WorldWideScience

Sample records for subjects including chemistry

  1. The integration of the contents of the subject Physics-Chemistry (I in Biology-Chemistry specialty

    Directory of Open Access Journals (Sweden)

    M. Sc. Luis AZCUY LORENZ

    2017-12-01

    Full Text Available This work is the result of a research task developed in the Natural Sciences Education Department during 2013-2014 academic year, and it emerged from the necessity of solving some insufficiencies in the use of the real potentialities offered by the content of the subject Physics-Chemistry (I, that is part of the curriculum of the Biology-Chemistry career. Its main objective is to offer a set of exercises to contribute to achieve the integration of contents from the subject Physics-chemistry (I in the mentioned career at «Ignacio Agramonte Loynaz» University of Camaguey. The exercises proposed are characterized for being related to the real practice and to other subjects of the career. Their implementation through review lessons, partial tests and final evaluations during the formative experiment made possible a better academic result in the learners overall performance.

  2. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  3. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  4. The relationship between teacher-related factors and students' attitudes towards secondary school chemistry subject in Bureti district, Kenya

    Directory of Open Access Journals (Sweden)

    Salome Chepkorir

    2014-12-01

    Full Text Available This paper examines the relationship between teacher-related factors and student’s attitudes towards Chemistry subject in secondary schools in Kenya. The paper is based on a study conducted in Bureti District in Kericho County, Kenya. This paper highlights issues on the teaching methods used by chemistry teachers, the teachers’ availability to attend to various needs of students on the subject, their use of teaching and learning resources in teaching, teachers’ personal levels of skills and knowledge of the subject matter in Chemistry and the impact of students’ negative attitudes towards Chemistry on teachers’ effectiveness. The research design used in the study was descriptive survey. The target population comprised Form Four students in ten selected secondary schools in Bureti District of Rift Valley Province Kenya. Stratified random sampling technique was used to select the study sample. Schools were selected from the following categories: Girls’ schools, Boys’ schools and Co-educational schools. Simple random sampling was used to select the respondents from Form Four classes as well as a teacher in each school. In all, one hundred and eighty-nine students and ten teachers filled the questionnaires. The data collection instruments were questionnaires based on the Likert scale and document analysis. Data was analyzed descriptively using frequency tables, means and percentages while hypotheses were tested using Analysis of Variance. From the study findings, a number of indicators revealed that there are some factors influencing students’ attitudes towards Chemistry, including lack of successful experiences in Chemistry, poor teaching. It was recommended that science teachers’ should encourage development of positive self-concept of ability among students. Among other recommendations, the study suggests that guidance and counselling of students in schools should be encouraged, to ensure positive attitudes towards and full

  5. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  6. An Analysis of Prospective Chemistry Teachers' Cognitive Structures through Flow Map Method: The Subject of Oxidation and Reduction

    Science.gov (United States)

    Temel, Senar

    2016-01-01

    This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…

  7. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  8. Water Chemistry and Clad Corrosion/Deposition Including Fuel Failures. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-03-01

    Corrosion is a principal life limiting degradation mechanism in nuclear steam supply systems, particularly taking into account the trends in increasing fuel burnup, thermal ratings and cycle length. Further, many plants have been operating with varying water chemistry regimes for many years, and issues of crud (deposition of corrosion products on other surfaces in the primary coolant circuit) are of significant concern for operators. At the meeting of the Technical Working Group on Fuel Performance and Technology (TWGFPT) in 2007, it was recommended that a technical meeting be held on the subject of water chemistry and clad corrosion and deposition, including the potential consequences for fuel failures. This proposal was supported by both the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR) and the Technical Working Group on Advanced Technologies for Heavy Water Reactors (TWG-HWR), with a recommendation to hold the meeting at the National Nuclear Energy Generating Company ENERGOATOM, Ukraine. This technical meeting was part of the IAEA activities on water chemistry, which have included a series of coordinated research projects, the most recent of which, Optimisation of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC) (IAEATECDOC-1666), concluded in 2010. Previous technical meetings were held in Cadarache, France (1985), Portland, Oregon, USA (1989), Rez, Czech Republic (1993), and Hluboka nad Vltavou, Czech Republic (1998). This meeting focused on issues associated with the corrosion of fuel cladding and the deposition of corrosion products from the primary circuit onto the fuel assembly, which can cause overheating and cladding failure or lead to unplanned power shifts due to boron deposition in the clad deposits. Crud deposition on other surfaces increases radiation fields and operator dose and the meeting considered ways to minimize the generation of crud to avoid

  9. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  10. Media Usage, Religiosity and Gender as Determinant of Performance in Chemistry Subject

    Science.gov (United States)

    Oloyede, Ganiyat Kehinde; Mercy, Ofole Ndidi

    2016-01-01

    This research was designed to investigate the effect of media usage, religiosity and gender on performance in chemistry subject. This study employed survey research design. Two hundred participants (66 males and 134 females) drawn from public Senior Secondary Schools in Ibadan North Local Government Area, Oyo State constituted the study's sample.…

  11. The Relationship between Teacher-Related Factors and Students' Attitudes towards Secondary School Chemistry Subject in Bureti District, Kenya

    Science.gov (United States)

    Chepkorir, Salome; Cheptonui, Edna Marusoi; Chemutai, Agnes

    2014-01-01

    This paper examines the relationship between teacher-related factors and student's attitudes towards Chemistry subject in secondary schools in Kenya. The paper is based on a study conducted in Bureti District in Kericho County, Kenya. This paper highlights issues on the teaching methods used by chemistry teachers, the teachers' availability to…

  12. Integrative Biological Chemistry Program Includes the Use of Informatics Tools, GIS and SAS Software Applications

    Science.gov (United States)

    D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora

    2015-01-01

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…

  13. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  14. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    Science.gov (United States)

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  15. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  16. Subject Knowledge Enhancement Courses for Creating New Chemistry and Physics Teachers: The Students' Perceptions

    Science.gov (United States)

    Tynan, Richard; Jones, Robert Bryn; Mallaburn, Andrea; Clays, Ken

    2016-01-01

    Subject knowledge enhancement (SKE) courses are one option open in England to graduates with a science background whose first degree content is judged to be insufficient to train to become chemistry or physics teachers. Previous articles in "School Science Review" have discussed the structure of one type of extended SKE course offered at…

  17. Comprehensive understanding of mole concept subject matter according to the tetrahedral chemistry education (empirical study on the first-year chemistry students of Technische Universität Dresden)

    Science.gov (United States)

    Prabowo, D. W.; Mulyani, S.; van Pée, K.-H.; Indriyanti, N. Y.

    2018-05-01

    This research aims to apprehend: (1) the shape of tetrahedral chemistry education which is called the future of chemistry education, (2) comprehensive understanding of chemistry first-year students of Technische Universität Dresden according to the chemistry education’s tetrahedral shape on mole concept subject matter. This research used quantitative and qualitative; paper and pencil test and interview. The former was conducted in the form of test containing objective test instrument. The results of this study are (1) learning based on tetrahedral shape of chemistry education put the chemical substance (macroscopic), symbolic representation (symbol), and its process (molecular) in the context of human beings (human element) by integrating content and context, without emphasis on one thing and weaken another, (2) first-year chemistry students of Technische Universität Dresden have comprehensively understood the mole concept associated with the context of everyday life, whereby students are able to find out macroscopic information from statements that are contextual to human life and then by using symbols and formulas are able to comprehend the molecular components as well as to interpret and analyse problems effectively.

  18. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  19. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  20. Turkish Chemistry Teachers' Views about Secondary School Chemistry Curriculum: A Perspective from Environmental Education

    Science.gov (United States)

    Icoz, Omer Faruk

    2015-01-01

    Teachers' views about environmental education (EE) have been regarded as one of the most important concerns in education for sustainability. In secondary school chemistry curriculum, there are several subjects about EE embedded in the chemistry subjects in Turkey. This study explores three chemistry teachers' views about to what extent the…

  1. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  2. Proceedings of the 37. Brazilian Congress on Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1997-01-01

    This volume contains the summaries of the papers presented at the 37. Brazilian Congress on Chemistry. The topics include subjects about new technologies in the field of relevance for nuclear interest and energy field, involving environmental aspects, analytical chemistry and electrochemistry. The chemistry of elements of nuclear interest has been presented, and dissertations about rare earth elements were discussed. Studies about fuels, mainly petroleum, their products and biomass fuels, including their production, physical-chemical properties, structure studies and feasibility studies has also been comprehended

  3. Development of Chemistry Game Card as an Instructional Media in the Subject of Naming Chemical Compound in Grade X

    Science.gov (United States)

    Bayharti; Iswendi, I.; Arifin, M. N.

    2018-04-01

    The purpose of this research was to produce a chemistry game card as an instructional media in the subject of naming chemical compounds and determine the degree of validity and practicality of instructional media produced. Type of this research was Research and Development (R&D) that produced a product. The development model used was4-D model which comprises four stages incuding: (1) define, (2) design, (3) develop, and (4) disseminate. This research was restricted at the development stage. Chemistry game card developed was validated by seven validators and practicality was tested to class X6 students of SMAN 5 Padang. Instrument of this research is questionnair that consist of validity sheet and practicality sheet. Technique in collection data was done by distributing questionnaire to the validators, chemistry teachers, and students. The data were analyzed by using formula Cohen’s Kappa. Based on data analysis, validity of chemistry game card was0.87 with category highly valid and practicality of chemistry game card was 0.91 with category highly practice.

  4. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  5. Frontiers in nuclear chemistry

    International Nuclear Information System (INIS)

    Sood, D.D.; Reddy, A.V.R.; Pujari, P.K.

    1996-01-01

    This book contains articles on the landmarks in nuclear and radiochemistry which takes through scientific history spanning over five decades from the times of Roentgen to the middle of this century. Articles on nuclear fission and back end of the nuclear fuel cycle give an insight into the current status of this subject. Reviews on frontier areas like lanthanides, actinides, muonium chemistry, accelerator based nuclear chemistry, fast radiochemical separations and nuclear medicine bring out the multidisciplinary nature of nuclear sciences. This book also includes an article on environmental radiochemistry and safety. Chapters relevant to INIS are indexed separately

  6. Nuclear science in the 20th century. Radiation chemistry and radiation processing

    International Nuclear Information System (INIS)

    Fu Tao; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear science and technology to chemistry has led to two important subjects, radiation chemistry and radiation processing, which are playing important roles in many aspects of science and society. We review the development and major applications of radiation chemistry and radiation processing, including the basic physical and chemical mechanisms involved

  7. Attitude to the subject of chemistry in undergraduate nursing students at Fiji National University and Federation University, Australia.

    Science.gov (United States)

    Brown, Stephen; Wakeling, Lara; Peck, Blake; Naiker, Mani; Hill, Dolores; Naidu, Keshni

    2015-01-01

    Attitude to the subject of chemistry was quantified in first-year undergraduate nursing students, at two geographically distinct universities. A purpose-designed diagnostic instrument (ASCI) was given to students at Federation University, Australia (n= 114), and at Fiji National University, Fiji (n=160). Affective and cognitive sub-scales within ASCI showed reasonable internal consistency. Cronbach's alpha for the cognitive sub-scale was 0.786 and 0.630, and 0.787 and 0.788 for affective sub-scale for the Federation University and Fiji National University students, respectively. Mean (SD) score for the cognitive sub-scale was 10.5 (5.6) and 15.2 (4.1) for students at Federation University and Fiji National University, respectively (PFiji National University, respectively (P < 0.001, t-test). An exploratory factor analysis (n=274) confirmed a two-factor solution consistent with affective and cognitive sub-scales, each with good internal consistency. Quantifying attitude to chemistry in undergraduate nursing students using ASCI may have utility in assessing the impact of novel teaching strategies used in the education of nursing students in areas of bioscience and chemistry. However, geographically distinct populations of undergraduate nurses may show very different attitudes to chemistry.

  8. Green Chemistry Teaching in Higher Education: A Review of Effective Practices

    Science.gov (United States)

    Andraos, John; Dicks, Andrew P.

    2012-01-01

    This account reviews published green chemistry teaching resources in print and online literature and our experiences in teaching the subject to undergraduate students. Effective practices in lecture and laboratory are highlighted and ongoing challenges are addressed, including areas in cutting edge green chemistry research that impact its teaching…

  9. The Effect of Teacher Performance in Implementation of The 2013 Curriculum Toward Chemistry Learning Achievement

    Science.gov (United States)

    Dewi, L. P.; Djohar, A.

    2018-04-01

    This research is a study about implementation of the 2013 Curriculum on Chemistry subject. This study aims to determine the effect of teacher performance toward chemistry learning achievement. The research design involves the independent variable, namely the performance of Chemistry teacher, and the dependent variable that is Chemistry learning achievement which includes the achievement in knowledge and skill domain. The subject of this research are Chemistry teachers and High School students in Bandung City. The research data is obtained from questionnaire about teacher performance assessed by student and Chemistry learning achievement from the students’ report. Data were analyzed by using MANOVA test. The result of multivariate significance test shows that there is a significant effect of teacher performance toward Chemistry learning achievement in knowledge and skill domain with medium effect size.

  10. Symposium on chemistry and biotechnology for national development. Proceedings

    International Nuclear Information System (INIS)

    Garba, A.; Ogunmola, G.B.

    1998-01-01

    This document is the full proceedings of the symposium on chemistry and biotechnology for national development held at SHESTCO in 1995. It contains the full texts of a forward, opening and special remarks, welcome and keynote addresses and abstracts and texts of 21 technical papers. The subjects covered included information technology,chemistry and biotechnology in agriculture, health care and industrial development. Additionally, the abstracts in respect of 19 other papers are included. We wish to thank the Coordinator of SHESTCO for making available this proceedings

  11. Symposium on chemistry and biotechnology for national development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Garba, A; Ogunmola, G B [eds.

    1998-12-01

    This document is the full proceedings of the symposium on chemistry and biotechnology for national development held at SHESTCO in 1995. It contains the full texts of a forward, opening and special remarks, welcome and keynote addresses and abstracts and texts of 21 technical papers. The subjects covered included information technology,chemistry and biotechnology in agriculture, health care and industrial development. Additionally, the abstracts in respect of 19 other papers are included. We wish to thank the Coordinator of SHESTCO for making available this proceedings.

  12. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  13. Titanocene sulfide chemistry

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal

    2016-01-01

    Roč. 314, MAY 2016 (2016), s. 83-102 ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.324, year: 2016

  14. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  15. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  16. All-union conference on theoretical and applied radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, A.V.; Barashkov, N.N.

    1985-01-01

    The All-Union Conference on Theoretical and Applied Radiation Chemistry was held in Obninsk in October 1984. The subjects covered by the all-union conference included practically all urgent problems of modern radiation chemistry: theoretical principles of radiation chemistry, solid state radiation chemistry, radiation chemistry of heterogeneous processes, radiolysis of organic and inorganic substances, radiation polymerization and hardening, radiation chemistry of polymers, the technology of radiation chemistry and instrument making. Twenty-three plenary reports given by scientists representing the corresponding directions were devoted to an examination of the basic problems of modern radiation chemistry. Around 100 oral communications were heard and discussed at meetings of six sections operating within the framework of the conference. In addition the conference participants were able to acquaint themselves with and discuss more than 230 displays in parallel with the oral reports. Abstracts of all of the section oral reports and displays were published by the organizing committee in the form of a separate collection. The texts of the plenary reports were published in the journal Khimiya Vysokikh Energiy in 1985.

  17. HMI scientific report - chemistry 1987

    International Nuclear Information System (INIS)

    1989-01-01

    Results of the R and D activities of the Radiation Chemistry Department, Hahn-Meitner-Institut, are reported, primarily dealing with the following subjects: Interface processes and energy conversion, high-energy photochemistry and radiation chemistry as well as trace elements chemistry. A list of publications and lectures is added and gives a view on results obtained in research and development. (EF) [de

  18. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  19. Popular Science Articles for Chemistry Teaching

    Directory of Open Access Journals (Sweden)

    Ketevan Kupatadze

    2017-07-01

    Full Text Available The presented paper reviews popular science articles (these articles are published in online magazine “The Teacher” as one of the methods of chemistry teaching. It describes which didactic principles they are in line with and how this type of articles can be used in order to kindle the interest of pupils, students and generally, the readers of other specialties, in chemistry.  The articles review the main topics of inorganic/organic chemistry, biochemistry and ecological chemistry in a simple and entertaining manner. A part of the articles is about "household" chemistry. Chemical topics are related to poetry, literature, history of chemistry or simply, to fun news. The paper delineates the structure of popular science articles and the features of engaging students. It also reviews the teachers' and students' interview results about the usage of popular science articles in chemistry teaching process. The aforementioned pedagogical study revealed that the popular science articles contain useful information not only for the students of other specialties, but also for future biologists and ecologists (having chemistry as a mandatory subject at their universities. The articles are effectively used by teachers on chemistry lessons to kindle students' interest in this subject. DOI: http://dx.doi.org/10.17807/orbital.v9i3.960 

  20. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  1. Bioorthogonal Chemistry-Introduction and Overview

    Czech Academy of Sciences Publication Activity Database

    Carell, T.; Vrábel, Milan

    2016-01-01

    Roč. 374, č. 1 (2016), č. článku 9. ISSN 2365-0869 Institutional support: RVO:61388963 Keywords : bioorthogonal reactions * click chemistry * biomolecule labeling * 1,3-dipolar cycloaddition * Diels-Alder reaction Subject RIV: CC - Organic Chemistry Impact factor: 4.033, year: 2016

  2. Radiation chemistry

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (defines scope of article as dealing with the chemistry of reactive species, (e.g. excess electrons, excited states, free radicals and inorganic ions in unusual valency states) as studied using radiation with radiation chemistry in its traditional sense and with biological and industrial applications); gases; water and simple inorganic systems; aqueous metallo-organic compounds and metalloproteins; small organic molecules in aqueous solution; microheterogeneous systems; non-aqueous liquids and solutions; solids; biological macromolecules; synthetic polymers. (U.K.)

  3. Case Studies in Systems Chemistry. Final Report. [Includes Complete Case Study, Carboxylic Acid Equilibria

    Science.gov (United States)

    Fleck, George

    This publication was produced as a teaching tool for college chemistry. The book is a text for a computer-based unit on the chemistry of acid-base titrations, and is designed for use with FORTRAN or BASIC computer systems, and with a programmable electronic calculator, in a variety of educational settings. The text attempts to present computer…

  4. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  5. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  6. Education-oriented Physics-Chemistry for Universities

    Directory of Open Access Journals (Sweden)

    B. Spoelstra

    1985-03-01

    Full Text Available The shortage of well-qualified Science teachers is discussed, and possible contributing factors are mentioned. The need for an education-oriented university education in Physics and Chemistry, parallel to the existing courses in Physics and Chemistry, is justified. At the University of Zululand a subject called “Physical Science” (“Natuurwetenskap” was established, bearing in mind the specific requirements of a teaching career in Physical Science at secondary level. “Physical Science” is offered at second and third year level and the syllabus covers equal amounts of Chemistry and Physics. A less formal-mathematical and more descriptive approach is followed, and as wide a field as possible is covered which includes new developments in the physical sciences. We believe that this new course will enhance the training of well-prepared teachers of Physical Science for secondary schools, where a severe shortage prevails. Special reference is made here to the situation in Black schools.

  7. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  8. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  9. Analytical chemistry: Principles and techniques

    International Nuclear Information System (INIS)

    Hargis, L.G.

    1988-01-01

    Although this text seems to have been intended for use in a one-semester course in undergraduate analytical chemistry, it includes the range of topics usually encountered in a two-semester introductory course in chemical analysis. The material is arranged logically for use in a two-semester course: the first 12 chapters contain the subjects most often covered in the first term, and the next 10 chapters pertain to the second (instrumental) term. Overall breadth and level of treatment are standards for an undergraduate text of this sort, and the only major omission is that of kinetic methods (which is a common omission in analytical texts). In the first 12 chapters coverage of the basic material is quite good. The emphasis on the underlying principles of the techniques rather than on specifics and design of instrumentation is welcomed. This text may be more useful for the instrumental portion of an analytical chemistry course than for the solution chemistry segment. The instrumental analysis portion is appropriate for an introductory textbook

  10. Radiochemistry and nuclear chemistry

    CERN Document Server

    Choppin, Gregory; RYDBERG, JAN; Ekberg, Christian

    2013-01-01

    Radiochemistry or nuclear chemistry is the study of radiation from an atomic and molecular perspective, including elemental transformation and reaction effects, as well as physical, health and medical properties. This revised edition of one of the earliest and best-known books on the subject has been updated to bring into teaching the latest developments in research and the current hot topics in the field. To further enhance the functionality of this text, the authors have added numerous teaching aids, examples in MathCAD with variable quantities and options, hotlinks to relevant text secti

  11. HMI scientific report - chemistry 1988

    International Nuclear Information System (INIS)

    1989-01-01

    Results of the R and D activities are reported, dealing with the following subjects: Interface processes and energy conversion, high-energy photochemistry and radiation chemistry as well as trace elements chemistry. A list of publications and lectures is added and gives a view on results obtained in research and development. (EF) [de

  12. Chemistry Division annual progress report for period ending January 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics. (PLG)

  13. Chemistry Division annual progress report for period ending January 31, 1986

    International Nuclear Information System (INIS)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics

  14. Pentane and other volatile organic compounds, including carboxylic\

    Czech Academy of Sciences Publication Activity Database

    Dryahina, Kseniya; Smith, D.; Bortlík, M.; Machková, N.; Lukáš, M.; Španěl, Patrik

    2018-01-01

    Roč. 12, č. 1 (2018), č. článku 016002. ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : SIFT-MS * inflammatory bowel disease * Crohn´s disease Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.318, year: 2016

  15. Bio-organic chemistry at BARC

    International Nuclear Information System (INIS)

    Sharma, A.; Ghosh, S.K.; Chattopadhyay, S.

    2009-01-01

    Bioorganic chemistry plays a pivotal role of co-ordination amongst the research and developmental activities of physical, biological, material and nuclear sciences. Understandably, the domain of bioorganic chemistry encompasses overlapping scientific fields, and often involves multi-disciplinary subjects. The research activities of bioorganic research at BARC are, therefore directed with reference to deliverables, relevant to various nuclear and non-nuclear programmes of the department. Also, the activities of the division are fine tuned to address the contemporary needs. It is now well recognized that organic compounds are essential in various programmes of nuclear technology. These include solvents and membranes for the back-end process, carrier molecules for radiopharmaceuticals, optoelectrical materials and sensors for high tech applications etc. Coupled with this, bioorganics also form integral part of the departmental mission-oriented societal programmes in the areas of health and agriculture

  16. Improve Outcomes Study subjects Chemistry Teaching and Learning Strategies through independent study with the help of computer-based media

    Science.gov (United States)

    Sugiharti, Gulmah

    2018-03-01

    This study aims to see the improvement of student learning outcomes by independent learning using computer-based learning media in the course of STBM (Teaching and Learning Strategy) Chemistry. Population in this research all student of class of 2014 which take subject STBM Chemistry as many as 4 class. While the sample is taken by purposive as many as 2 classes, each 32 students, as control class and expriment class. The instrument used is the test of learning outcomes in the form of multiple choice with the number of questions as many as 20 questions that have been declared valid, and reliable. Data analysis techniques used one-sided t test and improved learning outcomes using a normalized gain test. Based on the learning result data, the average of normalized gain values for the experimental class is 0,530 and for the control class is 0,224. The result of the experimental student learning result is 53% and the control class is 22,4%. Hypothesis testing results obtained t count> ttable is 9.02> 1.6723 at the level of significance α = 0.05 and db = 58. This means that the acceptance of Ha is the use of computer-based learning media (CAI Computer) can improve student learning outcomes in the course Learning Teaching Strategy (STBM) Chemistry academic year 2017/2018.

  17. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  18. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  19. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  20. Towards "Bildung"-Oriented Chemistry Education

    Science.gov (United States)

    Sjöström, Jesper

    2013-01-01

    This paper concerns "Bildung"-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. "Bildung"-oriented chemistry education includes not only content knowledge in chemistry, but also…

  1. From helical to planar chirality by on-surface chemistry

    Czech Academy of Sciences Publication Activity Database

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Vacek Chocholoušová, Jana; Jančařík, Andrej; Rybáček, Jiří; Kośmider, K.; Stará, Irena G.; Jelínek, Pavel; Starý, Ivo

    2017-01-01

    Roč. 9, č. 3 (2017), s. 213-218 ISSN 1755-4330 R&D Projects: GA ČR(CZ) GC14-16963J; GA ČR(CZ) GA14-29667S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : chirality * AFM * STM * helicene * on surface chemistry * DFT Subject RIV: CF - Physical ; Theoretical Chemistry; CC - Organic Chemistry (UOCHB-X) OBOR OECD: Physical chemistry; Organic chemistry (UOCHB-X) Impact factor: 25.870, year: 2016

  2. Radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on radiation chemistry of heavy elements that includes the following topics: radiation chemistry of plutonium in nitric acid solutions (spectrophotometric analysis and gamma radiolysis of Pu(IV) and Pu(VI) in nitric acid solution); EPR studies of intermediates formed in radiolytic reactions with aqueous medium; two-phase radiolysis and its effect on the distribution coefficient of plutonium; and radiation chemistry of nitric acid. (DHM)

  3. Organic Chemistry Trivia: A Way to Interest Nonchemistry Majors

    Science.gov (United States)

    Farmer, Steven C.

    2011-01-01

    The use of in-class stories is an excellent way to keep a class interested in subject matter. Many organic chemistry classes are populated by nonchemistry majors, such as pre-med, pre-pharm, and biology students. Trivia questions are presented that are designed to show how organic chemistry is an important subject to students regardless of their…

  4. Reference Sources in Chemistry

    OpenAIRE

    Sthapit, Dilip Man

    1995-01-01

    Information plays an important role in the development of every field. Therefore a brief knowledge regarding information sources is necessary to function in any field. There are many information sources about scientific and technical subjects. In this context there are many reference sources in Chemistry too. Chemistry is one important part of the science which deals with the study of the composition of substances and the chemical changes that they undergo. The purpose of this report is...

  5. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  6. An overview of the teaching of nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1993-01-01

    Subjective remarks by the author on teaching of nuclear chemistry are presented. A historical overview of nuclear chemistry and radiochemistry education and research as well as an outline of their prospects are given. (R.P.)

  7. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    Science.gov (United States)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  8. Bibliography on radioanalytical chemistry in Austria (1936-1979)

    International Nuclear Information System (INIS)

    Schoenfeld, T.; Vojir, F.; Hedrich, E.

    1980-09-01

    This bibliography on radioanalytical chemistry contains 1143 references to publications authored by scientists while affiliated to institutes and orgnizations located in Austria. The references are presented in three sections: General Section (890 references), Section: Activation Analysis (227 references), Section: Books and Major Reviews (26 references). Within each section, the references are grouped according to the year of publication and are arranged for each year in alphabetical order of the name of the (first) author. The authors institutional affiliations when preparing the publication are given. For the publications listed in the General Section the main subject (or subjects) are indicated, this classification being based on a list of 36 subjects. An author index is included. (auth.)

  9. Radiochemistry in chemistry and chemistry related undergraduate programmes in Argentina

    International Nuclear Information System (INIS)

    Fornaciari Iljadica, M.C.; Furnari, J.C.; Cohen, I.M.

    2006-01-01

    The evolution of education in Argentina at the university level is described. The detailed search of the educational offer shows that less than half of the universities (35 out of 92) include chemistry and chemistry related undergraduate programmes in their curriculum. The revision of the position of radiochemistry in these programmes reveals that only seven courses on radiochemistry are currently offered. Radiochemistry is included only in few programmes in chemistry and biochemistry. With respect to the programmes in chemical engineering the situation is worse. This offer is strongly concentrated in Buenos Aires and its surroundings. (author)

  10. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121 ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  11. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  12. Second quantized approach to quantum chemistry

    International Nuclear Information System (INIS)

    Surjan, P.R.

    1989-01-01

    The subject of this book is the application of the second quantized approach to quantum chemistry. Second quantization is an alternative tool for dealing with many-electron theory. The vast majority of quantum chemical problems are more easily treated using second quantization as a language. This book offers a simple and pedagogical presentation of the theory and some applications. The reader is not supposed to be trained in higher mathematics, though familiarity with elementary quantum mechanics and quantum chemistry is assumed. Besides the basic formalism and standard illustrative applications, some recent topics of quantum chemistry are reviewed in some detail. This book bridges the gap between sophisticated quantum theory and practical quantum chemistry. (orig.)

  13. South African national bibliography on radioanalytical chemistry to December 1977

    International Nuclear Information System (INIS)

    Peisach, M.

    The bibliography covers publications on radioanalytical chemistry authored or co-authored by South Africans while affiliated to South African institutions even if the work was carried out at foreign laboratories. Author and subject indexes are included, the latter dividing the material into activation analysis, both delayed and prompt, and radioanalytical methods. The bibliography covers work published to the end of 1977

  14. Predicting continued participation in college chemistry for men and women

    Science.gov (United States)

    Deboer, George E.

    The purpose of this study was to test the effectiveness of a cognitive motivational model of course selection patterns to explain the continued participation of men and women in college science courses. A number of cognitive motivational constructs were analyzed in a path model and their effect on students' intention to continue in college chemistry was determined. Variables in the model included self-perceived ability in science, future expectations, level of past success, effort expended, subjective interpretations of both past success and task difficulty, and the intention to continue in college chemistry.The results showed no sex differences in course performance, the plan to continue in chemistry, perceived ability in science, or past achievement in science courses. The path analysis did confirm the usefulness of the cognitive motivational perspective to explain the intention of both men and women to continue in science. Central to that process appears to be a person's belief about their ability. Students who had confidence in their ability in chemistry expected to do well in the future and were more likely to take more chemistry. Ability ratings in turn were dependent on a number of past achievement experiences and the personal interpretation of those experiences.

