environments using the human parasite, Schistosoma mansoni, in its freshwater snail intermediate host. Snail hosts infected with the parasite demonstrated a significant reproductive burst during the prepatent period (fecundity compensation), but that response was absent in a drought-stressed environment. This is the first report of the elimination of host fecundity compensation to parasitism when exposed to additional environmental stress. More surprisingly, we found that infections in drought-stressed snails had significantly higher parasite reproductive outputs than infections in unstressed snails. The finding suggests that climate change may alter the infection dynamics of this human parasite. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  7. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts.

    Science.gov (United States)

    Han, Pei; Li, Wei; Yang, Jin; Shang, Ching; Lin, Chiou-Hong; Cheng, Wei; Hang, Calvin T; Cheng, Hsiu-Ling; Chen, Chen-Hao; Wong, Johnson; Xiong, Yiqin; Zhao, Mingming; Drakos, Stavros G; Ghetti, Andrea; Li, Dean Y; Bernstein, Daniel; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-07-01

    Chromatin structure is determined by nucleosome positioning, histone modifications, and DNA methylation. How chromatin modifications are coordinately altered under pathological conditions remains elusive. Here we describe a stress-activated mechanism of concerted chromatin modification in the heart. In mice, pathological stress activates cardiomyocytes to express Brg1 (nucleosome-remodeling factor), G9a/Glp (histone methyltransferase), and Dnmt3 (DNA methyltransferase). Once activated, Brg1 recruits G9a and then Dnmt3 to sequentially assemble repressive chromatin-marked by H3K9 and CpG methylation-on a key molecular motor gene (Myh6), thereby silencing Myh6 and impairing cardiac contraction. Disruption of Brg1, G9a or Dnmt3 erases repressive chromatin marks and de-represses Myh6, reducing stress-induced cardiac dysfunction. In human hypertrophic hearts, BRG1-G9a/GLP-DNMT3 complex is also activated; its level correlates with H3K9/CpG methylation, Myh6 repression, and cardiomyopathy. Our studies demonstrate a new mechanism of chromatin assembly in stressed hearts and novel therapeutic targets for restoring Myh6 and ventricular function. The stress-induced Brg1-G9a-Dnmt3 interactions and sequence of repressive chromatin assembly on Myh6 illustrates a molecular mechanism by which the heart epigenetically responds to environmental signals. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016. Published by Elsevier B.V.

  8. Environmental stress and vestibular inputs modulate cardiovascular responses to orthostasis in hypertensive rats.

    Science.gov (United States)

    Raffai, Gábor; Csekő, Csongor; Nádasy, György; Kocsis, László; Dézsi, László; Hunyor, Stephen N; Monos, Emil

    2018-01-01

    The frequent accompaniment of hypertension by orthostatic circulatory disorders prompted us to investigate the effect of repeated and sustained head-up and head-down tilt positions on cardiovascular responses in spontaneously hypertensive rats vs. Wistar rats using radiotelemetric implants. Repeated orthostasis caused a transient elevation in blood pressure (7.3±1.7 mmHg) and heart rate (39.7±10.5 BPM), while repeated antiorthostasis led only to reversible tachycardia (85.6±11.7-54.3±16.8 BPM) in spontaneously hypertensive rats. In contrast to the Wistar rats, sustained tilt failed to affect the blood pressure or heart rate in spontaneously hypertensive rats because the environmental stress of being placed in horizontal tilt cages prior to the sustained tilt test induced marked changes in cardiovascular parameters. Non-specific stress responses were eliminated both by the anxiolytic diazepam and a sub-anesthetic dose of chloralose. Unlike diazepam, chloralose amplified the orthostatic pressor responses in the Wistar rats. In contrast to diazepam preventing the pressor response and associated tachycardia in spontaneously hypertensive rats, chloralose elicited this effect during both sustained orthostasis (36.0±7.3 mmHg, 63.7±21.8 BPM) and antiorthostasis (42.9±10.9 mmHg, 82.8±25.4 BPM), with a reduced baroreflex sensitivity. However, during sustained orthostasis, removal of the vestibular input led to a depressor response with bradycardia (12.5±3.2 mmHg, 59.3±17.3 BPM), whereas antiorthostasis only reduced blood pressure (20.5±7.1 mmHg) in the spontaneously hypertensive rats. We conclude that repeated tilts induce a transient pressor response and/or tachycardia in spontaneously hypertensive rats. Cardiovascular parameters are suppressed by diazepam, whereas chloralose evokes both blood pressure and heart rate responses during sustained tilts, which are primarily elicited by baroreflex suppression in hypertension. Vestibular inputs

  9. Adolescent environmental enrichment prevents behavioral and physiological sequelae of adolescent chronic stress in female (but not male) rats.

    Science.gov (United States)

    Smith, Brittany L; Morano, Rachel L; Ulrich-Lai, Yvonne M; Myers, Brent; Solomon, Matia B; Herman, James P

    2017-11-22

    The late adolescent period is characterized by marked neurodevelopmental and endocrine fluctuations in the transition to early adulthood. Adolescents are highly responsive to the external environment, which enhances their ability to adapt and recover from challenges when given nurturing influences, but also makes them vulnerable to aberrant development when exposed to prolonged adverse situations. Female rats are particularly sensitive to the effects of chronic stress in adolescence, which manifests as passive coping strategies and blunted hypothalamo-pituitary adrenocortical (HPA) stress responses in adulthood. We sought to intervene by exposing adolescent rats to environmental enrichment (EE) immediately prior to and during chronic stress, hypothesizing that EE would minimize or prevent the long-term effects of stress that emerge in adult females. To test this, we exposed male and female rats to EE on postnatal days (PND) 33-60 and implemented chronic variable stress (CVS) on PND 40-60. CVS consisted of twice-daily unpredictable stressors. Experimental groups included: CVS/unenriched, unstressed/EE, CVS/EE and unstressed/unenriched (n = 10 of each sex/group). In adulthood, we measured behavior in the open field test and forced swim test (FST) and collected blood samples following the FST. We found that environmental enrichment given during the adolescent period prevented the chronic stress-induced transition to passive coping in the FST and reversed decreases in peak adrenocortical responsiveness observed in adult females. Adolescent enrichment had little to no effect on males or unstressed females tested in adulthood, indicating that beneficial effects are specific to females that were exposed to chronic stress.

