WorldWideScience

Sample records for subjects development solar

  1. Development of Solar Research

    Science.gov (United States)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  2. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  3. The Solar Development Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Singer, C.E.

    1997-12-01

    This paper describes a proposed stand alone company, the Solar Development Corporation (SDC), to be a business development and financing entity for photovoltaic operations with the potential to be commercially sustainable. SDC will have a fully integrated policy advocacy link to the World Bank. SDC will define target countries where the potential exists for significant early market expansion. In those countries it will provide: market and business development services that will accelerate the growth of private firms and deepen the penetration of Solar Home Systems (SHS) and other rural PV applications in the market; and access to pre-commercial and parallel financing for private firms to (1) expand their capability in PV distribution businesses, and (2) strengthen their ability to provide credit to end users. SDC itself will not engage in direct financing of the final consumer. It is intended that as far as possible SDC`s finance will be provided in parallel with financing from Financial Intermediaries.

  4. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...

  5. Battery support for solar vehicle development

    Science.gov (United States)

    Brown, Curt; Miller, Lee

    Consideration is given to the efforts of Eagle-Picher to develop batteries for solar vehicles to provide storage of the electrical energy from the solar cells for use during brief periods when the power requirements exceed the capability of the solar cells, such as hill climbing, passing, or low sun conditions. Results are presented of a test program to test various design parameters and to determine that a secondary silver zinc cell can meet the performance requirements and which design performed best when subjected to the expected performance/environmental requirements.

  6. Solar array welding developement

    Science.gov (United States)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  7. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  8. Solar Power Generation Development

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Johnson Jr.; Gary E. Carver

    2011-10-28

    This project centered on creating a solar cell prototype enabling significant reductions in module cost and increases in module efficiency. Low cost was addressed by using plentiful organic materials that only comprise 16% of the total module cost, and by leveraging building integrated PV concepts that reduce the cost of key module components to zero. High efficiency was addressed by implementing multiband organic PV, low cost spectral splitting, and possibly integrating photovoltaic and photothermal mechanisms. This research has contributed to the design of multiband organic PV, and the sealing of organic PV cells. If one assumes that the aggregate multiband efficiency can reach 12%, projected cost would be $0.97/W. If the sealing technology enables 10 to 20 year lifetimes, the LCOE will match that of domestic coal. The final report describes progress towards these goals.

  9. Development of concentrator solar cells

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  10. Solar energy and substainable development

    Science.gov (United States)

    Roux, Maria Carmen; Nalin, Olivier

    2010-05-01

    At the dawn of the 21st century, the world population doesn't stop rising. More than ever, energy and environment problems remain at the heart of our society concerns. What will we leave to the future generations ? Therefore, a twenty pupil class of 4e (13 and 14 year old pupils) has made a specific work about this topic, called "solar power and sustainable development". Initially, the pupils participated to the settlement of a meteorological station on the school grounds. This station, which provides readings about temperature, relative humidity, rainfall, sun radiations, wind power and wind heading is fed by photovoltaic cells and thus works independently. The pupils have then come to realize the ecological and practical interests of such a functioning (e.g. : for the latter : neither batteries nor electrical wires are needed). These past few years, in Provence (a highly sunny region), many solar panel installations have been created and many private house roofs have been equipped with photovoltaic cells. Indeed, this energy presents some significant assets : it is free, clean and will never run out. The village of Vinon sur Verdon, where stands our college, is partly fed by a solar panel park, located a few kilometers away. Strongly sensitive to the assets of this energy source, the pupils have made a poster asserting the benefits of solar power. Another side of solar energy has been asserted : the output of hot sanitary water. They have built a miniature on this topic. In order to be thorough, some elements remain in shadow, such as environment impacts done by the making, the transport and the recycling of solar panels that will be brought up in a collaboration with research establishments.

  11. Subjective truths: participatory development assessment

    NARCIS (Netherlands)

    Dietz, T.; Obeng, F.; Obure, J.; Zaal, F.

