WorldWideScience

Sample records for subjects including astronomy

  1. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  2. ASTRONOMY.

    Science.gov (United States)

    Louisiana Arts and Science Center, Baton Rouge.

    THIS TEACHER'S GUIDE FOR A UNIT ON ASTRONOMY ESTABLISHES (1) UNDERSTANDINGS AND ATTITUDES, (2) SKILLS, AND (3) CONCEPTS TO BE GAINED IN THE STUDY. THE OVERVIEW EXPLAINS THE ORGANIZATION AND OBJECTIVES OF THE UNIT. TOPICAL DIVISIONS ARE (1) THE EARTH, (2) THE MOON, (3) THE SUN, (4) THE SOLAR SYSTEM, (5) THE STARS, (6) THE UNIVERSE, AND (7) SPACE…

  3. Astronomy

    CERN Document Server

    Seymour, Percy

    2014-01-01

    With a blend of exciting discoveries and important scientific theory,this innovative and readable introduction to astronomy is ideal for anyone who wants to understand what we know about the universe,and how we know it. Each chapter starts with details of a method of jow astronomers over time have observed the world,and then uses this as a springboard to discuss what they discovered,and why this was important for understanding the cosmos. The last chapter,on dark matter,also focuses on the many things we don''t yet know - reminding us that astronomy,like this book,is a fast-paced and fascinati

  4. Including subjectivity in the teaching of Psychopathology

    Directory of Open Access Journals (Sweden)

    Octavio Domont de Serpa Junior

    2007-01-01

    Full Text Available Current psychopathology studies have often been presented in their descriptive dimension. This perspective is important for teaching because it helps the students to recognize and identify the symptomatology of each psychopathology case. However, subjectivity, the experience of suffering and interpersonal aspects are all lost in this perspective. Coming from another psychopathology tradition - existential anthropology - this paper presents practical psychopathology teaching experience which considers such dimensions as being relevant to the understanding of mental suffering. The features and limitations of such traditions are briefly reviewed to support this teaching experience. Two new modalities of practical teaching, used in the discipline of "Special Psychopathology I" offered by the Department of Psychiatry and Forensic Medicine at the medical school of the Federal University of Rio de Janeiro for students of psychology, will be presented according to descriptive case study methodology. With these activities we also expect to change the practice of teaching. Traditionally, interviewing of in-patients by a large group of students who observe passively what is happening is the center of this kind of education. We intend to develop a model of teaching which is closer to the proposal of the Brazilian Psychiatric Reform which views mental illness as a complex phenomenon, always involving the relationship that the subject establishes with the world.

  5. Armenian Cultural Astronomy

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2015-07-01

    Cultural Astronomy is the reflection of sky events in various fields of nations' culture. In foreign literature this field is also called "Astronomy in Culture" or "Astronomy and Culture". Cultural astronomy is the set of interdisciplinary fields studying the astronomical systems of current or ancient societies and cultures. It is manifested in Religion, Mythology, Folklore, Poetry, Art, Linguistics and other fields. In recent years, considerable attention has been paid to this sphere, particularly international organizations were established, conferences are held and journals are published. Armenia is also rich in cultural astronomy. The present paper focuses on Armenian archaeoastronomy and cultural astronomy, including many creations related to astronomical knowledge; calendars, rock art, mythology, etc. On the other hand, this subject is rather poorly developed in Armenia; there are only individual studies on various related issues (especially many studies related to Anania Shirakatsi) but not coordinated actions to manage this important field of investigation.

  6. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    Science.gov (United States)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  7. Rescuing Middle School Astronomy

    Science.gov (United States)

    Mayo, L. A.; Janney, D.

    2010-12-01

    There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.

  8. Teaching and Learning Astronomy

    Science.gov (United States)

    Pasachoff, Jay; Percy, John

    2009-07-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel

  9. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    Science.gov (United States)

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  10. Astronomy essentials

    CERN Document Server

    Brass, Charles O

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Astronomy includes the historical perspective of astronomy, sky basics and the celestial coordinate systems, a model and the origin of the solar system, the sun, the planets, Kepler'

  11. Astronomy Activities.

    Science.gov (United States)

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's…

  12. Chinese Astronomy

    Science.gov (United States)

    Li, Q.; Murdin, P.

    2000-11-01

    Astronomy has been a subject of interest to Chinese people since ancient times. As early as the sixteenth century BC, a supernova was recorded on an animal bone used in divination. In ancient China, the main mission for astronomers was to determine the farming seasons and to predict important events for the future according to the phenomena that appeared in the sky. In the minds of rulers in anci...

  13. African Cultural Astronomy

    CERN Document Server

    Holbrook, Jarita C; Medupe, R. Thebe; Current Archaeoastronomy and Ethnoastronomy research in Africa

    2008-01-01

    Astronomy is the science of studying the sky using telescopes and light collectors such as photographic plates or CCD detectors. However, people have always studied the sky and continue to study the sky without the aid of instruments this is the realm of cultural astronomy. This is the first scholarly collection of articles focused on the cultural astronomy of Africans. It weaves together astronomy, anthropology, and Africa. The volume includes African myths and legends about the sky, alignments to celestial bodies found at archaeological sites and at places of worship, rock art with celestial imagery, and scientific thinking revealed in local astronomy traditions including ethnomathematics and the creation of calendars. Authors include astronomers Kim Malville, Johnson Urama, and Thebe Medupe; archaeologist Felix Chami, and geographer Michael Bonine, and many new authors. As an emerging subfield of cultural astronomy, African cultural astronomy researchers are focused on training students specifically for do...

  14. Astronomy in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan; Hadrava, Petr

    -, č. 128 (2007), s. 3-3 ISSN 0722-6691 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomy * astropohysics * Czech republic Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  15. Astronomy Education for Physics Students

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Astronomy is a very interesting subject for undergraduate students studying physics. In this paper, we report astronomy education for undergraduate students in the Physics Department of Guangzhou University, and how we are teaching astronomy to the students. Astrophysics has been rapidly developing ...

  16. Cultural Astronomy in Armenia and in the World

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2016-12-01

    Cultural Astronomy is the reflection of sky events in various fields of nations' culture. In foreign literature, this field is also called "Astronomy in Culture" or "Astronomy and Culture". Cultural astronomy is the set of interdisciplinary fields studying the astronomical systems of current or ancient societies and cultures. It is manifested in Religion, Mythology, Folklore, Poetry, Art, Linguistics and other fields. In recent years, considerable attention has been paid to this sphere, particularly international organizations were established, conferences are held and journals are published. Armenia is also rich in cultural astronomy. The present paper focuses on Armenian archaeoastronomy and cultural astronomy, including many creations related to astronomical knowledge; calendars, rock art, mythology, etc. On the other hand, this subject is rather poorly developed in Armenia; there are only individual studies on various related issues (especially many studies related to Anania Shirakatsi) but not coordinated actions to manage this important field of investigation.

  17. Syllabus Computer in Astronomy

    Science.gov (United States)

    Hojaev, Alisher S.

    2015-08-01

    One of the most important and actual subjects and training courses in the curricula for undergraduate level students at the National university of Uzbekistan is ‘Computer Methods in Astronomy’. It covers two semesters and includes both lecture and practice classes. Based on the long term experience we prepared the tutorial for students which contain the description of modern computer applications in astronomy.The main directions of computer application in field of astronomy briefly as follows:1) Automating the process of observation, data acquisition and processing2) Create and store databases (the results of observations, experiments and theoretical calculations) their generalization, classification and cataloging, working with large databases3) The decisions of the theoretical problems (physical modeling, mathematical modeling of astronomical objects and phenomena, derivation of model parameters to obtain a solution of the corresponding equations, numerical simulations), appropriate software creation4) The utilization in the educational process (e-text books, presentations, virtual labs, remote education, testing), amateur astronomy and popularization of the science5) The use as a means of communication and data transfer, research result presenting and dissemination (web-journals), the creation of a virtual information system (local and global computer networks).During the classes the special attention is drawn on the practical training and individual work of students including the independent one.

  18. Interactive Materials In The Teaching Of Astronomy

    Science.gov (United States)

    Macêdo, J. A.; Voelzke, M. R.

    2014-10-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Science. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, research locus of its Campus Januária; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test was conducted with the qualitative and quantitative methodology, combined with a content analysis. The results indicated that in the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; the rates of students prior knowledge in relation to astronomy was low; an evidence of meaningful learning of the concepts related to astronomy, and of viability of resource use involving digital technologies in the Teaching of astronomy, which may contribute to the broadening of methodological options of future teachers and meet their training needs.

  19. Fundamental astronomy

    CERN Document Server

    Kröger, Pekka; Oja, Heikki; Poutanen, Markku; Donner, Karl

    2017-01-01

    Now in its sixth edition this successful undergraduate textbook gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The chapters on galactic and extragalactic astronomy as well as cosmology were extensively modernized in the previous edition. In this new edition they have been further revised to include more recent results. The long chapter on the solar system has been split into two parts: the first one deals with the general properties, and the other one describes individual objects. A new chapter on exoplanets has been added to the end of the book next to the chapter on astrobiology. In response to the fact that astronomy has evolved enormously over the last few years, only a few chapters of this book have been left unmodified. Long considered a standard text for physical science maj...

  20. History of Astronomy in Portugal: Theories, Institutions and Practices

    Science.gov (United States)

    Saraiva, Luis

    2014-01-01

    In Portugal, throughout its history, astronomy was developed in the context of the mathematical sciences. During the times of Portugal's Maritime Discoveries, astronomical navigation was based on spherical trigonometry, and therefore it was the mathematicians who taught astronomy to the pilots. During the 17th century, basic notions of astronomy were taught in mathematical courses in the University and in the main Jesuit colleges. This tradition continued in the 18th century, so it is no wonder that one of the most influent Portuguese astronomers during this period was the mathematician José Monteiro da Rocha. During the 19th century the new centres of science teaching, as the Polytechnic School in Lisbon, or the Polytechnic Academy in Oporto, developed astronomy teaching and research in the context of the mathematics subjects. The inheritors of these 19th century institutions, respectively the Faculties of Sciences of Lisbon and Oporto, upheld this tradition until the final decades of 20th century and continued to consider astronomy as a subject to be taught in their mathematics departments. This Meeting aims at outlining several perspectives on the history of astronomy in Portugal, particularly analysing its ties with mathematical sciences and astronomy applications. The Meeting is organised by the Museum of Science of the University of Lisbon (MCUL) with CMAF, CMUC, CMUP and the CIUHCT, and is included in CIM events. It is integrated in the commemorations of the International Year of Astronomy (IYA2009).

  1. What Lies Behind NSF Astronomer Demographics? Subjectivities of Women, Minorities and Foreign-born Astronomers within Meshworks of Big Science Astronomy

    Science.gov (United States)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L. F.; Traweek, S.

    2011-01-01

    Our current research focuses on the trajectory of scientists working with large-scale databases in astronomy, following them as they strategically build their careers, digital infrastructures, and make their epistemological commitments. We look specifically at how gender, ethnicity, nationality intersect in the process of subject formation in astronomy, as well as in the process of enrolling partners for the construction of instruments, design and implementation of large-scale databases. Work once figured as merely technical support, such assembling data catalogs, or as graphic design, generating pleasing images for public support, has been repositioned at the core of the field. Some have argued that such databases enable a new kind of scientific inquiry based on data exploration, such as the "fourth paradigm" or "data-driven" science. Our preliminary findings based on oral history interviews and ethnography provide insights into meshworks of women, African-American, "Hispanic," Asian-American and foreign-born astronomers. Our preliminary data suggest African-American men are more successful in sustaining astronomy careers than Chicano and Asian-American men. A distinctive theme in our data is the glocal character of meshworks available to and created by foreign-born women astronomers working at US facilities. Other data show that the proportion of Asian to Asian American and foreign-born Latina/o to Chicana/o astronomers is approximately equal. Futhermore, Asians and Latinas/os are represented in significantly greater numbers than Asian Americans and Chicanas/os. Among professional astronomers in the US, each ethnic minority group is numbered on the order of tens, not hundreds. Project support is provided by the NSF EAGER program to University of California, Los Angeles under award 0956589.

  2. Astronomy Education for Physics Students

    Science.gov (United States)

    Fan, J. H.; Zhang, J. S.; Zhang, J. Y.; Liu, Y.; Wang, H. G.

    2011-06-01

    Astronomy is a very interesting subject for undergraduate students studying physics. In this paper, we report astronomy education for undergraduate students in the Physics Department of Guangzhou University, and how we are teaching astronomy to the students. Astrophysics has been rapidly developing since 1994, when the center for astrophysics was founded. Now, astrophysics has become a key subject in Guangdong Province, and the Astronomy Science and Technology Research Laboratory one of the key laboratories of the Department of Education of the Guangdong Province. Many undergraduate students, working under the tutorship of faculty members completed their thesis at the Center for Astrophysics in Guangzhou.

  3. NASA thesaurus: Astronomy vocabulary

    Science.gov (United States)

    A terminology of descriptors used by the NASA Scientific and Technical information effort to index documents in the area of astronomy is presented. The terms are listed in hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -- Hierarchical Listing. Over 1600 terms are included. In addition to astronomy, space sciences covered include astrophysics, cosmology, lunar flight and exploration, meteors and meteorites, celestial mechanics, planetary flight and exploration, and planetary science.

  4. Discovering Astronomy Through Poetry

    Science.gov (United States)

    Mannone, John C.

    2011-05-01

    The literature is replete with astronomical references. And much of that literature is poetry. Using this fact, not only can the teacher infuse a new appreciation of astronomy, but also, the student has the opportunity to rediscover history through astronomy. Poetry can be an effective icebreaker in the introduction of new topics in physics and astronomy, as well as a point of conclusion to a lecture. This presentation will give examples of these things from the ancient literature (sacred Hebraic texts), classical literature (Homer's Iliad and Odyssey), traditional poetry (Longfellow, Tennyson and Poe) and modern literature (Frost, Kooser, and others, including the contemporary work of this author).

  5. Mathematical Astronomy in India

    Science.gov (United States)

    Plofker, Kim

    Astronomy in South Asia's Sanskrit tradition, apparently originating in simple calendric computations regulating the timing of ancient ritual practices, expanded over the course of two or three millennia to include detailed spherical models, an endless variety of astrological systems, and academic mathematics in general. Assimilating various technical models, methods, and genres from the astronomy of neighboring cultures, Indian astronomers created new forms that were in turn borrowed by their foreign counterparts. Always recognizably related to the main themes of Eurasian geocentric mathematical astronomy, Indian astral science nonetheless maintained its culturally distinct character until Keplerian heliocentrism and Newtonian mechanics replaced it in colonial South Asia's academic mainstream.

  6. Astronomy at the frontiers of science

    CERN Document Server

    2011-01-01

    Astronomy is by nature an interdisciplinary activity: it involves mathematics, physics, chemistry and biology. Astronomers use (and often develop) the latest technology, the fastest computers and the most refined software.  In this book twenty-two leading scientists from nine countries talk about how astronomy interacts with these other sciences. They describe modern instruments used in astronomy and the relations between astronomy and technology, industry, politics and philosophy. They also discuss what it means to be an astronomer, the history of astronomy, and the place of astronomy in society today.   The book contains twenty chapters grouped in four parts: ASTRONOMY AND PHYSICS discusses the place of astronomy among various branches of (mostly high-energy) physics. ASTRONOMY IN SOCIETY describes not only the historical context of astronomy, but issues facing astronomers today, including funding, planning, worldwide collaboration and links with industry. THE TOOLS OF OBSERVATION AND THE PROFESSION OF AS...

  7. Ideas for Citizen Science in Astronomy

    Science.gov (United States)

    Marshall, Philip J.; Lintott, Chris J.; Fletcher, Leigh N.

    2015-08-01

    We review the expanding, internet-enabled, and rapidly evolving field of citizen astronomy, focusing on research projects in stellar, extragalactic, and planetary science that have benefited from the participation of members of the public. These volunteers contribute in various ways: making and analyzing new observations, visually classifying features in images and light curves, exploring models constrained by astronomical data sets, and initiating new scientific enquiries. The most productive citizen astronomy projects involve close collaboration between the professionals and amateurs involved and occupy scientific niches not easily filled by great observatories or machine learning methods: Citizen astronomers are motivated by being of service to science, as well as by their interest in the subject. We expect participation and productivity in citizen astronomy to increase, as data sets get larger and citizen science platforms become more efficient. Opportunities include engaging citizens in ever-more advanced analyses and facilitating citizen-led enquiry through professional tools designed with citizens in mind.

  8. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  9. Cultural Astronomy in Japan

    Science.gov (United States)

    Renshaw, Steven L.

    While Japan is known more for its contributions to modern astronomy than its archaeoastronomical sites, there is still much about the culture's heritage that is of interest in the study of cultural astronomy. This case study provides an overview of historical considerations necessary to understand the place of astronomy in Japanese society as well as methodological considerations that highlight traditional approaches that have at times been a barrier to interdisciplinary research. Some specific areas of study in the cultural astronomy of Japan are discussed including examples of contemporary research based on interdisciplinary approaches. Japan provides a fascinating background for scholars who are willing to go beyond their curiosity for sites of alignment and approach the culture with a desire to place astronomical iconography in social context.

  10. Stamping through astronomy

    CERN Document Server

    Dicati, Renato

    2013-01-01

    Stamps and other postal documents are an attractive vehicle for presenting astronomy and its development. Written with expertise and great enthusiasm, this unique book offers a historical and philatelic survey of astronomy and some related topics on space exploration. It contains more than 1300 color reproductions of stamps relating to the history of astronomy, ranging from the earliest observations of the sky to modern research conducted with satellites and space probes. Featured are the astronomers and astrophysicists who contributed to this marvelous story – not only Ptolemy, Copernicus, Kepler, Newton, Herschel, and Einstein but also hundreds of other minor protagonists who played an important role in the development of this, the most ancient yet the most modern of all the sciences. The book also examines in depth the diverse areas which have contributed to the history of astronomy, including the instrumentation, the theories, and the observations. Many stamps illustrate the beauty and the mystery of ce...

  11. Greek astronomy

    CERN Document Server

    Heath, Sir Thomas L

    2011-01-01

    Astronomy as a science began with the Ionian philosophers, with whom Greek philosophy and mathematics also began. While the Egyptians and Babylonians had accomplished much of astronomical worth, it remained for the unrivalled speculative genius of the Greeks, in particular, their mathematical genius, to lay the foundations of the true science of astronomy. In this classic study, a noted scholar discusses in lucid detail the specific advances made by the Greeks, many of whose ideas anticipated the discoveries of modern astronomy.Pythagoras, born at Samos about 572 B.C., was probably the first

  12. Subjective Response to Foot-Fall Noise, Including Localization of the Source Position

    DEFF Research Database (Denmark)

    Brunskog, Jonas; Hwang, Ha Dong; Jeong, Cheol-Ho

    2011-01-01

    Although an impact noise level is objectively evaluated the same according to current standards, a lightweight floor structure is often subjectively judged more annoying than a heavy homogeneous structure. The hypothesis of the present investigation is that the subjective judgment of impact noise...

  13. Fundamental Astronomy

    CERN Document Server

    Karttunen, Hannu; Oja, Heikki; Poutanen, Markku; Donner, Karl Johan

    2007-01-01

    Fundamental Astronomy gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The fifth edition of this successful undergraduate textbook has been extensively modernized and extended in the parts dealing with the Milky Way, extragalactic astronomy and cosmology as well as with extrasolar planets and the solar system (as a consequence of recent results from satellite missions and the new definition by the International Astronomical Union of planets, dwarf planets and small solar-system bodies). Furthermore a new chapter on astrobiology has been added. Long considered a standard text for physical science majors, Fundamental Astronomy is also an excellent reference and entrée for dedicated amateur astronomers.

  14. Astronomy for a Better World”: IAU/OAD Task Force One Activities to Develop Astronomy Education and Research at Universities in the Developing World

    Science.gov (United States)

    Guinan, Edward Francis; Kolenberg, Katrien

    2015-08-01

    The Task Force (1) on Astronomy for Universities & Research (TF-1) was established in 2012 as part of the IAU Office of Astronomy for Development (OAD). This Task Force drives activities related to astronomy education and research at universities mainly in the developing world. Astronomy is used to stimulate research and education in STEM fields and to develop and promote astronomy in regions of the world where there is little or no astronomy. There is also potential for developing research in the historical and cultural aspects of astronomy which may prove important for stimulating an interest in the subject in communities where there is yet no established interest in the science.Since the establishment of the OAD, over 25 TF-1 programs have been funded (or partially funded) to support a wide variety of interesting and innovative astronomy programs in Africa, Asia, South-East Asia, Middle-East, and in South & Central America. Nearly every aspect of development has been supported. These programs include supporting: regional astronomy training schools, specialized workshops, research visits, university twinning programs, distance learning projects, university astronomy curriculum development, as well as small telescope and equipment grants. In addition, a large new program - Astrolab - was introduced (by J-P De Greve and Michele Gerbaldi) to bring starlight” into the class room. In the Astrolab program students carry out and reduce CCD photometry secured by them using remotely controlled telescopes. Results from pilot programs will be discussed.OAD TF-1 programs will be discussed along with future plans for improving and expanding these programs to bring astronomy education and research to a greater number of people and indeed to use Astronomy for a Better World. Information and advice will also be provided about applying for support in the future.

  15. The Effects of Using Concept Cartoons in Astronomy Subjects on Critical Thinking Skills among Seventh Grade Student

    Science.gov (United States)

    Demirci, Filiz; Özyürek, Cengiz

    2017-01-01

    The objective of this study is to research the effects of using concept cartoons in the "Solar System and Beyond" unit, which is included in seventh grade science lessons, on students' critical thinking skills. The study group consisted of 58 students, selected using an appropriate sampling method, who were students in a state secondary…

  16. Some innovative programmes in Astronomy education

    Science.gov (United States)

    Babu, G. S. D.; Sujatha, S.

    In order to inculcate a systematic scientific awareness of the subject of Astronomy among the students and to motivate them to pursue careers in Astronomy and Astrophysics, various innovative educational programmes have been designed at MPBIFR. Among them, the main programme is termed as the ``100-hour Certificate Course in Astronomy and Astrophysics'' which has been designed basically for the students of the undergraduate level of B.Sc. and B.E. streams. The time duration of the 100 hours in this course is partitioned as 36 hours of classroom lectures, 34 hours of practicals and field trips and the remaining 30 hours being dedicated to dissertation writing and seminar presentations by the students. In addition, after the 100-hour course, the students have the option to take up specialized advance courses in the topics of Astrobiology, Astrochemistry, Radio Astronomy, Solar Astronomy and Cosmology as week-end classes. These courses are at the post graduate level and are covered in a span of 18 to 20 hours spread over a period of 9 to 10 weeks. As a preparatory programme, short-term introductory courses in the same subject are conducted for the high school students during the summer vacation period. Along with this, a three-week programme in basic Astronomy is also designed as an educational package for the general public. The students of these courses have the opportunity of being taken on field trips to various astronomical centers as well as the Radio, Solar and the Optical Observatories as part of their curriculum. The guided trips to the ISRO’s Satellite Centre at Bangalore and the Satellite Launching Station at SHAR provide high degree of motivation apart from giving thrilling experiences to the students. Further, the motivated students are encouraged to involve themselves in regular research programmes in Astronomy at MPBIFR for publishing research papers in national and international journals. The teaching and mentoring faculty for all these programmes

  17. Astronomy Allies

    Science.gov (United States)

    Flewelling, Heather; Alatalo, Katherine A.

    2017-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  18. Student Attitudes Towards Public Funding Of Astronomy

    Science.gov (United States)

    Stine, Peter

    2009-01-01

    Research in astronomy is strongly dependent on public (taxpayer) dollars. In this study we examine the attitudes of college students toward funding of astronomy projects. A survey was given to 269 college students prior to taking an introductory astronomy course. Students were given a short test designed to examine misconceptions about astronomy. They were then asked about their willingness to support public funding for astronomy projects. Students with fundamental misconceptions about mundane topics such as the cause of the seasons and phases of the moon were less than half as likely to support public funding of astronomy projects. Results are also reported showing the relationship between a willingness to fund projects and whether the students had experiences including reading books or magazines on astronomy, exposure to astronomy in high school, and using a telescope.

  19. Python in Astronomy 2016

    Science.gov (United States)

    Jenness, Tim; Robitaille, Thomas; Tollerud, Erik; Mumford, Stuart; Cruz, Kelle

    2016-04-01

    The second Python in Astronomy conference will be held from 21-25 March 2016 at the University of Washington eScience Institute in Seattle, WA, USA. Similarly to the 2015 meeting (which was held at the Lorentz Center), we are aiming to bring together researchers, Python developers, users, and educators. The conference will include presentations, tutorials, unconference sessions, and coding sprints. In addition to sharing information about state-of-the art Python Astronomy packages, the workshop will focus on improving interoperability between astronomical Python packages, providing training for new open-source contributors, and developing educational materials for Python in Astronomy. The meeting is therefore not only aimed at current developers, but also users and educators who are interested in being involved in these efforts.

  20. Teaching Astronomy Online

    Science.gov (United States)

    Radnofsky, Mary L.; Bobrowsky, Matthew

    This article is intended to provide an overview of the practical, pedagogical, and philosophical considerations in designing a Web-based astronomy course, and to demonstrate the educational benefits that such online courses can afford students. Because online students need to take more responsibility for their learning, faculty must make course expectations extremely clear. Online education allows for increased student participation and equal access to college by such groups as the military, the handicapped, full-time employees, and rural and senior citizens. Teaching the sciences online--especially astronomy--gives students more time to think critically about new information. This article also includes tools, checklists, and resources helpful for introducing faculty to online course development in astronomy.

  1. Astronomy across cultures the history of non-Western astronomy

    CERN Document Server

    Xiaochun, Sun

    2000-01-01

    Astronomy Across Cultures: A History of Non-Western Astronomy consists of essays dealing with the astronomical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Polynesian, Egyptian and Tibetan astronomy, among others, the book includes essays on Sky Tales and Why We Tell Them and Astronomy and Prehistory, and Astronomy and Astrology. The essays address the connections between science and culture and relate astronomical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.

  2. Verifying the attenuation of earplugs in situ: method validation on human subjects including individualized numerical simulations.

    Science.gov (United States)

    Bockstael, Annelies; Van Renterghem, Timothy; Botteldooren, Dick; D'Haenens, Wendy; Keppler, Hannah; Maes, Leen; Philips, Birgit; Swinnen, Freya; Vinck, Bart

    2009-03-01

    The microphone in real ear (MIRE) protocol allows the assessment of hearing protector's (HPD) attenuation in situ by measuring the difference between the sound pressure outside and inside the ear canal behind the HPD. Custom-made earplugs have been designed with an inner bore to insert the MIRE probe containing two microphones, the reference microphone measuring the sound pressure outside and the measurement microphone registering the sound pressure behind the HPD. Previous research on a head and torso simulator reveals a distinct difference, henceforth called transfer function, between the sound pressure at the MIRE measurement microphone and the sound pressure of interest at the eardrum. In the current study, similar measurements are carried out on humans with an extra microphone to measure the sound pressure at the eardrum. The resulting transfer functions confirm the global frequency dependency found earlier, but also show substantial variability between the ears with respect to the exact frequency and amplitude of the transfer functions' extrema. In addition, finite-difference time-domain numerical models of an ear canal with earplug are developed for each individual ear by including its specific geometrical parameters. This approach leads to a good resemblance between the simulations and their corresponding measurements.

  3. Computational spherical astronomy

    Science.gov (United States)

    Taff, Laurence G.

    The subject of the considered volume is the applied mathematics of spherical astronomy. The book is intended to aid those scientists and engineers, not trained in astrometry, to rapidly master the computational aspects of positional astronomy. Celestial coordinate systems are considered, taking into account the celestial sphere, the horizon system, the equatorial systems, the ecliptic system, the rotational transformations of celestial coordinates, position angle and distance, and special star positions. Other subjects discussed are related to general precession and proper motion, the parallax, the computation of the topocentric place, time systems, photographic astrometry, celestial mechanics, and astronomical catalogs. Attention is given to the power series method for the combined effects of general precession and proper motion, atomic time, the gravitational force, perturbation theory, solar system objects, stars, nonstellar objects, and the linear plate model.

  4. From astronomy to Nature Astronomy

    Science.gov (United States)

    Woods, Paul

    2018-01-01

    Leaving academia was hard, but becoming an editor for Nature Astronomy has been an unexpected delight. That is not to say it is a bed of roses; rather it is the variety and complexity of the challenges of the job that make it so enjoyable.

  5. Astronomy in Primary and Secondary Education in Slovenia

    Science.gov (United States)

    Gomboc, Andreja

    2015-08-01

    I will present the status of astronomy in educational system in Slovenia. In primary schools astronomy is offered as an optional course in the last 3 grades (12-15 yrs old), while in secondary schools a few astronomical topics are present only as part of other subjects (e.g. physics, geography). I will describe a pilot project of an astronomy course in secondary schools, which was carried out in the school year 2013/14. The main focus of my presentation will be the experience gained with organisation of the Slovenian National Astronomy Competition. It is organised by the Slovenian Society of Mathematicians, Physicists and Astronomers since 2009, building on an extensive network of over 200 primary and secondary school teachers who participated in IYA2009 activities, and who now represent majority of mentors for the competition. In 2013, only 5 years after the start of competition, our pupils attended the International Olympiad on Astronomy and Astrophysics for the first time and with great success. Supporting activities include the Slovenian version of the Portal to the Universe (www.portalvvesolje.si) and translation of Space Scoop astronomy news for children.

  6. Division x: Radio Astronomy

    NARCIS (Netherlands)

    Taylor, Russ; Chapman, Jessica; Rendong, Nan; Carilli, Christopher; Giovannini, Gabriele; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin; Lazio, Joseph; Morganti, Raffaella; Rubio, Monica; Shastri, Prajval

    This triennium has seen a phenomenal investment in development of observational radio astronomy facilities in all parts of the globe at a scale that significantly impacts the international community. This includes both major enhancements such as the transition from the VLA to the EVLA in North

  7. Music Inspired by Astronomy: A Resource Guide Organized by Topic

    Science.gov (United States)

    Fraknoi, Andrew

    2012-01-01

    This annotated resource guide presents 133 pieces of music inspired by astronomical ideas, discoveries, or history, organized in 22 subject categories. Both classical and popular music are included, but only when a clear connection to astronomy could be established. Depending on your musical tastes, you are likely to find some pieces resonating…

  8. Skylab experiments. Volume 1: Physical science, solar astronomy

    Science.gov (United States)

    1973-01-01

    The basic subject of this volume is the solar astronomy program conducted on Skylab. In addition to descriptions of the individual experiments and the principles involved in their performance, a brief description is included of the sun and the energy characteristics associated with each zone. Wherever possible, related classroom activities have been identified and discussed in some detail. It will be apparent that the relationships rest not only in the field of solar astronomy, but also in the following subjects: (1) physics - optics, electromagnetic spectrum, atomic structure, etc.; (2) chemistry - emission spectra, kinetic theory, X-ray absorption, etc.; (3) biology - radiation and dependence on the sun; (4) electronics - cathode ray tubes, detectors, photomultipliers, etc.; (5) photography; (6) astronomy; and (7) industrial arts.

  9. Spreading Astronomy Education Through Africa

    Science.gov (United States)

    Baki, P.

    2006-08-01

    Although Astronomy has been an important vehicle for effectively passing a wide range of scientific knowledge, teaching the basic skills of scientific reasoning, and for communicating the excitement of science to the public, its inclusion in the teaching curricula of most institutions of higher learning in Africa is rare. This is partly due to the fact that astronomy appears to be only good at fascinating people but not providing paid jobs. It is also due to the lack of trained instructors, teaching materials, and a clear vision of the role of astronomy and basic space science within the broader context of education in the physical and applied sciences. In this paper we survey some of the problems bedeviling the spread of astronomy in Africa and discuss some interdisciplinary traditional weather indicators. These indicators have been used over the years to monitor the appearance of constellations. For example, orions are closely intertwined with cultures of some ethnic African societies and could be incorporated in the standard astronomy curriculum as away of making the subject more `home grown' and to be able to reach out to the wider populace in popularizing astronomy and basic sciences. We also discuss some of the other measures that ought to be taken to effectively create an enabling environment for sustainable teaching and spread of astronomy through Africa.

  10. Chaco astronomies

    Science.gov (United States)

    Martín López, Alejandro

    2015-08-01

    This presentation discusses the result of 18 years of ethnographic and ethnohistorical studies on Chaco astronomies. The main features of the systems of astronomical knowledge of the Chaco Aboriginal groups will be discussed. In particular we will discuss the relevance of the Milky Way, the role of the visibility of the Pleiades, the ways in which the celestial space is represented, the constitution of astronomical orientations in geographic space, etc. We also address a key feature of their vision of the cosmos: the universe is seen by these groups as a socio-cosmos, where humans and non-humans are related. These are therefore actually socio-cosmologies. We will link this to the theories of Chaco Aboriginal groups about power and political relations.We will discuss how the study of Aboriginal astronomies must be performed along with the studies about astronomies of Creole people and European migrants, as well as anthropological studies about the science teaching in the formal education system and by the mass media. In this form we will discuss the relevance of a very complex system of interethnic relations for the conformation of these astronomical representations and practices.We will also discuss the general methodological implications of this case for the ethnoastronomy studies. In particular we will talk about the advantages of a study of regional scope and about the key importance of put in contact the ethnoastronomy with contemporary issues in social sciences.We also analyze the importance of ethnoastronomy studies in relation to studies of sociology of science, especially astronomy. We also study the potential impact on improving formal and informal science curricula and in shaping effective policies to protect the tangible and intangible astronomical heritage in a context of respect for the rights of Aboriginal groups.

  11. Strategies for Teaching Astronomy

    Science.gov (United States)

    Bennett, J.

    2000-12-01

    No matter whether you are teaching school children, undergraduates, or colleagues, a few key strategies are always useful. I will present and give examples for the following five key strategies for teaching astronomy. 1. Provide a Contextual Framework: It is much easier to learn new facts or concepts if they can be ``binned" into some kind of pre-existing mental framework. Unless your listeners are already familiar with the basic ideas of modern astronomy (such as the hierarchy of structure in the universe, the scale of the universe, and the origin of the universe), you must provide this before going into the details of how we've developed this modern picture through history. 2. Create Conditions for Conceptual Change: Many people hold misconceptions about astronomical ideas. Therefore we cannot teach them the correct ideas unless we first help them unlearn their prior misconceptions. 3. Make the Material Relevant: It's human nature to be more interested in subjects that seem relevant to our lives. Therefore we must always show students the many connections between astronomy and their personal concerns, such as emphasizing how we are ``star stuff" (in the words of Carl Sagan), how studying other planets helps us understand our own, and so on. 4. Limit Use of Jargon: The number of new terms in many introductory astronomy books is larger than the number of words taught in many first courses in foreign language. This means the books are essentially teaching astronomy in a foreign language, which is a clear recipe for failure. We must find ways to replace jargon with plain language. 5. Challenge Your Students: Don't dumb your teaching down; by and large, students will rise to meet your expectations, as long as you follow the other strategies and practice good teaching.

  12. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  13. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  14. Subjective cognitive complaints included in diagnostic evaluation of dementia helps accurate diagnosis in a mixed memory clinic cohort

    DEFF Research Database (Denmark)

    Salem, L C; Vogel, Asmus Mejling; Ebstrup, J

    2015-01-01

    functions were assessed with the Mini-mental state examination (MMSE) and Addenbrooke's cognitive examination (ACE), and symptoms of depression were rated with Major Depression Inventory (MDI). All interviews and the diagnostic conclusion were blinded to the SMC score. RESULTS: We found that young patients......OBJECTIVE: Our objective was to examine the quantity and profile of subjective cognitive complaints in young patients as compared with elderly patients referred to a memory clinic. METHODS: Patients were consecutively recruited from the Copenhagen University Hospital Memory Clinic at Rigshospitalet....... In total, 307 patients and 149 age-matched healthy controls were included. Patients were classified in 4 diagnostic groups: dementia, mild cognitive impairment, affective disorders and no cognitive impairment. Subjective memory was assessed with subjective memory complaints (SMC) scale. Global cognitive...

  15. Archaeo-Astronomy in Society: Supporting Citizenship in Schools Across Europe

    CERN Document Server

    Brown, D

    2010-01-01

    The interdisciplinary topic of archaeo-astronomy links science subjects such as astronomy with archaeology and sociology to explore how ancient societies perceived the heavens above. This is achieved by analysing ancient sites such as megalithic monuments (e.g. Stonehenge), since they are the most common remains of these societies and are wide spread in Europe. We discuss how archaeo-astronomy and ancient sites can be transversal to many topics in school. The links to the science curricula in different countries are highlighted. However, especially the subject of citizenship can be supported by exploring the diversity of culture, ideas, and identities including the changing nature of society in the past millennia. We conclude that archaeo-astronomy offers many opportunities for citizenship. Learning more about megalithic monuments in different countries (e.g. England, Portugal, and Germany) supports tolerance and understanding. Furthermore, the distribution of these sites lends itself to explore beyond border...

  16. Subjectivity

    Directory of Open Access Journals (Sweden)

    Jesús Vega Encabo

    2015-11-01

    Full Text Available In this paper, I claim that subjectivity is a way of being that is constituted through a set of practices in which the self is subject to the dangers of fictionalizing and plotting her life and self-image. I examine some ways of becoming subject through narratives and through theatrical performance before others. Through these practices, a real and active subjectivity is revealed, capable of self-knowledge and self-transformation. 

  17. Astronomy at school: present situation and future perspectives

    CERN Document Server

    Iglesias, Maria; Gangui, Alejandro

    2008-01-01

    Both the basic educational contents for students and study programs for science teachers include several topics in physics and astronomy, from the simplest ones to others as advanced as nuclear fusion to explain stellar evolution and space-time geometry for an approach to modern cosmology. In all these subjects, and most often in the simplest ones, alternative conceptions emerge, as both groups reach science course with preconstructed and consistent models of the universe surrounding them. In this work we present a series of basic questionings that make us reflect on the present situation of the teaching-learning relationship in astronomy within the framework of formal education. We then briefly explain our project aiming at finding the real learning situation of both students and prospective primary-school teachers in astronomical topics and, from the expected results of it, we point towards the need to develop didactic tools that could contribute to improve formal education in astronomy issues.

  18. No Child Left Behind and High School Astronomy

    Science.gov (United States)

    Krumenaker, Larry

    2009-01-01

    Astronomy was a required subject in the first American secondary level schools, the academies of the 18th century. When these were supplanted a century later by public high schools, astronomy still was often required, subsumed into courses of Natural Philosophy. Reasons given at that time to support astronomy as a part of general education include…

  19. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  20. Torun Radio Astronomy Observatory

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  1. Freshman Seminars: Interdisciplinary Engagements in Astronomy

    Science.gov (United States)

    Hemenway, M. K.

    2006-08-01

    The Freshman Seminar program at the University of Texas is designed to allow groups of fifteen students an engaging introduction to the University. The seminars introduce students to the resources of the university and allow them to identify interesting subjects for further research or future careers. An emphasis on oral and written communication by the students provides these first-year students a transition to college-level writing and thinking. Seminar activities include field trips to an art museum, a research library, and the Humanities Research Center rare book collection. This paper will report on two seminars, each fifteen weeks in length. In "The Galileo Scandal" students examine Galileo's struggle with the church (including a mock trial). They perform activities that connect his use of the telescope and observations to astronomical concepts. In "Astronomy and the Humanities" students analyze various forms of human expression that have astronomical connections (art, drama, literature, music, poetry, and science fiction); they perform hands-on activities to reinforce the related astronomy concepts. Evaluation of the seminars indicates student engagement and improvement in communication skills. Many of the activities could be used independently to engage students enrolled in standard introductory astronomy classes.

  2. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2009-01-01

    The recent years have seen breathtaking progress in technology, especially in the receiver and digital technologies relevant for radio astronomy, which has at the same time advanced to shorter wavelengths. This is the updated and completely revised 5th edition of the most used introductory text in radio astronomy. It presents a unified treatment of the entire field from centimeter to sub-millimeter wavelengths. Topics covered include instruments, sensitivity considerations, observational methods and interpretations of the data recorded with both single dishes and interferometers. This text is useful to both students and experienced practicing astronomers. Besides making major updates and additions throughout the book, the authors have re-organized a number of chapters to more clearly separate basic theory from rapidly evolving practical aspects. Further, problem sets have been added at the end of each chapter.

  3. Astronomy Teaching in Europe's Secondary Schools

    Science.gov (United States)

    1994-11-01

    EU/ESO Workshop for European Physics Teachers A joint Workshop of the European Union (EU) and the European Southern Observatory (ESO) will take place on November 25 - 30, 1994 under the auspices of the European Week for Scientific Culture. The Workshop is entitled "Astronomy: Science, Culture and Technology". It will bring together at the ESO Headquarters in Garching (Germany) more than 100 secondary school teachers and ministerial representatives from 17 European countries to discuss all aspects of this broad subject. It is the first and very visible part of a new, sustained effort to stimulate and modernize the teaching of the subjects of Astronomy and Astrophysics in European secondary schools. During the Workshop, the participants will experience the present state of this multi-disciplinary science in its most general context, that is as a human, long-term scientific and technological endeavour with great cultural implications. They will exchange views on how the various elements of Astronomy can best be utilized within the educational schemes of the individual countries, both as subjects in their own rights, and especially in support of many other items on the present teaching agenda. Why This Workshop ? Astronomy is probably the oldest science. Since innumerable millenia, it has continued to have a great influence on mankind's perception of itself and its surroundings. In our days, Astronomy and Astrophysics have become a central area of the natural sciences with many direct links to other sciences (e.g., many aspects of physics, mathematics, chemistry, the geo-sciences, etc.); it has an important cultural content (including our distant origins, the recognition of the location and restricted extent of our niche in space and time, cosmological considerations as well as philosophy in general); its recent successes are to a large amount dependent on advanced technologies and methodologies (e.g., optics, electronics, detector techniques at all wavelengths

  4. Astronomy on a Landfill

    Science.gov (United States)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  5. Binocular astronomy

    CERN Document Server

    Tonkin, Stephen

    2014-01-01

    Binoculars have, for many, long been regarded as an “entry level” observational tool, and relatively few have used them as a serious observing instrument. This is changing! Many people appreciate the relative comfort of two-eyed observing, but those who use binoculars come to realize that they offer more than comfort. The view of the stars is more aesthetically pleasing and therefore binocular observers tend to observe more frequently and for longer periods. Binocular Astronomy, 2nd Edition, extends its coverage of small and medium binoculars to large and giant (i.e., up to 300mm aperture) binoculars and also binoviewers, which brings the work into the realm of serious observing instruments. Additionally, it goes far deeper into the varying optical characteristics of binoculars, giving newcomers and advanced astronomers the information needed to make informed choices on purchasing a pair. It also covers relevant aspects of the physiology of binocular (as in “both eyes”) observation. The first edition ...

  6. First Light Observations from the International Study of Astronomy Reasoning (ISTAR) Database

    Science.gov (United States)

    Tatge, Coty B.; Slater, Stephanie; Slater, Timothy F.; Bretones, Paulo S.; McKinnon, David; Schleigh, Sharon

    2016-01-01

    During the period between Fall 2014 and Summer 2015, the International Astronomical Union reorganized its structure to include the IAU Working Group on Theory and Methods in Astronomy Education. The initial goals of that working group are 1) promoting Astronomy Education Research (AER) by adopting the international collaboration model used by astronomy researchers, 2) fostering international astronomy education and AER capacity through the development of networks, training and shared resources, and 3) improving astronomy education by describing research based approaches to the teaching and learning of astronomy. In support of those efforts, the working group began a collaboration with the Center for Astronomy & Physics Education Research to develop the International Study of Astronomy Reasoning (ISTAR) Database, an online, searchable research tool, intended to catalog, characterize, and provide access to all known astronomy education research production, world-wide. Beginning in the Summer of 2015, a test of ISTAR's functionality began with a survey of a previously uncatalogued set of test objects: U.S.-based doctoral dissertations and masters. This target population was selected for its familiarity to the ISTAR developers, and for its small expected sample size (50-75 objects). First light observations indicated that the sample exceeded 300 dissertation objects. These objects were characterized across multiple variables, including: year of production, document source, type of resource, empirical methodology, context, informal setting type, research construct, type of research subject, scientific content, language, and nation of production. These initial observations provide motivation to extend this project to observe masters levels thesis, which are anticipated to be ten times more numerous as doctoral dissertations, other peer-reviewed contributions, contributions from the larger international community.

  7. Astronomy Teaching Problems in Armenia

    Science.gov (United States)

    Gyulzadyan, M. V.

    2015-07-01

    Astronomy, like any science, constantly develops unlimitedly approaching absolute objective truth; every moment of its accomplishments are due to the level of public welfare demands and culture. Armenia for centuries had a major contributor to the ancient as well as to the modern astronomy development. But it has been already a couple of years that the "Astronomy" course is not present at the schools of Armenia. Despite that fact, several schools put an effort to stress the importance of that subject by extracurricular groups trying to fill that gap. How this work is carried out and what results do we have? What can be done to increase the level of astronomical education as well as for its expansion?

  8. Exploring the history of New Zealand astronomy trials, tribulations, telescopes and transits

    CERN Document Server

    Orchiston, Wayne

    2016-01-01

    Professor Orchiston is a foremost authority on the subject of New Zealand astronomy, and here are the collected papers of his fruitful studies in this area, including both those published many years ago and new material.  The papers herein review traditional Maori astronomy, examine the appearance of nautical astronomy practiced by Cook and his astronomers on their various stopovers in New Zealand during their three voyagers to the South Seas, and also explore notable nineteenth century New Zealand observatories historically, from significant telescopes now located in New Zealand to local and international observations made during the 1874 and 1882 transits of Venus and the nineteenth and twentieth century preoccupation of New Zealand amateur astronomers with comets and meteors. New Zealand astronomy has a truly rich history, extending from the Maori civilization in pre-European times through to the years when explorers and navigators discovered the region, up to pioneering research on the newly emerging fie...

  9. Challenges in Astronomy Education

    Science.gov (United States)

    De Greve, Jean-Pierre

    2010-11-01

    Astronomy is an attractive subject for education. It deals with fascination of the unknown and the unreachable, yet is uses tools, concepts and insights from various fundamental sciences such as mathematics, physics, chemistry, biology. Because of this it can be well used for introducing sciences to young people and to raise their interest in further studies in that direction. It is also an interesting subject for teaching as its different aspects (observation techniques, theory, data sampling and analysis, modelling,?) offer various didactical approaches towards different levels of pupils, students and different backgrounds. And it gives great opportunities to teach and demonstrate the essence of scientific research, through tutorials and projects. In this paper we discuss some of the challenges education in general, and astronomy in particular, faces in the coming decades, given the major geophysical and technological changes that can be deducted from our present knowledge. This defines a general, but very important background in terms of educational needs at various levels, and in geographical distribution of future efforts of the astronomical community. Special emphasis will be given to creative approaches to teaching, to strategies that are successful (such as the use of tutorials with element from computer games), and to initiatives complementary to the regular educational system. The programs developed by the IAU will be briefly highlighted.

  10. Innovation in Astronomy Education

    Science.gov (United States)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  11. Integrating Astronomy with Elementary Non-Science Curricula

    Science.gov (United States)

    Bobrowsky, M.

    1996-05-01

    A workshop was developed for elementary school teachers to enhance students' understanding of astronomy during the formative years of elementary school by incorporating astronomy into various non-science curricula. Educational material was compiled for teachers and students and training was provided for the teachers in the form of a workshop where both information and hands-on activities were disseminated. In addition, we are producing a video tape from the workshop which will be available not only to those who attended the workshop but to other teachers as well. A useful ``multiplier effect" in this project came from our focus on a school that was hosting a group of teachers in training. After these teachers receive certification, they will end up working in all different schools, thereby reaching large numbers of students for many years. The non-scientific subjects that we will connect to astronomy include history, music, art, language arts, social studies, and mathematics, as well as incidental subjects such as health and public safety. Support for this work was provided by NASA through grant number ED90024.01-94A from the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronomy Inc. under NASA Contract NAS5-26555.

  12. Astronomy Education Under Dark Skies

    Science.gov (United States)

    Cecylia Molenda-Zakowicz, Joanna

    2015-08-01

    We have been providing professional support for the high school students and the astronomy teachers since 2007. Our efforts include organizing astronomy events that take from several hours, like, e.g., watching the transit of Venus, to several days, like the workshops organized in the framework of the projects 'School Workshops on Astronomy' (SWA) and 'Wygasz'.The SWA and Wygasz workshops include presentations by experts in astronomy and space science research, presentations prepared by students being supervised by those experts, hands-on interactive experience in the amateur astrophotography, various pencil-and-paper exercises, and other practical activities. We pay particular attention to familiarize the teachers and students with the idea and the necessity of protecting the dark sky. The format of these events allows also for some time for teachers to share ideas and best practices in teaching astronomy.All those activities are organized either in the Izera Dark-Sky Park in Poland or in other carefuly selected locations in which the beauty of the dark night sky can be appreciated.

  13. Insertion of Astronomy as a High School Subject. (Spanish Title: Inserción de Astronomia Como Materia del Ciclo Secundario.) Inserção da Astronomia Como Disciplina Curricular do Ensino Médio

    Science.gov (United States)

    Dias, Claudio André C. M.; Santa Rita, Josué R.

    2008-12-01

    Astronomy is considered among the first sciences that man dominated, however, the basic skills for the construction of knowledge, relatively to the contents "Earth and the Universe" are not being developed properly for the majority of students concluding the high school level. The students are concluding this teaching cycle without proper knowledge of several subjects in the area of Astronomy, which are mandatory in the national Curricular National Parameters (PCN). Because of this discrepancy, this work stresses the need of the incorporation of a specific subject of Astronomy in the high school, in order to reduce the gap between what is taught and which should be taught. La Astronomía es considerada una de las primeras ciencias que el hombre dominó. Sin embargo, las habilidades básicas para la construcción del conocimento, relativo al eje temático "Tierra y Universo", no vienen siendo trabajadas adecuadamente con la mayoría de los alumnos que concluyen el ciclo escolar medio. Los alumnos están concluyendo este nivel de enseñanza sin conocimentos de varios temas en el área de Astronomía, que son obligatorios según los Parámetros Curriculares Nacionales (PCN). En virtud de esta discrepancia, este trabajo enfatiza la necesidad de incorporar una disciplina específica de Astronomía em el ciclo medio, em pro de la reducción de las distorsiones entre lo que es enseñado y lo que se debe enseñar. A Astronomia é considerada uma das primeiras ciências que o homem dominou, porém as competências básicas para a construção do conhecimento, relativo ao eixo temático "Terra e Universo", não vêm sendo trabalhadas a contento com a maioria dos alunos que concluem o ensino médio. Os alunos estão concluindo este nível de ensino sem conhecimento de vários temas na área de Astronomia, que são obrigatórios nos Parâmetros Curriculares Nacionais (PCN). Em virtude desta discrepância, este trabalho vem evidenciar a necessidade da incorporação de uma

  14. Preservice Science Teachers' Beliefs about Astronomy Concepts

    Science.gov (United States)

    Ozkan, Gulbin; Akcay, Hakan

    2016-01-01

    The purpose of this study was to investigate preservice science teachers' conceptual understanding of astronomy concepts. Qualitative research methods were used. The sample consists of 118 preservice science teachers (40 freshmen, 31 sophomores, and 47 juniors). The data were collected with Astronomy Conceptual Questionnaire (ACQ) that includes 13…

  15. The cost of publishing in Danish astronomy

    DEFF Research Database (Denmark)

    Dorch, Bertil F.