  10. Selection of Reference Genes for qRT-PCR Analysis of Gene Expression in Stipa grandis during Environmental Stresses.

    Directory of Open Access Journals (Sweden)

    Dongli Wan

    Full Text Available Stipa grandis P. Smirn. is a dominant plant species in the typical steppe of the Xilingole Plateau of Inner Mongolia. Selection of suitable reference genes for the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR is important for gene expression analysis and research into the molecular mechanisms underlying the stress responses of S. grandis. In the present study, 15 candidate reference genes (EF1 beta, ACT, GAPDH, SamDC, CUL4, CAP, SNF2, SKIP1, SKIP5, SKIP11, UBC2, UBC15, UBC17, UCH, and HERC2 were evaluated for their stability as potential reference genes for qRT-PCR under different stresses. Four algorithms were used: GeNorm, NormFinder, BestKeeper, and RefFinder. The results showed that the most stable reference genes were different under different stress conditions: EF1beta and UBC15 during drought and salt stresses; ACT and GAPDH under heat stress; SKIP5 and UBC17 under cold stress; UBC15 and HERC2 under high pH stress; UBC2 and UBC15 under wounding stress; EF1beta and UBC17 under jasmonic acid treatment; UBC15 and CUL4 under abscisic acid treatment; and HERC2 and UBC17 under salicylic acid treatment. EF1beta and HERC2 were the most suitable genes for the global analysis of all samples. Furthermore, six target genes, SgPOD, SgPAL, SgLEA, SgLOX, SgHSP90 and SgPR1, were selected to validate the most and least stable reference genes under different treatments. Our results provide guidelines for reference gene selection for more accurate qRT-PCR quantification and will promote studies of gene expression in S. grandis subjected to environmental stress.

  11. Sublethal impact of short term exposure to the organophosphate pesticide azamethiphos in the marine mollusc Mytilus edulis.

    Science.gov (United States)

    Canty, M N; Hagger, J A; Moore, R T B; Cooper, L; Galloway, T S

    2007-04-01

    Concern has been raised that the increased use of pesticides in intensive aquaculture practices may cause adverse sublethal effects to non-target aquatic species. Azamethiphos is an organophosphate (OP) pesticide used to combat sea lice infestations in farmed salmonids. Here, the sublethal impact on the blue mussel, Mytilus edulis, of short term exposure to azamethiphos was determined. The testing regime included biomarkers of exposure (acetylcholinesterase activity), cytotoxicity (neutral red retention), immune function (phagocytic index) and physiological condition (feeding rate). The distribution and sensitivity of M. edulis acetylcholinesterase to inhibition by azamethiphos was first determined, yielding IC(50) values of 0.736 and 1.30 mg l(-1) for gill and haemolymph, respectively. Exposure of mussels to 0.1 mg l(-1) azamethiphos for periods of up to 24h caused a significant reduction in acetylcholinesterase activity in both the haemolymph (Pgill (P<0.002), alteration in cell viability (P<0.02) and decrease in phagocytic index (P<0.03). The feeding rate remained unaffected. The results support the hypothesis that, in addition to its neurotoxic effects, azamethiphos can modulate haemocyte function and immune defence in M. edulis at environmentally relevant concentrations after only a few hours.

  12. Sub-lethal effects of essential oil of Lippia sidoides on drywood termite Cryptotermes brevis (Blattodea: Termitoidea).

    Science.gov (United States)

    Santos, Abraão Almeida; de Oliveira, Bruna Maria Santos; Melo, Carlisson Ramos; Lima, Ana Paula Santana; Santana, Emile Dayara Rabelo; Blank, Arie Fitzgerald; Picanço, Marcelo Coutinho; Araújo, Ana Paula Albano; Cristaldo, Paulo Fellipe; Bacci, Leandro

    2017-11-01

    The drywood termite Cryptotermes brevis (Walker, 1853) (Kalotermitidae) is one of the most important wood structural pest in the world. Substances from the secondary metabolism of plants (e.g., essential oils) have been considered an environmentally safer form of control for urban pests, such as termites. In the present study, we analyzed the lethal and sub-lethal effects of essential oil of Lippia sidoides and its major components on C. brevis pseudergates in two routes of exposure (contact and fumigation). The essential oil of L. sidoides and thymol were more toxic to C. brevis pseudergates when applied by contact (LD50 = 9.33 and 8.20µgmg(-1), respectively) and by fumigation (LC50 = 9.10 and 23.6µLL(-1), respectively). In general, treatments changed the individual and collective behaviors of C. brevis pseudergates, as well as the displacement and walking speed. The essential oil of L. sidoides and its major components showed a high potential to control C. brevis pseudergates, due to the bioactivity in the two routes of exposure and the sub-lethal effects on the behavior and walking, important activities for the cohesion of C. brevis colonies. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action

    Energy Technology Data Exchange (ETDEWEB)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda A. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada); Alaee, Mehran [Environment Canada, 867 Lakeshore Rd., P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Simpson, Andre J. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada)

    2011-12-15

    Nuclear magnetic resonance (NMR) - based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms. - Highlights: > NMR-based earthworm metabolomic analysis of the toxic mode of action of various environmental contaminants. > Organic chemicals with different toxic modes of action resulted in varied metabolomic responses for E. fetida. > NMR-based metabolomics differentiates between the different modes of action associated with sub-lethal toxicity. - {sup 1}H NMR metabolomics was used to identify potential biomarkers of organic contaminant exposure in Eisenia fetida earthworms.

  14. 'Four Seasons' in an animal rescue centre; classical music reduces environmental stress in kennelled dogs.

    Science.gov (United States)

    Bowman, A; Scottish Spca; Dowell, F J; Evans, N P

    2015-05-01

    On admission to rescue and rehoming centres dogs are faced with a variety of short- and long-term stressors including novelty, spatial/social restriction and increased noise levels. Animate and inanimate environmental enrichment techniques have been employed within the kennel environment in an attempt to minimise stress experienced by dogs. Previous studies have shown the potential physiological and psychological benefits of auditory stimulation, particularly classical music, within the kennel environment. This study determined the physiological/psychological changes that occur when kennelled dogs are exposed to long-term (7 days) auditory stimulation in the form of classical music through assessment of effects on heart rate variability (HRV), salivary cortisol and behaviour. The study utilised a cross over design in which two groups were exposed to two consecutive 7 day treatments; silence (control) and classical music (test). Group A was studied under silent conditions followed by 7 days of test conditions during which a fixed classical music playlist was played from 10:00-16:30 h. Group B received treatment in the reverse order. Results showed that auditory stimulation induced changes in HRV and behavioural data indicative of reduced stress levels in dogs in both groups (salivary cortisol data did not show any consistent patterns of change throughout the study). Specifically, there was a significant increase in HRV parameters such as μRR, STDRR, RMSSD, pNN50, RRTI, SD1 and SD2 and a significant decrease in μHR and LF/HF from the first day of silence (S1) to the first day of music (M1). Similarly, examination of behavioural data showed that dogs in both groups spent significantly more time sitting/lying and silent and less time standing and barking during auditory stimulation. General Regression Analysis (GRA) of the change in HRV parameters from S1 to M1 revealed that male dogs responded better to auditory stimulation relative to female. Interestingly, HRV and

  15. Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress.