  15. Some remarks on applied radiation chemistry

    International Nuclear Information System (INIS)

    Sakurada, I.

    1979-01-01

    Radiation induced polymerization and grafting are two important reactions in the processing. Numerous reports concerning these subjects have appeared in the literature. There are, however, still many problems which have been left unsolved or neglected. Several problems will be taken up in this paper and discussed on experiments carried out in Osaka Laboratory for Radiation Chemistry and Department of Polymer Chemistry of Kyoto University. (author)

  16. Publicising chemistry in a multicultural society through chemistry outreach

    Directory of Open Access Journals (Sweden)

    Joyce D. Sewry

    2011-11-01

    Full Text Available Given the emphasis in Higher Education on community engagement in South Africa and the importance of international collaboration, we discuss a joint approach to chemistry outreach in two countries on two continents with widely differing target school audiences. We describe the history of the partnership between the chemistry departments at Rhodes University and the University of Bristol and provide an outline of the chemistry content of their outreach initiatives, the modes of delivery, the advantages to both departments and their students for involvement in various levels of outreach, the challenges they still face and additional opportunities that such work facilitated. The lecture demonstration ‘A Pollutant’s Tale’ was presented to thousands of learners all over the world, including learners at resource-deprived schools in South Africa. Challenges to extend outreach activities in South Africa include long travelling distances, as well as a lack of facilities (such as school halls and electricity at schools. Outreach activities not only impacted on the target audience of young learners, they also impacted upon the postgraduate and other chemistry students taking part in these initiatives. This collaboration strengthened both institutions and their outreach work and may also lead to chemistry research collaborations between the academics involved.

  17. Radiation chemistry and its application

    International Nuclear Information System (INIS)

    Majima, Tetsuro

    2013-01-01

    Effects of radiation to human body have been seriously discussed nowadays. These are important issues for the realization of sustainable society. It should be emphasized that various reactive intermediates generated by radiation play important roles in each cases. Radiation chemical studies will provide various reaction-mechanistic aspects on these important issues. Our research group has continuously carried out reaction-mechanistic studies using radiation chemical methods. From these studies, we have obtained a variety of results on basic molecular systems, reactions, materials that are close to practical application, biological systems and so on. Reactive species are generated from the radiation reactions in solution, and can be used as one-electron oxidative and reductive reagent to give selectively radical cation and anion of solute molecules such as various organic and inorganic molecules. Therefore, the radiation chemistry has contributed significantly to chemistry in which one-electron oxidation and reduction play the important role. The kinetics of such redox processes and the following reduction play the important role. The kinetics of such redox processes and the following reactions can be studied in real time with the transition absorption measurement by the pulse radiolysis technique. Even though the target compounds cannot be oxidized and reduced in chemical or electrochemical oxidation and reduction, their one-electron redox can be performed by the electron beam radiation. Therefore, radiation chemistry is very useful technique for basic science. Moreover, application potentials of radiation chemistry are so high for various research subjects. Moreover, application potentials of radiation chemistry are so high for various research subjects

  18. The vocabulary of anglophone psychology in the context of other subjects.

    Science.gov (United States)

    Benjafield, John G

    2013-02-01

    Anglophone psychology shares its vocabulary with several other subjects. Some of the more obvious subjects that have parts of their vocabulary in common with Anglophone psychology include biology (e.g., dominance), chemistry (e.g., isomorphism), philosophy (e.g., phenomenology), and theology (e.g., mediator). Using data from the Oxford English Dictionary as well as other sources, the present study explored the history of these common vocabularies, with a view to broadening our understanding of the relation between the history of psychology and the histories of other subjects. It turns out that there are at least 156 different subjects that share words with psychology. Those that have the most words in common with psychology are mathematics, biology, physics, medicine, chemistry, philosophy, law, music, linguistics, electricity, pathology, and computing. Words that have senses in other subjects and have their origins in ordinary language are used more frequently as PsycINFO keywords than words that were invented specifically for use in psychology. These and other results are interpreted in terms of the ordinary language roots of the vocabulary of Anglophone psychology and other subjects, the degree to which operational definitions have determined the meaning of the psychological senses of words, the role of the psychologist in interdisciplinary research, and the validity of psychological essentialism.

  19. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  20. Including subjectivity in the teaching of Psychopathology

    Directory of Open Access Journals (Sweden)

    Octavio Domont de Serpa Junior

    2007-01-01

    Full Text Available Current psychopathology studies have often been presented in their descriptive dimension. This perspective is important for teaching because it helps the students to recognize and identify the symptomatology of each psychopathology case. However, subjectivity, the experience of suffering and interpersonal aspects are all lost in this perspective. Coming from another psychopathology tradition - existential anthropology - this paper presents practical psychopathology teaching experience which considers such dimensions as being relevant to the understanding of mental suffering. The features and limitations of such traditions are briefly reviewed to support this teaching experience. Two new modalities of practical teaching, used in the discipline of "Special Psychopathology I" offered by the Department of Psychiatry and Forensic Medicine at the medical school of the Federal University of Rio de Janeiro for students of psychology, will be presented according to descriptive case study methodology. With these activities we also expect to change the practice of teaching. Traditionally, interviewing of in-patients by a large group of students who observe passively what is happening is the center of this kind of education. We intend to develop a model of teaching which is closer to the proposal of the Brazilian Psychiatric Reform which views mental illness as a complex phenomenon, always involving the relationship that the subject establishes with the world.

  1. Electron-triggered chemistry in HNO3/H2O complexes

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Ončák, M.; Fedor, Juraj; Kočišek, Jaroslav; Pysanenko, Andriy; Beyer, M. K.; Fárník, Michal

    2017-01-01

    Roč. 19, č. 19 (2017), s. 11753-11758 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : electron-triggered chemistry * acid-water clusters * gas-phase reactions Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  2. Implementation of Problem-Based Learning in Environmental Chemistry

    Science.gov (United States)

    Jansson, Stina; So¨derstro¨m, Hanna; Andersson, Patrik L.; Nording, Malin L.

    2015-01-01

    Environmental Chemistry covers a range of topics within the discipline of chemistry, from toxicology to legislation, which warrants interdisciplinary study. Consequently, problem-based learning (PBL), a style of student-centered learning which facilitates the integration of multiple subjects, was investigated to determine if it would be a more…

  3. Moderator Chemistry Program

    International Nuclear Information System (INIS)

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation

  4. Explaining Secondary School Students' Attitudes towards Chemistry in Chile

    Science.gov (United States)

    Montes, L. H.; Ferreira, R. A.; Rodríguez, C.

    2018-01-01

    Research into attitudes towards chemistry in Latin America and indeed towards science in general is very limited. The present study aimed to adapt and validate a shortened version of Bauer's Attitude toward the Subject of Chemistry Inventory version 2 (ASCIv2) for use in a Latin American context. It also explored attitudes towards chemistry of…

  5. Electron-triggered chemistry in HNO3/H2O complexes

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Ončák, M.; Fedor, Juraj; Kočišek, Jaroslav; Pysanenko, Andriy; Beyer, M. K.; Fárník, Michal

    2017-01-01

    Roč. 19, č. 19 (2017), s. 11753-11758 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : electron-triggered chemistry * acid-water clusters * gas-phase reaction s Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  6. Extreme Ultraviolet (EUV) induced surface chemistry on Ru

    NARCIS (Netherlands)

    Liu, Feng; Sturm, Jacobus Marinus; Lee, Christopher James; Bijkerk, Frederik

    2013-01-01

    EUV photon induced surface chemistry can damage multilayer mirrors causing reflectivity loss and faster degradation. EUV photo chemistry involves complex processes including direct photon induced surface chemistry and secondary electron radiation chemistry. Current cleaning techniques include dry

  7. A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates-Bioinspired Sulfoxidation Catalysts

    Czech Academy of Sciences Publication Activity Database

    Tomanová, P.; Šturala, J.; Buděšínský, Miloš; Cibulka, R.

    2015-01-01

    Roč. 20, č. 11 (2015), s. 19837-19848 ISSN 1420-3049 Institutional support: RVO:61388963 Keywords : click chemistry * cyclodextrin * flavin * monooxygenase * oxidation * sulfoxides * green chemistry Subject RIV: CC - Organic Chemistry Impact factor: 2.465, year: 2015 http://www.mdpi.com/1420-3049/20/11/19667/htm

  8. M. Vrabel and T. Carell for Cycloadditions in Bioorthogonal Chemistry

    Czech Academy of Sciences Publication Activity Database

    Carell, T.; Vrábel, Milan; Yang, M.; Yang, Y.; Chen, P. R.; Dommerholt, J.; Rutjes, F. P. J. T.; van Delft, F. L.; Herner, A.; Lin, Q.; Wu, H.; Devaraj, N. K.; Kath-Schorr, S.

    Roč. 374, č. 2 ( 2016 ), č. článku 15. ISSN 2365-0869 Institutional support: RVO:61388963 Keywords : bioorthogonal Chemistry * editorial Subject RIV: CC - Organic Chemistry Impact factor: 4.033, year: 2016

  9. Chemistry and Nanoscience Research | NREL

    Science.gov (United States)

    Chemistry and Nanoscience Center at NREL investigates materials and processes for converting renewable and new technologies. NREL's primary research in the chemistry and nanoscience center includes the Electrochemical Engineering and Materials Chemistry Providing a knowledge base in materials science covering

  10. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Marek Tobiszewski

    2015-06-01

    Full Text Available The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  11. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  12. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  13. Alkaline-earth metal phenylphosphonates and their intercalation chemistry

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Svoboda, J.; Zima, Vítězslav; Pospíšil, M.; Kovář, P.

    2018-01-01

    Roč. 47, č. 9 (2018), s. 2867-2880 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GA17-10639S Institutional support: RVO:61389013 Keywords : intercalation * layered compounds * alkaline-earth metal phenylphosphonates Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.029, year: 2016

  14. 42 CFR 493.839 - Condition: Chemistry.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Chemistry. 493.839 Section 493.839... These Tests § 493.839 Condition: Chemistry. The specialty of chemistry includes for the purposes of proficiency testing the subspecialties of routine chemistry, endocrinology, and toxicology. ...

  15. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  16. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  17. 8. Seminar of the IMP-IIE-ININ on technological specialties. Topic 9: Analytical Chemistry

    International Nuclear Information System (INIS)

    1996-01-01

    The document includes four papers considered within the INIS subject scope, which were presented at the 8th Seminar of the IMP-IIE-ININ on technological specialities (Section Analytical Chemistry), held on 26 June 1996 in Cuernavaca (Mexico). A separate abstract and indexing were provided for each paper

  18. Secondary-school chemistry textbooks in the 19th century

    Directory of Open Access Journals (Sweden)

    Milanović Vesna D.

    2015-01-01

    Full Text Available The teaching of chemistry in Serbia as a separate subject dates from 1874. The first secondary-school chemistry textbooks appeared in the second half of the 19th century. The aim of this paper is to gain insight, by analysing two secondary-school chemistry textbooks, written by Sima Lozanić (1895 and Mita Petrović (1892, into what amount of scientific knowledge from the sphere of chemistry was presented to secondary school students in Serbia in the second half of the 19th century, and what principles textbooks written at the time were based on. Within the framework of the research conducted, we defined the criteria for assessing the quality of secondary-school chemistry textbooks in the context of the time they were written in. The most important difference between the two textbooks under analysis that we found pertained to the way in which their contents were organized. Sima Lozanić’s textbook is characterized by a greater degree of systematicness when it comes to the manner of presenting its contents and consistency of approach throughout the book. In both textbooks one can perceive the authors’ attempts to link chemistry-related subjects to everyday life, and to point out the practical significance of various substances, as well as their toxicness.

  19. A study of how precursor key concepts for organic chemistry success are understood by general chemistry students

    Science.gov (United States)

    Meyer, Patrick Gerard

    This study examines college student understanding of key concepts that will support future organic chemistry success as determined by university instructors. During four one-hour individual interviews the sixteen subjects attempted to solve general chemistry problems. A think-aloud protocol was used along with a whiteboard where the students could draw and illustrate their ideas. The protocols for the interviews were adapted from the Covalent Structure and Bonding two-tiered multiple choice diagnostic instrument (Peterson, Treagust, & Garnett, 1989) and augmented by the Geometry and Polarity of Molecules single-tiered multiple choice instrument (Furio & Calatayud, 1996). The interviews were videotaped, transcribed, and coded for analysis to determine the subjects' understanding of the key ideas. The subjects displayed many misconceptions that were summarized into nine assertions about student conceptualization of chemistry. (1) Many students misunderstand the location and nature of intermolecular forces. (2) Some think electronegativity differences among atoms in a molecule are sufficient to make the molecule polar, regardless of spatial arrangement. (3) Most know that higher phase change temperatures imply stronger intermolecular attractions, but many do not understand the difference between covalent molecular and covalent network substances. (4) Many have difficulty deciding whether a molecule is polar or non-polar, often confusing bilateral symmetry with spatial symmetry in all three dimensions. (5) Many cannot reliably draw correct Lewis structures due to carelessness and overuse of flawed algorithms. (6) Many are confused by how electrons can both repel one other and facilitate bonding between atoms via orbitals---this seems oxymoronic to them. (7) Many cannot explain why the atoms of certain elements do not follow the octet rule and some believe the octet rule alone can determine the shape of a molecule. (8) Most do know that electronegativity and polarity

  20. Physics, radiology, and chemistry. 7. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1986-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore, connections with biology and medicine are considered. The chapters on physiological chemistry, computer and information theory, chemistry and ecology, and metabolism have been rewritten. (orig./HP) [de

  1. Misconception of pre-service chemistry teachers about the concept of resonances in organic chemistry course

    Science.gov (United States)

    Widarti, Hayuni Retno; Retnosari, Rini; Marfu'ah, Siti

    2017-08-01

    A descriptive quantitative research has been done to identify the level of understanding and misconceptions of the pre-service chemistry teachers related to the concept of resonance in the organic chemistry course. The subjects of the research were 51 students of State University of Malang, majoring Chemistry Education, currently in their fourth semester, 2015-2016 academic year who have taken the course of Organic Chemistry I. The instruments used in this research is a combination of 8 numbers of multiple choice tests with open answer questions and certainty of response index (CRI). The research findings revealed that there are still misconceptions found in the organic chemistry course, especially about the concept of resonance. There were several misconceptions of the pre-service chemistry teachers, such as resonance structures are in equilibrium with each other; resonance structures are two or more Lewis structures with different in arrangement of both atom and electron; resonance structures are only structures containing charged atoms; formal charge and resonance structures are not related; and the stability of resonance structures are only determined by location of charges in atoms found in such structures. There is also a lack of understanding of curved arrows notation to show electron pair movement.

  2. Electron-induced chemistry in microhydrated sulfuric acid clusters

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-01-01

    Roč. 17, č. 22 (2017), s. 14171-14180 ISSN 1680-7324 R&D Projects: GA ČR(CZ) GA17-04068S Grant - others:Austrian Science Fund (FWF)(AT) M1983-N34 Institutional support: RVO:61388955 Keywords : induced aerosol formation * particle formation * atmospheric implication Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  3. Bonding, structure and solid-state chemistry

    CERN Document Server

    Ladd, Mark

    2016-01-01

    This book is aimed at undergraduate students in both chemistry and those degree subjects in which chemistry forms a significant part. It does not reflect any particular academic year, and so finds a place during the normal span of degree studies in the physical sciences. An A-level standard in science and mathematics is presumed; additional mathematical treatments are discussed in Appendices. An introductory first chapter leads into the main subject matter, which is treated through four chapters in terms of the principle bonding forces of cohesion in the solid state; a further chapter discusses nanosize materials. Important applications of the study topics are interspersed at appropriate points within the text. Each chapter is provided with a set of problems of varying degrees of difficulty, so as to assist the reader in gaining a facility with the subject matter and its applications. The problems are supplemented by detailed tutorial solutions, some of which present additional relevant material that indicate...

  4. Mathematical challenges from theoretical/computational chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The committee believes that this report has relevance and potentially valuable suggestions for a wide range of readers. Target audiences include: graduate departments in the mathematical and chemical sciences; federal and private agencies that fund research in the mathematical and chemical sciences; selected industrial and government research and development laboratories; developers of software and hardware for computational chemistry; and selected individual researchers. Chapter 2 of this report covers some history of computational chemistry for the nonspecialist, while Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical scientists and computational/theoretical chemists. In Chapter 4 the committee has assembled a representative, but not exhaustive, survey of research opportunities. Most of these are descriptions of important open problems in computational/theoretical chemistry that could gain much from the efforts of innovative mathematical scientists, written so as to be accessible introductions to the nonspecialist. Chapter 5 is an assessment, necessarily subjective, of cultural differences that must be overcome if collaborative work is to be encouraged between the mathematical and the chemical communities. Finally, the report ends with a brief list of conclusions and recommendations that, if followed, could promote accelerated progress at this interface. Recognizing that bothersome language issues can inhibit prospects for collaborative research at the interface between distinctive disciplines, the committee has attempted throughout to maintain an accessible style, in part by using illustrative boxes, and has included at the end of the report a glossary of technical terms that may be familiar to only a subset of the target audiences listed above.

  5. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  6. Organic Chemistry Educators' Perspectives on Fundamental Concepts and Misconceptions: An Exploratory Study

    Science.gov (United States)

    Duis, Jennifer M.

    2011-01-01

    An exploratory study was conducted with 23 organic chemistry educators to discover what general chemistry concepts they typically review, the concepts they believe are fundamental to introductory organic chemistry, the topics students find most difficult in the subject, and the misconceptions they observe in undergraduate organic chemistry…

  7. Chemistry of silybin

    Czech Academy of Sciences Publication Activity Database

    Biedermann, David; Vavříková, Eva; Cvak, L.; Křen, Vladimír

    2014-01-01

    Roč. 31, č. 9 (2014), s. 1138-1157 ISSN 0265-0568 R&D Projects: GA ČR(CZ) GAP301/11/0662; GA MŠk LH13097; GA MŠk(CZ) LD14096; GA MŠk(CZ) LD13042 Institutional support: RVO:61388971 Keywords : silybin * Silybum marianum * separation Subject RIV: CC - Organic Chemistry Impact factor: 10.107, year: 2014

  8. What Chemistry To Teach Engineers?

    Science.gov (United States)

    Hawkes, Stephen J.

    2000-01-01

    Examines possible general chemistry topics that would be most relevant and practical for engineering majors. Consults the Accreditation Board for Engineering and Technology (ABET), engineering textbooks, texts from other required subjects, and practicing engineers for recommendations. (Contains 24 references.) (WRM)

  9. N-PEG´ylation of chitosan via "click chemistry" reactions

    Czech Academy of Sciences Publication Activity Database

    Kulbokaite, R.; Ciuta, G.; Netopilík, Miloš; Makuška, R.

    2009-01-01

    Roč. 69, č. 10 (2009), s. 771-778 ISSN 1381-5148 R&D Projects: GA ČR GA203/07/0659 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitosan * poly(ethylene glycol) * click chemistry Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.461, year: 2009

  10. Effectiveness of Case-Based Learning Instruction on Epistemological Beliefs and Attitudes toward Chemistry

    Science.gov (United States)

    Cam, Aylin; Geban, Omer

    2011-01-01

    The purpose of the study was to investigate the effectiveness of case-based learning instruction over traditionally designed chemistry instruction on eleventh grade students' epistemological beliefs and their attitudes toward chemistry as a school subject. The subjects of this study consisted of 63 eleventh grade students from two intact classes…

  11. Spotlight on medicinal chemistry education.

    Science.gov (United States)

    Pitman, Simone; Xu, Yao-Zhong; Taylor, Peter; Turner, Nicholas; Coaker, Hannah; Crews, Kasumi

    2014-05-01

    The field of medicinal chemistry is constantly evolving and it is important for medicinal chemists to develop the skills and knowledge required to succeed and contribute to the advancement of the field. Future Medicinal Chemistry spoke with Simone Pitman (SP), Yao-Zhong Xu (YX), Peter Taylor (PT) and Nick Turner (NT) from The Open University (OU), which offers an MSc in Medicinal Chemistry. In the interview, they discuss the MSc course content, online teaching, the future of medicinal chemistry education and The OU's work towards promoting widening participation. SP is a Qualifications Manager in the Science Faculty at The OU. She joined The OU in 1993 and since 1998 has been involved in the Postgraduate Medicinal Chemistry provision at The OU. YX is a Senior Lecturer in Bioorganic Chemistry at The OU. He has been with The OU from 2001, teaching undergraduate courses of all years and chairing the master's course on medicinal chemistry. PT is a Professor of Organic Chemistry at The OU and has been involved with the production and presentation of The OU courses in Science and across the university for over 30 years, including medicinal chemistry modules at postgraduate level. NT is a Lecturer in Analytical Science at The OU since 2009 and has been involved in the production of analytical sciences courses, as well as contributing to the presentation of a number of science courses including medicinal chemistry.

  12. Summary Report for April, May and June, 1951, Chemistry Division, Section C-1

    Energy Technology Data Exchange (ETDEWEB)

    Manning, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Chemistry Division; Osborne, D. W. [Argonne National Lab. (ANL), Argonne, IL (United States). Chemistry Division

    1951-08-01

    This is a summary report for April, May and June, 1951, in the Chemistry Division, Section C-1 of Argonne National Laboratory. Topics include Nuclear Chemistry and Radiochemistry with specifics about the following: 1) U238 (n,2n) Cross Section WIthin a Uranium Slug, and 2) Possible Occurrence of Si32 in Nature. Basic Chemistry is also covered, going into the following subjects: 1) Heats of Solution of Salts in Organic Solvents, 2) Effect of Coordination on Absorption Spectra of Anions, 3) Entropy, Enthalpy, and Heat Capacity of Thorium Dioxide from 10 to 300°K, 4) The Thermodynamics of Neptunium Ions, 5) Migration of Ions in Ion-Exchange Resins During Electrolysis, and 5) Mutual Separation of Lanthanides and Actinides by Solvent Extraction Techniques.

  13. Handbook of hot atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.; Matsuura, Tatsuo; Yoshihara, Kenji

    1992-01-01

    Hot atom chemistry is an increasingly important field, which has contributed significantly to our understanding of many fundamental processes and reactions. Its techniques have become firmly entrenched in numerous disciplines, such as applied physics, biomedical research, and all fields of chemistry. Written by leading experts, this comprehensive handbook encompasses a broad range of topics. Each chapter comprises a collection of stimulating essays, given an in-depth account of the state-of-the-art of the field, and stressing opportunities for future work. An extensive introduction to the whole area, this book provides unique insight into a vast subject, and a clear delineation of its goals, techniques, and recent findings. It also contains detailed discussions of applications in fields as diverse as nuclear medicine, geochemistry, reactor technology, and the chemistry of comets and interstellar grains. (orig.)

  14. Physics, radiology, and chemistry. 5. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1978-01-01

    This book is an introduction into physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of colid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, anorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Futhermore connections with biology and medicine are considered. (HSI) [de

  15. BLOOD CHEMISTRY AND PLATELET SEROTONIN UPTAKE AS ...

    African Journals Online (AJOL)

    A cross sectional study was conducted to investigate the blood chemistry and platelet serotonin uptake as alternative method of determining HIV disease stage in HIV/AIDS patients. Whole blood was taken from subjects at the Human Virology of the Nigerian Institute of Medical Research. Subjects were judged suitable for ...

  16. 12. 'Tihany' symposium on radiation chemistry. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The 12th 'Tihany' symposium on radiation chemistry was held in Zalakaros in the organization of the Hungarian Academy of Sciences, Institute of Isotope and Surface Chemistry. The scientific program of the Symposium will cover all the major disciplines of both basic and applied radiation chemistry. The topics were the fundamental processes in radiation chemistry, the different irradiations ways, radiolysis of inorganic and organic systems, nanoscale and the macromolecular systems. Also could be seen presentations in the subject of the food irradiation, the environmental protection, biomedical materials radiation, about the resistant materials, the radiation sterilization and the dosimetry. (S.I.)

  17. 12. 'Tihany' symposium on radiation chemistry. Program and abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The 12th 'Tihany' symposium on radiation chemistry was held in Zalakaros in the organization of the Hungarian Academy of Sciences, Institute of Isotope and Surface Chemistry. The scientific program of the Symposium will cover all the major disciplines of both basic and applied radiation chemistry. The topics were the fundamental processes in radiation chemistry, the different irradiations ways, radiolysis of inorganic and organic systems, nanoscale and the macromolecular systems. Also could be seen presentations in the subject of the food irradiation, the environmental protection, biomedical materials radiation, about the resistant materials, the radiation sterilization and the dosimetry. (S.I.)

  18. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  19. Abstracts of the 1. Regional Meeting on Chemistry

    International Nuclear Information System (INIS)

    Abstracts from papers on Analytical, Inorganic and Organic Chemistry as well as on Physico-Chemistry are presented. Emphasis is given to the following subjects: use of nuclear techniques for chemical analysis, separation processes, studies about reaction kinetics and thermodynamic properties, radioisotopes production and applications, labelled compounds, electron-molecule collisions, construction of measuring instruments and data acquisition systems. (C.L.B.) [pt

  20. Identification of Chemistry Learning Problems Viewed From Conceptual Change Model

    OpenAIRE

    Redhana, I. W; Sudria, I. B. N; Hidayat, I; Merta, L. M

    2017-01-01

    This study aimed at describing and explaining chemistry learning problems viewed from conceptual change model and misconceptions of students. The study was qualitative research of case study type conducted in one class of SMAN 1 Singaraja. Subjects of the study were a chemistry teacher and students. Data were obtained through classroom observation, interviews, and conception tests. The chemistry learning problems were grouped based on aspects of necessity, intelligibility, plausibility, and f...

  1. Chemistry: content, context and choices : towards students' higher order problem solving in upper secondary school

    OpenAIRE

    Broman, Karolina

    2015-01-01

    Chemistry is often claimed to be difficult, irrelevant, and uninteresting to school students. Even students who enjoy doing science often have problems seeing themselves as being scientists. This thesis explores and challenges the negative perception of chemistry by investigating upper secondary students’ views on the subject. Based on students’ ideas for improving chemistry education to make the subject more interesting and meaningful, new learning approaches rooted in context-based learning...

  2. Survey of PWR water chemistry

    International Nuclear Information System (INIS)

    Gorman, J.

    1989-02-01

    This report surveys available information regarding primary and secondary water chemistries of pressurized water reactors (PWRs) and the impact of these water chemistries on reactor operation. The emphasis of the document is on aspects of water chemistry that affect the integrity of the primary pressure boundary and the radiation dose associated with maintenance and operation. The report provides an historical overview of the development of primary and secondary water chemistries, and describes practices currently being followed. Current problems and areas of research associated with water chemistry are described. Recommendations for further research are included. 183 refs., 9 figs., 19 tabs

  3. Containment Sodium Chemistry Models in MELCOR.

    Energy Technology Data Exchange (ETDEWEB)

    Louie, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-01

    To meet regulatory needs for sodium fast reactors’ future development, including licensing requirements, Sandia National Laboratories is modernizing MELCOR, a severe accident analysis computer code developed for the U.S. Nuclear Regulatory Commission (NRC). Specifically, Sandia is modernizing MELCOR to include the capability to model sodium reactors. However, Sandia’s modernization effort primarily focuses on the containment response aspects of the sodium reactor accidents. Sandia began modernizing MELCOR in 2013 to allow a sodium coolant, rather than water, for conventional light water reactors. In the past three years, Sandia has been implementing the sodium chemistry containment models in CONTAIN-LMR, a legacy NRC code, into MELCOR. These chemistry models include spray fire, pool fire and atmosphere chemistry models. Only the first two chemistry models have been implemented though it is intended to implement all these models into MELCOR. A new package called “NAC” has been created to manage the sodium chemistry model more efficiently. In 2017 Sandia began validating the implemented models in MELCOR by simulating available experiments. The CONTAIN-LMR sodium models include sodium atmosphere chemistry and sodium-concrete interaction models. This paper presents sodium property models, the implemented models, implementation issues, and a path towards validation against existing experimental data.

  4. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  5. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry

    Science.gov (United States)

    Stevens, Jonathan

    2017-07-01

    Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.

  6. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  7. Reactor coolant system and containment aqueous chemistry

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1986-01-01

    Fission products released from fuel during reactor accidents can be subject to a variety of environments that will affect their ultimate behavior. In the reactor coolant system (RCS), for example, neutral or reducing steam conditions, radiation, and surfaces could all have an effect on fission product retention and chemistry. Furthermore, if water is encountered in the RCS, the high temperature aqueous chemistry of fission products must be assessed to determine the quantity and chemical form of fission products released to the containment building. In the containment building, aqueous chemistry will determine the longer-term release of volatile fission products to the containment atmosphere. Over the past few years, the principles of physical chemistry have been rigorously applied to the various chemical conditions described above. This paper reviews the current state of knowledge and discusses the future directions of chemistry research relating to the behavior of fission products in the RCS and containment

  8. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  9. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)

  10. Nanocarbons Made by Soft Chemistry

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    2002-01-01

    Roč. 386, - (2002), s. 167-172 ISSN 1058-725X R&D Projects: GA ČR GA203/99/1015 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon nanotubes * fullerenes * perfluorinated hydrocarbons Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.457, year: 2002

  11. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    P.S. Domski

    2003-07-21

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The

  12. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    P.S. Domski

    2003-01-01

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The current in

  13. Effectiveness of Case-Based Learning Instruction on Epistemological Beliefs and Attitudes Toward Chemistry

    Science.gov (United States)

    Çam, Aylin; Geban, Ömer

    2011-02-01

    The purpose of the study was to investigate the effectiveness of case-based learning instruction over traditionally designed chemistry instruction on eleventh grade students' epistemological beliefs and their attitudes toward chemistry as a school subject. The subjects of this study consisted of 63 eleventh grade students from two intact classes of an urban high school instructed with same teacher. Each teaching method was randomly assigned to one class. The experimental group received case-based learning and the control group received traditional instruction. At the experimental group, life cases were presented with small group format; at the control group, lecturing and discussion was carried out. The results showed that there was a significant difference between the experimental and control group with respect to their epistemological beliefs and attitudes toward chemistry as a school subject in favor of case-based learning method group. Thus, case base learning is helpful for development of students' epistemological beliefs and attitudes toward chemistry.