    2009-01-01

    The starting point for development evaluations should be how the recipients of development assistance experience change, rather than the set perspectives of the evaluators. The participatory development assessment (PDA) methodology is designed to involve recipients in evaluations.

  12. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  13. Solar Concentrator Advanced Development Program

    Science.gov (United States)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  14. Solar-Electric Dish Stirling System Development

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  15. Subject to Form: Research Interviews, Performative Subjectivity, Professional Development

    Science.gov (United States)

    Sarigianides, Sophia Tatiana

    2010-01-01

    In this dissertation, I analyze teacher, literacy coach and researcher subjectivities in a five-year study of on-site professional development with middle-grade Language Arts teachers in a school designated by its district and state as severely underperforming. Interested in the role of research interviews as both research method and cultural…

  16. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  17. DEVELOPMENT OF A SMART SOLAR TANK

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    Theoretical and experimental investigations of small SDHW systems based on so-called smart solar tanks are presented. A smart solar tank is a hot water tank in which the domestic water can both be heated by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply....... The investigations showed that the yearly thermal performance of small SDHW systems can be increased by up to about 30 % if a smart solar tank is used instead of a traditional solar combi tank. The thermal increase is strongly influenced by the hot water consumption and consumption pattern. Recommendations...... for future development of smart solar tanks are given....

  18. Hawaii solar integration study. Solar modelling developments and study results

    Energy Technology Data Exchange (ETDEWEB)

    Piwko, Richard [GE Energy Consulting, Schenectady, NY (United States); Roose, Leon [Hawaii Natural Energy Institute, Honolulu, HI (United States); Orwig, Kirsten; Corbus, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Matsuura, Marc [Hawaiian Electric Company, Honolulu, HI (United States); Schuerger, Matt [Energy Systems Consulting Services LLC, St. Paul, MN (United States)

    2012-07-01

    The Hawaii Solar Integration Study (HSIS) is a follow up to the Oahu Wind Integration and Transmission Study (OWITS) completed in 2010. HSIS examines the impacts of higher penetrations of solar energy on the electrical grid, focusing on impacts to the operation of the bulk power transmission system and other interconnected generation resources. Issues specific to generation resource interconnection (normally the subject of a generator interconnection requirements study) and distribution system impacts of high distributed solar penetration scenarios were not the focus of the study. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-resolution (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction (NWP) model / stochastic-kinematic cloud model approach, which represents the ''sharp-edge'' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of techniques including: wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and results for the Oahu portion of the study. (orig.)

  19. Solar Development on Contaminated and Disturbed Lands

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lee, Courtney [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melius, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    Land classified as contaminated and disturbed across the United States has the potential to host developments of utility-scale solar power. This report examines the prospect of developing utility- and commercial-scale concentrated solar power (CSP) and solar photovoltaics (PV) technologies on degraded and environmentally contaminated lands. The potential for solar development on contaminated anddisturbed lands was assessed, and for the largest and highest solar resource sites, the economic impacts and feasibility were evaluated. Developing solar power on contaminated and disturbed lands can help create jobs and revitalize local and state economies, and selecting these sites over greenfield sites can potentially have permitting and environmental mitigation advantages. The U.S.Department of Energy (DOE) SunShot goals call for 632 GW of PV and 83 GW of CSP to be deployed by 2050. Conservative land-use estimates of this study (10 acres per megawatt) show that there are disturbed and environmentally contaminated lands throughout the country that could be suitable for utility-scale solar power, and, that there is sufficient land area to meet SunShot solar deployment goals. The purpose of this assessment is to improve the understanding of these sites and facilitate solar developers' selection of contaminated and disturbed sites for development.