    Science.gov (United States)

    Ghanta, Srijani; Datta, Riddhi; Bhattacharyya, Dipto; Sinha, Ragini; Kumar, Deepak; Hazra, Saptarshi; Mazumdar, Aparupa Bose; Chattopadhyay, Sharmila

    2014-07-01

    The role of glutathione (GSH) in plant defense is an established fact. However, the association of GSH with other established signaling molecules within the defense signaling network remains to be evaluated. Previously we have shown that GSH is involved in defense signaling network likely through NPR1-dependent salicylic acid (SA)-mediated pathway. In this study, to gain further insight, we developed chloroplast-targeted gamma-glutamylcysteine synthetase (γ-ECS) overexpressed transgenic Nicotiana tabacum (NtGp line) and constructed a forward subtracted cDNA (suppression subtractive hybridization (SSH)) library using NtGp line as a tester. Interestingly, in addition to SA-related transcripts like pathogenesis-related protein 1a (PR1a) and SAR8.2 m/2l, 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase), a key enzyme of ethylene (ET) biosynthesis, was identified in the SSH library. Besides, transcription factors like WRKY transcription factor 3 (WRKY3), WRKY1 and ethylene responsive factor 4 (ERF4), associated with SA and ET respectively, were also identified thus suggesting an interplay of GSH with ET and SA. Furthermore, proteomic profiling of NtGp line, performed by employing two-dimensional gel electrophoresis (2-DE), corroborated with the transcriptomic profile and several defense-related proteins like serine/threonine protein kinase, and heat shock 70 protein (HSP70) were identified with increased accumulation. Fascinatingly, induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) was also noted thus demonstrating the active involvement of GSH with ET. Protein gel blot analysis confirmed the enhanced accumulation of ACC oxidase in NtGp line. Together, our data revealed that GSH is involved in the synergistic multiple steps crosstalk through ET as well as SA to combat environmental stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Feeding behaviour of an intertidal snail: Does past environmental stress affect predator choices and prey vulnerability?

    Science.gov (United States)

    Gestoso, Ignacio; Arenas, Francisco; Olabarria, Celia

    2015-03-01

    Predation is one of the most important factors in determining structure and dynamics of communities on intertidal rocky shores. Such regulatory role may be of special relevance in novel communities resulting from biological invasions. Non-indigenous species frequently escape natural predators that limit their distribution and abundance in the native range. However, biological interactions also can limit the establishment and spread of non-native populations. There is a growing concern that climate change might affect predator-prey interactions exacerbating the ecological impacts of non-indigenous species. However, mechanisms underlying such interactions are poorly understood in marine ecosystems. Here, we explored if past environmental stress, i.e., increasing temperature and decreasing pH, could affect the vulnerability of two mussel prey, the native Mytilus galloprovincialis and the non-indigenous Xenostrobus securis, to predation by the native dogwhelk Nucella lapillus. In addition, we evaluated the consequences on the feeding behaviour of N. lapillus. First, we exposed monospecific assemblages of each mussel species to combined experimental conditions of increasing temperature and decreasing pH in mesocosms for 3 weeks. Then assemblages were placed on a rocky shore and were enclosed in cages with dogwhelks where they remained for 3 weeks. Despite the lack of preference, consumption was much greater on the native than on the invasive mussels, which barely were consumed by dogwhelks. However, this trend was diverted when temperature increased. Thus, under a coastal warming scenario shifts in dogwhelks feeding behaviour may help to contain invader's populations, especially in estuarine areas where these predators are abundant.

  17. Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum.

    Science.gov (United States)

    Somjaipeng, Supunnika; Medina, Angel; Magan, Naresh

    2016-08-01

    This study examined the effect of different elicitors (seven, different concentrations) and environmental factors (water activity (aw), pH) on taxol production by strains of two endophytic fungi, Paraconiothyrium variabile and Epicoccum nigrum, isolated from temperate yew trees. A defined liquid broth medium was modified with elicitors, solute aw depressors at different pH values. For P. variabile, the best elicitor was salicylic acid at 50mg/l which gave a taxol yield of 14.7±4.8μg/l. The study of synergistic effects between elicitor, aw and pH on taxol production showed that the highest yield of taxol (68.9±11.9μg/l) was produced under modified ionic stress of 0.98aw (KCl) at pH 5 when supplemented with 20mg/l of salicylic acid. For E. nigrum, serine was the best elicitor which increased yield significantly (29.6 fold) when KCL was used as the aw depressor (0.98aw) at pH 5.0 with 30mg/l of serine. The maximum taxol yield produced by E. nigrum was 57.1±11.8μg/l. Surface response models were used to build contour maps to determine the conditions for maximum and marginal conditions for taxol yield in relation to the best elicitor and aw, and the best pH for the first time. This will be beneficial for identifying key parameters for improvement of taxol yields by endophytic fungi. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-03-01

    Full Text Available The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding.

  19. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice

    Science.gov (United States)

    Park, Hyun Ji; Lee, Sang Sook; You, Young Nim; Yoon, Dae Hwa; Kim, Beom-Gi; Ahn, Jun Cheul; Cho, Hye Sun

    2013-01-01

    The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding. PMID:23485991

  20. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale.

    Science.gov (United States)

    Xu, Yan; Xu, Jian; Mao, Daqing; Luo, Yi

    2017-01-01

    Our previous study demonstrated that high levels of antibiotic resistance genes (ARGs) in the Haihe River were directly attributed to the excessive use of antibiotics in animal agriculture. The antibiotic residues of the Xiangjiang River determined in this study were much lower than those of the Haihe River, but the relative abundance of 16 detected ARGs (sul1, sul2 and sul3, qepA, qnrA, qnrB, qnrD and qnrS, tetA, tetB, tetW, tetM, tetQ and tetO, ermB and ermC), were as high as the Haihe River particularly in the downstream of the Xiangjiang River which is close to the extensive metal mining. The ARGs discharged from the pharmaceutical wastewater treatment plant (PWWTP) are a major source of ARGs in the upstream of the Xiangjiang River. In the downstream, selective stress of heavy metals rather than source release had a significant influence on the distinct distribution pattern of ARGs. Some heavy metals showed a positive correlation with certain ARG subtypes. Additionally, there is a positive correlation between individual ARG subtypes and heavy metal resistance genes, suggesting that heavy metals may co select the ARGs on the same plasmid of antibiotic resistant bacteria. The co-selection mechanism between specific metal and antibiotic resistance was further confirmed by these isolations encoding the resistance genotypes to antibiotics and metals. To our knowledge, this is the first study on the fate and distribution of ARGs under the selective pressure exerted by heavy metals in the catchment scale. These results are beneficial to understand the fate, and to discern the contributors of ARGs from either the source release or the selective pressure by sub-lethal levels of environmental stressors during their transport on a river catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Natural selection and adaptive evolution of leptin in the ochotona family driven by the cold environmental stress.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available BACKGROUND: Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha, endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China and the leptin sequences of plateau pikas (O. curzonia from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase alpha and beta subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka and amino acid substitution (Aa, whereas altitude does not significantly affect synonymous substitution (Ks, Ka and Aa. CONCLUSIONS/SIGNIFICANCE: Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to