  14. Computational quantum chemistry website

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  15. The Effectiveness of the Chemistry Problem Based Learning (PBL) via FB among Pre-University Students

    Science.gov (United States)

    Sunar, Mohd Shahir Mohamed; Shaari, Ahmad Jelani

    2017-01-01

    The impact of social media, such as Facebook in various fields including education is undeniable. The main objective of this study is to examine the effect of the interaction between students' learning styles and learning approaches on their achievements in the chemistry subject using the Problem-Based Learning (PBL) method through Facebook. The…

  16. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  17. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  18. Explosive hazards in polyaniline chemistry

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchová, Miroslava; Prokeš, J.

    2017-01-01

    Roč. 71, č. 2 (2017), s. 387-392 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * oxidation of aniline * safety hazards Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  19. Radiation chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    2006-01-01

    The importance of radiation chemistry in the field of nuclear technology including reactor chemistry, spent fuel reprocessing and radioactive high level waste repository, is summarized and, in parallel, our research activity will be briefly presented. (author)

  20. IONIC LIQUIDS MATERIAL AS MODERN CONTEXT OF CHEMISTRY IN SCHOOL

    Directory of Open Access Journals (Sweden)

    Hernani Hernani

    2016-04-01

    Full Text Available One way to improve students’ chemistry literacy which is demanded in the modernization of modern technology-based chemistry learning is by studying ionic liquids. Low level of scientific literacy of students in Indonesia as revealed in the PISA in 2012 was the main reason of the research. Ionic liquids-based technology are necessary to be applied as a context for learning chemistry because: (1 the attention of the scientific an technology community in the use of ionic liquids as a new generation of green solvent, electrolyte material and fluidic engineering in recent years becomes larger, in line with the strong demands of the industry for the provision of new materials that are reliable, safe, and friendly for various purposes; (2 scientific explanations related to the context of the ionic liquid contains a lot of facts, concepts, principles, laws, models and theories can be used to reinforce the learning content as a media to develop thinking skill (process/competence as demanded by PISA; (3 The modern technology-based ionic liquid can also be used as a discourse to strengthen scientific attitude. The process of synthesis of ionic liquid involves fairly simple organic reagents, so it deserves to be included in the chemistry subject in school.

  1. New Carbons Made by Soft Chemistry

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    2001-01-01

    Roč. 200, Supplement (2001), s. 223-224 ISSN 0371-5345 R&D Projects: GA MŠk OC D14.10 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon * nanostructures * chemical modification Subject RIV: CF - Physical ; Theoretical Chemistry

  2. Relativistic quantum chemistry on quantum computers

    Czech Academy of Sciences Publication Activity Database

    Veis, Libor; Višňák, Jakub; Fleig, T.; Knecht, S.; Saue, T.; Visscher, L.; Pittner, Jiří

    2012-01-01

    Roč. 85, č. 3 (2012), 030304 ISSN 1050-2947 R&D Projects: GA ČR GA203/08/0626 Institutional support: RVO:61388955 Keywords : simulation * algorithm * computation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.042, year: 2012

  3. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  4. New trends and developments in radiation chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It uses radiation as the initiator of chemical reactions. Practical applications of radiation chemistry today extend to many fields, including health care, food and agriculture, manufacturing, industrial pollution abatement, biotechnology and telecommunications. The important advantage of radiation chemistry lies in its ability to be used to produce, and study, almost any reactive atomic and molecular species playing a part in chemical reactions, synthesis, industrial processes, or in biological systems. The techniques are applicable to gaseous, liquid, solid, and heterogeneous systems. By combining different techniques of radiation chemistry with analytical chemistry, the reaction mechanism and kinetics of chemical reactions are studied. In November 1988 in Bologna, Italy, the IAEA convened an advisory group meeting to assess new trends and developments in radiation chemistry. The present publication includes most of the contributions presented at the meeting. Refs, figs and tabs

  5. Increasing character value and conservation behavior through integrated ethnoscience chemistry in chemistry learning: A Case Study in The Department of Science Universitas Negeri Semarang.

    Science.gov (United States)

    Sudarmin; Sumarni, Woro

    2018-04-01

    The purpose of this study was to obtain a factual picture of the improvement of students' conservation character and conservation behavior through the application integrated ethnoscience chemistry learning. This research was a case study on students majoring in the Department Of Science Mathematics and Natural Science Faculty Universitas Negeri Semarang. The subjects of the study were 30 students attending ethnoscience course in one of the teacher education institutions in the even semester of the academic year of 2016/2017. The subjects were given chemistry learning integrated into ethnoscience for eight weeks. The technique of data collection was done by using attitude scale arranged based on Likert scale. The data were analyzed by using qualitative descriptive. The results showed that the integrated ethnoscience chemistry learning contributed positively to the improvement of the character value and conservation behavior

  6. One-world chemistry and systems thinking

    Science.gov (United States)

    Matlin, Stephen A.; Mehta, Goverdhan; Hopf, Henning; Krief, Alain

    2016-05-01

    The practice and overarching mission of chemistry need a major overhaul in order to be fit for purpose in the twenty-first century and beyond. The concept of 'one-world' chemistry takes a systems approach that brings together many factors, including ethics and sustainability, that are critical to the future role of chemistry.

  7. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  8. Green Goggles: Designing and Teaching a General Chemistry Course to Nonmajors Using a Green Chemistry Approach

    Science.gov (United States)

    Prescott, Sarah

    2013-01-01

    A novel course using green chemistry as the context to teach general chemistry fundamentals was designed, implemented and is described here. The course design included an active learning approach, with major course graded components including a weekly blog entry, exams, and a semester project that was disseminated by wiki and a public symposium.…

  9. The Beginning Lecture and the Improvement of “Experiments in Innovative Chemistry” as an Entry Subjects at the Department of Biochemistry and Applied Chemistry in National College of Technology

    Science.gov (United States)

    Tsuda, Yusuke; Nakashima, Hiroyuki; Tsuji, Yutaka; Watanabe, Katsuhiro; Ooka, Hisako

    The beginning lecture and the improvement of “Experiments in Innovative Chemistry” as an entry subjects in the Department of Biochemistry and Applied Chemistry at Kurume National College of Technology has been performed for recent three years. Every experiment was selected to sustain the young student's interest. The questionnaires were performed after first two year's programs were finished, and some of projects were improved. This subject has a good reputation for students and teachers, and seems to be very effective for the first year students of national college of technology.

  10. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  11. Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models

    OpenAIRE

    M. Bocquet; H. Elbern; H. Eskes; M. Hirtl; R. Žabkar; G. R. Carmichael; J. Flemming; A. Inness; M. Pagowski; J. L. Pérez Camaño; P. E. Saide; R. San Jose; M. Sofiev; J. Vira; A. Baklanov

    2015-01-01

    Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorologica...

  12. Eleventh international symposium on radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry

  13. Eleventh international symposium on radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  14. Challenging Gifted Learners: General Principles for Science Educators; and Exemplification in the Context of Teaching Chemistry

    Science.gov (United States)

    Taber, Keith S.

    2010-01-01

    There is concern in some counties about the number of able young people entering degree level study and careers in physical science, including chemistry. Too few of the most talented young people are selecting "STEM" subjects to ensure the future supply of scientists, engineers and related professionals. The present paper sets out general…

  15. COST Action CM1201 "Biomimetic Radical Chemistry": free radical chemistry successfully meets many disciplines

    Czech Academy of Sciences Publication Activity Database

    Ferreri, C.; Golding, B. T.; Jahn, Ullrich; Ravanat, J. L.

    2016-01-01

    Roč. 50, Suppl 1 (2016), S112-S128 ISSN 1071-5762 Institutional support: RVO:61388963 Keywords : radical enzyme * membrane stress * phospholipid remodeling * DNA damage and repair * biomimetic models * bio-inspired synthetic methodologies Subject RIV: CC - Organic Chemistry Impact factor: 3.188, year: 2016 http://www.tandfonline.com/doi/full/10.1080/10715762.2016.1248961

  16. Chemistry for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2011-01-01

    Chemistry - radiochemistry, radiation chemistry and nuclear chemical engineering play a very important role in the nuclear power development. Even at present, the offered technology is well developed, but still several improvements are needed and proposed. These developments concern all stages of the technology; front end, reactor operation (coolant chemistry and installation components decontamination, noble gas release control), back end of fuel cycle, etc. Chemistry for a partitioning and a transmutation is a new challenge for the chemists and chemical engineers. The IV th generation of nuclear reactors cannot be developed without chemical solutions for fuel fabrication, radiation-coolants interaction phenomena understanding and spent fuel/waste treatment technologies elaboration. Radiochemical analytical methods are fundamental for radioecological monitoring of radioisotopes of natural and anthropological origin. This paper addresses just a few subjects and is not a detailed overview of the field, however it illustrates a role of chemistry for a safe and economical nuclear power development. (author)

  17. The slow birth of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Amato, I.

    1993-03-12

    Mainstream chemistry is beginning to look at environmental chemistry as an important solution to environmental problems. This can include research into developing cleaner-burning liquid fuels, cleaning up oil spills, or developing better process methods which engender less pollution, as opposed to previous practices of detecting pollutants without preventing their release to begin with. This article discusses the progress of this chemistry discipline, describes some of the ongoing research, and describes the future for environmental chemistry. An impetus for future growth will be generational change, as young scientists in training are beginning to push faculities into creating programs for environmental chemistry.

  18. Radiation chemistry; principles and applications

    International Nuclear Information System (INIS)

    Aziz, F.; Rodgers, M.A.J.

    1994-01-01

    The book attempts to present those fields of radiation chemistry which depend on the principles of radiation chemistry. The first four chapters are some prelude about radiation chemistry principles with respect to how ionizing radiation interacts with matter, and primary results from these interactions and, which kinetic laws are followed by these primary interactions and which equipment for qualitative studies is necessary. Following chapters included principles fields of radiation chemistry. The last six chapters discussed of principle of chemistry from physical and chemical point of view. In this connection the fundamentals of radiation on biological system is emphasised. On one hand, the importance of it for hygiene and safety as neoplasms therapy is discussed. on the other hand, its industrial importance is presented

  19. Collection of problems in physical chemistry

    CERN Document Server

    Bareš, Jirí; Fried, Vojtech

    1961-01-01

    Collection of Problems in Physical Chemistry provides illustrations and problems covering the field of physical chemistry. The material has been arranged into illustrations that are solved and supplemented by problems, thus enabling readers to determine the extent to which they have mastered each subject. Most of the illustrations and problems were taken from original papers, to which reference is made. The English edition of this book has been translated from the manuscript of the 2nd Czech edition. It has been changed slightly in some places and enlarged on in others on the basis of further

  20. Materials chemistry approach to anion-sensor design

    Czech Academy of Sciences Publication Activity Database

    Anzenbacher Jr., P.; Jursiková, K.; Aldakov, D.; Marquez, M.; Pohl, Radek

    2004-01-01

    Roč. 60, č. 49 (2004), s. 11163-11168 ISSN 0040-4020 Institutional research plan: CEZ:AV0Z4055905 Keywords : conductive polymer * anion sensing * polythiophene Subject RIV: CC - Organic Chemistry Impact factor: 2.643, year: 2004

  1. Chemistry laboratory safety manual available

    Science.gov (United States)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  2. Chemistry teaching in the new degrees of Agricultural Engineering

    Science.gov (United States)

    Arce, Augusto; Tarquis, Ana Maria; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen

    2013-04-01

    The academic year 2011-12 is the second one implementing Bologna process in ETSI at the subjects of Agricultural Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate Environmental and engineering Graduate in Biotechnology, for it has been necessary to design and implement new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, implement new evaluation systems that promote continued participation active student and the development of educational materials to support the subjects of chemistry designed new degrees within the EEES. In addition to the above actions, an assessment test prior chemistry knowledge has been made to all students who enter into Agricultural Grades, improving laboratory practices and the comparative study of academic obtained by the students of the new grades in the subjects of chemistry during the year 2011-12 compared to the 2010-11 academic year. More than 15,000 data have showed a good correlation between the student's prior knowledge, the level test performed, test scores, the overall success rate of the course and the abandonment of the different degrees. Academic results show a higher percentage of students enrolled and presented on a greater number of passes on students enrolled in the 2011-12 academic year for students enrolled in the previous academic year. The improved results have influenced the actions taken and the level of knowledge with students entering. Finally, we propose possible solutions to fix these results in future courses, aiming to improve the degree of efficiency, success and significant absenteeism in the first year as it will condition the dropout rate of these new degrees. Acknowledgements: Proyecto de Innovación Educativa N° IE02054-11/12 UPM. 2012.

  3. Progress report 1985-1986 Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1987-12-01

    The report of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission, during the period 1985-1986, covers works of investigation, development and service related to the Argentine Nuclear Power Plants. The main subjects are the experimental and theoretical studies about physical chemistry and chemistry control at the moderators and heat transport system of the nuclear power plants. The more relevant topics are related to: 1: Behaviour of gases, electrolites and other additives for nuclear power plants, at high temperature and pressure; 2: Ionic exchangers of nuclear degree; 3: Electrochemistry studies connected with the constitutive materials' corrosion and with the nuclear power plants decontamination processes; 4: Behaviour of suspensions and colloids in nuclear power plants; 5: Use of new additives for chemistry control of the oxides which are in the circuits of nuclear power plants; 6: Research methods that allow to check reactor's control quality; 7: Study of the radiolytic behaviour of nuclear reactor's solutions. (M.E.L.) [es

  4. CO chemistry/research trends in CO chemistry in the US

    Energy Technology Data Exchange (ETDEWEB)

    Cantacuzene, M

    1978-10-01

    Research trends in CO chemistry in the U.S. include the development of stable and selective homogeneous catalysts which would facilitate the removal of the heat of reaction and be resistant to sulfur poisoning for the methanation reaction, methanol synthesis, and Fischer-Tropsch synthesis; development of low-temperature homogeneous water gas shift catalysts; and research on the coordination chemistry and photochemical conversions of CO/sub 2/. In 1977, the National Science Foundation awarded 16 contracts for a total of $720,000 to promote the research in this field, including studies on chemisorption and heterogeneous catalysis (four contracts) and on transition metal complexes (ten contracts, of which seven are dedicated to metal clusters). Carbon monoxide-based processes, including water gas shift reactions, CO reduction to alkanes and alcohols, hydroformylation, and homogeneous carbonylation processes, recently developed in the U.S. are listed.

  5. Chemistry Cube Game - Exploring Basic Principles of Chemistry by Turning Cubes.

    Science.gov (United States)

    Müller, Markus T

    2018-02-01

    The Chemistry Cube Game invites students at secondary school level 1 and 2 to explore basic concepts of chemistry in a playful way, either as individuals or in teams. It consists of 15 different cubes, 9 cubes for different acids, their corresponding bases and precursors, and 6 cubes for different reducing and oxidising agents. The cubes can be rotated in those directions indicated. Each 'allowed' vertical or horizontal rotation of 90° stands for a chemical reaction or a physical transition. Two different games and playing modes are presented here: First, redox chemistry is introduced for the formation of salts from elementary metals and non-metals. Second, the speciation of acids and bases at different pH-values is shown. The cubes can be also used for games about environmental chemistry such as the carbon and sulphur cycle, covering the topic of acid rain, or the nitrogen cycle including ammoniac synthesis, nitrification and de-nitrification.

  6. Polyhedral boron-containing cluster chemistry: Aspects of architecture beyond the icosahedron

    Czech Academy of Sciences Publication Activity Database

    Shea, S. L.; Bould, J.; Londesborough, M. G. S.; Perea, S. D.; Franken, A.; Ormsby, D. L.; Jelínek, Tomáš; Štíbr, Bohumil; Holub, Josef; Kilner, C. A.; Thorton-Pett, M.; Kennedy, J. D.

    2003-01-01

    Roč. 75, č. 9 (2003), s. 1239-1248 ISSN 0033-4545 R&D Projects: GA MŠk LN00A028 Grant - others:UK EPRC(GB) J56929 Institutional research plan: CEZ:AV0Z4032918 Keywords : molecular chemistry * carbon hydrides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.471, year: 2003

  7. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  8. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    Science.gov (United States)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral

  9. Progress report 1987-1988. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1988-01-01

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1987-1988. This department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1987-1988. (Author) [es

  10. What are today's choices for PWRs water chemistry?

    International Nuclear Information System (INIS)

    Berge, P.

    1998-01-01

    Water chemistry has always been, from the very beginning of operation of power Pressurized Water Reactors (PWRs), an important factor in determining the integrity of many reactor components. For both the primary and secondary coolant circuits, the parameters to control the quality of the chemistry have been subject to changes in time. These changes were dictated mainly by corrosion problems which required an adjustment of the chemistry, before any modification could be made in the design or the selection of materials for the subsequently built reactors or replacement components. The situation today, despite 40 years of experience, still leaves open different options for the specifications of the chemistry of the circuits. These options are sometimes due to differences in design or materials of the circuits, but more often, to the perception by the plant chemists, of the role of the chemistry on the different phenomena which could affect the operation of their plant. Paul Cohen, who was well known in the nuclear industry for the early development of the chemistry in PWRs in the USA, used to say, 'if the head chemist has changed in a plant, the chemistry will change'. The purpose of this lecture is to discuss some of the options which are offered to the chemist in compliance with the basic principles of the chemistry guidelines. (J.P.N.)

  11. Subjective cognitive complaints included in diagnostic evaluation of dementia helps accurate diagnosis in a mixed memory clinic cohort

    DEFF Research Database (Denmark)

    Salem, L C; Vogel, Asmus Mejling; Ebstrup, J

    2015-01-01

    OBJECTIVE: Our objective was to examine the quantity and profile of subjective cognitive complaints in young patients as compared with elderly patients referred to a memory clinic. METHODS: Patients were consecutively recruited from the Copenhagen University Hospital Memory Clinic at Rigshospitalet....... In total, 307 patients and 149 age-matched healthy controls were included. Patients were classified in 4 diagnostic groups: dementia, mild cognitive impairment, affective disorders and no cognitive impairment. Subjective memory was assessed with subjective memory complaints (SMC) scale. Global cognitive...... with dementia have a significantly higher level and a different profile of subjective cognitive complaints as compared with elderly patients with dementia. Furthermore, young patients, diagnosed with an affective disorder, had the highest level of subjective cognitive complaints of all patients in a memory...

  12. Whither Constructivism?--A Chemistry Teachers' Perspective

    Science.gov (United States)

    Niaz, Mansoor

    2008-01-01

    Constructivism in science education has been the subject of considerable debate in the science education literature. The purpose of this study was to facilitate chemistry teachers' understanding that the tentative nature of scientific knowledge leads to the coexistence and rivalries among different forms of constructivism in science education. The…

  13. Students’ experienced coherence between chemistry and biology in context-based secondary science education

    NARCIS (Netherlands)

    Boer, H.J.; Prins, Gjalt; Goedhart, M.J.; Boersma, Kerst

    2014-01-01

    In current biology and chemistry secondary school practice, coherence between the subjects chemistry and biology is underexposed or even ignored. This is incongruent with the current scientific practice, in which the emphasis is shifting towards inter- and multidisciplinarity. These problems have

  14. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  15. Summary report for April, May, and June 1950. Chemistry Divison

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D. W. [ed.

    1950-07-27

    A summary of activities for the Chemistry Division is reported for April-June 1950. Areas reporting activity include: Nuclear and Radiation Chemistry, Physical and Inorganic Chemistry, and Process Chemistry.

  16. Constitutive Pluralism of Chemistry: Thought Planning, Curriculum, Epistemological and Didactic Orientations

    Science.gov (United States)

    Ribeiro, Marcos Antonio Pinto; Pereira, Duarte Costa

    2013-01-01

    Maybe the most difficult aspect of thinking about chemistry arises from the fact that chemistry isn't an homogeneous subject. As a central science, it draws on a range of philosophical perspectives which in turn can result in different cognitive, learning and teaching styles in chemical education. This idea, apparently non-controversial, needs to…

  17. Clinical chemistry reference values for 75-year-old apparently healthy persons.

    Science.gov (United States)

    Huber, Klaus Roland; Mostafaie, Nazanin; Stangl, Gerhard; Worofka, Brigitte; Kittl, Eva; Hofmann, Jörg; Hejtman, Milos; Michael, Rainer; Weissgram, Silvia; Leitha, Thomas; Jungwirth, Susanne; Fischer, Peter; Tragl, Karl-Heinz; Bauer, Kurt

    2006-01-01

    Clinical chemistry reference values for elderly persons are sparse and mostly intermixed with those for younger subjects. To understand the links between metabolism and aging, it is paramount to differentiate between "normal" physiological processes in apparently healthy elderly subjects and metabolic changes due to long-lasting diseases. The Vienna Transdanube Aging (VITA) study, which began in 2000 and is continuing, will allow us to do just that, because more than 600 male and female volunteers aged exactly 75 years (to exclude any influence of the "aging" factor in this cohort) are participating in this study. Extensive clinical, neurological, biochemical, psychological, genetic, and radiological analyses, with a special emphasis on consumption of medication and abuse of drugs, were performed on each of the probands. The multitude of data and questionnaires obtained made possible an a posteriori approach to select individuals fulfilling criteria for a reference sample group of apparently healthy 75-year-old subjects for our study. Specific analytes were quantified on automated clinical analyzers, while manual methods were used for hormonal analytes. All clinical chemistry analytes were evaluated using in-depth statistical analyses with SPSS for Windows. In all, reference intervals for 45 analytes could be established. These include routine parameters for the assessment of organ functions, as well as hormone concentrations and hematological appraisals. Because all patients were reevaluated after exactly 30 months in the course of this study, we had the opportunity to reassess their health status at the age of 77.5 years. This was very useful for validation of the first round data set. Data of the second round evaluation corroborate the reference limits of the baseline analysis and further confirm our inclusion and exclusion criteria. In summary, we have established a reliable set of reference data for hormonal, hematological, and clinical chemistry analytes for

  18. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  19. Progress report 1983-1984 Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1985-11-01

    Description of the activity developed by the Reactor Chemistry Department of the National Atomic Energy Commission during the period 1983-1984 in its four divisions: Chemical Control; Moderator and Refrigerant Chemistry; Radiation Chemistry and Nuclear Power Plant's Service. A list of the publications made by the personnel during this period is also included. (M.E.L.) [es

  20. 32nd National Medicinal Chemistry Symposium--medicinal chemistry developments for neurodegeneration, diabetes and cancer.

    Science.gov (United States)

    Gater, Deborah

    2010-08-01

    The 32nd National Medicinal Chemistry Symposium, held in Minneapolis, MN, USA, included topics covering new developments in the field of medicinal chemistry. This conference report highlights selected presentations on NR2B subtype-selective NMDA receptor antagonists from Merck; selective neuronal nitric oxide synthase inhibitors from Northwestern University; novel GPR119 agonists, suchas GSK-1292263A (GlaxoSmithKline plc), PSN-821 ((OSI) Prosidion) and MBX-2982 (Metabolex Inc); a small-molecule Bcl inhibitor,navitoclax (Abbott Laboratories); and p53-targeting agents from sanofi-aventis and Ascenta Therapeutics Inc, including AT-219.

  1. Research advancements and applications of carboranes in nuclear medicinal chemistry

    International Nuclear Information System (INIS)

    Chen Wen; Wei Hongyuan; Luo Shunzhong

    2011-01-01

    Because of their uniquely high thermal and chemical stabilities, carboranes have become a subject of study with high interest in the chemistry of supra molecules, catalysts and radiopharmaceuticals. In recent years, the role of carboranes in nuclear medicinal chemistry has been diversified, from the traditional use in boron neutron capture therapy (BNCT), to the clinical applications in molecular radio imaging and therapy. This paper provides an overview of the synthesis and characterization of carboranes and their applications in nuclear medicinal chemistry, with highlights of recent key advancements in the re- search areas of BNCT and radio imaging. (authors)

  2. Areva's water chemistry guidebook with chemistry guidelines for next generation plants (AREVA EPRTM reactors)

    International Nuclear Information System (INIS)

    Ryckelynck, N.; Chahma, F.; Caris, N.; Guillermier, P.; Brun, C.; Caron-Charles, M.; Lamanna, L.; Fandrich, J.; Jaeggy, M.; Stellwag, B.

    2012-09-01

    Over the years, AREVA globally has maintained a strong expertise in LWR water chemistry and has been focused on minimizing short-term and long-term detrimental effects of chemistry for startup, operation and shutdown chemistry for all key plant components (material integrity and reliability, promote optimal thermal performances, etc.) and fuel. Also AREVA is focused on minimizing contamination and equipment/plant dose rates. Current Industry Guidelines (EPRI, VGB, etc.) provide utilities with selected chemistry guidance for the current operating fleet. With the next generation of PWR plants (e.g. AREVA's EPR TM reactor), materials of construction and design have been optimized based on industry lessons learned over the last 50+ years. To support the next generation design, AREVA water chemistry experts, have subsequently developed a Chemistry Guidebook with chemistry guidelines based on an analysis of the current international practices, plant operating experience, R and D data and calculation codes now available and/or developed by AREVA. The AREVA LWR chemistry Guidebook can be used to help resolve utility and safety authority questions and addresses regulation requirement questions/issues for next generation plants. The Chemistry Guidebook provides water chemistry guidelines for primary coolant, secondary side circuit and auxiliary systems during startup, normal operation and shutdown conditions. It also includes conditioning and impurity limits, along with monitoring locations and frequency requirements. The Chemistry Guidebook Guidelines will be used as a design reference for AREVA's next generation plants (e.g. EPR TM reactor). (authors)

  3. Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.

    Science.gov (United States)

    Schlenker, Richard M.

    Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…

  4. Conflicts in Chemistry: The Case of Plastics, a Role-Playing Game for High School Chemistry Students

    Science.gov (United States)

    Cook, Deborah H.

    2014-01-01

    Conflicts in Chemistry: The Case of Plastics, an innovative role-playing activity for high school students, was developed by the Chemical Heritage Foundation to promote increased public understanding of chemistry. The pilot program included three high school teachers and their students at three different schools and documented implementation and…

  5. Real time water chemistry monitoring and diagnostics

    International Nuclear Information System (INIS)

    Gaudreau, T.M.; Choi, S.S.

    2002-01-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  6. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted. © 2015 Elsevier B.V. All rights reserved.

  7. The Challenge of Effective Teaching of Chemistry: A Case Study

    Directory of Open Access Journals (Sweden)

    Abraham AVAA

    2011-06-01

    Full Text Available Chemistry education has been identified to be one of the major bedrock for the transformation of our national economy, and hence must be accorded adequate attention. In this study, an attempt was made in ascertaining the remote causes for the poor performances reported in recent times in chemistry at the senior secondary level of education. About 80 persons were interviewed in the course of this work ranging from ex-students, students to teachers. Teacher variables, student variables and environment-related variables were investigated and the findings showed that these all contribute greatly to the poor performances of students in science subjects and chemistry in particular. The chemistry teacher, students, parents, senior secondary school administrators, curriculum planners, and the government are therefore faced with the daunting challenge of re-awaking interest and providing enabling environment for the effective teaching of chemistry in particular and the sciences in general.