  20. Development of solar tower observatories

    Science.gov (United States)

    Wolfschmidt, Gudrun

    Because the horizontal solar telescope, the Snow Telescope in Yerkes Observatory, was affected by air-currents from the warmed-up soil, George Ellery Hale had the idea of a tower telescope. In 1904, the 60-foot tower in Mt. Wilson was ready, in 1908 the 150-foot tower was built with the help of the Carnegie foundation. After World War I, Germany made heavy efforts to regain its former strong position in the field of science. Already in December 1919 - after the spectacular result of the English eclipse expedition in October 1919 - Erwin Finlay-Freundlich started a successful fund raising (“Einstein-Stiftungrdquo;) among German industrialists. The company Zeiss in Jena was responsible for the instrumentation of the 20-m solar tower, built in 1920-22. The optical design of the Einstein Tower in respect to light intensity surpassed even the Mt. Wilson solar observatory. Also abroad solar tower observatories were built in the 1920s: Utrecht,The Netherlands (1922), Canberra, Australia (1924), Arcetri, Italy (1926), Pasadena, California (1926) and Tokyo, Japan (1928). In the thirties, solar physics became important because of the solar maximum in 1938 and the new observational possibilities created by Bernard Lyot. At the end of the 1930s, Karl-Otto Kiepenheuer proposed to establish a solar tower observatory on Wendelstein in order to improve the predictions of radio interference by observing sunspots. By stressing the importance of the solar research for war efforts, Otto Heckmann of Göttingen observatory finally succeeded in winning the “Reichsluftfahrtministerium” to finance several solar observatories, like Wendelstein, Hainberg/Göttingen, Kanzelhöhe/Villach, and Schauinsland/Freiburg. Solar astronomy profited by the foundation of the new observatories - four of them existed still after the war. Abroad only the solar observatories of Oxford (1935) and the 50 foot tower of the McMath-Hulbert Observatory, University of Michigan (1936) should be mentioned. Only

  1. Characterization of candidate solar sail materials subjected to electron radiation

    Science.gov (United States)

    Edwards, David L.; Hubbs, Whitney S.; Gray, Perry A.; Wertz, George E.; Hoppe, David T.; Nehls, Mary K.; Semmel, Charles L.; Albarado, Tesia L.; Hollerman, William A.

    2003-09-01

    Solar sailing is a unique form of propulsion in which a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the light-weight film in the space environment and the distance to the Sun. Once considered difficult or impossible, solar sailing has left the realm of science fiction for the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra light-weight, and radiation-resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is concentrating research into the use of ultra light-weight materials for spacecraft propulsion. MSFC's Space Environmental Effects Team is actively characterizing candidate solar sail materials to evaluate thermo-optical and mechanical properties after exposure to space environmental effects. This paper describes irradiation of candidate materials with energetic electrons in vacuum to determine the hardness of several candidate sail materials. [Hardness is defined as the amount of electron fluence (electrons/area) required to cause the sail material to fail.] This paper describes the testing procedure and preliminary results of this investigation. Comparisons to approximate the engineering functional lifetimes of candidate sail materials will be shown.

  2. Development of a compact solar combisystem

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon

    2006-01-01

    to get highest system efficiency for use with either a condensing natural gas boiler or a pellet boiler. Especially when using the potential of high peak power of modern condensing natural gas boilers, a new operation strategy of a natural gas boiler/solar combisystem can increase the energy savings......Within the frame of the project REBUS, “Competitive solar heating systems for residential buildings”, which is financed by Nordic Energy Research, a new type of compact solar combisystem with high degree of prefabrication was developed. A hydraulic and control concept was designed with the goal...... of a small solar combisystem by about 80% compared to conventional operation strategies....

  3. Local Development of Subject Area Item Banks.

    Science.gov (United States)

    Ward, Annie W.; Barlow, Gene

    1984-01-01

    It is feasible for school districts to develop and use subject area tests as reliable as those previously available only from commercial publishers. Three projects in local item development in a large school district are described. The first involved only Algebra 1. The second involved life science and career education at the elementary level; and…

  4. Some Recent Developments in Solar Dynamo Theory

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We discuss the current status of solar dynamo theory and describe the dynamo model developed by our group. The toroidal magnetic field is generated in the tachocline by the strong differential rotation and rises to the solar surface due to magnetic buoyancy to create active regions. The decay of these ...