  2. Haematological, blood biochemical and histopathological effects of sublethal cadmium and lead concentrations in common carp

    Directory of Open Access Journals (Sweden)

    M.K.Khalesi

    2017-06-01

    Full Text Available The present research aimed at examining the effects of common carp (Cyprinus carpio exposure to sublethal concentrations of two non-essential heavy metals: cadmium (Cd: 8.4 mg/L and lead (Pb: 6.2 mg/L for 15 days to evaluate occurring biochemical and haematological effects. The examined parameters included haematocrit (Hct, haemoglobin (Hb, lymphocytes (Lym, neutrophils (Neu, total protein (TP, albumin (Alb, immunoglobulin M (IgM, glucose, red and white blood cells counts (RBC & WBC, mean corpuscular volume (MCV, mean corpuscular haemoglobin (MCH, and mean corpuscular haemoglobin concentration (MCHC. Exposure to both metals significantly (P<0.05 reduced the amounts of WBC and MCHC. MCV values decreased (P<0.05 after the Pb treatment but MCV estimates with Cd exposure showed no differences. MCH levels increased in both treatments (P<0.05 whereas Hct, Hb, RBC, Lym, and Neu following both metal exposures were almost similar to those in the control. IgM values were elevated in fish contaminated with both Pb and Cd (P<0.05. The exposed fish showed fusion of gill lamellae, vessel dilatation, hyperaemia, and hyperplasia of gill epithelial cells whereas muscle histology remained unchanged. The observed responses can be secondary to low heavy metals concentrations reflecting the trigger of stress reactions in affected fish

  3. Inhibition of acetylcholinesterase in guppies (Poecilia reticulata) by chlorpyrifos at sublethal concentrations: Methodological aspects

    Energy Technology Data Exchange (ETDEWEB)

    van der Wel, H.; Welling, W.

    1989-04-01

    Acetylcholinesterase activity is a potential biochemical indicator of toxic stress in fish and a sensitive parameter for testing water for the presence of organophosphates. A number of methodological aspects regarding the determination of the in vivo effect of chlorpyrifos on acetylcholinesterase in guppies have been investigated. It was found that with acetylthiocholine as a substrate, the contribution of pseudocholinesterase to the total cholinesterase activity can be neglected. Protection of acetylcholinesterase of guppies exposed to chlorpyrifos from additional, artifactual in vitro enzyme inhibition during homogenization is necessary. Very low concentrations of acetone in the exposure medium, resulting from dilution of the stock solution of chlorpyrifos in acetone, can result in large decreases in the oxygen content of this medium. This may affect the uptake rate of the toxic compound and, thereby, cholinesterase inhibition. Very low, sublethal concentrations of chlorpyrifos result in high inhibition levels of acetylcholinesterase (80-90%) in guppies within 2 weeks of continuous exposure. Recovery of the enzyme activity occurs after the exposed animals are kept in clean medium for 4 days, but the rate of recovery is considerably lower than the rate of inhibition.

  4. Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions

    DEFF Research Database (Denmark)

    Ørsted, Michael; Malmendal, Anders; Muñoz, Joaquin

    2017-01-01

    sexual dimorphism in stressful environment might be caused by a lower investment in sex specific characteristics in harsh environments, and our results provide support for the longstanding idea that ecological factors are important for shaping sexual dimorphism and possibly sexual selection.......Strong sexual dimorphism is commonly observed across species and e.g. trade-offs between reproduction and maintenance are thought to explain this dimorphism. Here we test how the metabolic and functional phenotypic responses to varying types of environmental stress differ in male and female...... Drosophila melanogaster (Diptera: Drosophilidae), and how this impacts the magnitude of sexual dimorphism. Experimental stressors that we exposed flies to during development were heat stress, poor nutrition, high acidity, high levels of ammonia and ethanol. Emerged male and female flies from the different...

  5. Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants.

    Science.gov (United States)

    Batista, Rita; Fonseca, Cátia; Planchon, Sébastien; Negrão, Sónia; Renaut, Jenny; Oliveira, M Margarida

    2017-09-06

    The approval of genetically modified (GM) crops is preceded by years of intensive research to demonstrate safety to humans and environment. We recently showed that in vitro culture stress is the major factor influencing proteomic differences of GM vs. non-GM plants. This made us question the number of generations needed to erase such "memory". We also wondered about the relevance of alterations promoted by transgenesis as compared to environment-induced ones. Here we followed three rice lines (1-control, 1-transgenic and 1-negative segregant) throughout eight generations after transgenesis combining proteomics and transcriptomics, and further analyzed their response to salinity stress on the F6 generation. Our results show that: (a) differences promoted during genetic modification are mainly short-term physiological changes, attenuating throughout generations, and (b) environmental stress may cause far more proteomic/transcriptomic alterations than transgenesis. Based on our data, we question what is really relevant in risk assessment design for GM food crops.

  6. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum.

    Science.gov (United States)

    Amaradasa, B Sajeewa; Everhart, Sydney E

    2016-01-01

    when repeated, only one isolate had higher EC50 while most isolates showed no difference. Results of this support the hypothesis that sublethal fungicide stress increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collectively, this work will aid our understanding how non-lethal fungicide exposure may affect genomic variation, which may be an important mechanism of novel trait emergence, adaptation, and evolution for clonal organisms.

  7. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum.

    Directory of Open Access Journals (Sweden)

    B Sajeewa Amaradasa

    experiment, and when repeated, only one isolate had higher EC50 while most isolates showed no difference. Results of this support the hypothesis that sublethal fungicide stress increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collectively, this work will aid our understanding how non-lethal fungicide exposure may affect genomic variation, which may be an important mechanism of novel trait emergence, adaptation, and evolution for clonal organisms.

  8. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum

    Science.gov (United States)

    Amaradasa, B. Sajeewa

    2016-01-01

    , and when repeated, only one isolate had higher EC50 while most isolates showed no difference. Results of this support the hypothesis that sublethal fungicide stress increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collectively, this work will aid our understanding how non-lethal fungicide exposure may affect genomic variation, which may be an important mechanism of novel trait emergence, adaptation, and evolution for clonal organisms. PMID:27959950

  9. Environmental Growing Conditions in Five Production Systems Induce Stress Response and Affect Chemical Composition of Cocoa (Theobroma cacao L.) Beans.

    Science.gov (United States)

    Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke

    2017-11-29

    Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.