  8. Cuby: An Integrative Framework for Computational Chemistry

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan

    2016-01-01

    Roč. 37, č. 13 (2016), s. 1230-1237 ISSN 0192-8651 R&D Projects: GA ČR GP13-01214P Institutional support: RVO:61388963 Keywords : software framework * workflow automation * QM/MM * datasets * Ruby Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.229, year: 2016

  9. General Chemistry Exercises Focused on the Professional Profile on Nuclear Careers

    International Nuclear Information System (INIS)

    Lau-González, Maritza; Jáuregui-Haza, Ulises; Corona-Hernández, José Ángel; Santamaría-Arbona, María Teresa; Abreu-Díaz, Aidamary

    2016-01-01

    The subject General Chemistry is part of the base curriculum of the nuclear profile careers: Radiochemistry Careers and Engineering on Nuclear Technologies and Energetics. It has as main objectives the complementing, the deep analysis and integration of the basic principles of chemistry as a science, and due to its content, it constitutes an excellent platform to settle inter-subject relationships with those of the nuclear specialties. The aim of this paper is presenting linking examples among the subjects, through exercises that are supported in the Moodle Platform, conceived for the independent work of students, which besides facilitating the consolidation of the received knowledge in high school, and those ones in the first year of the career, allow them to be familiar with the future of their profession. (author)

  10. Where is the future of nuclear chemistry

    International Nuclear Information System (INIS)

    1980-01-01

    The future potentials of nuclear chemistry as a natural science with a strong orientation towards practical applications has been discussed at this meeting of 45 experts coming from research institutes and laboratories working in the fields of radiochemistry, nuclear chemistry, inorganic and applied chemistry, hot-atom chemistry, radiobiology, and nuclear biology, and from the two nuclear research centres at Juelich and Karlsruhe. The discussion centred around the four main aspects of future work, namely 1. basic research leading to an extension of the periodic table, nuclear reactions, the chemistry of superheavy elements, cosmochemistry; 2. radionuclide technology and activation analysis; 3. nuclear fuel cycle and reprocessing processes together with ultimate disposal methods; 4. radiochemistry in the life sciences, including nuclear chemistry and applications. (HK) [de

  11. Environmental Chemistry in the Undergraduate Laboratory.

    Science.gov (United States)

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  12. Intuitive Judgments Govern Students' Answering Patterns in Multiple-Choice Exercises in Organic Chemistry

    Science.gov (United States)

    Graulich, Nicole

    2015-01-01

    Research in chemistry education has revealed that students going through their undergraduate and graduate studies in organic chemistry have a fragmented conceptual knowledge of the subject. Rote memorization, rule-based reasoning, and heuristic strategies seem to strongly influence students' performances. There appears to be a gap between what we…

  13. C,N-Chelated Organotin(IV) Azides: Synthesis, Structure and Use within the Click Chemistry.

    Czech Academy of Sciences Publication Activity Database

    Švec, P.; Bartoš, K.; Růžičková, Z.; Cuřínová, Petra; Dušek, L.; Turek, J.; de Proft, F.; Růžička, A.

    2016-01-01

    Roč. 40, č. 7 (2016), s. 5808-5817 ISSN 1144-0546 Grant - others:FWO(BE) 12T6615N Institutional support: RVO:67985858 Keywords : organotin(IV)azides * click chemistry * chelation Subject RIV: CC - Organic Chemistry Impact factor: 3.269, year: 2016

  14. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    Science.gov (United States)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  15. Investigating the Viability of a Competency-Based, Qualitative Laboratory Assessment Model in First-Year Undergraduate Chemistry

    Science.gov (United States)

    Pullen, Reyne; Thickett, Stuart C.; Bissember, Alex C.

    2018-01-01

    In chemistry curricula, both the role of the laboratory program and the method of assessment used are subject to scrutiny and debate. The ability to identify clearly defined competencies for the chemistry laboratory program is crucial, given the numerous other disciplines that rely on foundation-level chemistry knowledge and practical skills. In…

  16. "JCE" Classroom Activity #110: Artistic Anthocyanins and Acid-Base Chemistry

    Science.gov (United States)

    Lech, Jenna; Dounin, Vladimir

    2011-01-01

    Art and science are sometimes viewed as opposing subjects, but are united in many ways. With an increased awareness of the benefits of interdisciplinary studies in education, it is desirable to show students how different subjects impact one another. Visual arts are greatly connected to chemistry in several ways. Pigments are usually synthetically…

  17. Dynamic combinatorial chemistry at the phospholipid bilayer interface

    NARCIS (Netherlands)

    Mansfeld, Friederike M.; Au-Yeung, Ho Yu; Sanders, Jeremy K.M.; Otto, Sijbren

    2010-01-01

    Background: Molecular recognition at the environment provided by the phospholipid bilayer interface plays an important role in biology and is subject of intense investigation. Dynamic combinatorial chemistry is a powerful approach for exploring molecular recognition, but has thus far not been

  18. Measuring the development of conceptual understanding in chemistry

    Science.gov (United States)

    Claesgens, Jennifer Marie

    The purpose of this dissertation research is to investigate and characterize how students learn chemistry from pre-instruction to deeper understanding of the subject matter in their general chemistry coursework. Based on preliminary work, I believe that students have a general pathway of learning across the "big ideas," or concepts, in chemistry that can be characterized over the course of instruction. My hypothesis is that as students learn chemistry they build from experience and logical reasoning then relate chemistry specific ideas in a pair-wise fashion before making more complete multi-relational links for deeper understanding of the subject matter. This proposed progression of student learning, which starts at Notions, moves to Recognition, and then to Formulation, is described in the ChemQuery Perspectives framework. My research continues the development of ChemQuery, an NSF-funded assessment system that uses a framework of the key ideas in the discipline and criterion-referenced analysis using item response theory (IRT) to map student progress. Specifially, this research investigates the potential for using criterion-referenced analysis to describe and measure how students learn chemistry followed by more detailed task analysis of patterns in student responses found in the data. My research question asks: does IRT work to describe and measure how students learn chemistry and if so, what is discovered about how students learn? Although my findings seem to neither entirely support nor entirely refute the pathway of student understanding proposed in the ChemQuery Perspectives framework. My research does provide an indication of trouble spots. For example, it seems like the pathway from Notions to Recognition is holding but there are difficulties around the transition from Recognition to Formulation that cannot be resolved with this data. Nevertheless, this research has produced the following, which has contributed to the development of the Chem

  19. National Chemistry Teacher Safety Survey

    Science.gov (United States)

    Plohocki, Barbra A.

    This study evaluated the status of secondary school instructional chemistry laboratory safety using a survey instrument which focused on Teacher background Information, Laboratory Safety Equipment, Facility Safety, General Safety, and a Safety Content Knowledge Survey. A fifty question survey instrument based on recent research and questions developed by the researcher was mailed to 500 secondary school chemistry teachers who participated in the 1993 one-week Woodrow Wilson National Fellowship Foundation Chemistry Institute conducted at Princeton University, New Jersey. The data received from 303 respondents was analyzed by t tests and Analysis of Variance (ANOVA). The level of significance for the study was set at ~\\ performance on the Safety Content Knowledge Survey and secondary school chemistry teachers who have had undergraduate and/or graduate safety training and those who have not had undergraduate and/or graduate safety training. Secondary school chemistry teachers who attended school district sponsored safety inservices did not score higher on the Safety Content Knowledge Survey than teachers who did not attend school district sponsored safety inservice sessions. The type of school district (urban, suburban, or rural) had no significant correlation to the type of laboratory safety equipment found in the instructional chemistry laboratory. The certification area (chemistry or other type of certificate which may or may not include chemistry) of the secondary school teacher had no significant correlation to the type of laboratory equipment found in the instructional chemistry laboratory. Overall, this study indicated a majority of secondary school chemistry teachers were interested in attending safety workshops applicable to chemistry safety. Throughout this research project, many teachers indicated they were not adequately instructed on the collegiate level in science safety and had to rely on common sense and self-study in their future teaching careers.

  20. Evaluation of Learning Processes in an Organic Chemistry Course.

    Science.gov (United States)

    Maroto, B.; Camusso, C.; Cividini, M.

    1997-01-01

    Reviews a subjective exercise completed by students at the end of each of six units in an introductory organic chemistry course. Argues that instruction should be shaped by Ausubel's concept of meaningful learning. (DDR)

  1. General chemistry courses that can affect achievement: An action research study in developing a plan to improve undergraduate chemistry courses

    Science.gov (United States)

    Shweikeh, Eman

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty

  2. Elements of environmental chemistry

    National Research Council Canada - National Science Library

    Hites, R. A; Raff, Jonathan D

    2012-01-01

    ... more. Extensively revised, updated, and expanded, this second edition includes new chapters on atmospheric chemistry, climate change, and polychlorinated biphenyls and dioxins, and brominated flame retardants...

  3. Plutonium(IV) hydrous polymer chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Dodson, K.E.

    1985-01-01

    The hydrous polymer chemistry of Pu(IV) in aqueous nitric acid solutions has been a subject of considerable interest for several years. This interest stems mainly from the fact that most nuclear fuel reprocessing schemes based on the Purex process can be hampered by the occurrence of polymer. As a result, an understanding and control of the parameters that affect polymer formation during reprocessing are studied. 2 refs

  4. The Separate and Collective Effects of Personalization, Personification, and Gender on Learning with Multimedia Chemistry Instructional Materials

    Science.gov (United States)

    Halkyard, Shannon

    2012-01-01

    Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations…

  5. Proceedings of the 11. ENQA: Brazilian meeting on analytical chemistry. Challenges for analytical chemistry in the 21st century. Book of Abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The 11th National Meeting on Analytical Chemistry was held from 18 to 21 September, 2001 at the Convention Center of UNICAMP, with the theme Challenges for Analytical Chemistry in the 21st Century. This meeting have discussed on the development of new methods and analytical tools needed to solve new challenges. The papers presented topics related to the different sub-areas of Analytical Chemistry such as Environmental Chemistry; Chemiometry techniques; X-ray Fluorescence Analysis; Spectroscopy; Separation Processes; Electroanalytic Chemistry and others. Were also included lectures on the Past and Future of Analytical Chemistry and on Ethics in Science

  6. Sonogashira cross-coupling under non-basic conditions. Flow chemistry as a new paradigm in reaction control

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    2014-01-01

    Roč. 1, č. 9 (2014), s. 1067-1071 ISSN 2052-4129 R&D Projects: GA MŠk LH12013 Institutional support: RVO:61388963 Keywords : Sonogashira * cross-coupling * flow chemistry Subject RIV: CC - Organic Chemistry

  7. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  8. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  9. Abstracts of the 2. Brazilian Symposium on Theoretical Chemistry

    International Nuclear Information System (INIS)

    1983-01-01

    Abstracts from research works on theoretical chemistry are presented. Main subjects of study are: metallic bonds, hyperfine interactions, symetry of isotopically substituted molecules, photoionization reactions, electron impact reactions, applications of the perturbation theory. (C.L.B.) [pt

  10. Chemistry for engineering students: A key factor for social and technological development

    Directory of Open Access Journals (Sweden)

    Juan Antonio Llorens Molina

    2014-12-01

    Full Text Available The peculiarity of Chemistry as a basic subject in Engineering Studies and its embedded potential difficulties are matters which are now common to universities worldwide. In particular, the learning of Chemistry in the new (post Bologna degrees of Engineering in Spain and other countries is facing several challenges. In other words, there is a need to deepen into research and innovation tasks aiming at improving such studies within this new educational paradigm. Not to mention, two crucial aspects which are very often neglected, namely, reaching maximum efficiency of all types of available resources and obtaining a “knock on effect” from students and teachers at Secondary school level. The latter playing a crucial role so as to increase students’ awareness of the importance that Chemistry has at this particular educational level. Not to mention, how this increases their motivation towards this subject in the Higher Education scenario.

  11. Application and Utilization of Electrochemistry in Organic Chemistry

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš

    2011-01-01

    Roč. 15, č. 17 (2011), s. 2921-2922 ISSN 1385-2728 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * organic chemistry * applications Subject RIV: CG - Electrochemistry Impact factor: 3.064, year: 2011

  12. Sustainable technological development in chemistry. Improving the quality of life through chemistry and agriculture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The importance of agricultural products, their potential conversion to energy sources and their applications for fibre-reinforced construction materials is emphasized. Another potentially important technology is the conversion of sunlight into electricity such as occurs in the leaves of plants. Parallels with nature exist, even though conversions with inorganic materials have, until now, been promising. The ability to control chemical reactions is the subject throughout all the following chapters. The goal is to achieve high reaction efficiencies and to use fewer basic materials, both of which will lead to a reduction in environmental stress. Sustainable developments in chemistry can be described by two approaches: (1) Improvements in society, with challenges for chemistry; and (2) Improvement in the chemical sector itself. Both approaches are dealt with in this report. Five areas for development have been chosen in the discussions for `DTO-Chemie`: Integrated plant conversion (IPC), in particular Valorisation of plant parts for raw materials and energy; Biomass conversion (C1 Chemistry), in particular Technologies for (among others) C1-based chemicals and energy carriers; Photovoltaic cells (PSC), in particular Technologies for the conversion of solar light into electricity; Process Technology in Fine chemistry (PFC), in particular Methodology of manufacturing processes for Fine chemicals; and Sustainable Construction Materials (FRC); in particular Techniques for using fibre-reinforced composites in construction applications. These areas can be viewed as clusters of technologies, with a strong chemistry and agricultural component, which are necessary for achieving a sustainable future. Furthermore, it is important to recognise that technology requires a progressive development (technology lifecycle). The five areas of technology development are tested against a number of criteria: (1) Sustainability / leap / volume; (2) Horizon 2050; (3) Commitment from industry

  13. Hot atom chemistry of sulphur

    International Nuclear Information System (INIS)

    Todorovski, D. S.; Koleva, D. P.

    1982-01-01

    An attempt to cover all papers dealing with the hot atom chemistry of sulpphur is made. Publications which: a) only touch the problem, b) contain some data, indirectly connected with sulphur hot atom chemistry, c) deal with 35 S-production from a chloride matrix, are included as well. The author's name and literature source are given in the original language, transcribed, when it is necessary, in latine. A number of primery and secondary documents have been used including Chemical Abstracts, INIS Atomindex, the bibliographies of A. Siuda and J.-P. Adloff for 1973 - 77, etc. (authors)

  14. Radiation chemistry from basics to applications in material and life sciences

    International Nuclear Information System (INIS)

    Belloni, J.; Mostafavi, M.; Douki, Th.; Spotheim-Maurizot, M.

    2008-01-01

    This book gives a progress report on the many and original contributions of radiation chemistry to the fundamental knowledge of the vast domain of chemical reactions and its applications. Radiation chemistry techniques indeed make it possible to elucidate detailed physicochemical mechanisms in inorganic and organic chemistry (including in space) and in biochemistry. Moreover, this comprehension is applied in materials science to precisely control syntheses by radiation, such as radiopolymerization, radio-grafting, specific treatment of surfaces (textiles, paintings, inks,..), synthesis of complex nano-materials, degradation of environmental pollutants and radioresistance of materials for nuclear reactors. In life sciences, the study of the effects of radiation on bio-macromolecules (DNA, proteins, lipids) not only permits the comprehension of normal or pathological biological mechanisms, but also the improvement of our health. In particular, many advances in cancer radiotherapy, in the radioprotection of nuclear workers and the general population, as well as in the treatment of diseases and the radiosterilization of drugs, could be obtained thanks to this research. Abundantly illustrated and written in English by top international specialists who have taken care to render the subjects accessible, this work will greatly interest those curious about a scientific field that is new to them and students attracted by the original and multidisciplinary aspects of the field. At a time when radiation chemistry research is experiencing spectacular development in numerous countries, this book will attract newcomers to the field. (authors)

  15. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  16. Advances in water chemistry control for BWRs and PWRs

    International Nuclear Information System (INIS)

    Wood, C.J.

    1997-01-01

    This paper is an overview of the effects of water chemistry developments on the current operation of nuclear power plants in the United States, and the mitigation of corrosion-related degradation processes and radiation field build-up processes through the use of advanced water chemistry. Recent modifications in water chemistry to control and reduce radiation fields are outlined, including revisions to the EPRI water chemistry guidelines for BWRs and PWR primary and secondary systems. The change from a single water chemistry specification for all plants to a set of options, from which a plant-specific chemistry programme can be defined, is described. (author)

  17. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  18. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  19. 2010 INORGANIC CHEMISTRY GORDON RESEARCH CONFERENCE JUNE 20 - 25, 2010

    Energy Technology Data Exchange (ETDEWEB)

    JOHN LOCKEMEYER

    2010-06-25

    The Inorganic Chemistry GRC is one of the longest-standing of the GRCs, originating in 1951. Over the years, this conference has played a role in spawning many other GRCs in specialized fields, due to the involvement of elements from most of the periodic table. These include coordination, organometallic, main group, f-element, and solid state chemistries; materials science, catalysis, computational chemistry, nanotechnology, bioinorganic, environmental, and biomedical sciences just to name a few. The 2010 Inorganic Chemistry GRC will continue this tradition, where scientists at all levels from academic, industrial, and national laboratories meet to define the important problems in the field and to highlight emerging opportunities through exchange of ideas and discussion of unpublished results. Invited speakers will present on a wide variety of topics, giving attendees a look at areas both inside and outside of their specialized areas of interest. In addition to invited speakers, the poster sessions at GRCs are a key feature of the conference. All conferees at the Inorganic Chemistry GRC are invited to present a poster on their work, and here the informal setting promotes the free exchange of ideas and fosters new relationships. As in previous years, we will offer poster presenters the opportunity to compete for one of several program spots in which they can give an oral presentation based on the subject matter of their poster. This is a great way to get your work noticed by the scientists attending the meeting, especially for those early in their career path such as junior faculty members, postdoctoral fellows, and those at comparable ranks. Anyone interested in participating in the poster competition should bring an electronic slide presentation and a small hard copy of their poster to submit to the committee.

  20. students' anxiety towards the learning of chemistry in some ...

    African Journals Online (AJOL)

    Preferred Customer

    Chemistry is a very important science subject in senior secondary school curricula ... one from guidance and counseling and the third from test and measurement). Of the .... This is responsible for the opinion of about 72% of them that students.

  1. Stereospecific control of peptide gas-phase ion chemistry with cis and trans cyclo ornithine residues

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Nguyen, H. T. H.; Brož, Břetislav; Tureček, F.

    2018-01-01

    Roč. 53, č. 2 (2018), s. 124-137 ISSN 1076-5174 Institutional support: RVO:61388963 Keywords : cis and trans isomers * cyclo ornithine * peptide dissociations * peptide ion structures * stereochemistry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.422, year: 2016

  2. Integrating Particulate Representations into AP Chemistry and Introductory Chemistry Courses

    Science.gov (United States)

    Prilliman, Stephen G.

    2014-01-01

    The College Board's recently revised curriculum for advanced placement (AP) chemistry places a strong emphasis on conceptual understanding, including representations of particle phenomena. This change in emphasis is informed by years of research showing that students could perform algorithmic calculations but not explain those calculations…

  3. Non-equilibrium chemistry in the solar nebula and early solar system: Implications for the chemistry of comets

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1989-01-01

    Theoretical models of solar nebula and early solar system chemistry which take into account the interplay between chemical, physical, and dynamical processes have great utility for deciphering the origin and evolution of the abundant chemically reactive volatiles (H, O, C, N, S) observed in comets. In particular, such models are essential for attempting to distinguish between presolar and solar nebula products and for quantifying the nature and duration of nebular and early solar system processing to which the volatile constituents of comets have been subjected. The diverse processes and energy sources responsible for chemical processing in the solar nebula and early solar system are discussed. The processes considered include homogeneous and heterogeneous thermochemical and photochemical reactions, and disequilibration resulting from fluid transport, condensation, and cooling whenever they occur on timescales shorter than those for chemical reactions.

  4. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...... to chemists, chemical engineers, biologists, material and food scientists and many more....

  5. Impact of aircraft emissions on the atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dameris, M; Sausen, R; Grewe, V; Koehler, I; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Steil, B [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Bruehl, Ch [Max-Planck-Inst. fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1998-12-31

    A hierarchy of models of different complexity has been applied to estimate the impact of aircraft NO{sub x} emissions on atmospheric chemistry. The global circulation model ECHAM3 has been coupled with two types of chemistry modules. The first of these describes only a simplified (linear) NO{sub x} and HNO{sub 3} chemistry while the second one is a comprehensive chemistry module (CHEM), describing tropospheric and stratospheric chemistry including photochemical reactions and heterogeneous reactions on sulphate aerosols and PSCs. The module CHEM has been coupled either off-line or with feedback via the ozone concentration. First results of multilayer integrations (over decades) are discussed. (author) 27 refs.

  6. Impact of aircraft emissions on the atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dameris, M.; Sausen, R.; Grewe, V.; Koehler, I.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Bruehl, Ch. [Max-Planck-Inst. fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1997-12-31

    A hierarchy of models of different complexity has been applied to estimate the impact of aircraft NO{sub x} emissions on atmospheric chemistry. The global circulation model ECHAM3 has been coupled with two types of chemistry modules. The first of these describes only a simplified (linear) NO{sub x} and HNO{sub 3} chemistry while the second one is a comprehensive chemistry module (CHEM), describing tropospheric and stratospheric chemistry including photochemical reactions and heterogeneous reactions on sulphate aerosols and PSCs. The module CHEM has been coupled either off-line or with feedback via the ozone concentration. First results of multilayer integrations (over decades) are discussed. (author) 27 refs.

  7. Framing a program designed to train new chemistry/physics teachers for California outlying regions

    Science.gov (United States)

    Bodily, Gerald P., Jr.

    The purpose of this study was to develop guidelines for a new high school chemistry and physics teacher training program. Eleven participants were interviewed who attended daylong workshops, every other Saturday, for 10 months. The instructors used Modeling Instruction pedagogy and curriculum. All the instructors had high school teaching experience, but only one possessed a doctorate degree. The interview questions focused on four themes: motivation, epistemology, meta-cognition, and self-regulation; and the resulting transcripts were analyzed using a methodology called Interpretive Phenomenological Analysis. The cases expressed a strong preference for the program's instruction program over learning subject matter knowledge in university classrooms. The data indicated that the cases, as a group, were disciplined scholars seeking a deep understanding of the subject matter knowledge needed to teach high school chemistry and physics. Based on these results a new approach to training teachers was proposed, an approach that offers novel answers to the questions of how and who to train as science teachers. The how part of the training involves using a program called Modeling Instruction. Modeling instruction is currently used to upgrade experienced science teachers and, in the new approach, replaces the training traditionally administered by professional scientists in university science departments. The who aspect proposes that the participants be college graduates, selected not for university science training, but for their high school math and science background. It is further proposed that only 10 months of daily, face-to-face instruction is required to move the learner to a deep understanding of subject matter knowledge required to teach high school chemistry and physics. Two outcomes are sought by employing this new training paradigm, outcomes that have been unachievable by current educational practices. First, it is hoped that new chemistry and physics teachers can

  8. Proceedings of 4. Meeting on Chemistry in Northeast

    International Nuclear Information System (INIS)

    1989-01-01

    The works of IV Meeting on Chemistry in Northeast are presented, including topics about compounds determination by nuclear analytical techniques and the non-nuclear techniques and physical-chemistry studies of chemical compounds. (C.G.C.)

  9. Smart Cities Will Need Chemistry

    Directory of Open Access Journals (Sweden)

    Alexandru WOINAROSCHY

    2016-06-01

    Full Text Available A smart city is a sustainable and efficient urban centre that provides a high quality of life to its inhabitants through optimal management of its resources. Chemical industry has a key role to play in the sustainable evolution of the smart cities. Additionally, chemistry is at the heart of all modern industries, including electronics, information technology, biotechnology and nano-technology. Chemistry can make the smart cities project more sustainable, more energy efficient and more cost effective. There are six broad critical elements of any smart city: water management systems; infrastructure; transportation; energy; waste management and raw materials consumption. In all these elements chemistry and chemical engineering are deeply involved.

  10. HMI Radiation Chemistry Department. Scientific report 1985

    International Nuclear Information System (INIS)

    1985-01-01

    Results of the R and D activities of the Radiation Chemistry Department, Hahn-Meitner-Institut, are reported, primarily dealing with the following subjects: a) Interface processes and energy conversion; b) Pulsed radiolysis and kinematics; c) Insulating materials and polymers. Activities belonging to group (a) above include the development of photosensitive materials for energy conversion, photovoltaic solar cells, light-induced hydrogen liberation, and inclusion reactions, model experiments studying photoactive interfaces, rapid kinematic measurements at interfaces after laser-induced excitation, surface preparation of amorphous silicon and its effects on electronic properties, photochemical reactions and catalysts. Work performed in group (b) above included studies into various chemical reactions involving radicals, and on interactions between atoms, ions, molecules and molecular clusters induced by low-energy collisions. Group (c) above all performed studies into the physical and chemical elementary processes induced by high-energy radiation, light and UV light, especially in electronegative gases. Further activities in this group included photochemical and radiation chemical investigations on polymers. The report lists publications and lectures prepared by H.M.I. members and guest scientists in the year 1985. (RB) [de

  11. American Chemical Society, Division of Environmental Chemistry

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Separate abstracts were prepared for 161 papers of this divisional meeting for the US Department of Energy's Database. Main topics discussed included: acid rain mitigation - liming technologies and environmental considerations; biotechnology for wastewater treatment; environmental chemistry of lakes and reservoirs and pollution prevention and process analytical chemistry

  12. Gamification and Physics and Chemistry of Secondary Education

    Directory of Open Access Journals (Sweden)

    Felipe QUINTANAL PEREZ

    2016-12-01

    Full Text Available Research proposal was made during the 2014–2015 school year with 4th year’s students of Secondary Education who have chosen as optional the subject of Physics and Chemistry. This project is based on the use of various gamebased strategies applied to the subject of Physics and Chemistry. We have chosen this theme by the pedagogical benefits that games have on the attraction of students and the development of their motivation. Students have participated individually, in pairs and in teams. Games used have been “chemical formulas on the run”, “chemical formulas championship”, “wheel of Physics and Chemistry”, “the sunken treasure” and “challenge problems”. The students have also developed a game based on the theme of waves and several teams did using Scratch. Finally there has been an increase in the academic performance of the subject. This experience was a success according to the results of the evaluation by the students. They have highlighted chemical formulas championship, the sunken treasure and the development of the game based on waves. As conclusions are that gamifying is not limited to only use video games, it can be gamify with little technology, personal, social and intellectual skills are developed and the method employed can be extrapolated to other subjects and courses.

  13. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  14. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry.

    Science.gov (United States)

    Williams, Antony J; Grulke, Christopher M; Edwards, Jeff; McEachran, Andrew D; Mansouri, Kamel; Baker, Nancy C; Patlewicz, Grace; Shah, Imran; Wambaugh, John F; Judson, Richard S; Richard, Ann M

    2017-11-28

    Despite an abundance of online databases providing access to chemical data, there is increasing demand for high-quality, structure-curated, open data to meet the various needs of the environmental sciences and computational toxicology communities. The U.S. Environmental Protection Agency's (EPA) web-based CompTox Chemistry Dashboard is addressing these needs by integrating diverse types of relevant domain data through a cheminformatics layer, built upon a database of curated substances linked to chemical structures. These data include physicochemical, environmental fate and transport, exposure, usage, in vivo toxicity, and in vitro bioassay data, surfaced through an integration hub with link-outs to additional EPA data and public domain online resources. Batch searching allows for direct chemical identifier (ID) mapping and downloading of multiple data streams in several different formats. This facilitates fast access to available structure, property, toxicity, and bioassay data for collections of chemicals (hundreds to thousands at a time). Advanced search capabilities are available to support, for example, non-targeted analysis and identification of chemicals using mass spectrometry. The contents of the chemistry database, presently containing ~ 760,000 substances, are available as public domain data for download. The chemistry content underpinning the Dashboard has been aggregated over the past 15 years by both manual and auto-curation techniques within EPA's DSSTox project. DSSTox chemical content is subject to strict quality controls to enforce consistency among chemical substance-structure identifiers, as well as list curation review to ensure accurate linkages of DSSTox substances to chemical lists and associated data. The Dashboard, publicly launched in April 2016, has expanded considerably in content and user traffic over the past year. It is continuously evolving with the growth of DSSTox into high-interest or data-rich domains of interest to EPA, such

  15. The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid in the presence of an organic phase

    Czech Academy of Sciences Publication Activity Database

    Mincher, B.J.; Přeček, Martin; Paulenova, A.

    2016-01-01

    Roč. 308, č. 3 (2016), s. 1005-1009 ISSN 0236-5731 R&D Projects: GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : neptunium * redox chemistry * radiation chemistry * solvent extraction Subject RIV: CH - Nuclear ; Quantum Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.282, year: 2016

  16. 2012 Gordon Research Conference, Organometallic Chemistry, 8-13 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hillhouse, Gregory [Univ. of Chicago, IL (United States)

    2012-07-13

    The 2012 Organometallic Chemistry Gordon Research Conference will highlight new basic science and fundamental applications of organometallic chemistry in industrial, academic, and national lab settings. Scientific themes of the conference will include chemical synthesis, reactivity, catalysis, polymer chemistry, bonding, and theory that involve transition-metal (and main-group) interactions with organic moieties.

  17. 46 CFR 188.10-11 - Chemistry laboratory.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemistry laboratory. 188.10-11 Section 188.10-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-11 Chemistry laboratory. This term includes...

  18. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  19. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  20. Effects of water chemistry and fluid dynamics on wall thinning behavior. Part 1. Development of FAC model focused on water chemistry and composition of material

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Domae, Masafumi; Ohta, Joji; Yoneda, Kimitoshi; Inada, Fumio

    2009-01-01

    Flow Accelerated Corrosion (FAC), which is one of the important subjects at fossil and nuclear power plans, is caused by the accelerated dissolution of protective oxide film due to the turbulent flow. The influence factors on FAC such as water chemistry, material, and fluid dynamics are closely related to the oxide property so that the risk of FAC can be reduced by the suitable control of water chemistry. There are some FAC models and evaluation codes of FAC rate. Some of them are used in wall thinning management of nuclear power plant in some country. Nevertheless, these FAC codes include many empirical parameters so that some uncertainty to evaluate the synergistic effectiveness of factors are the controversial point for the application of FAC code to wall thinning management in Japanese nuclear power plant. In this study, a FAC model that can evaluate the effect of temperature, NH3 concentration, chromium content, and dissolved oxygen concentration on FAC rate was developed by considering the diffusion of dissolved species. The critical dissolved oxygen concentration, which can inhibit FAC, was also calculated by this model. (author)

  1. Learning Chemistry by ICT (Virtual Animation at Maumere High School, East Nusa Tenggara

    Directory of Open Access Journals (Sweden)

    Yusnidar Yusuf

    2017-03-01

    Full Text Available This research was aimed to create attractive learning atmosphere which can make students excited inside theclass.Education was a right for every nation. It had to be given to improving a nation. Chemistry subject, especially in hydrocarbon chapter, was less-favorable by most students due to its difficulty level. Learning outcomes score were low. Many research showed that various method, strategy or another approach in teaching chemistry subject had significantlyimproved towards learning theoutcome of students.  One of the approaches was by virtual animation as part of ICT. Based on data result analysis from this research, there was 0,000 < α = 0.05 significance. As result, H0 was rejected. Itmeans that there was significant improve learning outcome using multimedia animation. The role of ICT as learning model should be utilised for granted by teachers to enriched chemistry science in school’s scope.