  5. Developing a solar panel testing system

    Directory of Open Access Journals (Sweden)

    Árpád Rácz

    2009-10-01

    Full Text Available Solar energy is increasingly used togenerate electricity for individual households. There isa wide variety of solar panel technologies, whichshould be tested at an individual level during theirlifetime. In this paper, the development of a testingstation at the University of Debrecen is presented. Thetesting system can be used for research andeducational purposes and for in field applicationsequally well.

  6. Early developments in solar cooling equipment

    Science.gov (United States)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  7. Solar energy research and development: program balance. Annex, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    Each of the seven solar energy technologies that have been assessed in the study are treated: photovoltaic devices, solar thermal power systems, wind energy systems, solar heating and cooling systems, agricultural and industrial heat processes, biomass conversion technologies, and ocean thermal energy conversion systems. A brief technical overview of storage for solar electric technologies is presented and some principles concerning how different levels of success on electrical storage can affect the commercial viability of solar electric options are discussed. A description is given of the solar penetration model that was developed and applied as an analytical tool in the study. This computer model has served the primary purpose of evaluating the competiveness of the solar energy systems in the markets in which they are expected to compete relative to that of the alternative energy sources. This is done under a variety of energy supply, demand, and price conditions. The seven sections treating the solar energy technologies contain discussions on each of six subject areas: description of the technology; economic projections; the potential contribution of the technology in different marketplaces; environmental considerations; international potential; and the present and possible future emphases within the RD and D program. The priority item for each of the technology sections has been the documentation of the economic projections.

  8. Development, testing, and certification of Calmac Mfg. Corp. solar collector and solar operated pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Development of a rubber tube solar collector and solar operated pump for use with solar heating and cooling systems is discussed. The development hardware, problems encountered during fabrication and testing, and certification statements of performance are included.

  9. Development and Prospect of Nanoarchitectured Solar Cells

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-01-01

    Full Text Available This paper gives an overview of the development and prospect of nanotechnologies utilized in the solar cell applications. Even though it is not clearly pointed out, nanostructures indeed have been used in the fabrication of conventional solar cells for a long time. However, in those circumstances, only very limited benefits of nanostructures have been used to improve cell performance. During the last decade, the development of the photovoltaic device theory and nanofabrication technology enables studies of more complex nanostructured solar cells with higher conversion efficiency and lower production cost. The fundamental principles and important features of these advanced solar cell designs are systematically reviewed and summarized in this paper, with a focus on the function and role of nanostructures and the key factors affecting device performance. Among various nanostructures, special attention is given to those relying on quantum effect.

  10. Development of Solar Powered Irrigation System

    Science.gov (United States)

    Abdelkerim, A. I.; Sami Eusuf, M. M. R.; Salami, M. J. E.; Aibinu, A.; Eusuf, M. A.

    2013-12-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors.

  11. Embracing Open Software Development in Solar Physics

    Science.gov (United States)

    Hughitt, V. K.; Ireland, J.; Christe, S.; Mueller, D.

    2012-12-01

    We discuss two ongoing software projects in solar physics that have adopted best practices of the open source software community. The first, the Helioviewer Project, is a powerful data visualization tool which includes online and Java interfaces inspired by Google Maps (tm). This effort allows users to find solar features and events of interest, and download the corresponding data. Having found data of interest, the user now has to analyze it. The dominant solar data analysis platform is an open-source library called SolarSoft (SSW). Although SSW itself is open-source, the programming language used is IDL, a proprietary language with licensing costs that are prohibative for many institutions and individuals. SSW is composed of a collection of related scripts written by missions and individuals for solar data processing and analysis, without any consistent data structures or common interfaces. Further, at the time when SSW was initially developed, many of the best software development processes of today (mirrored and distributed version control, unit testing, continuous integration, etc.) were not standard, and have not since been adopted. The challenges inherent in developing SolarSoft led to a second software project known as SunPy. SunPy is an open-source Python-based library which seeks to create a unified solar data analysis environment including a number of core datatypes such as Maps, Lightcurves, and Spectra which have consistent interfaces and behaviors. By taking advantage of the large and sophisticated body of scientific software already available in Python (e.g. SciPy, NumPy, Matplotlib), and by adopting many of the best practices refined in open-source software development, SunPy has been able to develop at a very rapid pace while still ensuring a high level of reliability. The Helioviewer Project and SunPy represent two pioneering technologies in solar physics - simple yet flexible data visualization and a powerful, new data analysis environment. We