    I investigate the cost of publishing in Danish astronomy on a fine scale, including all direct publication costs: The figures show how the annual number of publications with authors from Denmark in astronomy journals increased by a factor approximately four during 15 years (Elsevier’s Scopus...

  16. Successful Innovative Methods in Introducing Astronomy Courses

    Science.gov (United States)

    Chattejee, T. K. C.

    2006-08-01

    Innovating new informative methods to induce interest in students has permitted us to introduce astronomy in several universities and institutes in Mexico. As a prelude, we gave a popular course in the history of astronomy. This was very easy as astronomy seems to be the most ancient of sciences and relating the achievements of the ancient philosophers/scientists was very enlightening. Then we put up an amateur show of the sky every week (subject to climatic conditions for observability). We showed how to take photographs and make telescopic observations. We enlightened the students of the special missions of NASA and took them to museums for space exploration. We gave a popular seminar on "Astrodynamics," highlighting its importance. We gave a series of introductory talks in radio and T.V. Finally we exposed them to electronic circulars, like "Universe Today" and "World Science." The last mentioned strategy had the most electrifying effect. We may not have been successful without it, as the students began to take the matter seriously only after reading numerous electronic circulars. In this respect, these circulars are not only informative about the latest news in astronomy, but highlight the role of astronomy in the modern world. Without it, students seem to relate astronomy to astrology; it is due to this misconception that they are not attracted to astronomy. Students were hardly convinced of the need for an astronomy course, as they did not know about the scope and development of the subject. This awakened the interests of students and they themselves proposed the initiation of an elementary course in astronomy to have a feel of the subject. Later on they proposed a course on "Rocket Dynamics." We will discuss our methods and their impact in detail.

  17. Music and Astronomy Under the Stars 2009

    Science.gov (United States)

    Lubowich, D.

    2010-08-01

    Bring telescopes to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded astronomy outreach program at community parks during and after music concerts and outdoor family events—such as a Halloween Stars-Spooky Garden Walk. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience: music lovers who are attending summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500-16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience (Nassau and Suffolk Counties, New York) is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where over 5000 people participated in astronomy activities. The Amateur Observers' Society of New York assisted with the NY concerts and the Springfield STARS astronomy club assisted at Tanglewood. In 2009 over 15,000 people participated in astronomy

  18. StarTeach Astronomy Education: Building a Comprehensive Educational Outreach Program for K-12 Students

    Science.gov (United States)

    Welser, L. A.; Bennum, D. H.

    2000-12-01

    The StarTeach project is a unique tool designed to generate excitement and enthusiasm about astronomy for elementary, middle, and high school students. The program was created out of the realization that astronomy is a subject with the potential to introduce children to many other branches of science, such as physics, chemistry, and geology. The development of StarTeach involves three main phases. First, CCD images of various astronomical objects, such as planets, nebulae, and galaxies, were taken. Next, the StarTeach web site (http://www.physics.unr.edu/grad/welser/astro) was created to present the CCD images. Features include pages on the solar system, deep sky, and the universe, which are complemented by Hubble and NASA photographs. Also included are a set of on-line quizzes about astronomy and links to astronomy education sites on the web. The final part of the StarTeach program involves presenting the material to third and eighth grade classes using power point slide shows and the StarTeach web site. The main goals of the StarTeach project are to strengthen the astronomy curriculum at local Reno schools, to facilitate an interactive scientific learning environment where students can expand and test their knowledge of science, and to generate enthusiasm for astronomy and science in general. This work was partially funded by a DOE EPSCoR University of Nevada, Reno Undergraduate Research Grant.

  19. Astronomy and Politics

    Science.gov (United States)

    Steele, John M.

    The relationship between astronomy and politics is a complex but important part of understanding the practice of astronomy throughout history. This chapter explores some of the ways that astronomy, astrology, and politics have interacted, placing particular focus on the way that astronomy and astrology have been used for political purposes by both people in power and people who wish to influence a ruler's policy. Also discussed are the effects that politics has had on the development of astronomy and, in particular, upon the recording and preservation of astronomical knowledge.

  20. Getting started in radio astronomy beginner projects for the amateur

    CERN Document Server

    Arnold, Steven

    2013-01-01

    Radio astronomy is a mystery to the majority of amateur astronomers, yet it is the best subject to turn to when desirous of an expanded knowledge of the sky. This guide intends to instruct complete newcomers to radio astronomy, and provides help for the first steps on the road towards the study of this fascinating subject. In addition to a history of the science behind the pursuit, directions are included for four easy-to-build projects, based around long-term NASA and Stanford Solar Center projects. The first three projects constitute self-contained units available as kits, so there is no nee

  1. Ancient Chinese Astronomy - An Overview

    Science.gov (United States)

    Shi, Yunli

    Documentary and archaeological evidence testifies the early origin and continuous development of ancient Chinese astronomy to meet both the ideological and practical needs of a society largely based on agriculture. There was a long period when the beginning of the year, month, and season was determined by direct observation of celestial phenomena, including their alignments with respect to the local skyline. As the need for more exact study arose, new instruments for more exact observation were invented and the system of calendrical astronomy became entirely mathematized.

  2. Astronomy, space science and geopolitics

    Science.gov (United States)

    Courvoisier, Thierry J.-L.

    2011-06-01

    Astronomy has played a major part in the development of civilisations, not only through conceptual developments, but most importantly through the very practical gains obtained through the observation of Sun, Moon planets and stars. Space sciences, including astronomy, have also played a major rôle in the development of modern societies, as an engine for most subsequent space technology developments. Present trends tend to decrease the rôle of science in space development. This trend should be reversed to give modern ``societies'' their independence in space-related matters that permeate the lives of all inhabitants of the Earth.

  3. Applied Historical Astronomy

    Science.gov (United States)

    Stephenson, F. Richard

    2014-01-01

    F. Richard Stephenson has spent most of his research career -- spanning more than 45 years -- studying various aspects of Applied Historical Astronomy. The aim of this interdisciplinary subject is the application of historical astronomical records to the investigation of problems in modern astronomy and geophysics. Stephenson has almost exclusively concentrated on pre-telescopic records, especially those preserved from ancient and medieval times -- the earliest reliable observations dating from around 700 BC. The records which have mainly interested him are of eclipses (both solar and lunar), supernovae, sunspots and aurorae, and Halley's Comet. The main sources of early astronomical data are fourfold: records from ancient and medieval East Asia (China, together with Korea and Japan); ancient Babylon; ancient and medieval Europe; and the medieval Arab world. A feature of Stephenson's research is the direct consultation of early astronomical texts in their original language -- either working unaided or with the help of colleagues. He has also developed a variety of techniques to help interpret the various observations. Most pre-telescopic observations are very crude by present-day standards. In addition, early motives for skywatching were more often astrological rather than scientific. Despite these drawbacks, ancient and medieval astronomical records have two remarkable advantages over modern data. Firstly, they can enable the investigation of long-term trends (e.g. in the terrestrial rate of rotation), which in the relatively short period covered by telescopic observations are obscured by short-term fluctuations. Secondly, over the lengthy time-scale which they cover, significant numbers of very rare events (such as Galactic supernovae) were reported, which have few -- if any-- counterparts in the telescopic record. In his various researches, Stephenson has mainly focused his attention on two specific topics. These are: (i) long-term changes in the Earth's rate of

  4. Astronomy all the time for everybody

    Science.gov (United States)

    Grigore, Valentin

    2015-08-01

    General contextCommunicating astronomy with the public must be done all year and with all community members using all the available methods to promote the all aspects of astronomy: education, science, research, new technologies, dark-sky protection, astrophotography, mythology, astropoetry, astro arts and music.An annual calendarTwo aspect must be taken in consideration when create a calendar of activity:- astronomical events (eclipses, meteor showers, comets, etc.)- international and local astronomical events: Global Astronomy Months, Astronomy Day, Globe at Night, ISAN, public activitiesCommunicating astronomy with the whole communityA description of the experience of the author organizing over 500 events in 30 years of activity including all the community members: general public, students, teachers, artists, authorities, people with disabilities, minor and adult prisoners, etc.An experience of seven years as TV producer of the astronomy TV show “Ùs and the Sky” is presented.Promotion of the activityThe relation with the mass-media is an important aspect communicating astronomy with the public.Mass-media between rating and correct information of the public.The role of the cooperation with the community in astronomy projectsA successful model: EURONEAR project

  5. Service Learning in Introductory Astronomy

    Science.gov (United States)

    Orleski, Michael

    2013-01-01

    Service learning is a method of instruction where the students in a course use the course's content in a service project. The service is included as a portion of the students' course grades. During the fall semester 2010, service learning was incorporated into the Introduction to Astronomy course at Misericordia University. The class had eight…

  6. Armenian Archaeoastronomy and Astronomy in Culture

    Science.gov (United States)

    Mickaelian, Areg M.; Farmanyan, Sona V.

    2016-12-01

    A review is given on archaeoastronomy in Armenia and astronomical knowledge reflected in the Armenian culture. Astronomy in Armenia was popular since ancient times and Armenia is rich in its astronomical heritage, such as the names of the constellations, ancient observatories, Armenian rock art (numerous petroglyphs of astronomical content), ancient and medieval Armenian calendars, astronomical terms and names used in Armenian language since II-I millennia B.C., records of astronomical events by ancient Armenians (e.g. Halley's comet in 87 B.C., supernovae explosion in 1054), the astronomical heritage of the Armenian medieval great thinker Anania Shirakatsi's (612-685), medieval sky maps and astronomical devices by Ghukas (Luca) Vanandetsi (XVII-XVIII centuries) and Mkhitar Sebastatsi (1676-1749), etc. For systemization and further regular studies, we have created a webpage devoted to Armenian archaeoastronomical matters at Armenian Astronomical Society (ArAS) website. Issues on astronomy in culture include astronomy in ancient Armenian cultures, ethnoastronomy, astronomy in Armenian religion and mythology, astronomy and astrology, astronomy in folklore and poetry, astronomy in arts, astrolinguistics and astroheraldry. A similar webpage for Astronomy in Armenian Culture is being created at ArAS website and a permanent section "Archaeoastronomy and Astronomy in Culture" has been created in ArAS Electronic Newsletter. Several meetings on this topic have been organized in Armenia during 2007-2014, including the archaeoastronomical meetings in 2012 and 2014, and a number of books have been published. Several institutions are related to these studies coordinated by Byurakan Astrophysical Observatory (BAO) and researchers from the fields of astronomy, history, archaeology, literature, linguistics, etc. are involved.

  7. Astronomy. Inspiration. Art

    Science.gov (United States)

    Stanic, N.

    2008-10-01

    This paper speculates how poetry and other kind of arts are tightly related to astronomy. Hence the connection between art and natural sciences in general will be discussed in the frame of ongoing multidisciplinary project `Astronomy. Inspiration. Art' at Public Observatory in Belgrade (started in 2004). This project tends to inspire (better to say `infect') artist with a cosmic themes and fantastic sceneries of the Universe. At the very beginning of the project, Serbian poet and philosopher Laza Lazić (who published 49 books of poetry, stories and novels), as well as writer Gordana Maletić (with 25 published novels for children) were interested to work on The Inspiration by Astronomical Phenomena in Serbian Literature. Five young artists and scientists include their new ideas and new approach to multidisciplinary studies too (Srdjan Djukić, Nenad Jeremić, Olivera Obradović, Romana Vujasinović, Elena Dimoski). Two books that will be presented in details in the frame of this Project, "STARRY CITIES" (http://zavod.co.yu) and "ASTROLIES", don't offer only interesting illustrations, images from the latest astronomical observations and currently accepted cosmological theories -- those books induces, provoking curiosity in a specific and witty way, an adventure and challenge to explore and create.

  8. Engaging Parents and Pupils in Astronomy

    Science.gov (United States)

    Stevenson, Rod

    2016-04-01

    "The British National Space Centre partnership has recognised for some time that Space and Astronomy are particularly attractive subjects for school students and that including these in the science curriculum can have a positive effect on student interest in science. Drivers are that the number of young people studying science and engineering subjects at A-level and beyond is declining; young people should have an understanding of the importance of science and technology to the world around them; and that UK space industry (including technology, engineering, space science, Earth observation science) must renew itself." BRINGING SPACE INTO SCHOOL Professor Martin Barstow, University of Leicester Published by PPARC on behalf of the British National Space Centre Partnership October 2005 "It has become more and more difficult to persuade young people to follow a career in STEM (Science, Technology, Engineering & Mathematics) subjects. Across the EU, the number of graduates in STEM subjects has dropped from 24.3% in 2002 to 22.6% in 2011" (Source EUSTAT) It was Martin Barstow's report in 2005 that started my attempt to interest people in Science and Technology, At Ormiston Victory Academy (OVA) for the past two years, we have embarked on a program to enthuse pupils to study science related subject through the medium of Astronomy. We teach Edexcel GCSE Astronomy to a joint parent and pupil group. They study together and at the end of the course, both take the GCSE examination. The idea is that the pupils see that science is important to their parents and that a very practical facet of science is also fun. Astronomy is a multidisciplinary course bringing together elements of Science, Maths, Technology, Geography and History. It is hoped that the enthusiasm shown by the pupils will spill over into the mainstream subjects including maths. The parents get an idea of the work and level of knowledge required by their children to complete a GCSE level subject. They also report

  9. Should Astronomy Abolish Magnitudes?

    Science.gov (United States)

    Brecher, K.

    2001-12-01

    Astronomy is riddled with a number of anachronistic and counterintuitive practices. Among these are: plotting increasing stellar temperature from right to left in the H-R diagram; giving the distances to remote astronomical objects in parsecs; and reporting the brightness of astronomical objects in magnitudes. Historical accident and observational technique, respectively, are the bases for the first two practices, and they will undoubtedly persist in the future. However, the use of magnitudes is especially egregious when essentially linear optical detectors like CCDs are used for measuring brightness, which are then reported in a logarithmic (base 2.512 deg!) scale. The use of magnitudes has its origin in three historical artifacts: Ptolemy's method of reporting the brightness of stars in the "Almagest"; the 19th century need for a photographic photometry scale; and the 19th century studies by psychophysicists E. H. Weber and G. T. Fechner on the response of the human eye to light. The latter work sought to uncover the relationship between the subjective response of the human eye and brain to the objective brightness of external optical stimuli. The resulting Fechner-Weber law states that this response is logarithmic: that is, that the eye essentially takes the logarithm of the incoming optical signal. However, after more than a century of perceptual studies, most intensively by S. S. Stevens, it is now well established that this relation is not logarithmic. For naked eye detection of stars from the first to sixth magnitudes, it can be reasonably well fit by a power law with index of about 0.3. Therefore, the modern experimental studies undermine the physiological basis for the use of magnitudes in astronomy. Should the historical origins of magnitudes alone be reason enough for their continued use? Probably not, since astronomical magnitudes are based on outdated studies of human perception; make little sense in an era of linear optical detection; and provide a

  10. Astronomy for teachers: A South African Perspective

    Science.gov (United States)

    de Witt, Aletha; West, Marion; Leeuw, Lerothodi; Gouws, Eldrie

    2015-08-01

    South Africa has nominated Astronomy as a “flagship science” and aims to be an international Astronomy hub through projects such as the Square Kilometre Array (SKA) and the South African Large Telescope (SALT). These projects open up career opportunities in maths, science and engineering and therefore offers a very real door for learners to enter into careers in science and technology through Astronomy. However, the Trends in International Mathematics and Science Survey (TIMSS), the Global Competitiveness Report (GCR) and Annual National Assessment (ANA) have highlighted that South Africa’s Science and Mathematics education is in a critical condition and that South African learners score amongst the worst in the world in both these subjects. In South Africa Astronomy is generally regarded as the worst taught and most avoided Natural Science knowledge strand, and most teachers that specialised in Natural Sciences, never covered Astronomy in their training.In order to address these issues a collaborative project between the University of South Africa (UNISA) and the Hartebeesthoek Radio Astronomy Observatory (HartRAO) was initiated, which aims to assist teachers to gain more knowledge and skills so that they can teach Astronomy with confidence. By collaborating we aim to ensure that the level of astronomy development will be raised in both South Africa and the rest of Africa.With the focus on Teaching and Learning, the research was conducted within a quantitative paradigm and 600 structured questionnaires were administered to Natural Science teachers in Public primary schools in Gauteng, South Africa. This paper reports the findings of this research and makes recommendations on how to assist teachers to teach Astronomy with confidence.

  11. The Unified Astronomy Thesaurus

    OpenAIRE

    Accomazzi, Alberto; Gray, Norman; Erdmann, Chris; Biemesderfer, Chris; Frey, Katie; Soles, Justin

    2014-01-01

    The Unified Astronomy Thesaurus (UAT) is an open, interoperable and community-supported thesaurus which unifies the existing divergent and isolated Astronomy & Astrophysics vocabularies into a single high-quality, freely-available open thesaurus formalizing astronomical concepts and their inter-relationships. The UAT builds upon the existing IAU Thesaurus with major contributions from the astronomy portions of the thesauri developed by the Institute of Physics Publishing, the American Institu...

  12. Space and astronomy

    CERN Document Server

    Kirkland, Kyle

    2010-01-01

    Some daring explorers like to study distant frontiers by venturing out into them, but others prefer to study them by bringing them, or representative samples, a little closer to the lab. Both options are pursued in the fields of space and astronomy. Space exploration and astronomy are intricately linked and are examined in-depth in this guide. Dedicated to the scientists who explore the frontiers of space and astronomy-and the results of their unfamiliar findings-each chapter in Space and Astronomy explores one of the frontiers of this science. The development of technology, such as rocket pro

  13. Comorbid subjective health complaints in patients with sciatica: a prospective study including comparison with the general population.

    Science.gov (United States)

    Grøvle, Lars; Haugen, Anne J; Ihlebaek, Camilla M; Keller, Anne; Natvig, Bård; Brox, Jens I; Grotle, Margreth

    2011-06-01

    Chronic nonspecific low back pain is accompanied by high rates of comorbid mental and physical conditions. The aims of this study were to investigate if patients with specific back pain, that is, sciatica caused by lumbar herniation, report higher rates of subjective health complaints (SHCs) than the general population and if there is an association between change in sciatica symptoms and change in SHCs over a 12-month period. A multicenter cohort study of 466 sciatica patients was conducted with follow-up at 3 months and 1 year. Comorbid SHCs were measured by 27 items of the SHC inventory. Odds ratios (ORs) for each SHC were calculated with comparison to a general population sample (n=928) by logistic regression. The SHC number was calculated by summing all complaints present. At baseline, the ORs for reporting SHCs for the sciatica patients were significantly elevated in 15 of the 27 items with a mean (S.D.) SHC number of 7.5 (4.4), compared to 5.2 (4.4) in the general population (Psciatica, the SHC number was reduced to normal levels. Among those with persisting or worsening sciatica, the number increased to a level almost double that of the general population. Compared to the general population, the prevalence of subjective health complaints in sciatica is increased. During follow-up, the number of health complaints increased in patients with persisting or worsening sciatica. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Initial Teacher Training Science Nature and Mathematics and the Teaching of Astronomy

    Science.gov (United States)

    Macedo, Josué Antunes de

    2014-11-01

    Although Astronomy is part of the National Curriculum Parameters, it is rarely taught adequately in basic education. In this regard, this research has been developed aiming to investigate contributions to the use of traditional resources combined with digital technologies, in order to create autonomy for future teachers of Natural Sciences and Mathematics in relation to themes in Astronomy. The following steps were taken: i) analysis of educational pedagogical projects (EPP) from licentiate courses at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (FINMG); ii) analysis of students' preconceptions on Astronomy and digital technologies; iii) elaboration of the course and application, developed under the education modality of blended learning, using the teaching proposal of methological pluralism; iv) application and analysis of the final questionnaire. The research subjects were constituted by thirty-two students of Physics, Mathematics and Biological Sciences courses. A mixed methodology with a pre-experimental delineation, combined with content analysis, has been used. The results showed the following: at the IFNMG, only the licentiate course in physics includes Astronomy content in several curriculum subjects; students´ rates of previous knowledge of Astronomy are low, and there are indications of meaningful learning of concepts related to Astronomy. This research sought to contribute to initial teacher training, particularly in relation to Astronomy teaching, proposing new alternatives to promote the teaching of this knowledge area. Furthermore, the intention was to respond to requests of institutions for implementation of blended learning or distance courses, since during the survey it was verified that, although discussions in forums are important, there is a need for such courses to promote on-site meetings conducting practical and manipulative activities.

  15. Indigenous Astronomies and Progress in Modern Astronomy

    CERN Document Server

    Ruggles, Clive

    2010-01-01

    From an anthropological point of view, the whole concept of a "path of progress" in astronomical discovery is anathema, since it implicitly downgrades other cultural perspectives, such as the many "indigenous cosmologies" that still exist in the modern world. By doing so, one risks provoking those who hold them and-as is most obvious in places such as Hawaii where the two "world-views" come into direct contact-reating avoidable resistance to that very progress. The problem is complicated by the existence of "fringe" and "new-age" views that are increasingly confused with, and even passed off as, indigenous perceptions. In a modern world where widespread public perceptions include many that are unscientific in the broadest sense of the term, I shall argue that there are actually a range of positive benefits for progress in scientific astronomy to be derived from the mutual awareness and comprehension of "genuine" cultural world-views whose goals-in common with those of modern science-are to make sense of the c...

  16. The history of the International Astronomy Olympiad

    Science.gov (United States)

    Gavrilov, Michael G.; Salnikov, Igor V.; Vaesterberg, Anders R.

    2011-06-01

    The International Astronomy Olympiad (IAO) was founded in the 1990s as an annual scientific educating event for students of the junior high school classes. Starting from 4 teams at the 1st event in 1996 the Olympiad includes more than 20 countries nowadays. The style of the problems of IAO is aimed at developing the imagination, creativity and independent thinking. They stimulate the students to recognize the problem independently, to choose a model, to make necessary suppositions, estimations, to conduct multiway calculations or logic operations. The Asian-Pacific Astronomy Olympiad was founded as a ``daughter'' (``affiliated'') olympiad in system of the International Astronomy Olympiad in 2005.

  17. PARTNeR: A Tool for Outreach and Teaching Astronomy

    Science.gov (United States)

    Gallego, Juan Ángel Vaquerizo; Fuertes, Carmen Blasco

    PARTNeR is an acronym for Proyecto Académico con el Radio Telescopio de NASA en Robledo (Academic Project with the NASA Radio Telescope at Robledo). It is intended for general Astronomy outreach and, in particular, radioastronomy, throughout Spanish educational centres. To satisfy this target, a new educational material has been developed in 2007 to help not only teachers but also students. This material supports cross curricular programs and provides with the possibility of including Astronomy in related subjects like Physics, Chemistry, Technology, Mathematics or even English language. In this paper, the material that has been developed will be shown in detail and how it can be adapted to the disciplines from 4th year ESO (Enseñanza Secundaria Obligatoria-Compulsory Secondary Education) to High School. The pedagogic results obtained for the first year it has been implemented with students in classrooms will also be presented.

  18. Astronomy for older eyes a guide for aging backyard astronomers

    CERN Document Server

    Chen, James L

    2017-01-01

    This book is for the aging amateur astronomy population, including newcomers to astronomy in their retirement and hobbyists who loved peering through a telescope as a child. Whether a novice or an experienced observer, the practice of astronomy differs over the years. This guide will extend the enjoyment of astronomy well into the Golden Years by addressing topics such as eye and overall health issues, recommendations on telescope equipment, and astronomy-related social activities especially suited for seniors. Many Baby-Boomers reaching retirement age are seeking new activities, and amateur astronomy is a perfect fit as a leisure time activity. Established backyard astronomers who began their love of astronomy in their youth , meanwhile, may face many physical and mental challenges in continuing their lifelong hobby as they age beyond their 55th birthdays. That perfect telescope purchased when they were thirty years old now suddenly at sixty years old feels like an immovable object in the living room. The 20...

  19. Handbook of pulsar astronomy

    CERN Document Server

    Lorimer, Duncan

    2005-01-01

    Radio pulsars are rapidly rotating highly magnetized neutron stars. Studies of these fascinating objects have provided applications in solid-state physics, general relativity, galactic astronomy, astrometry, planetary physics and even cosmology. Most of these applications and much of what we know about neutron stars are derived from single-dish radio observations using state-of-the-art receivers and data acquisition systems. This comprehensive 2004 book is a unique resource that brings together the key observational techniques, background information and a review of results, including the discovery of a double pulsar system. Useful software tools are provided which can be used to analyse example data, made available on a related website. This work will be of great value not only to graduate students but also to researchers wishing to carry out and interpret a wide variety of radio pulsar observations.

  20. Music and Astronomy Under the Stars

    Science.gov (United States)

    Lubowich, D.

    2008-11-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a public astronomy outreach program at community parks during and after free summer music concerts and outdoor movie nights. This project also includes daytime activities because there are some afternoon concerts and daylight children's concerts, and observations using remotely operated telescopes in cloudy weather. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience---music lovers who are attending free summer concerts held in community parks. The music lovers who may never have visited a science museum, planetarium, or star party will be exposed to telescope observations and astronomy information with no additional travel costs. This program will permit the entire community to participate in telescope observations and view astronomical video information to enhance the public appreciation of astronomy. This program will also reach underrepresented and underserved groups (women, minorities, older adults). The population base for the initial target audience (Nassau and Suffolk Counties, New York) is 2,500,000. My partners are the Amateur Observers' Society of New York (AOS) and the Towns of Oyster Bay, Hempstead, North Hempstead, and Huntington. Music and Astronomy Under the Stars is program that should continue beyond the International Year of Astronomy 2009 (IYA2009) and can be expanded into a national program.

  1. Biographical Index of Astronomy

    Science.gov (United States)

    Brüggenthies, Wilhelm; Dick, Wolfgang R.

    This inventory lists for more than 16,000 astronomers and other persons with relation to astronomy their dates of life and biographical resources (books, papers, encyclopedic entries, obituaries, etc.). Besides professional and amateur astronomers, the index contains numerous mathematicians, physicists, geodesists, geologists, geophysicists, meteorologists, globe and instrument makers, pioneers of space flight, patrons of astronomy, and others.

  2. Rubric Sorting Astronomy Essays

    Science.gov (United States)

    Len, P. M.

    2014-07-01

    Student essays on introductory astronomy exams can be consistently and efficiently graded by a single instructor, or by multiple graders for a large class. This is done by constructing a robust outcome rubric while sorting exams into separate stacks, then checking each stack for consistency. Certain online resources readily provide primary source prompts for writing astronomy exam essay questions.

  3. Astronomy and astrophysics

    National Research Council Canada - National Science Library

    National Research Council Staff

    1988-01-01

    ... for the Decades 1995 to 2015 Astronomy and Astrophysics Task Group on Astronomy and Astrophysics Space Science Board Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, author...

  4. High energy particle astronomy.

    Science.gov (United States)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  5. Interdisciplinary Approaches to Astronomy: Cosmic Fiction, Drama and Poetry

    Science.gov (United States)

    Fraknoi, A.

    2015-09-01

    I have spent four decades teaching introductory astronomy to university students whose primary subject of study is not astronomy, as well as developing activities to help the public appreciate astronomical ideas and developments. One of the more effective tools that I have found for capturing the interest of non-scientists has been approaching astronomy through its influence on the humanities. In this article I examine some examples of astronomical inspiration in the humanities, looking at plays, poetry and fiction. A second paper, devoted to music inspired by astronomy, will appear in a future issue of the CAPjournal.

  6. Handbook of Practical Astronomy

    CERN Document Server

    Roth, Günter D

    2009-01-01

    With amateurs, students, and teachers of astronomy in high schools and colleges particularly in mind, the Handbook of Practical Astronomy is an essential source to demonstrate trends and variety of astronomical observations. The book presents the substance of celestial bodies for the amateur observer: the planets, the stars, and the galaxies. The sun is the local link to the other stars, the nexus of cosmic evolution. The solar system is made up by the sun and all the celestial bodies orbit it. This system is of special interest for the observing amateur. The Handbook of Practial Astronomy spans astronomy, education and computing. Like many other fields of science, astronomy has become digitized and data rich in recent years. Besides the references at the end of each chapter, there are the notes in the margins with astronomical news and observing highlights on the web.

  7. Learning Exercises in Astronomy for Elementary Students

    Science.gov (United States)

    Jacoby, Suzanne H.

    1995-12-01

    Astronomers from the Tucson based National Optical Astronomy Observatories and students in grades K-3 at the Satori School are learning from each other about astronomy and science education. This project is partially funded by a NASA IDEA Grant (Initiative to Develop Education through Astronomy). NOAO astronomers are working with the students and teachers over a series of 12 weeks to present basic concepts in planetary and solar astronomy. Each presentation includes a discussion with the astronomers and a hands-on active learning exercise. Topics presented include: The Living Solar System, Impacts and Hazards, Comets, Space Resources, The Natural Sun, The Sun as a Clock, Sunspots and Solar Rotation, and Solar Music - Helioseismology. Lessons learned, by students and astronomers, will be presented and printed lesson modules available for distribution.

  8. Importance to include the term superficial musculoaponeurotic system in medical subject headings and in the international anatomical nomenclature.

    Science.gov (United States)

    Ferreira, Lydia Massako; Locali, Rafael Fagionato; Lapin, Guilherme Abbud Franco; Hochman, Bernardo

    2011-06-01

    To investigate the relevance of the term superficial musculoaponeurotic system (SMAS) and demonstrate that this term is important enough to be added to the MeSH database and listed in International Anatomical Nomenclature. Terms related to SMAS were selected from original articles retrieved from the ISI Web of Science and MEDLINE (PubMed) databases. Groups of terms were created to define a search strategy with high-sensitivity and restricted to scientific periodicals devoted to plastic surgery. This study included articles between January 1996 and May 2009, whose titles, abstracts, and keywords were searched for SMAS-related terms and all occurrences were recorded. A total of 126 original articles were retrieved from the main periodicals related to plastic surgery in the referred databases. Of these articles, 51.6% had SMAS-related terms in the abstract only, and 25.4% had SMAS-related terms in both the title and abstract. The term 'superficial musculoaponeurotic system' was present as a keyword in 19.8% of the articles. The most frequent terms were 'SMAS' (71.4%) and superficial musculoaponeurotic system (62.7%). The term SMAS refers to a structure relevant enough to start a discussion about indexing it as a keyword and as an official term in Terminologia Anatomica: International Anatomical Terminology.

  9. UC Berkeley's Celebration of the International Year of Astronomy 2009

    Science.gov (United States)

    Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.

    2010-08-01

    We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.

  10. LGBT Workplace Climate in Astronomy

    Science.gov (United States)

    Gaudi, B. S.; Danner, R.; Dixon, W. V.; Henderson, C. B.; Kay, L. E.

    2013-01-01

    The AAS Working Group on LGBTIQ Equality (WGLE) held a town hall meeting at the 220th AAS meeting in Anchorage to explore the workplace climate for LGBTIQ individuals working in Astronomy and related fields. Topics of discussion included anti-discrimination practices, general workplace climate, and pay and benefit policies. Four employment sectors were represented: industry, the federal government, private colleges, and public universities. We will summarize and expand on the town hall discussions and findings of the panel members.

  11. Teaching Astronomy with Technology

    Science.gov (United States)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Students today are expected to have access to computers and the Internet. Students young and old, in school and out of school, are interested in learning about astronomy, and have computers to use for this. Teach Astronomy is a website with a comprehensive digital astronomy textbook freely available to students and educators. In addition to the textbook, there are astronomy Wikipedia articles, image archives from Astronomy Picture of the Day and AstroPix, and video lectures covering all topics of astronomy. Teach Astronomy has a unique search tool called the wikimap that can be used to search through all of the resources on the site. Astronomy: State of the Art (ASOTA) is a massive, open, online course (MOOC). Over 18,000 students have enrolled over the past year and half. This MOOC has been presented in various forms. First, only to students on the web, with content released weekly on host site Udemy. Then to university students who met formally in the classroom for educational activities, but were also expected to watch lectures online on their own time. Presently, it is available online for students to go at their own pace. In the future it will be available in an extended format on a new host site, Coursera. ASOTA instructors use social media to interact with students. Students ask questions via the course host site, Udemy. Live question and answer sessions are conducted using Google Hangouts on Air, and interesting and relevant astronomy news, or supplementary educational content is shared via the ASOTA Facebook page. Teaching on the Internet may seem impersonal and impractical, but by learning to use all of these tools, instructors have the ability to interact with students, and keep them engaged.

  12. Teaching Astronomy And The Crisis In Science Education

    Science.gov (United States)

    Lomb, N. R.; Stevenson, T. M.; Anderson, M. W. B.; Wyatt, G. G.

    2006-08-01

    In Australia as in many other countries the fraction of high school students voluntarily choosing to study the core sciences such as physics and chemistry has dropped in recent decades. There seems to be a number of reasons for this worrying trend including the perception that they are difficult subjects that lack relevance to the lives of the students. Family influence to choose courses that are believed to be more likely to lead to highly paid careers is also a major factor. Astronomy has a broad public appeal and escapes much of the negative feelings associated with most other scientific fields. Anecdotally and logically this allows astronomy to be used as a tool to stimulate students' scientific interest. While this is most evident at college level in the USA and at Australian universities, informal education centres can play an important role. Investment in public facilities and the provision of resources for astronomy outreach can be highly beneficial by engaging the imagination of the public. We will discuss activities offered at Sydney Observatory where public attendances have more than doubled in the last decade. These include a regular schools program and preliminary results from a survey of teachers' experiences and attitudes to their class visit will be given.

  13. Astronomy and culture

    CERN Document Server

    Hetherington, Edith

    2009-01-01

    While astronomy is a burgeoning science, with tremendous increases in knowledge every year, it also has a tremendous past, one that has altered humanity's understanding of our place in the universe. The impact of astronomy on culture - whether through myths and stories, or through challenges to the intellectual status quo - is incalculable. This volume in the Greenwood Guides to the Universe series examines how human cultures, in all regions and time periods, have tried to make sense of the wonders of the universe. Astronomy and Culture shows students how people throughout time have struggled

  14. Multimedia Astronomy Communication: Effectively Communicate Astronomy to the Desired Audience

    Science.gov (United States)

    Star Cartier, Kimberly Michelle; Wright, Jason

    2017-01-01

    A fundamental aspect of our jobs as scientists is communicating our work to others. In this, the field of astronomy holds the double-edged sword of ubiquitous fascination: the topic has been of interest to nearly the entire global population at some point in their lives, yet the learning curve is steep within any subfield and rife with difficult-to-synthesize details. Compounding this issue is the ever-expanding array of methods to reach people in today's Communications Era. Each communication medium has its own strengths and weaknesses, is appropriate in different situations, and requires its own specific skillset in order to maximize its functionality. Despite this, little attention is given to training astronomers in effective communication techniques, often relying on newcomers to simply pick up the ability by mimicking others and assuming that a firm grasp on the subject matter will make up for deficiencies in communication theory. This can restrict astronomers to a narrow set of communication methods, harming both the communicators and the audience who may struggle to access the information through those media.Whether writing a research paper to academic peers or giving an astronomy talk to a pubic audience, successfully communicating a scientific message requires more than just an expert grasp on the topic. A communicator must understand the makeup and prior knowledge of the desired audience, be able to break down the salient points of the topic into pieces that audience can digest, select and maximize upon a medium to deliver the message, and frame the message in a way that hooks the audience and compels further interest. In this work we synthesize the requirements of effective astronomy communication into a few key questions that every communicator needs to answer. We then discuss some of the most common media currently used to communicate astronomy, give both effective and poor examples of utilizing these media to communicate astronomy, and provide key

  15. Tangible Things of American Astronomy

    Science.gov (United States)

    Schechner, Sara Jane

    2018-01-01

    As a science that studies celestial objects situated at vast distances from us, astronomy deals with few things that can be touched directly. And yet, astronomy has many tangible things—scientific instruments, observatories, and log books, for example—which link the past to the present. There is little question about maintaining things still valuable for scientific research purposes, but why should we care about documenting and preserving the old and obsolete? One answer is that material things, when closely examined, enhance our knowledge of astronomy’s history in ways that written texts alone cannot do. A second answer is that learning about the past helps us live critically in the present. In brief case studies, this talk will find meaning in objects that are extraordinary or commonplace. These will include a sundial, an almanac, telescopes, clocks, a rotating desk, photographic plates, and fly spankers.

  16. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  17. Astronomy, Astrology, and Medicine

    Science.gov (United States)

    Greenbaum, Dorian Gieseler

    Astronomy and astrology were combined with medicine for thousands of years. Beginning in Mesopotamia in the second millennium BCE and continuing into the eighteenth century, medical practitioners used astronomy/astrology as an important part of diagnosis and prescription. Throughout this time frame, scientists cited the similarities between medicine and astrology, in addition to combining the two in practice. Hippocrates and Galen based medical theories on the relationship between heavenly bodies and human bodies. In an enduring cultural phenomenon, parts of the body as well as diseases were linked to zodiac signs and planets. In Renaissance universities, astronomy and astrology were studied by students of medicine. History records a long tradition of astrologer-physicians. This chapter covers the topic of astronomy, astrology, and medicine from the Old Babylonian period to the Enlightenment.

  18. Gamma Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  19. Astronomy in Mexico

    Science.gov (United States)

    Lee, William H.

    2013-01-01

    Mexican astronomy has a long standing tradition of excellence in research. After a brief review of its history, I outline the current profile of the community, the available infrastructure and participating institutions, and give a glimpse into the future through current projects. The development of astronomy can serve as a powerful lever for science, technological development, education and outreach, as well as for improving the much needed link between basic research and industry development.

  20. Astronomy in Second Life

    Directory of Open Access Journals (Sweden)

    Gauthier, A.

    2007-10-01

    Full Text Available Second Life (SL is a multi-user virtual environment that is not limited to adult social entertainment. SL is also a 3D playground for innovative instructors and education/outreach professionals in the sciences. Astronomy and space science have a presence in SL, but it could be so much more. This paper describes some of the current astronomy themed spaces in SL and briefly discusses future innovations.

  1. Music and Astronomy

    Science.gov (United States)

    Caballero, José A.; González Sánchez, S.; Caballero, I.

    What do Brian May (Queen's lead guitarist), William Herschel and the Jupiter Symphony have in common? And a white dwarf, a piano and Lagartija Nick? At first glance, there is no connection between them, nor between the Music and the Astronomy. However, there are many revealing examples of musical Astronomy and astronomical Music. This four-page proceeding describes the sonorous poster that we showed during the VIII Scientific Meeting of the Spanish Astronomical Society.

  2. Massive Datasets in Astronomy

    OpenAIRE

    Brunner, Robert J.; Djorgovski, S. George; Prince, Thomas A.; Szalay, Alex S.

    2001-01-01

    Astronomy has a long history of acquiring, systematizing, and interpreting large quantities of data. Starting from the earliest sky atlases through the first major photographic sky surveys of the 20th century, this tradition is continuing today, and at an ever increasing rate. Like many other fields, astronomy has become a very data-rich science, driven by the advances in telescope, detector, and computer technology. Numerous large digital sky surveys and archives already exist, with informat...

  3. Integration of the digital technologies in the teaching of astronomy

    Science.gov (United States)

    de Macedo, J. A.; Voelzke, M. R.

    2014-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potential uses of interactive materials in the teaching of astronomy. Despite being part of official documents, proposals included in the curriculum of several states, and having contributed to human and technological development, astronomy is rarely taught adequately in the Brazilian basic education. When it is taught, it is with unsatisfactory results as presented by students and teachers as shown by several studies, such as those carried out by (Voelzke and Gonzaga, 2013). Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to help them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, with its Campus Januária as research locus; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. Among other results, it was verified that: (i) In the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; (ii) the analysis of the initial questionnaire showed even that group

  4. Astronomy Outreach for Large and Unique Audiences

    Science.gov (United States)

    Lubowich, D.; Sparks, R. T.; Pompea, S. M.; Kendall, J. S.; Dugan, C.

    2013-04-01

    In this session, we discuss different approaches to reaching large audiences. In addition to star parties and astronomy events, the audiences for some of the events include music concerts or festivals, sick children and their families, minority communities, American Indian reservations, and tourist sites such as the National Mall. The goal is to bring science directly to the public—to people who attend astronomy events and to people who do not come to star parties, science museums, or science festivals. These programs allow the entire community to participate in astronomy activities to enhance the public appreciation of science. These programs attract large enthusiastic crowds often with young children participating in these family learning experiences. The public will become more informed, educated, and inspired about astronomy and will also be provided with information that will allow them to continue to learn after this outreach activity. Large and unique audiences often have common problems, and their solutions and the lessons learned will be presented. Interaction with the participants in this session will provide important community feedback used to improve astronomy outreach for large and unique audiences. New ways to expand astronomy outreach to new large audiences will be discussed.

  5. Future Professional Communication in Astronomy II

    Science.gov (United States)

    Accomazzi, Alberto

    The present volume gathers together the talks presented at the second colloquium on the Future Professional Communication in Astronomy (FPCAII), held at the Harvard-Smithsonian Center for Astrophysics (Cambridge, MA) on 13-14 April 2010. This meeting provided a forum for editors, publishers, scientists, librarians and officers of learned societies to discuss the future of the field. The program included talks from leading researchers and practitioners and drew a crowd of approximately 50 attendees from 10 countries. These proceedings contain contributions from invited and contributed talks from leaders in the field, touching on a number of topics. Among them: The role of disciplinary repositories such as ADS and arXiv in astronomy and the physical sciences; Current status and future of Open Access Publishing models and their impact on astronomy and astrophysics publishing; Emerging trends in scientific article publishing: semantic annotations, multimedia content, links to data products hosted by astrophysics archives; Novel approaches to the evaluation of facilities and projects based on bibliometric indicators; Impact of Government mandates, Privacy laws, and Intellectual Property Rights on the evolving digital publishing environment in astronomy; Communicating astronomy to the public: the experience of the International Year of Astronomy 2009.

  6. An Introduction to Distance Measurement in Astronomy

    CERN Document Server

    de Grijs, Richard

    2011-01-01

    Distance determination is an essential technique in astronomy, and is briefly covered in most textbooks on astrophysics and cosmology. It is rarely covered as a coherent topic in its own right. When it is discussed the approach is frequently very dry, splitting the teaching into, for example, stars, galaxies and cosmologies, and as a consequence, books lack depth and are rarely comprehensive. Adopting a unique and engaging approach to the subject An Introduction to distance Measurement in Astronomy will take the reader on a journey from the solar neighbourhood to the edge of the Universe, dis

  7. Physics, cosmology and astronomy, 1300 - 1700: tension and accommodation.

    Science.gov (United States)

    Unguru, S.

    The present volume has its origins in a spring 1984 international workshop, held in Tel-Aviv, Israel. It deals with the interrelationships between physics, cosmology and astronomy between 1300 and 1700, with the tensions between the subjects and with the resolution of that tension in the new science which came to supplant medieval philosophy. It also covers the ancient background and includes chapters on Islamic and Jewish contributions, as well as on optics, science and religion, natural philosophy and mathematics, and science and political power.

  8. The Society of Astronomy Students: From the Ground Up

    Science.gov (United States)

    Rees, Shannon; Maldonado, M.; Beasley, D.; Campos, A.; Medina, A.; Chanover, N. J.

    2014-01-01

    The Society of Astronomy Students (SAS) at New Mexico State University (NMSU) was founded in October of 2012 and chartered in January 2013. New Mexico State University is located in Las Cruces, New Mexico, which is a small city with a population of just over 100,000. The main campus at NMSU has an enrollment of approximately 14,300 undergraduate students and 3,375 graduate students. The NMSU Astronomy Department is a vibrant research environment that offers Ph.D. and M.S. Graduate degrees and serves the undergraduate population through a large number of general education courses. Although there is no undergraduate major in Astronomy at NMSU, students can earn an undergraduate Astronomy Minor. The SAS was conceived as a way to provide undergraduates with an interest in astronomy a way to communicate, network, and provide mutual support. Currently, the SAS is in its second year of being a chartered organization and has about 18 active members, about half of whom are planning on pursuing an Astronomy Minor. The SAS is striving to become one of the most active clubs on the NMSU campus in order to raise awareness about Astronomy and encourage the option of pursuing the Astronomy Minor. One of the main focus areas of the SAS is to be involved in both astronomy-related and non-astronomy-related public outreach and community service events. Since the clubs inception, the SAS members have contributed a total of over 120 volunteer hours. We do many outreach events with the elementary and middle schools around the community; these events are done jointly with the Astronomy Graduate Student Organization at NMSU. In the near future, the SAS is also planning a wide range of activities, including a guest speaker series at weekly club meetings, tours of the Apache Point Observatory, full moon outings, and participation in amateur astronomy events such as the Messier Marathon. This presentation will include an overview of the club's history, accomplishments, and future activities.

  9. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  10. Gnuastro: GNU Astronomy Utilities

    Science.gov (United States)

    Akhlaghi, Mohammad

    2018-01-01

    Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.

  11. The lifetime prevalence, health services utilization and risk of suicide of bipolar spectrum subjects, including subthreshold categories in the São Paulo ECA study.

    Science.gov (United States)

    Moreno, Doris Hupfeld; Andrade, Laura Helena

    2005-08-01

    Identifying the bipolar (BP) spectrum, including the classic Bipolar I subtype (BP-I), Bipolar II (BP-II) and subthreshold bipolar disorders not meeting DSM-IV diagnostic criteria has raised growing interest, as these softer expressions of bipolar spectrum have been underdiagnosed in spite of clinical consequences. Data are from the Sao Paulo Epidemiological Catchment Area Study (N=1464). Non-affective controls were compared to BP spectrum groups, based on DSM-IIIR and on the "clinical significance" criteria: Subsyndromal Hypomania (SSH) and Manic Symptoms (MS). The lifetime prevalence of BP subgroups was 8.3% (N=122). All BP-I and -II and around 75% of SSH and MS subjects had a lifetime depressive syndrome. Compared to controls and MS subjects, BP-I, BP-II and SSH groups searched more medical help and mental health services. SSH group displayed higher rates of clinical significance than BP-I subjects, and suicidality was higher in BP groups compared to controls. Even the softer MS group had higher rate of suicide attempts than SSH subjects. This is a cross-sectional study and interviews were conducted by lay personnel. Replication in bigger community samples using a mood spectrum approach is necessary to confirm these findings. However, our findings were very similar to those obtained by other authors. Softer expressions of BP disorders appear in 6.6% of this community sample and have serious clinical consequences, which supports the importance of including these categories in the BP spectrum.

  12. Evaluation of P300 components for emotion-loaded visual event-related potential in elderly subjects, including those with dementia.

    Science.gov (United States)

    Asaumi, Yasue; Morita, Kiichiro; Nakashima, Youko; Muraoka, Akemi; Uchimura, Naohisa

    2014-07-01

    In the present study, the P300 component of the emotion-loaded visual event-related potential in response to photographs of babies crying or smiling was measured to evaluate cognitive function in elderly subjects, including those with dementia. The subjects were 48 elderly people who consulted a memory disorder clinic. The visual event-related potential was measured using oddball tasks. Brain waves were recorded from four sites. We analyzed the P300 amplitude and latency. Subjects were divided into three groups (the dementia with Alzheimer's disease group [ADG]; the intermediate group [MG], and the healthy group [HG]) based on the Revised Hasegawa Dementia Scale, Mini-mental State Examination scores and the Clinical Dementia Rating. For all subjects, there was a significant positive correlation between P300 latency and Z-score of voxel-based specific regional analysis for Alzheimer's disease for crying or smiling faces. There was a negative correlation between P300 amplitude and Z-score for the crying face. MG subjects were divided into two groups (high risk: HRMG, low risk: LRMG) based on Z-scores (HRMG ≥ 2.0). The P300 amplitude of ADG was significantly smaller than that of HG, and the P300 latency of ADG was significantly longer than those of other groups for crying or smiling faces. The P300 latency of HRMG was significantly longer than that of LRMG for the smiling face. Furthermore, the P300 latency for the crying face was significantly shorter than that for the smiling face in HG and ADG. These findings suggest that analysis of P300 components of the emotion-loaded visual event-related potential may be a useful neuropsychological index for the diagnosis of Alzheimer's disease and high-risk subjects. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  13. The Unified Astronomy Thesaurus

    Science.gov (United States)

    Erdmann, Christopher; Frey, Katie

    2015-08-01

    The Unified Astronomy Thesaurus (UAT) is an open, interoperable and community-supported thesaurus which unifies the existing divergent and isolated Astronomy & Astrophysics vocabularies into a single high-quality, freely-available open thesaurus formalizing astronomical concepts and their inter-relationships. The UAT builds upon both the International Astronomical Union Thesaurus and the International Virtual Observatory Alliance Thesaurus with major contributions from the astronomy portions of the thesauri developed by the Institute of Physics Publishing, the American Institute of Physics, and SPIE, donated to the American Astronomical Society (AAS). In this talk, I will describe the effort behind the creation of the UAT, its continued development through the leadership of the AAS, and discuss some of its current and potential applications.

  14. Documenting the Vocabulary of Astronomy Communication

    Science.gov (United States)

    Miller, Scott; Parrish, M.; Gay, P. L.

    2008-05-01

    Learning astronomy can be a life-long process, with the seeds of knowledge planted in K-12 classes blossoming in elective college courses to create adults who actively acquire astronomy content. One of the goals of many astronomy 101 courses is to prepare students to be intelligent consumers of mainstream astronomy content, including magazine articles, popular books, and online news. To meet this goal, astronomy educators need to understand what content is being presented in the media and what level vocabulary is being used. The most simplistic way to address this problem is to examine the topics covered and vocabulary used in mainstream astronomy blogs and news feeds. In this study we looked at a selection of prominent blogs and news feeds and we present a statistical study of the frequency different scientific terms are used and topics are addressed. To make this study possible, software to read in RSS feeds was created. This software had to meet the following design specifications: runs in a reasonable amount of time, removes all XML and HTML code from text, sees words with different capitalizations as the same word, ignores end of sentence or phrase punctuation without ignoring hyphens, and has an editable list of "common English words.” This code will be available after the conference at http://www.starstryder.com. Results of this study find that many of the primary topics of Astronomy 101 classes, such as the HR Diagram, are rarely mentioned in blogs and online news, while often de-emphasized topics, such as extra solar planets, cosmology, and high energy astrophysics, show up regularly.