  10. Fluctuating asymmetry and developmental instability in Protoreaster nodosus (Chocolate Chip Sea Star as a biomarker for environmental stress

    Directory of Open Access Journals (Sweden)

    D. J. V. Trono

    2015-06-01

    Full Text Available Fluctuating asymmetry (FA, pertains to small and random departures from perfect symmetry of an organism's bilateral traits and has been used as a measurement of developmental instability and as a potential indicator of stress in populations. It measures the variations from symmetry of a symmetrical structure whose sides are said to be genetically identical, with similar history of gene activity and experiencing the same environment. Symmetries are potentially the basis for studies on FA. Hence, this study assessed the potential of FA as a reliable developmental instability and environmental stress indicator in five-fold dihedral symmetrical Protoreaster nodosus (Chocolate chip sea fish from three (3 different sites (Linamon, Lanao del Norte; Initao, Misamis Oriental and Jasaan, Misamis Oriental. FA for each population from every site was measured for comparison. In this study, anatomical landmarks were subjected to Procrustes superimposition and Principal Component Analysis (PCA using "Symmetry and Asymmetry in Geometric Data" (SAGE program. Results showed highly significant FA and significant DA for population from Jasaan and Linamon where habitat disturbance due to anthropogenic activities were prevalent. Thus, experienced more stress compared to the other populations, suggesting that significant variation in size or left-right side of each individual could be a product of genotype-environment interaction. Moreover, insignificant FA and high DA was obtained from Initao (protected seascape area which indicated that variation among individual genotypes and asymmetry in phenotypes is mostly induced by genetics under less stressful environment. Significant FA and increase FA present inability of species to buffer stress in its developmental pathways and have implications on species fitness. Hypothesis assumes that fluctuating asymmetry has costs, reflects the quality of individuals and the level of genetic and environmental stress experienced by

  11. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour: e0140814

    National Research Council Canada - National Science Library

    Gonalons, Carolina Mengoni; Farina, Walter Marcelo

    2015-01-01

    .... As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period...

  12. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour

    National Research Council Canada - National Science Library

    Mengoni Goñalons, Carolina; Farina, Walter Marcelo

    2015-01-01

    .... As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period...

  13. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    affected DEGs associated with cellular signaling and immune response; 70 mGy radiation affected cell cycle regulation and DNA damage repair, cellular energy production; and 280 mGy radiation affected pathways related to cell cycle regulation and DNA repair, mitochondrial dysfunction and immune functions. Twelve genes representative of key pathways found in this study were verified by qPCR. Potential common MoAs of low-dose gamma radiation may include induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation (OXPHOS). Although common MoAs were proposed, a number of DEGs and pathways were still found to be dose-specific, potentially indicating multiple mechanisms of action (MOAs) of low-dose gamma radiation in fish. In addition, plasma glucose displayed an apparent increase with increasing radiation doses, although the results were not significantly different from the control. These findings suggested that sublethal doses of gamma radiation may cause dose-dependent transcriptional changes in the liver of Atlantic salmon after short-term exposure. The current study predicted multiple MoA for gamma radiation and may aid future impact assessment of environmental radioactivity in fish.

  14. Genetic diversity loss associated to high mortality and environmental stress during the recruitment stage of a coral reef fish

    Science.gov (United States)

    Pini, J.; Planes, S.; Rochel, E.; Lecchini, D.; Fauvelot, C.

    2011-06-01

    We investigated the short-term impact of environmental-induced stress on survival and neutral genetic diversity of recently settled juveniles of a damselfish, Dascyllus aruanus, using spatiotemporal caging experiments in various natural environmental conditions in Moorea (French Polynesia). Juveniles' mortality was followed at five study sites and overall four experiments, mortality rates ranged from 0 to 45%. Mortality rate and average daily water temperature were positively correlated ( P = 0.018). Juveniles' mortality rate and allelic richness estimated from ten microsatellite loci were negatively correlated ( P = 0.046). Together, an overdominance of heterozygotes was observed within hostile environments. These results suggest that an allelic richness loss may be expected as a direct consequence of unfavorable environmental conditions. Thus, a worrisome scenario on demographic and genetic consequences may be expected from habitat degradation in the context of global change and human pressure increases.

  15. Environmental limitation on fitness: Reproduction of laboratory mice in benign and stressful ("tropical") conditions.

    Science.gov (United States)

    Beilharz, R G; Mitpaiboon, K

    1994-01-12

    In general, the environment limits the fitness of individual animals, and environmental limitation leads to selection for "optimal", intermediate values for all traits that matter, whether imposed by natural or artificial selection. We compared the reproduction of laboratory mice in a normal and a hot, humid environment to test this claim. Thirty males and 150 females from a non-inbred line adapted to normal conditions were mated twice (the second time after rerandomisation) to produce the experimental animals. Individual experimental mice from each litter were allocated from weaning (3 weeks) either to the normal or hot environment. At 9 to 12 weeks of age these mice were paired, 1 male with 1 female, until the female had a chance to have 2 litters. 354 pairs in the normal and 362 pairs in the hot environment were mated. All living progeny were weaned at 3 weeks. Average values of reproductive traits, phenotypic correlations between traits, and heritability estimates for many traits were found in each environment. Negative correlations (trade-offs) between litter number and weight of individual progeny in both environments demonstrated clearly that fitness was limited even in the normal laboratory situation. All quantitative measures of reproduction were lower in the hot room showing that it was more stressful. Yet size of individual young and their survival was not reduced. This may be an adaptive mechanism restricted to housemice. Lower heritability estimates in first than in second parities for quantitative measures of litter size show that while the mouse is still growing she has fewer resources available for reproduction, making her more susceptible to environmental stress. This challenges accepted wisdom that animal breeders should select their animals when they are young. They are least likely to respond then. We believe that natural selection causes animals always to push their fitness (reproduction and survival of the progeny) against a limit set by their

  16. Supporting data for comparative proteomic analysis of Listeria monocytogenes ATCC 7644 exposed to a sublethal concentration of nisin

    Directory of Open Access Journals (Sweden)

    Kendi Nishino Miyamoto

    2015-06-01

    Full Text Available Here we provide the LC–MS/MS data from a comparative analysis of Listeria monocytogenes ATCC 7644 treated and non-treated with a sublethal concentration of nisin (10−3 mg/mL. Protein samples were analyzed by multidimensional protein identification technology (MudPIT approach, in an off-line configuration. The raw MS/MS data allowed the detection of 49,591 spectra which resulted in 576 protein identifications. After Scaffold validation, 179 proteins were identified with high confidence. A label-free quantitative analysis based of normalized spectral abundance factor (NSAF was used and 13 proteins were found differentially expressed between nisin-treated and non-treated cells. Gene ontology analysis of differentially expressed proteins revealed that most of them are correlated to metabolic process, oxidative stress response mechanisms and molecular binding. A detailed analysis and discussion of these data may be found in Miyamoto et al. [1].