  12. Solar Heating and Cooling Development Program

    Science.gov (United States)

    Aaen, R.; Gossler, A.

    1984-01-01

    Heating is practical now, but cooling needs more development. Report describes program for design and development of solar heating and cooling systems having high performance, low cost and modular application. Describes main technical features of each of systems. Presents summary of performance and costs.

  13. Solar Array Verification Analysis Tool (SAVANT) Developed

    Science.gov (United States)

    Bailey, Sheila G.; Long, KIenwyn J.; Curtis, Henry B.; Gardner, Barbara; Davis, Victoria; Messenger, Scott; Walters, Robert

    1999-01-01

    Modeling solar cell performance for a specific radiation environment to obtain the end-of-life photovoltaic array performance has become both increasingly important and, with the rapid advent of new types of cell technology, more difficult. For large constellations of satellites, a few percent difference in the lifetime prediction can have an enormous economic impact. The tool described here automates the assessment of solar array on-orbit end-of-life performance and assists in the development and design of ground test protocols for different solar cell designs. Once established, these protocols can be used to calculate on-orbit end-of-life performance from ground test results. The Solar Array Verification Analysis Tool (SAVANT) utilizes the radiation environment from the Environment Work Bench (EWB) model developed by the NASA Lewis Research Center s Photovoltaic and Space Environmental Effects Branch in conjunction with Maxwell Technologies. It then modifies and combines this information with the displacement damage model proposed by Summers et al. (ref. 1) of the Naval Research Laboratory to determine solar cell performance during the course of a given mission. The resulting predictions can then be compared with flight data. The Environment WorkBench (ref. 2) uses the NASA AE8 (electron) and AP8 (proton) models of the radiation belts to calculate the trapped radiation flux. These fluxes are integrated over the defined spacecraft orbit for the duration of the mission to obtain the total omnidirectional fluence spectra. Components such as the solar cell coverglass, adhesive, and antireflective coatings can slow and attenuate the particle fluence reaching the solar cell. In SAVANT, a continuous slowing down approximation is used to model this effect.

  14. Business developments of nonthermal solar technologies

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Watts, R.L.; Williams, T.A.

    1985-10-01

    Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)

  15. Development of nonmetallic solar collector and solar-powered pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  16. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  17. A review on recent developments in solar distillation units

    Indian Academy of Sciences (India)

    A review on recent developments in solar distillation units ... Solar still; absorber; fluoride; solar radiation; energy; exergy; heat transfer. Abstract. The solar still is gaining popularity among the scientific community for the production of distillate and fluoride free water due to its low cost and simple working principle. Continuous ...

  18. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    Science.gov (United States)

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  19. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  20. Solar concentrator advanced development program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knasel, D.; Ehresman, D.

    1989-10-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  1. Solar heating and cooling. Research and development: project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    The Conservation and Solar Applications Solar Heating and Cooling Research and Development Program is described. The evolution of the R and D program is described and the present program is outlined. A series of project descriptions summarizes the research and development presently supported for further development of collectors, thermal energy storage and heat exchangers, heat pumps, solar cooling, controls, and systems. (MHR)

  2. Development of a solar thermal thruster system

    NARCIS (Netherlands)

    Leenders, H.C.M.; Zandbergen, B.T.C.