  2. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  3. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  4. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  5. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  6. The Brazilian medicinal chemistry from 1998 to 2008 in the Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry [A química medicinal brasileira de 1998 a 2008 nos periódicos Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry

    OpenAIRE

    Bárbara Vasconcellos da Silva; Renato Saldanha Bastos; Angelo da Cunha Pinto

    2009-01-01

    In this article we present the Brazilian publications, the research groups involved, the contributions per states and the main diseases studied from 1998 to 2008 in the following periodicals: Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry.

  7. Employment of mobile devices in chemistry education

    OpenAIRE

    Švehla, Martin

    2013-01-01

    This diploma thesis is focused on the use of mobile devices in chemistry education. Describes various mobile devices, including different operating systems and technology and shows huge potential that these devices bring to education. It also includes an overview of existing educational programs with a chemical theme on mobile devices. Part of this work was to create a custom supportive program Chemical helper for mobile devices, which can be used in chemistry education, laboratory and also i...

  8. Analytical Chemistry in the European Higher Education Area European Higher Education

    DEFF Research Database (Denmark)

    the more specialized degree of the Euromaster. The aim of the process, as a part of the fulfilment of the Bologna Declaration, is to propose a syllabus for education at the highest level of competence in academia. The proposal is an overarching framework that is supposed to promote mobility and quality......A Eurobachelor degree of Chemistry was endorsed by the EuCheMS division of analytical chemistry in 2004, and it has since then been adopted by many European universities. In the second stage of the European Higher Education Area (EHEA) process of harmonization, there is now focus on developing...... hold positions where analytical chemistry is the primary occupation. The education within the EHEA offers subjects related to chemical analysis but not all universities offer courses on analytical chemistry as an independent scientific discipline. Accordingly, the recent development of the analytical...

  9. Environmental literacy with green chemistry oriented in 21st century learning

    Science.gov (United States)

    Mitarlis, Ibnu, Suhadi; Rahayu, Sri; Sutrisno

    2017-12-01

    The aim of this study is to analyze the design of chemistry subject with green chemistry oriented to improve students' environmental literacy as one of the important requirements of 21st century learning. This research used R&D design which consisted of four stages, i.e. preliminary study, the study of literature, development of materials, and expert and empirical validation. This article presents the results of preliminary study and the study of literature. It can be concluded from the results of an analysis that environmental literacy is one of the important components of learning outcomes which should be pursued in 21st century teaching. Philosophy of green chemistry plays an important role to reduce and prevent pollution of environment. Principles of green chemistry can be integrated into learning environment as learning outcomes or nurturant effects of learning.

  10. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  11. Making Decisions by Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    . These discrepancies are very unfortunate because erroneous conclusions may arise from an otherwise meticulous and dedicated effort of research staff. This may eventually lead to unreliable conclusions thus jeopardizing investigations of environmental monitoring, climate changes, food safety, clinical chemistry......It has been long recognized that results of analytical chemistry are not flawless, owing to the fact that professional laboratories and research laboratories analysing the same type of samples by the same type of instruments are likely to obtain significantly different results. The European......, forensics and other fields of science where analytical chemistry is the key instrument of decision making. In order to elucidate the potential origin of the statistical variations found among laboratories, a major program was undertaken including several analytical technologies where the purpose...

  12. Polyhedral monocarbaborane chemistry. Some C-phenylated seven, eight, nine, ten, eleven and twelve-vertex species

    Czech Academy of Sciences Publication Activity Database

    Franken, A.; Jelínek, Tomáš; Taylor, R.G.; Ormsby, D. L.; Kilner, C. A.; Clegg, W.; Kennedy, D. J.

    -, č. 48 (2006), s. 5733-5769 ISSN 1477-9226 Grant - others:EPSRC(GB) J/56929; EPSRC(GB) GR/L/49505; EPSRC(GB) R/61949 Institutional research plan: CEZ:AV0Z40320502 Keywords : magnetic-resonance spectroscopy * anion chemistry * molecular structure Subject RIV: CA - Inorganic Chemistry Impact factor: 3.012, year: 2006

  13. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  14. Effects of using presentation formats that accommodate the learner's multiple intelligences on the learning of freshman college chemistry concepts

    Science.gov (United States)

    Brown Wright, Gloria Aileen

    Howard Gardner's Theory of Multiple Intelligences identifies linguistic, spatial and logical-mathematical intelligences as necessary for learning in the physical sciences. He has identified nine intelligences which all persons possess to varying degrees, and says that learning is most effective when learners receive information in formats that correspond to their intelligence strengths. This research investigated the importance of the multiple intelligences of students in first-year college chemistry to the learning of chemistry concepts. At three pre-selected intervals during the first-semester course each participant received a tutorial on a chemistry topic, each time in a format corresponding to a different one of the three intelligences, just before the concept was introduced by the class lecturer. At the end of the experiment all subjects had experienced each of the three topics once and each format once, after which they were administered a validated instrument to measure their relative strengths in these three intelligences. The difference between a pre- and post-tutorial quiz administered on each occasion was used as a measure of learning. Most subjects were found to have similar strengths in the three intelligences and to benefit from the tutorials regardless of format. Where a difference in the extent of benefit occurred the difference was related to the chemistry concept. Data which indicate that students' preferences support these findings are also included and recommendations for extending this research to other intelligences are made.

  15. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  16. Environmental and legal aspects of cooling water chemistry

    International Nuclear Information System (INIS)

    Hoffmann, H.J.

    1988-01-01

    The discharge and management of cooling water and waste water are subject to a number of ecological and legal requirements. For example, waste heat and cooling water constituents may affect surface bodies of water, or waste water discharge may have adverse effects on surface water and ground water. Waste water and cooling water discharge are subject to the Water Management Act (WHG) and the Waste Water Act, with about 50 administrative regulations. The requirements on water chemistry and analysis are gone into. (orig./HP) [de

  17. Implementing and Operating Computer Graphics in the Contemporary Chemistry Education

    Directory of Open Access Journals (Sweden)

    Olga Popovska

    2017-11-01

    Full Text Available Technology plays a crucial role in modern teaching, providing both, educators and students fundamental theoretical insights as well as supporting the interpretation of experimental data. In the long term it gives students a clear stake in their learning processes. Advancing in education furthermore largely depends on providing valuable experiences and tools throughout digital and computer literacy. Here and after, the computer’s benefit makes no exception in the chemistry as a science. The major part of computer revolutionizing in the chemistry laboratory is with the use of images, diagrams, molecular models, graphs and specialized chemistry programs. In the sense of this, the teacher provides more interactive classes and numerous dynamic teaching methods along with advanced technology. All things considered, the aim of this article is to implement interactive teaching methods of chemistry subjects using chemistry computer graphics. A group of students (n = 30 at the age of 18–20 were testing using methods such as brainstorming, demonstration, working in pairs, and writing laboratory notebooks. The results showed that demonstration is the most acceptable interactive method (95%. This article is expected to be of high value to teachers and researchers of chemistry, implementing interactive methods, and operating computer graphics.

  18. Patterns of similarity and difference between the vocabularies of psychology and other subjects.

    Science.gov (United States)

    Benjafield, John G

    2014-02-01

    The vocabulary of Anglophone psychology is shared with many other subjects. Previous research using the Oxford English Dictionary has shown that the subjects having the most words in common with psychology are biology, chemistry, computing, electricity, law, linguistics, mathematics, medicine, music, pathology, philosophy, and physics. The present study presents a database of the vocabularies of these 12 subjects that is similar to one previously constructed for psychology, enabling the histories of the vocabularies of these subjects to be compared with each other as well as with psychology. All subjects have a majority of word senses that are metaphorical. However, psychology is not among the most metaphorical of subjects, a distinction belonging to computing, linguistics, and mathematics. Indeed, the history of other subjects shows an increasing tendency to recycle old words and give them new, metaphorical meanings. The history of psychology shows an increasing tendency to invent new words rather than metaphorical senses of existing words. These results were discussed in terms of the degree to which psychology's vocabulary remains unsettled in comparison with other subjects. The possibility was raised that the vocabulary of psychology is in a state similar to that of chemistry prior to Lavoisier.

  19. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  20. Innovation Developments of Coal Chemistry Science in L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine

    Directory of Open Access Journals (Sweden)

    Shendrik, T.G.

    2015-11-01

    Full Text Available The article presents short historical review and innovation developments of Coal Chemistry Department of L.M. Litvinenko Institute, NAS of Ukraine connected with coal mine exploitation problems, search for decisions toward prevention of spontaneous combustion, dust control in mines, establishing structural chemical features of coal with different genesis and stages of metamorphism with the aim to develop new methods of their modification and rational use. The methods of obtaining inexpensive sorbents from Ukrainian raw materials (including carbon containing waste are proposed. The problems of modern coal chemistry science in IPOCC of NAS of Ukraine are outlined.

  1. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given [fr

  2. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  3. Uses of neutron scattering in supramolecular chemistry

    International Nuclear Information System (INIS)

    Lindoy, L.F.

    1998-01-01

    Full text: A major thrust in recent chemical research has been the development of supramolecular chemistry 1 - broadly the chemistry of large multicomponent molecular assemblies in which the component structural units are held together by either covalent linkages or by a variety of weaker (non-covalent) interactions that include hydrogen bonding, dipole stacking, π-stacking, van der Waals q forces and favourable hydrophobic interactions. Much of the activity in the area has been motivated by the known behaviour of biological molecules (such as enzymes). Thus molecular assemblies are ubiquitous in natural systems but, with a limited number of exceptions, have only recently been the subject of increasing investigation by chemists. A feature of much of this recent work has been its focus on molecular design for achieving complementarity between single molecule hosts and guests. The use of single crystal neutron diffraction coupled with molecular modelling and a range of other techniques to investigate the nature of individual supramolecular systems will be discussed. By way of example, in one such study the supramolecular array formed by co-crystallisation of 1,2- diaminoethane and benzoic acid has been investigated; the system self-assembles into an unusual layered structure composed of two-dimensional hydrogen bonded networks sandwiched between layers of edge-to-face stacked aromatic systems. The number of hydrogen-bond donors and acceptors is balanced in this structure

  4. The chemistry of the actinide elements. Volume I

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1986-01-01

    The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements

  5. An introduction to serious nuclear accident chemistry

    Directory of Open Access Journals (Sweden)

    Mark Russell St. John Foreman

    2015-12-01

    Full Text Available A review of the chemistry occurring inside a nuclear power plant during a serious reactor accident is presented. This includes some aspects of the behavior of nuclear fuel, its cladding, cesium and iodine. This review concentrates on the chemistry of an accident in a water-cooled reactor loaded with uranium dioxide or mixed metal oxide fuel.

  6. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  7. Advanced radiation chemistry research: Current status

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It is based on the use of ionizing radiation as the initiator or catalyst in chemical reactions. The most significant advantage of radiation chemistry lies in its ability to be used in the production and study of almost any reactive atomic and molecular species playing a part in chemical reaction, synthesis, industrial processes, or in biological systems. Over the the last few years a number of meetings have taken place, under the auspices of the IAEA, in order to evaluate recent developments in radiation chemistry as well as the trends indicated by the results obtained. Radiation chemists from different countries have participated at these meetings. The present publication, a companion to the previous publication - New Trends and Development in Radiation Chemistry, IAEA-TECDOC-527 (1989) - includes some of the important contributions presented at these meetings. It is hoped that it will provide a useful overview of current activities and of emerging trends in this field, thus promoting better understanding of potential contributions of radiation chemistry to other fields of knowledge as well as to practical applications in industry, medicine and agriculture. Refs, figs and tabs.

  8. Advanced radiation chemistry research: Current status

    International Nuclear Information System (INIS)

    1995-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It is based on the use of ionizing radiation as the initiator or catalyst in chemical reactions. The most significant advantage of radiation chemistry lies in its ability to be used in the production and study of almost any reactive atomic and molecular species playing a part in chemical reaction, synthesis, industrial processes, or in biological systems. Over the the last few years a number of meetings have taken place, under the auspices of the IAEA, in order to evaluate recent developments in radiation chemistry as well as the trends indicated by the results obtained. Radiation chemists from different countries have participated at these meetings. The present publication, a companion to the previous publication - New Trends and Development in Radiation Chemistry, IAEA-TECDOC-527 (1989) - includes some of the important contributions presented at these meetings. It is hoped that it will provide a useful overview of current activities and of emerging trends in this field, thus promoting better understanding of potential contributions of radiation chemistry to other fields of knowledge as well as to practical applications in industry, medicine and agriculture. Refs, figs and tabs

  9. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  10. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment.

    Science.gov (United States)

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies.

  11. High-energy chemistry of formamide: A unified mechanism of nucleobase formation

    Czech Academy of Sciences Publication Activity Database

    Ferus, M.; Nesvorný, D.; Šponer, J.; Kubelík, Petr; Michalčíková, R.; Shestivska, V.; Šponer, J.E.; Civiš, S.

    2015-01-01

    Roč. 112, č. 3 (2015), s. 657-662 ISSN 0027-8424 Institutional support: RVO:68378271 Keywords : origin of life * asteroid impact * biomolecules * LIDB Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.423, year: 2015

  12. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  13. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  14. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  15. Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry

    Directory of Open Access Journals (Sweden)

    Taghi Rajabi

    2017-09-01

    Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.

  16. The unimolecular chemistry of protonated and deprotonated 2,2-dinitroethene-1,1-diamine (FOX-7) studied by tandem mass spectrometry and computational chemistry

    Czech Academy of Sciences Publication Activity Database

    Žabka, Ján; Šimková, Ludmila; Jalový, Z.; Polášek, Miroslav

    2014-01-01

    Roč. 20, č. 3 (2014), s. 233-247 ISSN 1469-0667 R&D Projects: GA ČR GAP206/11/0727 Institutional support: RVO:61388955 Keywords : 2,2-dinitroethene-1,1-diamine * electrospray ionization * chemical ionization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.000, year: 2014

  17. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  18. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  19. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  20. Progress report 1981-1982. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1983-08-01

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1981-1982. This Department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. During this period, the following tasks were performed: study of the metallic oxide-water interphases; determination of the goethite and magnetite surficial charges; synthesis of the monodispersed nickel ferrites; study of the iron oxides dissolution mechanism in presence of different complexing agents; chemical decontamination of structural metals; thermodynamics of the water-nitrogen system; physico-chemical studies of aqueous solutions at high temperatures; hydrothermal decomposition of ionic exchange resines and study of the equilibria of the anionic exchange for the chemistry of pressurized reactor's primary loops. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1981-1982. (R.J.S.) [es

  1. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  2. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling

    Science.gov (United States)

    Eibern, Hendrik; Schmidt, Hauke

    1999-08-01

    The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.

  3. Quality assurance for health and environmental chemistry: 1986

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Moss, W.D.; Phillips, M.B.; O'Malley, B.T.

    1987-11-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group at the Los Alamos National Laboratory. The philosophy, methodology, and computing resources used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1986. 27 refs., 3 figs

  4. Designing the Next-Generation Chemistry Journal: The Internet Journal of Chemistry.

    Science.gov (United States)

    Bachrach, Steven M.; Burleigh, Darin C.; Krassivine, Anatoli

    1998-01-01

    Discusses how the journal "Internet Journal of Chemistry" is designed to take advantage of newly available technologies. Describes the development of the concept of an electronic journal, decision-making on the scope and coverage of the journal, financial logistics, and how the journal will be implemented. Includes perspectives on how this new…

  5. Chemistry is Evergreen

    Indian Academy of Sciences (India)

    Srimath

    2008 Nobel Prize in Chemistry. Swagata Dasgupta. Swagata Dasgupta is an ... would get excited. The GFP would then emit green light. (509 nm) and return to the ground state. com ponents required. T hese include a photoprotein,ae- quorin (F igure 2) w hich em its .... a chemical reaction which originates in an organism.

  6. Medicinal Chemistry: Where Are All the Women?

    Science.gov (United States)

    Huryn, Donna M; Bolognesi, Maria Laura; Young, Wendy B

    2017-09-14

    A review of multiple parameters including membership in professional organizations, corresponding authorship of medicinal chemistry journal articles, and representation in professional and leadership positions reveals that the percentage of women who participate in professional medicinal chemistry activities is less than 20%. These surrogate demographics are consistent across organizations, regions in the world and the various parameters evaluated, and parallel statistics compiled on the broader participation of women in all STEM fields. As in other STEM fields, a leaky pipeline is also evident. Suggestions for how to encourage and support women in medicinal chemistry in order to provide a more balanced representation are provided.

  7. Course on Advanced Analytical Chemistry and Chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Fristrup, Peter; Nielsen, Kristian Fog

    2011-01-01

    Methods of analytical chemistry constitute an integral part of decision making in chemical research, and students must master a high degree of knowledge, in order to perform reliable analysis. At DTU departments of chemistry it was thus decided to develop a course that was attractive to master...... students of different direction of studies, to Ph.D. students and to professionals that need an update of their current state of skills and knowledge. A course of 10 ECTS points was devised with the purpose of introducing students to analytical chemistry and chromatography with the aim of including theory...

  8. Chemistry for sustainable development in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Gurib-Fakim, Ameenah [Mauritius Univ., Reduit (Mauritius); Eloff, Jacobus Nicolaas (eds.) [Pretoria Univ. (South Africa). Faculty of Veterinary Science

    2013-07-01

    Chemistry for Sustainable Development in Africa' gives an insight into current Chemical research in Africa. It is edited and written by distinguished African scientists and includes contributions from Chemists from Northern, Southern, Western, Eastern, Central and Island state African Countries. The core themes embrace the most pressing issues of our time, including Environmental Chemistry, Renewable Energies, Health and Human Well-Being, Food and Nutrition, and Bioprospecting and Commercial Development. This book is invaluable for teaching and research institutes in Africa and worldwide, private sector entities dealing with natural products from Africa, as well as policy and decision-making bodies and non-governmental organizations.

  9. The Chemistry of Griseofulvin

    DEFF Research Database (Denmark)

    Petersen, Asger Bjørn; Rønnest, Mads Holger; Larsen, Thomas Ostenfeld

    2014-01-01

    Specific synthetic routes are presented in schemes to illustrate the chemistry, and the analogs are presented in a table format to give an accessible overview of the structures. Several patents have been published regarding the properties of griseofulvin and its derivatives including synthesis...

  10. Industrial medicinal chemistry insights: neuroscience hit generation at Janssen.

    Science.gov (United States)

    Tresadern, Gary; Rombouts, Frederik J R; Oehlrich, Daniel; Macdonald, Gregor; Trabanco, Andres A

    2017-10-01

    The role of medicinal chemistry has changed over the past 10 years. Chemistry had become one step in a process; funneling the output of high-throughput screening (HTS) on to the next stage. The goal to identify the ideal clinical compound remains, but the means to achieve this have changed. Modern medicinal chemistry is responsible for integrating innovation throughout early drug discovery, including new screening paradigms, computational approaches, novel synthetic chemistry, gene-family screening, investigating routes of delivery, and so on. In this Foundation Review, we show how a successful medicinal chemistry team has a broad impact and requires multidisciplinary expertise in these areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Gas phase chemistry studies of transactinoid elements and the relativistic effects

    Czech Academy of Sciences Publication Activity Database

    Zvára, Ivo

    1999-01-01

    Roč. 49, č. 2 (1999), s. 563-571 ISSN 0011-4626 Institutional research plan: CEZ:AV0Z1048901 Keywords : transactinoid * relativistic effects * chemical properties Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.328, year: 1999

  12. Chemistry Division progress report for the period January 1, 1977 - December 31, 1980

    International Nuclear Information System (INIS)

    Moorthy, P.N.; Ramshesh, V.; Yakhmi, J.V.

    1981-01-01

    The research and development work of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during the period 1977-1980 is reported in the form of individual summaries under the headings: basic research including radiation chemistry, photochemistry, kinetic and electrochemical studies, ion exchange and sorption behaviour, chemistry of metal complexes (in particular, of uranium complexes), radiation damage in solids, heterogeneous catalysts, studies in magnetism, physical properties, solid state studies, theoretical studies, reactor related programmes (including reactor chemistry, lubricants and sealants, surface studies, water chemistry), applied research and development (including materials development, purification and analytical techniques, apolied radiation chemistry etc.), and instrumentation. Work of service facilities such as workshop, analytical se services, and repair and maintenance of instruments is described. Lists of training programmes, staff publications and divisional seminars, are given. At the end a sectionwise list of staff members is also given. (M.G.B.)

  13. A Test of Strategies for Enhanced Learning of AP Descriptive Chemistry

    Science.gov (United States)

    Kotcherlakota, Suhasini; Brooks, David W.

    2008-01-01

    The Advanced Placement (AP) Descriptive Chemistry Website allows users to practice chemistry problems. This study involved the redesign of the Website using worked examples to enhance learner performance. The population sample for the study includes users (students and teachers) interested in learning descriptive chemistry materials. The users…

  14. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    Science.gov (United States)

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  15. Marcoule institute for separation chemistry - ICSM. Scientific report 2007 - 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The mixed research unit 'Institute for Separation Chemistry' was created jointly by CEA, CNRS, University of Montpellier and Ecole Nationale superieure de Chimie de Montpellier has obtained authorisation to start experiments including a few grams of depleted uranium and natural thorium in January 2010. Last takeoff was from our theory group, who started in October 2009. But the unit 'Institut de Chimie separative de Marcoule' existed as a team scattered in several places in France since 2007. At that time, monthly meetings gathered people for full days of open discussion every month, as 'Point ICSM', where colleagues from R/D Departments of the centre of Marcoule composed half of the audience. Scientific activity began in 2007 with progressive joining of ICSM of team leaders, co-workers, technicians and students, today with 38 permanent staff and 29 nonpermanent scientists and students. Most of the staff joined ICSM after or before participating to the European practical summer school in Analytical and separation chemistry, hold yearly for a full week including practical sessions since the first edition 2006 in Montpellier. Resources in Uranium are scarce, if only the 235 isotope is used. Wastes related to nuclear energy production are potentially dangerous. Since fifty years, the chemistry associated to nuclear energy production always followed the principles of green chemistry. Permanent attention in devoted to closing the life-cycle of materials and fuel, minimize wastes and ascertain the acceptability by a society via knowledge of chemistry and physical chemistry involved in the chemistry used for separation. Developing knowledge in order to propose new separation processes is the central aim of the ICSM. Enlarging this central goal to surfaces of materials, sono-chemistry as an example of green chemistry, chemistry and physical chemistry specific to actinides complete this picture. Thus, the ICSM is devoted to chemistry at the service of the nuclear energy of

  16. Contextualized Chemistry Education: The American experience

    Science.gov (United States)

    Schwartz, A. Truman

    2006-07-01

    This paper is a survey of context-based chemistry education in the United States. It begins with a very brief overview of twentieth-century chemistry texts and teaching methods, followed by a short description of a pioneering secondary school text. The major emphasis is on post-secondary instruction and the central case study is provided by Chemistry in Context, a university text intended for students who are not specializing in science. The paper is more concerned with strategies for curriculum reform than with educational research, and the emphasis is more pragmatic than theoretical. A chronological sequence is used to trace the creation of Chemistry in Context. This developmental account is overlaid with the curricular representations of Goodlad and Van den Akker. The Ideal Curriculum was the goal, but the Formal Curriculum was created and revised as a consequence of iteration involving perceptions of the users, the implementation of the curriculum, the experience of students and teachers, and formal and informal assessment of what was attained. The paper also includes descriptions of other, more recent, context-based college chemistry curricula. It concludes with a list of problems and unanswered questions relating to this pedagogical approach.

  17. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  18. Markers of Lipid Oxidative Damage among Office Workers Exposed Intermittently to Air Pollutants including NanoTiO2 Particles.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Komarc, M.; Fenclová, Z.; Vlčková, Š.; Zíková, Naděžda; Schwarz, Jaroslav; Makeš, Otakar; Navrátil, Tomáš; Zakharov, S.; Bello, D.

    2017-01-01

    Roč. 32, 1-2 (2017), s. 193-200 ISSN 0048-7554 Institutional support: RVO:67985858 ; RVO:61388955 Keywords : exhaled breath condensate * occupational exposure * oxidative stress * spirometry * urine Subject RIV: DN - Health Impact of the Environment Quality; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Public and environmental health; Physical chemistry (UFCH-W)

  19. Current developments in radiation chemistry

    International Nuclear Information System (INIS)

    Cooper, R.

    2000-01-01

    Full text: The theme of the 2000 Gordon Conference on Radiation Chemistry was 'diversity'. The range of topics covered was heralded by the opening presentations which went from the galactic to molecular biology, radiation chemistry and non thermal surface processes in the outer solar system to achievements and open challenges in DNA research. The rest of the conference reflected the extended usage of radiation chemistry -its processes and techniques - applied to a panorama of topics. The ability to generate either oxidising or reducing free radicals in known quantities has been the foundation stone on which all applications are based. In particular it is noticeable that biological systems have been attempted by an increasing number of workers, such as studies of biological ageing and also reactions of nitric oxide in biological environments. Electron transfer processes in proteins are straightforward applications of solvated electron chemistry even if the results are not straightforward in their interpretation. Other topics presented include, radiation chemical processes induced in: supercritical CO 2 , treatment of contaminated materials, 3-dimensional Fullerenes, zeolites and radiation catalysis. In material science, aspects of ions and excited states in polymers, conducting polymers, donor acceptor processes in photo curing, enhancement of photo-electron yields in doped silver halides- improvement of the photographic process, radiation chemistry in cages and bubbles are discussed. The fundamental aspects of radiation chemistry are not yet all worked out. Subpicosecond pulsed electron beam sources, some of them 'tabletop', are still being planned to probe the early events in radiation chemistry both in water and in organic solvents. There is still an interest in the chemistry produced by pre-solvated electrons and the processes induced by heavy ion radiolysis. The description of the relaxation of an irradiated system which contains uneven distributions of ions

  20. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  1. Analytical Chemistry as Methodology in Modern Pure and Applied Chemistry

    OpenAIRE

    Honjo, Takaharu

    2001-01-01

    Analytical chemistry is an indispensable methodology in pure and applied chemistry, which is often compared to a foundation stone of architecture. In the home page of jsac, it is said that analytical chemistry is a learning of basic science, which treats the development of method in order to get usefull chemical information of materials by means of detection, separation, and characterization. Analytical chemistry has recently developed into analytical sciences, which treats not only analysis ...

  2. News: Green Chemistry & Technology

    Science.gov (United States)

    A series of 21 articles focused on different features of green chemistry in a recent issue of Chemical Reviews. Topics extended over a wide range to include the design of sustainable synthetic processes to biocatalysis. A selection of perspectives follows as part of this colu

  3. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  4. Are there two decks on the analytical chemistry boat?