  15. A Pilot Astronomy Outreach Project in Bangladesh

    Science.gov (United States)

    Bhattacharya, Dipen; Mridha, Shahjahan; Afroz, Maqsuda

    2015-08-01

    In its strategic planning for the "Astronomy for Development Project," the International Astronomical Union (IAU) has ecognized, among other important missions, the role of astronomy in understanding the far-reaching possibilities for promoting global tolerance and citizenship. Furthermore, astronomy is deemed inspirational for careers in science and technology. The "Pilot Astronomy Outreach Project in Bangladesh"--the first of its kind in the country--aspires to fulfill these missions. As Bangladesh lacks resources to promote astronomy education in universities and schools, the role of disseminating astronomy education to the greater community falls on citizen science organizations. One such group, Anushandhitshu Chokro (AChokro) Science Organization, has been carrying out a successful public outreach program since 1975. Among its documented public events, AChokro organized a total solar eclipse campaign in Bangladesh in 2009, at which 15,000 people were assembled in a single open venue for the eclipse observation. The organization has actively pursued astronomy outreach to dispel public misconceptions about astronomical phenomena and to promote science. AChokro is currently working to build an observatory and Science Outreach Center around a recently-acquired 14-inch Scmidt-Cassegrain telescope and a soon-to-be-acquired new 16-inch reflector, all funded by private donations. The telescopes will be fitted with photometers, spectrometers, and digital and CCD cameras to pursue observations that would include sun spot and solar magnetic fields, planetary surfaces, asteroid search, variable stars and supernovae. The Center will be integrated with schools, colleges, and community groups for regular observation and small-scale research. Special educational and observing sessions for adults will also be organized. Updates on the development of the Center, which is expected to be functioning by the end of 2015, will be shared and feedback invited on the fostering of

  16. Gravitation, Book 3. The University of Illinois Astronomy Program.

    Science.gov (United States)

    Atkin, J. Myron; Wyatt, Stanley P., Jr.

    Presented is book three in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. The causes of celestial motion are investigated and the laws that apply to all moving things in the universe are examined in detail. Topics discussed include: the basic…

  17. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Journal of Astrophysics and Astronomy publishes papers on all aspects of Astrophysics and Astronomy, including instrumentation. The submission of a paper will be held to imply that it represents the results of original research not previously published; that it is not under consideration for publication, elsewhere; and ...

  18. Astronomy and Poetry (overview)

    Science.gov (United States)

    Samvelyan, David

    2016-12-01

    Through this work we have tried to show how astronomy penetrates into the poetry of different periods in time and in various poets' works all over the world. The following work has significant cognitive value, demonstrates and reveals the general nature of certain poets' astronomical ideas and provides a brief analysis in some cases. As a result, we have come to the conclusion that astronomy with all its components such as the sky, our solar system and phenomena such as these have always been a source of inspiration for those who create works of art, moreover some of them have even gained actual astronomical knowledge.

  19. Lessons from Mayan Astronomy

    CERN Document Server

    Loeb, Abraham

    2016-01-01

    The Mayan culture collected exquisite astronomical data for over a millennium. However, it failed to come up with the breakthrough ideas of modern astronomy because the data was analyzed within a mythological culture of astrology that rested upon false but mathematically sophisticated theories about the Universe. Have we learned the necessary lessons to prevent our current scientific culture from resembling Mayan Astronomy? Clearly, data collection by itself is not a guarantee for good science as commonly assumed by funding agencies. A vibrant scientific culture should cultivate multiple approaches to analyzing existing data and to collecting new data.

  20. The Cambridge encyclopaedia of astronomy

    CERN Document Server

    1977-01-01

    Astronomy has been transformed in the last two decades by a series of dramatic discoveries that have left most reference books completely out of date. The Cambridge Encyclopaedia of Astronomy presents a broadly based survey of the whole of astronomy which places emphasis on these critical new findings.

  1. Teaching Astronomy in UK Schools

    Science.gov (United States)

    Roche, Paul; Roberts, Sarah; Newsam, Andy; Barclay, Charles

    2012-01-01

    This article attempts to summarise the good, bad and (occasionally) ugly aspects of teaching astronomy in UK schools. It covers the most common problems reported by teachers when asked about covering the astronomy/space topics in school. Particular focus is given to the GCSE Astronomy qualification offered by Edexcel (which is currently the…

  2. Quickly Creating Interactive Astronomy Illustrations

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  3. School-Based Extracurricular Astronomy

    Science.gov (United States)

    Stanger, Jeffrey J.

    2010-01-01

    The International Year of Astronomy in 2009 focused considerable public attention on Astronomy and generated valuable resources for educators. These activities are an effective vehicle for promoting Science to students and to the wider school community. The most engaging practical astronomy activities are best delivered with sustained support from…

  4. The handy astronomy answer book

    CERN Document Server

    Liu, PhD, Charles

    2013-01-01

    From planetary movements and the exploration of our solar system to black holes and dark matter, this comprehensive reference simplifies all aspects of astronomy with an approachable question-and-answer format. With chapters broken into various astronomical studies—including the universe, galaxies, planets, and space exploration—this fully updated resource is an ideal companion for students, teachers, and amateur astronomers, answering more than 1,000 questions, such as Is the universe infinite? What would happen to you if you fell onto a black hole? What are the basic concepts of Einstein's special theory of relativity? and Who was the first person in space?.

  5. Astronomy Map of the World

    Science.gov (United States)

    Veras, D.

    2017-09-01

    I have created an online clickable and zoom-enabled world map - now viewed over 5,400 times - that contains weblinks to institutions where astronomy is either researched professionally and / or and taught in classrooms at the university level. Not included are stand-alone museums, planetariums, amateur astronomical societies, virtual institutes, nor observatories which do not fulfill this criteria. One can click on a marker to access the relevant institute. The map currently contains 697 institutes, and has multiple potential uses for undergraduate students, graduate students, postdocs, faculty and journal editors.

  6. Astrology and Astronomy.

    Science.gov (United States)

    Astronomical Society of the Pacific, San Francisco, CA.

    One of a series of information packets, the document provides clear, specific information about the controversial subject of astrology. The packet includes six articles explaining the dozens of careful scientific tests which have concluded that there is no scientific evidence supporting astrology. The packet includes an interview with astronomer…

  7. Discovery and Classification in Astronomy

    Science.gov (United States)

    Dick, Steven J.

    2012-01-01

    Three decades after Martin Harwit's pioneering Cosmic Discovery (1981), and following on the recent IAU Symposium "Accelerating the Rate of Astronomical Discovery,” we have revisited the problem of discovery in astronomy, emphasizing new classes of objects. 82 such classes have been identified and analyzed, including 22 in the realm of the planets, 36 in the realm of the stars, and 24 in the realm of the galaxies. We find an extended structure of discovery, consisting of detection, interpretation and understanding, each with its own nuances and a microstructure including conceptual, technological and social roles. This is true with a remarkable degree of consistency over the last 400 years of telescopic astronomy, ranging from Galileo's discovery of satellites, planetary rings and star clusters, to the discovery of quasars and pulsars. Telescopes have served as "engines of discovery” in several ways, ranging from telescope size and sensitivity (planetary nebulae and spiral galaxies), to specialized detectors (TNOs) and the opening of the electromagnetic spectrum for astronomy (pulsars, pulsar planets, and most active galaxies). A few classes (radiation belts, the solar wind and cosmic rays), were initially discovered without the telescope. Classification also plays an important role in discovery. While it might seem that classification marks the end of discovery, or a post-discovery phase, in fact it often marks the beginning, even a pre-discovery phase. Nowhere is this more clearly seen than in the classification of stellar spectra, long before dwarfs, giants and supergiants were known, or their evolutionary sequence recognized. Classification may also be part of a post-discovery phase, as in the MK system of stellar classification, constructed after the discovery of stellar luminosity classes. Some classes are declared rather than discovered, as in the case of gas and ice giant planets, and, infamously, Pluto as a dwarf planet.

  8. Astronomy on the Walls

    Science.gov (United States)

    Santascoy, J.

    2016-01-01

    Many of us are interested in increasing youth and minority involvement in the sciences. Using art that integrates images of space exploration with ethnic astronomical mythology may increase participation in astronomy in general, while also forming a bridge to underrepresented communities. This paper describes a freely available presentation of Carlos Callejo's Discover the Secrets of the Universe Through the Library for outreach.

  9. Astronomy Video Contest

    Science.gov (United States)

    McFarland, John

    2008-05-01

    During Galileo's lifetime his staunchest supporter was Johannes Kepler, Imperial Mathematician to the Holy Roman Emperor. Johannes Kepler will be in St. Louis to personally offer a tribute to Galileo. Set Galileo's astronomy discoveries to music and you get the newest song by the well known acappella group, THE CHROMATICS. The song, entitled "Shoulders of Giants” was written specifically for IYA-2009 and will be debuted at this conference. The song will also be used as a base to create a music video by synchronizing a person's own images to the song's lyrics and tempo. Thousands of people already do this for fun and post their videos on YOU TUBE and other sites. The ASTRONOMY VIDEO CONTEST will be launched as a vehicle to excite, enthuse and educate people about astronomy and science. It will be an annual event administered by the Johannes Kepler Project and will continue to foster the goals of IYA-2009 for years to come. During this presentation the basic categories, rules, and prizes for the Astronomy Video Contest will be covered and finally the new song "Shoulders of Giants” by THE CHROMATICS will be unveiled

  10. Teaching Astronomy Using Tracker

    Science.gov (United States)

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-01-01

    A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…

  11. Physics and astronomy

    CSIR Research Space (South Africa)

    Moraal, H

    2009-01-01

    Full Text Available The chapter is about physics and astronomy. The chapter gives a background about the origins of physics in South Africa. After the CSIR was founded in 1945, physics emerged as a nationwide and unified discipline. The authors show how physics...

  12. Gravitational-Wave Astronomy

    Indian Academy of Sciences (India)

    We present a broad overview of the emerging field of gravitational-wave astronomy. Although gravitational waves have not been directly de- tected yet, the worldwide scientific community is engaged in an exciting search for these elusive waves. Once detected, they will open up a new observational window to the Universe.

  13. IYA2009USA: Cultural Astronomy and Storytelling Working Group

    Science.gov (United States)

    Holbrook, Jarita; IYA2009

    2009-01-01

    Cultural astronomy focuses on human's relationship with the sky using the disciplinary tools of anthropology, archeology, folklore, history, and folklore - not all at the same time. The USA is one of the few nations that include cultural astronomy and storytelling under its International Year of Astronomy 2009 (IYA2009) activities. The working group focuses on indigenous sky knowledge; celestial stories, activities to explore the links between astronomy and culture; and on astronomers: their achievements and their academic culture. This presentation is an overview of the IYA2009USA Cultural Astronomy and Storytelling working group. Included will be our website, our goals, our projects, our outreach and dissemination strategies, and how we uniquely contribute to IYA2009.

  14. ZTF Undergraduate Astronomy Institute at Caltech and Pomona College

    Science.gov (United States)

    Penprase, Bryan Edward; Bellm, Eric Christopher

    2017-01-01

    From the new Zwicky Transient Facility (ZTF), an NSF funded project based at Caltech, comes a new initiative for undergraduate research known as the Summer Undergraduate Astronomy Institute. The Institute brings together 15-20 students from across the world for an immersive experience in astronomy techniques before they begin their summer research projects. The students are primarly based at Caltech in their SURF program but also includes a large cohort of students enrolled in research internships at Pomona College in nearby Claremont CA. The program is intended to introduce students to research techniques in astronomy, laboratory and computational technologies, and to observational astronomy. Since many of the students are previously computer science or physics majors with little astronomy experience, this immersive experience has been extremely helpful for enabling students to learn about the terminologies, techniques and technologies of astronomy. The field trips to the Mount Wilson and Palomar telescopes deepen their knowledge and excitement about astronomy. Lectures about astronomical research from Caltech staff scientists and graduate students also provide context for the student research. Perhaps more importantly, the creation of a cohort of like-minded students, and the chance to reflect about careers in astronomy and research, give these students opportunities to consider themselves as future research scientists and help them immensely as they move forward in their careers. We discuss some of the social and intercultural aspects of the experience as well, as our cohorts typically include international students from many countries and several students from under-represented groups in science.

  15. Assessing blood brain barrier dynamics or identifying or measuring selected substances, including ethanol or toxins, in a subject by analyzing Raman spectrum signals

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2008-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier.Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam at a selected wavelength (e.g., at a wavelength of about 400 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  16. Astronomy Village: Investigating the Solar System

    Science.gov (United States)

    Williams, Jeffrey; Croft, Steven; McGee, Steven

    1998-04-01

    The Astronomy Village: Investigating the Solar System is a new product aimed at astronomy instructional materials for middle school audiences. This multimedia development, funded by the NSF, will be suitable for curriculum supplement, presentations, and public outreach in Earth and planetary science. The presentation will highlight one of the research paths from the Village: Is there life on Mars? Students using this curriculum will solve problems in a rich environment that includes images, hands on labs, simulations, presentations, articles, and web pages. The research questions will be presented using multiple working hypothesis format.

  17. A Summer Camp Experience of Primary Student: Let's Learn Astronomy, Explore the Space Summer Camp

    Science.gov (United States)

    Aktamis, Hilal; Acar, Esin; Unal Coban, Gul

    2015-01-01

    It is important to structure children's knowledge and arouse their interest in subjects like astronomy and space. Although we now talk of travelling to the moon, space tourism etc., knowledge about astronomy and space is limited and perceptions of these subjects do not reflect scientific reality. Primary level students often have misconceptions…

  18. Developing Astronomy Research and Education in the Philippines

    Science.gov (United States)

    Sese, R. M. D.; Kouwenhoven, M. B. N. Thijs

    2015-03-01

    In the past few years, the Philippines has been gradually developing its research and educational capabilities in astronomy and astrophysics. In terms of astronomy development, it is still lagging behind several neighboring Southeast Asian countries such as Indonesia, Thailand and Malaysia, while it is advanced with respect to several others. One of the main issues hampering progress is the scarcity of trained professional Filipino astronomers, as well as long-term visions for astronomy development. Here, we will be presenting an overview of astronomy education and research in the country. We will discuss the history and current status of astronomy in the Philippines, including all levels of education, outreach and awareness activities, as well as potential areas for research and collaborations. We also discuss issues that need to be addressed to ensure sustainable astronomy development in the Philippines. Finally, we discuss several ongoing and future programs aimed at promoting astronomy research and education. In essence, the work is a precursor of a possible white paper which we envision to submit to the Department of Science and Technology (DOST) in the near future, with which we aim to further convince the authorities of the importance of astrophysics. With the support of the International Astronomical Union (IAU), this may eventually lead to the creation of a separate astronomy agency in the Philippines.

  19. What types of astronomy images are most popular?

    Science.gov (United States)

    Allen, Alice; Bonnell, Jerry T.; Connelly, Paul; Haring, Ralf; Lowe, Stuart R.; Nemiroff, Robert J.

    2015-01-01

    Stunning imagery helps make astronomy one of the most popular sciences -- but what types of astronomy images are most popular? To help answer this question, public response to images posted to various public venues of the Astronomy Picture of the Day (APOD) are investigated. APOD portals queried included the main NASA website and the social media mirrors on Facebook, Google Plus, and Twitter. Popularity measures include polls, downloads, page views, likes, shares, and retweets; these measures are used to assess how image popularity varies in relation to various image attributes including topic and topicality.

  20. What's New in Astronomy for 2012?

    Science.gov (United States)

    Wilkinson, John

    2012-01-01

    There's always something new happening in the field of Astronomy. This includes the immediate environment surrounding Earth, the Solar system and the universe. This article looks at some of the recent research astronomers have been undertaking this year. Each article has reference to a web site so teachers can find out more information or ask…

  1. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  2. Astronomy and astrology

    Science.gov (United States)

    Zarka, Philippe

    2011-06-01

    Astrology meets a large success in our societies, from the private to the political sphere as well as in the media, in spite of the demonstrated inaccuracy of its psychological as well as operational predictions. We analyse here the relations between astrology and astronomy, as well as the criticisms opposed by the latter to the former. We show that most of these criticisms are weak. Much stronger ones emerge from the analysis of the astrological practice compared to the scientific method, leading us to conclude to the non-scientificity of astrology. Then we return to the success of astrology, and from its analysis we propose a renewed (and prophylactic) rôle for astronomy in society.

  3. Archaeology and astronomy

    Science.gov (United States)

    2009-10-01

    MEETING REPORT The interaction between archaeology and astronomy has a long, tangled and not entirely creditable history, marred by misunderstandings on both sides. But statistics and cultural awareness are bringing a better picture of how and why lasting monuments such as Stonehenge were built. Sue Bowler reports on a joint meeting of the Royal Astronomical Society and the Prehistoric Society, held at Jodrell Bank on 17 July 2009.

  4. Software systems for astronomy

    CERN Document Server

    Conrad, Albert R

    2014-01-01

    This book covers the use and development of software for astronomy. It describes the control systems used to point the telescope and operate its cameras and spectrographs, as well as the web-based tools used to plan those observations. In addition, the book also covers the analysis and archiving of astronomical data once it has been acquired. Readers will learn about existing software tools and packages, develop their own software tools, and analyze real data sets.

  5. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  6. NASA Airborne Astronomy Ambassadors (AAA)

    Science.gov (United States)

    Backman, D. E.; Harman, P. K.; Clark, C.

    2016-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) is a three-part professional development (PD) program for high school physics and astronomy teachers. The AAA experience consists of: (1) blended-learning professional development composed of webinars, asynchronous content learning, and a series of hands-on workshops (2) a STEM immersion experience at NASA Armstrong Flight Research Center's B703 science research aircraft facility in Palmdale, California, and (3) ongoing participation in the AAA community of practice (CoP) connecting participants with astrophysics and planetary science Subject Matter Experts (SMEs). The SETI Institute (SI) is partnering with school districts in Santa Clara and Los Angeles Counties during the AAA program's "incubation" period, calendar years 2016 through 2018. AAAs will be selected by the school districts based on criteria developed during spring 2016 focus group meetings led by the program's external evaluator, WestEd.. Teachers with 3+ years teaching experience who are assigned to teach at least 2 sections in any combination of the high school courses Physics (non-AP), Physics of the Universe (California integrated model), Astronomy, or Earth & Space Sciences are eligible. Partner districts will select at least 48 eligible applicants with SI oversight. WestEd will randomly assign selected AAAs to group A or group B. Group A will complete PD in January - June of 2017 and then participate in SOFIA science flights during fall 2017 (SOFIA Cycle 5). Group B will act as a control during the 2017-18 school year. Group B will then complete PD in January - June of 2018 and participate in SOFIA science flights in fall 2018 (Cycle 6). Under the current plan, opportunities for additional districts to seek AAA partnerships with SI will be offered in 2018 or 2019. A nominal two-week AAA curriculum component will be developed by SI for classroom delivery that will be aligned with selected California Draft Science Framework Disciplinary Core Ideas

  7. Grote Reber, Radio Astronomy Pioneer, Dies

    Science.gov (United States)

    2002-12-01

    something of a minor tourist attraction, he later recalled. Using electronics he designed and built that pushed the technical capabilities of the era, Reber succeeded in detecting "cosmic static" in 1939. In 1941, Reber produced the first radio map of the sky, based on a series of systematic observations. His radio-astronomy work continued over the next several years. Though not a professional scientist, his research results were published in a number of prestigious technical journals, including Nature, the Astrophysical Journal, the Proceedings of the Institute of Radio Engineers and the Journal of Geophysical Research. Reber also received a number of honors normally reserved for scientists professionally trained in astronomy, including the American Astronomical Society's Henry Norris Russell Lectureship and the Astronomical Society of the Pacific's Bruce Medal in 1962, the National Radio Astronomy Observatory's Jansky Lectureship in 1975, and the Royal Astronomical Society's Jackson-Gwilt Medal in 1983. Reber's original dish antenna now is on display at the National Radio Astronomy Observatory's site in Green Bank, West Virginia, where Reber worked in the late 1950s. All of his scientific papers and records as well as his personal and scientific correspondence are held by the NRAO, and will be exhibited in the observatory's planned new library in Charlottesville, Virginia. Reber's amateur-radio callsign, W9GFZ, is held by the NRAO Amateur Radio Club. This callsign was used on the air for the first time since the 1930s on August 25, 2000, to mark the dedication of the Robert C. Byrd Green Bank Telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. Social Representations of the Integrated High School Students about Astronomy

    Science.gov (United States)

    Barbosa, Jose Isnaldo de Lima; Voelzke, Marcos Rincon

    2017-07-01

    Astronomy issues are not always adequately handled in the formal education system, as well as, their dissemination in the media is often loaded with sensationalism. However, in this context the students are forming their explanations about it. Therefore, this work has the objective of identifying the possible social representations of students from the Integrated High School on the inductor term Astronomy. It is basically a descriptive research, therefore, a quali-qualitative approach was adopted. The procedures for obtaining the data occurred in the form of a survey, and they involved 653 subjects students from the Integrated High School. The results indicate that the surveyed students have social representations of the object Astronomy, which are based on elements from the formal education space, and also disclosed in the media. In addition, they demonstrate that the students have information about Astronomy, and a value judgment in relation to this science.

  9. Galactic Astronomy in the Ultraviolet

    Science.gov (United States)

    Rastorguev, A. S.; Sachkov, M. E.; Zabolotskikh, M. V.

    2017-12-01

    We propose a number of prospective observational programs for the ultraviolet space observatory WSO-UV, which seem to be of great importance to modern galactic astronomy. The programs include the search for binary Cepheids; the search and detailed photometric study and the analysis of radial distribution of UV-bright stars in globular clusters ("blue stragglers", blue horizontal-branch stars, RR Lyrae variables, white dwarfs, and stars with UV excesses); the investigation of stellar content and kinematics of young open clusters and associations; the study of spectral energy distribution in hot stars, including calculation of the extinction curves in the UV, optical and NIR; and accurate definition of the relations between the UV-colors and effective temperature. The high angular resolution of the observatory allows accurate astrometric measurements of stellar proper motions and their kinematic analysis.

  10. Assessment of five different guideline indication criteria for spirometry, including modified GOLD criteria, in order to detect COPD: data from 5,315 subjects in the PLATINO study.

    Science.gov (United States)

    Luize, Ana P; Menezes, Ana Maria B; Perez-Padilla, Rogelio; Muiño, Adriana; López, Maria Victorina; Valdivia, Gonzalo; Lisboa, Carmem; Montes de Oca, Maria; Tálamo, Carlos; Celli, Bartolomé; Nascimento, Oliver A; Gazzotti, Mariana R; Jardim, José R

    2014-10-30

    Spirometry is the gold standard for diagnosing chronic obstructive pulmonary disease (COPD). Although there are a number of different guideline criteria for deciding who should be selected for spirometric screening, to date it is not known which criteria are the best based on sensitivity and specificity. Firstly, to evaluate the proportion of subjects in the PLATINO Study that would be recommended for spirometry testing according to Global initiative for Obstructive Lung Disease (GOLD)-modified, American College of Chest Physicians (ACCP), National Lung Health Education Program (NLHEP), GOLD and American Thoracic Society/European Respiratory Society (ATS/ERS) criteria. Secondly, we aimed to compare the sensitivity, specificity, and positive predictive and negative predictive values, of these five different criteria. Data from the PLATINO study included information on respiratory symptoms, smoking and previous spirometry testing. The GOLD-modified spirometry indication criteria are based on three positive answers out of five questions: the presence of cough, phlegm in the morning, dyspnoea, age over 40 years and smoking status. Data from 5,315 subjects were reviewed. Fewer people had an indication for spirometry (41.3%) according to the GOLD-modified criteria, and more people had an indication for spirometry (80.4%) by the GOLD and ATS/ERS criteria. A low percentage had previously had spirometry performed: GOLD-modified (14.5%); ACCP (13.2%); NLHEP (12.6%); and GOLD and ATS/ERS (12.3%). The GOLD-modified criteria showed the least sensitivity (54.9) and the highest specificity (61.0) for detecting COPD, whereas GOLD and ATS/ERS criteria showed the highest sensitivity (87.9) and the least specificity (20.8). There is a considerable difference in the indication for spirometry according to the five different guideline criteria. The GOLD-modified criteria recruit less people with the greatest sum of sensitivity and specificity.

  11. The Astronomy Genealogy Project: A Progress Report

    Science.gov (United States)

    Tenn, Joseph S.

    2016-01-01

    Although it is not yet visible, much progress has been made on the Astronomy Genealogy Project (AstroGen) since it was accepted as a project of the Historical Astronomy Division (HAD) three years ago. AstroGen will list the world's astronomers with information about their highest degrees and advisors. (In academic genealogy, your thesis advisor is your parent.) A small group (the AstroGen Team) has compiled a database of approximately 12,000 individuals who have earned doctorates with theses (dissertations) on topics in astronomy, astrophysics, cosmology, or planetary science. These include nearly all those submitted in Australia, Canada, the Netherlands, and New Zealand, and most of those in the United States (all through 2014 for most universities and all through 1990 for all). We are compiling more information than is maintained by the Mathematics Genealogy Project (MGP). In addition to name, degree, university, year of degree, and thesis advisor(s), all provided by MGP as well, we are including years of birth and death when available, mentors in addition to advisors, and links to the thesis when it is online and to the person's web page or obituary, when we can find it. We are still struggling with some questions, such as the boundaries of inclusion and whether or not to include subfields of astronomy. We believe that AstroGen will be a valuable resource for historians of science as well as a source of entertainment for those who like to look up their academic family trees. A dedicated researcher following links from AstroGen will be able to learn quite a lot about the careers of astronomy graduates of a particular university, country, or era. We are still seeking volunteers to enter the graduates of one or more universities.

  12. Transmission of Babylonian Astronomy to Other Cultures

    Science.gov (United States)

    Jones, Alexander

    Babylonian astronomy and astrology were extensively transmitted to other civilizations in the second and first millennia BC. Greek astronomy in particular was largely shaped by knowledge of Babylonian observations and mathematical astronomy.

  13. Astronomy and Art Merged: Targeting Other Audiences

    Science.gov (United States)

    Friedman, A. F.

    1999-05-01

    One of the fundamental concerns of museum exhibition is to reach as broad an audience as possible. One way to open up the history of astronomy to a wider audience is to create an exhibit with an interdisciplinary theme and to select a venue outside of a science institution. Here I discuss ``Awestruck by the Majesty of the Heavens: Artistic Perspectives from the Adler Planetarium & Astronomy Museum History of Astronomy Collection," which took place at the Chicago Cultural Center from January to March of 1997. ``Awestruck" featured a selection of celestial charts, portrait prints of famous astronomers, plates from books on astronomical topics, and other works on paper. It focused on the connections between art and science during the period 1500-1800. Scientific content and place within the history of astronomy were discussed in addition to the artistic merit of the objects. The Chicago Cultural Center is an institution that is home to a wide variety of cultural programming including art, music, film, theater, and dance. In addition to providing a different audience for this material than that which typically visits the Adler, ``Awestruck" also represented an expansion of material for the Cultural Center's audience to view, as their exhibition spaces primarily show only 20th-century art. Programming such as gallery talks and the production of an art-museum-type exhibition catalog will also be discussed.

  14. Astronomy Teacher Training: Towards Year 2009

    Science.gov (United States)

    Doddoli, Consuelo

    2008-05-01

    The Direccion General de Divulgacion de la Ciencia is part of Mexico's National University; its purpose is science outreach. Most of its activities are dedicated to school level audiences; nevertheless due to the speed of science development, courses are given for teachers. The astronomy curricula includes: new results in astronomy research, general astrophysics and tools to teach astronomy. The courses offer twelve two hour long sessions. An astronomy researcher delivers a lecture and teachers are trained to use hands on activity. Beginning last in 2007 it has focused on Galileo. It addressed the way he was modern scientist, he observed and made experiments and wrote his results in common language. Year 2009 is a perfect incentive to carry out activities with teachers and keep them busy organizing telescope construction and observations during and after Galileo's commemoration. A book was written specially for them on the experiments Galileo made. In this book they can find interesting hand-on activities with materials that are readily available. (Los experimentos de Galileo, Silvia Torres y Consuelo Doddoli, Correo del Maestro, 2008, in press.) The magazine Correo del Maestro holds many articles written by the author on astronomical activities aimed to teachers.

  15. Multiwavelength Astronomy Modules for High School Students

    Science.gov (United States)

    Thomas, Christie; Brazas, J.; Lane, S.; York, D. G.

    2014-01-01

    The University of Chicago Multiwavelength Astronomy modules are web-based lessons covering the history, science, tools, and impact of astronomy across the wavebands, from gamma ray to infrared. Each waveband includes four lessons addressing one aspect of its development. The lessons are narrated by a historical docent or practicing scientist who contributed to a scientific discovery or instrument design significant to astronomical progress. The process of building each lesson began with an interview conducted with the scientist, or the consultation of a memoir or oral history transcript for historical docents. The source was then excerpted to develop a lesson and supplemented by archival material from the University of Chicago Library and other archives; NASA media; and participant contributed photographs, light curves, and spectra. Practicing educators also participated in the lesson development and evaluation. In July 2013, the University of Chicago sponsored 9 teachers and 15 students to participate in a STEM education program designed to engage participants as co-learners as they used the Multiwavelength Astronomy lessons in conjunction with talks given by the participating scientists. Teachers also practiced implementation of the resources with students and designed authentic research activities that make use of NASA mission data, which were undertaken as mini-research projects by student teams during the course of the program. This poster will introduce the Multiwavelength Astronomy web modules; highlight educator experiences in their use with high school audiences; and analyze the module development process, framing the benefits to and contributions of each of the stakeholders including practicing astronomers in research and space centers, high school science educators, high school students, University libraries and archives, and the NASA Science Mission Directorate. The development of these resources, and the summer professional development workshops were

  16. Dyslexia and Astronomy

    Science.gov (United States)

    Schneps, Matthew H.; Greenhill, L. J.; Rose, L. T.

    2007-12-01

    Dyslexia is a hereditary neurological disability that impairs reading. It is believed that anywhere from 5% to 20% of all people in the US may have dyslexia to a greater or lesser degree. Though dyslexia is common, it is a "silent disability" in the sense that it is not easy to tell which individuals suffer from dyslexia and which do not. There is a substantial body of evidence to suggest that people with dyslexia tend to do well in science. For example, Baruj Benacerraf, a Nobel laureate in medicine, is among those whose impairments have been documented and studied. Given that dyslexia was not diagnosed in schools prior to the late 1970's, many established science researchers may have dyslexia and be unaware of their impairment. Therefore, it would not be surprising to find that substantial numbers of scientists working in the fields of astronomy and astrophysics have dyslexia, and yet be unaware of the effects this disability has had on their research. A recently proposed theory by the authors suggests that there may be specific neurological reasons why those with dyslexia may be predisposed to science, and predicts that dyslexia may be associated with enhanced abilities for certain types of visual processing, with special implications for image processing. Our study, funded by the NSF, investigates this hypothesis in the context of astronomy and astrophysics. We expect this work will uncover and document challenges faced by scientists with dyslexia, but perhaps more importantly, lead to an understanding of the strengths these scientists bring to research. The program will serve as a clearing-house of information for scientists and students with dyslexia, and begin to provide mentoring for young people with dyslexia interested in astronomy. Scientists who have reason to believe they may have dyslexia are encouraged to contact the authors.

  17. Gamma-ray Astronomy

    OpenAIRE

    Pohl, Martin

    2007-01-01

    This paper summarizes recents results in gamma-ray astronomy, most of which were derived with data from ground-based gamma-ray detectors. Many of the contributions presented at this conference involve multiwavelength studies which combine ground-based gamma-ray measurements with optical data or space-based X-ray and gamma-ray measurements. Besides measurements of the diffuse emission from the Galaxy, observations of blazars, gamma-ray bursts, and supernova remnants this paper also covers theo...

  18. Superluminal motion in astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Falla, D.F.; Floyd, M.J. [Department of Physics, University of Wales, Aberystwyth (United Kingdom)

    2002-01-01

    Several examples of 'intrinsic-type' superluminal motion in astronomy are taken. A simple signal-delay transformation is devised and shown to be sufficient to explain the superluminal effect as resulting from differential signal delay across an expanding source. The distinction between relativistic motion and relativistic kinematics is made. The key kinematical equation used to describe superluminal motion is an alternative statement of the Doppler effect. Relativistic transformations, which are relevant when intervals in different reference frames are compared, then lead to the relativistic Doppler factor ({delta}), which is applicable to measurements on a photographic image, for example that of a relativistic quasar jet with superluminal components. (author)

  19. Astronomy in Iran

    Science.gov (United States)

    Sobouti, Y.

    2006-08-01

    Institute for Advanced Studies in Basic Sciences, Zanjan, Iran In spite of her renowned pivotal role in the advancement of astronomy on the world scale during 9th to 15th centuries, Iran's rekindled interest in modern astronomy is a recent happening. Serious attempts to introduce astronomy into university curricula and to develop it into a respectable and worthwhile field of research began in the mid 60's. The pioneer was Shiraz University. It should be credited for the first few dozens of astronomy- and astrophysics- related research papers in international journals, for training the first half a dozen of professional astronomers and for creating the Biruni Observatory. Here, I take this opportunity to acknowledge the valuable advice of Bob Koch and Ed Guinan, then of the University of Pennsylvania, in the course of the establishment of this observatory. At present the astronomical community of Iran consists of about 65 professionals, half university faculty members and half MS and PhD students. The yearly scientific contribution of its members has, in the past three years, averaged to about 15 papers in reputable international journals, and presently has a healthy growth rate. Among the existing observational facilities, Biruni Observatory with its 51 cm Cassegrain, CCD cameras, photometers and other smaller educational telescopes, is by far the most active place. Tusi Observatory of Tabriz University has 60 and 40 cm Cassegrains, and a small solar telescope. A number of smaller observing facilities exist in Meshed, Zanjan, Tehran, Babol and other places. The Astronomical Society of Iran (ASI), though some 30 years old, has expanded and institutionalized its activities since early 1990's. ASI sets up seasonal schools for novices, organizes annual colloquia and seminars for professionals and supports a huge body of amateur astronomers from among high school and university students. Over twenty of ASI members are also members of IAU and take active part in its

  20. Multimessenger Astronomy with Neutrinos

    Science.gov (United States)

    Franckowiak, Anna

    2017-09-01

    The recent discovery of high-energy astrophysical neutrinos has opened a new window to the Universe. However, the sources of those neutrinos are still unknown. Among the plausible candidates are gamma-ray bursts, active galactic nuclei and supernovae. Combining neutrino data with electromagnetic measurements in a multimessenger approach will increase our ability to identify the neutrino sources and help to solve long-standing problems in astrophysics such as the origin of cosmic rays. Neutrino observations may also contribute to future detections of gravitational wave signals, and enable the study of their source progenitors. I will review the recent progress in multimessenger astronomy using neutrino data.

  1. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  2. Islamic Mathematical Astronomy

    Science.gov (United States)

    Montelle, Clemency

    A short survey on Islamic mathematical astronomy practiced during the period running from the eight century until the fifteenth is presented. Various pertinent themes, such as the translation of foreign scientific works and their impact on the tradition; the introduction, assimilation, and critique of the Ptolemaic model; and the role of observations, will be covered. In addition, the zīj, the dominant format for astronomical works, will be briefly explained as well as the legacy of the Islamic tradition of astral sciences to other cultures.

  3. Astrology as Cultural Astronomy

    Science.gov (United States)

    Campion, Nicholas

    The practice of astrology can be traced in most if not all human societies, in most time periods. Astrology has prehistoric origins and flourishes in the modern world, where it may be understood as a form of ethnoastronomy - astronomy practiced by the people. The Western tradition, which originated in Mesopotamia and was developed in the Greek world, has been most studied by academics. However, India is also home to a tradition which has survived in a continuous lineage for 2,000 years. Complex systems of astrology also developed in China and Mesoamerica, while all other human societies appear to seek social and religious meaning in the stars.

  4. Using television for astronomy teaching

    Science.gov (United States)

    Fierro, Julieta

    The full potential of television for education has not been used in developing nations. It is relatively inexpensive to produce astronomy programs that can be broadcast taking advantage of satellite transmissions. We suggest that these programs should have the following elements in order to be efficient: 1. Be in the local language. 2. Be short enough so that the teacher has a chance to comment on them during a one-hour lecture. 3. Show experiments specially if they are meant for schools that do not have laboratory facitilies. 4. Be produced for several educational levels, including programs aimed for teacher training. Inexpensive books should be edited in the local language in order to serve as an educational complement to the television series.

  5. Academic Training: Astronomy from Space

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 14, 15, 16, 18 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Astronomy from Space by T. Courvoisier / Observatoire de Genève In the very wide field of High Energy astrophysics we will select a number of topics that range from the source of radiative energy in the deep potential well around Schwarzschild and Kerr black holes and the basics of accretion disks around compact objects to the description and (where possible) the understanding of binary systems including a compact object (neutron star or black hole), of Active Galactic Nuclei and of gamma ray bursts. The approach that is chosen aims at giving an understanding of the most important phenomenologies encountered in high energy astrophysics rather than a detailed knowledge of one specific topic. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  6. Tides in astronomy and astrophysics

    CERN Document Server

    Mathis, Stéphane; Tokieda, Tadashi

    2013-01-01

    Based on the lecture notes of a school titled ‘Tides in Astronomy and Astrophysics’ that brought together students and researchers, this book focuses on the fundamental theories of tides at different scales of the universe—from tiny satellites to whole galaxies—and on the most recent developments. It also attempts to place the study of tides in a historical perspective. Starting with a general tutorial on tides, the theme of tides is approached in 9 chapters from many directions. They allow non-experts to pick up a physical intuition and a sense of orders of magnitude in the theory of tides. These carefully prepared lecture notes by leaders in the field include many illustrative figures and drawings. Some even offer a variety of simple back-of the-envelope problems.

  7. Commission 41: History of Astronomy

    Science.gov (United States)

    Gurshtein, Alexander A.; Nha, Il-Seong; Ruggles, Clive L. N.; DeVorkin, David H.; Dick, Wolfgang R.; Kochhar, Rajesh; Nakamura, Tsuko; Pigatto, Luisa; Stephenson, F. Richard; Warner, Brian

    2007-12-01

    On Tuesday 22 August 2006 approximately 40 people attended the Commission 41 History of Astronomy Business Meeting at the IAU XXVI General Assembly in Prague. Commission president Alex Gurshtein opened the meeting, welcoming the commission members and calling for a moment of silence for those members who passed away in the last triennium. David DeVorkin was appointed recording secretary for the meeting, with Steven Dick as the scruitineer of the ballot. A moment of silence was then observed in the memory of members departed over the last triennium, including: Jerzy Dobrzycki (Poland), Robert Duncan (Australia), Mohammad Edalati (Iran), Philip Morrison (USA), John Perdix (Australia), Neil Porter (Ireland), Gibson Reaves (USA), Brian Robinson (Australia), and Raymond E. White (USA).

  8. A Successful Integration of Astronomy into an Elementary School Curriculum

    Science.gov (United States)

    Romani, P. N.; Hackett, K.; Jackson, T.; Melzer, S.; Edwards, S.; Moore, F.

    1997-07-01

    Fifth and sixth grade students at Glenarden Woods Elementary Magnet School for Talented and Gifted (TAG) Students, Glenarden, Maryland studied Europe in the Medieval time period this year in a thematic unit that involved language arts, social studies, and art. We used this as a vehicle to incorporate math and science projects involving astronomy into the curriculum. In this way, we could integrate science into the thematic unit rather than having math and science be divorced from what the students were doing in the other subject areas. For the first project we studied the claims of astrology. This was chosen because during the Medieval time period astronomy and astrology were closely linked. We then took advantage of Comet Hale-Bopp to compare what people in the Medieval time period thought/knew about comets to what we believe now. For this unit we stretched the middle ages to include a demonstration of how Tycho proved that the comet of 1577 was further from the Earth than the Moon. Lastly, we did a short lesson plan on sundials. We will present details of the projects and lessons learned.

  9. Women's and men's career choices in astronomy and astrophysics

    Science.gov (United States)

    Ivie, Rachel

    2017-01-01

    In order to understand gender differences in persistence and attrition from astronomy and physics, the Longitudinal Study of Astronomy Graduate Students follows a cohort of people who were graduate students in astronomy or astrophysics during 2006-07. The first survey was conducted during 2007-08 and the second during 2012-13, when many of the respondents had left graduate school and were working. For respondents who had completed PhDs and were not postdocs, we tested the effects of four major concepts on attrition from physics and astronomy. These concepts included: the imposter syndrome, mentoring and advising during graduate school, work-family balance, and being female. We hypothesized that women would be more likely than men to work outside of astronomy and physics. However, results from the study show that there is no direct independent effect of being female on attrition. Rather, women are more likely to leave astronomy because they are more likely than men to (1) experience difficulties related to the need to find a job for a spouse or partner in the same geographical area, and (2) report less than satisfactory advising during graduate school. This research identifies specific areas of concern that can be addressed by the scientific community to increase the retention of all people, but especially women, in astronomy, physics, and related fields. Funded by National Science Foundation AST-1347723.

  10. ACDA Thirty Years of Popularization of Astronomy in Colombia

    Science.gov (United States)

    Ocampo, W.; Higuera-G., Mario A.

    2017-07-01

    The Colombian Association of Astronomical Studies (ACDA) is a Non Profit Organization with thirty years of permanent efforts for the popularization of astronomy and related sciences in Colombia. ACDA put together amateur and profesional astronomers, as well as interested people. We surely had left a footprint on uncountable number of attending people to our activities, members and former members, and have supported the process of building a new society, with more awareness on the importance of science. We devote our efforts to our members and general people, to keep them motivated, support them and follow each member own interests in order to expand and spread their knowledge. In order to achieve our goals we have develop several strategies as: acquire of didactic material and optical instruments, video projections and discussion, astronomical observations, visits to observatories and planetariums, attending conferences and events, and mainly a weekly Saturday morning talk at the Bogotá Planetarium. ACDA has had different study teams on several fields including: Planetary Systems, Astrobiology, Space Exploration, Cosmology, History of Astronomy and Radioastronomy. ACDA has a national brandname on Astronomy due to seriousness and quality of its projects. A good list of members have become profesional astronomers. From our experience we can say: astronomy is a fertile field to teach science, in general there is an absence of astronomy culture in the public, our best communication experience are astronomical observations, explained astronomy movies and colloquiums, our best public are kids and aged people and finally, social networks gave dynamics to our astronomy spreading initiative.

  11. Science and Mathematics in Astronomy

    Science.gov (United States)

    Woolack, Edward

    2009-01-01

    A brief historical introduction to the development of observational astronomy will be presented. The close historical relationship between the successful application of mathematical concepts and advances in astronomy will be presented. A variety of simple physical demonstrations, hands-on group activities, and puzzles will be used to understand how the properties of light can be used to understand the contents of our universe.

  12. Principles of Celestial Navigation: An Online Resource for Introducing Practical Astronomy to the Public

    Science.gov (United States)

    Urban, Sean E.

    2015-08-01

    Astronomy is often called a "gateway" science because it inspires appreciation and awe among children and non-scientists. Applied astronomy, with practical, real-world applications, can entice even the most utilitarian people to take notice and learn about the subject. Traditional celestial navigation is an astronomy topic that captures the attention of the public. The U.S. Naval Observatory has led the development of a publicly available online celestial navigation educational module titled, "Principles of Celestial Navigation". It can be used world-wide to introduce people to astronomy. This poster describes some of the aspects of this teaching module.

  13. Astronomy Courses which Emphasize Communication Skills

    Science.gov (United States)

    Dinerstein, H. L.

    1998-12-01

    The ability to communicate effectively, both in oral and written form, is crucial for success in almost any career path. Furthermore, being able to effectively communicate information requires a high level of conceptual mastery of the material. For these reasons, I have incorporated practice in communication into courses at a variety of levels, ranging from non-science-major undergraduate courses to graduate courses. I briefly describe the content of these courses, particularly the communication-related component. The first, Ast 309N, ``Astronomy Bizarre: Stars and Stellar Evolution," is an elective which follows one semester of general introductory astronomy for non-majors. Instead of homework problems, the students complete a sequence of writing assignments of graduated complexity, beginning with simple tasks such as writing abstracts and critiques of assigned readings, and moving on to writing term papers which require literature research and a short science fiction story incorporating accurate depictions of relativistic effects. In Ast 175/275, a ``Journal Club" course for upper-division astronomy majors, students read articles in the professional literature and give short oral presentations to the rest of the class. To build up their understanding of a topic, we work through the ``paper trail" of key papers on topics with exciting recent developments, such as extrasolar planets, gravitational lenses, or gamma-ray bursts. Finally, in a seminar course for first-semester astronomy graduate students (Ast 185C) that broadly addresses professional development issues, I include a practice AAS oral session, with the students giving 5-minute presentations on a journal paper of their choice. This seminar course also examines career paths and employment trends, the peer review process for papers and proposals, professional norms and ethics, and other topics. Syllabi for these and other courses I teach regularly can be found from my home page (http://www.as.utexas.edu/astronomy/people/dinerstein).

  14. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  15. Active Astronomy Roadshow Haiti

    Science.gov (United States)

    Laycock, Silas; Oram, Kathleen; Alabre, Dayana; Douyon, Ralph; UMass Lowell Haiti Development Studies Center

    2016-01-01

    College-age Haitian students working with advisors and volunteers from UMass Lowell in 2015 developed and tested an activity-based K-8 curriculum in astronomy, space, and earth science. Our partner school is located in Les Cayes, Haiti a city where only 65% of children attend school, and only half of those will complete 6th grade. Astronomy provides an accessible and non-intimidating entry into science, and activity-based learning contrasts with the predominant traditional teaching techniques in use in Haiti, to reach and inspire a different cohort of learners. Teachers are predominantly women in Haiti, so part of the effort involves connecting them with scientists, engineers and teacher peers in the US. As a developing nation, it is vital for Haitian (as for all) children to grow up viewing women as leaders in science. Meanwhile in the US, few are aware of the reality of getting an education in a 3rd world nation (i.e. most of the world), so we also joined with teachers in Massachusetts to give US school children a peek at what daily life is like for their peers living in our vibrant but impoverished neighbor. Our Haitian partners are committed to helping their sister-schools with curriculum and educator workshops, so that the overall quality of education can rise, and not be limited to the very few schools with access to resources. We will describe the activites, motivation, and and the lessons learned from our first year of the project.

  16. The Astronomy Workshop

    Science.gov (United States)

    Hamilton, Douglas P.

    2012-05-01

    {\\bf The Astronomy Workshop} (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe a few of the available tools. {\\bf Solar Systems Visualizer}: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. {\\bf Solar System Calculators}: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed. {\\bf Stellar Evolution}: The "Life of the Sun" tool animates the history of the Sun as a movie, showing students how the size and color of our star has evolved and will evolve over billions of years. In "Star Race," the user selects two stars of different masses and watches their evolution in a split-screeen format that emphasizes the great differences in stellar lifetimes and fates.

  17. Making Astronomy Accessible

    Science.gov (United States)

    Grice, Noreen A.

    2011-05-01

    A new semester begins, and your students enter the classroom for the first time. You notice a student sitting in a wheelchair or walking with assistance from a cane. Maybe you see a student with a guide dog or carrying a Braille computer. Another student gestures "hello” but then continues hand motions, and you realize the person is actually signing. You wonder why another student is using an electronic device to speak. Think this can't happen in your class? According to the U.S. Census, one out of every five Americans has a disability. And some disabilities, such as autism, dyslexia and arthritis, are considered "invisible” disabilities. This means you have a high probability that one of your students will have a disability. As an astronomy instructor, you have the opportunity to reach a wide variety of learners by using creative teaching strategies. I will share some suggestions on how to make astronomy and your part of the universe more accessible for everyone.

  18. Ancient Astronomy in Armenia

    Science.gov (United States)

    Parsamian, Elma S.

    2007-08-01

    The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.

  19. Astronomy research in China

    Science.gov (United States)

    Wang, Jingxiu

    Decades of efforts made by Chinese astronomers have established some basic facilities for astronomy observations, such as the 2.16-m optical telescope, the solar magnetic-field telescope, the 13.7-m millimeter-wave radio telescope etc. One mega-science project, the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), intended for astronomical and astrophysical studies requiring wide fields and large samples, has been initiated and funded. To concentrate the efforts on mega-science projects, to operate and open the national astronomical facilities in a more effective way, and to foster the best astronomers and research groups, the National Astronomical Observatories (NAOs) has been coordinated and organizated. Four research centers, jointly sponsored by observatories of the Chinese Academy of Sciences and universities, have been established. Nine principal research fields have received enhanced support at NAOs. They are: large-scale structure of universe, formation and evolution of galaxies, high-energy and cataclysmic processes in astrophysics, star formation and evolution, solar magnetic activity and heliogeospace environment, astrogeodynamics, dynamics of celestial bodies in the solar system and artificial bodies, space-astronomy technology, and new astronomical techniques and methods.

  20. Astronomy Education in Greece

    Science.gov (United States)

    Metaxa, M.

    Basic education is fundamental to higher education and scientific and technological literacy. We can confront the widespread adult ignorance and apathy about science and technology. Astronomy, an interdisciplinary science, enhances students' interest and overcomes educational problems. Three years ago, we developed astronomy education in these ways: 1. Summer School for School Students. (50 students from Athens came to the first Summer School in Astrophysics at the National Observatory, September 2-5, 1996, for lectures by professional astronomers and to be familiarized with observatory instruments. 2. Introducing Students to Research. (This teaches students more about science so they are more confident about it. Our students have won top prizes in European research contests for their studies of objects on Schmidt plates and computations on PCs.) 3. Hands-on Activities. (Very important because they bring students close to their natural environment. Activities are: variable-star observations (AAVSO), Eratosthenes project, solar-eclipse, sunspot and comet studies. 4. Contact with Professional Astronomers and Institutes. (These help students reach their social environment and motivate them as "science carriers". We try to make contacts at astronomical events, and through visits to appropriate institutions.) 5. Internet Programs. (Students learn about and familiarize themselves with their technological environment.) 6. Laboratory exercises. (Students should do science, not just learn about it We introduced the following lab. exercises: supernova remnants, galaxy classification, both from Schmidt plates, celestial sphere.

  1. iSTAR: The International STudy on Astronomy Reasoning

    Science.gov (United States)

    Tatge, Coty B.; Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    This paper reports the first steps taken in the International STudy on Astronomy Reasoning (iSTAR). The iSTAR Project is an attempt to look beyond traditional wisdom and practices in astronomy education, to discover the ways in which cognitive abilities and human culture interact to impact individuals’ understanding of and relationship to astronomy content knowledge. In contrast to many international studies that seek to rank nations by student performance on standardized tests, the iSTAR Project seeks to find ways that culture may unexpectedly enhance performance in astronomy. Using the Test of Astronomy Standards (TOAST) as a reasonable, initial proxy for the content knowledge a well educated person might know in astronomy, the iSTAR team then defined culture as a construct with five components: practices, traditional knowledge, historical and genealogical relationships, place-based knowledge, and language. Given the complexity of this construct, Stage 1 of the project focuses on the cultural component of language, and assumed that prior to the collection of data from students, the process of translating the TOAST could provide valuable expert-based information on the impact of language on astronomy knowledge. As such, the work began with a study of the translation process. For each of the languages used in the testing phase of the iSTAR protocol, a succession of translators and analysts were engaged, including two educated, non-astronomer native speakers, a native speaking astronomer, and a native speaking linguistics expert. Multiple translations were analyzed in order to make relevant meaning of differences in the translations, and provide commentary on the ways in which metaphor, idiom, cultural history are embedded in the language, providing potential advantages in the learning of astronomy. The first test languages were German, Hawaiian, and American Sign Language, and initial findings suggest that each of these languages provide specific advantages

  2. 2011 Astronomy Day at McDonald Observatory

    Science.gov (United States)

    Preston, Sandra; Hemeway, M.; Wetzel, M.