  17. Sublethal responses of the common mussel (Mytilus galloprovincialis) exposed to sodium hypochlorite and Mexel432 used as antifoulants.

    Science.gov (United States)

    López-Galindo, Cristina; Vargas-Chacoff, Luis; Nebot, Enrique; Casanueva, José F; Rubio, Daniel; Mancera, Juan M; Solé, Montserrat

    2010-07-01

    The sublethal effects of two antifoulants currently used in power plant cooling systems were assessed in the common mussel Mytilus galloprovincialis. The concentrations of sodium hypochlorite (NaClO) and an alkyl amine surfactant (Mexel432) assayed, were within the range of those currently discharged by power plants into receiving waters. Enzymatic activities and oxidative stress responses were measured in digestive gland and gill of mussels after 1, 3, 7 and 14 days of exposure, as well as histopathology in gill tissue. Both antifoulants caused a pathological response in gills and the activities of the enzymes glutathione S-transferase, catalase, acetylcholinesterase and the lipid peroxidation levels were also affected. Exposure to NaClO caused a greater toxicological response than Mexel432. In both treatments, gills appeared to be the most affected tissue, although Mexel432 also significantly affected digestive gland parameters. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Supporting data for comparative proteomic analysis of Listeria monocytogenes ATCC 7644 exposed to a sublethal concentration of nisin

    Science.gov (United States)

    Miyamoto, Kendi Nishino; Mariante Monteiro, Karina; da Silva Caumo, Karin; Rodrigues Lorenzatto, Karina; Bunselmeyer Ferreira, Henrique; Brandelli, Adriano

    2015-01-01

    Here we provide the LC–MS/MS data from a comparative analysis of Listeria monocytogenes ATCC 7644 treated and non-treated with a sublethal concentration of nisin (10−3 mg/mL). Protein samples were analyzed by multidimensional protein identification technology (MudPIT) approach, in an off-line configuration. The raw MS/MS data allowed the detection of 49,591 spectra which resulted in 576 protein identifications. After Scaffold validation, 179 proteins were identified with high confidence. A label-free quantitative analysis based of normalized spectral abundance factor (NSAF) was used and 13 proteins were found differentially expressed between nisin-treated and non-treated cells. Gene ontology analysis of differentially expressed proteins revealed that most of them are correlated to metabolic process, oxidative stress response mechanisms and molecular binding. A detailed analysis and discussion of these data may be found in Miyamoto et al. [1]. PMID:26217729

  19. Chloride and sulphate toxicity to Hydropsyche exocellata (Trichoptera, Hydropsychidae): Exploring intraspecific variation and sub-lethal endpoints

    Energy Technology Data Exchange (ETDEWEB)

    Sala, Miquel [Centre Tecnològic Forestal de Catalunya - CTFC, Solsona, Catalunya (Spain); Faria, Melissa [CESAM, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Sarasúa, Ignacio [Technische Universität München, Munich, Bayern (Germany); Barata, Carlos [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona (Spain); Bonada, Núria [Grup de Recerca Freshwater Ecology and Management (FEM), Departament d' Ecologia, Facultat de Biologia, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Catalonia (Spain); Grup de Recerca Freshwater Ecology and Management (FEM), Departament d' Ecologia, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona - UB, Diagonal 643, 08028 Barcelona, Catalonia (Spain); Brucet, Sandra [Aquatic Ecology Group, BETA Tecnio Centre, University of Vic - Central University of Catalonia, Vic, Catalonia (Spain); Catalan Institution for Research and Advanced Studies, ICREA, Barcelona 08010 (Spain); Llenas, Laia; Ponsá, Sergio [Aquatic Ecology Group, BETA Tecnio Centre, University of Vic - Central University of Catalonia, Vic, Catalonia (Spain); Prat, Narcís [Grup de Recerca Freshwater Ecology and Management (FEM), Departament d' Ecologia, Facultat de Biologia, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Catalonia (Spain); Soares, Amadeu M.V.M. [CESAM, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro (Portugal); and others

    2016-10-01

    The rivers and streams of the world are becoming saltier due to human activities. In spite of the potential damage that salt pollution can cause on freshwater ecosystems, this is an issue that is currently poorly managed. Here we explored intraspecific differences in the sensitivity of freshwater fauna to two major ions (Cl{sup −} and SO{sub 4}{sup 2−}) using the net-spinning caddisfly Hydropsyche exocellata Dufour 1841 (Trichoptera, Hydropsychidae) as a model organism. We exposed H. exocellata to saline solutions (reaching a conductivity of 2.5 mS cm{sup −1}) with Cl{sup −}:SO{sub 4}{sup 2−} ratios similar to those occurring in effluents coming from the meat, mining and paper industries, which release dissolved salts to rivers and streams in Spain. We used two different populations, coming from low and high conductivity streams. To assess toxicity, we measured sub-lethal endpoints: locomotion, symmetry of the food-capturing nets and oxidative stress biomarkers. According to biomarkers and net building, the population historically exposed to lower conductivities (B10) showed higher levels of stress than the population historically exposed to higher conductivities (L102). However, the differences between populations were not strong. For example, net symmetry was lower in the B10 than in the L102 only 48 h after treatment was applied, and biomarkers showed a variety of responses, with no discernable pattern. Also, treatment effects were rather weak, i.e. only some endpoints, and in most cases only in the B10 population, showed a significant response to treatment. The lack of consistent differences between populations and treatments could be related to the high salt tolerance of H. exocellata, since both populations were collected from streams with relatively high conductivities. The sub-lethal effects tested in this study can offer an interesting and promising tool to monitor freshwater salinization by combining physiological and behavioural bioindicators

  20. Stress for Stress Tolerance? A Fundamentally New Approach in Mammalian Embryology

    DEFF Research Database (Denmark)

    Pribenszky, Csaba; Vajta, Gabor; Molnár, Miklós

    2010-01-01

    of parthenogenetically activated oocytes. Although cellular and subcellular mechanisms supposedly contributing in these processes require further research, the new principle, i.e. to improve the stress tolerance by a defined sublethal stress may outline a completely new strategy in mammalian embryology, as well...