    Czech Academy of Sciences Publication Activity Database

    Plzák, Zbyněk

    2000-01-01

    Roč. 5, č. 1 (2000), s. 35-36 ISSN 0949-1775. [Quality Management in Analytical Chemical Research and Development. Münster, 31.05.1999-01.06.1999] Institutional research plan: CEZ:AV0Z4032918 Keywords : accredation * management * quality * assurance Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.894, year: 2000

  5. Using Physics Principles in the Teaching of Chemistry.

    Science.gov (United States)

    Gulden, Warren

    1996-01-01

    Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…

  6. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 21

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1987 through March 31, 1988. Detailed descriptions of the activities are presented in the following subjects: (i) studies on surface phenomena under electron and ion irradiations and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  7. Factors related to achievement in sophomore organic chemistry at the University of Arkansas

    Science.gov (United States)

    Lindsay, Harriet Arlene

    The purpose of this study was to identify the significant cognitive and non-cognitive variables that related to achievement in the first semester of organic chemistry at the University of Arkansas. Cognitive variables included second semester general chemistry grade, ACT composite score, ACT English, mathematics, reading, and science reasoning subscores, and spatial ability. Non-cognitive variables included anxiety, confidence, effectance motivation, and usefulness. Using a correlation research design, the individual relationships between organic chemistry achievement and each of the cognitive variables and non-cognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. The samples consisted of volunteers from the Fall 1999 and Fall 2000 sections of Organic Chemistry I at the University of Arkansas. All students in each section were asked to participate. Data for spatial ability and non-cognitive independent variables were collected using the Purdue Visualization of Rotations test and the modified Fennema-Sherman Attitude Scales. Data for other independent variables, including ACT scores and second semester general chemistry grades, were obtained from the Office of Institutional Research. The dependent variable, organic chemistry achievement, was measured by each student's accumulated points in the course and consisted of scores on quizzes and exams in the lecture section only. These totals were obtained from the lecture instructor at the end of each semester. Pearson correlation and stepwise multiple regression analyses were used to measure the relationships between organic chemistry achievement and the independent variables. Prior performance in chemistry as measured by second semester general

  8. Isotope and Nuclear Chemistry Division annual report, FY 1988

    International Nuclear Information System (INIS)

    1989-06-01

    This report describes some of the major research and development programs of the Isotope and Nuclear Chemistry Division during FY 1988. The report includes articles on weapons chemistry, biochemistry and nuclear medicine, nuclear structure and reactions, and the INC Division facilities and laboratories

  9. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  10. Influence of water chemistry on fuel cladding behaviour. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-02-01

    For the purpose of the meeting water chemistry included the actual practice, the water chemistry monitoring and the on-going research. Corrosion included also hydriding, recent observations made in reactors, modelling and the recent research carried out. Fifty seven participants representing twenty countries attended the thirty formal presentations and the subsequent discussions. The thirty papers presented were split into five sessions covering, Reactor experience, Mechanism and Modelling, Oxidation and hydriding, On-line monitoring of water chemistry and the review of existing and advanced water chemistries. Four panel discussions including ''Corrosion mechanism and Modelling'', ''Corrosion and Hydriding'', ''Plant Experience and Loop Experiments'', Water Chemistry, Current Practice and Emerging Solutions'' and ''On-line Monitoring of Water Chemistry and Corrosion'' were organized. The main points of discussion focussed on the optimization of water chemistry, the compatibility of potassium water chemistry with the utilization of Zircaloy 4 or the utilization of zirconium niobium cladding with lithium water chemistry. The effect of the fabrication route and of the cladding composition (Sn content) on the corrosion kinetics, the state of the art and the correlative gaps in cladding corrosion modelling and the recent developments of on-line monitoring of water chemistry together with examination of suitable developments, were also discussed. Refs, figs, tabs

  11. Influence of water chemistry on fuel cladding behaviour. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    For the purpose of the meeting water chemistry included the actual practice, the water chemistry monitoring and the on-going research. Corrosion included also hydriding, recent observations made in reactors, modelling and the recent research carried out. Fifty seven participants representing twenty countries attended the thirty formal presentations and the subsequent discussions. The thirty papers presented were split into five sessions covering, Reactor experience, Mechanism and Modelling, Oxidation and hydriding, On-line monitoring of water chemistry and the review of existing and advanced water chemistries. Four panel discussions including ``Corrosion mechanism and Modelling``, ``Corrosion and Hydriding``, ``Plant Experience and Loop Experiments``, Water Chemistry, Current Practice and Emerging Solutions`` and ``On-line Monitoring of Water Chemistry and Corrosion`` were organized. The main points of discussion focussed on the optimization of water chemistry, the compatibility of potassium water chemistry with the utilization of Zircaloy 4 or the utilization of zirconium niobium cladding with lithium water chemistry. The effect of the fabrication route and of the cladding composition (Sn content) on the corrosion kinetics, the state of the art and the correlative gaps in cladding corrosion modelling and the recent developments of on-line monitoring of water chemistry together with examination of suitable developments, were also discussed. Refs, figs, tabs.

  12. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  13. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  14. Problem-based learning on quantitative analytical chemistry course

    Science.gov (United States)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  15. Extraterrestrial Radiation Chemistry and Molecular Astronomy

    Science.gov (United States)

    Hudson, Reggie L.; Moore, Marla H.

    2009-01-01

    Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.

  16. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Rout, D.; Upadhyaya, T.C.; Ravindranath; Selvinayagam, P.; Sundar, R.S.

    2015-01-01

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1 st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  17. Quality assurance for health and environmental chemistry: 1989

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Koski, N.L.; Jones, E.A.; Phillips, M.B.; O'Malley, B.T.

    1990-12-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1989. 38 refs., 8 figs., 3 tabs

  18. 5. International seminar on primary and secondary side water chemistry of nuclear power plants

    International Nuclear Information System (INIS)

    2001-01-01

    The major subjects of the meetings are: water chemistry of primary and secondary coolant circuits of PWR type reactors (mainly WWER types), corrosion of steam generators, decontamination processes, treatment of radioactive waste waters and related subjects. All the 29 papers were individually indexed and abstracted for the INIS database. (R.P.)

  19. 5. International seminar on primary and secondary side water chemistry of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The major subjects of the meetings are: water chemistry of primary and secondary coolant circuits of PWR type reactors (mainly WWER types), corrosion of steam generators, decontamination processes, treatment of radioactive waste waters and related subjects. All the 29 papers were individually indexed and abstracted for the INIS database. (R.P.)

  20. Perry's Scheme of Intellectual and Epistemological Development as a Framework for Describing Student Difficulties in Learning Organic Chemistry

    Science.gov (United States)

    Grove, Nathaniel P.; Bretz, Stacey Lowery

    2010-01-01

    We have investigated student difficulties with the learning of organic chemistry. Using Perry's Model of Intellectual Development as a framework revealed that organic chemistry students who function as dualistic thinkers struggle with the complexity of the subject matter. Understanding substitution/elimination reactions and multi-step syntheses is…

  1. Chemistry: A contemporary approach. Second edition

    International Nuclear Information System (INIS)

    Miller, G.T.; Lygre, D.; Smith, W.

    1987-01-01

    This text provides a basic introduction to the principles of chemistry (in Chapters 1-9) and to the three major applied areas: Resources and Environment (four chapters); consumer issues (five chapters); and health (four chapters). The broad coverage of applications appeals to widely varied interests and provides variety for assignments. Following changes are made in the new edition: Completely rewritten to simplify the overall structure and presentation. Core section now includes chapters on acid/base and oxidation/reduction reactions, biochemistry, and a section on stoichiometry. Environmental section updated. New chapter on metal and mineral resources. Consumer chemistry expanded considerably. Health section expanded to include new material on genetic engineering, prosthetic engineering, and new drugs

  2. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  3. Theory meets experiment: Gas-phase chemistry of coinage metals

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    2009-01-01

    Roč. 253, 5/6 (2009), s. 666-677 ISSN 0010-8545 R&D Projects: GA AV ČR KJB400550704; GA ČR GA203/08/1487 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * coinage metals * copper * gold * mass spectrometry Subject RIV: CC - Organic Chemistry Impact factor: 11.225, year: 2009

  4. Institute of Nuclear Chemistry, Mainz University. Annual report 1991

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1992-03-01

    Brief reports summarise the 1991 achievements of the four departments of the Institute relating to the subject areas: chemistry of most heavy elements, fast separation methods, equipment development, decay properties and structures of nuclei, heavy ion reactions, environmental analytics. The list of publications and lectures of Institute members is given in an annex. (orig.) [de

  5. Institute of Nuclear Chemistry, Mainz University. Annual report 1992

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1993-03-01

    Brief reports summarise the 1992 achievements of the four departments of the Institute relating to the subject areas: Chemistry of most heavy elements, fast separation methods, equipment development, decay properties and structures of nuclei, heavy ion reactions, environmental analytics. The list of publications and lectures of Institute members is given in an annex. (orig.) [de

  6. Diamond films deposited by oxygen-enhanced linear plasma chemistry

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Babchenko, Oleg; Ižák, Tibor; Varga, Marián; Davydova, Marina; Krátká, Marie; Rezek, Bohuslav

    2013-01-01

    Roč. 5, č. 6 (2013), s. 509-514 ISSN 2164-6627 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Institutional support: RVO:68378271 Keywords : diamond films * process gas chemistry * pulsed microwave plasma * surface conductivity of diamond Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Scientific projection paper for radiation chemistry

    International Nuclear Information System (INIS)

    Simic, M.G.

    1980-01-01

    Together with radiation physics, an understanding of radiation chemistry is necessary for full appreciation of biological effects of high and low energy radiations, and for the development of prophylactic, therapeutic and potentiating methods and techniques in biological organisms. Areas covered in some detail in this report include: the early chemical events involved in the deposition of radiation energy; the kinetics of free radical and excited state reactions; the application of radiation chemistry to radiation biology; and the availability of instrumentation

  8. A Thematic Review of Studies into the Effectiveness of Context-Based Chemistry Curricula

    Science.gov (United States)

    Ültay, Neslihan; Çalık, Muammer

    2012-12-01

    Context-based chemistry education aims at making connections between real life and the scientific content of chemistry courses. The purpose of this study was to evaluate context-based chemistry studies. In looking for the context-based chemistry studies, the authors entered the keywords `context-based', `contextual learning' and `chemistry education' in well-known databases (i.e. Academic Search Complete, Education Research Complete, ERIC, Springer LINK Contemporary). Further, in case the computer search by key words may have missed a rather substantial part of the important literature in the area, the authors also conducted a hand search of the related journals. To present a detailed thematic review of context-based chemistry studies, a matrix was used to summarize the findings by focusing on insights derived from the related studies. The matrix incorporates the following themes: needs, aims, methodologies, general knowledge claims, and implications for teaching and learning, implications for curriculum development and suggestions for future research. The general knowledge claims investigated in this paper were: (a) positive effects of the context-based chemistry studies; (b) caveats, both are examined in terms of students' attitudes and students' understanding/cognition. Implications were investigated for practice in context- based chemistry studies, for future research in context- based chemistry studies, and for curriculum developers in context- based chemistry studies. Teachers of context-based courses claimed that the application of the context-based learning approach in chemistry education improved students' motivation and interest in the subject. This seems to have generated an increase in the number of the students who wish to continue chemistry education at higher levels. However, despite the fact that the majority of the studies have reported advantages of context-based chemistry studies, some of them have also referred to pitfalls, i.e. dominant

  9. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    Green, N.J.B.; Bolton, C.E.; Spencer-Smith, R.D.

    1999-01-01

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  10. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  11. High Energy Radical Chemistry Formation of HCN- rich Atmospheres on early Earth

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Knížek, Antonín; Pastorek, Adam; Sutherland, J.D.; Civiš, Svatopluk

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 6275. ISSN 2045-2322 R&D Projects: GA ČR GA17-05076S; GA MŠk(CZ) LM2015083; GA MŠk LG15013 Grant - others:Akademie věd - GA AV ČR(CZ) R200401521 Institutional support: RVO:61388955 Keywords : high-power laser * transform emission-spectroscopy * induced dielectric-breakdown * prebiotic organic-synthesis * nucleobase formation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.259, year: 2016

  12. Physics, radiology, and chemistry. An introduction to natural science. 8. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1991-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore connections with biology and medicine are considered. (orig./HP) With 104 figs., 51 tabs [de

  13. Antiparallel Dynamic Covalent Chemistries.

    Science.gov (United States)

    Matysiak, Bartosz M; Nowak, Piotr; Cvrtila, Ivica; Pappas, Charalampos G; Liu, Bin; Komáromy, Dávid; Otto, Sijbren

    2017-05-17

    The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.

  14. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek; Varma, Rajender S.

    2010-01-01

    the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect

  15. More Chemistry with Light! More Light in Chemistry!

    Science.gov (United States)

    Bach, Thorsten

    2015-09-21

    "…︁ Why is chemistry overlooked when talking about light? Is the photon a physical particle per se? Are all important light-induced processes biological? Maybe the role of light for chemistry and the role of chemistry for light may be far less important than a few eccentric scientists would like to believe. From the perspective of a synthetically oriented photochemist, however, the facts are different …︁" Read more in the Editorial by Thorsten Bach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  17. Power plant cycle chemistry - a currently neglected power plant chemistry discipline

    International Nuclear Information System (INIS)

    Bursik, A.

    2005-01-01

    Power plant cycle chemistry seems to be a stepchild at both utilities and universities and research organizations. It is felt that other power plant chemistry disciplines are more important. The last International Power Cycle Chemistry Conference in Prague may be cited as an example. A critical review of the papers presented at this conference seems to confirm the above-mentioned statements. This situation is very unsatisfactory and has led to an increasing number of component failures and instances of damage to major cycle components. Optimization of cycle chemistry in fossil power plants undoubtedly results in clear benefits and savings with respect to operating costs. It should be kept in mind that many seemingly important chemistry-related issues lose their importance during forced outages of units practicing faulty plant cycle chemistry. (orig.)

  18. From trace chemistry to single atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.

    1993-01-01

    Hot atom chemistry in the vast majority of experimental works deals with the trace amount of radioactive matters. Accordingly, the concept of trace chemistry is at the heart of hot atom chemistry. Some aspects of the chemistry at trace scale and at subtrace scale are presented together with the related problems of speciation and the complication which may arise due to the formation of radio colloids. The examples of 127 I(n,γ) 128 I and 132 Te (β - ) 132 I are shown, and the method based on radioactivity was used. The procedure of separating the elements in pitchblende is shown as the example of the chemistry of traces. 13 27 Al+ 2 4 He→ 0 1 n+ 15 30 P and 15 30 P→ 14 30 Si+e + +V are shown, and how to recognize the presence of radioactive colloids is explained. The formation of radiocolloids is by the sorption of a trace radioelement on pre-existing colloidal impurity or the self-condensation of monomeric species. The temporal parameters of the nature of reactions at trace concentration are listed. The examples of Class A and Class B reactions are shown. The kinetics of reactions at trace level, radon concentration, anthropogenic Pu and natural Pu in environment, the behavior of Pu atoms and so on are described. (K.I.)

  19. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  20. Preparative radiation chemistry

    International Nuclear Information System (INIS)

    Drawe, H.

    1978-01-01

    Preparative synthesis of compounds with the aid of radiation chemistry is increasingly used in laboratories as well as on a technical scale. A large number of new compounds has been produced with the methods of radiation chemistry. With the increasing number of available radiation sources, also the number of synthesis metods in radiation chemistry has increased. This paper can only briefly mention the many possible ways of synthesis in radiation chemistry. (orig./HK) [de

  1. Principles of Chemistry (by Michael Munowitz)

    Science.gov (United States)

    Kovac, Reviewed By Jeffrey

    2000-05-01

    At a time when almost all general chemistry textbooks seem to have become commodities designed by marketing departments to offend no one, it is refreshing to find a book with a unique perspective. Michael Munowitz has written what I can only describe as a delightful chemistry book, full of conceptual insight, that uses a novel and interesting pedagogic strategy. This is a book that has much to recommend it. This is the best-written general chemistry book I have ever read. An editor with whom I have worked recently remarked that he felt his job was to help authors make their writing sing. Well, the writing in Principles of Chemistry sings with the full, rich harmonies and creative inventiveness of the King's Singers or Chanticleer. Here is the first sentence of the introduction: "Central to any understanding of the physical world is one discovery of paramount importance, a truth disarmingly simple yet profound in its implications: matter is not continuous." This is prose to be savored and celebrated. Principles of Chemistry has a distinct perspective on chemistry: the perspective of the physical chemist. The focus is on simplicity, what is common about molecules and reactions; begin with the microscopic and build bridges to the macroscopic. The author's perspective is clear from the organization of the book. After three rather broad introductory chapters, there are four chapters that develop the quantum mechanical theory of atoms and molecules, including a strong treatment of molecular orbital theory. Unlike many books, Principles of Chemistry presents the molecular orbital approach first and introduces valence bond theory later only as an approximation for dealing with more complicated molecules. The usual chapters on descriptive inorganic chemistry are absent (though there is an excellent chapter on organic and biological molecules and reactions as well as one on transition metal complexes). Instead, descriptive chemistry is integrated into the development of

  2. Water Chemistry Section: progress report (1981-82)

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.; Ramshesh, V.

    1983-01-01

    The activities of the Water Chemistry Section of the Bhabha Atomic Research Centre (BARC), Bombay, during the years 1981 and 1982 are reported in the form of individual summaries. The research activities of the Section cover the following areas: (1) chemistry and thermodynamics of nuclear materials, (2) crystal structure of organo-metallic complexes using X-ray diffraction, (3) thermophysical and phase transition studies, (4) solid state chemistry and thermochemical studies, (5) water and steam chemistry of heavy water plants and phwr type reactors, and (6) uranium isotope exchange studies. A survey is also given of: (i) the Section's participation in advisory and consultancy services in nuclear and thermal power stations, (ii) training activities, and (iii) assistance in chemical analysis by various techniques to other units of BARC and outside agencies. A list of publications and lectures by the staff during the report period is included. (M.G.B.)

  3. Subject Teachers as Educators for Sustainability: A Survey Study

    Directory of Open Access Journals (Sweden)

    Anna Uitto

    2017-01-01

    Full Text Available Sustainability education (SE is included in school curricula to integrate the principles, values, and practices of sustainable development (SD into all education. This study investigates lower secondary school subject teachers as educators for sustainability. A survey was used to study the perceptions of 442 subject teachers from 49 schools in Finland. There were significant differences between the subject teachers’ perceptions of their SE competence, and the frequency with which they used different dimensions of SE (ecological, economic, social, well-being, cultural in their teaching varied. Teachers’ age had a small effect, but gender, school, and its residential location were nonsignificant factors. Teachers could be roughly classified into three different subgroups according to their perceptions of the role of SE in their teaching; those who considered three SE dimensions rather often and used holistic sustainability approaches in their teaching (biology, geography, history; those who considered two or three dimensions often but were not active in holistic teaching (mother tongue, religion, visual arts, crafts, music, physical and health education, and home economics and those who used one SE dimension or consider only one holistic approach in their teaching (mathematics, physics, chemistry and language. Subject teachers’ awareness of their SE competence is important to encourage them to plan and implement discipline-based and interdisciplinary SE in their teaching. The specific SE expertise of subject teachers should be taken into account in teacher training and education.

  4. Career challenges and opportunities in the global chemistry enterprise

    Science.gov (United States)

    This article serves as an overview of the various career challenges and opportunities faced by chemistry professionals in the 21st century in the global chemistry enterprise. One goal is to highlight a broad spectrum of career paths, including non-traditional careers, and to showcase examples of ch...

  5. Impact of Metacognitive Awareness on Performance of Students in Chemistry

    Science.gov (United States)

    Rahman, Fazal ur; Jumani, Nabi Bux; Chaudry, Muhammad Ajmal; Chisti, Saeed ul Hasan; Abbasi, Fahim

    2010-01-01

    The impact of metacognitive awareness on students' performance has been examined in the present study. 900 students of grade X participated in the study. Metacognitive awareness was measured using inventory, while performance of students was measured with the help of researcher made test in the subject of chemistry. Results indicated that…

  6. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  7. Organometallic chemistry of metal surfaces

    International Nuclear Information System (INIS)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures

  8. Moving Green Chemistry Forward: Networks as a Foundation

    Science.gov (United States)

    Carter, T.; Lough, G.

    2014-12-01

    Green chemistry is a growing discipline, but for a variety of reasons, it has not yet become integrated into science curriculum and the greater societal conscience. With its increasing economic benefits to many sectors including business, industry, and academia and its potential to make science more accessible not only to science students but also to the general citizenry, we suggested answers to the questions: Why has greater success not been realized? What are the particular barriers to wider implementation? And what are incentives and ways to move green chemistry forward? We suggest some strategies and options to both increase the use of green chemistry principles and to also increase stakeholders' understanding of the importance and utility of green chemistry in their daily lives. For example, our main suggestions are that an inclusive, multidisciplinary network would aid in coordinating data and in translating the science into user friendly tools, and that an educational component embedded in this greater effort would also serve to move green chemistry forward.

  9. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  10. ECHMERIT: A new on-line global mercury-chemistry model

    Science.gov (United States)

    Jung, G.; Hedgecock, I. M.; Pirrone, N.

    2009-04-01

    Mercury is a volatile metal, that is of concern because when deposited and transformed to methylmercury accumulates within the food-web. Due to the long lifetime of elemental mercury, which is the dominant fraction of mercury species in the atmosphere, mercury is prone to long-range transport and therefore distributed over the globe, transported and hence deposited even in regions far from anthropogenic emission sources. Mercury is released to the atmosphere from a variety of natural and anthropogenic sources, in elementary and oxidised forms, and as particulate mercury. It is then transported, but also transformed chemically in the gaseous phase, as well as in aqueous phase within cloud and rain droplets. Mercury (particularly its oxidised forms) is removed from the atmosphere though wet and dry deposition processes, a large fraction of deposited mercury is, after chemical or biological reduction, re-emitted to the atmosphere as elementary mercury. To investigate mercury chemistry and transport processes on the global scale, the new, global model ECHMERIT has been developed. ECHMERIT simulates meteorology, transport, deposition, photolysis and chemistry on-line. The general circulation model on which ECHMERIT is based is ECHAM5. Sophisticated chemical modules have been implemented, including gas phase chemistry based on the CBM-Z chemistry mechanism, as well as aqueous phase chemistry, both of which have been adapted to include Hg chemistry and Hg species gas-droplet mass transfer. ECHMERIT uses the fast-J photolysis routine. State-of-the-art procedures simulating wet and dry deposition and emissions were adapted and included in the model as well. An overview of the model structure, development, validation and sensitivity studies is presented.

  11. Cycloadditions in modern polymer chemistry.

    Science.gov (United States)

    Delaittre, Guillaume; Guimard, Nathalie K; Barner-Kowollik, Christopher

    2015-05-19

    Synthetic polymer chemistry has undergone two major developments in the last two decades. About 20 years ago, reversible-deactivation radical polymerization processes started to give access to a wide range of polymeric architectures made from an almost infinite reservoir of functional building blocks. A few years later, the concept of click chemistry revolutionized the way polymer chemists approached synthetic routes. Among the few reactions that could qualify as click, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) initially stood out. Soon, many old and new reactions, including cycloadditions, would further enrich the synthetic macromolecular chemistry toolbox. Whether click or not, cycloadditions are in any case powerful tools for designing polymeric materials in a modular fashion, with a high level of functionality and, sometimes, responsiveness. Here, we wish to describe cycloaddition methodologies that have been reported in the last 10 years in the context of macromolecular engineering, with a focus on those developed in our laboratories. The overarching structure of this Account is based on the three most commonly encountered cycloaddition subclasses in organic and macromolecular chemistry: 1,3-dipolar cycloadditions, (hetero-)Diels-Alder cycloadditions ((H)DAC), and [2+2] cycloadditions. Our goal is to briefly describe the relevant reaction conditions, the advantages and disadvantages, and the realized polymer applications. Furthermore, the orthogonality of most of these reactions is highlighted because it has proven highly beneficial for generating unique, multifunctional polymers in a one-pot reaction. The overview on 1,3-dipolar cycloadditions is mostly centered on the application of CuAAC as the most travelled route, by far. Besides illustrating the capacity of CuAAC to generate complex polymeric architectures, alternative 1,3-dipolar cycloadditions operating without the need for a catalyst are described. In the area of (H)DA cycloadditions

  12. Thirteen textbooks of basic chemistry and their treatment of radioactivity

    International Nuclear Information System (INIS)

    Mueller, G.; Navarrete, M.; Martinez, T.; Cabrera, L.

    2009-01-01

    Nuclear chemistry is usually associated with great disasters, especially the atomic bomb; this without reflecting that knowledge of nuclear chemistry has also had many benefits in the field of medicine and health. Whereas in technologically advanced countries, nuclear chemistry is considered to be an important part of the syllabus, including topics such as radioactivity with the emphasis in making conscience in the common citizen of the inherent benefits. (author)

  13. Click chemistry as a powerful and chemoselective tool for the attachment of targeting ligands to polymer drug carriers

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Braunová, Alena; Laga, Richard; Pechar, Michal; Ulbrich, Karel

    2014-01-01

    Roč. 5, č. 4 (2014), s. 1340-1350 ISSN 1759-9954 Grant - others:AV ČR(CZ) AP0802 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61389013 Keywords : click chemistry * RAFT polymerization * hydrophilic polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.520, year: 2014

  14. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  15. Chemistry in California: How it Started and How it Grew

    Science.gov (United States)

    Norberg, Arthur L.

    1976-01-01

    Gives a brief history of chemistry in California during the last 100 years, including the foundation of chemical industries, the development of chemistry departments in universities and their respective specialities, and the role of California laboratories in World War II. (MLH)

  16. Proceedings of 26. annual academic conference of China Chemical Society--modern nuclear chemistry and radiochemistry

    International Nuclear Information System (INIS)

    2008-08-01

    26. annual academic conference of China Chemical Society was held in Tianjing, 13-16 July, 2008. This proceedings is about modern nuclear chemistry and radiochemistry, the contents include: new elements and new nuclides; advanced nuclear chemistry; radiochemistry and national security; new radiopharmaceutical chemistry; modern radiological analytical chemistry and large scientific facilities; radiological environmental chemistry and nuclear radioactive waste; actinide chemistry and transactinide chemistry; radiochemistry and cross discipline, etc.

  17. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  18. NKS Workshop on Radioanalytical Chemistry - Final report

    DEFF Research Database (Denmark)

    The NKS-B workshop on radioanalytical chemistry was held 2-6th Sept 2013 at Risø, Denmark. There were a total of 49 persons participating in the workshop, including 32 young participants and 15 lecturers. The work-shop started with 3 days of lab practice followed by 1.5 day’s lectures by the expe......The NKS-B workshop on radioanalytical chemistry was held 2-6th Sept 2013 at Risø, Denmark. There were a total of 49 persons participating in the workshop, including 32 young participants and 15 lecturers. The work-shop started with 3 days of lab practice followed by 1.5 day’s lectures...

  19. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  20. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  1. Radiopharmaceutical chemistry for positron emission tomography

    NARCIS (Netherlands)

    Elsinga, PH

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic

  2. Knot theory in modern chemistry.

    Science.gov (United States)

    Horner, Kate E; Miller, Mark A; Steed, Jonathan W; Sutcliffe, Paul M

    2016-11-21

    Knot theory is a branch of pure mathematics, but it is increasingly being applied in a variety of sciences. Knots appear in chemistry, not only in synthetic molecular design, but also in an array of materials and media, including some not traditionally associated with knots. Mathematics and chemistry can now be used synergistically to identify, characterise and create knots, as well as to understand and predict their physical properties. This tutorial review provides a brief introduction to the mathematics of knots and related topological concepts in the context of the chemical sciences. We then survey the broad range of applications of the theory to contemporary research in the field.

  3. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  4. Electrolyte chemistry control in electrodialysis processing

    Science.gov (United States)

    Hayes, Thomas D.; Severin, Blaine F.

    2017-12-26

    Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.

  5. Review of information on the radiation chemistry of materials around waste canisters in salt and assessment of the need for additional experimental information

    Energy Technology Data Exchange (ETDEWEB)

    Jenks, G.H.; Baes, C.F. Jr.

    1980-03-01

    The brines, vapors, and salts precipitated from the brines will be exposed to gamma rays and to elevated temperatures in the regions close to a waste package in the salt. Accordingly, they will be subject to changes in composition brought about by reactions induced by the radiations and heat. This report reviews the status of information on the radiation chemistry of brines, gases, and solids which might be present around a waste package in salt and to assess the need for additional laboratory investigations on the radiation chemistry of these materials. The basic aspects of the radiation chemistry of water and aqueous solutions, including concentrated salt solutions, were reviewed briefly and found to be substantially unchanged from those presented in Jenks's 1972 review of radiolysis and hydrolysis in salt-mine brines. Some additional information pertaining to the radiolytic yields and reactions in brine solutions has become available since the previous review, and this information will be useful in the eventual, complete elucidation of the radiation chemistry of the salt-mine brines. 53 references.

  6. Tracking chemistry self-efficacy and achievement in a preparatory chemistry course

    Science.gov (United States)

    Garcia, Carmen Alicia

    Self-efficacy is a person's own perception about performing a task with a certain level of proficiency (Bandura, 1986). An important affective aspect of learning chemistry is chemistry self-efficacy (CSE). Several researchers have found chemistry self-efficacy to be a fair predictor of achievement in chemistry. This study was done in a college preparatory chemistry class for science majors exploring chemistry self-efficacy and its change as it relates to achievement. A subscale of CAEQ, Chemistry Attitudes and Experiences Questionnaire (developed by Dalgety et al, 2003) as well as student interviews were used to determine student chemistry self-efficacy as it changed during the course. The questionnaire was given to the students five times during the semester: in the first class and the class before each the four tests taken through the semester. Twenty-six students, both men and women, of the four major races/ethnicities were interviewed three times during the semester and events that triggered changes in CSE were followed through the interviews. HLM (hierarchical linear modeling) was used to model the results of the CSE surveys. Among the findings, women who started at significantly lower CSE than men accomplished a significant gain by the end of the semester. Blacks' CSE trends through the semester were found to be significantly different from the rest of the ethnicities.

  7. Green Chemistry Pedagogy

    Science.gov (United States)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  8. Transuranic Computational Chemistry.

    Science.gov (United States)

    Kaltsoyannis, Nikolas

    2018-02-26

    Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Radiation Chemistry 2008 Gordon Research Conference - July 6-11, 2008

    International Nuclear Information System (INIS)

    Bartels, David M.

    2009-01-01

    Radiation Chemistry is chemistry initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create charge pairs and/or free radicals in a medium. The important transients include conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. Effects of radiation span timescales from the energy deposition in femtoseconds, through geminate recombination in picoseconds and nanoseconds, to fast radical chemistry in microseconds and milliseconds, and ultimately to processes like cancer occurring decades later. The radiation sources used to study these processes likewise run from femtosecond lasers to nanosecond accelerators to years of gamma irradiation. As a result the conference has a strong interdisciplinary flavor ranging from fundamental physics to clinical biology. While the conference focuses on fundamental science, application areas highlighted in the present conference will include nuclear power, polymer processing, and extraterrestrial chemistry.

  10. Isotope and Nuclear Chemistry Division annual report, FY 1990, October 1, 1989--September 30, 1990

    International Nuclear Information System (INIS)

    Heiken, J.; Minahan, M.