    2012-01-01

    Our philosophy is that everyday is Astronomy Day because the McDonald Observatory's Frank N. Bash Visitors Center is open 362 days a year. So, how did we create a special celebration for the "Astronomy Day” declared by the Astronomical League? During September 26-29 we conducted 20 videoconferences and served 12,559 students with "Astronomy Day” programming. Connect2Texas provides bridging for a network of Texas-based museums and cultural, historical, and scientific organizations that offer educational content to schools throughout the state via videoconferencing. Connect2Texas connected McDonald Observatory to 334 schools; most of these schools were in Texas, but schools in a dozen other states also participated. While most schools had a "view-only" connection, at least 20 of the schools had interactive connections, whereby the students could ask questions of the presenter. Connect2Texas also collects evaluation information from the participating schools that we will use to produce a report for our funders and make modifications to future programs as need be. The videoconferences were offered free of charge. The theme for the 2011 Astronomy Day program was the Year of the Solar System, which aligns with NASA's theme for 2011 and 2012. By aligning with this NASA theme, we could leverage NASA artwork and materials to both advertise and enrich the learning experience. Videoconference materials also included pre- and post-videoconference assessment sheets, an inquiry based activity, and pre- and post-videoconference activities, all of which were made available online. One of the lessons learned from past Astronomy Day videoconferences is that the days the Astronomical League declares as "Astronomy Day” are not always good days for Texas schools to participate. So, we choose an Astronomy Day that meets the needs of Texas schools and our schedule - so any day can be Astronomy Day. 2011 Astronomy Day was made possible by The Meyer-Levy Charitable Trust.

  3. Should nonalcoholic fatty liver disease be included in the definition of metabolic syndrome? A cross-sectional comparison with Adult Treatment Panel III criteria in nonobese nondiabetic subjects

    National Research Council Canada - National Science Library

    Musso, Giovanni; Gambino, Roberto; Bo, Simona; Uberti, Barbara; Biroli, Giampaolo; Pagano, Gianfranco; Cassader, Maurizio

    2008-01-01

    The ability of the Adult Treatment Panel III (ATP III) criteria of metabolic syndrome to identify insulin-resistant subjects at increased cardiovascular risk is suboptimal, especially in the absence of obesity and diabetes...

  4. Introduction. Progress in astronomy: from gravitational waves to space weather.

    Science.gov (United States)

    Thompson, J Michael T

    2008-12-13

    This brief paper introduces and reviews the 'visions of the future' articles prepared by leading young scientists throughout the world for the first of two Christmas 2008 Triennial issues of Phil. Trans. R. Soc. A, devoted, respectively, to astronomy and Earth science. Contributions in astronomy include the very topical gamma-ray bursts, new ideas on stellar collapse and the unusual atmospheres of synchronized planets orbiting nearby stars.

  5. A dictionary of Astronomy for the French Sign Language (LSF)

    Science.gov (United States)

    Proust, Dominique; Abbou, Daniel; Chab, Nasro

    2011-06-01

    Since a few years, the french deaf communauty have access to astronomy at Paris-Meudon observatory through a specific teaching adapted from the French Sign Language (Langue des Signes Françcaise, LSF) including direct observations with the observatory telescopes. From this experience, an encyclopedic dictionary of astronomy The Hands in the Stars is now available, containing more than 200 astronomical concepts. Many of them did not existed in Sign Language and can be now fully expressed and explained.

  6. Experimental Study of a 45-MHz Array for Radio Astronomy

    Science.gov (United States)

    Alvarez, H.; Aparici, J.; May, J.; Olmos, F.

    1994-09-01

    The University of Chile transit radiotelescope is a 528-dipole array operating at 45 MHz. We present a comparison of an experimental study of the antenna radiation pattern with the basic theoretical pattern in three dimensions. We concentrate in the meridian plane diagram since this is particularly difficult to measure for an array like ours. The comparison shows excellent agreement. We have measured several important antenna parameters like the effective area as a function of zenith distance, the orientation of the plane of the array and the pointing accuracy. We include a detailed treatment of these subjects since not much information related to low frequency arrays for radio astronomy can be found in the literature. We discuss the importance of knowing these parameters in the preparation of the 45-MHz Sky Survey under way at the University of Chile Radio Observatory.

  7. Prevention of urinary tract infections with vitamin D supplementation 20,000 IU per week for five years. Results from an RCT including 511 subjects.

    Science.gov (United States)

    Jorde, Rolf; Sollid, Stina T; Svartberg, Johan; Joakimsen, Ragnar M; Grimnes, Guri; Hutchinson, Moira Y S

    2016-01-01

    In observational studies vitamin D deficiency is associated with increased risk of infections, whereas the effect of vitamin D supplementation in randomized controlled trials is non-conclusive. Five hundred and eleven subjects with prediabetes were randomized to vitamin D3 (20,000 IU per week) versus placebo for five years. Every sixth month, a questionnaire on respiratory tract infections (RTI) (common cold, bronchitis, influenza) and urinary tract infection (UTI) was filled in. Mean baseline serum 25-hydroxyvitamin D (25(OH)D) level was 60 nmol/L. Two hundred and fifty-six subjects received vitamin D and 255 placebo. One hundred and sixteen subjects in the vitamin D and 111 in the placebo group completed the five-year study. Eighteen subjects in the vitamin D group and 34 subjects in the placebo group reported UTI during the study (p vitamin D on UTI was unrelated to baseline serum 25(OH)D level. Supplementation with vitamin D might prevent UTI, but confirmatory studies are needed.

  8. Astronomy Enrollments and Degrees: Results from the 2012 Survey of Astronomy Enrollments and Degrees. Focus On

    Science.gov (United States)

    Mulvey, Patrick; Nicholson, Starr

    2014-01-01

    Interest in astronomy degrees in the U.S. remains strong, with astronomy enrollments at or near all-time highs for the 2012-13 academic year. The total number of students taking an introductory astronomy course at a degree-granting physics or astronomy department is approaching 200,000. Enrollments in introductory astronomy courses have been…

  9. Education in Astronomy Through English Programs

    OpenAIRE

    鈴木, 右文

    2012-01-01

    The author is a member of an educational program funded by Kyushu University called “Developing a New Education Program in Studying Astronomy”. The program aims to promote basic knowledge of Science and Technology and refine the social interaction of students. His activities in the 2011 academic year included using a textbook on astrophysics with his English class, arranging a class meeting on astronomy in the Kyushu University summer program held at Pembroke College at the University of Camb...

  10. Pioneers in Astronomy and Space Exploration

    CERN Document Server

    2013-01-01

    The pioneers of astronomy and space exploration have advanced humankind's understanding of the universe. These individuals include earthbound theorists such as Aristotle, Ptolemy, and Galileo, as well as those who put their lives on the line travelling into the great unknown. Readers chronicle the lives of individuals positioned at the vanguard of astronomical discovery, laying the groundwork for space exploration past, present, and yet to come.

  11. The East Asian Regional Office of Astronomy for Development

    Science.gov (United States)

    de Grijs, Richard; Zhang, Ziping; He, Jinhua

    2016-10-01

    At the 2012 General Assembly of the International Astronomical Union (IAU), the Office of Astronomy for Development announced a number of exciting new partnerships to assist with the IAU's decadal strategic plan (2010-2020). These landmark decisions included establishing a new coordinating centre that aims at using astronomy as a tool for development in East Asia. The agreement covers two important functions. One is known as a Regional Node, which entails the coordination of astronomy-for-development activities in countries within the general geographical region of East Asia. The other is known as a Language Expertise Centre which deals with all aspects relating to (mainly) the Chinese language and culture. The impact of the latter may obviously spread well beyond the geographical region to other parts of the world. Here we provide an update of the achievements and aims of the East Asian Office of Astronomy for Development.

  12. Enhancing the Teaching of Astronomy with Science Fiction

    Science.gov (United States)

    Fraknoi, A.

    2004-12-01

    Dozens of scientists and science educators with advanced degrees in science have been writing literate and scientifically reasonable science fiction stories in the last two decades, although these are often drowned out by the din of popular magic teenagers and space battle epics. The paper will give examples of stories and novels with good science, which can be used as a way of making astronomy concepts "come alive" for non-science majors. A list of science fiction authors with astronomy and physics degrees will be included. We will also have examples from a web-site devoted to astronomy in science fiction (see link) that has some 200 brief reviews of stories organized by 40 astronomy topics. We will discuss how instructors are using such stories for classroom and homework assignments.

  13. Astronomy in the Initial Formation of Sciences Teachers

    Science.gov (United States)

    Costa, Samuel; Euzébio, Geison João; Damasio, Felipe

    2016-12-01

    Although astronomy is considered one of the older sciences of mankind, its teaching in basic education is facing problems. It is the school responsibility the dissemination of correct scientific concepts, including those related to Astronomy. This study was conducted at the Federal Institute of Education, Science and Technology of Santa Catarina, Campus Araranguá. In this article, we aimed to present the activities developed to help the formation of teachers, training undergraduate students in Natural Sciences with specialization in Physics to contribute to the dissemination and improvement of the teaching-learning of Astronomy. This paper presents the process and results of the evaluation of that training program. Analyses of the activity from the perspective of the participants are indicated and additional considerations are made regarding its use as a resource for teaching Astronomy and for teacher training.

  14. Astronomy and political theory

    Science.gov (United States)

    Campion, Nicholas

    2011-06-01

    This paper will argue that astronomical models have long been applied to political theory, from the use of the Sun as a symbol of the emperor in Rome to the application of Copernican theory to the needs of absolute monarchy. We will begin with consideration of astral divination (the use of astronomy to ascertain divine intentions) in the ancient Near East. Particular attention will be paid to the use of Newton's discovery that the universe operates according to a single set of laws in order to support concepts of political quality and eighteenth century Natural Rights theory. We will conclude with consideration of arguments that the discovery of the expanding, multi-galaxy universe, stimulated political uncertainty in the 1930s, and that photographs of the Earth from Apollo spacecraft encouraged concepts of the `global village'.

  15. Superconducting detectors in astronomy

    Science.gov (United States)

    Rahman, F.

    2006-08-01

    Radiation detectors based on superconducting phenomena are becoming increasingly important for observational astronomy. Recent developments in this important field, together with relevant background, are described here. After a general introduction to superconductivity and the field of superconductor-based radiation sensors, the main detector types are examined with regard to their physical form, operating principles and principal advantages. All major forms of superconducting detectors used in contemporary research such as tunnelling detectors, mixers, hot-electron bolometers and transition edge sensitive devices are discussed with an emphasis on how more recent developments are overcoming the shortcomings of the previous device generations. Also, discussed are new ideas in superconducting detector technology that may find applications in the coming years.

  16. The Interactive Astronomy Textbook

    Science.gov (United States)

    Fluke, Christopher J.; Barnes, David G.

    We introduce the use of in situ interactive three-dimensional (3-d) figures in digital astronomy textbooks as a means of enhancing student learning. The recent 3-d extensions to the Adobe Portable Document Format (PDF), combined with simple JavaScript, provide new ways to present intrinsically 3-d models, data sets, and instructional diagrams in digital publications. This is an enhancement to the usual method of presenting static, two-dimensional views, or "comic strip" sequences, to indicate changes in viewpoint. Interactive figures provide opportunities for students to undertake active learning while reading a textbook: they are able to explore and uncover the connections between viewpoint, orientation, and the 3-d nature of models and data sets for themselves.

  17. Astronomy for beginners

    CERN Document Server

    Becan, Jeff

    2008-01-01

    Astronomy For Beginners is a friendly and accessible guide to our universe, our galaxy, our solar system and the planet we call home. Each year as we cruise through space on this tiny blue-green wonder, a number of amazing and remarkable events occur. For example, like clockwork, we'll run head-on into asteroid and cometary debris that spreads shooting stars across our skies. On occasion, we'll get to watch the disk of the Moon passing the Sun, casting its shadow on the face of the Earth, and sometimes we'll get to watch our own shadow as it glides across the face of the Moon. The Sun's path w

  18. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  19. Astronomy a visual guide

    CERN Document Server

    Garlick, Mark A

    2004-01-01

    Space has fascinated man and challenged scientists for centuries and astronomy is the oldest and one of the most dynamic of the sciences. Here is a book that will stimulate your curiosity and feed your imagination. Detailed and fascinating text is clearly and richly illustrated with fabulous, vibrant photographs and diagrams. This is a comprehensive guide to understanding and observing the night sky, from distant stars and galaxies to our neighbouring planets; from comets to shooting stars; from eclipses to black holes. With details of the latest space probes, a series of monthly sky maps to provide guidance for the amateur observer and the latest photos from space, this book brings the beauty and wonder of our universe into your living room and will have you reaching for the telescope!

  20. Motivational Didactics Activities for Education of Astronomy in Basic Education

    Science.gov (United States)

    Melo, J.

    2010-03-01

    The present research was carried through with 234 pupils of the State school of Basic Education Mayor Rinaldo Poli located in the city of Guarulhos. In this project it was aspired to use topics of Astronomy with the following objectives: to motivate the pupils in the lessons of Sciences; to search ways so that the learning process would become more significant and also to help to spread out Astronomy in the level of basic education. Although being recommended in the "Parametros Curriculares Nacionais (PCN)", in the "Orientacoes Complementares aos Parametros (PCN+)" and more recently in the "Proposta Curricular do Estado de Sao Paulo", Astronomy is little imparted in the Basic Education. Initially a questionnaire was applied with the intention to verify the previous knowledge of the pupils, which evidenced that, among other things, 18.5% of the pupils of 5th grades knew what Astronomy investigates, whereas only 3.8% of the pupils of 6th grades knew what a planet is, and still 25.5% of the pupils of 8th grades knew how to define the Moon. The intervention work was conducted in the following form: first some Astronomy-related subjects were chosen which the pupils researched and afterwards presented in groups; then they built mockups, using Conceptual Maps to explain this subject and making a work with scales of the stars. After the intervention work the same questionnaire was applied and the index of rightness reached, respectively, the percentages of 63.0%, 39.2% and 68.1%, showing that the learning became significant. It is supposed that Astronomy is important in the process of Education Learning for being the oldest of the sciences, for having a character to multidiscipline, allowing the quarrel of fascinating and interesting subjects as, for example, the space origin of the universe, trips, the existence or non-existence of life in other planets, beyond current subjects as the new technologies.

  1. Astronomy in laboratory

    Science.gov (United States)

    Suzuki, B.

    2006-08-01

    It is not easy to practice astronomical observation in a high school. It is difficult to teach authentic astronomy because real-world conditions cannot be reproduced in the classroom. However, the following ideas produce some interesting experiments. 1. The reappearance experiment of the meteor spectrum. We produced emission spectra by using a gas burner and welding. It can be understood that the luminosity of emission lines varies according to temperature. Furthermore, we mixed in liquid chlorides of Na, Ca, Fe, Sg, Si, etc., in different proportions tomimic different meteor spectra. We then observed the time changes of the luminosity using a video camcorder that we attached to a spectroscope. The spectrum in the experiment closely resembled that of a meteor. 2. The verification of the black-drop phenomenon.Long ago, the black-drop phenomenon became important in the case of Venus's passage between the Earth and the Sun, a transit of Venus. We tried to reproduce this phenomenon by using a small ball painted black, solar light, and an artificial illuminant. The profile of the reproduced image was then checked in detail. We found that this phenomenon depended on the influence of the limb darkening of the Sun, the scintillation of the Earth's atmosphere, and the optical performance of the telescope. Furthermore, we imitated Venus's atmosphere as an additional experiment by applying oil on the surface of the small ball. It resulted in an interesting profile but was not a sufficient experiment. Of course, these experiments are in conditions that are very different from the actual physical conditions. However, we think that they provide a very effective method for enhancing students' interest in astronomy. We are planning other experiments with similar themes.

  2. Interdisciplinary Astronomy Activities

    Science.gov (United States)

    Nerantzis, Nikolaos; Mitrouda, Aikaterini; Reizopoulou, Ioanna; Sidiropoulou, Eirini; Hatzidimitriou, Antonios

    2016-04-01

    On November 9th, 2015, three didactical hours were dedicated to Interdisciplinary Astronomy Activities (http://wp.me/p6Hte2-1I). Our students and their teachers formed three groups and in rotation, were engaged with the following activities: (a) viewing unique images of the Cosmos in the mobile planetarium STARLAB (http://www.planitario.gr/tholos-starlab-classic-standard.html), (b) watching the following videos: Journey to the end of the universe (https://youtu.be/Ufl_Nwbl8xs), Rosetta update (https://youtu.be/nQ9ivd7wv30), The Solar System (https://youtu.be/d66dsagrTa0), Ambition the film (https://youtu.be/H08tGjXNHO4) in the school's library. Students and teachers were informed about our solar system, the Rosetta mission, the universe, etc. and (c) tactile activities such as Meet our home and Meet our neighbors (http://astroedu.iau.org, http://nuclio.org/astroneighbours/resources) and the creation of planets' 3D models (Geology-Geography A' Class Student's book, pg.15). With the activities above we had the pleasure to join the Cosmic Light Edu Kit / International Year of Light 2015 program. After our Interdisciplinary Astronomy Activities, we did a "small" research: our students had to fill an evaluation about their educational gains and the results can be found here http://wp.me/p6Hte2-2q. Moreover, we discussed about Big Ideas of Science (http://wp.me/p3oRiZ-dm) and through the "big" impact of the Rosetta mission & the infinity of our universe, we print posters with relevant topics and place them to the classrooms. We thank Rosa Doran (Nuclio - President of the Executive Council) for her continuous assistance and support on innovative science teaching proposals. She is an inspiration.

  3. Astronomy Popularization via Sci-fi Movies

    Science.gov (United States)

    Li, Qingkang

    2015-08-01

    It is astronomers’ duty to let more and more young people know a bit astronomy and be interested in astronomy and appreciate the beauty and great achievements in astronomy. One of the most effective methods to popularize astronomy to young people nowadays might be via enjoying some brilliant sci-fi movies related to astronomy with some guidance from astronomers. Firstly, we will introduce the basic information of our selective course “Appreciation of Sci-fi Movies in Astronomy” for the non-major astronomy students in our University, which is surely unique in China, then we will show its effect on astronomy popularization based on several rounds of teaching.

  4. The Profile of Astronomy Amateurs

    Science.gov (United States)

    Czart, K.

    Presentation of questionnaires carried out on Polish Astronomy Portal websites. There was over 80 questionnaires during 2 years period. As most part of users visiting this website are astronomy amateurs, we can assume questionnaires give a picture of astronomy amateurs community. Questionnaires can be divided into four main thematical groups: profile of users (age, sex, activities), what do they think about controversial astronomical problems (is Pluto a planet?), what are their likings (favorit star, most beatiful planet) and “business” questions (how did they find our website?, how many astronomical services do they visit regularly?).

  5. Should nonalcoholic fatty liver disease be included in the definition of metabolic syndrome? A cross-sectional comparison with Adult Treatment Panel III criteria in nonobese nondiabetic subjects.

    Science.gov (United States)

    Musso, Giovanni; Gambino, Roberto; Bo, Simona; Uberti, Barbara; Biroli, Giampaolo; Pagano, Gianfranco; Cassader, Maurizio

    2008-03-01

    The ability of the Adult Treatment Panel III (ATP III) criteria of metabolic syndrome to identify insulin-resistant subjects at increased cardiovascular risk is suboptimal, especially in the absence of obesity and diabetes. Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance and is emerging as an independent cardiovascular risk factor. We compared the strength of the associations of ATP III criteria and of NAFLD to insulin resistance, oxidative stress, and endothelial dysfunction in nonobese nondiabetic subjects. Homeostasis model assessment of insulin resistance (HOMA-IR) >2, oxidative stress (nitrotyrosine), soluble adhesion molecules (intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin), and circulating adipokines (tumor necrosis factor-alpha, leptin, adiponectin, and resistin) were cross-sectionally correlated to ATP III criteria and to NAFLD in 197 unselected nonobese nondiabetic subjects. NAFLD more accurately predicted insulin resistance than ATP III criteria: sensitivity 73 vs. 38% (P = 0.0001); positive predictive value: 81 vs. 62% (P = 0.035); negative predictive value 87 vs. 74% (P = 0.012); positive likelihood ratio 4.39 vs. 1.64 (P = 0.0001); and negative likelihood ratio 0.14 vs. 0.35 (P = 0.0001). Adding NAFLD to ATP III criteria significantly improved their diagnostic accuracy for insulin resistance. Furthermore, NAFLD independently predicted HOMA-IR, nitrotyrosine, and soluble adhesion molecules on logistic regression analysis; the presence of NAFLD entailed more severe oxidative stress and endothelial dysfunction, independent of adiposity or any feature of the metabolic syndrome in insulin-resistant subjects. NAFLD is more tightly associated with insulin resistance and with markers of oxidative stress and endothelial dysfunction than with ATP III criteria in nonobese nondiabetic subjects and may help identify individuals with increased cardiometabolic risk in this population.

  6. Introducing Astronomy Related Research into Non-Astronomy Courses

    Science.gov (United States)

    Walker, Douglas

    The concern over the insufficient number of students choosing to enter the science and engineering fields has been discussed and documented for years. While historically addressed at the national level, many states are now recognizing that the lack of a highly-skilled technical workforce within their states' borders has a significant effect on their economic health. Astronomy, as a science field, is no exception. Articles appear periodically in the most popular astronomy magazines asking the question, "Where are the young astronomers?" Astronomy courses at the community college level are normally restricted to introductory astronomy I and II level classes that introduce the student to the basics of the night sky and astronomy. The vast majority of these courses is geared toward the non-science major and is considered by many students to be easy and watered down courses in comparison to typical physics and related science courses. A majority of students who enroll in these classes are not considering majors in science or astronomy since they believe that science is "boring and won't produce any type of career for them." Is there any way to attract students? This paper discusses an approach being undertaken at the Estrella Mountain Community College to introduce students in selected mathematics courses to aspects of astronomy related research to demonstrate that science is anything but boring. Basic statistical techniques and understanding of geometry are applied to a large virgin data set containing the magnitudes and phase characteristics of sets of variable stars. The students' work consisted of developing and presenting a project that explored analyzing selected aspects of the variable star data set. The description of the data set, the approach the students took for research projects, and results from a survey conducted at semester's end to determine if student's interest and appreciation of astronomy was affected are presented. Using the data set provided, the

  7. Capturing Public Interest in Astronomy through Art and Music

    Science.gov (United States)

    Sharma, M.; Sabraw, J.; Salgado, J. F.; Statler, T.; Summers, F.

    2008-11-01

    This is a summary of our 90-minute International Year of Astronomy (IYA) symposium workshop about engaging greater public interest in astronomy during the International Year of Astronomy 2009 through art and music. The session focused on: (i) plans for visually interesting and challenging astronomy presentations to connect with an audience at venues such as museums, concert halls, etc that might be apprehensive about science but open to creative experiences; (ii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations; (iii) balancing scientific accuracy with artistic license; and (iv) how scientists, Education and Public Outreach (EPO) professionals, artists, musicians et al. can bridge the ``two cultures''---starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters shared with the EPO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of astronomical images that can accompany live performances of Holst's The Planets and Mussorgsky's Pictures at an Exhibition; and SCALE, a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.

  8. Music and Astronomy Under the Stars - 2009 Update

    Science.gov (United States)

    Lubowich, Donald A.

    2010-01-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded outreach program at parks during and after concerts and family events - a Halloween Spooky Garden Walk. While there have been many outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience - music lovers who attend summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500 - 16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where 5000 people participated in astronomy activities. The Amateur Observers' Society of NY assisted with the NY concerts and the Springfield STARS club assisted at Tanglewood. 1500 people looked through telescopes at the Halloween program (6000 saw the posters). In 2009 over 15,000 people participated in these astronomy activities which were attended by

  9. Management of the Unified Astronomy Thesaurus

    Science.gov (United States)

    Frey, K.; Erdmann, C.; Accomazzi, A.; Rubin, L.; Biemesderfer, C.; Gray, N.; Soles, J.

    2015-04-01

    The Unified Astronomy Thesaurus (UAT) is an open, interoperable, and community-supported thesaurus of astronomical and astrophysical concepts and their relationships. Management of the UAT is based on a community-supported approach. This will ensure that the thesaurus stays current by allowing users to suggest an addition or revision. These suggestions will then be subjected to a thorough expert review process before being accepted for addition to the UAT or rejected. Many leading astronomical institutions, professional associations, journal publishers, learned societies, and data repositories support the UAT as a standard astronomical terminology.

  10. A Brief History of Radio Astronomy in the USSR A Collection of Scientific Essays

    CERN Document Server

    Salomonovich, A; Samanian, V; Shklovskii, I; Sorochenko, R; Troitskii, V; Kellermann, K; Dubinskii, B; Kaidanovskii, N; Kardashev, N; Kobrin, M; Kuzmin, A; Molchanov, A; Pariiskii, Yu; Rzhiga, O

    2012-01-01

    This translation from Russian makes the history of radio astronomy in the USSR available in the English language for the first time. The book includes descriptions of the antennas and instrumentation used in the USSR, the astronomical discoveries, as well as interesting personal backgrounds of many of the early key players in Soviet radio astronomy. A Brief History of Radio Astronomy in the USSR is a collection of memoirs recounting an interesting but largely still dark era of Soviet astronomy. The arrangement of the essays is determined primarily by the time when radio astronomy studies began at the institutions involved. These include the Lebedev Physical Institute (FIAN), Gorkii State University and the affiliated Physical-Technical Institute (GIFTI), Moscow State University Sternberg Astronomical institute (GAISH) and Space Research Institute (IKI), the Department of Radio Astronomy of the Main Astronomical Observatory in Pulkovo (GAO), Special Astrophysical Observatory (SAO), Byurakan Astrophysical Obse...

  11. Astronomy Outreach for Special Needs Children

    Science.gov (United States)

    Lubowich, D.

    2008-06-01

    While there are many outreach programs for the public and for children, there are few programs for special needs children. I describe a NASA-STScI-IDEAS funded outreach program I created for children using a telescope (including remote and robotic observations), hands-on astronomy demonstrations (often with edible ingredients). The target audience is seriously ill children with special medical needs and their families who are staying at the Long Island Ronald McDonald House in conjunction the children's surgery and medical treatments at local hospitals. These educational activities help children and their families learn about astronomy while providing a diversion to take their minds off their illness during a stressful time. A related program for hospitalized children has been started at the Hagedorn Pediatric Inpatient Center at Winthrop University Hospital.

  12. Astronomy for Development: Path to Global Impact

    Science.gov (United States)

    Venugopal, R.; Govender, K.; Grant, E.

    2017-07-01

    The IAU established its Office of Astronomy for Development in 2011 in Cape Town, South Africa, in partnership with the South African National Research Foundation, and hosted at the South African Astronomical Observatory. The primary purpose of the office has been to implement the IAU's decadal strategic plan which aims to use astronomy to stimulate education and development globally. Since its inception there have been nine regional offices established, including one in the Latin American region which focuses on Andean countries. Following a very positive external review in 2015, as well as a supportive resolution by the 2015 IAU General Assembly to continue the work of the office, the OAD is now in a position to move beyond the setting up of structures to a more intensive effort aimed at measuring and delivering programmes with broader global impact.

  13. Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast

    DEFF Research Database (Denmark)

    Nilsson, Anne C; Ostman, Elin M; Holst, Jens Juul

    2008-01-01

    tolerance and related variables after a subsequent standardized breakfast in healthy subjects (n = 15). At breakfast, blood was sampled for 3 h for analysis of blood glucose, serum insulin, serum FFA, serum triacylglycerides, plasma glucagon, plasma gastric-inhibitory peptide, plasma glucagon-like peptide-1...... (GLP-1), serum interleukin (IL)-6, serum IL-8, and plasma adiponectin. Satiety was subjectively rated after breakfast and the gastric emptying rate (GER) was determined using paracetamol as a marker. Breath hydrogen was measured as an indicator of colonic fermentation. Evening meals with barley kernel......-kernel bread compared with WWB. Breath hydrogen correlated positively with satiety (r = 0.27; P metabolic risk variables at breakfast...

  14. The Beginnings of Australian Radio Astronomy

    Science.gov (United States)

    Sullivan, Woodruff T.

    The early stages of Australian radio astronomy, especially the first decade after World War II, are described in detail. These include the transition of the CSIRO Radiophysics Laboratory, under the leadership of Joseph Pawsey and Taffy Bowen, from a wartime laboratory in 1945 to, by 1950, the largest and one of the two most important radio astronomy groups in the world (with the Cavendish Laboratory at Cambridge University). The initial solar investigations are described, including discovery of the hot corona and development of the sea-cliff interferometer. During this same period painstaking `radio star' observations by John Bolton and colleagues led to the first suggested optical identifications of Taurus-A (the Crab Nebula), Centaurus-A (NGC 5128), and Virgo-A (M87). The factors that led to the extraordinary early success of the Radiophysics Laboratory are analyzed in detail, followed by discussion of how the situation changed significantly in the second decade of 1955-1965. Finally, the development of major Australian instruments, from the Parkes Radio Telescope (1961) to the Australia Telescope (1988), is briefly presented. This chapter is a direct reprint of the following research paper: Sullivan, W., 2005. The beginnings of Australian radio astronomy. Journal of Astronomical History and Heritage, 8, 11-32.

  15. Essays on medieval computational astronomy

    CERN Document Server

    Bergón, José Chabás

    2014-01-01

    In Essays on Medieval Computational Astronomy the authors provide examples of original and intelligent approaches and solutions given by medieval astronomers to the problems of their discipline, mostly presented in the form of astronomical tables.

  16. From astronomy to data science

    Science.gov (United States)

    Rodriguez Zaurín, Javier

    2018-01-01

    After almost ten years in academia I took one of the best decisions of my life: to leave it. This is my experience transitioning from astronomy to data science in search of a more open, fast-paced working environment.

  17. Pondering astronomy's perplexingly preposterous propositions

    Science.gov (United States)

    Slater, Tim

    2017-12-01

    Astronomy is one of those ideas that naturally makes one wonder. Questions of how big? how far? how many? and how long? are just a few ideas that naturally present themselves when one contemplates the night sky and the universe. Despite astronomy's inherent ability to captivate students' interest, even master teachers need an evolving toolkit of innovative strategies to intellectually engage students, particularly in the domain of critical thinking.

  18. Bibliometric Evaluation of Finnish Astronomy

    Science.gov (United States)

    Isaksson, E.

    2007-10-01

    Finnish astronomy publishing provides us with an interesting data sample. It is small but not too small: approximately one thousand articles have been published in a decade. There are only four astronomy institutes to be compared. An interesting paradox also emerges in the field: while Finnish science assessments usually value highly the impact of scientific publishing, no serious evaluations using real bibliometric data have been made. To remedy this, a comprehensive ten-year database of refereed papers was collected and analyzed.

  19. National Astronomy Day: Bringing the Universe to Your Students

    Science.gov (United States)

    Fendrich, Jean; Brown, Mark

    2012-01-01

    How do teachers help students realize their place in the universe? How do they teach the relationship among the Earth, Moon, stars, and galaxies during daylight hours? Most teachers assume that astronomy is a difficult subject to teach in the classroom and that without a planetarium little can be learned. In this article, the authors discuss…

  20. Regulations and Ethical Considerations for Astronomy Education Research

    Science.gov (United States)

    Brogt, Erik; Dokter, Erin; Antonellis, Jessie

    2007-01-01

    In this article, we briefly outline and discuss the legal and ethical ramifications of doing astronomy education research, with an emphasis on the practical issues that researchers have to keep in mind when engaging in, and publishing about, research that involves human subjects.

  1. Building a Successful Teachers' Workshop in Astronomy & Astrophysics

    Science.gov (United States)

    Smecker-Hane, T. A.; Thornton, C. E.

    2005-12-01

    We discuss the Teachers' Workshop in Astronomy & Astrophysics, a 2-day long summer workshop we designed to aid K-12 grade teachers in incorporating astronomy and astrophysics into their curricula. These workshops are part of a faculty-led outreach program entitled Outreach in Astronomy & Astrophysics with the UCI Observatory, funded by an NSF FOCUS grant to the University of California, Irvine. Approximately 20 teachers from the Compton, Newport/Mesa and Santa Ana Unified School Districts attend each workshop. Our teachers realize that astronomy captures the imagination of their students, and thus lessons in astronomy can very effectively convey a number of challenging math and science concepts. Our workshop is designed to give teachers the content and instruction needed to achieve that goal. Because only a small fraction of teachers have taken a college astronomy course, an important component of the workshop is lectures on: (1) the motion of objects in the night sky, moon phases and the seasons, (2) the solar system, (3) the physics of light, and (4) interesting applications such as searching for planets around other stars and charting the expansion history of the Universe. The second important component of the workshop is the kit of material each teacher receives, which includes a introductory astronomy textbook, planetarium software, and the ASP's "Universe at Your Fingertips" and "More Universe at Your Fingertips", etc.. The latter two books give teachers many examples of creative hands-on activities and experiments they can do with their classes and instruction on how to build a coherent curriculum for their particular grade level. We also introduce teachers to Contemporary Laboratory Exercises in Astronomy (CLEA), a suite of computer lab exercises that can be used effectively in high school physics classes. For more information, see http://www.physics.uci.edu/%7Eobservat/#e&o. Funding provided by NSF grant EHR-0227202 (PI: Ronald Stern).

  2. Evolution of Scholarly Publishing and Library Services in Astronomy Its Impact, Challenges, and Opportunities

    Science.gov (United States)

    Wesley, Hema; Sheshadri, Geetha

    2016-10-01

    Scholarly publishing and its procedures have evolved rapidly, forcefully, and incredibly. Technical advances in the production and promotion of science content have dramatically augmented the visibility and reach, deepened the impact and intensified the thrust of science journal content. These changes range from checking text on perforated tapes to pit stop; from hot metal types to CTP; and from Gutenberg to colour digital printers. Intrinsic and inextricable to this revolutionary aspect of evolution in scholarly publishing is the evolution of library services in astronomy which catapulted library resources from preprints on shelves to customised digital repositories and from communicating observational data through postal telegrams to Tablets. What impact does this unique blend of revolutionary advances have on science and society, what are the consequent challenges, and what are the opportunities that can metamorphose from challenges inherent in the power and potential of the `published word'? The perspectives expressed in this paper stem from learning experiences of the authors at the Indian Academy of Sciences, publishers of ten science journals including the Journal of Astrophysics and Astronomy, and at the Raman Research Institute Library (in which Astronomy is one of the core subjects for research)

  3. Astronomy at the Market

    Science.gov (United States)

    Roten, Robert; Constantin, A.; Christensen, E.; Dick, E.; Lapolla, J.; Nutter, A.; Corcoran, J.; DiDomenico, N.; Eskridge, B.; Saikin, A.

    2014-01-01

    We present here an energetic grass-roots outreach program run entirely by undergraduate physics and astronomy majors at James Madison University. Our "Team Awestronomy" takes Astronomy out to the Market, literally. Once a month, for eight months during the academic year, the group sets up a “scientific corner” at the Harrisonburg Farmers Market, offering people the chance to meet with astrophysicists (in the making) and discuss science. Our group members wear t-shirts with simple messages like “Ask me about the Sun,” “...about Black Holes and Mega-Masers” or “...about Big Bang” that initiate the dialog. We help our audience with observations of solar activity through our department’s Coronado telescope equipped with a safe H-alpha filter, sunspotters, and the incredibly simple yet durable and accurate handheld (Project Star) spectrometers, and invite them to the free Saturday Planetarium shows and the star parties hosted by our department on the JMU campus. The team is also prepared with a suite of fun activities aimed particularly at K-5 kids, e.g., building (and eating, after investigating out-gassing properties of) ”dirty comets,” making craters (in pans with flour or sand) and testing how different types of impactors (pebbles, ping-pong balls or even crumpled aluminum foil) affect crater formation, and demonstrations of shock wave created in supernova explosions. The main goals of this outreach program are: 1) to illustrate to people of all ages that science is a fun, creative, and exciting process; 2) to empower people to be curious and to ask questions; 3) to demonstrate that science is a viable career path chosen by many diverse individuals; and 4) to nurture a sense of wonder and awe for the Universe. While this outreach program is aimed at a very general audience, of an extremely wide range, we expect to produce a significant impact on K-12 students in general and in particular on the home-schooled kids. There is a relatively high

  4. Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast.

    Science.gov (United States)

    Nilsson, Anne C; Ostman, Elin M; Holst, Jens J; Björck, Inger M E

    2008-04-01

    Low-glycemic index (GI) foods and foods rich in whole grain are associated with reduced risk of type 2 diabetes and cardiovascular disease. We studied the effect of cereal-based bread evening meals (50 g available starch), varying in GI and content of indigestible carbohydrates, on glucose tolerance and related variables after a subsequent standardized breakfast in healthy subjects (n = 15). At breakfast, blood was sampled for 3 h for analysis of blood glucose, serum insulin, serum FFA, serum triacylglycerides, plasma glucagon, plasma gastric-inhibitory peptide, plasma glucagon-like peptide-1 (GLP-1), serum interleukin (IL)-6, serum IL-8, and plasma adiponectin. Satiety was subjectively rated after breakfast and the gastric emptying rate (GER) was determined using paracetamol as a marker. Breath hydrogen was measured as an indicator of colonic fermentation. Evening meals with barley kernel based bread (ordinary, high-amylose- or beta-glucan-rich genotypes) or an evening meal with white wheat flour bread (WWB) enriched with a mixture of barley fiber and resistant starch improved glucose tolerance at the subsequent breakfast compared with unsupplemented WWB (P carbohydrates of the evening meal may affect glycemic excursions and related metabolic risk variables at breakfast through a mechanism involving colonic fermentation. The results provide evidence for a link between gut microbial metabolism and key factors associated with insulin resistance.

  5. Contextualization of Physics and Astronomy Through Nature

    Science.gov (United States)

    Dogan, Yasemin; Gurel, Z.

    2010-01-01

    This thesis focuses on the need for enriched learning environments in science education through the integrated setting of a physics course that is included in the training program for physics teachers. The participants are researchers, prospective physics teachers, civil defence volunteers and astronomers as collaborators. In this course an approach is adopted to incorporate indoor and outdoor settings in the same process to support one another with the purpose of contextualizing physics through nature. In the heart of the course is experience and observation, particularly in nature, in the form of a residential camp. Nature is a setting where students are faced with the sky and a telescope and do sky observations throughout the night. The part of the course involving astronomy is based on this engagement with the problems that arise from the topic of sky and telescope and are brought into the class in ill-structured form as a result of experience and observation. Within this thesis, the data gathered in two consecutive years, 2008 and 2009, are evaluated qualitatively. The problems were formed around a core experience but with the same core experience, problems varied from year to year depending on the human factor within the experience, namely the different characteristics of different people in different conditions, and environmental factors; geography and weather conditions, and the increasing experience of the researchers. Furthermore IYA2009 was also effective on the program of the course in 2009. Through this thesis prospective physics teachers’ participation in astronomy was broadened and it resulted in the formation of new knowledge, better understanding and led to the advancement of the use of astronomy in physics education. It is consistent with the inclusion of astronomy in new secondary and high school physics curriculum in our country as well.

  6. Astronomy in India a historical perspective

    CERN Document Server

    2014-01-01

    India has a strong and ancient tradition of astronomy, which seamlessly merges with the current activities in Astronomy and Astrophysics in the country. While the younger generation of astronomers and students are reasonably familiar with the current facilities and the astronomical research, they might not have an equally good knowledge of the rich history of Indian astronomy. This particular volume, brought out as a part of the Platinum Jubilee Celebrations of Indian National Science Academy, concentrates on selected aspects of historical development of Indian astronomy in the form of six invited chapters. Two of the chapters – by Balachandra Rao and M.S. Sriram – cover ancient astronomy and the development of calculus in the ancient Kerela text Yuktibhasa. The other four chapters by B.V. Sreekantan, Siraj Hasan, Govind Swarup and Jayant Narlikar deal with the contemporary history of Indian astronomy covering space astronomy, optical astronomy, radio astronomy and developments in relativistic astrophysic...

  7. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  8. Large Databases in Astronomy

    Science.gov (United States)

    Szalay, Alexander S.; Gray, Jim; Kunszt, Peter; Thakar, Anirudha; Slutz, Don

    The next-generation astronomy digital archives will cover most of the sky at fine resolution in many wavelengths, from X-rays through ultraviolet, optical, and infrared. The archives will be stored at diverse geographical locations. The intensive use of advanced data archives will enable astronomers to explore their data interactively. Data access will be aided by multidimensional spatial and attribute indices. The data will be partitioned in many ways. Small tag indices consisting of the most popular attributes will accelerate frequent searches. Splitting the data among multiple servers will allow parallel, scalable I/O and parallel data analysis. Hashing techniques will allow efficient clustering, and pair-wise comparison algorithms that should parallelize nicely. Randomly sampled subsets will allow debugging otherwise large queries at the desktop. Central servers will operate a data pump to support sweep searches touching most of the data. The anticipated queries will require special operators related to angular distances and complex similarity tests of object properties, like shapes, colors, velocity vectors, or temporal behaviors. These issues pose interesting data management challenges.

  9. Grab 'n' go astronomy

    CERN Document Server

    English, Neil

    2014-01-01

      Like everyone else, most amateur astronomers live busy lives. After a long day, the last thing you want as an observer is to have to lug out a large telescope and spend an hour getting it ready before it can be used. Maybe you are going somewhere sure to have dark skies, but you don’t necessarily want astronomy to dominate the trip. Or you are not quite committed to owning a large telescope, but curious enough to see what a smaller, portable setup can accomplish. These are times when a small “grab ’n’ go” telescope, or even a pair of binoculars, is the ideal in­strument. And this book can guide you in choosing and best utilizing that equipment.   What makes a telescope fall into the “grab ’n’ go” category? That’s easy – speed of setting up, ease of use, and above all, portability. This ambitious text is dedicated to those who love to or – because of their limited time – must observe the sky at a moment’s notice. Whether observing from the comfort of a backyard or while on busi...

  10. Postprandial effects of test meals including concentrated arabinoxylan and whole grain rye in subjects with the metabolic syndrome: a randomised study.

    Science.gov (United States)

    Hartvigsen, M L; Lærke, H N; Overgaard, A; Holst, J J; Bach Knudsen, K E; Hermansen, K

    2014-05-01

    Prospective studies have shown an inverse relationship between whole grain consumption and the risk of type 2 diabetes, where short chain fatty acids (SCFA) may be involved. Our objective was to determine the effect of isolated arabinoxylan alone or in combination with whole grain rye kernels on postprandial glucose, insulin, free fatty acids (FFA), gut hormones, SCFA and appetite in subjects with the metabolic syndrome (MetS). Fifteen subjects with MetS participated in this acute, randomised, cross-over study. The test meals each providing 50 g of digestible carbohydrate were as follows: semolina porridge added concentrated arabinoxylan (AX), rye kernels (RK) or concentrated arabinoxylan combined with rye kernels (AXRK) and semolina porridge as control (SE). A standard lunch was served 4 h after the test meals. Blood samples were drawn during a 6-h period, and appetite scores and breath hydrogen were assessed every 30 min. The AXRK meal reduced the acute glucose (P=0.005) and insulin responses (P<0.001) and the feeling of hunger (P=0.005; 0-360 min) compared with the control meal. The AX and AXRK meals increased butyrate and acetate concentrations after 6 h. No significant differences were found for the second meal responses of glucose, insulin, FFA, glucagon-like peptide-1 or ghrelin. Our results indicate a stimulatory effect of arabinoxylan on butyrate and acetate production, however, with no detectable effect on the second meal glucose response. It remains to be tested in a long-term study if a beneficial effect on the glucose response of the isolated arabinoxylan will be related to the SCFA production.

  11. Teaching Astronomy in Extracurricular Study Groups of Armenia

    Science.gov (United States)

    Khachatryan, Mher; Grigoryan, Avetik

    2016-12-01

    The report presents the history of activity of Extracurricular Study Groups of Ar¬menia teaching astronomy and related subjects. It mainly refers to the Aerospace Club founded in 1988, which has long been acting as an officially unre¬gis¬tered, but efficiently performing non-governmental organization - Armenian Youth Ae¬ro¬space Society. The Club teaches, provides a truly scientific view of the world, advocates astronomy and other scientific and technical areas, provides interesting lectures and ar¬ticles to schools and mass media, arranges seminars and meetings with renowned experts, publishes scientific ar¬ticles, manuals, books, puts forward important scientific and techno-logical problems and offer students to work together on them, seek for solutions and develop possible appli¬ca¬tions. All this is aimed at maintaining and further development of leading positions of Armenia's scientific potential, particularly in astronomy.

  12. Southern Africa Regional Office of Astronomy for Development: A New Hub for Astronomy for Development

    Science.gov (United States)

    Siseho Mutondo, Moola

    2015-08-01

    A new Astronomy for Development hub needs innovative tools and programs. SAROAD is developing exciting tools integrating Raspberry Pi® technology to bring cost-effective astronomy content to learning centres. SAROAD would also like to report achievements in realising the IAU's strategic plan. In order to manage, evaluate and coordinate regional IAU capacity building programmes, including the recruitment and mobilisation of volunteers, SAROAD has built an intranet that is accessible to regional members upon request. Using this resource, regional members can see and participate in regional activities. This resource also forms the foundation for closer collaboration between SAROAD member countries. SAROAD has commenced with projects in the three Task Force areas of Universities and Research, Children and Schools and Public Outreach. Under the three Task Force areas, a total of seven projects have commenced in Zambia. A further two projects involve the collaboration of Zambia and other regional member countries in order to foster engagement with important regional astronomy facilities (e.g. SKA). SAROAD has identified the IAU’s International Year of Light and a starting point for offering regional support for IAU-endorsed global activities. SAROAD has set up a hub dedicated to regional events and activities about the International Year of Light. SAROAD has a database of regional authorities to enable contact with the region's decision makers and experts. SAROAD will hold an annual event which brings forum for astronomy for development. The creation of the database and the SAROAD Road show is a first step towards this goal. The SAROAD website has helped to advertise upcoming events for astronomy development and education; it is used to provide advice, guidance and information for astronomers in all countries in the Southern Africa. Fundraising is the primary goal for SAROAD in 2015 towards financial self-sufficiency by 2020. We report on the methods that work best

  13. New Technology Lunar Astronomy Mission

    Science.gov (United States)

    Chen, P. C.; Oliversen, R. J.; Barry, R. K.; Romeo, R.; Pitts, R.; Ma, K. B.

    1995-12-01

    A scientifically productive Moon-based observatory can be established in the near term (3-5 years) by robotic spacecraft. Such a project is affordable even taking into account NASA's currently very tight budget. In fact the estimated cost of a lunar telescope is sufficiently low that it can be financed by private industry, foundations, or wealthy individuals. The key factor is imaginative use of new technologies and new materials. Since the Apollo era, many new areas of space technology have been developed in the US by NASA, the military, academic and industry sectors, ESA, Japan, and others. These include ultralite optics, radiation tolerant detectors, precision telescope drives incorporating high temperature superconductors, smart materials, active optics, dust and thermal control structures, subminiature spectrometers, tiny radio transmitters and receivers, small rockets, innovative fuel saving trajectories, and small precision landers. The combination of these elements makes possible a lunar observatory capable of front line astrophysical research in UV-Vis-IR imaging, spectrometry, and optical interferometry, at a per unit cost comparable to that of Small Explorer (SMEX) class missions. We describe work in progress at NASA GSFC and elsewhere, applications to other space projects, and spinoff benefits to ground-based astronomy, industry, and education.

  14. Starship Asterisk: APOD and General Astronomy Discussion Forum

    Science.gov (United States)

    Nemiroff, Robert J.

    2011-01-01

    A main discussion venue for the popular Astronomy Picture of the Day (APOD) website has been recently redesigned and upgraded. The online bulletin board is directly linked from the bottom of recent APODs served from http://apod.nasa.gov/ . Formerly known as "The Asterisk," the site's new design is called "Starship Asterisk" and now declares its forums to be places on a starship, with the current APOD considered as appearing on the main view screen on the Bridge. A central "mission" of Starship Asterisk is to support APOD in various ways. Toward this end, the Bridge forum exists primarily for the (archived) discussion of that day's APOD, the Observation Deck forum facilitates APOD image submissions, and the Library creates a forum where no student question about astronomy is considered to be too easy or too hard. Additionally, Starship Asterisk now includes an astronomy news-oriented links forum titled the Communications Center, a citizen science-oriented links collection called the Science Labs, and classrooms including a free online, textbook-free Astro 101 course, taught by the author, complete with video lectures and powerpoint slides. Typically, over 1,000 astronomy enthusiasts will browse Starship Asterisk on any given day. Although the vast majority of readers prefer to browse anonymously, the site has now garnered over 60,000 posts. A small but dedicated group of volunteer "officers" administer the bulletin board, answer questions about astronomy from curious APOD readers, and openly discuss various astronomy topics, frequently with intended humor. Perhaps surprisingly, the majority of volunteer officers tend NOT to be professional astronomers, but typically quite knowledgeable retirees exercising a lifelong interest in astronomy.

  15. Critical Issues in the Philosophy of Astronomy and Cosmology

    Science.gov (United States)

    Dick, Steven J.

    2016-01-01

    Although the philosophy of science and of specific sciences such as physics, chemistry, and biology are well-developed fields with their own books and journals, the philosophy of astronomy and cosmology have received little systematic attention. At least six categories of problems may be identified in the astronomical context: 1) the nature of reasoning, including the roles of observation, theory, simulation, and analogy, as well as the limits of reasoning, starkly evident in the anthropic principle, fine-tuning, and multiverse controversies; 2) the often problematic nature of evidence and inference, especially since the objects of astronomical interest are for the most part beyond experiment and experience;3) the influence of metaphysical preconceptions and non-scientific worldviews on astronomy, evidenced, for example in the work of Arthur S. Eddington and many other astronomers; 4) the epistemological status of astronomy and its central concepts, including the process of discovery, the problems of classification, and the pitfalls of definition (as in planets); 5) the role of technology in shaping the discipline of astronomy and our view of the universe; and 6) the mutual interactions of astronomy and cosmology with society over time. Discussion of these issues should draw heavily on the history of astronomy as well as current research, and may reveal an evolution in approaches, techniques, and goals, perhaps with policy relevance. This endeavor should also utilize and synergize approaches and results from philosophy of science and of related sciences such as physics (e.g. discussions on the nature of space and time). Philosophers, historians and scientists should join this new endeavor. A Journal of the Philosophy of Astronomy and Cosmology (JPAC) could help focus attention on their studies.

  16. Physics and astronomy of the Moon

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Physics and Astronomy of the Moon focuses on the application of principles of physics in the study of the moon, including perturbations, equations, light scattering, and photometry. The selection first offers information on the motion of the moon in space and libration of the moon. Topics include Hill's equations of motion, non-solar perturbations, improved lunar ephemeris, optical and physical libration of the moon, and adjustment of heliometric observations of the moon's libration. The text then elaborates on the dynamics of the earth-moon system, photometry of the moon, and polarization of

  17. Astronomy cool women in space

    CERN Document Server

    Yasuda, Anita

    2015-01-01

    Head outside and look up. What do you see? At night you might see stars, the moon, the Milky Way, and planets! During the day all these things will still be there, but they'll be hidden by the bright light of the sun. Astronomy is the study of celestial objects and what's beyond the nebulous boundaries of space. In Astronomy: Cool Women in Space, young readers will be inspired by stories of women who have made great strides in a field that takes courage, persistence, and creativity to pursue. Most people have heard of Carl Sagan and Stephen Hawking, but have you heard of Maria Mitchell or Caroline Herschel? For many decades, female astronomers have been defining the field by making discoveries that changed the human relationship with space. Astronomy: Cool Women in Space will introduce young readers to three women who are bringing the science of astronomy forward and inspiring the next generation of astronomers. The primary sources, essentials questions, and knowledge connections within Astronomy: Cool Women ...