    2008-01-01

    At the Delft University of Technology the use of solar radiation to heat a propellant to a high temperature is investigated as an alternative to resistance heating. The latter only allows for a solar power to heat conversion efficiency of about 25%, depending on the solar cells, whereas for solar

  3. Design of Solar Ovens for Use in the Developing World

    National Research Council Canada - National Science Library

    Rachel Martin; Timothy Bond; John Erickson; Morgan Rog; Cyprienne Crowley; Robert Hutchins; Grayson Fahrner; Kay Lai; Avi Guter; Jack Steiner; Melissa Wrolstad

    2006-01-01

    The main objective of the Cornell Solar Oven Team is to help communities in the developing world design solar cookers appropriate for their specific cultural, social, economic, and environmental conditions...

  4. Development of Electrostatically Clean Solar Array Panels

    Science.gov (United States)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  5. Modern prospects of development of branch of solar power

    Science.gov (United States)

    Luchkina, Veronika

    2017-10-01

    Advantages of solar energy for modern companies are evident already. Article describes mechanism of the solar electricity generation. Process of production of solar modules with appliance of the modern technologies of sun energy production. The branch of solar energy “green energy” become advanced in Russia and has a stable demand. Classification of investments on the different stages of construction projects of solar power plants and calculation of their economic efficiency. Studying of introduction of these technologies allows to estimate the modern prospects of development of branch of solar power.

  6. Solar power developer feels its technology is cost competitive

    Energy Technology Data Exchange (ETDEWEB)

    Smock, R.W.

    1990-07-01

    This paper reports on a solar power developer which believes that it has a cost-competitive solar power technology. Right now, more than 90% of the world's operating solar-powered electric generating capacity is located in the Los-Angeles-based company's privately financed solar-thermal plants currently operating on the Southern California Edison system. It has 274 MW of qualifying-facility, small-power solar capacity in operation in eight plants. They are expected to produce 700 million kWh this year, equal to an annual capacity factor of about 29%. The solar technology uses supplemental firing of natural gas.

  7. Emissions credits traded : solar developer sees potential

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-12-01

    The issue of buying and selling carbon dioxide emissions reductions through credit trades was discussed. Canada`s Greenhouse Gas Emissions Reduction Trading (GERT) pilot program is a first step toward developing a commodity market for greenhouse gas offsets. The program is based on a credit system in which site-specific baselines for emissions are defined. As currently set up, a source reducing its emissions below its baseline receives a credit which can be sold to another source if needed. The first trade submitted to GERT displaces fossil-fuelled electricity with electricity produced by wind turbines. In this deal Calgary`s distribution utility, Enmax, is selling wind power and the resulting emissions reductions to the federal government for use in its own buildings . Another deal which may soon be submitted to GERT is a solar pool-heating project at a recreation centre in Lillooet, British Columbia. It will replace a propane heater. The amount of reduction in greenhouse gas emissions will be calculated from the amount of propane that has been displaced by solar heating.

  8. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  9. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  10. Subjective dimension in the analysis of human development

    Directory of Open Access Journals (Sweden)

    LÓPEZ NOVAL, Borja

    2012-06-01

    Full Text Available In recent years subjective evaluations about own quality of life, resumed in levels of life satisfactionor happiness, are gaining importance as indicators of development. Some authors state that subjectivewell-being is a necessary and sufficient condition for human development. In this work the arguments ofthese authors are explained and it is discussed the role subjective evaluations must play on developmentstudies. The main conclusion is that although it is necessary to integrate subjective well-being into humandevelopment studies we cannot identify subjective well-being and development.

  11. Higher Education Solar Development: Policy Issues

    Science.gov (United States)

    This presentation from a workshop session at the Smart and Sustainable Campuses Conference explores the policy issues and opportunities that influence a higher education institution’s approach to solar deployment.