  1. The spectral response of Buxus sempervirens to different types of environmental stress - A laboratory experiment

    Science.gov (United States)

    de Jong, Steven M.; Addink, Elisabeth A.; Hoogenboom, Priscilla; Nijland, Wiebe

    2012-11-01

    The European Mediterranean regions are expected to encounter drier summer conditions and warmer temperatures for the winter of +2 °C and of +5 °C for the summer in the next six decennia. As a result the natural vegetation will face harsher conditions due to lower water availability, longer summer droughts and higher temperatures resulting in plant stress conditions. To monitor vegetation conditions like stress and leaf area index dynamics in our study area in Mediterranean France we use earth observation techniques like imaging spectroscopy. To assist image analysis interpretation we carried out a laboratory experiment to investigate the spectral and visible response of Buxus sempervirens, a common Mediterranean species, to five different types of stress: drought, drought-and-heat, light deprivation, total saturation and chlorine poisoning. For 52 days plants were subjected to stress. We collected data on the visible and spectral signs, and calculated thirteen vegetation indices. The plant's response time to different stress types varied from 10 to 32 days. Spectroscopic techniques revealed plant stress up to 15 days earlier than visual inspection. Visible signs of stress of the plants included curling and shrinking of the leaves, de-colouring of the leaves, leaves becoming breakable, opening up of the plant's canopy and sagging of the branches. Spectral signs of stress occurred first in the water absorption bands at 1450 and 1940 nm, followed by reduced absorption in the visible wavelengths, and next by reduced reflectance in near infrared. Light deprivation did not result in any stress signs, while drought, drought and heat and chlorine poisoning resulted in significant stress. The spectral response did not show differences for different stress types. Analysis of the vegetation indices identified the Carter-2 (R695/R760), the Red-Green Index (R690/R550) and the Vogelman-2 (R734 - R747)/(R715 + R726) as the best performing ones to identify stress. The lab

  2. Micro-Environmental Stress Induces Src-Dependent Activation of Invadopodia and Cell Migration in Ewing Sarcoma

    Directory of Open Access Journals (Sweden)

    Kelly M. Bailey

    2016-08-01

    Full Text Available Metastatic Ewing sarcoma has a very poor prognosis and therefore new investigations into the biologic drivers of metastatic progression are key to finding new therapeutic approaches. The tumor microenvironment is highly dynamic, leading to exposure of different regions of a growing solid tumor to changes in oxygen and nutrient availability. Tumor cells must adapt to such stress in order to survive and propagate. In the current study, we investigate how Ewing sarcoma cells respond to the stress of growth factor deprivation and hypoxia. Our findings reveal that serum deprivation leads to a reversible change in Ewing cell cytoskeletal phenotypes. Using an array of migration and invasion techniques, including gelatin matrix degradation invadopodia assays, we show that exposure of Ewing sarcoma cells to serum deprivation and hypoxia triggers enhanced migration, invadopodia formation, matrix degradation and invasion. Further, these functional changes are accompanied by and dependent on activation of Src kinase. Activation of Src, and the associated invasive cell phenotype, were blocked by exposing hypoxia and serum-deprived cells to the Src inhibitor dasatinib. These results indicate that Ewing sarcoma cells demonstrate significant plasticity in response to rapidly changing micro-environmental stresses that can result from rapid tumor growth and from necrosis-causing therapies. In response to these stresses, Ewing cells transition to a more migratory and invasive state and our data show that Src is an important mediator of this stress response. Our data support exploration of clinically available Src inhibitors as adjuvant agents for metastasis prevention in Ewing sarcoma.

  3. Modification and functional adaptation of the MBF1 gene family in the lichenized fungus Endocarpon pusillum under environmental stress.

    Science.gov (United States)

    Wang, Yanyan; Wei, Xinli; Huang, Jenpan; Wei, Jiangchun

    2017-11-27

    The multiprotein-bridging factor 1 (MBF1) gene family is well known in archaea, non-lichenized fungi, plants, and animals, and contains stress tolerance-related genes. Here, we identified four unique mbf1 genes in the lichenized fungi Endocarpon spp. A phylogenetic analysis based on protein sequences showed the translated MBF1 proteins of the newly isolated mbf1 genes formed a monophyletic clade different from other lichen-forming fungi and Ascomycota groups in general, which may reflect the evolution of the biological functions of MBF1s. In contrast to the lack of function reported in yeast, we determined that lysine114 in the deduced Endocarpon pusillum MBF1 protein (EpMBF1) had a specific function that was triggered by environmental stress. Further, the Endocarpon-specific C-terminus of EpMBF1 was found to participate in stress tolerance. Epmbf1 was induced by a number of abiotic stresses in E. pusillum and transgenic yeast, and its stress-resistant ability was stronger than that of the yeast mbf1. These findings highlight the evolution and function of EpMBF1 and provide new insights into the co-evolution hypothesis of MBF1 and TATA-box-binding proteins.

  4. The combined effect of clothianidin and environmental stress on the behavioral and reproductive function in male mice.

    Science.gov (United States)

    Hirano, Tetsushi; Yanai, Shogo; Omotehara, Takuya; Hashimoto, Rie; Umemura, Yuria; Kubota, Naoto; Minami, Kiichi; Nagahara, Daichi; Matsuo, Eiko; Aihara, Yoshiko; Shinohara, Ryota; Furuyashiki, Tomoyuki; Mantani, Youhei; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Hoshi, Nobuhiko

    2015-10-01

    Neonicotinoids, some of the most widely used pesticides in the world, act as agonists to the nicotinic acetylcholine receptors (nAChRs) of insects, resulting in death from abnormal excitability. Neonicotinoids unexpectedly became a major topic as a compelling cause of honeybee colony collapse disorder, which is damaging crop production that requires pollination worldwide. Mammal nAChRs appear to have a certain affinity for neonicotinoids with lower levels than those of insects; there is thus rising concern about unpredictable adverse effects of neonicotinoids on vertebrates. We hypothesized that the effects of neonicotinoids would be enhanced under a chronic stressed condition, which is known to alter the expression of targets of neonicotinoids, i.e., neuronal nAChRs. We performed immunohistochemical and behavioral analyses in male mice actively administered a neonicotinoid, clothianidin (CTD; 0, 10, 50 and 250 mg/kg/day), for 4 weeks under an unpredictable chronic stress procedure. Vacuolated seminiferous epithelia and a decrease in the immunoreactivity of the antioxidant enzyme glutathione peroxidase 4 were observed in the testes of the CTD+stress mice. In an open field test, although the locomotor activities were not affected, the anxiety-like behaviors of the mice were elevated by both CTD and stress. The present study demonstrates that the behavioral and reproductive effects of CTD become more serious in combination with environmental stress, which may reflect our actual situation of multiple exposure.

  5. Multiple environmental stress tests show no common phenotypes shared among contemporary epidemic strains of Salmonella enterica.

    Science.gov (United States)

    Kang, Min-Su; Besser, Thomas E; Hancock, Dale D; Call, Douglas R

    2007-05-01

    Phenotypic traits of coexisting epidemic and nonepidemic strains of Salmonella enterica serovars Typhimurium and Newport were compared. Different stress conditions were relatively more or less favorable for the epidemic strains. Transcriptional analysis identified specific upregulated genes during defined stress conditions, but there were no common traits shared by epidemic serovars.

  6. Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses.