  18. Women's and men's career choices in astronomy and astrophysics

    Science.gov (United States)

    Ivie, Rachel; White, Susan; Chu, Raymond Y.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] The Longitudinal Study of Astronomy Graduate Students (LSAGS) arose from the 2003 Women in Astronomy Conference, where it was noted that a majority of young members of the American Astronomical Society were women. The astronomy community wishes to make every effort to retain young women in astronomy, so they commissioned a longitudinal study to be conducted that would pinpoint the factors that contribute to retention in general, with a focus on differences between women and men. The LSAGS follows a cohort of people who were graduate students in astronomy or astrophysics during 2006-07. The first survey was conducted during 2007-08 and the second during 2012-13. The analysis presented in this paper used a subset of the respondents, all of whom had Ph.D.s in astronomy, astrophysics, or a related field at the time of the second survey. We tested the effects of four major concepts on two measures of attrition from physics and astronomy. These concepts included the imposter syndrome, mentoring and advising during graduate school, the "two-body problem" that occurs when a couple needs to find two jobs in the same geographic area, and the sex of the respondent. While the imposter syndrome and mentoring affected the likelihood of respondents' thinking about leaving the field, they did not directly contribute to actually working in a field that was not physics or astronomy. Relationship with graduate advisors and the two-body problem both had significant effects on working in physics or astronomy, as did completing a postdoc. The sex of the respondent had no direct effect on our measures of attrition, but indirectly affected attrition because women were less likely to report positive relationships with graduate advisors and more likely to report two-body problems. This research identifies specific areas of concern that can be addressed by the scientific community to increase the retention of all people

  19. Small Ubiquitin-Like Modifier 4 (SUMO4 Gene M55V Polymorphism and Type 2 Diabetes Mellitus: A Meta-analysis Including 6,823 Subjects

    Directory of Open Access Journals (Sweden)

    Yan-yan Li

    2017-11-01

    Full Text Available BackgroundMany studies suggest that the small ubiquitin-like modifier 4 (SUMO4 M55V gene polymorphism (rs237025 may be associated with an increased risk of type 2 diabetes mellitus (T2DM. However, due to other conflicting results, a clear consensus is lacking in the matter.Objective and methodsA meta-analysis consisting of 6,823 subjects from 10 studies was conducted to elucidate relationship between the SUMO4 M55V gene polymorphism and T2DM. Depending on the heterogeneity of the data, either a fixed or random-effects model would be used to assess the combined odds ratio (ORs and their corresponding 95% confidence interval (CI.ResultsSUMO4 gene M55V polymorphism was significantly associated with T2DM in the whole population under allelic (OR: 1.18, 95% CI: 1.10–1.28, P = 1.63 × 10−5, recessive (OR: 1.59, 95% CI: 1.14–2.23, P = 0.006, dominant (OR: 0.815, 95% CI: 0.737–0.901, P = 6.89 × 10−5, homozygous (OR: 1.415, 95% CI: 1.170–1.710, P = 0.0003, heterozygous (OR: 1.191, 95% CI: 1.072–1.323, P = 0.001, and additive genetic models (OR: 1.184, 95% CI: 1.097–1.279, P = 1.63 × 10−5. In our subgroup analysis, a significant association was found again in the Chinese population, but not in Japanese or Iranian population.ConclusionSUMO4 gene M55V polymorphism may correlate with increased T2DM risk. Chinese carriers of the V allele of the SUMO4 gene M55V polymorphism may be predisposed to developing T2DM.

  20. Relativistic reference frames including time scales - Questions and answers

    Science.gov (United States)

    Soffel, M. H.; Brumberg, V. A.

    1991-12-01

    The subject of relativistic reference frames in astronomy is discussed with respect to the problems and needs of the various user groups. For didactical reasons the discussion is presented in the form of a sequence of questions and answers.

  1. A Community - Centered Astronomy Research Program

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2017-06-01

    The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online - hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to expand their

  2. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  3. Scientific literacy: astronomy at school

    Science.gov (United States)

    Gangui, A.; Iglesias, M.; Quinteros, C.

    Models constructed by scientists to explain the world often incorporate their actual individual conceptions about different physical phenomena. Likewise, prospective teachers reach general science courses with preconstructed and consistent models of the universe surrounding them. In this project we present a series of basic questionings that make us reflect on the present situation of the teaching-learning relationship in astronomy within the framework of formal education for elementary school teachers. Our project main aims are: 1) to contribute to finding out the real learning situation of preservice elementary teachers, and 2) from these studies, to try and develop didactic tools that can contribute to improve their formal education in topics of astronomy. In spite of being of chief importance within the science teaching topics, mainly due to its interdisciplinarity and cultural relevance, researches in didactics of astronomy are not well represented in our research institutes. FULL TEXT IN SPANISH

  4. The new Andean Regional Office of Astronomy for Development (ROAD)

    Science.gov (United States)

    Char, Farid; Forero-Romero, Jaime

    2015-08-01

    The Andean Regional Office of Astronomy for Development (ROAD) is a new effort in South America to serve several goals in astronomical development. Six countries (Bolivia, Colombia, Chile, Ecuador, Perú and Venezuela) will work together, representing a common language block in the Andean region and focusing on develop strategies to strengthen the professional research, education and popularization of astronomy. Our current Working Structure comprises a ROAD Coordinator and Coordinators per Task Force, as well as Organizing Committees, Collaborators and Volunteers.The participating institutions of this new ROAD have been involved in many projects involving each of the current OAD’s Task Forces: research, schools and children and public, exploring educational activities/material to be shared among the Andean countries, standardizing the knowledge and creating inspirational experiences. We expect to generate many efforts in order to bring a more homogeneous activity in each Andean country, taking into account the special role of Chile in global astronomy, due to its great conditions for astronomy and the involvement of many professional observatories, universities and astronomy institutions.Our current (and upcoming) most relevant activities includes: Andean Schools on Astronomy, Andean Graduate Program and Massive Open Online Courses (TF1); Virtual Training Sessions and Teaching material for the visually impaired students; Annual TF2 meeting to gather all the collaborators (TF2); Development for planetariums and Communicating Astronomy with the Public (TF3). The Andean region, in the other hand, will also be involved in at least two important events: the CAP Meeting in May 2016 and the XV LARIM in October 2016 (both in Colombia); and Chile will bid to host the XXXI IAU GA in 2021, with the aim of show the great advances in astronomical development from the Andean region and South America.

  5. A comparison of astronomical terminology, methods and concepts in China and Mesopotamia, with some comments on the claims for the transmission of Mesopotamian astronomy to China

    Science.gov (United States)

    Steele, J. M.

    2013-11-01

    Mesopotamia and China have long traditions of astronomy and celestial divination, and share some similarities in their approach to these subjects. Some scholars have therefore argued for the transmission of certain aspects of Mesopotamian astronomy to China. In this paper, I compare four aspects of ancient astronomy in these cultures in order to assess whether there is any evidence for transmission. I conclude that the similarities between Chinese and Mesopotamian astronomy are only superficial and there is no evidence for the transmission of Mesopotamian astronomy to China.

  6. Introductory Astronomy Course at the University of Cape Town: Probing Student Perspectives

    Science.gov (United States)

    Rajpaul, Vinesh; Allie, Saalih; Blyth, Sarah-Louise

    2014-01-01

    We report on research carried out to improve teaching and student engagement in the introductory astronomy course at the University of Cape Town. This course is taken by a diverse range of students, including many from educationally disadvantaged backgrounds. We describe the development of an instrument, the Introductory Astronomy Questionnaire…

  7. Urban Middle-School Teachers' Beliefs about Astronomy Learner Characteristics: Implications for Curriculum

    Science.gov (United States)

    Miranda, Rommel J.

    2010-01-01

    This study addresses the link between urban teachers' beliefs about their students' ability to succeed in astronomy and their instructional decisions and practices in response to those beliefs. The findings suggest that teachers believe that the student characteristics that are necessary for high achievement in astronomy include specific cognitive…

  8. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1966-01-01

    Advances in Astronomy and Astrophysics, Volume 4 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with a description of objective prism and its application in space observations. The next chapter deals with the possibilities of deriving reliable models of the figure, density distribution, and gravity field of the Moon based on data obtained through Earth-bound telescopes. These topics are followed by a discussion on the ideal partially relativistic, partially degenerate gas in an exact manner. A ch

  9. Multiverso: Rock'n'Astronomy

    Science.gov (United States)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  10. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1968-01-01

    Advances in Astronomy and Astrophysics, Volume 6 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with the description of improved methods for analyzing and classifying families of periodic orbits in a conservative dynamical system with two degrees of freedom. The next chapter describes the variation of fractional luminosity of distorted components of close binary systems in the course of their revolution, or the accompanying changes in radial velocity. This topic is followed by discussions on vari

  11. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1963-01-01

    Advances in Astronomy and Astrophysics, Volume 2 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of six chapters and begins with a summary of observational record on twilight extensions of the Venus cusps. The next chapter deals with the common and related properties of binary stars, with emphasis on the evaluation of their cataclysmic variables. Cataclysmic variables refer to an object in one of three classes: dwarf nova, nova, or supernova. These topics are followed by discussions on the eclipse phenomena and the eclipses i

  12. Practical astronomy with your calculator

    CERN Document Server

    Duffett-Smith, Peter

    1989-01-01

    Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr

  13. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1962-01-01

    Advances in Astronomy and Astrophysics, Volume 1 brings together numerous research works on different aspects of astronomy and astrophysics. This book is divided into five chapters and begins with an observational summary of the shock-wave theory of novae. The subsequent chapter provides the properties and problems of T tauri stars and related objects. These topics are followed by discussions on the structure and origin of meteorites and cosmic dust, as well as the models for evaluation of mass distribution in oblate stellar systems. The final chapter describes the methods of polarization mea

  14. Astronomy and Shakespeare's Hamlet.

    Science.gov (United States)

    Usher, P. D.

    1996-05-01

    Payne-Gaposchkin and others have suggested that Hamlet shows evidence of the Bard's awareness of the astronomical revolutions of the sixteenth century. I summarize major arguments and note that the play's themes recur in modern astronomy teaching and research: (1) The play amounts to a redefinition of universal order and humankind's position in it. (2) There is interplay between appearance and reality. Such a contrast is commonplace wherever superficial celestial appearances obscure underlying physical realities, the nature of which emerge as the tale unfolds. (3) The outermost sphere of the Ptolemaic and Copernican models seems to encase humanity, who are liberated by the reality of Digges' model and the implications advanced by Bruno. Similarly the oppressiveness of the castle interior is relieved by the observing platform which enables the heavens to be viewed in their true light. (4) Hamlet could be bounded in a nut-shell and count himself a king of infinite space, were it not that he has bad dreams. These concern the subversiveness of the new doctrine, for Hamlet refers to the infinite universe only hypothetically and in the presence of Rosencrantz and Guildenstern, who are named for relatives of the Danish astronomer Brahe. (5) Hamlet, and Brahe and Bruno, have connections to the university at Wittenberg, as does the Copernican champion Rheticus. (6) Ways are needed to reveal both the truths of nature, and the true nature of Danish royalty. Those unaccustomed to science think that there is madness in Hamlet's method. In particular, `doubt' is advanced as a methodological principle of inquiry. (7) The impression of normalcy and propriety in the upper reaches of society is like the false impression of an encapsulating universe. In Hamlet this duality is dramatized tragically, whereas in King John (cf. BAAS 27, 1325, 1995) it is not; for by 1601 when the writing of Hamlet was probably completed, Shakespeare would have known of the martyrdom of Bruno the previous

  15. Get the Picture: The Virtual Astronomy Multimedia Project

    Science.gov (United States)

    Hurt, Robert L.; Christensen, L. L.; Gauthier, A.; Wyatt, R.; Berriman, B.

    2007-05-01

    High quality astronomical images, accompanied by rich caption and background information, abound on the web and yet are notoriously difficult to locate efficiently using common search engines. "Flat" searches can return dozens of hits for a single popular image but miss equally important related images from other observatories. The Virtual Astronomy Multimedia Project (VAMP) is developing the architecture for an online index of astronomical imagery and video that will simplify access and provide a service around which innovative applications can be developed (e.g. digital planetariums). Current progress includes design prototyping around existing Astronomy Visualization Metadata (AVM) standards. Growing VAMP partnerships include a cross section of observatories, data centers, and planetariums.

  16. Indian Astronomy: The Missing Link in Eurocentric History of Astronomy

    Science.gov (United States)

    Haque, Shirin; Sharma, Deva

    2016-01-01

    A comprehensive history of Astronomy should show in reasonable chronological order, the contributions from wherever they arise in the world, once they are reliably documented. However, the authors note that consistently, the extremely rich contributions from Ancient Indian scholars like Aryabatha and Bhramagupta are omitted in Eurocentric…

  17. Astronomy Patch Day: An Interactive Astronomy Experience for Girl Scouts

    Science.gov (United States)

    Knierman, K. A.; McCarthy, D. W.; Schutz, K.

    2005-12-01

    To help encourage a new generation of women in science, we have created Astronomy Patch Day for the Sahuaro Girl Scout Council in Tucson, Arizona. This all-day event is an interactive experience for Girl Scouts ages 5-18 to learn about astronomical concepts and women in astronomy. Our first Astronomy Patch Day, held on March 19, 2005, in conjunction with the Sahuaro Council's annual Science, Math, and Related Technologies (SMART) program, was very successful, reaching about 150-200 girls and their leaders. Individual troops rotated every half hour among our six activity booths: Earth-Moon, Solar System, Stars, Galaxies, Universe, and Ask an Astronomer, which were staffed by trained Girl Scout Leaders as well as faculty, post-doctoral researchers, and graduate students from Steward Observatory. To earn a patch, younger girls (ages 5-12) had to complete activities at three booths and older girls had to complete all six activities. Positive feedback for this event was received from both the girls and leaders. We plan to hold Astronomy Patch Day annually, possibly with different and/or additional activities in future years. K. Knierman is supported by an Arizona/NASA Space Grant Fellowship. This outreach program is supported by NIRCam/JWST E/PO.

  18. Blazing the Trail for Astronomy Education Research

    Science.gov (United States)

    Bailey, Janelle M.; Lombardi, Doug

    2015-01-01

    Education research has long considered student learning of topics in astronomy and the space sciences, but astronomy education research as a sub-field of discipline-based education research is relatively new. Driven by a growing interest among higher education astronomy educators in improving the general education, introductory science survey…

  19. Astronomy Education Project for Guangdong High Schools

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Guangdong province is an active area in China for astronomy education and popularization. The current status and problems of astronomy education in high schools are reviewed. To tackle these problems, an astronomy education project for high school teachers and students was initiated by Guangzhou ...

  20. Examples from Astronomy for High School Physics

    Science.gov (United States)

    Dieterich, Sergio

    2016-01-01

    A formal course in physics is increasingly becoming a standard requirement in the high school curriculum. With that dissemination comes the challenge of reaching and motivating a population that is more diverse in their academic abilities and intrinsic motivation. The abstract nature of pure physics is often made more accessible when motivated by examples from everyday life, and providing copious mathematical as well as conceptual examples has become standard practice in high school physics textbooks. Astronomy is a naturally captivating subject and astronomical examples are often successful in capturing the curiosity of high school students as well as the general population. This project seeks to diversify the range of pedagogical materials available to the high school physics instructor by compiling and publishing specific examples where an astronomical concept can be used to motivate the physics curriculum. This collection of examples will consist of both short problems suitable for daily homework assignments as well as longer project style activities. Collaborations are encouraged and inquiries should be directed to sdieterich at carnegiescience dot edu.This work is funded by the NSF Astronomy and Astrophysics Postdoctoral Fellowship Program through NSF grant AST-1400680.

  1. Next-Generation X-Ray Astronomy

    Science.gov (United States)

    White, Nicholas E.

    2011-01-01

    The future timing capabilities in X-ray astronomy will be reviewed. This will include reviewing the missions in implementation: Astro-H, GEMS, SRG, and ASTROSAT; those under study: currently ATHENA and LOFT; and new technologies that may enable future missions e.g. Lobster eye optics. These missions and technologies will bring exciting new capabilities across the entire time spectrum from micro-seconds to years that e.g. will allow us to probe close to the event horizon of black holes and constrain the equation of state of neutron stars.

  2. Gravitational Waves and Multi-Messenger Astronomy

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  3. Southern African Office of Astronomy for Development: A New Hub for Astronomy for Development

    Science.gov (United States)

    Mutondo, Moola S.; Simpemba, Prospery

    2016-10-01

    A new Astronomy for Development hub needs innovative tools and programs. SAROAD is developing exciting tools integrating Raspberry Pi technology to bring cost-effective astronomy content to learning centres. SAROAD would also like to report achievements in realizing the IAU's strategic plan. In order to manage, evaluate and coordinate regional IAU (International Astronomical Union) capacity building programmes, including the recruitment and mobilization of volunteers, SAROAD has built an intranet that is accessible to regional members upon request. Using this resource, regional members can see and participate in regional activities. SAROAD has commenced with projects in the three Task Force areas of Universities and Research, Children and Schools and Public Outreach. Under the three Task Force areas, a total of seven projects have commenced in Zambia (some supported by funds from IAU Annual Call for proposals).

  4. Dictionary of astronomy, space, and atmospheric phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Tver, D.F.; Motz, L.; Hartmann, W.K.

    1979-01-01

    This concise and up-to-date compendium features descriptions and definitions of terms, techniques and equipment relating to celestial phenomena. It explains the latest concepts in space exploration, planetary research, stellar astronomy, and meteorological science. The authors explore the general configurations of star groups, galaxy types, stars, and other small bodies in the solar system, including such important facts as magnitude of each and distance from Earth. They describe the brightest stars one by one. Vital data provided by the Viking, Mariner, and Pioneer space probes, the Voyager flights past Jupiter and its moons, and the Apollo landings are clearly presented and explained. New concepts in stellar astronomy such as quasars, neutron stars (pulsars), and black holes are precisely defined. Also included are discussions of meteor showers and the important rock types found on each planet; definitions of meteorological terms, ad astronomical equipment including telescopes, eyepieces and their accessories, the Golay cell, canopus sensor, filar micrometer, and more. Charts aid in identifying and locating stars and planets, and helpful reference tables list the location of the major celestial bodies - asteroids, constellations, the nearest stars, the brightest stars, interesting double and variable stars and cluters. Also included is the Meisser catalog of the coordinates and magnitudes for more than 100 celestial objects.

  5. Energy, The Environment And Astronomy: Education And Action

    Science.gov (United States)

    Rodgers, Bernadette; Doppmann, G.; Kalas, P.; Lacy, J.; Beck, T.; Marshall, P. J.

    2010-01-01

    The specter of global climate change is arguably the most pressing scientific, social and ethical issue of our time. Although the relatively small field of astronomy represents only a fraction of the total human carbon emissions, astronomers have a great potential, and therefore perhaps a great responsibility, to educate themselves and the public on this issue. In addition, the average per capita carbon emissions of professional astronomers are not small, and our profession can do much to reduce its energy consumption and maximize the cost-benefit ratio of our work. At the January AAS meeting, we are organizing a half-day splinter meeting titled "Energy, the Environment and Astronomy: Education and Action". The focus will be on energy conservation and education as it relates to professional astronomy. Education focuses on informing ourselves, our students and the general public with which we interact, about the real issues, the necessary actions, and the likely consequences of various energy consumption and carbon emission scenarios. Action focuses on effective energy conservation and renewable energy initiatives within professional astronomy. Air travel, solar energy at ground-based observatories, and Gemini's "Green Initiative” are among the topics that will be discussed. The splinter meeting will be open to all and will include expert speakers from outside astronomy, contributed talks by astronomers, and a discussion session.

  6. Incorporating Astronomy Research into the High School Curriculum

    Science.gov (United States)

    Beaton, Rachael; Zasowski, G.; Dirienzo, W.; Corby, J.

    2012-01-01

    Over the past three years, graduate students in the University of Virginia Astronomy Department (UVa) have partnered with the Central Virginia Governor's School for Science and Technology (CVGS) to advise high school juniors in individual astronomy research projects spanning eight months. CVGS, located 60 miles from UVa and servicing 14 schools in rural central VA, operates a daily, half-day program where talented high school juniors and seniors take courses in college-level science, mathematics, and technology, including research methods. UVa graduate students have mentored over a dozen students through astronomy research projects to fulfill their course requirements. The result of this unique partnership is the development of a full astronomy research curriculum that teaches the terminology, background concepts, analysis techniques and communication skills that are required for astronomy research, all designed for an off-site setting. The curriculum is organized into a set of "Tutorials,” which when combined with the standard CVGS Research and Statistics courses, result in an an effective, comprehensive, and productive research collaboration. In this poster, we will display our curriculum in a step by step basis as a model for potential collaborations with other institutions and comment on how these opportunities have benefited the high school students, CVGS and the graduate students involved.

  7. Creation and Maintenance of a Unified Astronomy Thesaurus

    Science.gov (United States)

    Gray, Norman; Erdmann, C.; Accomazzi, A.; Soles, J.; McCann, G.; Cassar, M.; Biemesderfer, C.

    2013-01-01

    We describe a collaborative effort to update and unify the various vocabularies currently in use in Astronomy into a single thesaurus that can be further developed and updated through broad community participation. The Unified Astronomy Thesaurus (UAT) will be an open, interoperable and community-supported thesaurus which unifies the existing divergent and isolated Astronomy & Astrophysics thesauri into a single high-quality, freely-available open thesaurus formalizing astronomical concepts and their inter-relationships. The UAT builds upon the existing IAU Thesaurus with major contributions from the Astronomy portions of the thesauri developed by the Institute of Physics Publishing and the American Institute of Physics. While the AAS has assumed formal ownership of the UAT, the work will be available under a Creative Commons License, ensuring its widest use while protecting the intellectual property of the contributors. We envision that development and maintenance will be stewarded by a broad group of parties having a direct stake in it. This includes professional associations (IVOA, IAU), learned societies (AAS, RAS), publishers (IOP, AIP), librarians and other curators working for major astronomy institutes and data archives. While the impetus behind the creation of a single thesaurus has been the wish to support semantic enrichment of the literature, we expect that use of the UAT (along with other vocabularies and ontologies currently being developed) will be much broader and will have a greater impact on discovery of both literatue and data products.

  8. Astronomy Instruction at a Two-year Technical College

    Science.gov (United States)

    Sirola, C. J.

    2000-12-01

    Over half of all students now begin their college careers at two-year institutions (technical colleges, junior colleges, vocational schools, etc.). This shift in student demographics has broad implications for college-level science instruction, including astronomy instruction. We compare astronomy instruction at two-year institutions to that at traditional four-year universities. A typical two-year school like Tri-County Technical College profers challenges not typically faced by research universities such as lack of research funding, little equipment or facilities, and a generally lower level of student ability. Conversely, a Tri-County Tech offers opportunities such as extensive training in teaching methodologies, a wide range of student demographics, and small classroom sizes. Our students are rarely interested in astronomy as a major, but instead take astronomy to fulfill other major requirements or to ensure the transfer of science credits to four-year universities. We present several examples of astronomy instruction at Tri-County Technical College and discuss our philosophy of teaching in a post-secondary environment whose enrollment is on the rise.

  9. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  10. Python in Astronomy 2016 Unproceedings

    Science.gov (United States)

    Robitaille, Thomas; Cruz, Kelle; Greenfield, Perry; Jeschke, Eric; Juric, Mario; Mumford, Stuart; Prescod-Weinstein, Chanda; Sosey, Megan; Tollerud, Erik; VanderPlas, Jake; Ford, Jes; Foreman-Mackey, Dan; Jenness, Tim; Aldcroft, Tom; Alexandersen, Mike; Bannister, Michele; Barbary, Kyle; Barentsen, Geert; Bennett, Samuel; Boquien, Médéric; Campos Rozo, Jose Ivan; Christe, Steven; Corrales, Lia; Craig, Matthew; Deil, Christoph; Dencheva, Nadia; Donath, Axel; Douglas, Stephanie; Ferreira, Leonardo; Ginsburg, Adam; Goldbaum, Nathan; Gordon, Karl; Hearin, Andrew; Hummels, Cameron; Huppenkothen, Daniela; Jennings, Elise; King, Johannes; Lawler, Samantha; Leonard, Andrew; Lim, Pey Lian; McBride, Lisa; Morris, Brett; Nunez, Carolina; Owen, Russell; Parejko, John; Patel, Ekta; Price-Whelan, Adrian; Ruggiero, Rafael; Sipocz, Brigitta; Stevens, Abigail; Turner, James; Tuttle, Sarah; Yanchulova Merica-Jones, Petia; Yoachim, Peter

    2016-03-01

    This document provides proceedings for unconference sessions as well as hacks/sprints which took place at the Python in Astronomy 2016 workshop, which was held at the University of Washington eScience Institute in Seattle from March 21st to 25th 2016.

  11. Network for Astronomy School Education

    Science.gov (United States)

    Deustua, Susana E.; Ros, R. M.; Garcia, B.

    2014-01-01

    The Network for Astronomy School Education Project (NASE) was developed in response to the IAU's most recent 10 Years Strategic Plan to increase the efforts of the IAU in schools. NASE's mission is to stimulate teaching astronomy in schools, through professional development of primary and secondary school science teachers in developing and emerging countries. NASE's organizational principle is to build capacity by providing courses for three years in cooperation with a Local Organizing Committee (Local NASE Group). The Local NASE Group consists of 6-8 local university professors and education professional who will promote astronomy activities and organize future courses in subsequent years in their region of their country. NASE philosophy is to introduce low-tech astronomy, and has thus developed an a suite of activities that can be carried out with inexpensive, quotidian materials. Supporting these activities is a text for teachers, plus a complete set of instructional materials for each topic. These materials are available in English and Spanish, with future editions available in Chinese and Portuguese. We describe and discuss NASE activities in Central and South America from 2009 to the present.

  12. Music to teach astronomy by

    Science.gov (United States)

    Möbius, Eberhard

    1999-03-01

    Author shares his technique of aligning music selections with his introductory astronomy syllabus. He begins class with a music selection as an introduction to the concepts covered in class. List of 40 music titles and composers used can be downloaded from http://www-ssg.sr.unh.edu/406/music.html.

  13. Utrecht and Galactic Radio Astronomy

    NARCIS (Netherlands)

    van Woerden, H.

    Important roles in early Dutch Galactic radio astronomy were played by several Utrecht astronomers: Van de Hulst, Minnaert and Houtgast. The poster announcing the conference contained a number of pictures referring to scientific achievements of the Astronomical Institute Utrecht. One of these

  14. Exchange of astronomy teaching experiences

    Science.gov (United States)

    Ros, Rosa M.

    The Working Group of the European Association for Astronomy Education responsible for Teacher Training organises an annual Summer School for teachers under expert guidance. For a week the teachers participating can exchange experiences, increase their knowledge and discuss different ideas and perspectives. In general, the instructors are professional astronomers, professors and teachers from different countries. The papers presented offer very practical activities, paying special attention to didactic aspects, and take the form of general lectures to all 40 participants and workshops to reduced groups of 20 participants. There are also day and night observations, without expensive equipment or complicated procedures, that are easy to set up and based on topics that it is possible to use in the classroom. The Summer Schools promote a scientific astronomical education at all levels of astronomy teaching, reinforce the link between professional astronomers and teachers with experience of teaching astronomy, allow debates among the participants on their pedagogical activities already carried out in their own classroom and help them to organise activities outside it. Astronomy teachers need special training, access to specific research, to new educational materials and methods and the opportunity to exchange experiences. All these things are provided by the Summer School.

  15. Astronomy Education Challenges in Egypt

    Science.gov (United States)

    El Fady Beshara Morcos, Abd

    2015-08-01

    One of the major challenges in Egypt is the quality of education. Egypt has made significant progress towards achieving the Education for All and the Millennium Development Goals (MDGs). Many associations and committees as education reform program and education support programs did high efforts in supporting scientific thinking through the scientific clubs. The current state of astronomical education in Egypt has been developed. Astronomy became a part in both science and geography courses of primary, preparatory and secondary stages. Nowadays the Egyptian National Committee for Astronomy, put on its shoulders the responsibility of revising of astronomy parts in the education courses, beside preparation of some training programs for teachers of different stages of educations, in collaboration with ministry of education. General lectures program has been prepared and started in public places , schools and universities. Many TV and Radio programs aiming to spread astronomical culture were presented. In the university stage new astronomy departments are established and astrophysics courses are imbedded in physics courses even in some private universities.

  16. Astronomy and astronomers in Jules Verne's novels

    Science.gov (United States)

    Crovisier, Jacques

    2011-06-01

    Almost all the Voyages Extraordinaires written by Jules Verne refer to astronomy. In some of them, astronomy is even the leading theme. However, Jules Verne was basically not learned in science. His knowledge of astronomy came from contemporaneous popular publications and discussions with specialists among his friends or his family. In this article, I examine, from the text and illustrations of his novels, how astronomy was perceived and conveyed by Jules Verne, with errors and limitations on the one hand, with great respect and enthusiasm on the other hand. This informs us on how astronomy was understood by an ``honnête homme'' in the late 19th century.

  17. Highlights of Astronomy, Vol. 16

    Science.gov (United States)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  18. The IAU's East Asian Regional Office of Astronomy for Development

    Science.gov (United States)

    de Grijs, Richard

    2014-09-01

    At the 2012 General Assembly of the International Astronomical Union (IAU), the Office of Astronomy for Development (OAD) programme announced a number of exciting new partnerships to assist with the IAU's decadal strategic plan (2010-2020). These landmark decisions included establishing a new coordinating centre that aims at using astronomy as a tool for development in East Asia. The agreement covers two important functions. One is known as a Regional Node, which entails the coordination of astronomy-for-development activities in countries within the general geographical region of East Asia (in first instance China, Mongolia and the DPRK, but without placing firm geographical limits on the region). The other is known as a Language Expertise Centre which will deal with all aspects relating to (mainly) the Chinese language and culture. The impact of the latter may obviously spread well beyond the geographical region to other parts of the world.

  19. Research on teaching astronomy in the planetarium

    CERN Document Server

    Slater, Timothy F

    2017-01-01

    From a noted specialist in astronomy education and outreach, this Brief provides an overview of the most influential discipline-based science education research literature now guiding contemporary astronomy teaching. In recent years, systematic studies of effective and efficient teaching strategies have provided a solid foundation for enhancing college-level students’ learning in astronomy. Teaching astronomy and planetary science at the college-level was once best characterized as professor-centered, information-download lectures. Today, astronomy faculty are striving to drastically improve the learning environment by using innovative teaching approaches.  Uniquely, the authors have organized this book around strands of commonly employed astronomy teaching strategies to help readers, professors, and scholars quickly access the most relevant work while, simultaneously, avoiding the highly specialized, technical vocabulary of constructivist educational pedagogies unfamiliar to most astronomy professors. F...

  20. Motivations and Participation in an Astronomy MOOC

    Science.gov (United States)

    Wenger, Matthew; Buxner, Sanlyn; Formanek, Martin; Impey, Chris David

    2018-01-01

    Student motivation, engagement, and completion are important topics in the study of Massive Open Online Courses (MOOCs). Many science-focused Massive Open Online Courses (MOOCs) appeal to lifelong learners interested in general education as opposed to career development, yet little motivation-related research has been conducted with students in these courses. We present the results of a study that examined the motivations of MOOC students in our class, Astronomy: Exploring Time and Space. We examined trends in motivation and participation for these non-career-focused students. Although we have been able to show that the students in our class are similar, demographically, to other MOOC classes, our research has shown that they have very different motivations from undergraduate students, or MOOC students who are intere “average” MOOC user. Astronomy: Exploring Time and Space students are much more likely to be astronomy hobbyists, or taking the class to satisfy their curiosity and not attempting to change careers or achieve a credential. We were also able to correlate the results of the motivation survey instruments with student engagement with course materials and rates of course completion. We examined the motivations of students using both the validated Science Motivation Questionnaire II by Glynn et. al (2011) and a motivation instrument developed by John Falk for learners in free-choice settings. These allowed us to compare our results with other researchers who have used these instrument in other educational settings, including MOOCs. Students who reported high levels of self-determination were the most likely to complete the course, while high social motivation was a poor predictor of completion and performance.

  1. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    Science.gov (United States)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  2. AstroJazz: Integrating Live Jazz and Astronomy Education

    Science.gov (United States)

    Morrow, C. A.

    2005-12-01

    AstroJazz is an innovative public education program in astronomy that blends stunning imagery with live jazz music and a touch of humor to awaken the cosmic curiosity of both adults and children. The program debuted in February 2005 at the Fiske Planetarium on the campus of the University of Colorado, Boulder with an astronomer-chanteuse (the author), a pianist, bassist, drummer, and technical assistant who created dome effects to compliment the PowerPoint slides associated with each song. This AstroJazz quartet played ten songs, five original tunes (Look Up!, Are We Alone? Andromeda Affaire, StarMan Blues, Star Kissed)), and five standard tunes with lyrical twists toward astronomy & astrobiology (e.g. Stormy Weather - Solar Style and Stardust a la SETI.) The hour-long program also includes educational interludes where the astronomy chanteuse interacts with the audience, providing insights and perspective into the wonders of our universe. The performance program that is handed to all audience members contains additional "gee-whiz" facts and provides leads to websites like Astronomy Picture of the Day and spaceweather.com that provide ongoing points of contact for public interest in astronomy. AstroJazz was very well received in its debut performance and now has several new opportunities to perform. Anecdotal evidence suggests that the AstroJazz program is engaging and educational for a very broad audience, including families with young children, world-class astronomers, and spouses of musicians who had never before been exposed to astronomy. This paper will describe the origins and intended evolution of AstroJazz, and offer a mini-sample of the music and slides used in the program. It will also discuss strategies for how the impact on audiences might be assessed.

  3. Astronomy, Visual Literacy, and Liberal Arts Education

    Science.gov (United States)

    Crider, Anthony

    2016-01-01

    With the exponentially growing amount of visual content that twenty-first century students will face throughout their lives, teaching them to respond to it with visual and information literacy skills should be a clear priority for liberal arts education. While visual literacy is more commonly covered within humanities curricula, I will argue that because astronomy is inherently a visual science, it is a fertile academic discipline for the teaching and learning of visual literacy. Astronomers, like many scientists, rely on three basic types of visuals to convey information: images, qualitative diagrams, and quantitative plots. In this talk, I will highlight classroom methods that can be used to teach students to "read" and "write" these three separate visuals. Examples of "reading" exercises include questioning the authorship and veracity of images, confronting the distorted scales of many diagrams published in astronomy textbooks, and extracting quantitative information from published plots. Examples of "writing" exercises include capturing astronomical images with smartphones, re-sketching textbook diagrams on whiteboards, and plotting data with Google Motion Charts or iPython notebooks. Students can be further pushed to synthesize these skills with end-of-semester slide presentations that incorporate relevant images, diagrams, and plots rather than relying solely on bulleted lists.

  4. Cultural Astronomy in Elementary and Secondary School

    Science.gov (United States)

    Jafelice, Luiz Carlos

    2015-07-01

    This work is addressed to educators and geography, science, biology and physics teachers who deal with elementary, middle and high school education. It discusses the importance of adopting the anthropological perspective regarding issues that are considered within the astronomy area. It also presents practical proposals for those who intend to introduce cultural astronomy in elementary, middle and high school education - from the beginning of the 1st grade in Elementary school to the end of the 3rd grade in Secondary school, in formal as well as in informal education. This work is proposed within the context of the holistic and transdisciplinary environmental education. Our approach values above all the experience and aims at a humanistic education that includes epistemological and cultural diversities. The suggested practical proposals can be also beneficially used to address works that include contents related to Brazilian indigenous and Afro-descent cultures in the school curriculum, as the new law requires. The guidelines presented here were tested in real school situations.

  5. Astronomy Village: Innovative Uses of Planetary Astronomy Images and Data

    Science.gov (United States)

    Croft, S. K.; Pompea, S. M.

    2008-06-01

    Teaching and learning science is best done by hands-on experience with real scientific data and real scientific problems. Getting such experiences into public and home-schooling classrooms is a challenge. Here we describe two award-winning multimedia products that embody one successful solution to the problem: Astronomy Village: Investigating the Universe, and Astronomy Village: Investigating the Solar System. Each Village provides a virtual environment for inquiry-based scientific exploration of ten planetary and astronomical problems such as ``Mission to Pluto'' and ``Search for a Supernova.'' Both Villages are standards-based and classroom tested. Investigating the Solar System is designed for middle and early high school students, while Investigating the Universe is at the high school and introductory college level. The objective of both Villages is to engage students in scientific inquiry by having them acquire, explore, and analyze real scientific data and images drawn from real scientific problems.

  6. The Early Astronomy Toolkit was Universal

    Science.gov (United States)

    Schaefer, Bradley E.

    2018-01-01

    From historical, anthropological, and archaeological records, we can reconstruct the general properties of the earliest astronomy for many cultures worldwide, and they all share many similar characteristics. The 'Early Astronomy Toolkit' (EAT) has the Earth being flat, and the heavens as a dome overhead populated by gods/heroes that rule Nature. The skies provided omens in a wide variety of manners, with eclipses, comets, and meteors always being evil and bad. Constellations were ubiquitous pictures of gods, heroes, animals, and everyday items; all for story telling. The calendars were all luni-solar, with no year counts and months only named by seasonal cues (including solstice observations and heliacal risings) with vague intercalation. Time of day came only from the sun's altitude/azimuth, while time at night came from star risings. Graves are oriented astronomically, and each culture has deep traditions of quartering the horizon. The most complicated astronomical tools were just a few sticks and stones. This is a higher level description and summary of the astronomy of all ancient cultures.This basic EAT was universal up until the Greeks, Mesopotamians, and Chinese broke out around 500 BC and afterwards. Outside the Eurasian milieu, with few exceptions (for example, planetary position measures in Mexico), this EAT represents astronomy for the rest of the world up until around 1600 AD. The EAT is present in these many cultures with virtually no variations or extensions. This universality must arise either from multiple independent inventions or by migration/diffusion. The probability of any culture independently inventing all 19 items in the EAT is low, but any such calculation has all the usual problems. Still, we realize that it is virtually impossible for many cultures to independently develop all 19 items in the EAT, so there must be a substantial fraction of migration of the early astronomical concepts. Further, the utter lack, as far as I know, of any

  7. Active Galactic Videos: A YouTube Channel for Astronomy Education and Outreach

    Science.gov (United States)

    Austin, Carmen; Calahan, Jenny; Resi Baucco, Alexandria; Bullivant, Christopher William; Eckley, Ross; Ekstrom, W. Haydon; Fitzpatrick, M. Ryleigh; Genovese, Taylor Fay; Impey, Chris David; Libby, Kaitlin; McCaw, Galen; Olmedo, Alexander N.; Ritter, Joshua; Wenger, Matthew; Williams, Stephanie

    2017-01-01

    Active Galactic Videos is an astronomy-focused YouTube channel run by a team at the University of Arizona. The channel has two main purposes: to produce educational content for public audiences, and to learn about astronomy and to open a window into the world of professional astronomy by showcasing the work done at Steward Observatory and in Southern Arizona. Our team consists of faculty, staff, and students from a variety of backgrounds including: astronomy, education, film, music, english, and writing. In addition to providing educational content for public audiences, this project provides opportunities for undergraduate students to learn about astronomy content, educational practice, and science communication while developing the practical skills needed to write, film, score, direct, and edit videos that effectively engage and teach viewers about topics in astronomy. The team has produced various styles of video: presentational, interviews, musical/poetic, and documentaries. In addition to YouTube, the Active Galactic Videos team maintains a social media presence on Facebook, Twitter, and Instagram. These help to widely distribute the content as well as to publicize the main Youtube channel. In addition to providing an overview of our educational work, this poster will present a year's worth of online analytics that we are using to better understand our audience, to examine what videos have been popular and successful and how people are accessing our content. We will present our experience in order to help others learn about improving astronomy education online, and astronomy communication and outreach in general.

  8. Information Handling in Astronomy Beyond Technologies and Methodologies

    CERN Document Server

    Heck, A

    2001-01-01

    A few comments are offered in the light of about thirty years of activities linked to the information flow in astronomy and of about two decades of blossoming of electronic networks and tools including the World-Wide Web. Some points are emphasized (such as the changing sociology of data centres) and wrong expectations are pointed out (such as the all-electronic era).

  9. A Course Connecting Astronomy to Art, History, and Literature

    Science.gov (United States)

    Olson, Don

    2015-01-01

    For the past 20 years the author has taught an Honors College course combining astronomy and the humanities. The purpose of this note is to give examples of methods that can be adapted to classroom use for topics including night sky paintings by Vincent van Gogh, Edvard Munch, and Claude Monet, historical events influenced by astronomical factors,…

  10. Our Place in the Universe. Session 1; History of Astronomy

    Science.gov (United States)

    Adams, Mitzi

    2016-01-01

    This session includes a very broad overview of a couple of the major ideas of astronomy, along with demonstrations of Earth's motions that, give rise to the seasons, show us the "faces" of Venus (and the Moon), and result in retrograde motion of the outer planets.

  11. Student Understanding of Gravity in Introductory College Astronomy

    Science.gov (United States)

    Williamson, Kathryn E.; Willoughby, Shannon

    2012-01-01

    Twenty-four free-response questions were developed to explore introductory college astronomy students' understanding of gravity in a variety of contexts, including in and around Earth, throughout the solar system, and in hypothetical situations. Questions were separated into three questionnaires, each of which was given to a section of…

  12. Astronomy Outreach for Large, Unique, and Unusual Audiences

    Science.gov (United States)

    Lubowich, Donald

    2015-08-01

    My successful outreach program venues include: outdoor concerts and festivals; the US National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald Houses of Long Island and Chicago; the Winthrop U. Hospital Children’s Medical Center the Fresh Air Fund summer camps (low-income and special needs); a Halloween star party (costumed kids look through telescopes); a Super Bowl Star Party (targeting women); Science Festivals (World, NYC; Princeton U.; the USA Science and Engineering Festival); and the NYC Columbus Day Parade. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage lifelong learning. In 2010 I created Astronomy Festival on the National Mall (co-sponsored by the White House Office of Science and Technology Policy) with the participation of astronomy clubs, scientific institutions and with Tyco Brahe, Johannes Kepler, and Caroline Herschel making guest appearances. My programs include solar, optical, and radio telescope observations, hands-on activities, a live image projection system; large outdoor posters and banners; videos; hands-on activities, and edible astronomy demonstrations.My NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013) reached 50,000 music lovers at local parks and the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience - often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they

  13. ASTRONET: Strategic Planning for European Astronomy 2005-2025

    Science.gov (United States)

    Andersen, Johannes; Mourard, Denis

    2015-08-01

    European astronomy, with ESO and ESA, is supported by a wide variety of independent national agencies or similar bodies, which jointly provide ~98% of the total funding (with ~2% EU grants). In 2005 these agencies concluded that common strategic planning would be a more cost-effective approach, so they founded a consortium, ASTRONET (http://www.astronet-eu.org/), to prototype such an effort for all of Europe, with EU support. A bottom-up process resulted in a Science Vision (2007) and Infrastructure Roadmap (2008) for European astronomy, with recent updates (2014).These ASTRONET reports cover all branches of astronomy; infrastructures at all electromagnetic wavelengths as well as particles etc., on the ground and in space; laboratory work, software and archiving; and training, recruitment and public outreach. In short, they are agreed blueprints for what Europe plans to accomplish in the next 1-2 decades.Subsequently, a systematic and sustained pragmatic effort has been made to implement the strategy laid out in the Roadmap, including a common European participation in projects and facilities of global dimensions. Decisions on the organisation and construction of several major research facilities have been taken as foreseen (E-ELT, SKA, CTA,…), and they are on track for completion around 2025. The task for global astronomy is now to optimise the overall scientific returns and cost-effectiveness of these investments across wavelength domains, scientific disciplines, and political and financial borders. Accordingly, ASTRONET is currently transforming itself into a permanent, self-sustaining activity reaching out to the world.The ideal of a fully integrated global astronomy may not be reached until ~2050, but no science is better suited than astronomy to set such an example: One Universe surrounds us all, and one Earth is our platform. The IAU General Assembly is a springboard towards this goal.

  14. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  15. A Great Moment for Astronomy

    Science.gov (United States)

    1998-05-01

    VLT First Light Successfully Achieved The European Southern Observatory announces that First Light has been achieved with the first VLT 8.2-m Unit Telescope at the Paranal Observatory. Scientifically useful images have been obtained as scheduled, on May 25 - 26, 1998. A first analysis of these images convincingly demonstrates the exceptional potential of the ESO Very Large Telescope. Just one month after the installation and provisional adjustment of the optics, the performance of this giant telescope meets or surpasses the design goals, in particular as concerns the achievable image quality. Exposures lasting up to 10 minutes confirm that the tracking, crucial for following the diurnal rotation of the sky, is very accurate and stable. It appears that the concept developed by ESO for the construction of the VLT, namely an actively controlled, single thin mirror, yields a very superior performance. In fact, the angular resolution achieved even at this early stage is unequalled by any large ground-based telescope . The combination of large area and fine angular resolution will ultimately result in a sensitivity for point sources (e.g. stars), which is superior to any yet achieved by existing telescopes on Earth. The present series of images demonstrate these qualities and include some impressive first views with Europe's new giant telescope. After further optimization of the optical, mechanical and electronic systems, and with increasing operational streamlining, this telescope will be able to deliver unique astronomical data of the highest quality. The commissioning and science verification phases of the complex facility including instruments will last until April 1, 1999, at which time the first visiting astronomers will be received. The full significance of this achievement for astronomy will take time to assess. For Europe, this is a triumph of the collaboration between nations, institutions and industries. For the first time in almost a century, European

  16. Astronomy Education through the NSF GK-12 Program

    Science.gov (United States)

    Jensen, A. G.

    2004-05-01

    The National Science Foundation's GK-12 program encourages graduate students in science to be active in public education at the middle school and high school levels. As a GK-12 fellow at the University of Colorado-Boulder (CU), I worked with a local 8th-grade science teacher and his students during the 2003-2004 school year. In the Boulder Valley School District, 8th-grade science covers Earth history, meteorology, astronomy, and oceanography. There are many special challenges for this school district and 8th-grade education in Colorado, including a large number of English as a second language (ESL) students and the administration of standardized tests during March, before students have completed much of the relevant material. As a GK-12 Fellow, my responsibilities included work with the Earth history Full Option Science System (FOSS) kit, guest lecturing, aid in hands-on exercises, and the creation of new activities and assignments. Astronomy activities accomplished through this program include sunspot viewing and a field trip to the Colorado Scale Model Solar System on the CU campus. The GK-12 program at CU will continue for at least two more years, possibly placing future GK-12 fellows who are astronomy grad students into classes that are astronomy- or physics-specific.

  17. Laying the Foundations of Contemporary Romanian Astronomy

    Science.gov (United States)

    Marin, Sorin

    2017-11-01

    This article describes the first stage in the history of Romanian astronomy represented by the events, processes and evolution which led to the formation of great scientific personalities, development drives and the creation of the material base for the contemporary Romanian astronomy, having a focus point on the activity of Bucharest Observatory. The article discusses the roots of an evolution pathway determined and inspired by the activity of several scientific personalities of Romania such as Stefan Hepites, Spiru Haret, Nicolae Coculescu and others. It also underlines that a great importance for the astronomical research in Romania was given by the outstanding technical value of the main instruments used at the Observatory in the first decades of activity and, consequentially, by their longevity in service: in the Equatorial Dome - the impressive 6 m. Prin-Mertz telescope and in the Meridian Hall - the GautierPrin telescope. This determined the formation of a powerful astrometry division and a research drive which led over time to important scientific works such as the ultraprecise stellar catalogues developed in Romania at Bucharest Observatory, which were appreciated and awarded nationally and internationally. Therefore, the article includes the moments and the people which determined the success of laying the foundations of the Observatory in 1908 and then having completed the initial scientific infrastructure in 1912 when the construction work was finished, and briefly presents the features, scientific utilisation and outputs of its telescopes, some of the best in the world in their golden years.

  18. Large Instrument Development for Radio Astronomy

    Science.gov (United States)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  19. Radio Astronomy Software Defined Receiver Project

    Energy Technology Data Exchange (ETDEWEB)

    Vacaliuc, Bogdan [ORNL; Leech, Marcus [Shirleys Bay Radio Astronomy Consortium; Oxley, Paul [Retired; Flagg, Richard [Retired; Fields, David [ORNL

    2011-01-01

    The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a user s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.

  20. Star-Paths, Stones and Horizon Astronomy

    Science.gov (United States)

    Brady, Bernadette

    2015-05-01

    Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.

  1. Evaluating Astronomy Literacy of the General Public

    CERN Document Server

    Love, C; Bonora, S

    2013-01-01

    A scientifically literate society is important for many different reasons, some of which include democratic and scientific topics. This study was performed in order to identify topics in astronomy and science in general that may not be well understood by the general public. Approximately 1,000 adults at a popular science museum in Philadelphia, PA completed True-False survey questions about basic astronomy concepts. The participants were also asked to provide their age, gender, and highest degree obtained. Although 93 +/- 0.8% of the participants correctly answered that scientists can calculate the age of the Earth, only 58 +/- 2% provided the correct response that scientists can calculate the age of the Universe. Some participants (30 +/- 1%) responded that scientists have found life on Mars. Females scored an average total score of 78 +/- 2%, whereas males scored an average 85 +/- 1%. Participants with an age of 56 and over had an average score of 78 +/- 4% compared to participants under the age of 56 that ...

  2. Pre-Inca Astronomy in Peru

    Science.gov (United States)

    McKim Malville, J.

    Huacas (shrines) and ushnus (ceremonial platforms) are ever-present elements of millennia-old Andean cosmology extending backward to 3100 BCE. Major themes of Pan-Andean cosmology include sacred mountains, the power of water, the solstice sun, as well as shamanic-like movement across the three worlds of the cosmos. Common features of many pre-Inca sites are monumental platforms and sunken circular plazas, and stairways with axes established by bi-lateral symmetries oriented along solstice lines. This style of ritual architecture first appeared in Chupacigarro/Caral, other sites in the Norte Chico area, and Sechin Bajo in the Casma Valley. Ceremonial plazas provided opportunities for public viewing of ritual ceremonies on the tops of platforms, which may have been understood as sacred mountains. Mounds and temples of the Casma Valley, such as Sechin Alto, Sechin Bajo, and Chankillo, developed an explicit astronomy associated with June and December solstices. The ritualistic use of water, which is typically associated with visual astronomy at Inca sites, appeared at Chavin de Huantar and later in Tiwanaku.