  12. Subjectivity

    Directory of Open Access Journals (Sweden)

    Jesús Vega Encabo

    2015-11-01

    Full Text Available In this paper, I claim that subjectivity is a way of being that is constituted through a set of practices in which the self is subject to the dangers of fictionalizing and plotting her life and self-image. I examine some ways of becoming subject through narratives and through theatrical performance before others. Through these practices, a real and active subjectivity is revealed, capable of self-knowledge and self-transformation. 

  13. Developing a biomedical expert finding system using medical subject headings.

    Science.gov (United States)

    Singh, Harpreet; Singh, Reema; Malhotra, Arjun; Kaur, Manjit

    2013-12-01

    Efficient identification of subject experts or expert communities is vital for the growth of any organization. Most of the available expert finding systems are based on self-nomination, which can be biased, and are unable to rank experts. Thus, the objective of this work was to develop a robust and unbiased expert finding system which can quantitatively measure expertise. Medical Subject Headings (MeSH) is a controlled vocabulary developed by the National Library of Medicine (NLM) for indexing research publications, articles and books. Using the MeSH terms associated with peer-reviewed articles published from India and indexed in PubMed, we developed a Web-based program which can be used to identify subject experts and subjects associated with an expert. We have extensively tested our system to identify experts from India in various subjects. The system provides a ranked list of experts where known experts rank at the top of the list. The system is general; since it uses information available with the PubMed, it can be implemented for any country. The expert finding system is able to successfully identify subject experts in India. Our system is unique because it allows the quantification of subject expertise, thus enabling the ranking of experts. Our system is based on peer-reviewed information. Use of MeSH terms as subjects has standardized the subject terminology. The system matches requirements of an ideal expert finding system.

  14. Subjective age in the academic development of Algerian students

    Directory of Open Access Journals (Sweden)

    S. MERABET

    2017-07-01

    Full Text Available Subjective age has been studied in various domains (health, consumption, work, but the works which investigated the subjective age that the students give themselves during their academic development are rare (Pavalache & Rioux, 2014. One-hundred-and-twenty-two Algerian students answered a questionnaire comprising (a an identification part (b the subjective age questionnaire by Gana, Alaphilippe and Bailly, (2002 and (c the questionnaire of subjective age in academic development (Pavalache & Rioux, 2014. The results show that the Algerian students have a tendency to rejuvenate themselves, all the more so if they are of male gender. They show the impact of the societal and cultural factors on subjective age in academic development of university students.

  15. Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.

    Science.gov (United States)

    Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W

    2013-09-15

    Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Minutes: ANSI Steering Committee on Solar Energy Standards Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-29

    Minutes of the April 29, 1980, meeting of the American National Standards Institute steering committee on solar energy standards development are given. Attachments include correspondence from individuals and organizations which primarily describe the Solar Public Interest Coordination Committee (SPICC) and its recent activities. Also a report on the meeting of the ANSI subcommittee on international activity is attached. (WHK)

  17. Solar heating and cooling system design and development

    Science.gov (United States)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  18. Some Recent Developments in Solar Dynamo Theory Arnab Rai ...

    Indian Academy of Sciences (India)

    Abstract. We discuss the current status of solar dynamo theory and describe the dynamo model developed by our group. The toroidal magnetic field is generated in the tachocline by the strong differential rotation and rises to the solar surface due to magnetic buoyancy to create active regions. The decay of these active ...