    Science.gov (United States)

    Herrera-Rodríguez, María Begoña; Pérez-Vicente, Rafael; Maldonado, José-María

    2007-01-01

    In sunflower, asparagine synthetase (AS; EC 6.3.5.4) is encoded by a small family of three genes (HAS1, HAS1.1 and HAS2) that are differentially regulated by light, carbon and nitrogen availability. In this study, the response of each gene to various stress conditions was examined by Northern analysis with gene-specific probes in leaves and roots. The expression of HAS1 and HAS1.1 genes was induced by osmotic stress (300 mM mannitol), salt stress (150 mM NaCl), and heavy-metal stress (20 microM CuSO(4)), more in roots than in leaves. The expression of HAS2 was not significantly altered by stress treatments. The positive response of HAS1 and HAS1.1 genes to osmotic and salt stresses occurred in the light, in contrast to that previously found in unstressed plants. Measurements of sucrose and total free amino acid contents in leaves and roots indicate that the expression of root HAS1 and HAS1.1 genes in stressed plants is not under metabolic control by the intracellular C/N ratio, suggesting the involvement of some specific stress factor(s). Growth of plants at 40 degrees C for 12h negatively affected the expression of HAS1 and HAS1.1 but not that of HAS2.

  7. Virtual Special Issue Preface: Forest Response to Environmental Stress: Impacts and Adaptation

    Science.gov (United States)

    Steven McNulty; Enzai Du; Elena Paoletti

    2017-01-01

    The current distribution of forest typeswas largely established at the beginning of the Holocene epoch (approximately 12,000 BCE), but forests are constantly in flux. Many regional scale stresses (e.g., drought, heat, fire, and insect) and even a few multi-regional or global stresses (e.g., 8200 BCE cooling, or the medievalwarming period) have occurred over the past 12...

  8. Environmental Stress and Atopic Dermatitis: Cure with Steroid-Free Treatment and Mutual Trust in a Good Life Style

    Science.gov (United States)

    Kimata, H.

    Atopic Dermatitis (AD) is a chronic inflammatory skin diseasewith severe itching. The exact causes for AD still remain to be elucidated. However, there are at least following 3 causes: 1) allergy, 2) bacterial infection, and 3) environmental stress. These 3 causes are mixed in AD, and consequently symptoms of AD are very complex. In addition, patients with AD are reluctant to take steroid ointment treatment. This is due to the fact that steroid is an anti-inflammatory and immunosuppressive drug. Thus steroid ointment treatment only temporally improved AD by reduction of inflammation, while it failed to cure bacterial infection. Patients had to apply steroid ointment for long-term, which caused many side effects, including enhancement of IgE production, aggravation of skin infection, and rebound phenomenon. Rebound was aggravation of symptoms upon cessation of steroid ointment use. Enhancement of IgE production augmented allergic responses, while aggravation of skin infecti on worsened skin symptoms. Collectively, lone-term use of steroid ointment complicated AD instead of cure. Patients with AD suffered from these side effects, and they did not trust steroid treatment. Recently, tacrolimus ointment was widely used instead of steroid ointment. However, tacrolimus was more potent immunosuppressive drug, and US FDA warned cancer concern. Therefore, steroid- and tacrolimus-free treatment was considered safer and ideal. Patients with AD were susceptible to stress, which worsened symptoms. Recently, new environmental stress emerged, and patients with AD were suffering from them. In this article, I describe the effect of environmental stress on allergic responses, and explain the details of cases of AD with steroid-free treatment and mutual trust, which resulted in cure of AD.

  9. The relationship between motor proficiency and mental health outcomes in young adults: A test of the Environmental Stress Hypothesis.

    Science.gov (United States)

    Rigoli, D; Kane, R T; Mancini, V; Thornton, A; Licari, M; Hands, B; McIntyre, F; Piek, J

    2017-06-01

    Growing evidence has highlighted the importance of motor proficiency in relation to psychosocial outcomes including self-perceived competence in various domains, perceived social support, and emotional areas such as anxiety and depression. The Environmental Stress Hypothesis-elaborated (Cairney, Rigoli, & Piek, 2013) is a proposed theoretical framework for understanding these relationships and recent studies have begun examining parts of this model using child and adolescent populations. However, the extent to which the relationships between these areas exist, persist or change during early adulthood is currently unclear. The current study aimed to investigate the Environmental Stress Hypothesis in a sample of 95 young adults aged 18-30years and examined the mediating role of physical self-worth and perceived social support in the relationship between motor proficiency and internalising symptoms. The McCarron Assessment of Neuromuscular Development (McCarron, 1997) was used to assess motor proficiency, the Depression Anxiety Stress Scale (Lovibond & Lovibond, 1995) provided a measure of internalising symptoms, and the Physical Self Perceptions Profile (Fox & Corbin, 1989) and the Multidimensional Scale of Perceived Social Support (Zimet, Dahlem, Zimet, & Farley, 1988) were used to investigate the possible mediating role of physical self-worth and perceived social support respectively. Potential confounding variables such as age, gender and BMI were also considered in the analysis. Structural Equation Modelling revealed that perceived social support mediated the relationship between motor proficiency and internalising symptoms, whereas, the mediating role of physical self-worth was non-significant. The current results provide support for part of the model pathways as described in the Environmental Stress Hypothesis and suggest an important relationship between motor proficiency and psychosocial outcomes in young adults. Specifically, the results support previous

  10. Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort.

    Science.gov (United States)

    Sun, Kelian; Cui, Yuehua; Hauser, Bernard A

    2005-11-01

    Environmental stress dramatically reduces plant reproduction. Previous results showed that placing roots in 200 mM NaCl for 12 h caused 90% of the developing Arabidopsis ovules to abort (Sun et al. in Plant Physiol 135:2358-2367, 2004). To discover the molecular responses that occur during ovule abortion, gene expression was monitored using Affymetrix 24k genome arrays. Transcript levels were measured in pistils that were stressed for 6, 12, 18, and 24 h, then compared with the levels in healthy pistils. Over the course of this experiment, a total of 535 salt-responsive genes were identified. Cluster analysis showed that differentially expressed genes exhibited reproducible changes in expression. The expression of 65 transcription factors, some of which are known to be involved in stress responses, were modulated during ovule abortion. In flowers, salt stress led to a 30-fold increase in Na+ ions and modest, but significant, decreases in the accumulation of other ions. The expression of cation exchangers and ion transporters were induced, presumably to reestablish ion homeostasis following salt stress. Genes that encode enzymes that detoxify reactive oxygen species (ROS), including ascorbate peroxidase and peroxidase, were downregulated after ovules committed to abort. These changes in gene expression coincided with the synthesis of ROS in female gametophytes. One day after salt stress, ROS spread from the gametophytes to the maternal chalaza and integuments. In addition, genes encoding proteins that regulate ethylene responses, incl