  3. Astronomy in Brazilian music and poetry

    Science.gov (United States)

    de Freitas Mourão, Ronaldo Rogério

    2011-06-01

    The rôle of astronomy in the Brazilian cultural diversity -though little known world- has been enormous. Thus, the different forms of popular music and erudite, find musical compositions and lyrics inspired by the stars, the eclipses in rare phenomena such as the transit of Venus in front of the sun in 1882, the appearance of Halley's Comet in 1910, in the Big Bang theory. Even in the carnival parades of the blocks at the beginning of the century astronomy was present. More recently, the parade of 1997, the samba school Unidos do Viradouro, under the direction of Joãozinho Trinta, offered a new picture of the first moments of the creation of the universe to join in the white and dark in the components of their school, the idea of matter and anti-matter that reigned in the early moments of the creation of the universe in an explosion of joy. Examples in classical music include Dawn of Carlos Gomes and Carta Celeste by Almeida Prado. Unlike The Planets by Gustav Holst -who between 1914 and 1916 composed a symphonical tribute to the solar system based on astrology- Almeida Prado composed a symphony that is not limited to the world of planets, penetrating the deep cosmos of galaxies. Using various resources of the technique for the piano on the clusters and static movements, violent conflicts between the records of super acute and serious instrument, harpejos cross, etc . . .

  4. Astronomy in the National Parks

    Science.gov (United States)

    Nordgren, Tyler E.

    2009-01-01

    American national parks are fertile grounds for astronomy and planetary science outreach. They are some of the last remaining dark-sky sites the typical visitor (both U.S. and international) can still experience easily. An internal National Park Service (NPS) study shows a dark starry sky is an integral part of what visitors consider their park experience. As a result, the NPS Night Sky Team (a coordinated group of park rangers and astronomers) is measuring and monitoring the sky brightness over the parks in an attempt to promote within the park service protection of the night sky as a natural resource. A number of parks (e.g. Grand Canyon National Park) are currently expanding their night sky related visitor programs in order to take advantage of this resource and visitor interest. The national parks and their visitors are therefore an ideal audience fully "primed” to learn about aspects of astronomy or planetary science that can be, in any way, associated with the night sky. As one of the astronomers on the NPS Night Sky Team, I have been working with park service personnel on ways to target park visitors for astronomical outreach. The purpose of this outreach is twofold: 1) Strengthen popular investment in preserving dark skies, 2) Strengthen popular investment in current astronomical research. A number of avenues already being used to introduce astronomy outreach into the parks (beyond the simple "star party") will be presented.

  5. Astronomy Camp = IYA x 22: 22 Years of International Astronomy Education

    Science.gov (United States)

    Hooper, Eric Jon; McCarthy, D. W.; Camp Staff, Astronomy

    2010-01-01

    Do you remember childhood dreams of being an astronomer, or the ravenous desire for ever larger glass and better equipment as an amateur astronomer? What if your child or the person down the street could live that dream for a weekend or a week? The University of Arizona Astronomy Camp continues to substantiate those dreams after more than two decades in existence. Astronomy Camp is an immersion hands-on field experience in astronomy, ranging from two to eight nights, occurring a few times per year. Participants span an age range from elementary students to octogenarians. The three basic offerings include adult camps, a beginning Camp for teenagers, and an advanced teen Camp. Several variants of the basic Camp model have evolved, including an ongoing decade long series of specialized Camps for Girl Scout leaders from across the country, funded by the NIRCam instrument development program for the James Webb Space Telescope. The advanced teen Camp is a microcosm of the entire research arc: the participants propose projects, spend the week collecting and analyzing data using research grade CCDs, infrared arrays, and radio/sub-millimeter telescopes, and finish with a presentation of the results. This past summer the Camps moved to Kitt Peak National Observatory for the first time, providing access to a vast and diverse collection of research instruments, including the 0.9-meter WIYN and 2.3-meter Bok telescopes, the McMath-Pierce Solar Telescope, and the 12-meter ARO radio telescope. Education research into the Camp's impact indicates that reasons for its appeal to youth include a learner-centered and personal approach with a fun attitude toward learning, authentic scientific inquiry led by mentors who are real scientists, a peer group with common interests in science and engineering, and the emotional appeal of spending time on a dark "sky island" devoted to the exploration of nature.

  6. Innovative Technology for Teaching Introductory Astronomy

    Science.gov (United States)

    Guidry, Mike

    The application of state-of-the-art technology (primarily Java and Flash MX Actionscript on the client side and Java PHP PERL XML and SQL databasing on the server side) to the teaching of introductory astronomy will be discussed. A completely online syllabus in introductory astronomy built around more than 350 interactive animations called ""Online Journey through Astronomy"" and a new set of 20 online virtual laboratories in astronomy that we are currently developing will be used as illustration. In addition to demonstration of the technology our experience using these technologies to teach introductory astronomy to thousands of students in settings ranging from traditional classrooms to full distance learning will be summarized. Recent experiments using Java and vector graphics programming of handheld devices (Personal Digital Assistants and cell phones) with wireless wide-area connectivity for applications in astronomy education will also be described.

  7. OECD Global Science Forum's Astronomy Workshop to take place in Munich

    Science.gov (United States)

    2003-11-01

    On December 1 to 3, the city of Munich (Bavaria, Germany) will be the venue for a "Workshop on Large Scale Programmes and Projects in Astronomy and Astrophysics" organised by the Organisation for Economic Co-operation and Development (OECD) Global Science Forum in co-operation with the European Southern Observatory (ESO). The Workshop will be chaired by Ian Corbett (ESO). The Global Science Forum brings together science policy officials from the OECD countries. The delegates, who meet twice a year, look at a range of generic issues in science funding and seek to identify and maximise opportunities for international co-operation in basic scientific research. This Workshop was proposed by Germany and agreed by the delegates to the Global Science Forum in June. Government officials and scientists will be able to review in detail the information and the observational and technological advances needed for major progress in the field during the next 15- 20 years. The research subjects reviewed will cover the full range from planets, solar systems, life in the Universe, stars, galaxies, extreme objects to cosmology. Related technological challenges, virtual observatories and other data handling issues will also be considered. The primary objective is to specify the policy issues relating to priority-setting, planning, funding and, above all, international co-ordination and co-operation. The Workshop will focus on issues relevant to the process through which astronomy advances, and will highlight means to enhance that process in light of longer-term scientific and political trends. There will probably be a follow-up meeting early in 2004, from which a policy level report will be prepared for consideration by the Global Science Forum and so transmitted to governments. Eighteen delegations, from non-OECD as well as OECD countries, will attend, each consisting of senior programme managers from the national ministry, funding agency or research council, and one or more senior

  8. Astronomy development in Serbia in view of the IAU Strategic Plan

    Science.gov (United States)

    Atanacković, Olga

    2015-03-01

    An overview of astronomy development in Serbia in view of the goals envisaged by the IAU Strategic Plan is given. Due attention is paid to the recent reform of education at all levels. In the primary schools several extra topics in astronomy are introduced in the physics course. Attempts are made to reintroduce astronomy as a separate subject in the secondary schools. Special emphasis is put to the role and activities of the Petnica Science Center the biggest center for informal education in SE Europe, and to a successful participation of the Serbian team in International astronomy olympiads. Astronomy topics are taught at all five state universities in Serbia. At the University of Belgrade and Novi Sad students can enroll in astronomy from the first study year. The students have the training at the Ondrejov Observatory (Czech Republic) and at the astronomical station on the mountain Vidojevica in southern Serbia. Astronomy research in Serbia is performed at the Astronomical Observatory, Belgrade and the Department of Astronomy, Faculty of Mathematics, University of Belgrade. There are about 70 researchers in astronomy in Serbia (and about as many abroad) who participate in eight projects financed by the Ministry of Education and Science and in several international cooperations and projects: SREAC, VAMDC, Belissima (recruitment of experienced expatriate researchers), Astromundus (a 2-year joint master program with other four European universities), LSST. One of the goals in near future is twinning between universities in the SEE region and worldwide. The ever-increasing activities of 20 amateur astronomical societies are also given.

  9. Australian Aboriginal Astronomy: Overview

    CERN Document Server

    Norris, Ray P

    2013-01-01

    The traditional cultures of Aboriginal Australians include a significant astronomical component, perpetuated through oral tradition, ceremony, and art. This astronomical component includes a deep understanding of the motion of objects in the sky, and this knowledge was used for practical purposes, such as constructing calendars. There is also evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, paid careful attention to unexpected phenomena such as eclipses and meteorite impacts, and could determine the cardinal points to an accuracy of a few degrees.

  10. Inspiring the Next Generation: Astronomy Catalyzes K12 STEM Education

    Science.gov (United States)

    Borders, Kareen; Thaller, Michelle; Winglee, Robert; Borders, Kyla

    2017-06-01

    K-12 educators need effective and relevant astronomy professional development. NASA's Mission Science provides innovative and accessible opportunities for K-12 teachers. Science questions involve scale and distance, including Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers can gain an understanding of basic telescopes, the history of telescopes, ground and satellite based telescopes, and models of JWST Telescope. An in-depth explanation of JWST and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. During teacher training, we taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of lenticulars and diagramming of infrared data, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars.We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development.Funding was provided by Washington STEM, NASA, and the Washington Space Grant Consortium.

  11. Cultural Astronomy in the Armenian Highland

    Science.gov (United States)

    Farmanyan, S. V.; Suvaryan, Yu. M.; Mickaelian, A. M. (Eds.)

    2016-12-01

    The book contains 29 articles of the Proceedings of the Young Scientists Conference "Cultural Astronomy in the Armenian Highland" held at the Armenian National Academy of Sciences on 20-23 June 2016. It consists of 4 main sections: "Introductory", "Cultural Astronomy", "Archaeoastronomy", "Scientific Tourism and Journalism, Astronomical Education and Amateur Astronomy". The book may be interesting to astronomers, culturologists, philologists, linguists, historians, archaeologists, art historians, ethnographers and to other specialists, as well as to students.

  12. The IAU Office of Astronomy for Development

    Science.gov (United States)

    Govender, Kevin

    2015-03-01

    On 16 April 2011 the IAU's Office of Astronomy for Development (OAD) was launched jointly by the President of the IAU and the South African Minister of Science and Technology, at the South African Astronomical Observatory in Cape Town. This OAD was set up to realise the IAU's strategic plan which aims to use astronomy as a tool for development. Communicating astronomy with the public is one of the OAD's focus areas.

  13. Ancient Indian Astronomy in Introductory Texts

    Science.gov (United States)

    Narahari Achar, B. N.

    1997-10-01

    It is customary in introductory survey courses in astronomy to devote some time to the history of astronomy. In the available text books only the Greek contribution receives any attention. Apart from Stonehenge and Chichenitza pictures, contributions from Babylon and China are some times mentioned. Hardly any account is given of ancient Indian astronomy. Even when something is mentioned it is incomplete or incorrect or both. Examples are given from several text books currently available. An attempt is made to correct this situation by sketching the contributions from the earliest astronomy of India, namely Vedaanga Jyotisha.

  14. Improving Astronomy Achievement and Attitude through Astronomy Summer Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Türk, Cumhur; Kalkan, Hüseyin; Iskeleli', Nazan Ocak; Kiroglu, Kasim

    2016-01-01

    The purpose of this study is to examine the effects of an astronomy summer project implemented in different learning activities on elementary school students, pre-service elementary teachers and in-service teachers' astronomy achievement and their attitudes to astronomy field. This study is the result of a five-day, three-stage, science school,…

  15. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    Science.gov (United States)

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  16. Learner Centered Introductory Astronomy Community College Course

    Science.gov (United States)

    Sprague, C. J.; Grill, M. R.; Genet, C. L.; Genet, R. M.

    2002-05-01

    In the fall of 2001, learner centered education principles were applied to an introductory astronomy course at the Superstition Mountain Campus of Central Arizona College (CAC). The course was cooperatively designed and managed by the students themselves (especially Sprague and Grill), an assistant course facilitator (C. Genet), and the course instructor and developer (R. Genet). Although some time was devoted to lectures accompanied by photographic slides and open to the public, the bulk of the time was devoted to student projects. Students built telescopes, including solar, zenith, and Galileo, took measurements, made calculations, mapped stars, and determined the circumference of the earth via zenith observations at Apache Junction and at Mt. Hopkins, 120 miles away. A three-day field trip to Lowell Observatory included a tour, observations through the famous 24-inch Clark refractor, and a conference on `Undergraduate Astronomical Research' which included talks on stellar photometry by G. W. Lockwood and R. M. Genet. A second three-day field trip included a tour and observations at Kitt Peak National Observatory (0.4 m telescope), a tour of the observatories on Mt. Hopkins, and a conference on `Learner-Centered Astronomy Education.' The community college students were joined by doctoral students and alumni from the Union Institute and University, as well as by Campua Dean James Stuckey from CAC and his wife Beverly Santos of Northern Arizona University. By allowing students the freedom to explore and expand their knowledge at a rate appropriate to each individual, the students attained levels of confidence not found in traditional teaching styles. We are pleased to acknowledge Dean Stuckey who made this class possible. We also wish to thank Wesley Lockwood and Robert Bargoon at Lowell Observatory, Robert Wilson at Kitt Peak National Observatory, and Daniel Brocious at the Smithsonian's Whipple Observatory for their invaluable assistance during our field trips.

  17. A New Online Astronomy Resource for Education and Outreach

    Science.gov (United States)

    Impey, C. D.; Hardegree-Ullman, K. K.; Patikkal, A.; Srinathan, A.; Austin, C. L.; Ganesan, N. K.; Guvenen, B. C.

    2013-01-01

    A new web site called "Teach Astronomy" (http://www.teachastronomy.com) has been created to serve astronomy instructors and their students, amateur astronomers, and members of the public interested in astronomy. The

  18. Astronomy and "Azulejo" Panels in Portuguese Jesuit Colleges

    Science.gov (United States)

    de Carvalho, Rosário Salema; Gessner, Samuel; Tirapicos, Luís

    2015-05-01

    In Portugal the Jesuits used tiles (azulejos) for parietal decoration of various areas of their colleges, especially in the second quarter of the 18th century. Various tile panels are still conserved in the important colleges of Lisbon and Évora. The iconographies address a variety of philosophical, historical and mathematical topics and scenes evoking the gentry's life; but they are to some extent illustrative of the subject matters taught by the different chairs. Astronomy is a major subject in the Aula da Esfera of the Santo Antão College in Lisbon, which was not destroyed during the great earthquake of 1755. In the Espirito Santo College in Évora there is also a hall preserved with astronomy and geometry topics. In this paper we will analyze the iconographical program for these parietal decorations in the context of the Jesuits' activities of teaching and practical astronomy. In particular, we will identify various printed sources from which the compositions on these panels derive.

  19. A dictionary of astronomy

    CERN Document Server

    2003-01-01

    This revised edition contains 4,000 up-to-date entries written by an expert team of contributors, under the editorship of Ian Ridpath, renowned author and broadcaster. Covering the most recent space exploration missions and latest technological development, this authoritative dictionary covers everything from astrophysics to galaxies and time. World-wide coverage of observatories and telescopes, and major entries on supernova, Big Bang theory, and stellar evolution, make this an invaluable reference source for students, professionals, and amateur astronomers. Appendices include tables of Apollo lunar landing missions and the constellations. The entries are supported by numerous tables and diagrams, and the dictionary also features biographical entries on eminent astronomers.

  20. The Role of Amateur Astronomy to Outreach Astronomical Knowledge

    Science.gov (United States)

    Khachatryan, Vachik; Voskanyan, Tsovak

    2016-12-01

    It is known that in the educational system of republic the astronomy is not taught as a separate subject. Moreover, there are no telescopes in the vast majority of schools. "Goodricke John" NGO of amateur astronomers tries to fill this gap by organizing practical lessons of astronomy in secondary schools. NGO is equipped with high quality portable amateur telescopes and organizes periodic mass observations of planets, Moon, star clusters, nebulae in Yerevan and in regions. In addition, mass observations of rare astronomical phenomena are organized, such as the transit of Venus and Mercury across the disk of the Sun. Being the only NGO of amateur astronomers, it has a goal to contribute to publicizing astronomical knowledge and to ensure the availability of astronomical equipment, telescopes also to those segments of the society who have no opportunity to deal with them, in particular, persons with disabilities, prisoners, persons with disabilities, prisoners, soldiers, children from orphanages, school children and others.

  1. The Lowell Observatory Navajo-Hopi Astronomy Outreach Program

    Science.gov (United States)

    Herrmann, K. A.; Hunter, D. A.; Bosh, A. S.; Johnson, M.; Schindler, K.

    2012-08-01

    We present an overview of the Lowell Observatory Navajo-Hopi Astronomy Outreach Program, which is modeled after the ASP's Project ASTRO (Richter & Fraknoi 1994). Since 1996, our missions have been (1) to use the inherent excitement about the night sky to help teachers get Navajo and Hopi students excited about science and education, and (2) to help teachers of Navajo and Hopi students learn about astronomy and hands-on activities so that they will be better able to incorporate astronomy in their classrooms. Lowell astronomers pair up for a school year with an elementary or middle school (5th-8th grade) teacher and make numerous visits to their teachers' classes, partnering with the educators in leading discussions linked with hands-on activities. Lowell staff also work with educators and amateur astronomers to offer evening star parties that involve the family members of the students as well as the general community. Toward the end of the school year, teachers bring their classes to Lowell Observatory. The classes spend some time exploring the Steele Visitor Center and participating in tours and programs. They also voyage to Lowell's research facility in the evening to observe at two of Lowell's research telescopes. Furthermore, we offer biennial teacher workshops in Flagstaff to provide teachers with tools, curricula materials, and personalized training so that they are able to include astronomy in their classrooms. We also work with tribal educators to incorporate traditional astronomical knowledge. Funding for the program comes from many different sources.

  2. Astronomy: A Self-Teaching Guide, 6th Edition

    Science.gov (United States)

    Moché, Dinah L.

    2004-02-01

    "A lively, up-to-date account of the basic principles of astronomy and exciting current field of research."-Science Digest For a quarter of a century, Astronomy: A Self-Teaching Guide has been making students and amateur stargazers alike feel at home among the stars. From stars, planets and galaxies, to black holes, the Big Bang and life in space, this title has been making it easy for beginners to quickly grasp the basic concepts of astronomy for over 25 years. Updated with the latest discoveries in astronomy and astrophysics, this newest edition of Dinah Moché's classic guide now includes many Web site addresses for spectacular images and news. And like all previous editions, it is packed with valuable tables, charts, star and moon maps and features simple activities that reinforce readers' grasp of basic concepts at their own pace, as well as objectives, reviews, and self-tests to monitor their progress. Dinah L. Moché, PhD (Rye, NY), is an award-winning author, educator, and lecturer. Her books have sold over nine million copies in seven languages.

  3. Professional Development Through The University of Arizona Astronomy Club

    Science.gov (United States)

    McGraw, Allison M.; Nieberding, Megan N.; Austin, Carmen; Hardegree-Ullman, Kevin

    2015-01-01

    The University of Arizona Astronomy Club creates a unique environment for undergraduates to accomplish goals early in their academic career. The club provides research opportunities with advisors, graduate students, and projects organized by fellow undergraduates. Undergraduates that work side-by-side develop strong working relationships which keeps students interested in astronomy and enables them to thrive in their studies and research. Club members are encouraged to attend and present their research at professional conferences where they are exposed early to the scientific research community, learn about internship and REU opportunities, and get information about graduate programs. In addition to preparing undergraduates to thrive in their academic career, the club also offers outreach opportunities for members to actively educate the southern Arizona community. Members of the club design and create many of their outreach materials including 3D models of our local stellar neighborhood and astronomical objects. Astronomy Club has had a positive impact on its members, the Department of Astronomy, and the southern Arizona community for the past seven years. The club continues to strive to improve undergraduate retention and prepare students for their future careers.

  4. Testing The Scale-up Approach To Introductory Astronomy

    Science.gov (United States)

    Kregenow, Julia M.; Keller, L.; Rogers, M.; Romero, D.

    2008-09-01

    Ithaca College physics department has begun transforming our general education astronomy courses into hands-on, active-learning courses from the previous lecture-based format. We are using the SCALE-UP model (Student Centered Activities for Large Enrollment University Programs) pioneered at North Carolina State University. Expanding on the successes of Studio Physics (developed at RPI), which exchanges traditionally separate lecture/recitation/ laboratory sessions for one dynamic, active-learning environment for approximately 40 students, SCALE-UP extends this model to accommodate 100+ students by using large round tables creating naturally smaller groups of students. Classes meet three times per week with each class blending lecture, hands-on activities, group problem solving, and the use of student polling devices. We are testing whether this mode of teaching astronomy will lead to a better understanding of astronomy and the nature of science. Applying this approach in both the SCALE-UP classroom (90 students) and a traditional lecture classroom (45 students) in spring 2008, we report on our early results and lessons learned after one semester. We also discuss some of our lingering implementation questions and issues, such as: whether to use the same or different instructor in two parallel sections, requiring textbook reading, reading quizzes, on-line homework and activities, how much math to include, development of hands-on activities, and culling the typically overpacked intro astronomy syllabus.

  5. The East Asian Office of Astronomy for Development

    Science.gov (United States)

    de Grijs, Richard; Zhang, Ziping

    2015-08-01

    At the 2012 General Assembly of the International Astronomical Union (IAU), the Office of Astronomy for Development (OAD) programme announced a number of exciting new partnerships to assist with the IAU's decadal strategic plan (2010-2020). These landmark decisions included establishing a new coordinating centre that aims at using astronomy as a tool for development in East Asia. The agreement covers two important functions. One is known as a Regional Node, which entails the coordination of astronomy-for-development activities in countries within the general geographical region of East Asia (in first instance China, Mongolia and the DPRK, but without placing firm geographical limits on the region). The other is known as a Language Expertise Centre which will deal with all aspects relating to (mainly) the Chinese language and culture. The impact of the latter may obviously spread well beyond the geographical region to other parts of the world. At this next General Assembly, we aim at updating the community of the achievements and aims of the East Asian Office of Astronomy for Development.

  6. I. S. Shklovsky and Low-Frequency Radio Astronomy

    Science.gov (United States)

    Konovalenko, A. A.

    2017-03-01

    Purpose: Proving of the high astrophysical significance of the low-frequency radio astronomy (decameter and adjacent hectometer and meter wavelengths), demonstration of the priority results of the Ukrainian low-frequency radio astronomy as well as significant contribution of I. S. Shklovsky to its development. Design/methodology/approach: The requirements to characteristics of high efficiency radio telescopes UTR-2, URAN, GURT and to sensitive and interference immune observational methods at low frequencies are formulated by using the theoretical analysis and astrophysical predictions including those I. S. Shklovsky’s. Findings: New generation radio telescopes UTR-2, URAN, GURT are created and modernized. New observational methods at low frequencies are introduced. Large-scale investigations of the Solar system, Galaxy and Methagalaxy are carried out. They have allowed to detect new objects and phenomena for the continuum, monochromatic, pulse and sporadic cosmic radio emission. The role of I. S. Shklovsky in the development of many low-frequency radio astronomy directions is noted, too. Conclusions: The unique possibilities of the low-frequency radio astronomy which gives new information about the Universe, inaccessible with the other astrophysical methods, are shown. The progress of the low-frequency radio astronomy opens the impressive possibilities for the future. It includes modernization of the largest radio telescopes UTR-2, URAN, NDA and creation of new instruments GURT, NenuFAR, LOFAR, LWA, MWA, SKA as well as making multi-antenna and ground-space experiments. The contribution of outstanding astrophysicist of the XX century I. S. Shklovsky to this part of actual astronomical science is evident, claiming for attention and will never be forgotten.

  7. Copernican Astronomy and Oceanic Exploration

    Science.gov (United States)

    McKittrick, Paul

    2014-01-01

    This paper examines the relationships between the century long development of the “New Astronomy” (Copernicus’ axially rotating and solar orbiting earth, governed by Kepler’s laws of planetary motion) of the sixteenth and early seventeenth centuries and the emerging astronomical navigation technologies of the fifteenth and sixteenth century Iberian oceanic explorers and their sixteenth and seventeenth century Protestant competitors. Since the first breakthroughs in Portuguese astronomical navigation in ascertaining latitude at sea were based upon the theories and observations of classically trained Ptolemaic astronomers and cosmographers, it can be argued that the new heliocentric astronomy was not necessary for future developments in early modern navigation. By examining the history of the concurrent revolutions in early modern navigation and astronomy and focusing upon commonalities, we can identify the period during which the old astronomy provided navigators with insufficient results - perhaps hastening the acceptance of the new epistemology championed by Galileo and rejected by Bellarmine. Even though this happened during the period of northern protestant ascendancy in exploration, its roots can be seen during pre-Copernican acceptance in both Lutheran and Catholic Europe. Copernican mathematics was used to calculate Reinhold’s Prutenic Tables despite the author’s ontological rejection of the heliocentric hypothesis. These tables became essential for ascertaining latitude at sea. Kepler’s Rudophine Tables gained even more widespread currency across Europe. His theories were influenced by Gilbert’s work on magnetism - a work partially driven by the requirements of English polar exploration. Sailors themselves never needed to accept a heliocentric cosmography, but the data they brought back to the metropolis undermined Ptolemy, as better data kept them alive at sea. This exchange between theoretician and user in the early modern period drove both

  8. The General History of Astronomy

    Science.gov (United States)

    Taton, René; Wilson, Curtis; Hoskin, editor Michael, , General

    2009-09-01

    Part V. Early Phases in the Reception of Newton's Theory: 14. The vortex theory in competition with Newtonian celestial dynamics Eric J. Aiton; 15. The shape of the Earth Seymour L. Chapin; 16. Clairaut and the motion of the lunar apse: The inverse-square law undergoes a test Craig B. Waff; 17. The precession of the equinoxes from Newton to d'Alembert and Euler Curtis Wilson; 18. The solar tables of Lacaille and the lunar tables of Mayer Eric G. Forbes and Curtis Wilson; 19. Predicting the mid-eighteenth-century return of Halley's Comet Craig B. Waff; Part VI. Celestial Mechanics During the Eighteenth Century: 20. The problem of perturbation analytically treated: Euler, Clairaut, d'Alembert Curtis Wilson; 21. The work of Lagrange in celestial mechanics Curtis Wilson; 22. Laplace Bruno Morando; Part VII. Observational Astronomy and the Application of Theory in the Late Eighteenth and Early Nineteenth Century: 23. Measuring solar parallax: The Venus transits of 1761 and 1769 and their nineteenth-century sequels Albert Van Helden; 24. The discovery of Uranus, the Titius-Bode and the asteroids Michael Hoskin; 25. Eighteenth-and nineteenth century developments in the theory and practice of orbit determination Brian G. Marsden; 26. The introduction of statistical reasoning into astronomy: from Newton to Poincaré Oscar Sheynin; 27. Astronomy and the theory of errors: from the method of averages to the method of least squares F. Schmeidler; Part VIII. The Development of Theory During the Nineteenth Century: 28. The golden age of celestial mechanics Bruno Morando; Part IX. The Application of Celestial Mechanics to the Solar System to the End of the Nineteenth Century: 29. Three centuries of lunar and planetary ephemerides and tables Bruno Morando; 30. Satellite ephemerides to 1900 Yoshihide Kozai; Illustrations; Combined index for Parts 2A and 2B.

  9. Astronomy in the Netherlands

    Science.gov (United States)

    Boland, Wilfried; Habing, Harm

    2013-01-01

    We describe the state of astronomical research in the Netherlands per early 2012. We add some notes on its history of this research and on the strategic choices for the future. Compared to the size of the country (16 million people) the Netherlands is maintaining a high profile in astronomical research over a period of more than one century. The professional research community consists of about 650 people. This includes research staff, postdocs, PhD students, technical staff working on instrumentation projects and people involved in the operations of ground-based telescopes and astronomical space missions. We do not take into account staff working for international organizations based in the Netherlands. Astronomical research in the Netherlands is carried out at four university institutes and two national research institutes that fall under the umbrella of the national funding agency NWO. The Netherlands is the host of two international organizations: ESTEC, the technology division of the European Space Agency (ESA), and the Joint Institute for VLBI in Europe (JIVE). The Netherlands are one of the founding members of the European Southern Observatory (ESO) and of ESA. This paper will address a number of significant multilateral collaborations.

  10. Highlights of Astronomy, Vol. 15

    Science.gov (United States)

    Corbett, Ian

    2010-11-01

    Preface; Part I. Gruber Cosmology Prize Lecture; Part II. Invited Discourses; Part III. Joint Discussions: 1. Dark matter in early-type galaxies Léon V. E. Koopmans and Tommaso Treu; 2. Diffuse light in galaxy clusters Magda Arnaboldi and Ortwin Gerhard; 3. Neutron stars - timing in extreme environments Tomaso Belloni, Mariano Méndez and Chengmin Zhang; 4. Progress in understanding the physics of Ap and related stars Margarida Cunha; 5. Modelling the Milky Way in the age of Gaia Annie C. Robin; 6. Time and astronomy Pascale Defraigne; 7. Astrophysical outflows and associated accretion phenomena Elisabete M. de Gouveia Dal Pino and Alex C. Raga; 8. Hot interstellar matter in elliptical galaxies Dong-Woo Kim and Silvia Pellegrini; 9. Are the fundamental constants varying with time? Paolo Molaro and Elisabeth Vangioni; 10. 3D views on cool stellar atmospheres - theory meets observation K. N. Nagendra, P. Bonifacio and H. G. Ludwig; 11. New advances in helio- and astero-seismology; 12. The first galaxies - theoretical predictions and observational clues; 13. Eta Carinae in the context of the most massive stars Theodore R. Gull and Augusto Damineli; 14. The ISM of galaxies in the far-infrared and sub-millimetre; 15. Magnetic fields in diffuse media Elisabete M. de Gouveia Dal Pino and Alex Lazarian; 16. IHY global campaign - whole heliosphere interval; Part IV. Special Sessions: SpS 1. IR and sub-mm spectroscopy - a new tool for studying stellar evolution Glenn Wahlgren, Hans Käufl and Florian Kerber; SpS 2. The international year of astronomy Pedro Russo, Catherine Cesarsky and Lars Lindberg Christensen; SpS 3. Astronomy in Antarctica in 2009 Michael G. Burton; SpS 4. Astronomy education between past and future J. P. De Greve; SpS 5. Accelerating the rate of astronomical discovery Ray P. Norris; SpS 6. Planetary systems as potential sites for life Régis Courtin, Alan Boss and Michel Mayor; SpS 7. Young stars, brown dwarfs, and protoplanetary disks Jane Gregorio

  11. Dealing with Creationism in Astronomy

    Science.gov (United States)

    Bridgman, W. T.

    2005-12-01

    In recent years, the battle to force some form of pseudo-science into American science classrooms has intensified. In court cases and Boards of Education, the sides have formed between religious groups claiming to desire a `balanced' treatment and scientific groups insisting on a total ban on the topics. But there is a third option which has not been explored. Many claims of `Creation Science' and other pseudosciences can be explored and refuted at the level of introductory physics and astronomy classes. I will present a few claims of Young-Earth Creationists (YECs) pertaining to cosmology and illustrate some methods for refuting them.

  12. Astronomy of the vedic altars

    Science.gov (United States)

    Kak, Subhash C.

    In this paper, two ancient Indian texts, the Śatapatha Brāhmana and the Rigveda, are examined for their astronomical content. It is argued that the 95 year ritual of agnicayana had an astronomical basis, which implies a knowledge of the length of the tropical year being equal to 365.24675 days. An astronomical code has been discovered in the structure of the Rigveda, which has been partially deciphered. This code expressed the knowledge that the sun and the moon are about 108 times their respective diameters away from the earth. This analysis leads to a major revision of our understanding of the history of ancient astronomy.

  13. Inspiration Today: Music, Astronomy, and Popular Culture

    Science.gov (United States)

    Fraknoi, A.

    2016-01-01

    We explore a variety of examples of music inspired by serious astronomy (as opposed to simply an astronomical title or quick allusion to spooning in June to the light of the Moon). The examples are drawn from my recently published catalog of 133 such pieces, including both classical and popular genres of music. We discuss operas based on the life and work of astronomers, six songs based on a reasonable understanding of the properties of black holes, constellation pieces written by composers from around the world who are or were active amateur astronomers, the song that compares walking on the Moon to being in love, the little-known rock song that became a reference in the Astrophysical Journal, pieces that base the patterns of the music on the rhythms of astronomical phenomena, and a number of others.

  14. Milliarcsecond Astronomy with the CHARA Array

    Science.gov (United States)

    Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Jones, Jeremy; Farrington, Christopher

    2018-01-01

    The Center for High Angular Resolution Astronomy offers 50 nights per year of open access time at the CHARA Array. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. The open access time is part of an NSF/MSIP funded program to open the CHARA Array to the broader astronomical community. As part of the program, we will build a searchable database for the CHARA data archive and run a series of one-day community workshops at different locations across the country to expand the user base for stellar interferometry and encourage new scientific investigations with the CHARA Array.

  15. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    Science.gov (United States)

    Becklin, E. E.; Gehrz, R. D.; Roellig, T. L.

    2012-10-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), a program to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747SP, has obtained first science with the FORCAST camera in the 5 to 40 micron spectral region and the GREAT heterodyne spectrometer in the 130 to 240 micron spectral region. We briefly review the characteristics and status of the observatory. Spectacular science results on regions of star formation will be discussed. The FORCAST images show several discoveries and the potential for determining how massive stars form in our Galaxy. The GREAT heterodyne spectrometer has made mapping observations of the [C II] line at 158 microns, high J CO lines, and other molecular lines including SH. The HIPO high speed photometer and the high speed camera FDC were used to observe the 2011 June 23 UT stellar occultation by Pluto.

  16. Compact Radiative Control Structures for Millimeter Astronomy

    Science.gov (United States)

    Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.

    2010-01-01

    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.

  17. Astronomy Education in Morocco - New Project for Implementing Astronomy in High Schools

    Science.gov (United States)

    Darhmaoui, H.; Loudiyi, K.

    2006-08-01

    Astronomy education in Morocco, like in many developing countries, is not well developed and lacks the very basics in terms of resources, facilities and research. In 2004, the International Astronomical Union (IAU) signed an agreement of collaboration with Al Akhawayn University in Ifrane to support the continued, long-term development of astronomy and astrophysics in Morocco. This is within the IAU program "Teaching for Astronomy Development" (TAD). The initial focus of the program concentrated exclusively on the University's Bachelor of Science degree program. Within this program, and during two years, we were successful in providing adequate astronomy training to our physics faculty and few of our engineering students. We also offered our students and community general astronomy background through courses, invited talks and extra curricular activities. The project is now evolving towards a wider scope and seeks promoting astronomy education at the high school level. It is based on modules from the Hands on Universe (HOU) interactive astronomy program. Moroccan students will engage in doing observational astronomy from their PCs. They will have access to a world wide network of telescopes and will interact with their peers abroad. Through implementing astronomy education at this lower age, we foresee an increasing interest among our youth not only in astronomy but also in physics, mathematics, and technology. The limited astronomy resources, the lack of teachers experience in the field and the language barrier are amongst the difficulties that we'll be facing in achieving the objectives of this new program.

  18. Does Stereotype Threat Affect Post-Course Scores on the Astronomy Diagnostic Test?

    Science.gov (United States)

    Deming, G. L.; Hufnagel, B.; Landato, J. M.; Hodari, A. K.

    2003-12-01

    During the 1990s, Claude Steele and others demonstrated that women mathematics students under-performed while men over-performed on selected GRE questions when told that the exam could differentiate by gender. Stereotype threat is triggered for these women when they fear someone else may negatively stereotype them, and therefore, their performance is affected. In a limited study involving 229 students, we investigated the effect of stereotype threat on performance on the Astronomy Diagnostic Test (ADT). The ADT was administered as a pre-test in four introductory astronomy classes intended for non-science majors. The same professors taught pairs of classes at the University of Maryland, a large research institution, and W. R. Harper College, a small liberal arts school. The classes were treated the same until the final day before the post-course ADT was given. One "threatened" class at each campus was told that gender mattered so they should be sure to include it on the ADT. The "control" classes were told that gender does not matter. The results show no stereotype threat effect on the women in these introductory classes. The university men did slightly over-perform at low statistical significance. As Steele suggested, students must identify with a subject in order to strongly invoke a stereotype threat. This research was supported in part by the National Science Foundation through grants REC-0089239 to GLD, DGE-97014489 to BH, and DGE-9714452 for AKH.

  19. From the West Wing to Pink Floyd to Einstein Advertising: Astronomy in Popular Culture

    Science.gov (United States)

    Fraknoi, Andrew

    2007-12-01

    In what popular movie does Darryl Hannah play an astronomer? What Japanese car company is named after a well-known star cluster? Can you name at least two murder mysteries that take place at an observatory? What national astronomy education project was mentioned on The West Wing television show (which had several "stealth astronomy” episodes)? What piece of classical music begins with a Big Bang and has the players expanding on stage and into the concert hall? Can you recite the most famous neutrino poem and name the poet? What science fiction story, written by an astronomer under a pseudonym, features an H-R diagram? What rock group had its members’ names included in a reference in the Astrophysical Journal, unbeknownst to the editor? How many astronomy related operas can you name? How many astronomers does it take to screw in a light bulb? Join in on an exploration of astronomy in popular culture, from stamp collecting to advertising, from science fiction (with accurate astronomy) to rock music, from Broadway musicals to modern poetry. Learn which astronomy colleagues have been writing fiction and poetry while you were busy publishing in the research literature. Bring your favorite example of astronomy in popular culture and we'll take the time at the end to share ideas and have some fun. A resource guide for exploring astronomy and popular culture will be available.

  20. Student Comprehension of Mathematics through Astronomy

    Science.gov (United States)

    Search, Robert

    2016-01-01

    The purpose of this study is to examine how knowledge of astronomy can enhance college-level learning situations involving mathematics. The fundamental symbiosis between mathematics and astronomy was established early in the 17th century when Johannes Kepler deduced the 3 basic laws of planetary motion. This mutually harmonious relationship…

  1. Resources for Teaching Astronomy in UK Schools

    Science.gov (United States)

    Roche, Paul; Newsam, Andy; Roberts, Sarah; Mason, Tom; Baruch, John

    2012-01-01

    This article looks at a selection of resources currently available for use in the teaching of astronomy in UK schools. It is by no means an exhaustive list but it highlights a variety of free resources that can be used in the classroom to help engage students of all ages with astronomy and space science. It also lists several facilities with a…

  2. Encouraging Student Participation in Large Astronomy Courses

    Science.gov (United States)

    Willoughby, Shannon D.

    2012-01-01

    Introductory astronomy is one of the most widely taught classes in the country and the majority of the students who take these classes are non-science majors. Because this demographic of students makes up the majority of astronomy enrollments, it is especially important as instructors that we do our best to make sure these students don't finish…

  3. Some Daytime Activities in Solar Astronomy

    Science.gov (United States)

    Burin, Michael J.

    2016-01-01

    This century's transits of Venus (2004, 2012) captured significant public attention, reminding us that the wonders of astronomy need not be confined to the night. And while nighttime telescope viewing gatherings (a.k.a. "star parties") are perennially popular, astronomy classes are typically held in the daytime. The logistics of…

  4. Organizations and Strategies in Astronomy, volume 4

    Science.gov (United States)

    Heck, A.

    2003-10-01

    This book is the fourth volume under the title Organizations and Strategies in Astronomy (OSA). These OSA Books are intended to cover a large range of fields and themes. In practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. This book offers a unique collection of chapters dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, society activities, strategies for development, operational techniques, observing practicalities, environmental constraints, educational policies, public outreach, journal and magazine profiles, publication studies, electronic-media problematics, research communication, evaluation and selection procedures, research indicators, national policies and specificities, expertise sharing, contemporary history, and so on. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information and sometimes enlightening 'lessons learned' sections. The book concludes with an updated bibliography of publications related to socio-astronomy and to the interactions of the astronomy community with the society at large. This book will be most usefully read by researchers, teachers, editors, publishers, librarians, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as by students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/prod/b/1-4020-1526-7

  5. Indian Mathematics and Astronomy: Some Land- marks

    Indian Academy of Sciences (India)

    Indian Mathematics and. Astronomy: Some Land- marks. Michio Yano*. Indian Mathematics and Astronomy: Some Landmarks··. By S Balachandra Roo. Jnana Deep Publications, Bangalore,. 1994, Pages, VIII + 234, Price Rs. 751-. On Indio). This book is 'mainly addressed to the student community and general read-.

  6. Training in Astronomy for Physics Students

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, we describe what we have done with regard to astronomy training for physics students. More and more students are interested in astronomy, they spend their summer holidays and spare time in observations and studying the observation data. Some students are familiar with using the ...

  7. Introduction to Methods of Approximation in Physics and Astronomy

    Science.gov (United States)

    van Putten, Maurice H. P. M.

    2017-04-01

    Modern astronomy reveals an evolving Universe rife with transient sources, mostly discovered - few predicted - in multi-wavelength observations. Our window of observations now includes electromagnetic radiation, gravitational waves and neutrinos. For the practicing astronomer, these are highly interdisciplinary developments that pose a novel challenge to be well-versed in astroparticle physics and data analysis. In realizing the full discovery potential of these multimessenger approaches, the latter increasingly involves high-performance supercomputing. These lecture notes developed out of lectures on mathematical-physics in astronomy to advanced undergraduate and beginning graduate students. They are organised to be largely self-contained, starting from basic concepts and techniques in the formulation of problems and methods of approximation commonly used in computation and numerical analysis. This includes root finding, integration, signal detection algorithms involving the Fourier transform and examples of numerical integration of ordinary differential equations and some illustrative aspects of modern computational implementation. In the applications, considerable emphasis is put on fluid dynamical problems associated with accretion flows, as these are responsible for a wealth of high energy emission phenomena in astronomy. The topics chosen are largely aimed at phenomenological approaches, to capture main features of interest by effective methods of approximation at a desired level of accuracy and resolution. Formulated in terms of a system of algebraic, ordinary or partial differential equations, this may be pursued by perturbation theory through expansions in a small parameter or by direct numerical computation. Successful application of these methods requires a robust understanding of asymptotic behavior, errors and convergence. In some cases, the number of degrees of freedom may be reduced, e.g., for the purpose of (numerical) continuation or to identify

  8. A Coherent Content Storyline Approach for Introductory Astronomy

    Science.gov (United States)

    Palma, Christopher; Flarend, A.; McDonald, S.; Kregenow, J. M.

    2014-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Part of the multi-faceted ESSP effort includes revising the curriculum of university science classes known to be taken by large numbers of elementary pre-service teachers. By adopting research-based pedagogical approaches in our courses, we hope to expose these pre-service teachers to excellent examples of science teaching. In this presentation, we will discuss changes made in a pilot study to one section of our introductory astronomy survey course. There have been many articles published in the Astronomy Education Review and elsewhere that detail research-based pedagogical practices for introductory astronomy courses. Many of those practices (such as from the Center for Astronomy Education) have been incorporated into introductory astronomy courses at Penn State. However, our work with middle-grades teachers in the ESSP project is based on two key practices: a Claims, Evidence, and Reasoning (CER) framework (McNeill & Krajcik 2012) and a coherent science content storyline (Roth,et. al., 2011). As a first step in modeling these practices in our University courses, we reorganized our Astro course using a content storyline approach. We plan to incorporate CER activities into the course next year that advance the storyline described. In this poster, we present the storyline developed by our team, which we believe was successful in its pilot, and was built around a conceptually coherent presentation of the diverse set of phenomena typical of an introductory astronomy course. We adopted as our main learning goal a statement based on the cosmological principle that the physical laws throughout the Universe are identical everywhere. In addition, we organized the class schedule to connect the work done in each class to this storyline. We suggest that a coherent content storyline is a useful tool for others who

  9. An Inaugural Girl Scout Destinations Astronomy Camp

    Science.gov (United States)

    Lebofsky, Larry A.; McCarthy, Donald W.; Wright, Joe; Wright, Rita; Mace, Mikayla; Floyd, Charmayne

    2017-10-01

    The University of Arizona (UA) conducted its first teenage Girl Scout Destinations Astronomy Camp. This program was preceded by 24 Leadership Workshops for Adult Girl Scout Leaders, initially supported by EPO funding from NIRCam for JWST. For five days in late June, 24 girls (ages 13-17 years) attended from 16 states. The Camp was led by UA astronomers and long-term educators. Representing Girl Scouts of the USA (GSUSA) were a husband/wife amateur astronomer team who are SOFIA Airborne Astronomy and NASA Solar System Ambassadors. Other leaders included a Stanford undergraduate engineering student who is a lifelong Girl Scout and Gold Award recipient and a recent UA Master’s degree science journalist. The Camp is a residential, hands-on “immersion” adventure in scientific exploration using telescopes in southern Arizona’s Catalina Mountains near Tucson. Under uniquely dark skies girls become real astronomers, operating telescopes (small and large) and associated technologies, interacting with scientists, obtaining images and quantitative data, investigating their own questions, and most importantly having fun actually doing science and building observing equipment. Girls achieve a basic understanding of celestial objects, how and why they move, and their historical significance, leading to an authentic understanding of science, research, and engineering. Girls can lead these activities back home in their own troops and councils, encouraging others to consider STEM field careers. These programs are supported by a 5-year NASA Collaborative Agreement, Reaching for the Stars: NASA Science for Girl Scouts (www.seti.org/GirlScoutStars), through the SETI Institute in collaboration with the UA, GSUSA, Girl Scouts of Northern California, the Astronomical Society of the Pacific, and Aries Scientific, Inc. The Girl Scout Destinations Astronomy Camp aligns with the GSUSA Journey: It’s Your Planet-Love It! and introduces the girls to some of the activities being

  10. El Universo a Sus Pies: Actividades y Recursos para Astronomia (Universe at Your Fingertips: An Astronomy Activity and Resource Notebook).

    Science.gov (United States)

    Fraknoi, Andrew, Ed.; Schatz, Dennis, Ed.

    The goal of this resource notebook is to provide activities selected by astronomers and classroom teachers, comprehensive resource lists and bibliographies, background material on astronomical topics, and teaching ideas from experienced astronomy educators. Activities are grouped into several major areas of study in astronomy including lunar…

  11. An international scope of the regional journal Baltic Astronomy

    Science.gov (United States)

    Bartasiute, Stanislava

    2015-08-01

    The internationalization of publishing has been progressing in most fields of science, including astronomy and physics in particular. Along with high quality journals having a completely international readership, national and regional journals represent a significant part in number, whereas their average impact is very diverse and not always competitive. Based mainly on the Web of Science data, we will give a comparative analysis of astronomy journals published in/for countries with relatively small astronomical communities, such as Baltic and some Eastern European. Bibliometric statistics will be presented of one of such journals, Baltic Astronomy, established in 1992 as a result of cooperation between astronomers of Latvia, Lithuania, and Estonia. Since the first years of publishing this journal has been evolving from regional to the more internationalized status. The list of countries of contributing authors has expanded to 54, while only 19% of the articles are from the three Baltic countries, mainly from Lithuania (14%) and, to a much lesser extent, from Estonia (3%) and Latvia (2%). Recognizing the inadequacies of national and regional bases for dissemination and exchange of scientific information, the Baltic astronomical communities themselves move, however, towards internationalization: in international journals Latvia publishes twice and Estonia nearly ten times more articles than they do in Baltic Astronomy. Meanwhile Lithuanian astronomers publish nearly the same number of articles both outside and inside the region. In the light of progress being made toward consolidation of scholarly publications, a choice between a national/regional and international basis for publishing is becoming more decisive for the future of national and regional astronomy journals.

  12. Introduction to methods of approximation in physics and astronomy

    CERN Document Server

    van Putten, Maurice H P M

    2017-01-01

    This textbook provides students with a solid introduction to the techniques of approximation commonly used in data analysis across physics and astronomy. The choice of methods included is based on their usefulness and educational value, their applicability to a broad range of problems and their utility in highlighting key mathematical concepts. Modern astronomy reveals an evolving universe rife with transient sources, mostly discovered - few predicted - in multi-wavelength observations. Our window of observations now includes electromagnetic radiation, gravitational waves and neutrinos. For the practicing astronomer, these are highly interdisciplinary developments that pose a novel challenge to be well-versed in astroparticle physics and data-analysis. The book is organized to be largely self-contained, starting from basic concepts and techniques in the formulation of problems and methods of approximation commonly used in computation and numerical analysis. This includes root finding, integration, signal dete...

  13. Astronomy with a home computer

    CERN Document Server

    Monks, Neale

    2005-01-01

    Here is a one-volume guide to just about everything computer-related for amateur astronomers! Today's amateur astronomy is inextricably linked to personal computers. Computer-controlled "go-to" telescopes are inexpensive. CCD and webcam imaging make intensive use of the technology for capturing and processing images. Planetarium software provides information and an easy interface for telescopes. The Internet offers links to other astronomers, information, and software. The list goes on and on. Find out here how to choose the best planetarium program: are commercial versions really better than freeware? Learn how to optimise a go-to telescope, or connect it to a lap-top. Discover how to choose the best webcam and use it with your telescope. Create a mosaic of the Moon, or high-resolution images of the planets... Astronomy with a Home Computer is designed for every amateur astronomer who owns a home computer, whether it is running Microsoft Windows, Mac O/S or Linux. It doesn't matter what kind of telescope you...

  14. Multiversos: Rock'n'Astronomy

    Science.gov (United States)

    Caballero, J. A.; Arias, A.; García, N.

    2011-11-01

    Imagine that you can use your fingers only for typing target coordinates at thetelescope, reduce images and spectra with IRAF, or write papers for Astronomy &Astrophysics, but you would never be able to play an electric guitar.Imagine that you love music, work in front of the computer always withheadphones, and dream of playing with your favourite rock band in a tumultuousconcert.Imagine that you are an astronomer who, after a "cosmic fluke", share stagewith the band which themes you have always hummed since you were a teenager.Imagine that you were born for rock, played a main role in the best Spanishalbum of the 90s (Omega, with Enrique Morente), and your songs arerutinary played by Radio 3, but you would never be able to detect an exoplanetor a galaxy at a high redshift.Imagine that you love Astronomy, try to see the Moon craters and Andromeda withyour small telescope through the light pollution of your city, and explain yourdaughter that Pluto is not a planet any longer. Imagine that you are a musician who, after a "cosmic fluke", give a talk justafter a Nobel laureate that discovered the cosmic microwave backgroundradiation.Such "cosmic flukes" sometimes happen. If you were not at the dinner of the SEA meeting and do not believe us, visithttp://www.myspace.com/antonioariasmultiverso or open the proceedings DVD andlisten "El ordenador simula el nacimiento de las estrella...".

  15. Observing Projects in Introductory Astronomy

    Science.gov (United States)

    Taylor, M. Suzanne

    2016-01-01

    Introductory astronomy classes without laboratory components face a unique challenge of how to expose students to the process of science in the framework of a lecture course. As a solution to this problem small group observing projects are incorporated into a 40 student introductory astronomy class composed primarily of non-science majors. Students may choose from 8 observing projects such as graphing the motion of the moon or a planet, measuring daily and seasonal motions of stars, and determining the rotation rate of the Sun from sunspots. Each group completes two projects, requiring the students to spend several hours outside of class making astronomical observations. Clear instructions and a check-list style observing log help students with minimal observing experience to take accurate data without direct instructor assistance. Students report their findings in a lab report-style paper, as well as in a formal oral or poster presentation. The projects serve a double purpose of allowing students to directly experience concepts covered in class as well as providing students with experience collecting, analyzing, and presenting astronomical data.