    1991-06-01

    This report describes some of the major research and development programs of the Isotope and Nuclear Chemistry Division during FY 1990. The report includes articles on weapons chemistry, environmental chemistry, actinide and transition metal chemistry, geochemistry, nuclear structure and reactions, biochemistry and nuclear medicine, materials chemistry, and INC Division facilities and laboratories

  11. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  12. The Royal Society of Chemistry and the delivery of chemistry data repositories for the community

    Science.gov (United States)

    Williams, Antony; Tkachenko, Valery

    2014-10-01

    Since 2009 the Royal Society of Chemistry (RSC) has been delivering access to chemistry data and cheminformatics tools via the ChemSpider database and has garnered a significant community following in terms of usage and contribution to the platform. ChemSpider has focused only on those chemical entities that can be represented as molecular connection tables or, to be more specific, the ability to generate an InChI from the input structure. As a structure centric hub ChemSpider is built around the molecular structure with other data and links being associated with this structure. As a result the platform has been limited in terms of the types of data that can be managed, and the flexibility of its searches, and it is constrained by the data model. New technologies and approaches, specifically taking into account a shift from relational to NoSQL databases, and the growing importance of the semantic web, has motivated RSC to rearchitect and create a more generic data repository utilizing these new technologies. This article will provide an overview of our activities in delivering data sharing platforms for the chemistry community including the development of the new data repository expanding into more extensive domains of chemistry data.

  13. The Medicinal Chemistry of Dengue Virus.

    Science.gov (United States)

    Behnam, Mira A M; Nitsche, Christoph; Boldescu, Veaceslav; Klein, Christian D

    2016-06-23

    The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents.

  14. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  15. Superheavy Elements Challenge Experimental and Theoretical Chemistry

    CERN Document Server

    Zvára, I

    2003-01-01

    When reflecting on the story of superheavy elements, the an experimenter, acknowledges the role, which the predictions of nuclear and chemical theories have played in ongoing studies. Today, the problems of major interest for experimental chemistry are the studies of elements 112 and 114 including their chemical identification. Advanced quantum chemistry calculations of atoms and molecules would be of much help. First experiments with element 112 evidence that the metal is much more volatile and inert than mercury.

  16. Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow

    International Nuclear Information System (INIS)

    Nash, C.A.

    2000-01-01

    Precipitation chemistries for strontium and transuranic (TRU) removal have been tested for crossflow filterability and lanthanide removal with simulants of Hanford tank 241-AN-107 supernate. This is the initial work indicating the usefulness of a strontium and permanganate precipitation process as applied to the Hanford River Protection Project. Precipitations with both ferric and ferrous iron were shown to be at least two orders of magnitude less filterable than a 0.1 gpm/ft target average flux that was desired at the time. A precipitate from a strontium nitrate strike alone was found to filter easily and to make the desired average flux. Other chemistries tested included precipitant of lanthanum(III), nickel (II), calcium (II), and a redox chemistry using sodium permanganate. Of these chemistries a strontium and permanganate strike including calcium provided the highest filter flux compared to the other chemistries. It showed the most promise in lanthanide removal as well. This work provides a promising direction for further work to achieve both acceptable filterability and decontamination for Envelope C wastes to be treated by the Hanford River Protection Project. The work reported here was originally intended to satisfy needs for crossflow filter testing of a strontium and ferric precipitation method for treating Envelope C using a 241-AN-107 simulant

  17. Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.A.

    2000-07-27

    Precipitation chemistries for strontium and transuranic (TRU) removal have been tested for crossflow filterability and lanthanide removal with simulants of Hanford tank 241-AN-107 supernate. This is the initial work indicating the usefulness of a strontium and permanganate precipitation process as applied to the Hanford River Protection Project. Precipitations with both ferric and ferrous iron were shown to be at least two orders of magnitude less filterable than a 0.1 gpm/ft target average flux that was desired at the time. A precipitate from a strontium nitrate strike alone was found to filter easily and to make the desired average flux. Other chemistries tested included precipitant of lanthanum(III), nickel (II), calcium (II), and a redox chemistry using sodium permanganate. Of these chemistries a strontium and permanganate strike including calcium provided the highest filter flux compared to the other chemistries. It showed the most promise in lanthanide removal as well. This work provides a promising direction for further work to achieve both acceptable filterability and decontamination for Envelope C wastes to be treated by the Hanford River Protection Project. The work reported here was originally intended to satisfy needs for crossflow filter testing of a strontium and ferric precipitation method for treating Envelope C using a 241-AN-107 simulant.

  18. Primary Water Chemistry Control during a Planned Outage at Bruce Power

    International Nuclear Information System (INIS)

    Ma, Guoping; Nashiem, Rod; Matheson, Shane; Yabar, Berman; Harper, Bill; Roberts, John G.

    2012-09-01

    Bruce Power has developed a comprehensive outage water chemistry program, which includes both primary and secondary chemistry requirements during planned outages. The purpose of the program is to emphasize the chemistry requirements during outages and subsequent start-ups in order to maintain the integrity of the systems, minimise activity transport and radiation fields, reduce the Carbon-14 release, and to ensure that the requirements are integrated with the outage management program. Prior to a planned outage, Station Chemical Technical Sections identify outage chemistry requirements to Operations and Outage Planning and ensure that work necessary to correct system chemistry issues is within outage work scope. The outage water chemistry program provides direction for establishing alternative sampling locations as demanded by the system configuration during the outage and identifies outage prerequisites for nuclear system purification capabilities. These requirements are contained in an outage checklist. The paper mainly highlights the primary water chemistry issues and chemistry control strategies during planned outages and discusses challenges and successes. (authors)

  19. Food chemistry. 2. ed.

    International Nuclear Information System (INIS)

    Baltes, W.

    1989-01-01

    This second edition of the textbook deals with all essential aspects of food chemistry. The revision improved in particular the chapters on food preservation, including irradiation of food, food additives, and pollutants and residues, including radionuclides. The chapter on the German legal regime for foodstuffs has been updated to cover the recent amendments of the law, and the information on processes applied in food technology has been largely enhanced. (VHE) With 153 figs., 78 tabs [de

  20. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  1. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  2. Pharmacy students' perceptions of natural science and mathematics subjects.

    Science.gov (United States)

    Prescott, Julie; Wilson, Sarah Ellen; Wan, Kai-Wai

    2014-08-15

    To determine the level of importance pharmacy students placed on science and mathematics subjects for pursuing a career in pharmacy. Two hundred fifty-four students completed a survey instrument developed to investigate students' perceptions of the relevance of science and mathematics subjects to a career in pharmacy. Pharmacy students in all 4 years of a master of pharmacy (MPharm) degree program were invited to complete the survey instrument. Students viewed chemistry-based and biology-based subjects as relevant to a pharmacy career, whereas mathematics subjects such as physics, logarithms, statistics, and algebra were not viewed important to a career in pharmacy. Students' experience in pharmacy and year of study influenced their perceptions of subjects relevant to a pharmacy career. Pharmacy educators need to consider how they can help students recognize the importance of scientific knowledge earlier in the pharmacy curriculum.

  3. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  4. Radiation chemistry: basic, strategic or tactical science?

    International Nuclear Information System (INIS)

    Wardman, Peter

    1989-01-01

    The work of Weiss in the 1930s, particularly with Haber, has only recently been recognized to have implications in biology and medicine. Similarly, research in radiation chemistry and the application of the pulse radiolysis technique, for example, have implications far beyond traditional radiation chemistry. Some examples of such research are discussed against a background of categorization into 'basic', 'strategic' or 'tactical' science. Examples discussed include redox properties of free radicals, and the identification and characterization of nitro radicals as intermediates in drug metabolism. Radical reactions often take place in multicomponent systems, and the techniques of radiation chemistry can be used to probe, for example, events occurring at interfaces in micelles. Industrial processes involving radiation are attracting investment, particularly in Japan. (author)

  5. Gender Differences in Cognitive and Noncognitive Factors Related to Achievement in Organic Chemistry

    Science.gov (United States)

    Turner, Ronna C.; Lindsay, Harriet A.

    2003-05-01

    For many college students in the sciences, organic chemistry poses a difficult challenge. Indeed, success in organic chemistry has proven pivotal in the careers of a vast number of students in a variety of science disciplines. A better understanding of the factors that contribute to achievement in this course should contribute to efforts to increase the number of students in the science disciplines. Further, an awareness of gender differences in factors associated with achievement should aid efforts to bolster the participation of women in chemistry and related disciplines. Using a correlation research design, the individual relationships between organic chemistry achievement and each of several cognitive variables and noncognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. Cognitive variables included the second-semester general chemistry grade, the ACT English, math, reading, and science-reasoning scores, and scores from a spatial visualization test. Noncognitive variables included anxiety, confidence, effectance motivation, and usefulness. The second-semester general chemistry grade was found to be the best indicator of performance in organic chemistry, while the effectiveness of other predictors varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between predictor variables and organic chemistry achievement than females.

  6. Ion-molecule reactions: their role in radiation chemistry

    International Nuclear Information System (INIS)

    Lias, S.G.; Ausloos, P.

    1975-01-01

    A comprehensive review of ion--molecule reactions is presented, including information from mass spectrometric, organic chemistry, and NMR studies, from theoretical calculations, and from gas and liquid phase radiation chemistry. Special emphasis is placed on interpreting the role of ion--molecule reactions in systems under high energy irradiation. The discussion is presented under the following chapter headings: ion--molecule reactions and their role in radiation chemistry; unimolecular processes: the nature and structure of ionic intermediates in radiolysis; ion lifetimes and the fate of unreactive ions; kinetics and mechanisms of ion--molecule reactions; proton transfer reactions; negative atom and two-atom transfer reactions; condensation reactions; and, association or clustering reactions

  7. Yearly scientific meeting: chemistry in human health and environment protection. Bialystok'92

    International Nuclear Information System (INIS)

    1992-01-01

    The conference has been divided into 12 sections devoted to following topics: analytical chemistry; environmental chemistry; chemistry of natural compounds; chemistry of pharmaceutics and toxic compounds; chemistry in medicine; electrochemistry; young scientists forum; didactics and history of chemistry; chemistry and industry - technologies environment friendly; new trends in polymer science; crystallochemistry; pro-ecological actions in leather industry. Different analytical methods for determination of heavy methods and rare earths have been presented. Some of them have been successfully applied for the examination of environmental and biological materials. The basic chemical and physico-chemical studies including thermodynamic, crystal structure, coordination chemistry, sorption properties etc. have been extensively resented. The existence of radioactive elements in environment has been also investigated, especially in respect to municipal and industrial wastes and products of their processing. The radiation effects for different materials have been reported and discussed as well

  8. Clinical Chemistry of Patients With Ebola in Monrovia, Liberia.

    Science.gov (United States)

    de Wit, Emmie; Kramer, Shelby; Prescott, Joseph; Rosenke, Kyle; Falzarano, Darryl; Marzi, Andrea; Fischer, Robert J; Safronetz, David; Hoenen, Thomas; Groseth, Allison; van Doremalen, Neeltje; Bushmaker, Trenton; McNally, Kristin L; Feldmann, Friederike; Williamson, Brandi N; Best, Sonja M; Ebihara, Hideki; Damiani, Igor A C; Adamson, Brett; Zoon, Kathryn C; Nyenswah, Tolbert G; Bolay, Fatorma K; Massaquoi, Moses; Sprecher, Armand; Feldmann, Heinz; Munster, Vincent J

    2016-10-15

    The development of point-of-care clinical chemistry analyzers has enabled the implementation of these ancillary tests in field laboratories in resource-limited outbreak areas. The Eternal Love Winning Africa (ELWA) outbreak diagnostic laboratory, established in Monrovia, Liberia, to provide Ebola virus and Plasmodium spp. diagnostics during the Ebola epidemic, implemented clinical chemistry analyzers in December 2014. Clinical chemistry testing was performed for 68 patients in triage, including 12 patients infected with Ebola virus and 18 infected with Plasmodium spp. The main distinguishing feature in clinical chemistry of Ebola virus-infected patients was the elevation in alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyltransferase levels and the decrease in calcium. The implementation of clinical chemistry is probably most helpful when the medical supportive care implemented at the Ebola treatment unit allows for correction of biochemistry derangements and on-site clinical chemistry analyzers can be used to monitor electrolyte balance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  10. Risk of Being Subjected to Crime, Including Violent Crime, After Onset of Mental Illness

    DEFF Research Database (Denmark)

    Dean, Kimberlie; Laursen, Thomas M; Pedersen, Carsten B

    2018-01-01

    Importance: People with mental illness are more likely to have contact with the criminal justice system, but research to date has focused on risk of offense perpetration, while less is known about risk of being subjected to crime and violence. Objectives: To establish the incidence of being...... subjected to all types of criminal offenses, and by violent crimes separately, after onset of mental illness across the full diagnostic spectrum compared with those in the population without mental illness. Design, Setting, and Participants: This investigation was a longitudinal national cohort study using...... of mental illness, recorded as first contact with outpatient or inpatient mental health services. Diagnoses across the full spectrum of psychiatric diagnoses were considered separately for men and women. Main Outcomes and Measures: Incidence rate ratios (IRRs) were estimated for first subjection to crime...

  11. Markers of Nucleic Acids and Proteins Oxidation among Office Workers Exposed to Air Pollutants Including (nano) TiO2 Particles.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Vlčková, Š.; Fenclová, Z.; Navrátil, Tomáš; Komarc, M.; Schwarz, Jaroslav; Zíková, Naděžda; Makeš, Otakar; Zakharov, S.

    2016-01-01

    Roč. 37, Suppl.1 (2016), s. 13-16 ISSN 0172-780X Institutional support: RVO:67985858 ; RVO:61388955 Keywords : nanoparticles * exhaled breath condensate * oxidative stress * occupation * TiO Subject RIV: DN - Health Impact of the Environment Quality; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Public and environmental health; Physical chemistry (UFCH-W) Impact factor: 0.918, year: 2016

  12. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1985-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  13. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1988-04-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  14. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1986-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All particles and reports published and lectures given in 1985 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  15. Annual report 1982 chemistry department

    International Nuclear Information System (INIS)

    Larsen, E.; Nielsen, O.J.

    1983-04-01

    The work going on in the Risoe National Laboratory, Chemistry Department is briefly surveyed by a presentation of all articles and reports published in 1982. The facilities and equipment are barely mentioned. The papers are divided into eight activities: 1. neutron activation analysis 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry 6. radical chemistry 7. poitron annihilation 8. uranium process chemistry. (author)

  16. Making Students Eat Their Greens: Information Skills for Chemistry Students

    Science.gov (United States)

    George, Sarah; Munshi, Tasnim

    2016-01-01

    Employers are increasingly requiring a range of "soft" skills from chemistry graduates, including the ability to search for and critically evaluate information. This paper discusses the issues around encouraging chemistry students to engage with information skills and suggests curricular changes which may help to "drip-feed"…

  17. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  18. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  19. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  20. Radiation chemistry of biologically compatible polymers

    International Nuclear Information System (INIS)

    Hill, D.J. T.; Pomery, P.J.; Saadat, G.; Whittaker, A.K.

    1996-01-01

    Full text: Poly (2-hydroxy ethyl methacrylate) [PHEMA] and poly (2-ethoxy ethyl methacrylate) [PEEMA] are of biomedical and industrial interest due to their biocompatibility with living tissue. In this paper the effect of high energy radiation on these polymers is reported. PHEMA and PEEMA have similar molecular structures to poly (methyl methacrylate)[PMMA], and the γ irradiation of this polymer is well understood. Hence the radiation chemistry of PMMA is used as model system for the the analysis of the radiation chemistry of these polymers. The mechanism of the radiation induced chemistry of the polymers has been investigated using a range of techniques including electron spin resonance spectroscopy (ESR) to establish free radical pathways, GC to identify small molecule volatile products, NMR to identify small molecule radiation products and Gel Permeation Chromatography (GPC) to determine molecular weight changes. Whilst much of the major part of the radiation chemistry can be attributed to similar reactions which can be observed in PMMA, there are a number of new radicals which are present as a result of the influence of the side chain interactions which reduces the mobility of the polymer chain

  1. Islam - Science Integration Approach in Developing Chemistry Individualized Education Program (IEP for Students with Disabilities

    Directory of Open Access Journals (Sweden)

    Jamil Suprihatiningrum

    2017-11-01

    Full Text Available The paper is based on a research which tries to explore, explain and describe Islam - science integration approach to develop an Individualized Education Program (IEP for students with disabilities in chemistry lesson. As a qualitative case study, this paper is aimed at investigating how Islam - science integration approach can be underpinned for developing the IEP for Chemistry. Participants were recruited purposively and data were collected by interviews; documents’ analysis; and experts’ assessment (i.e. material experts, inclusive education experts, media experts, chemistry teachers and support teachers, then analyzed using content-analysis. The result shows Islam - science integration approach can be a foundation to develop the chemistry IEP by seeking support for the verses of the Qur'an and corresponding hadiths. Even although almost all the subject matter in chemistry can be integrated with Islamic values, this study only developed two contents, namely Periodic System of Elements and Reaction Rate.

  2. Proceedings of DAE-BRNS third international symposium on materials chemistry

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Banerjee, Atindra Mohan; Nigam, Sandeep; Varma, Salil; Tripathi, Arvind Kumar; Bharadwaj, Shyamala Rajkumar; Das, Dasarathi

    2010-12-01

    The present volume consists of the proceedings of the DAE-BRNS Third International Symposium on Materials Chemistry. In order to keep pace with the advancements made in the area of materials chemistry, new topics like materials for energy conversion, biomaterials, carbon based materials, soft condensed materials, thin films, surface chemistry, polymer based materials, organic and organometallics, magnetic materials and high purity materials have been included in this symposium while topics like nuclear materials, nanomaterials and clusters, catalysis, chemical sensors, fuel cell materials and computational research in materials chemistry have been continued as important features of the symposium. Papers relevant to INIS are indexed separately

  3. Water chemistry: protecting the industry's investment. Making or breaking plant operations

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Good water chemistry is a good way to preserve the life of steam generators and other plant components. Pipe cracks in boiling-water reactors, tube pitting, denting and cracking in pressurized-water reactors are all problems that are surfacing due to poor water chemistry, i.e., the lack of water purity. Water is essential to power generation and is corrosive under the best of conditions. But to a metal system filled with water and subject to high pressure, high temperature, and impurities such as chlorides, the potential for rapid and permanent damage rises to serious proportions. In addition, radiation levels increase from corrosive products circulated through the reactor vessel

  4. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  5. Chemistry, Poetry, and Artistic Illustration: An Interdisciplinary Approach to Teaching and Promoting Chemistry

    Science.gov (United States)

    Furlan, Ping Y.; Kitson, Herbert; Andes, Cynthia

    2007-10-01

    This article describes a successful interdisciplinary collaboration among chemistry, humanities and English faculty members, who utilized poetry and artistic illustration to help students learn, appreciate, and enjoy chemistry. Students taking general chemistry classes were introduced to poetry writing and museum-type poster preparation during one class period. They were then encouraged to use their imagination and creativity to brainstorm and write chemistry poems or humors on the concepts and principles covered in the chemistry classes and artistically illustrate their original work on posters. The project, 2 3 months in length, was perceived by students as effective at helping them learn chemistry and express their understanding in a fun, personal, and creative way. The instructors found students listened to the directives because many posters were witty, clever, and eye-catching. They showed fresh use of language and revealed a good understanding of chemistry. The top posters were created by a mix of A-, B-, and C-level students. The fine art work, coupled with poetry, helped chemistry come alive on campus, providing an aesthetic presentation of materials that engaged the general viewer.

  6. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  7. (Chemistry of the global atmosphere)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  8. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  9. Ion-enhanced gas-surface chemistry: The influence of the mass of the incident ion

    International Nuclear Information System (INIS)

    Gerlach-Meyer, U.; Coburn, J.W.; Kay, E.

    1981-01-01

    There are many examples of situations in which a gas-surface reaction rate is increased when the surface is simultaneously subjected to energetic particle bombardment. There are several possible mechanisms which could be involved in this radiation-enhanced gas-surface chemistry. In this study, the reaction rate of silicon, as determined from the etch yield, is measured during irradiation of the Si surface with 1 keV He + , Ne + , and Ar + ions while the surface is simultaneously subjected to fluxes of XeF 2 or Cl 2 molecules. Etch yields as high as 25 Si atoms/ion are observed for XeF 2 and Ar + on Si. A discussion is presented of the extent to which the results clarify the mechanisms responsible for ion-enhanced gas-surface chemistry. (orig.)

  10. An overview of KANUPP operating experience in chemistry

    International Nuclear Information System (INIS)

    Hashmi, T.

    2010-01-01

    KANUPP is a small CANDU® type PHWR (137MWe), commissioned in 1972 and now operating after life extension (PLEX) since 2004. This paper contains an overview of the plant operating experience in chemistry control over the past year including life extension period. Emphasis is on: Success story; Practices; Future improvements in chemistry programs. Considerable efforts are underway to maintain plant equipment and systems to mitigate the effect of plant ageing. The improvements that have been made at the station are as under: Heat transport system (HTS) chemistry, its effects on construction material; Feed water chemistry on secondary side (considering the condenser leaks). Strict chemistry control is being exercised for the heat transport system (HTS) for its better chemistry control. For short term, the changes are limited to pH adjustments of HTS. This change decreases the rate of thinning of outlet feeders as noted in some CANDUs® due to flow accelerated corrosion (FAC). Water Treatment Plant has been refurbished to get very low total dissolved solids (TDS) de-mineralized water for secondary side systems of the plant. Experience of steam generators flushing before startup, sludge pile analyses mapping, verification of pH from different sampling points of SGs, are the short term mitigating actions to address sludge pile problem in steam generators (SGs). The R and D on HTS and SGs is multifaceted and is aimed at achieving optimum chemistry control. Study is being conducted for improving chemistry control for the material, equipment and systems of the plant. (author)

  11. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste

  12. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    E. Thomas

    2004-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been

  13. Astronomy Matters for Chemistry Teachers

    Science.gov (United States)

    Huebner, Jay S.; Vergenz, Robert A.; Smith, Terry L.

    1996-11-01

    The purpose of this paper is to encourage more chemistry teachers to become familiar with some of the basic ideas described in typical introductory astronomy courses (1 - 9), including those about the origin of elements and forms of matter. These ideas would enrich chemistry courses and help resolve some basic misconceptions that are expressed in many introductory texts (10 - 16) and journal articles for chemistry teachers (17, 18). These misconceptions are typified by statements such as "we can classify all substances as either elements or compounds," and "nature has provided 92 elements out of which all matter is composed." If students accept these misconceptions, they could be deprived of (i) an appreciation of the history of elements and knowing that the elemental composition of the universe continues to evolve, (ii) knowing that of the first 92 elements in the periodic table, technetium and promethium do not occur naturally on Earth, and (iii) understanding that there are forms of matter other than elements and compounds. This paper briefly explores these ideas.

  14. An Overview of the EPRI PWR Primary Chemistry Program

    International Nuclear Information System (INIS)

    Perkins, David; Fruzzetti, Keith; Haas, Carey; Wells, Dan

    2012-09-01

    Primary chemistry controls continue to evolve, impacting long term equipment reliability goals, optimized core designs, and radiation dose management practices. Chemistry initiatives include increased primary system pH (T) , zinc injection, and optimization of primary system hydrogen concentration. Nevertheless, utilities are faced with ever changing challenges as fuel vendors continue to optimize core power densities coupled with longer operating cycles and material replacement efforts. These challenges must be collaboratively addressed by the plant chemists, engineers, and operators. Operational chemistry has changed dramatically over the years with increased primary pH (T) programs requiring some utilities to operate with up to 6 ppm lithium or slightly higher. Coupled with primary pH (T) program optimization, are ongoing EPRI research efforts attempting to develop an optimized hydrogen control program balancing material issues associated with primary water stress corrosion cracking (PWSCC) crack growth rate against fuel concerns associated with increased hydrogen concentrations. One of the most significant primary chemistry changes that effectively balances the demands of materials, fuels, chemistry and dose management strategies is zinc injection into the primary coolant. Since 1994 when Farley initiated zinc injection, zinc injection has been successfully injected at over 70 pressurized water reactors world-wide. Combining operational chemistry with shutdown chemistry controls provides the plant chemist with a technically based and balanced approach to fuel and material integrity as well as dose management strategies. Shutdown chemistry has continually evolved since the 1970's when the chemist was primarily concerned with fission products. Now the chemist must manage corrosion product release, and support Outage Management and Radiation Protection through the performance of a controlled shutdown. In part, this change was driven as plant materials evolved

  15. Atmospheric chemistry and physics from air pollution to climate change

    CERN Document Server

    Seinfeld, John H

    2016-01-01

    Expanded and updated with new findings and new features Since the second edition of Seinfeld and Pandis’ classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere – including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant un...

  16. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    Science.gov (United States)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  17. Antibacterial effect of essential oil vapours against different strains of Staphylococcus aureus, including MRSA

    Czech Academy of Sciences Publication Activity Database

    Nedorostová, L.; Klouček, P.; Urbanová, Klára; Kokoška, L.; Šmíd, J.; Urban, J.; Valterová, Irena; Štolcová, M.

    2011-01-01

    Roč. 26, č. 6 (2011), s. 403-407 ISSN 0882-5734 Grant - others:GA ČR(CZ) GP525/09/P503 Institutional research plan: CEZ:AV0Z40550506 Keywords : essential oils * plant volatiles * SPME Subject RIV: CC - Organic Chemistry Impact factor: 1.424, year: 2011

  18. Chalcone: A Privileged Structure in Medicinal Chemistry.

    Science.gov (United States)

    Zhuang, Chunlin; Zhang, Wen; Sheng, Chunquan; Zhang, Wannian; Xing, Chengguo; Miao, Zhenyuan

    2017-06-28

    Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.

  19. Photoelectron Spectroscopy in Advanced Placement Chemistry

    Science.gov (United States)

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  20. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    Zuhal GERÇEK

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  1. Nuclear chemistry in the traditional chemistry program

    International Nuclear Information System (INIS)

    Kleppinger, E.W.

    1993-01-01

    The traditional undergraduate program for chemistry majors, especially at institutions devoted solely to undergraduate education, has limited space for 'special topics' courses in areas such as nuclear and radiochemistry. A scheme is proposed whereby the basic topics covered in an introductury radiochemistry course are touched upon, and in some cases covered in detail, at some time during the four-year sequence of courses taken by a chemistry major. (author) 6 refs.; 7 tabs

  2. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1987-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  3. Visualizing Chemistry: Investigations for Teachers.

    Science.gov (United States)

    Ealy, Julie B.; Ealy, James L., Jr.

    This book contains 101 investigations for chemistry classrooms. Topics include: (1) Physical Properties; (2) Reactions of Some Elements; (3) Reactions Involving Gases; (4) Energy Changes; (5) Solutions and Solubility; (6) Transition Metals and Complex Ions; (7) Kinetics and Equilibrium; (8) Acids and Bases; (9) Oxidation-Reduction; (10)…

  4. High-energy chemistry of formamide: A unified mechanism of nucleobase formation

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Nesvorný, D.; Šponer, Jiří; Kubelík, Petr; Michalčíková, Regina; Shestivska, Violetta; Šponer, Judit E.; Civiš, Svatopluk

    2015-01-01

    Roč. 112, č. 3 (2015), s. 657-662 ISSN 0027-8424 R&D Projects: GA MŠk LM2010014; GA ČR(CZ) GA14-12010S Institutional support: RVO:61388955 ; RVO:68081707 Keywords : origin of life * asteroid impact * biomolecules Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.423, year: 2015

  5. Roles of the human occupant in indoor chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2016-01-01

    Over the last decade, influences of the human occupant on indoor chemistry have been investigated in environments ranging from simulated aircraft cabins to actual classrooms. We have learned that ozone reacts rapidly with constituents of skin surface lipids on exposed skin, hair, and clothing...... occupants scavenge ozone, the level of SOA derived from ozone/terpene chemistry decreases; the fraction of SVOCs in the gas-phase increases, and the fraction associated with airborne particles decreases. Occupants also remove organic compounds, including certain chemically active species, via bodily intake....... Studies reviewed in this paper demonstrate the pronounced influences of humans on chemistry within the spaces they inhabit and the consequences of these influences on their subsequent chemical exposures....

  6. Character education in perspective of chemistry pre-service teacher

    Science.gov (United States)

    Merdekawati, Krisna

    2017-12-01

    As one of the pre-service teacher education programs, Chemistry Education Department Islamic University of Indonesia (UII) is committed to providing quality education. It is an education that can produce competent and characteristic chemistry pre-service teacher. The focus of research is to describe the perception of students as a potential teacher of chemistry on character education and achievement of character education. The research instruments include questionnaires and observation sheets. Research data show that students have understood the importance of character education and committed to organizing character education later in schools. Students have understood the ways in which character education can be used. The students stated that Chemistry Education Department has tried to equip students with character education. The observation result shows that students generally have character as a pre-service teacher.

  7. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  8. Current status and future prospects for enabling chemistry technology in the drug discovery process.

    Science.gov (United States)

    Djuric, Stevan W; Hutchins, Charles W; Talaty, Nari N

    2016-01-01

    This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.

  9. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  10. American Association for Clinical Chemistry

    Science.gov (United States)

    ... Find the answer to your question IN CLINICAL CHEMISTRY Hs-cTnI as a Gatekeeper for Further Cardiac ... Online Harmonization.net Commission on Accreditation in Clinical Chemistry American Board of Clinical Chemistry Clinical Chemistry Trainee ...

  11. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  12. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  13. Why Teach Environmental Chemistry?

    Science.gov (United States)

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  14. What Do Conceptual Holes in Assessment Say about the Topics We Teach in General Chemistry?

    Science.gov (United States)

    Luxford, Cynthia J.; Holme, Thomas A.