  16. The Durability and Fragility of Knowledge Infrastructures: Lessons Learned from Astronomy

    CERN Document Server

    Borgman, Christine L; Sands, Ashley E; Golshan, Milena S

    2016-01-01

    Infrastructures are not inherently durable or fragile, yet all are fragile over the long term. Durability requires care and maintenance of individual components and the links between them. Astronomy is an ideal domain in which to study knowledge infrastructures, due to its long history, transparency, and accumulation of observational data over a period of centuries. Research reported here draws upon a long-term study of scientific data practices to ask questions about the durability and fragility of infrastructures for data in astronomy. Methods include interviews, ethnography, and document analysis. As astronomy has become a digital science, the community has invested in shared instruments, data standards, digital archives, metadata and discovery services, and other relatively durable infrastructure components. Several features of data practices in astronomy contribute to the fragility of that infrastructure. These include different archiving practices between ground- and space-based missions, between sky su...

  17. Beautiful Science: The Public and Private History of Astronomy at the Huntington Library

    Science.gov (United States)

    Lewis, Daniel

    2009-05-01

    The history of astronomy has a long tradition within research libraries. The rare collections at the Huntington Library (encompassing American and British history from around 1000 CE to the present, in many different subject areas) are among the most heavily-used in the United States, The history of astronomy holdings are a cornerstone within the library's history of science holdings. This talk will present the two faces of the history of astronomy holdings at the Huntington Library. The first of these is the research end of operations: what the collections consist of, how the scholarly public uses the collections, and what the implications are for modern astronomical practice. The second element concerns the public exhibit face of the history of astronomy holdings at The Huntington. Of the 600,000 people who visit the Huntington each year, the majority visit public displays and rare book and manuscript exhibits. "Beautiful Science: Ideas That Changed the World” is a new permanent history of science exhibit. One quarter of the exhibit relates to the history of astronomy. Public exhibits require a particular kind of planning and bring a specific set of values to the history of astronomy. Public exhibits also have their own concerns, and this talk will cover a number of those issues as well as the research issues.

  18. Nová akvizice Národní knihovny a její význam pro dějiny astronomie

    Czech Academy of Sciences Publication Activity Database

    Hadrava, Petr; Hadravová, Alena

    2017-01-01

    Roč. 50, č. 3 (2017), s. 192-208 ISSN 0300-4414 R&D Projects: GA ČR(CZ) GA17-03314S Institutional support: RVO:67985815 ; RVO:68378114 Keywords : history of astronomy * Wenceslaus Faber de Budweis * astronomical tables Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; AB - History (USD-C)

  19. Berkeley's Advanced Labs for Undergraduate Astronomy Majors

    Science.gov (United States)

    Heiles, C.

    1998-12-01

    We currently offer three advanced laboratory courses for undergraduate majors: optical, IR, and radio. These courses contain both intellectual and practical content; in this talk we focus on the radio lab as a representative example. The first half of the semester concentrates on fundamentals of microwave electronics and radio astronomy techniques in four formal laboratory exercises which emphasize hands-on use of microwave devices, laboratory instruments, and computer-controlled data taking. The second half of the course emphasizes astronomy, using a horn with ~ 1 m(2) aperture to map the HI in the Galaxy and a two-element interferometer composed of ~ 1 m diameter dishes on a ~ 10 m baseline to measure accurate positions of radio sources and accurate diameters for the Sun and Moon. These experiments and observations offer ideal opportunities for teaching coordinates, time, rotation matrices, data reduction techniques, least squares, signal processing, image processing, Fourier transforms, and laboratory and astronomical instrumentation. The students can't get along without using computers as actually used by astronomers. We stay away from packaged software such as IRAF, which are ``black boxes''; rather, students learn far more by writing their own software, usually for the first time. They use the IDL language to take and reduce data and prepare them for the lab reports. We insist on quality reports---including tables, postscript graphs and images, correct grammar, spelling, and all the rest---and we strongly urge (successfully!) the students to use LATEX. The other two lab courses have the same emphasis: the guiding spirit is to place the students in a real-life research-like situation. There is too much to do, so students perform the work in small groups of 3 or 4 and groups are encouraged to share their knowledge. Lab reports are written individually. These courses are very demanding, requiring an average of 20 hours per week from the students (and probably

  20. Building worlds and learning astronomy on Facebook

    Science.gov (United States)

    Harold, J. B.; Hines, D. C.

    2013-12-01

    James Harold (SSI), Dean Hines (STScI/SSI) and a team at the National Center for Interactive Learning at the Space Science Institute are developing an end-to-end stellar and planetary evolution game for the Facebook platform. Supported by NSF and NASA, and based in part on a prototype funded by STScI several years ago ('MyStar'), the game uses the 'sporadic play' model of games such as Farmville, where players might only take actions a few times a day, but continue playing for months. This framework is an excellent fit for teaching about the evolution of stars and planets. Players will select regions of the galaxy to build their stars and planets, and watch as the systems evolve in scaled real time (a million years to the minute). Massive stars will supernova within minutes, while lower mass stars like our sun will live for weeks, possibly evolving life before passing through a red giant stage and ending their lives as white dwarfs. In addition to allowing players to explore a variety of astronomy concepts (stellar lifecycles, habitable zones, the roles of giant worlds in creating habitable solar systems), the game also allows us to address specific misconceptions. For instance, the game's solar system visualization engine is being designed to confront common issues concerning orbital shapes and scales. 'Mini games' will also let players unlock advanced functionality, while allowing us to create activities focused on specific learning goals. This presentation will focus on the current state of the project as well as its overall goals, which include reaching a broad audience with basic astronomy concepts as well as current science results; exploring the potential of social, 'sporadic play' games in education; and determining if platforms such as Facebook allow us to reach significantly different demographics than are generally targeted by educational games.

  1. Skynet Junior Scholars: Bringing Astronomy to Deaf and Hard of Hearing Youth

    Science.gov (United States)

    Meredith, Kate; Williamson, Kathryn; Gartner, Constance; Hoette, Vivian L.; Heatherly, Sue Ann

    2016-01-01

    Skynet Junior Scholars (SJS), funded by the National Science Foundation, aims to engage middle school youth from diverse audiences in investigating the universe with research quality robotic telescopes. SJS project development goals include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project by all youth including those with blindness or low vision and those who are Deaf or Hard of Hearing.Deaf and Hard of Hearing (DHH) students have long been an underserved population within STEM fields, including astronomy. Two main barriers include: (1) insufficient corpus of American Sign Language (ASL) for astronomy terminology, and (2) DHH education professionals who lack astronomy background. A suite of vocabulary, accessible hands-on activities, and interaction with trained professionals, are critical for enhancing the background experiences of DHH youth, as they may come to an astronomy lesson lacking the basic "incidental learning" that is often taken for granted with hearing peers (for example, from astronomy in the media).A collaboration between the Skynet Junior Scholars (SJS) project and the Wisconsin School for the Deaf is bringing astronomy to the DHH community in an accessible way for the first time. We follow a group of seven DHH youth over one semester as they interact with the SJS tools and curriculum to understand how they assimilate astronomy experiences and benefit from access to telescopes both directly (on school campus and at Yerkes Observatory) and through Skynet's robotic telescope network (optical and radio telescopes, inquiry-based modules, data analysis tools, and professional astronomers). We report on our first findings of resources and

  2. Astronomy and public outreach in Serbia (1934-2009)

    Science.gov (United States)

    Stanic, N.

    2008-06-01

    The astronomical community in Serbia has grown significantly over the last few decades, despite the departure overseas of much home-grown talent. Serbia celebrates three important anniversaries in 2007 - 150 years since the birth of Milan Nedeljkovic, who introduced the first astronomical subjects to the Faculty of Mathematics in 1884, and founded the Astronomical Observatory in Belgrade in 1887; 120 years of the Belgrade Astronomical Observatory and 75 years since the construction of the complex of buildings and telescopes at the Astronomical Observatory in Belgrade. The Astronomy Department at the Faculty of Mathematics in Belgrade has produced many excellent scientists working today at telescopes (Arecibo, Sidney, VLA, Hawaii etc.) and universities (California, Toronto, Sidney, Illinois, MIT etc.) around the world. Since 2005, students have also been able to study astronomy at the University of Novi Sad, Serbia (Faculty of Physics). Today there are more than 20 amateur astronomical societies in Serbia, two magazines of popular astronomy, one Youth Science Centre (Petnica), two Public Observatories and two Planetariums. If the social and media network formed in October 2007 can deliver even the minimum of the expected results, six million people in Serbia should easily be familiar with IYA2009 goals, related Cornerstone Projects and particular goals in Serbia for 2009.

  3. Outcomes of promotional efforts for astronomy among high school students through the astronomy olympiad

    Science.gov (United States)

    Kim, Yoojea

    2015-08-01

    The Korean Astronomical Society initiated the Korea Astronomy Olympiad (KAO) in 2001 and also began to participate in the international astronomy olympiad in 2002, as a means to promote astronomy among Korean high school students. To find out how successful such endeavor has been, first how partipating students regard astronomy as their career choice has been investigated. Of the students who have taken part in the international astronomy olympiads and then have entered a college afterwards in the period 2002-2014, more than 50% have chosen astronomy, physics, or earth science as their college major. In addition, when the future career choices of the KAO applicants were examined through their school records, astronomy and space science were chosen to be 44% in 2014, a significant increase from 25% in 2010. Secondly, the astronomical content of the regular Korean high school curriculum has been compared with the syllabus of international astronomy olympiads, to see how students can enhance their astronomical understanding through participating in astronomy olympiads, which would in turn contribute to their possible future career in astronomy.

  4. Philippine Astronomy Convention 2009 Abstract: Program Offerings in Astronomy in the Philippines

    Science.gov (United States)

    Torres, J. R. F.

    2009-03-01

    The formal academic programs in Astronomy of the Rizal Technological University are the first such programs in the Philippines. The Master of Science in Astronomy program is envisioned to provide the student with a wide range of knowledge in many areas of Astronomy, leaning towards the descriptive aspects of knowledge. The student will choose the field or research most suitable to his or her interests. Three of these researches done while enrolled in the program, and even researches completed before the student actually enrolled in the program, may be considered as his or her thesis. The program suits professionals in all persuasions who wish to study Astronomy either for professional advancement or plainly for the love of the science or for intellectual satisfaction. Non-science majors can enroll. In 2008, the RTU Graduate School decided to ladderize the MS program and the Graduate Diploma in Astronomy was designed. This program is suited for science educators, astronomy lecturers and entrepreneurs, members of astronomical societies, and plain astronomy enthusiasts who like to gain in-depth knowledge in the most important aspects of astronomy. A bachelor's degree in any field is required. The program can be finished in two semesters and one summer. If the student opts to continue in the MS in Astronomy program, all the courses he or she has earned in the Diploma will be credited. The Bachelor of Science in Astronomy Technology is an intensive baccalaureate degree program designed to prepare students to become future research scientists and technologists in the field of Astronomy. The BS in Astronomy Technology is a cross-fertilized program, integrating interrelated sciences, such as engineering, geology, remote sensing, physics, atmospheric and environmental science, biology and biochemistry, and even philosophy and entrepreneurship into the study. Thus, the B.S. in Astronomy Technology program gives the student excellent job opportunities in many fields.

  5. Exploring the Environment and the Astronomy Village: NASA Classroom of the Future

    Science.gov (United States)

    Myers, Bob

    1995-01-01

    Astronomy Village: Investigating the Universe is a CD-ROM based multimedia program that provides teachers and students with ten complete investigations in astronomy intended to complement and extend the science curriculum in 9th and 10th grade classes. Students, in teams of three, use the Astronomy Village software to conduct investigations in astronomy and lear about the nature of scientific inquiry. The Astronomy Village's interface is based on the village like appearence of major observatories on mountain tops. Tools available to students include an image processing program, a document reader, an image browser, a telecommunications program for accessing the world wide web, and various simulation programs. The simulation programs include a star life cycle simulator, an orbital simulator, and a 3-D star simulator. Other resources available on this CD for the student research teams include: digitized video clips, images from the Hubble Space Telescope and other instruments; audio clips of astronomers discussing their work; computer animation and graphics; and full text documents such as book chapters, NASA publications, and articles from astronomy journals and magazines.

  6. Void Points, Rosettes, and a Brief History of Planetary Astronomy

    Science.gov (United States)

    Kosso, Peter

    2013-12-01

    Almost all models of planetary orbits, from Aristotle through Newton, include void points, empty points in space that have an essential role in defining the orbit. By highlighting the role of these void points, as well as the rosette pattern of the orbit that often results, I bring out different features in the history of planetary astronomy and place a different emphasis on its revolutionary changes, different from those rendered in terms of epicycles or the location of the earth.

  7. Soaring Through the Universe Astronomy Through Children's Literature

    CERN Document Server

    Letwinch, Joanne

    1999-01-01

    Teach the basics of astronomical and space science using lively retellings of traditional folktales and quality children's literature. Reproducible activities and project ideas that meet NSTA standards combine stories and facts with language arts, math, science, art, and music, using the multiple intelligences approach. An extensive bibliography and other resources, such as addresses for Web sites and organizations in the area of astronomy and space science, are included. Grades 3-6 (adaptable to other levels).

  8. DCC Case Study: Wide Field Astronomy Unit (WFAU)

    OpenAIRE

    Donnelly, Martin

    2005-01-01

    Case study on the Wide Field Astronomy Unit (WFAU), Edinburgh. Outlines data curation issues with which WFAU is involved, with an emphasis on interoperability. Particular regard is given to the transfer and reuse of data collected from disparate sources. The case study also covers other factors influencing data curation, including methodological development, standards and legal issues, evaluation, and human factors. A technical appendix outlines the technologies used i...

  9. Women's and Men's Career Choices in Astronomy and Astrophysics

    Science.gov (United States)

    Ivie, Rachel; White, Susan; Chu, Raymond Y.

    2016-01-01

    The Longitudinal Study of Astronomy Graduate Students (LSAGS) arose from the 2003 Women in Astronomy Conference, where it was noted that a majority of young members of the American Astronomical Society were women. The astronomy community wishes to make every effort to retain young women in astronomy, so they commissioned a longitudinal study to be…

  10. A Brief History of Publishing Papers on Astronomy Education Research

    Science.gov (United States)

    Fraknoi, Andrew

    2014-01-01

    While some research had been done on K-12 and planetarium astronomy teaching from the 1930's to the 1980's, the growth of research on college physics education offered astronomy education researchers a model for examining techniques for teaching introductory college astronomy survey "Astronomy 101" courses as well. This early research…

  11. Challenges of astronomy hands-on experiments for the sky and laboratory

    CERN Document Server

    Schlosser, W; Milone, E F

    1991-01-01

    Challenges of Astronomy in a unique collection of thirty astronomy experiments ranging from ancient astronomy to cosmology. Each of the experiments contains one or more challenges for the reader. The progression is from the Earth outward through the solar system to the stellar and galactic realm. Topics include the shape of the sky, Stonehenge as a stoneage abacus, determination of the size of the Earth, the distance of the Moon and planets, Kepler's laws, planetary mass and density, the temperatures and atmospheres of planets, the speed of light, the distances of stars, the nature of the quiet and active Sun, photometry and spectroscopy, stars clusters and variable stars, fundamental properties of stars, and Olber's paradox. Challenges of Astronomy is a translation and extensive revision of a German-language resource book for secondary school teachers of science. Physical science teachers will find this edition too a rich resource of experiments to their own milieus, but it is suitable for many other English...

  12. The Venus Transit, the Mayan Calendar and Astronomy Education in Guanajuato, Mexico

    Science.gov (United States)

    Bravo-Alfaro, H.; Caretta, C. A.; Brito, E. M. S.; Campos, P.; Macias, F.

    2015-03-01

    In this work we present two aspects of the Astronomy education activities carried out in 2012 by a multidisciplinary group at Universidad de Guanajuato, including specialists in Astronomy, Social Sciences and Environmental Engineering. The first program linked the Venus Transit, occurred in June 2012, with a national campaign of vulgarization of both modern and ancient (Mayan) Astronomy. Professional astronomers all around the country took advantage of the recent myth linked to the end of a large Mayan calendar cycle (13 baktuns, or some 5125 years) happening, after certain authors, in December 2012. In Guanajuato, the Astronomy Department organized live observations of the Venus Transit at two different locations, and complemented with conferences about astronomical events and the fake predictions of disasters linked to the ``end`` of the Mayan calendar. This program was very successful not only in Guanajuato but throughout the country, with several thousands of people attending live observations, conferences, expositions, etc.

  13. Random time series in astronomy.

    Science.gov (United States)

    Vaughan, Simon

    2013-02-13

    Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle and over time (usually called light curves by astronomers). In the time domain, we see transient events such as supernovae, gamma-ray bursts and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars and pulsations of stars in nearby galaxies; and we see persistent aperiodic variations ('noise') from powerful systems such as accreting black holes. I review just a few of the recent and future challenges in the burgeoning area of time domain astrophysics, with particular attention to persistently variable sources, the recovery of reliable noise power spectra from sparsely sampled time series, higher order properties of accreting black holes, and time delays and correlations in multi-variate time series.

  14. Astronomy and international science diplomacy

    Science.gov (United States)

    Madsen, Claus

    2015-08-01

    Since WW2, science has played an important, if sometimes overlooked, role in international relations and international diplomacy. The founding of CERN in 1954 and the more recent establishment of SESAME as a major research infrastructure in the Middle East are examples of this. The IAU has played its own role in the field of science diplomacy ranging from quietly fostering interaction between the antagonists of the Cold War period to the world-uniting initiative of the International Year of Astronomy. Beyond the IAU, yet still with clear links to it, we have seen ESO as an example as well as the more recent one of SKA as a vehicle for development and for strengthening international relations.

  15. Mac OS X for Astronomy

    Science.gov (United States)

    Pierfederici, F.; Pirzkal, N.; Hook, R. N.

    Mac OS X is the new Unix based version of the Macintosh operating system. It combines a high performance DisplayPDF user interface with a standard BSD UNIX subsystem and provides users with simultaneous access to a broad range of applications which were not previously available on a single system such as Microsoft Office and Adobe Photoshop, as well as legacy X11-based scientific tools and packages like IRAF, SuperMongo, MIDAS, etc. The combination of a modern GUI layered on top of a familiar UNIX environment paves the way for new, more flexible and powerful astronomical tools to be developed while assuring compatibility with already existing, older programs. In this paper, we outline the strengths of the Mac OS X platform in a scientific environment, astronomy in particular, and point to the numerous astronomical software packages available for this platform; most notably the Scisoft collection which we have compiled.

  16. L'astronomie des Anciens

    Science.gov (United States)

    Nazé, Yaël

    2009-04-01

    Quelle que soit la civilisation à laquelle il appartient, l'être humain cherche dans le ciel des réponses aux questions qu'il se pose sur son origine, son avenir et sa finalité. Le premier mérite de ce livre est de nous rappeler que l'astronomie a commencé ainsi à travers les mythes célestes imaginés par les Anciens pour expliquer l'ordre du monde et la place qu'ils y occupaient. Mais les savoirs astronomiques passés étaient loin d'être négligeables et certainement pas limités aux seuls travaux des Grecs : c'est ce que l'auteur montre à travers une passionnante enquête, de Stonehenge à Gizeh en passant par Pékin et Mexico, fondée sur l'étude des monuments anciens et des sources écrites encore accessibles. Les tablettes mésopotamiennes, les annales chinoises, les chroniques médiévales, etc. sont en outre d'une singulière utilité pour les astronomes modernes : comment sinon remonter aux variations de la durée du jour au cours des siècles, ou percer la nature de l'explosion qui a frappé tant d'observateurs en 1054 ? Ce livre offre un voyage magnifiquement illustré à travers les âges, entre astronomie et archéologie.

  17. Johannes Kepler - And the New Astronomy

    Science.gov (United States)

    Voelkel, James R.

    1999-11-01

    Johannes Kepler (1571-1630) is remembered as one of the greatest medieval astronomers in the tradition of Copernicus and Galileo, a man who made major contributions to physics, astronomy, and mathematics. Born in Germany and trained as a theologian, Kepler did not hesitate to challenge church doctrine by supporting the iconoclastic theory of a Sun-centered solar system. As Imperial Mathematician to the Holy Roman Emperor, he conducted careful observations of the night sky, which led to his discovery of the three Laws of Planetary Motion and the orbit of Mars. He also devised the Rudolphine Tables on planetary movements, and made key improvements to the telescope. Voelkel vividly describes the scientific achievements, providing enough background in physics and trigonometry so even beginners can enjoy this book. The author also gives us a captivating account of Kepler's tumultuous life, plagued by misery, disease, and fervent religious prosecution by the Catholic Church.Oxford Portraits in Science is an ongoing series of scientific biographies for young adults. Written by top scholars and writers, each biography examines the personality of its subject as well as the thought process leading to his or her discoveries. These illustrated biographies combine accessible technical information with compelling personal stories to portray the scientists whose work has shaped our understanding of the natural world.

  18. Reflections on the astronomy of Glasgow

    CERN Document Server

    Clarke, David

    2013-01-01

    How Astronomy contributed to the educational enlightenment of Glasgow, to its society and to its commerce. The words 'Astronomy' and 'Glasgow' seem an incongruous juxtaposition, and yet the two are closely linked over 500 years of history. This is a tale of enlightenment and scientific progress at both institutional and public levels. Combined with the ambitions of civic commerce, it is a story populated with noteworthy personalities and intense rivalries.It is remarkable to realise that the first Astronomy teaching in the Glasgow 'Colledge' presented an Earth-centred Universe, prior to the Co

  19. Communicating Astronomy With Public in Nepal

    Science.gov (United States)

    Bhattarai, Suresh

    2015-08-01

    This paper highlights the mode of communications that Nepal Astronomical Society (NASO) implemented during 2007-2014 for promoting science and technology in Nepal with astronomy as a key tool.Camparatve study between the role of old media and new media for astronomy communication will be discussed. The role of new media and Information and Communication Technology (ICT) to foster astronomy communication with the public with some case studies will be discussed in detail. Proposed model of integrating both old and old media with smooth transition between these communication channels will be presented and discuss in brief.

  20. Advances in astronomy and astrophysics 9

    CERN Document Server

    Kopal, Zdenek

    1972-01-01

    Advances in Astronomy and Astrophysics, Volume 9 covers reviews on the advances in astronomy and astrophysics. The book presents reviews on the Roche model and its applications to close binary systems. The text then describes the part played by lunar eclipses in the evolution of astronomy; the classical theory of lunar eclipses; deviations from geometrical theory; and the methods of photometric observations of eclipses. The problems of other phenomena related in one way or another to lunar eclipses are also considered. The book further tackles the infrared observation on the eclipsed moon, as

  1. A Website for Astronomy Education and Outreach

    Science.gov (United States)

    Impey, C.; Danehy, A.

    2017-09-01

    Teach Astronomy is a free, open access website designed for formal and informal learners of astronomy. The site features: an online textbook complete with quiz questions and a glossary; over ten thousand images; a curated collection of the astronomy articles in Wikipedia; a complete video lecture course; a video Frequently Asked Questions tool; and other materials provided by content partners. Clustering algorithms and an interactive visual interface allow users to browse related content. This article reviews the features of the website and how it can be used.

  2. Astronomy, Indigenous Knowledge and Interpretation: Advancing studies of Cultural Astronomy in South Africa

    OpenAIRE

    Holbrook, Jarita

    2016-01-01

    The International Society for Archaeoastronomy and Astronomy in Culture (ISAAC) Oxford X conference came to Africa for the first time in 2014. Oxford X exposed South African students and researchers to cultural astronomy data collection and analysis methods, as well as to potential mentors to further the goal of advancing the field. Cultural Astronomy studies in South Africa, however, remain in a nascent stage, which in some ways can be said for the entire field, but especially when it comes ...

  3. The General Education Astronomy Source (GEAS) Project: Extending the Reach of Astronomy Education

    Science.gov (United States)

    Vogt, N. P.; Muise, A. S.

    2014-07-01

    We present a set of NASA and NSF sponsored resources to aid in teaching astronomy remotely and in the classroom at the college level, with usage results for pilot groups of students. Our goal is to increase the accessibility of general education science coursework to underserved populations nationwide. Our materials are available for use without charge, and we are actively looking for pilot instructors. Primary components of our program include an interactive online tutorial program with over 12,000 questions, an instructor review interface, a set of hands-on and imaging- and spectra-driven laboratory exercises, including video tutorials, and interviews with diverse individuals working in STEM fields to help combat stereotypes. We discuss learning strategies often employed by students without substantial scientific training and suggest ways to incorporate them into a framework based on the scientific method and techniques for data analysis, and we compare cohorts of in-class and distance-education students.

  4. The Teaching Of Astronomy In The Lyceums Of Naousa Eight Years After The School Reform Of 1997

    Science.gov (United States)

    Tomboulides, Hariton

    2006-08-01

    The teaching of Astronomy as a separate subject in the second grade of the upper high school in Greece, has more or less disappeared since the school reform of 1997. This applies even in the two Lyceums in Naousa, which have a good tradition in Astronomy teaching, where the number of pupils attending the subject has been diminished to 1/5 of the total amount of pupils. The main reason for this is the national character of the examinations a pupil has to take, in order to pass the grade. Astronomy has changed to an optional subject since the reform 1997, and the pupil chooses mainly a foreign language, computers or sketching in order to get higher grades to help him to advance. In order to keep the subject of Astronomy as a separate subject in both Lyceums of Naousa many activities take place, both in the schoolyard and in the open areas in the city. The use of the school telescope for observing the solar sunspots, the Venus transit and the planets was applied last school year for the pupils to choose Astronomy as a separate subject.

  5. Astronomy Outreach Activities for Special Needs Children and Their Families

    Science.gov (United States)

    Lubowich, D.

    2010-08-01

    I present the results of two NASA-IDEAS/STScI sponsored astronomy outreach programs for seriously ill children and their families staying at the Ronald McDonald House of Long Island (New Hyde Park, NY) and for children hospitalized at the Children's Medical Center, Winthrop University Hospital (Mineola, NY). These programs are designed for children of all ages and include STSCi's Tonight's Sky (monthly guide to the sky); telescope observations of the Moon, Sun, planets, nebulae, and stars; and hands-on activities. During cloudy weather remote/robotic telescope observations are shown. Edible demonstrations using chocolate, marshmallows, and popcorn are used to stimulate interest. The staff at the Ronald McDonald House and Children's Medical Center are being trained to use the telescope and to do demonstrations. These educational activities help children and their families learn about astronomy while providing a diversion to take their minds off their illness during a stressful time.

  6. Optical, infrared and radio astronomy from techniques to observation

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents the established sciences of optical, infrared, and radio astronomy as distinct research areas, focusing on the science targets and the constraints that they place on instrumentation in the different domains. It aims to bridge the gap between specialized books and practical texts, presenting the state of the art in different techniques. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities that drive the building of instrumentation and the development of advanced techniques. The specific telescopes and detectors are then presented, together with the techniques used to measure fluxes and spectra. Finally, the instruments and their limits are discussed to assist readers in choice of setup, planning and execution of observations, and data reduction. The volume also includes worked examples and problem sets to improve student understanding; tables and figures in chapters summarize the state of the art of instrumentation and techniques.

  7. Subject Index

    Indian Academy of Sciences (India)

    Peter A. Gilman), 29. Prediction of Peaks in Wolf Numbers in Cycle 24 according to Actual Numbers of. Polar Faculae (D. K. Callebaut & V. V. Makarova), 69. Prospects for Predicting Cycle 24 (Arnab Rai Choudhuri), 41. Solar Astronomy. Keynote Address: Outstanding Problems in Solar Physics (Markus J. Aschwanden), 3.

  8. Subject Index

    Indian Academy of Sciences (India)

    Some Doubts on the Validity of the Foreground Galactic Contribution Subtraction from Microwave Anisotropies (Martın López-Corredoira), 101. Effects of the Size of Cosmological N-body Simulations on Physical Quantities – II: Halo Formation and Destruction Rate (Jayanti Prasad), 117. Extragalactic Astronomy. Kinematical ...

  9. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    Science.gov (United States)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  10. Extragalactic astronomy and cosmology an introduction

    CERN Document Server

    Schneider, Peter

    2015-01-01

    Accounting for the astonishing developments in the field of Extragalactic Astronomy and Cosmology, this second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. The new edition incorporates some of the most spectacular results from new observatories like the Galaxy Evolution Explorer, Herschel, ALMA, WMAP and Planck, as well as new instruments and multi-wavelength campaigns which have expanded our understanding of the Universe and the objects populating it....

  11. Extragalactic Astronomy and Cosmology An Introduction

    CERN Document Server

    Schneider, Peter

    2006-01-01

    Starting with the description of our home galaxy the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution. Then, from the extensive and thorough introduction to modern observational and theoretical cosmology, the text turns to the formation of structures and astronomical objects in the early universe. In particular, Peter Schneider’s Extragalactic Astronomy and Cosmology has the goal of imparting the fundamental knowledge of this fascinating subfield of astronomy, while leading readers to the forefront of astronomical research. But it seeks to accomplish this not only with extensive textual information and insights. In addition, the author’s evident admiration for the workings of the universe that shines through the lines and the many supporting color illustrations will deeply inspire the reader. While this book has grown out of introductory university courses on astronomy and astrophys...

  12. The Past and Future of American Astronomy

    Science.gov (United States)

    Sagan, Carl

    1974-01-01

    Traces the history of astronomy by analyzing the scientific literature of various time periods, reviewing prize-winning research, and noting the input from physics. Speculates on some accomplishments that may occur in the next 75 years. (GS)

  13. Astronomy Outreach In Parana state/Brazil

    Science.gov (United States)

    Emilio, Marcelo

    2015-08-01

    Paraná is a state at South of Brazil with a population of 11 million people. There are two planetarium and two fixed observatories devoted to Astronomy outreach. The great majority of population have no access to information and knowledge of astronomy discoveries. Another problem is the teaching formation of astronomy studies. In this work we relate an initiative that started at the International Year of Astronomy in 2009 that involved Universities and amateur groups that is still in place. After several grants from the Brazilian National Council for Scientific and Technological Development and Araucária Foundation we were able to reach more than 100.000 people with a mobile planetarium and night astronomic observations. We also providde one-week classes to more than 1.000 teachers in several cities of the state.

  14. Astronomy and Astrology in India and Iran

    National Research Council Canada - National Science Library

    David Pingree

    2014-01-01

    ... scholar to the erroneous conclusion that Sasanian Iran played a crucial role in the introduction of Greek and Babylonian astronomy and astrology to India and in the development of Indian planetary theory...

  15. Aspects of prehistoric astronomy in India

    Science.gov (United States)

    Rao, N. Kameswara

    2005-12-01

    Some archeoastronomical aspects regarding the development of observational astronomy in India during prehistoric times are described. A plea is made for the preservation of megalithic monuments of possible astronomical significance.

  16. The future of Canada's radio astronomy

    Science.gov (United States)

    Gaensler, Bryan M.

    2017-11-01

    Through involvement in CHIME, ALMA, the Jansky VLA and the Murchison Widefield Array, Canada is well placed in current radio astronomy facilities and the future looks even brighter, with strategic interest in the SKA and the Next Generation VLA.

  17. ORGANIZATIONS AND STRATEGIES IN ASTRONOMY VOLUME 7

    CERN Document Server

    HECK, ANDRÉ

    2006-01-01

    This book is the seventh volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series covers a large range of fields and themes: in practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, operational techniques, observing practicalities, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, series of conferences, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information and somet...

  18. Organizations and Strategies in Astronomy Volume 6

    CERN Document Server

    Heck, André

    2006-01-01

    This book is the sixth volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series is intended to cover a large range of fields and themes. In practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, legal issues, operational techniques, observing practicalities, educational policies, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detai...

  19. Astronomy Olympiads a Challenge for Future Scientists

    Science.gov (United States)

    Ninkovic, S.

    2013-05-01

    Contests in astronomy for secondary school pupils, very often called "Astronomy Olympiads", have acquired a general recognition in many countries. They are regarded in various manners: as the best way to attract to science young talented people in general, the possibility to discriminate the most successful participants, who are then in position to be offered to become students of famous universities which is viewed as the beginning of a nice career, the possibility of affirmation of astronomy in secondary schools, the way to put together young amateur astronomers from various parts of the world, etc. On the other hand, there are some organisational problems which follow such events; they concern the relationship with the International Astronomical Union, outreach of the contests in different countries and many others. Serbia has been a member in the Astronomy-Olympiad Movement from 2002.

  20. Ethics Instruction in Undergraduate Astronomy and Physics

    Science.gov (United States)

    Pilachowski, Catherine A.; van Zee, L.; Bacher, A. D.; Durisen, R. H.

    2009-01-01

    Instruction in research ethics is now included as part of the formal undergraduate curriculum in astronomy and physics at Indiana University. Traditionally, students learn research ethics through informal mentoring by research advisors. However, a more formal approach is encouraged by funding agencies, professional societies, and common sense. Following the booklet, "On Being a Scientist: Responsible Conduct in Research" (1995, National Academy Press), our ethics program is built around a "case study" approach using scenarios involving real life situations that students are likely to encounter as undergraduates or beginning graduate students. Students discuss possible resolutions of the ethical questions involved. Discussion topics include reporting data, data rights, credit for ideas, and professional behavior. Scenarios for graduate students involve ethical concerns more appropriate for their career stage, including conflicts of interest, authorship, and collaboration. The answers are not clear-cut, and students must grapple with shades of gray to help them define what the limits of ethical behavior are. The scenarios are available on the Web at www.astro.indiana.edu/education/ethics.html

  1. Astronomy and the Climate Crisis

    CERN Document Server

    Cooke, Antony

    2012-01-01

    Climate change is one of the most hotly debated issues of today. Increasing global temperatures will impact all of us. There are more questions than answers, however, and sweeping statements on the subject made by public figures, often with little scientific understanding, only further confuses public opinion. Astronomical factors, apart from passing references to the Sun, are given short shrift in relation to climate change. However, they might be amongst the major determinants of it.  A presentation of those that have been studied that some scientists suspect might be involved are featured in this book. Included is an in-depth look at the physics of climate itself, the potential effects of the Sun, solar storms, sunspots, solar variability, the magnetosphere, solar cycles, influences of nearby planets, orbital factors, cosmic rays, possible galactic influences, monitoring from space, even climate change elsewhere in the solar system, and much more. The greatest challenge climate change scientists face is d...

  2. The history of science as the progress of the human spirit: The historiography of astronomy in the eighteenth century.

    Science.gov (United States)

    Špelda, Daniel

    2017-06-01

    In the eighteenth century, the historiography of astronomy was part of a wider discussion concerning the history of the human spirit. The concept of the human spirit was very popular among Enlightenment authors because it gave the history of human knowledge continuity, unity and meaning. Using this concept, scientists and historians of science such as Montucla, Lalande, Bailly and Laplace could present the history of astronomy in terms of a progress towards contemporary science that was slow and could be interrupted at times, but was still constant, regular, and necessary. In my paper I intend to explain how the originally philosophical concept of the human spirit was transferred to the history of astronomy. I also introduce the basic principles to which the development of the spirit is subject in astronomy, according to historians of astronomy. The third part of the paper describes how historians of astronomy took into account the effect of social and natural factors on the history of astronomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. NAM: The 2004 RAS National Astronomy Meeting

    Science.gov (United States)

    Jones, Barrie; Norton, Andrew

    2004-06-01

    This year's RAS National Astronomy Meeting was held at the Open University's Milton Keynes campus from 29 March to 2 April. The event was organized by members of the OU Physics & Astronomy Department and Planetary & Space Science Research Institute. Around 450 people attended the meeting, at which more than 220 talks were presented, along with around 90 posters. Co-chairs of RAS NAM04, Barrie Jones and Andrew Norton, summarize.

  4. Astronomy for the Blind and Visually Impaired

    Science.gov (United States)

    Kraus, S.

    2016-12-01

    This article presents a number of ways of communicating astronomy topics, ranging from classical astronomy to modern astrophysics, to the blind and visually impaired. A major aim of these projects is to provide access which goes beyond the use of the tactile sense to improve knowledge transfer for blind and visually impaired students. The models presented here are especially suitable for young people of secondary school age.

  5. 2009 International Year of Astronomy (IYA2009)

    Science.gov (United States)

    Wiseman, Jennifer

    2009-01-01

    400 years ago, Galileo first turned a telescope to the sky, and to honor that historic moment, 2009 has been designated the International Year of Astronomy (IYA2009). This session will feature two scientists who have used the telescope to understand our solar system and well beyond to yield fantastic new discoveries. Jennifer Wiseman will share the work she does with NASA, presenting beautiful and tantalizing images from the Hubble Space Telescope and discussing how space astronomy can inspire all ages.

  6. Dictionary of geophysics, astrophysics, and astronomy

    CERN Document Server

    Matzner, Richard A

    2001-01-01

    The Dictionary of Geophysics, Astrophysics, and Astronomy provides a lexicon of terminology covering fields such as astronomy, astrophysics, cosmology, relativity, geophysics, meteorology, Newtonian physics, and oceanography. Authors and editors often assume - incorrectly - that readers are familiar with all the terms in professional literature. With over 4,000 definitions and 50 contributing authors, this unique comprehensive dictionary helps scientists to use terminology correctly and to understand papers, articles, and books in which physics-related terms appear.

  7. Neutrinos in particle physics, astronomy, and cosmology

    CERN Document Server

    Xing, Zhi-Zhong

    2011-01-01

    ""Neutrinos in Particle Physics, Astronomy and Cosmology"" provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. Thi

  8. Astronomy Teaching Self-Efficacy Belief Scale: The Validity and Reliability Study

    Science.gov (United States)

    Demirci, Filiz; Ozyurek, Cengiz

    2018-01-01

    The purpose of this study is to develop a reliable and safe scale for determining the self-efficacy levels of science teachers in the teaching of astronomy subjects. The study used a survey approach, which is a qualitative research method. The study was conducted with a total of 106 science teachers working in the secondary schools of Ordu city…

  9. Using Visual Assessments and Tutorials to Teach Solar System Concepts in Introductory Astronomy

    Science.gov (United States)

    LoPresto, Michael C.

    2010-01-01

    Visual assessments and tutorials are instruments that rely on student construction and/or examination of pictures and/or diagrams rather than multiple choice and/or short answer questions. Being a very visual subject, astronomy lends itself to assessments and tutorials of this type. What follows is a report on the results of the use of visual…

  10. Active Galactic Videos: A YouTube Channel for Astronomy Education and Outreach

    Science.gov (United States)

    Calahan, Jenny; Gibbs, Aidan; Hardegree-Ullman, Melody; Hardegree-Ullman, Michael; Impey, Chris David; Kevis, Charlotte; Lewter, Austin; Mauldin, Emmalee; McKee, Carolyn; Olmedo, Alejandro; Pereira, Victoria; Thomas, Melissa; Wenger, Matthew

    2018-01-01

    Active Galactic Videos is an astronomy-focused YouTube channel run by a team at the University of Arizona. The channel both produces astronomy-focused educational content for public audiences and opens a window into the world of professional astronomy by showcasing the work done at Steward Observatory and in Southern Arizona. The channel is mainly run by undergraduate students from a variety of backgrounds including: astronomy, education, film, music, english, and writing. In addition to providing educational content for public audiences, this project provides opportunities for undergraduate students to learn about astronomy content, general astronomy pedagogy, as well as science communication. This is done through developing the practical skills needed to take on the challenge of creating effective and engaging videos. Students write, film, score, direct, and edit each video while conscious of how each piece can affect the teaching/storytelling of the concept at hand. The team has produced various styles of video: presentational, interviews, musical/poetic, tours, and documentaries. In addition to YouTube, the Active Galactic Videos team maintains a social media presence on Facebook, Twitter, and Instagram. These help to widely distribute the content as well as to publicize the main Youtube channel. In addition to providing an overview of our educational work, we present 51 videos, or two year's, worth of online analytics that we are using to better understand our audience, to examine what videos have been popular and successful, and how people are accessing our content. We will present our experience in order to help others learn about improving astronomy education online, as well as astronomy communication and outreach in general.We acknowledge the Howard Hughes Medical Institute for grant support of this and related education initiatives

  11. Reaching Non-Traditional and Under-Served Communities through Global Astronomy Month Programs

    Science.gov (United States)

    Simmons, Michael

    2013-01-01

    Global Astronomy Month (GAM), organized each year by Astronomers Without Borders (AWB), has become the world's largest annual celebration of astronomy. Launched as a follow-up to the unprecedented success of the 100 Hours of Astronomy Cornerstone Project of IYA2009, GAM quickly attracted not only traditional partners in astronomy and space science outreach, but also unusual partners from very different fields. GAM's third annual edition, GAM2012, included worldwide programs for the sight-impaired, astronomy in the arts, and other non-traditional programs. The special planetarium program, OPTICKS, combined elements such as Moonbounce (sending images to the Moon and back) and artistic elements in a unique presentation of the heavens. Programs were developed to present the heavens to the sight-impaired as well. The Cosmic Concert, in which a new musical piece is composed each year, combined with background images of celestial objects, and presented during GAM, has become an annual event. Several astronomy themed art video projects were presented online. AWB's Astropoetry Blog held a very successful contest during GAM2012 that attracted more than 70 entries from 17 countries. Students were engaged by participation in special GAM campaigns of the International Asteroid Search Campaign. AWB and GAM have both developed into platforms where innovative programs can develop, and interdisciplinary collaborations can flourish. As AWB's largest program, GAM brings the audience and resources that provide a boost for these new types of programs. Examples, lessons learned, new projects, and plans for the future of AWB and GAM will be presented.

  12. Improving Teach Astronomy: A Survey of Instructors

    Science.gov (United States)

    Wenger, Matthew; Riabokin, Malanka; Impey, Chris David

    2018-01-01

    Teach Astronomy is a website that provides educational resources for introductory astronomy. The motivation behind constructing this site was to provide quality online educational tools for use as a primary or supplementary instructional resource for teachers and students. The website provides an online textbook, glossary, podcasts and video summaries of concepts. As the popularity of online courses steadily increases, so does the demand for robust online educational resources. In order to cater to our users, our team conducted a survey of the instructors that use Teach Astronomy site for feedback for use in updating and streamlining the website content. The survey collected feedback regarding functionality of each of the website tools, in which courses the site was being used, and the motivation of the instructors use of our site. The overwhelming majority of responses indicate that instructors use the website as a class textbook in introductory astronomy courses for non-science majors, and instructors also generally tended to agree that the site content was comprehensive and lucid. One interesting result of the survey is to cluster topics in a way that is consistent with different levels of instruction (i.e. grouping middle-school level content and university level content distinctly). Our team will use this feedback to improve the Teach Astronomy website and maintain it as a high-quality, free online resource. We will also continue to gather feedback from instructors to ensure that the Teach Astronomy website stays current and remains a valuable online resource for instructors around the country.

  13. Young Astronomers and Astronomy teaching in Moldavia

    Science.gov (United States)

    Gaina, Alex

    1998-09-01

    Curricular Astronomy is taught in Moldavia , except Transnistria and Gagauzia, in the final (11th class) of the secondary schools and gymnasiums, and in the 12th class of the lyceums. The program takes 35 academic hours. The basic book is by Vorontsov-Veliaminov, used in the former USSR, but the Romanian one is also used, in spite of many criticisms addressed to both by our astronomy teachers. In Transinstria (on the left of the Dniester river)astronomy is taught 17 hours. Extracurricular activities develop at the Real Lyceum, where students and amateur astronomers carry out regular observations. Particularly, photographs of the comet Hale-Bopp have been realized using a Cassegrain 450 mm telescope by young astronomers under supervision of S. Luca and D. Gorodetzky (Gorodetchi). Except the telescope from the Real Lyceum other few telescopes are in construction. Unfortunately, no planetarium exists now in Chisinau, since the old one was returned to church. Astronomy courses are taught at the physical and mathematical departments of the Pedagogical University, Transnistrian Moldavian University in Tiraspol and the State University of |Moldavia. Many efforts were made by the State University lecturers and scientists to popularize Astronomy and Astrophysics in the books and in the press, at the radio and TV. No astronomy is taught at the Gagauzian National University in Comrat. No astronomiucal departments exist in Universities of |Moldavia.

  14. Dispelling superstitions in Nepalese society with astronomy

    Science.gov (United States)

    Shah, Rishi

    2011-06-01

    Throughout human history, astronomy has played crucial rôle in the development of our civilization, culture and daily chores of lives that have been influenced by observations of Sun, moon, planets, stars and other cosmic entities. Our ancestors who were hunting and gathering and foraging food while living in caves learned to think logically by gazing at the twinkling stars in the heavens. Seasons for crops plantation were determined, time concept was introduced, entire sky was charted and the motions of celestial objects were meaningfully understood. With the advent of telescopes, the geocentric model of universe was replaced by the revolutionary heliocentric concept of our Solar System. Astronomy dispelled superstitious beliefs strongly prevailing in societies. Closely associated with numerous disciplines of science astronomy is still flourishing worldwide and is attempting to fly us away to those habitable cosmic bodies of our universe. By establishing well-equipped observational infrastructure local and international astronomy research and development could be enhanced. Introduction of astronomy in education system right from school would attract and encourage students to pursue higher studies for enabling them for participating in future international scientific and exploration programmes. Astronomy has helped our society to progress peacefully and efficiently.

  15. Methodological pluralism in the teaching of Astronomy

    Science.gov (United States)

    de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2015-04-01

    This paper discusses the feasibility of using a teaching strategy called methodological pluralism, consisting of the use of various methodological resources in order to provide a meaningful learning. It is part of a doctoral thesis, which aims to investigate contributions to the use of traditional resources combined with digital technologies, in order to create autonomy for future teachers of Natural Sciences and Mathematics in relation to themes in Astronomy. It was offered an extension course at the "Federal Institution of Education, Science and Technology" in the North of Minas Gerais (FINMG), Campus Januaria, for thirty-two students of licentiate courses in Physics, Mathematics and Biological Sciences, involving themes of Astronomy, in order to search and contribute to improving the training of future teachers. The following aspects are used: the mixed methodology, with pre-experimental design, combined with content analysis. The results indicate the rates of students' prior knowledge in relation to Astronomy was low; meaningful learning indications of concepts related to Astronomy, and the feasibility of using digital resources Involving technologies, articulated with traditional materials in the teaching of Astronomy. This research sought to contribute to the initial teacher training, especially in relation to Astronomy Teaching, proposing new alternatives to promote the teaching of this area of knowledge, extending the methodological options of future teachers.

  16. Genetic programming applied to RFI mitigation in radio astronomy

    Science.gov (United States)

    Staats, K.

    2016-12-01

    Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.

  17. The knowledge of the history of astronomy and a proposal to improve it

    Science.gov (United States)

    Saucedo Morales, Julio Cesar; Loera Gonzalez, Pablo

    In this work we present the results of a survey conducted in Hermosillo, Sonora, México, among several different samples to assess the knowledge of the History of Astronomy (HoA), and at the same time, to evaluate the degree of success of the Astronomy Basic Course (ABC) in teaching this particular subject. We claim that astronomy has always been an important player in the history of civilization; however, as the results of this study indicate, this is not widely known. An example of this is that the work of great astronomers such as Aristarchus and Hipparchus are known to only a small fraction of the population. But people find astronomy attractive, which gives us an opportunity to fill gaps in astronomical knowledge. We present our experience of 25 years (the first half of these in the classroom, and the second half both in classroom and virtual mode through the Internet) teaching astronomy to the public with the ABC. In about 60 hours of class spread over a 3-month period, the ABC covers some of the most relevant topics of astronomy, one of which is a 3-hour session on the HoA, which it is taught trying to captivate the attention of wide audiences while discussing the contributions of astronomy to humankind. Although the level of knowledge of the HoA is somewhat disappointing, meaning that much work needs to be done, we have also found that it really pays off to offer opportunities like the ABC to the public. This success encourages us to present a proposal to extend the ABC, to teach it not just in Spanish as we have been done so far, but also in English and perhaps other languages, collaborations to improve it and to spread its use as an outreach and STEM educational device are most welcome.

  18. World's Biggest Astronomy Event on the World-Wide

    Science.gov (United States)

    1996-06-01

    , internationally organised and fully structured programme which offers a large number of students the possibility to familiarize themselves with the use of this communication tool of the future, unequalled possibilities for fruitful international communication, and at the same time to learn much about the science and technology of astronomy, including the scientific methods now being practiced by the world's scientists. Within this framework, they can actively contribute to co-ordinated sub-programmes that will draw on the combined forces and ingenuity of participants from all areas of Europe. There are many other side benefits, of course, such as stimulating schools to go on-line, prompting international cooperation among the young people, etc. Another important aspect is that the programme will lead to natural involvement of business and industrial partners in local areas of the participating groups. Also its unique character and international implications will be very inviting for extensive media coverage, both in human and scientific/technological terms. The organisation An enormous programme like Astronomy On-Line obviously represents a tremendous challenge to the organisers, and careful planning is crucial to its success. This is ensured by the active participation of experienced educators, scientists and engineers in most European countries, united by the common goal to prepare a well-structured event that is exciting for everybody and which has clearly defined roles and responsibilities for all involved parties. An International Steering Committee (ISC) has been established for the programme. The ICS is responsible for the planning of the main activities, together with National Steering Committees (NSC) which will coordinate the Programme in their respective countries. The NSC's are still in the process of being formed and for the time being, most EAAE National Representatives will act as contact points for the programme in their areas. Full information about the

  19. Radio Astronomy in the Undergraduate Curriculum

    Science.gov (United States)

    Payne, J. E.; Brown, J. L.; Walter, D. K.

    2003-12-01

    We summarize the results of a three year program to incorporate radio astronomy into undergraduate research and coursework at South Carolina State University (SCSU). A series of small and inexpensive radio telescopes have been constructed by faculty members with undergraduate student assistance. The telescopes range from a Radio Jove dipole antenna, to a dual frequency alt-az mount solar antenna to a 4.6 meter commercially-built radio telescope operated at 1.42 GHz. SCSU students and faculty have access to larger radio telescopes through a partnership with the Pisgah Astronomical Research Institute (PARI) near Rosman, North Carolina. Projects to date include three years of monitoring solar activity, participation in coordinated observing sessions of Jovian radio bursts and mapping the distribution of galactic neutral hydrogen. Future work will include combined optical and radio observations of stellar radio sources such as RS CVn stars and Algol-type binaries. Support for this work has been provided to SCSU through NASA's PAIR program under NCC 5-454.

  20. Discover the Universe with NASA during the International Year of Astronomy: A Workshop for Astronomy Educators

    Science.gov (United States)

    Dussault, M.; Smith, D.; Allen, J.; Backman, D.; Bartolone, L.; Bobrowsky, M.; Gould, A.; Mendez, B.; Lochner, J.; Mayo, L.; McLin, K.; Reinfeld, E.; Shupla, C.; Summers, F.; Thiemann, J.; Devore, E.