    2015-01-01

    Introductory chemistry has long been considered a service course by various departments that entrust chemistry departments with teaching their students. As a result, most introductory courses include a majority of students who are not chemistry majors, and many are health and science related majors who are required to take chemistry. To identify…

  15. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  16. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  17. Problem-based learning in teaching chemistry: enthalpy changes in systems

    Science.gov (United States)

    Ayyildiz, Yildizay; Tarhan, Leman

    2018-01-01

    Problem-based learning (PBL) as a teaching strategy has recently become quite widespread in especially chemistry classes. Research has found that students, from elementary through college, have many alternative conceptions regarding enthalpy changes in systems. Although there are several studies focused on identifying student alternative conceptions and misunderstandings of this subject, studies on preventing the formation of these alternative conceptions are limited.

  18. Chemistry, sun, energy and environment; Chimie, soleil, energie et environnement

    Energy Technology Data Exchange (ETDEWEB)

    Bouchy, M. [Ecole Nationale Superieure des Industries Chimiques (ENSIC), 54 - Villers-les-Nancy (France); Enea, O. [Poitiers Univ., 86 (France); Flamant, G. [IMP-Odeillo-CNRS (France)] (and others)

    2000-07-01

    This document provides the 35 papers presented at the 'Chemistry, Sun, Energy and Environment' meeting, held February 3-4, 2000 in Saint-Avold, France. The main studied topic was the use of solar radiation for water treatment, volatile organic compounds decomposition and in some thermochemical processes. These research subjects are tackled in a fundamental and practical point of view. (O.M.)

  19. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  20. Introducing Chemistry Students to the "Real World" of Chemistry

    Science.gov (United States)

    Brown, Michael E.; Cosser, Ronald C.; Davies-Coleman, Michael T.; Kaye, Perry T.; Klein, Rosalyn; Lamprecht, Emmanuel; Lobb, Kevin; Nyokong, Tebello; Sewry, Joyce D.; Tshentu, Zenixole R.; van der Zeyde, Tino; Watkins, Gareth M.

    2010-01-01

    A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at…

  1. Twenty-year inter-annual trends and seasonal variations in precipitation and stream water chemistry at the Bear Brook Watershed in Maine, USA

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Norton, S. A.; Fernandez, I. J.; Nelson, S. J.

    2010-01-01

    Roč. 171, 1/4 (2010), s. 23-45 ISSN 0167-6369 Institutional research plan: CEZ:AV0Z30130516 Keywords : Bear Brook Watershed in Maine * precipitation chemistry * stream chemistry * seasonality * long-term trends Subject RIV: DD - Geochemistry Impact factor: 1.436, year: 2010

  2. Graduate Education in Chemistry. The ACS Committee on Professional Training: Surveys of Programs and Participants.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    This document reports on graduate education in chemistry concerning the nature of graduate programs. Contents include: (1) "Graduate Education in Chemistry in the United States: A Snapshot from the Late Twentieth Century"; (2) "A Survey of Ph.D. Programs in Chemistry"; (4) "The Master's Degree in Chemistry"; (5) "A Survey of Ph.D. Recipients in…

  3. High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Michalčíková, Regina; Shestivska, Violetta; Šponer, Jiří; Šponer, Judit E.; Civiš, Svatopluk

    2014-01-01

    Roč. 118, č. 4 (2014), s. 719-736 ISSN 1089-5639 R&D Projects: GA ČR GAP208/10/2302; GA MŠk LM2010014 Institutional support: RVO:61388955 ; RVO:68081707 Keywords : HIGH-POWER LASER * TRANSFORM EMISSION-SPECTROSCOPY * INDUCED DIELECTRIC-BREAKDOWN Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.693, year: 2014

  4. Arrow Pushing: A Rational, Participatory Approach to Teaching Descriptive Inorganic Chemistry

    Science.gov (United States)

    Berg, Steffen; Ghosh, Abhik

    2011-01-01

    Inorganic chemistry at core consists of a vast array of molecules and chemical reactions. To master the subject, students must learn to think intelligently about this vast body of facts, a feat seldom accomplished in an introductory course. All too often, young undergraduate students perceive the field as an amorphous and illogical body of…

  5. Catalysis as a foundational pillar of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, Paul T. [White House Office of Science and Technology Policy, Department of Chemistry, University of Nottingham Nottingham, (United Kingdom); Kirchhoff, Mary M. [U.S. Environmental Protection Agency and Trinity College, Washington, DC (United States); Williamson, Tracy C. [U.S. Environmental Protection Agency, Washington, DC (United States)

    2001-11-30

    are serving as a strong incentive to industry to adopt greener technologies. Developing green chemistry methodologies is a challenge that may be viewed through the framework of the Twelve Principles of Green Chemistry . These principles identify catalysis as one of the most important tools for implementing green chemistry. Catalysis offers numerous green chemistry benefits including lower energy requirements, catalytic versus stoichiometric amounts of materials, increased selectivity, and decreased use of processing and separation agents, and allows for the use of less toxic materials. Heterogeneous catalysis, in particular, addresses the goals of green chemistry by providing the ease of separation of product and catalyst, thereby eliminating the need for separation through distillation or extraction. In addition, environmentally benign catalysts such as clays and zeolites, may replace more hazardous catalysts currently in use. This paper highlights a variety of ways in which catalysis may be used as a pollution prevention tool in green chemistry reactions. The benefits to human health, environment, and the economic goals realized through the use of catalysis in manufacturing and processing are illustrated by focusing on the catalyst design and catalyst applications.

  6. Soft chemistry preparation methods and properties of strontiumtitanate nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Makarova, Marina; Dejneka, Alexandr; Franc, Jiří; Drahokoupil, Jan; Jastrabík, Lubomír; Trepakov, Vladimír

    2010-01-01

    Roč. 32, č. 8 (2010), s. 803-806 ISSN 0925-3467 R&D Projects: GA ČR GA202/08/1009; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z40400503 Keywords : SrTiO 3 * nanoparticles * soft chemistry * lattice constant Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.679, year: 2010

  7. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 26)

    International Nuclear Information System (INIS)

    1994-03-01

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1992 (April 1, 1992 - March 31, 1993) are described. The research activities were conducted under the two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, radiation-induced polymerization, preparation of fine particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author)

  8. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Moy, Ming M.; Leasure, Craig S.

    1998-01-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately$16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition,$8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately$35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004

  9. Bibliographies on radiation chemistry

    International Nuclear Information System (INIS)

    Hoffman, M.Z.; Ross, A.B.

    1986-01-01

    The one-electron oxidation and reduction of metal ions and complexes can yield species in unusual oxidation states, and ligand-radicals coordinated to the central metal. These often unstable species can be mechanistically important intermediates in thermal, photochemical, and electrochemical reactions involving metal-containing substances. Their generation via radiolysis provides an alternate means of characterizing them using kinetic and spectroscopic techniques. We hope these bibliographies on the radiation chemistry of metal ions and complexes, presented according to periodic groups, will prove useful to researchers in metallo-redox chemistry. These bibliographies contain only primary literature sources; reviews are not included. However, a list of general review articles on the radiation chemistry of metal ions and complexes is presented here in the first section which covers cobalt, rhodium and iridium, Group 9 in the new IUPAC notation. Additional parts of the bibliography are planned, covering other periodic groups. Part A of the bibliography was prepared by a search of the Radiation Chemistry Data Center Bibliographic Data Base (RCDCbib) through January 1986 for papers on rhodium, iridium and cobalt compounds, and radiolysis (both continuous and pulsed). Papers in which the use of metal compounds was incidental to the primary objective of the study were excluded. Excluded also were publications in unrefereed and obscure sources such as meeting proceedings, internal reports, dissertations, and patents. The majority of the studies in the resultant compilation deal with experiments performed on solutions, mainly aqueous, although a substantial fraction is devoted to solid-state esr measurements. The references are listed in separate sections for each of the metals, and are presented in approximate chronological order. (author)

  10. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  11. American Chemical Society. Division of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The meeting of the 201st American Chemical Society Division of Nuclear Chemistry and Technology was comprised from a variety of topics in this field including: nuclear chemistry, nuclear physics, and nuclear techniques for environmental studies. Particular emphasis was given to fundamental research concerning nuclear structure (seven of the nineteen symposia) and studies of airborne particle monitoring and transport (five symposia). 105 papers were presented

  12. Current status and future prospects for enabling chemistry technology in the drug discovery process

    Science.gov (United States)

    Djuric, Stevan W.; Hutchins, Charles W.; Talaty, Nari N.

    2016-01-01

    This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities. PMID:27781094

  13. Teaching Chemistry in Primary Science: What Does the Research Suggest?

    Science.gov (United States)

    Skamp, Keith

    2011-01-01

    The new Australian national science curriculum includes chemistry content at the primary level. Chemistry for young students is learning about changes in material stuff (matter) and, by implication, of what stuff is made. Pedagogy in this area needs to be guided by research if stepping stones to later learning of chemical ideas are to facilitate…

  14. Making Students Eat Their Greens: Information Skills for Chemistry Students

    Directory of Open Access Journals (Sweden)

    Sarah George

    2016-12-01

    Full Text Available Employers are increasingly requiring a range of "soft" skills from chemistry graduates, including the ability to search for and critically evaluate information. This paper discusses the issues around encouraging chemistry students to engage with information skills and suggests curricular changes which may help to "drip-feed" information skills into degree programs.

  15. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    Science.gov (United States)

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  16. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1984-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  17. Nitrogen Compounds in Radiation Chemistry

    International Nuclear Information System (INIS)

    Sims, H.E.; Dey, G.R.; Vaudey, C.E.; Peaucelle, C.; Boucher, J.L.; Toulhoat, N.; Bererd, N.; Koppenol, W.H.; Janata, E.; Dauvois, V.; Durand, D.; Legand, S.; Roujou, J.L.; Doizi, D.; Dannoux, A.; Lamouroux, C.

    2009-01-01

    Water radiolysis in presence of N 2 is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N 2 and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO 2 - and NO 3 -. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N 2 O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  18. EPRI PWR primary water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Fruzzetti, Keith

    2014-01-01

    EPRI periodically updates the PWR Primary Water Chemistry Guidelines as new information becomes available and as required by NEI 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues). The last revision of the PWR water chemistry guidelines identified an optimum primary water chemistry program based on then-current understanding of research and field information. This new revision provides further details with regard to primary water stress corrosion cracking (PWSCC), fuel integrity, and shutdown dose rates. A committee of industry experts, including utility specialists, nuclear steam supply system (NSSS) and fuel vendor representatives, Institute of Nuclear Power Operations (INPO) representatives, consultants, and EPRI staff collaborated in reviewing the available data on primary water chemistry, reactor water coolant system materials issues, fuel integrity and performance issues, and radiation dose rate issues. From the data, the committee updated the water chemistry guidelines that all PWR nuclear plants should adopt. The committee revised guidance with regard to optimization to reflect industry experience gained since the publication of Revision 6. Among the changes, the technical information regarding the impact of zinc injection on PWSCC initiation and dose rate reduction has been updated to reflect the current level of knowledge within the industry. Similarly, industry experience with elevated lithium concentrations with regard to fuel performance and radiation dose rates has been updated to reflect data collected to date. Recognizing that each nuclear plant owner has a unique set of design, operating, and corporate concerns, the guidelines committee has retained a method for plant-specific optimization. Revision 7 of the Pressurized Water Reactor Primary Water Chemistry Guidelines provides guidance for PWR primary systems of all manufacture and design. The guidelines continue to emphasize plant

  19. Radioanalytical chemistry in Denmark

    International Nuclear Information System (INIS)

    Heydorn, K.; Levi, H.

    1979-12-01

    Publications from Denmark in the field of radioanalytical chemistry are presented in 2 groups, one involving neutron activation and similar techniques, and one for other radioanalytical work. Altogether 258 references including books are given for the period 1936-1977, and the overall doubling time is 5.2 years. A significant deviation from a purely exponential growth was caused by the Second World War. (author)

  20. The physical chemistry and materials science behind sinter-resistant catalysts.

    Science.gov (United States)

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  1. Teaching aids for nuclear chemistry

    International Nuclear Information System (INIS)

    Atwood, C.H.

    1994-01-01

    This paper provides teachers with a set of resources to use in teaching modern nuclear chemistry in their classrooms. Included in the resources are references to recent articles on nuclear science, some preprints and abstracts of articles, ideas of where to go for help, lab experiments, and a videotape of simulated nuclear reactions

  2. Hot atom chemistry of carbon

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1975-01-01

    The chemistry of energetic carbon atoms is discussed. The experimental approach to studies that have been carried out is described and the mechanistic framework of hot carbon atom reactions is considered in some detail. Finally, the direction that future work might take is examined, including the relationship of experimental to theoretical work. (author)

  3. The Chemistry of Curcumin: From Extraction to Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Kavirayani Indira Priyadarsini

    2014-12-01

    Full Text Available Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.

  4. Research in nuclear chemistry: current status and future perspectives

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2007-01-01

    Research in nuclear chemistry has seen a huge growth over the last few decades. The large umbrella of nuclear chemistry includes several research areas such as nuclear fission, reactions, spectroscopy, nuclear probes and nuclear analytical techniques. Currently, nuclear chemistry research has extended its horizon into various applications like nuclear medicine, isotopes for understanding physico chemical processes, and addressing environmental and biomedical problems. Tremendous efforts are going on for synthesizing new elements (isotopes), isolating physically or chemically wherever possible and investigating their properties. Theses studies are useful to understand nuclear and chemical properties at extreme ends of instability. In addition, nuclear chemists are making substantial contribution to astrophysics and other related areas. During this talk, a few of the contributions made by nuclear chemistry group of BARC will be discussed and possible future areas of research will be enumerated. (author)

  5. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  6. Separation chemistry for the nuclear industry

    International Nuclear Information System (INIS)

    Musikas, C.; Condamines, N.; Cuillerdier, C.

    1991-01-01

    A review of the actinide and Lanthanide extraction chemistry by N,N-dialkylamides and N,N'-tetraalkylamides is given. It includes the extraction equilibria of inorganic acids. The prospects of using these completely incinerable extractants in the nuclear fuels cycle is discussed

  7. The 52nd International Conference on Medicinal Chemistry (RICT 2016) of the French Medicinal Chemistry Society (SCT) Held in Caen (Normandy).

    Science.gov (United States)

    Sapi, Janos; Van Hijfte, Luc; Dallemagne, Patrick

    2017-06-21

    Outstanding Medchem in France: Guest editors Janos Sapi, Luc Van Hjfte, and Patrick Dallemagne look back at the 52 nd International Conference on Medicinal Chemistry (RICT 2016) held in Caen, France. They discuss the history of the French Medicinal Chemistry Society (Société de Chimie Thérapeutique, SCT) and provide highlights of last year's events, including some key presentations now collected in this Special Issue. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The relationship between recollection, knowledge transfer, and student attitudes towards chemistry

    Science.gov (United States)

    Odeleye, Oluwatobi Omobonike

    Certain foundational concepts, including acid-base theory, chemical bonding and intermolecular forces (IMFs), appear throughout the undergraduate chemistry curriculum. The level of understanding of these foundational concepts influences the ability of students to recognize the relationships between sub-disciplines in chemistry. The purpose of this study was to investigate the relationship between student attitudes towards chemistry and their abilities to recollect and transfer knowledge of IMFs, a foundational concept, to their daily lives as well as to other classes. Data were collected using surveys, interviews and classroom observations, and analyzed using qualitative methods. The data show that while most students were able to function at lower levels of thinking by providing a definition of IMFs, majority were unable to function at higher levels of thinking as evidenced by their inability to apply their knowledge of IMFs to their daily lives and other classes. The results of this study suggest a positive relationship between students' abilities to recollect knowledge and their abilities to transfer that knowledge. The results also suggest positive relationships between recollection abilities of students and their attitudes towards chemistry as well as their transfer abilities and attitudes towards chemistry. Recommendations from this study include modifications of pedagogical techniques in ways that facilitate higher-level thinking and emphasize how chemistry applies not only to daily life, but also to other courses.

  9. 5-Azacytosine compounds in medicinal chemistry: current stage and future perspectives

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Otmar, Miroslav

    2012-01-01

    Roč. 4, č. 8 (2012), s. 991-1005 ISSN 1756-8919 R&D Projects: GA MPO FR-TI4/625 Institutional support: RVO:61388963 Keywords : 5-azacytidine * 2´-deoxy-5-azacytidine * hypomethylation * DAC * epigenetics * DNA methylation * acyclic nucleoside phosphonates * 5-azacytosine * HPMP-5-azacytosine * prodrugs Subject RIV: CC - Organic Chemistry Impact factor: 3.310, year: 2012

  10. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  11. Organic Chemistry in Space

    Science.gov (United States)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  12. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  13. Application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shen Xinghai; Chen Qingde; Gao Hongcheng

    2008-01-01

    Supramolecular chemistry, one of the front fields in chemistry, is defined as 'chemistry beyond the molecule', bearing on the organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces. This article focuses on the application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry. The following aspects are concerned: (1) the recent progress of supramolecular chemistry; (2) the application of the principle of supramolecular chemistry and the functions of supramolecular system, i.e., recognition, assembly and translocation, in the extraction of nuclides; (3) the application of microemulsion, ionic imprinted polymers, ionic liquids and cloud point extraction in the enrichment of nuclides; (4) the radiation effect of supramolecular systems. (authors)

  14. Henry Taube and Coordination Chemistry

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Henry Taube and Coordination Chemistry Resources with Professor of Chemistry, Emeritus, at Stanford University, received the 1983 Nobel Prize in Chemistry " there from 1940-41. "I became deeply interested in chemistry soon after I came to Berkeley,"

  15. Analytical chemistry department. Annual report, 1977

    International Nuclear Information System (INIS)

    Knox, E.M.

    1978-09-01

    The annual report describes the analytical methods, analyses and equipment developed or adopted for use by the Analytical Chemistry Department during 1977. The individual articles range from a several page description of development and study programs to brief one paragraph descriptions of methods adopted for use with or without some modification. This year, we have included a list of the methods incorporated into our Analytical Chemistry Methods Manual. This report is organized into laboratory sections within the Department as well as major programs within General Atomic Company. Minor programs and studies are included under Miscellaneous. The analytical and technical support activities for GAC include gamma-ray spectroscopy, radiochemistry, activation analysis, gas chromatography, atomic absorption, spectrophotometry, emission spectroscopy, x-ray diffractometry, electron microprobe, titrimetry, gravimetry, and quality control. Services are provided to all organizations throughout General Atomic Company. The major effort, however, is in support of the research and development programs within HTGR Generic Technology Programs ranging from new fuel concepts, end-of-life studies, and irradiated capsules to fuel recycle studies

  16. Eighteenth annual West Coast theoretical chemistry conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Abstracts are presented from the eighteenth annual west coast theoretical chemistry conference. Topics include molecular simulations; quasiclassical simulations of reactions; photodissociation reactions; molecular dynamics;interface studies; electronic structure; and semiclassical methods of reactive systems.

  17. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  18. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with Forecaster, a novel platform for drug discovery.

    Science.gov (United States)

    Therrien, Eric; Englebienne, Pablo; Arrowsmith, Andrew G; Mendoza-Sanchez, Rodrigo; Corbeil, Christopher R; Weill, Nathanael; Campagna-Slater, Valérie; Moitessier, Nicolas

    2012-01-23

    As part of a large medicinal chemistry program, we wish to develop novel selective estrogen receptor modulators (SERMs) as potential breast cancer treatments using a combination of experimental and computational approaches. However, one of the remaining difficulties nowadays is to fully integrate computational (i.e., virtual, theoretical) and medicinal (i.e., experimental, intuitive) chemistry to take advantage of the full potential of both. For this purpose, we have developed a Web-based platform, Forecaster, and a number of programs (e.g., Prepare, React, Select) with the aim of combining computational chemistry and medicinal chemistry expertise to facilitate drug discovery and development and more specifically to integrate synthesis into computer-aided drug design. In our quest for potent SERMs, this platform was used to build virtual combinatorial libraries, filter and extract a highly diverse library from the NCI database, and dock them to the estrogen receptor (ER), with all of these steps being fully automated by computational chemists for use by medicinal chemists. As a result, virtual screening of a diverse library seeded with active compounds followed by a search for analogs yielded an enrichment factor of 129, with 98% of the seeded active compounds recovered, while the screening of a designed virtual combinatorial library including known actives yielded an area under the receiver operating characteristic (AU-ROC) of 0.78. The lead optimization proved less successful, further demonstrating the challenge to simulate structure activity relationship studies.

  19. Analysis of Students’ Missed Organic Chemistry Quiz Questions that Stress the Importance of Prior General Chemistry Knowledge

    OpenAIRE

    Julie Ealy

    2018-01-01

    A concern about students’ conceptual difficulties in organic chemistry prompted this study. It was found that prior knowledge from general chemistry was critical in organic chemistry, but what were some of the concepts that comprised that prior knowledge? Therefore an analysis of four years of organic chemistry quiz data was undertaken. Multiple general chemistry concepts were revealed that are essential prior knowledge in organic chemistry. The general chemistry concepts that were foun...

  20. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    fundamental concepts of electrostatics as applied to atoms and molecules. The electric ... chemistry, the chemistry of the covalent bond, deals with the structures ..... the position of an asteroid named Ceres ... World Scientific. Singapore, 1992.

  1. Marcoule Institute for Separation Chemistry - 2009-2012 Scientific report

    International Nuclear Information System (INIS)

    Pellet-Rostaing, Stephane; Zemb, Thomas

    2013-01-01

    The mixed research unit 'Institute for Separation Chemistry' was created jointly by CEA, CNRS, University of Montpellier and Ecole Nationale Superieure de Chimie de Montpellier in March 2007. The building has been inaugurated in June 2009, with laboratories opened in the fall 2009 and has obtained authorisation to start experiments including a few grams of depleted uranium and natural thorium in January 2010. Last take-off was the theory group, who started in October 2009. Resources in Uranium are scarce, if only the 235 isotope is used and wastes related to nuclear energy production are potentially dangerous. The use of fast neutrons allows to multiply existing resources in national independence, but will be based on new separation processes, that can be modelled using predictive theory. Understanding and optimizing separation in the nuclear fuel cycle is the central aim of the 'Institute for Separation Chemistry' (ICSM). Enlarging this central goal to the needs for chemistry of recycling, for instance, strategic metals crucial for alternative energy, is the natural extension surfaces of needs and development of science, with a strong link for technology and implementation. This report gives an overview of the work published and submitted by ICSM since January 2009. The nine active research teams still work in the direction of the scientific open questions as defined and published by the French academy in 2007. The report is organized by scientific topics: each of the nine active research groups gathers a community of researchers and engineers from different expertises, who publish in various domains in the corresponding journals, and who participate at different international meetings. The research teams are organized as follows: 1 - Chemistry and Physical-chemistry of the Actinides; 2 - Ions at Active Interfaces; 3 - Ionic Separation from self-assembled Molecular systems; 4 - Sono-chemistry in Complex Fluids; 5 - Nano-materials for Energy and Recycling processes

  2. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  3. Water Chemistry Control in Reducing Corrosion and Radiation Exposure at PWR Reactor

    International Nuclear Information System (INIS)

    Febrianto

    2006-01-01

    Water chemistry control plays an important role in relation to plant availability, reliability and occupational radiation exposures. Radiation exposures of nuclear plant workers are determined by the radiation rate dose and by the amount maintenance and repair work time Water chemistry has always been, from beginning of operation of power Pressurized Water Reactor, an important factor in determining the integrity of reactor components, fuel cladding integrity and minimize out of core radiation exposures. For primary system, the parameters to control the quality of water chemistry have been subject to change in time. Reactor water coolant pH need to be optimally controlled and be operated in range pH 6.9 to 7.4. At pH lower than 6.9, cause increasing the radiation exposure level and increasing coolant water pH higher than 7.4 will decrease radiation exposure level but increasing risk to fuel cladding and steam generator tube. Since beginning 90 decade, PWR water coolant pH tend to be operated at pH 7.4. This paper will discuss concerning water chemistry development in reducing corrosion and radiation exposure dose in PWR reactor. (author)

  4. Relational Analysis of College Chemistry-Major Students' Conceptions of and Approaches to Learning Chemistry

    Science.gov (United States)

    Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung

    2013-01-01

    The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…

  5. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  6. Impact of Chemistry Teachers' Knowledge and Practices on Student Achievement

    Science.gov (United States)

    Scantlebury, Kathryn

    2008-10-01

    Professional development programs promoting inquiry-based teaching are challenged with providing teachers content knowledge and using pedagogical approaches that model standards based instruction. Inquiry practices are also important for undergraduate students. This paper focuses on the evaluation of an extensive professional development program for chemistry teachers that included chemistry content tests for students and the teachers and the impact of undergraduate research experiences on college students' attitudes towards chemistry. Baseline results for the students showed that there were no gender differences on the achievement test but white students scored significantly higher than non-white students. However, parent/adult involvement with chemistry homework and projects, was a significant negative predictor of 11th grade students' test chemistry achievement score. This paper will focus on students' achievement and attitude results for teachers who are mid-way through the program providing evidence that on-going, sustained professional development in content and pedagogy is critical for improving students' science achievement.

  7. Fluorescence Correlation Spectroscopy of Spermine-DNA Interactions - Nanostructure and Physical Supramolecular Chemistry of DNA Condensation

    Czech Academy of Sciences Publication Activity Database

    Kral, Teresa; Langner, M.; Hof, Martin; Adjimatera, N.; Blagbrough, I. S.

    2004-01-01

    Roč. 98, Supplement (2004), s22-s23 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z4040901 Keywords : fluorescence * nanostructure * DNA condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.348, year: 2004

  8. Embedding Environmental Sustainability in the Undergraduate Chemistry Curriculum: A Case Study

    Science.gov (United States)

    Schultz, Madeleine

    2013-01-01

    In spite of increasing attention devoted to the importance of embedding sustainability in university curricula, few Australian universities include specific green chemistry units, and there is no mention of green or sustainable chemistry concepts in the majority of units. In this paper, an argument is posited that all universities should embed…

  9. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  10. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  11. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  12. IN-PACKAGE CHEMISTRY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  13. IN-PACKAGE CHEMISTRY ABSTRACTION

    International Nuclear Information System (INIS)

    E. Thomas

    2005-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H 2 O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package

  14. 40th anniversary of 'ALSTOM Power Plant Chemistry' in Mannheim

    International Nuclear Information System (INIS)

    Leidich, F.U.; Seipp, H.G.

    2008-01-01

    The power plant chemistry department of Alstom in Mannheim was founded in 1967. The presentation summarizes our contributions to the development of new power plant technologies over the past four decades. In addition, an overview of the future activities of our department is presented. In the retrospective the following examples are mentioned: nuclear power, combined cycles, supercritical steam generators and the contributions of Alstom's power plant chemistry department to, for example, the VGB guidelines. The outlook includes the expected contribution of power plant chemistry to solving challenges in connection with 700 C technology steam power plants, oxyfuel processes and carbon capture. (orig.)

  15. Presidential Green Chemistry Challenge: 2012 Small Business Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2012 award winner, Elevance Renewable Sciences, used Nobel-prize-winning metathesis catalysis to produce high-value difunctional chemicals from renewable feedstocks including natural oils.

  16. Presidential Green Chemistry Challenge: 2006 Small Business Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2006 award winners, Arkon Consultants and NuPro Technologies, developed a safer processing system for flexographic printing that includes washout solvents and reclamation/recycling.

  17. Radiation chemistry in solvent extraction: FY2010 Research

    International Nuclear Information System (INIS)

    Mincher, Bruce J.; Martin, Leigh R.; Mezyk, Stephen P.

    2010-01-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR and D) program in the area of radiation chemistry during FY 2010. The tasks assigned during FY 2010 included: (1) Development of techniques to measure free radical reaction kinetics in the organic phase. (2) Initiation of an alpha-radiolysis program; (3) Initiation of an effort to understand dose rate effects in radiation chemistry; (4) Continued work to characterize TALSPEAK radiation chemistry Progress made on each of these tasks is reported here. Briefly, a method was developed and used to measure the kinetics of the reactions of the NO3 radical with solvent extraction ligands in organic solution, and the method to measure OH radical reactions under the same conditions has been designed. Rate constants for the CMPO and DMDOHEMA reaction with NO3 radical in organic solution are reported. Alpha-radiolysis was initiated on samples of DMDOHEMA in alkane solution using He ion beam irradiation and 211At isotope irradiation. The samples are currently being analyzed for comparison to DMDOHEMA ?-irradiations using a custom-developed mass spectrometric method. Results are also reported for the radiolytic generation of nitrous acid, in ?-irradiated nitric acid. It is shown that the yield of nitrous acid is unaffected by an order-of-magnitude change in dose rate. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the effects on solvent extraction efficiency due to HDEHP irradiation, and the stable products of lactic acid and DTPA irradiation. In addition, results representing increased scope are presented for the radiation chemistry program. These include an investigation of the effect of metal complexation on radical reaction kinetics using DTPA as an example, and the production of a manuscript reporting the mechanism of Cs-7SB radiolysis. The Cs-7SB work takes advantage of recent results from a current LDRD program to understand the fundamental chemistry of

  18. Modern chemistry of nitrous oxide

    International Nuclear Information System (INIS)

    Leont'ev, Aleksandr V; Fomicheva, Ol'ga A; Proskurnina, Marina V; Zefirov, Nikolai S

    2001-01-01

    Modern trends of the chemistry of nitrous oxide are discussed. Data on its structure, physical properties and reactivity are generalised. The effect of N 2 O on the environment and the possibility of its utilisation are considered. Attention is focused on the processes in which the oxidising potential of nitrous oxide can be employed. The bibliography includes 329 references.

  19. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  20. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.