    2008-11-01

    NASA's space science missions are working together to provide educators with the knowledge and materials they need to discover and share the universe with their audiences during the International Year of Astronomy (IYA2009) and beyond. In this daylong intensive workshop, participants experienced a prototype version of NASA's IYA workshop series for educators. They explored Earth's place in the universe; light, energy, and optics; and the nature of astronomical models and evidence while investigating how NASA's spaced-based missions extend Galileo's legacy. Discussions included how to find and use NASA content and resources in the classroom, after-school programs, libraries, science centers, and museums, as well as how to connect to the international IYA2009 Galileo Teacher Training Program and U.S. Families and Classrooms efforts. All references, resources, and handouts from the workshop are available online at http://www.universeforum.org/iyaworkshop/.

  1. ESASky: a new Astronomy Multi-Mission Interface

    Science.gov (United States)

    Baines, D.; Merin, B.; Salgado, J.; Giordano, F.; Sarmiento, M.; Lopez Marti, B.; Racero, E.; Gutierrez, R.; De Teodoro, P.; Nieto, S.

    2016-06-01

    ESA is working on a science-driven discovery portal for all its astronomy missions at ESAC called ESASky. The first public release of this service will be shown, featuring interfaces for sky exploration and for single and multiple targets. It requires no operational knowledge of any of the missions involved. A first public beta release took place in October 2015 and gives users world-wide simplified access to high-level science-ready data products from ESA Astronomy missions plus a number of ESA-produced source catalogues. XMM-Newton data, metadata and products were some of the first to be accessible through ESASky. In the next decade, ESASky aims to include not only ESA missions but also access to data from other space and ground-based astronomy missions and observatories. From a technical point of view, ESASky is a web application that offers all-sky projections of full mission datasets using a new-generation HEALPix projection called HiPS; detailed geometrical footprints to connect all-sky mosaics to individual observations; direct access to the underlying mission-specific science archives and catalogues. The poster will be accompanied by a demo booth at the conference.

  2. Enhancing Astronomy Major Learning Through Group Research Projects

    Science.gov (United States)

    McGraw, Allison M.; Hardegree-Ullman, K.; Turner, J.; Shirley, Y. L.; Walker-Lafollette, A.; Scott, A.; Guvenen, B.; Raphael, B.; Sanford, B.; Smart, B.; Nguyen, C.; Jones, C.; Smith, C.; Cates, I.; Romine, J.; Cook, K.; Pearson, K.; Biddle, L.; Small, L.; Donnels, M.; Nieberding, M.; Kwon, M.; Thompson, R.; De La Rosa, R.; Hofmann, R.; Tombleson, R.; Smith, T.; Towner, A. P.; Wallace, S.

    2013-01-01

    The University of Arizona Astronomy Club has been using group research projects to enhance the learning experience of undergraduates in astronomy and related fields. Students work on two projects that employ a peer-mentoring system so they can learn crucial skills and concepts necessary in research environments. Students work on a transiting exoplanet project using the 1.55-meter Kuiper Telescope on Mt. Bigelow in Southern Arizona to collect near-UV and optical wavelength data. The goal of the project is to refine planetary parameters and to attempt to detect exoplanet magnetic fields by searching for near-UV light curve asymmetries. The other project is a survey that utilizes the 12-meter Arizona Radio Observatory on Kitt Peak to search for the spectroscopic signature of infall in nearby starless cores. These are unique projects because students are involved throughout the entire research process, including writing proposals for telescope time, observing at the telescopes, data reduction and analysis, writing papers for publication in journals, and presenting research at scientific conferences. Exoplanet project members are able to receive independent study credit for participating in the research, which helps keep the project on track. Both projects allow students to work on professional research and prepare for several astronomy courses early in their academic career. They also encourage teamwork and mentor-style peer teaching, and can help students identify their own research projects as they expand their knowledge.

  3. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  4. Leveraging Cognitive Science Underpinnings to Enhance NGSS Astronomy Concepts

    Science.gov (United States)

    Slater, Stephanie; Slater, Timothy F.

    2014-06-01

    National-scale science education reform efforts have been hampered by highly fragmented frameworks and standards that vary considerably from one state to the next. In an effort to improve the quality of science education across the nation’s K-12 schools, the 2013 Next Generation Science Standards (NGSS) have been designed to guide states in specifying the learning targets and performance expectations of all K-12 students. The NGSS is designed to reflect the 2011 Framework for K-12 Science Education developed by the National Research Council of the National Academy of Sciences. As teachers, curriculum developers, and assessment experts begin to implement the NGSS in specific geographical and socio-economic contexts, moving beyond an examination of common student misconceptions and reasoning difficulties to delineate the specific cognitive sources of those difficulties, and the specific interventions that can serve as countermeasures, should be a fruitful next step. While astronomy education researchers have already documented challenges in teaching system processes that operate with the space system, solar system, and interconnected Earth science systems, we are far from a thorough understanding of student thinking in astronomy. Many of these ideas can be better taught-and tested-by carefully examining the underlying cognitive science including learners’ difficulties with spatial thinking and the prescribed astronomy and space science concepts. The NGSS may prove to be useful as a framework for next steps in the cognitive science within astronomy, and this work may benefit from deliberate collaborations between education researchers, curriculum developers, and those who engage in teacher professional development.

  5. The Current Status of Low Frequency Radio Astronomy from Space

    Science.gov (United States)

    Kaiser, M. L.; Weiler, K. W.

    Ground-based radio astronomy is severely limited by the Earth's ionosphere. Below 15 -- 20 MHz, space-based radio observations are superior or even mandatory. Three different areas of astronomical research manifest themselves at low radio frequencies: solar, planetary, and galactic-extragalactic. Space-based observations of solar phenomena at low frequencies are a natural extension of high-frequency ground-based observations that have been carried out since the beginnings of radio astronomy. Measurements of known solar phenomena such as Types II and III bursts have been extended from the few solar radii altitude range reachable by ground-based techniques out to 1 AU and beyond. These space-based solar measurements have become critical in our developing an understanding of ``space weather." In contrast, non-thermal planetary radio emissions are almost exclusively a space radio astronomy phenomenon. With the exception of two components of Jupiter's complex radio spectrum, the magnetospheric and Auroral radio emissions of Earth, Jupiter, Saturn, Uranus, and Neptune have all been discovered by space radio astronomy techniques. For astrophysical applications, the lack of angular resolution from space at low frequencies has thwarted progress such that most areas still remain to be fully exploited. Results to date have only included overall cosmic background spectra and extremely crude (~1 steradian resolution) ``maps." In this overview we will briefly summarize the current status of science in the three areas of research and outline some future concepts for low-frequency, space-based instruments for solar, planetary, and astrophysical problems.

  6. Astronomy Learning Activities for Tablets

    Science.gov (United States)

    Pilachowski, Catherine A.; Morris, Frank

    2015-08-01

    Four web-based tools allow students to manipulate astronomical data to learn concepts in astronomy. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. The first tool “Three Color” allows students to combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. The second tool “Star Clusters” allows students to compare images of stars in clusters with a pre-defined template of colors and sizes in order to produce color-magnitude diagrams to determine cluster ages. The third tool adapts Travis Rector’s “NovaSearch” to allow students to examine images of the central regions of the Andromeda Galaxy to find novae. After students find a nova, they are able to measure the time over which the nova fades away. A fourth tool, Proper Pair, allows students to interact with Hipparcos data to evaluate close double stars are physical binaries or chance superpositions. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  7. Industrial interference and radio astronomy

    Science.gov (United States)

    Jessner, A.

    2013-07-01

    The interferer - victim scenario is described for the case of industrial interference affecting radio astronomical observatories. The sensitivity of radio astronomical receivers and their interference limits are outlined. EMC above 30 MHz is a serious problem for Radio Astronomy. Interferer (CISPR) and victim (ITU-R RA 769) standards are not harmonised. The emissions from the interferer and their spectral characteristics are not defined sufficiently well by CISPR standards. The required minimum coupling losses (MCL) between an industrial device and radio astronomical antenna depends on device properties but is shown to exceed 140 dB in most cases. Spatial separation of a few km is insufficient on its own, the terrain must shield > 30-40 dB, additional mitigations such as extra shielding or suppression of high frequency emissions may be necessary. A case by case compatibility analysis and tailored EMC measures are required for individual installations. Aggregation of many weak rfi emitters can become serious problem. If deployment densities are high enough, the emission constraints can even exceed those for a single interferer at a short distance from the radio observatory. Compatibility studies must account not only for the single interferer but also for many widely distributed interference sources.

  8. Space Debris and Observational Astronomy

    Science.gov (United States)

    Seitzer, Patrick

    2018-01-01

    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  9. Astronomy in the Bulgarian Neolithic

    Science.gov (United States)

    Stoev, Alexey; Maglova, Penka

    Bulgaria is famous for the richness of its Neolithic culture, with its large variety of artistic representations having deep semantic meaning. Here, we consider several types of monument which yield evidence for the astronomical practices and beliefs of Neolithic and Eneolithic (Chalcolithic) peoples. We begin by considering the emergence and development of Neolithic and Eneolithic societies in Bulgaria and the chronological development of material and spiritual culture. By discussing specific monuments it is shown how astronomy was woven into everyday and spiritual life, revealing insights into people's concepts of space and time. The monuments concerned are Karanovo, the largest and one of the oldest tells in Europe; Topchika cave, with the earliest rock pictures; Magura cave, one of the largest and most beautiful caves in Bulgaria, famous for its unique paintings; Bailovo cave complex, with its lunar images and calendar frieze composed of monochrome paintings; and the Tangarduk Kaya cave sanctuary, from which observations could have been made of the culmination of the sun on the meridian at the solstices.

  10. Astronomy Fun with Mobile Devices

    Science.gov (United States)

    Pilachowski, Catherine A.; Morris, Frank

    2016-01-01

    Those mobile devices your students bring to class can do more that tweet and text. Engage your students with these web-based astronomy learning tools that allow students to manipulate astronomical data to learn important concepts. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. With "Three Color" students can combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. "Star Clusters" allows students to compare images of clusters with a pre-defined template of colors and sizes to compare clusters of different ages. An adaptation of Travis Rector's "NovaSearch" allows students to examine images of the central regions of the Andromeda Galaxy to find novae and to measure the time over which the nova fades away. New additions to our suite of applications allow students to estimate the surface temperatures of exoplanets and the probability of life elsewhere in the Universe. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  11. Astronomy TV outreach, CUBA experiences

    Science.gov (United States)

    Alvarez, Oscar

    2015-08-01

    As professional astronomer and science communicator, I want to share my personal experience communicating Astronomy and general science principles in maybe, the most popular science outreach devoted TV program in Cuba. It is broadcasted nationwide in a prime time schedule every Sunday. The Science Popularization on TV, is in a Third World Country hard to do if you want to produce attractive materials for a broad audience. Budgets constraints in most of the cases and lack of the technical equipment required to produce first class visual materials conspire, against motivation and creativity of local scientists and media professionals. A way to show the advance of the national scientific community in Science fields and connecting them in a friendly relation with a broad majority of the people, is to combine the wisdom and knowledge of the local scientists together with the most spectacular TV production of the first world countries. Commenting, analyzing and conveying the hard science into the public debate of the common citizens. Here is shown a way to convey cutting edge science to the general public, using limited resources to produce imaginative television productions, highlighting the development, knowledge and wisdom of the local scientists.

  12. The Effect of Media on Preservice Science Teachers' Attitudes toward Astronomy and Achievement in Astronomy Class

    Science.gov (United States)

    Bektasli, Behzat

    2013-01-01

    Studies show that it is hard to change students' attitudes toward science. This study specifically explored if media affect preservice science teachers' attitudes toward astronomy and their astronomy achievement. The sample for the pilot study consisted of 196 preservice science and mathematics teachers for attitude assessment and 230 preservice…

  13. Historical outline about the undergraduate teaching of astronomy in Brazil from 1808 to 1889.

    Science.gov (United States)

    Bretones, Paulo Sergio; Videira, Antonio Augusto Passos

    2002-08-01

    In this poster we present the main events occurred in the history of astronomy teaching in undergraduate courses existing in Brazil since the arrival of the Portuguese Royal Family in 1808 until the end of the monarchic period. In order to compose this historic outline, we mainly use didactic books, rules, decrees and laws that organized the contents offered and the careers of those in charge for the discipline. In the analyses of the used material, we searched for the presence of philosophical and scientific assumptions that may have oriented the contents of the disciplines. Comparisons with the teaching of astronomy in other countries haven't been made. We have ended showing that the teaching of astronomy, during the monarchic period, was more directed to forming engineers than astronomers. We would like to observe that the present poster doesn't aim to approach the subject in a complete and detailed way.

  14. Episodes from the Early History of Astronomy

    Science.gov (United States)

    Aaboe, Asger

    The author does not attempt to give a general survey of early astronomy; rather, he chooses to present a few "episodes" and treats them in detail. However, first he provides the necessary astronomical background in his descriptive account of what you can see when you look at the sky with the naked eye, unblinkered by received knowledge, but with curiosity and wit. Chapter 1 deals with the arithmetical astronomy of ancient Mesopotamia where astronomy first was made an exact science. Next are treated Greek geometrical models for planetary motion, culminating in Ptolemy's equant models in his Almagest. Ptolemy does not assign them absolute size in this work, but, as is shown here, if we scale the models properly, they will yield good values, not only of the directions to the planets, but of the distances to them, as well. Thus one can immediately find the dimensions of the Copernican System from parameters in the Almagest - we have evidence that Copernicus did just that. Further, Islamic astronomers' modifications of Ptolemy's models by devices using only uniform circular motion are discussed, as are Copernicus's adoption of some of them. finally, it is made precise which bothersome problem was resolved by the heliocentric hypothesis, as it was by the Tychonic arrangement. Next, the Ptolemaic System, the first cosmological scheme to incorporate quantitative models, is described as Ptolemy himself did it in a recenlty recovered passage from his Planetary Hypotheses. Here he does assign absolute size to his models in order to fit them into the snugly nested spherical shells that made up his universe. This much maligned system was, in fact, a harmonious construct that remained the basis for how educated people thought of their world for a millennium and a half. Finally, after a brief review of the geometry of the ellipse, the author gives an elementary derivation of Kepler's equation, and shows how Kepler solved it, and further proves that a planet moves very nearly

  15. Girl Scouts and Subject Matter Experts: What’s the Connection?

    Science.gov (United States)

    Harman, Pamela; Girls Scouts of Northern California, Girl Scouts USA, Astronomical Society of the Pacifica, Univeristy of Arizona, and ARIES Scientific.

    2018-01-01

    Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) fosters interaction between Girl Scouts and NASA Subject Matter Experts (SMEs), disseminates NASA STEM education-related resources, and engages Girl Scouts in NASA science and programs through space science badges and summer camps.A space science badge is in development for each of the six levels of Girl Scouts: Daisies, Grades K – 1; Brownies, Grades 2 -3; Juniors, Grades 4 -5; Cadettes, Grades 6 -8; Seniors, Grades 9 -10; and Ambassadors, Grades 11 -12. Indirectly, SMEs will reach tens of thousands of girls through the badges. SETI Institute SMEs Institute and SME Co-Is located at ARIES Scientific, Astronomical Society of the Pacific, University of Arizona, and Girl Scouts of Northern California developed and modified astronomy activities for the Girl Scouts USA badge writers to finesse into the Girl Scout formats. Revisions are reviewed by SMEs for accuracy. Each badge includes a step option that encourages girls to connect with SMEs, and recommendations for volunteers.A total of 127 girls from 31 states and the District of Columbia attendedTotal Eclipse Destination Camps at three locations. SMEs led activities and tours, inspiring girls to consider STEM careers. University of Arizona (U of A) SMEs lead Astronomy Camp for Volunteers, enabling volunteers to lead and inspire Girl Scouts in their respective Girl Scout Councils. A Destination Camp for Girl Scouts was also held at U of A. Girls experience authentic astronomy, learning how to collect and analyze data.Eleven teams comprised of two Girl Scouts, a volunteer or Council Staff, and an amateur astronomer attended Astronomy Club Camp, held at NASA GSFC. SMEs delivered science content. The girls will lead the formation of astronomy clubs in their councils, and will train their successors. SMEs will present and coach the clubs during monthly webinars.This presentation will highlight success and discuss lessons learned that are applicable

  16. New Trends in Astronomy Education: a ``Mapping" Strategy in Teaching and Learning Astronomy

    Science.gov (United States)

    Gulyaev, S.

    2003-05-01

    The application of a concept of educational ``science maps" to astronomy education is discussed. By analogy with geographical maps, scales of educational science maps -- scales of integration -- are introduced. In astronomy education, scale A represents the level of branches and fields of astronomy and astrophysics, where interconnections between various astronomical disciplines are shown. Scale B represents the level of hypotheses and theories, encompassing a significant segment of a field of astronomy. Scale C represents the level of structures and internal hierarchies, encompassing the ``geography" and ``anatomy" of the material systems and objects essential for a given astronomical discipline, as well as the principal notions and concepts it uses. Science maps of different scales are illustrated with initial examples exploring the application of this methodology in astronomy and astrophysics.

  17. Benefits to the nation from astronomy and astrophysics

    Science.gov (United States)

    Trimble, Virginia; Bahcall, John N.; Chaisson, Eric; Code, Arthur; Conklin, Edward K.; Cowan, John; Dalgarno, Alexander; Drake, Frank; Elson, Rebecca; Field, George

    1991-01-01

    It is argued that astronomy makes unexpectantly large contributions to formal and informal science education, given the small number of research astronomers. Technology transfer and spin-offs from astronomy have important applications in medicine, industry, defence, environmental monitoring, and consumer products. Astronomy provides unusually promising opportunities for international cooperation. Other sciences benefit from synergistic interactions with astronomy. A review is given of astronomy education and teacher training. The role of astronomy in medicine, industry, defence, energy technology, the environment, and everyday life is reviewed.

  18. Current state of Czech astronomy popularization and its potential for enhancing science career interest

    Science.gov (United States)

    Kříček, Radek

    2015-08-01

    The Czech Republic has a dense net of observatories, astronomical clubs and other activities for both adults and children. Can we use it to improve skills of our pupils and their motivation to choose their career in science? Does the situation in the Czech Republic differ from abroad? What can we improve in the future? These questions were not answered satisfactorily so far. We decided to contribute to solve this issue.We present our survey of current state based mainly on electronic sources and personal dealings. Besides of 56 observatories working with public and many interest clubs, there are other possibilities to meet astronomy. For example, Astronomical Olympiad attracts thousands of pupils across the country each year to solve both theoretical and practical tasks in astronomy. In other projects, children can visit Dark-Sky Parks, design experiments for a stratospheric balloon, observe with CCD or radio devices or build their own rockets.We outline our ongoing project to examine the link between popularization activities and pupils’ or high school students’ attitude toward science and science career. We plan to create a typology of both popularization activities and life stories of people dealing with astronomy. From the methodological point of view, the mixed method design, combining both the qualitative and quantitative approach, will be used to solve the research problems. The basic research plan will be a case study. So far the project is based on interviews with various subjects. We choose people with different life stories, all connected with astronomy or astronomy popularization in some period. We focus on important moments in their career, similarities between subjects, and various types of possible motivation to participate in astronomy-related activities or to study science at university.Future results can be used to help interested organizations such as universities, observatories or astronomical societies. They will be able to work more

  19. Astrophysical Model Selection in Gravitational Wave Astronomy

    Science.gov (United States)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  20. Interferometry and synthesis in radio astronomy

    CERN Document Server

    Thompson, A Richard; Swenson Jr , George W

    2017-01-01

    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  1. How Swift is redefining time domain astronomy

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2015-09-01

    NASA's Swift satellite has completed ten years of amazing discoveries in time domain astronomy. Its primary mission is to chase gamma-ray bursts (GRBs), but due to its scheduling flexibility it has subsequently become a prime discovery machine for new types of behavior. The list of major discoveries in GRBs and other transients includes the long-lived X-ray afterglows and flares from GRBs, the first accurate localization of short GRBs, the discovery of GRBs at high redshift (z > 8), supernova shock break-out from SN Ib, a jetted tidal disruption event, an ultra-long class of GRBs, high energy emission from flare stars, novae and supernovae with unusual characteristics, magnetars with glitches in their spin periods, and a short GRB with evidence of an accompanying kilonova. Swift has developed a dynamic synergism with ground based observatories. In a few years gravitational wave observatories will come on-line and provide exciting new transient sources for Swift to study.

  2. Internet Resources for Radio Astronomy

    Science.gov (United States)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  3. Managing Astronomy Research Data: Case Studies of Big and Small Research Projects

    Science.gov (United States)

    Sands, Ashley E.

    2015-01-01

    Astronomy data management refers to all actions taken upon data over the course of the entire research process. It includes activities involving the collection, organization, analysis, release, storage, archiving, preservation, and curation of research data. Astronomers have cultivated data management tools, infrastructures, and local practices to ensure the use and future reuse of their data. However, new sky surveys will soon amass petabytes of data requiring new data management strategies.The goal of this dissertation, to be completed in 2015, is to identify and understand data management practices and the infrastructure and expertise required to support best practices. This will benefit the astronomy community in efforts toward an integrated scholarly communication framework.This dissertation employs qualitative, social science research methods (including interviews, observations, and document analysis) to conduct case studies of data management practices, covering the entire data lifecycle, amongst three populations: Sloan Digital Sky Survey (SDSS) collaboration team members; Individual and small-group users of SDSS data; and Large Synoptic Survey Telescope (LSST) collaboration team members. I have been observing the collection, release, and archiving of data by the SDSS collaboration, the data practices of individuals and small groups using SDSS data in journal articles, and the LSST collaboration's planning and building of infrastructure to produce data.Preliminary results demonstrate that current data management practices in astronomy are complex, situational, and heterogeneous. Astronomers often have different management repertoires for working on sky surveys and for their own data collections, varying their data practices as they move between projects. The multitude of practices complicates coordinated efforts to maintain data.While astronomy expertise proves critical to managing astronomy data in the short, medium, and long term, the larger astronomy

  4. [Mathematics - astronomy - astrology special library].

    Science.gov (United States)

    Gluch, Sibylle

    2011-01-01

    About 1560 Elector August of Saxony created an unusual library--one distinguished within its period by both its specialization and location. Situated within the Kunstkammer this library was mostly dedicated to the mathematical sciences and related disciplines. It contained works by the most important authors on mathematics, astronomy, and astrology from the classical, medieval, and early modern periods. This essay traces the formation and composition of August's library, and examines its function: What kind of relationship existed between the library and the Kunstkammer? In what way did the library mirror the interests of the Elector, and to what extend does it permit inferences regarding the Elector's knowledge of mathematics? From the analysis August emerges not as a specialist with a deep understanding of mathematics, but as a particular aficionado of mathematical applications. As a practitioner and general follower of the mathematical arts he took part in a far-reaching intellectual network the center of which lay in the University of Wittenberg. Here, Melanchthon had effectively strengthened the importance of the mathematical disciplines within the university curriculum. He regarded mathematics as the foremost science, arguing that before all other disciplines its method enabled man to recognize the harmonic order of the world, and to discern divine providence. Thus, mathematics offered consoling stability and support in an often seemingly chaotic world torn by religious controversies. This kind of esteem for the mathematical sciences did not presuppose expert knowledge. Hence, the fact that August does not appear to have read the mathematical books he collected does not come as a contradiction. On the contrary, for August it sufficed to recognize the potential of the mathematical sciences, which he brought into life through the creation of a specialized library that developed a rhetoric of its own. The collection of his Kunstkammer library spoke of a

  5. Teaching Astronomy with Podcasts of the APOD

    Science.gov (United States)

    Wagner, Robert M.

    2017-01-01

    The APOD website provides many excellent astronomy photos that are used to enhance introductory astronomy classes. For nearly six years, podcasts have been used to enhance learning in introductory astronomy classes at Harrisburg Area Community College. Daily 3-5 minute podcasts have been created and made available through iTunes to students in these classes at no charge. Students are asked to subscribe to the podcast collections and are quizzed on the images discussed throughout the semester. Because the images often focus on current findings in astronomy, the students are given instruction on findings that will not appear in their textbooks for several years. The students also receive a taste of some topics that may not be covered or that are just touched upon because of time limits in the classes. The podcasts have been used successfully with both traditional and fully online classes. The use of the podcasts enhances mobile learning as students can download and listen to the podcasts on their smartphones or tablets at their convenience. The student response to the podcasts has been excellent with some students noting that they continue to follow the website and podcasts even after they have completed the class. With mobile learning expanding, this is an excellent way to reach students and encourage them to further research the various topics in astronomy that are covered in the APOD images.

  6. Music and Astronomy: Historical and Contemporary Perspectives

    Science.gov (United States)

    Whitehouse, Matthew

    2012-01-01

    The link between music and astronomy has deep historical roots. William Herschel, who is considered to be the father of modern astronomy, began his career as a musician. He was a composer, organist at a church in Bath, UK, and a major contributor to the musical life of that community. Like Herschel, I too am an organist and composer, and much of my creative work focuses on connections between music and astronomy. This presentation will explore briefly aspects of William Herschel's musical career, and will then focus on contemporary music inspired by astronomical phenomena. Emphasis will be placed on the use of music as a creative teaching tool in informal education environments. The University of Arizona's Astronomy Camp, hosted at both Mt. Lemmon and Kitt Peak National Observatory, will be used as an example and case study. Examples from my creative activity as an organ performer and composer will be important features of this presentation. This presentation builds on the session exploring the life and work of the Herschels at the January 2011 AAS Historical Astronomy Division meeting in Seattle, WA.

  7. Outreach Testing of Ancient Astronomy

    Science.gov (United States)

    Sanmartin, J. R. S.; Blanco, M. B. M.

    2015-10-01

    This work is an outreach approach to an ubiquitous recent problem in secondary-school education: how to face back the decreasing interest in natural sciences shown by students under 'pressure' of convenient resources in digital devices/applications. The approach rests on two features. First, empowering of teen-age students to understand regular natural events around, as very few educated people they meet could do. Secondly, an understanding that rests on personal capability to test and verify experimental results from the oldest science, astronomy, with simple instruments as used from antiquity down to the Renaissance (a capability restricted to just solar and lunar motions). Because lengths in astronomy and daily life are so disparate, astronomy basically involved observing and registering values of angles (along with times), measurements being of two types, of angles on the ground and of angles in space, from the ground. First, the gnomon, a simple vertical stick introduced in Babylonia and Egypt, and then in Greece, is used to understand solar motion. The gnomon shadow turns around during any given day, varying in length and thus angle between solar ray and vertical as it turns, going through a minimum (noon time, at a meridian direction) while sweeping some angular range from sunrise to sunset. Further, the shadow minimum length varies through the year, with times when shortest and sun closest to vertical, at summer solstice, and times when longest, at winter solstice six months later. The extreme directions at sunset and sunrise correspond to the solstices, swept angular range greatest at summer, over 180 degrees, and the opposite at winter, with less daytime hours; in between, spring and fall equinoxes occur, marked by collinear shadow directions at sunrise and sunset. The gnomon allows students to determine, in addition to latitude (about 40.4° North at Madrid, say), the inclination of earth equator to plane of its orbit around the sun (ecliptic), this

  8. Women’s and men’s career choices in astronomy and astrophysics

    Directory of Open Access Journals (Sweden)

    Rachel Ivie

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] The Longitudinal Study of Astronomy Graduate Students (LSAGS arose from the 2003 Women in Astronomy Conference, where it was noted that a majority of young members of the American Astronomical Society were women. The astronomy community wishes to make every effort to retain young women in astronomy, so they commissioned a longitudinal study to be conducted that would pinpoint the factors that contribute to retention in general, with a focus on differences between women and men. The LSAGS follows a cohort of people who were graduate students in astronomy or astrophysics during 2006–07. The first survey was conducted during 2007–08 and the second during 2012–13. The analysis presented in this paper used a subset of the respondents, all of whom had Ph.D.s in astronomy, astrophysics, or a related field at the time of the second survey. We tested the effects of four major concepts on two measures of attrition from physics and astronomy. These concepts included the imposter syndrome, mentoring and advising during graduate school, the “two-body problem” that occurs when a couple needs to find two jobs in the same geographic area, and the sex of the respondent. While the imposter syndrome and mentoring affected the likelihood of respondents’ thinking about leaving the field, they did not directly contribute to actually working in a field that was not physics or astronomy. Relationship with graduate advisors and the two-body problem both had significant effects on working in physics or astronomy, as did completing a postdoc. The sex of the respondent had no direct effect on our measures of attrition, but indirectly affected attrition because women were less likely to report positive relationships with graduate advisors and more likely to report two-body problems. This research identifies specific areas of concern that can be addressed by the scientific community to increase

  9. Highschool astronomy research workshop in Thailand and how it transforms Thai astronomy education

    Science.gov (United States)

    Tangmatitham, Matipon

    2017-01-01

    The National Astronomical Research Institute of Thailand (NARIT) have launched the program "Advance Teacher Training Workshop" that aims to introduce both the students and astronomy teacher alike to the nature of critical thinking in science via hands on experience in astronomy projects. Students and accompanying teachers are participated in 5 days workshop in which each of them must select an individual astronomy research project. The project is then carried out on their own for the next 6 months, after which their works are presented in a conference. Progress is monitored and extra aid is delivered as needed via the use of social media. Over a hundred projects have been completed under this program. Follow up study have suggests that this workshop has shown to be quite successful at improving critical thinking skills in participants. As the program became more popular, other schools began to follow. To support the growing interest, we have also launched the "Thai Astronomical Society: student session", a highschool astronomy conference for anyone who participated or interested in astronomy related projects. Via these stages we are able to secure a permanent foothold in Thai astronomy education and inspire new generations to participate in astronomy projects.

  10. Astronomy Exercises for the Artist: van Gogh the Observer

    Science.gov (United States)

    Lawlor, Timothy M.

    2013-01-01

    We present a set of exercises designed to be used in a survey astronomy course, an introductory astronomy laboratory course, or in secondary education. The exercises use the great works of Vincent van Gogh but could

  11. Innovative technology for optical and infrared astronomy

    Science.gov (United States)

    Cunningham, Colin R.; Evans, Christopher J.; Molster, Frank; Kendrew, Sarah; Kenworthy, Matthew A.; Snik, Frans

    2012-09-01

    Advances in astronomy are often enabled by adoption of new technology. In some instances this is where the technology has been invented specifically for astronomy, but more usually it is adopted from another scientific or industrial area of application. The adoption of new technology typically occurs via one of two processes. The more usual is incremental progress by a series of small improvements, but occasionally this process is disruptive, where a new technology completely replaces an older one. One of the activities of the OPTICON Key Technology Network over the past few years has been a technology forecasting exercise. Here we report on a recent event which focused on the more radical, potentially disruptive technologies for ground-based, optical and infrared astronomy.

  12. L'astronomie et son histoire

    CERN Document Server

    Roy, Jean-René

    1982-01-01

    Le livre de Jean-René Roy nous présente une vaste synthèse des connaissances présentes en astronomie. Le grand mérite du livre est de dérouler son sujet en parallèle avec une histoire de l'astronomie. Le côté historique est ici beaucoup plus qu'un luxe. Il redonne leurs dimensions vraies aux réponses qu'apporte l'astronomie. Pour bien sentir la nature d'une étape franchie, il faut aussi avoir vécu la situation telle qu'elle se présentait avant. Et les fiches personnelles incluses dans le livre ont l'intérêt de nous rapprocher encore plus du "" feu de l'action "". Écrit dans un style direct et

  13. A General Education Course in Cultural Astronomy: Exploring the Universe Through Human Eyes

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    Astronomy courses for non-science majors (often referred to as Astro 101) are the bread and butter of the general education service obligation of astronomy faculty and programs across the US. Their content has traditionally been a general survey of the solar system, stars and galaxies, or even the entire universe. However, because the audience is students who will not be continuing on in astronomy, there is actually no need to cover a broad range of specific topics. Rather, it is more important to concentrate on the scientific process, and hopefully leave the student with an understanding of the relevance of science in everyday life, regardless of his or her major. As a result, some faculty prefer a more interdisciplinary focus for their Astro 101 classes, for example courses on the search for extraterrestrial life. Another option for general education astronomy courses is what has become known as cultural astronomy. Cultural astronomy focuses on the ways in which astronomical knowledge and belief influences human behavior and social structures. Under this umbrella fall two important areas of study, archaeoastronomy (concentrating on ancient cultures) and enthoastronomy (focusing on extant cultures). Such interdisciplinary courses draw heavily upon archaeology, history, anthropology, art, and other fields more traditionally aligned with the humanities and social sciences than the natural sciences, and therefore can be attractive to students in these non-science majors. In such courses, students experience the “humanity” of science: the important connections between science and the human experience, and how experts in myriad fields contribute in meaningful ways to our understanding of how astronomical knowledge has been constructed and disseminated across time and space. This poster describes the content and pedagogy of a general education course in cultural astronomy for non-science majors that stresses hands-on and experiential learning, including the use of

  14. Promoting mental model building in astronomy education

    Science.gov (United States)

    Taylor, Ian; Barker, Miles; Jones, Alister

    2003-10-01

    While astronomy has recently re-emerged in many science curricula, there remain unresolved teaching and learning difficulties peculiar to astronomy education. This paper argues that mental model building, the core process in astronomy itself, should be reflected in astronomy education. Also, this crucial skill may promote a better understanding of the nature of science by pupils and it resonates with current understandings about pupils' learning in science. However, three practical questions to be considered are: the expressed reservations about the connection between mental model building and meaningful learning; the earliest age of pupils for whom mental model building is appropriate; and the lack of research into pupils' prior ideas about the role of models in science. The paper describes how a four-phase general pedagogical strategy was adopted to create an astronomy teaching and learning package to promote mental model building. The package consists of notes explaining the mental model building followed by an overview of the teaching-learning approach and suggested outlines of the 12 lessons. Research investigated whether that package can help Year 7-8 pupils interrogate and refine their mental models of the Sun-Earth-Moon system within the constraints of an ordinary class of 33 pupils. The results showed that all four phases of the general strategy were necessary and effective in that most pupils were able successively and successfully to critique their mental models of the Sun-Earth-Moon system while also achieving traditional astronomy knowledge goals. Implications are that pupils as young as Year 7-8 may be able to construct other appropriate mental models, such as those for biological populations, atomic structure and plate tectonics.

  15. Relation of Astronomy to other Sciences, Culture and Society

    Science.gov (United States)

    Harutyunian, H. A.; Mickaelian, A. M.; Farmanyan, S. V.

    2015-07-01

    The book contains the Proceedings of XIII Annual Meeting of the Armenian Astronomical Society "Relation of Astronomy to other Sciences, Culture and Society". It consists of 9 main sections: "Introductory", "Astronomy and Philosophy", "Astrobiology", "Space-Earth Connections", "Astrostatistics and Astroinformatics", "Astronomy and Culture, Astrolinguistics", "Archaeoastronomy", "Scientific Tourism and Scientific Journalism", and "Armenian Astronomy". The book may be interesting to astronomers, philosophers, biologists, culturologists, linguists, historians, archaeologists and to other specialists, as well as to students.

  16. Astronomy from the chair - the application of the Internet in promoting of Astronomy

    Science.gov (United States)

    Tomic, Zoran

    2014-05-01

    Internet and modern communication technologies are an indispensable part of modern life. The use of the Internet makes it possible to enhance the education and expand opportunities for acquiring new knowledge. One example is Astronomy, where today thanks to the Internet, we can control telescopes that are distant from us and listen to lectures from Universities in other countries. "Astronomy from the chair" is the name for a concept where amateur astronomers can deal with astronomy from their homes using the Internet. The concept can be divided into four sections depending on the content being offered: Robotic Observatory, Virtual Observatory, Online astronomy broadcasting and Online courses. Robotic observatory is defined as an astronomical instrument and detection system that enables efficient observation without the need of a person's physical intervention. Virtual Observatory is defined as a collection of databases and software tools that use the Internet as a platform for scientific research. Online astronomy broadcasting is part of concept "Astronomy from the chair" which gives users the opportunity to get directly involved in astronomical observation organized by an amateur astronomer from somewhere in the world. Online courses are groups of sites and organizations that provide the opportunity to amateur astronomers to attend lectures, save and watch video materials from lectures, do homework, communicate with other seminar participants and in that way become familiar with the various areas of Astronomy. This paper discusses a new concept that describes how the Internet can be applied in modern education. In this paper will be described projects that allows a large number of astronomy lovers to do their own research without the need to own a large and expensive set of astronomical equipment (Virtual Telescope from Italy, Observatory "Night Hawk" from Serbia and project "Astronomy from an armchair" at Faculty of Sciences and Mathematics in Nis), to help

  17. The History and Practice of Ancient Astronomy

    CERN Document Server

    Evans, James

    1998-01-01

    The History and Practice of Ancient Astronomy combines new scholarship with hands-on science to bring readers into direct contact with the work of ancient astronomers. While tracing ideas from ancient Babylon to sixteenth-century Europe, the book places its greatest emphasis on the Greek period, when astronomers developed the geometric and philosophical ideas that have determined the subsequent character of Western astronomy. The author approaches this history through the concrete details of ancient astronomical practice. Carefully organized and generously illustrated, the book can teach reade

  18. Extragalactic astronomy: The universe beyond our galaxy

    Science.gov (United States)

    Jacobs, K. C.

    1976-01-01

    This single-topic brochure is for high school physical science teachers to use in introducing students to extragalactic astronomy. The material is presented in three parts: the fundamental content of extragalactic astronomy; modern discoveries delineated in greater detail; and a summary of the earlier discussions within the structure of the Big-Bang Theory of evolution. Each of the three sections is followed by student exercises (activities, laboratory projects, and questions-and-answers). The unit close with a glossary which explains unfamilar terms used in the text and a collection of teacher aids (literature references and audiovisual materials for utilization in further study).

  19. Advances in astronomy and astrophysics 7

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Advances in Astronomy and Astrophysics, Volume 7 covers reviews about the advances in astronomy and astrophysics. The book presents reviews on the scattering of electrons by diatomic molecules and on Babcock's theory of the 22-year solar cycle and the latitude drift of the sunspot zone. The text then describes reviews on the structures of the terrestrial planets (Earth, Venus, Mars, Mercury) and on type III solar radio bursts. The compact and dispersed cosmic matter is also considered with regard to the search for new cosmic objects and phenomena and on the nature of the ref shift from compact

  20. Smart Images in a Web 2.0 World: The Virtual Astronomy Multimedia Project (VAMP)

    Science.gov (United States)

    Hurt, R. L.; Christensen, L. L.; Gauthier, A.; Wyatt, R.

    2008-06-01

    High quality astronomical images, accompanied by rich caption and background information, abound on the web and yet are notoriously difficult to locate efficiently using common search engines. ``Flat'' searches can return dozens of hits for a single popular image but miss equally important related images from other observatories. The Virtual Astronomy Multimedia Project (VAMP) is developing the architecture for an online index of astronomical imagery and video that will simplify access and provide a service around which innovative applications can be developed (e.g. digital planetariums). Current progress includes design prototyping around existing Astronomy Visualization Metadata (AVM) standards. Growing VAMP partnerships include a cross-section of observatories, data centers, and planetariums.

  1. ``Dark Skies are a Universal Resource'' Programs Planned for the International Year of Astronomy

    Science.gov (United States)

    Walker, C. E.; Berglund, K.; Bueter, C.; Crelin, B.; Duriscoe, D.; Moore, C.; Gauthier, A.; Gay, P. L.; Foster, T.; Heatherly, S. A.; Maddalena, R.; Mann, T.; Patten, K.; Pompea, S. M.; Sparks, R.; Schaaf, F.; Simmons, M.; Smith, C.; Smith, M.; Tafreshi, B.

    2008-11-01

    In an effort to help more people appreciate the ongoing loss of a dark night sky for much of the world's population and to raise public knowledge about diverse impacts of excess artificial lighting on local environments, the International Year of Astronomy's Dark Skies Working Group has established six ``Dark Skies'' programs and six ``Dark Skies'' resources. The Dark Skies programs include GLOBE at Night (with Earth Hour), Astronomy Nights in the [National] Parks, Dark Skies Discovery Sites, Quiet Skies, Good Neighbor Lighting, and a digital photography contest. Resources include the light education toolkit, the ``Let There Be Night'' DVD and planetarium program, the 6-minute video, online interactions like Second Life, podcasts, and traveling exhibits. The programs and resources are summarized here, as they were in a poster for the June 2008 ASP/AAS conference. For more information on these programs and resources, visit http://astronomy2009.us/darkskies/.

  2. NASE Training Courses in Astronomy for Teachers throughout the World

    Science.gov (United States)

    Ros, Rosa M.

    2012-01-01

    Network for Astronomy School Education, NASE, is a project that is organizing courses for teachers throughout the entire world. The main objective of the project is to prepare secondary and primary school teachers in astronomy. Students love to know more about astronomy and teachers have the opportunity to observe the sky that every school has…

  3. 47 CFR 2.107 - Radio astronomy station notification.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy stations...

  4. Covering the Standards: Astronomy Teachers' Preparation and Beliefs

    Science.gov (United States)

    Plummer, Julia D.; Zahm, Valerie M.

    2010-01-01

    An online survey of science teachers and interviews with curriculum directors were used to investigate the coverage of astronomy in middle and high schools in the greater Philadelphia region. Our analysis looked beyond astronomy elective courses to uncover all sources of astronomy education in secondary schools. We focused on coverage of state…

  5. Analysis of Individual "Test Of Astronomy STandards" (TOAST) Item Responses

    Science.gov (United States)

    Slater, Stephanie J.; Schleigh, Sharon Price; Stork, Debra J.

    2015-01-01

    The development of valid and reliable strategies to efficiently determine the knowledge landscape of introductory astronomy college students is an effort of great interest to the astronomy education community. This study examines individual item response rates from a widely used conceptual understanding survey, the Test Of Astronomy Standards…

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. K. G. Arun. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 30 Review. Explosive and Radio-Selected Transients: Transient Astronomy with Square Kilometre Array and its Precursors · Poonam Chandra G. C. ...

  7. How, precisely, can astronomy be of benefit to anyone?

    NARCIS (Netherlands)

    Jones, Bernard J. T.; VallsGabaud, D; Boksenberg, A

    Astronomy as an observational science is technology driven both from the point of view of data, acquisition and of data processing and visualisation. Astronomy exploits a very wide base of technologies which are developed, enhanced and extended by users. Consequently, astronomy can return new and

  8. Division X, XII / Commission 40, 41 / Working Group Radio Astronomy

    NARCIS (Netherlands)

    Kellermann, Kenneth; Orchiston, Wayne; Davies, Rod; Gurvits, Leonid; Ishiguro, Masato; Lequeux, James; Swarup, Govind; Wall, Jasper; Wielebinski, Richard; van Woerden, Hugo

    The IAU Working Group on Historical Radio Astronomy (WGHRA) was formed at the 2003 General Assembly of the IAU as a Joint Working Group of Commissions 40 (Radio Astronomy) and 41 (History of Astronomy), in order to: a) assemble a master list of surviving historically-significant radio telescopes and

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Subhashis Roy. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 30 Review. Explosive and Radio-Selected Transients: Transient Astronomy with Square Kilometre Array and its Precursors · Poonam Chandra G. C. ...

  10. Astronomy Education Project for Guangdong High Schools F. P. Pi ...

    Indian Academy of Sciences (India)

    Therefore, it is difficult for them to teach new thoughts, discoveries, and techniques in astronomy. (2) The textbooks and other teaching material mainly focus on knowledge, barely focussing on the origin of ideas and methodologies in astronomy. (3) Open sources that can be used in high school astronomy education are far ...

  11. Incorporating Service Learning into the Introductory Astronomy Course

    Science.gov (United States)

    Mukherjee, K.

    2002-05-01

    The introductory Astronomy course can be enriched by adding a service learning component to it. This enables students to interact with and educate the general public about matters of outer space. At Slippery Rock University we have incorporated this idea into our Astronomy and Space Science courses. Working in groups, the students do a presentation which is often interdisciplinary. Frequently the department gets requests from schools to do a show specifically tailored to a topic like the solar system or constellations. Such projects are beneficial to students in many ways. They demand a thorough knowledge of the subject matter so as to communicate to the audience in a clear and nontechnical manner. The students also experience first hand the difficulties involved in coordinating a group effort. They learn to take responsibility for their allocated part and how to combine effectively to make the entire show a success. Interacting with various age groups demands a versatility in planning content and public speaking skills not easily available elsewhere in a traditional education. Our planetarium facilities help in attracting diverse audiences from preschoolers to senior citizens. Performance in these shows constitutes twenty five percent of course grade. Feedback from audience groups helps refine future shows by subsequent student cohorts.

  12. DSPSR: Digital Signal Processing Software for Pulsar Astronomy

    Science.gov (United States)

    van Straten, W.; Bailes, M.

    2010-10-01

    DSPSR, written primarily in C++, is an open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. The library implements an extensive range of modular algorithms for use in coherent dedispersion, filterbank formation, pulse folding, and other tasks. The software is installed and compiled using the standard GNU configure and make system, and is able to read astronomical data in 18 different file formats, including FITS, S2, CPSR, CPSR2, PuMa, PuMa2, WAPP, ASP, and Mark5.

  13. Cosmos in Concert: Combining astronomy and classical music

    Science.gov (United States)

    Kremer, Kyle

    2018-01-01

    Cosmos in Concert is an outreach initiative designed to combine astronomy education with classical music. Over the past several years, this program has presented large-scale multimedia shows for symphony orchestras, educational programs at K-12 schools, and research-oriented university collaborations designed to develop techniques for the sonification of data. Cosmos in Concert has collaborated with institutions including Fermi National Lab, the Adler Planetarium, the Bienen School of Music, and the Colburn School of Music. In this talk, I will give a brief overview of some of the main Cosmos in Concert initiatives and discuss ways these initiatives may be implemented at other institutions.

  14. Outreach for Families and Girls- Astronomy at Outdoor Concerts and at Super Bowl or Halloween Star Parties

    Science.gov (United States)

    Lubowich, Donald A.

    2011-05-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars (MAUS) is a NASA-funded as astronomy outreach program at community parks and music festivals (1000 - 25,000 people/event). While there have been many astronomy outreach activities and telescope observations at sidewalks and parks, this program targets a different audience - music lovers who are attending concerts in community parks or festivals. These music lovers who may not have visited science museums, planetariums, or star parties are exposed to telescope observations and astronomy information with no additional travel costs. MAUS includes solar observing, telescope observations including a live imaging system, an astronomical video, astronomy banners/posters, and hands-on activities. MAUS increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. Since 2009 over 50,000 people have participated in these outreach activities including a significant number of families and young girls. In addition to concerts in local Long Island parks, there were MUAS events at Tanglewood (summer home of the Boston Symphony Orchestra), Jazz in Central Park, and Astronomy Night on the National Mall (co-sponsored by the White House Office of Science and Technology Policy). In 2011 MUAS will be expanded to include Ravinia (summer home of the Chicago Symphony Orchestra), the Newport Folk Festival, and the Bethel Woods Center for the Arts (site of the 1969 Woodstock festival). According to our survey results, music lovers became more informed about astronomy. Expanding Hofstra University's successful outreach programs, I propose the creation of a National Halloween Stars event targeting children and a National Super Bowl Star Party targeting girls, women, and the 2/3 of Americans who do not watch the Super Bowl. This can be combined with astronomers or amateur astronomers bringing telescopes to Super Bowl parties for football fans to stargaze during

  15. The Correlation between Pre-Service Science Teachers' Astronomy Achievement, Attitudes towards Astronomy and Spatial Thinking Skills

    Science.gov (United States)

    Türk, Cumhur

    2016-01-01

    The purpose of this study was to examine the changes in pre-service Science teachers' astronomy achievement, attitudes towards astronomy and skills for spatial thinking in terms of their years of study. Another purpose of the study was to find out whether there was correlation between pre-service teachers' astronomy achievement, attitudes towards…

  16. AAS Special Session: Policy Making in Astronomy

    Science.gov (United States)

    Cardelli, J. A.; Massa, D.

    1995-12-01

    The professional astronomical community today is more diverse than at any time in its history. Individuals participating in creative research programs can be found in a wide range of positions. This type of diversity, which mixes research, education, and service (e.g. contract) work, represents the strength of contemporary astronomy. While recognizing the unavoidable reductions in funding and restructuring of organizations like NASA, it is imperative that the significance of the current diversity be considered during these processes. Creative ideas are one of the cornerstones of quality research, and they can originate anywhere. Consequently, it is essential that adequate research resources remain available for free and open competition by all astronomers. Our goal in this session is to bring together officials from the AAS, NASA, and the NSF to discuss how the policy and decision making process operates and whether it should be changed to better serve the general needs of the professional astronomical community. Examples of the issues we believe are important include: In establishing new policy, how can the needs of the average research astronomer be better addressed? How could input from such astronomers be provided to those who craft NASA/NSF policy? How can/should the AAS serve as an interface between policy/decision making bodies and its membership? Should the AAS membership become more actively/effectively involved in the decision making process and, if so, how? More information on this session and related issues can be found at the Association of Research Astronomers Home Page: http://www.phy.vill.edu/astro/faculty/ara/ara_home.htm

  17. Indian Mathematics and Astronomy: Some Landmarks

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 7. Indian Mathematics and Astronomy: Some Landmarks. Michio Yono. Book Review Volume 5 Issue 7 July 2000 pp 88-91. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/005/07/0088-0091 ...

  18. African Astronomy and the Square Kilometre Array

    Science.gov (United States)

    MacLeod, Gordon

    2010-02-01

    We highlight the growth of astronomy across Africa and the effect of hosting the Square Kilometer Array (SKA) will have on this growth. From the construction of a new 25m radio telescope in Nigeria, to new university astronomy programmes in Kenya, the HESS in Namibia and the Mauritian Radio Telescope, to the world class projects being developed in South Africa (Southern African Large Telescope and Karoo Array Telescope) astronomy is re-emerging across the continent. The SKA will represent the pinnacle of technological advancement in astronomy when constructed; requiring ultra high speed data transmission lines over 3000 km baselines and the World's fastest computer for correlation purposes. The investment alone to build the SKA on African soil will be of great economic benefit to its people, but the required network connectivity will significantly drive commercial expansion far beyond the initial value of the SKA investment. The most important consequence of hosting the SKA in Africa would be the impact on Human Capital Development (HCD) on the continent. Major HCD projects already underway producing excellent results will be presented. )

  19. How West met East in Chinese astronomy

    Science.gov (United States)

    de Grijs, Richard

    2015-01-01

    The development of early modern astronomy in China is filled with fascinating characters and strange tales. Richard de Grijs reveals details of research into the people behind this tumultuous period that has, until now, been known to only a handful of dedicated scholars.

  20. Instrumental technique in X-ray astronomy

    Science.gov (United States)

    Peterson, L. E.

    1975-01-01

    A detailed review of the development of instruments for X-ray astronomy is given with major emphasis on nonfocusing high-sensitivity counter techniques used to detect cosmic photons in the energy range between 0.20 and 300 keV. The present status of X-ray astronomy is summarized together with significant results of the Uhuru observations, and photon interactions of importance for the detection of X-rays in space are noted. The three principal devices used in X-ray astronomy (proportional, scintillation, and solid-state counters) are described in detail, data-processing systems for these devices are briefly discussed, and the statistics of nuclear counting as applied to X-ray astronomy is outlined analytically. Effects of the near-earth X-ray environment and atmospheric gamma-ray production on X-ray detection by low-orbit satellites are considered. Several contemporary instruments are described (proportional-counter systems, scintillation-counter telescopes, modulation collimators), and X-ray astronomical satellite missions are tabulated.