  19. Potential for Development of Solar and Wind Resource in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  20. Solar Airplane Concept Developed for Venus Exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    An airplane is the ideal vehicle for gathering atmospheric data over a wide range of locations and altitudes, while having the freedom to maneuver to regions of scientific interest. Solar energy is available in abundance on Venus. Venus has an exoatmospheric solar flux of 2600 W/m2, compared with Earth's 1370 W/m2. The solar intensity is 20 to 50 percent of the exoatmospheric intensity at the bottom of the cloud layer, and it increases to nearly 95 percent of the exoatmospheric intensity at 65 km. At these altitudes, the temperature of the atmosphere is moderate, in the range of 0 to 100 degrees Celsius, depending on the altitude. A Venus exploration aircraft, sized to fit in a small aeroshell for a "Discovery" class scientific mission, has been designed and analyzed at the NASA Glenn Research Center. For an exploratory aircraft to remain continually illuminated by sunlight, it would have to be capable of sustained flight at or above the wind speed, about 95 m/sec at the cloud-top level. The analysis concluded that, at typical flight altitudes above the cloud layer (65 to 75 km above the surface), a small aircraft powered by solar energy could fly continuously in the atmosphere of Venus. At this altitude, the atmospheric pressure is similar to pressure at terrestrial flight altitudes.

  1. Development of a digital mobile solar tracker

    Science.gov (United States)

    Baidar, Sunil; Kille, Natalie; Ortega, Ivan; Sinreich, Roman; Thomson, David; Hannigan, James; Volkamer, Rainer

    2016-03-01

    We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and Fourier transform infrared spectrometers, making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun differential optical absorption spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.

  2. Opportunities and Challenges for Solar Minigrid Development in Rural India

    Energy Technology Data Exchange (ETDEWEB)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  3. The fast development of solar terrestrial sciences in Taiwan

    Science.gov (United States)

    Liu, Jann-Yenq; Chang, Loren Chee-Wei; Chao, Chi-Kuang; Chen, Ming-Quey; Chu, Yen-Hsyang; Hau, Lin-Ni; Huang, Chien-Ming; Kuo, Cheng-Ling; Lee, Lou-Chuang; Lyu, Ling-Hsiao; Lin, Chia-Hsien; Pan, Chen-Jeih; Shue, Jih-Hong; Su, Ching-Lun; Tsai, Lung-Chih; Yang, Ya-Hui; Lin, Chien-Hung; Hsu, Rue-Ron; Su, Han-Tzong

    2016-12-01

    In Taiwan, research and education of solar terrestrial sciences began with a ground-based ionosonde operated by Ministry of Communications in 1952 and courses of ionospheric physics and space physics offered by National Central University (NCU) in 1959, respectively. Since 1990, to enhance both research and education, the Institute of Space Science at NCU has been setting up and operating ground-based observations of micropulsations, very high-frequency radar, low-latitude ionospheric tomography network, high-frequency Doppler sounder, digital ionosondes, and total electron content (TEC) derived from ground-based GPS receivers to study the morphology of the ionosphere for diurnal, seasonal, geophysical, and solar activity variations, as well as the ionosphere response to solar flares, solar wind, solar eclipses, magnetic storms, earthquakes, tsunami, and so on. Meanwhile, to have better understanding on physics and mechanisms, model simulations for the heliosphere, solar wind, magnetosphere, and ionosphere are also introduced and developed. After the 21 September 1999 Mw7.6 Chi-Chi earthquake, seismo-ionospheric precursors and seismo-traveling ionospheric disturbances induced by earthquakes become the most interesting and challenging research topics of the world. The development of solar terrestrial sciences grows even much faster after National Space Origination has been launching a series of FORMOSAT satellites since 1999. ROCSAT-1 (now renamed FORMOSAT-1) measures the ion composition, density, temperature, and drift velocity at the 600-km altitude in the low-latitude ionosphere; FORMOSAT-2 is to investigate lightning-induced transient luminous events, polar aurora, and upper atmospheric airglow, and FORMOSAT-3 probes ionospheric electron density profiles of the globe. In the near future, FORMOSAT-5 and FORMOSAT-7/COSMIC-2 will be employed for studying solar terrestrial sciences. These satellite missions play an important role on the recent development of solar

  4. Development of Solar Electricity Supply System in India: An Overview

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Gupta

    2013-01-01

    Full Text Available Solar electricity supply system has grown at very rapid pace in India during the last few years. A total of 1047.84 MW of grid connected photovoltaic projects and 160.8 MW of off-grid systems have been commissioned under different policy mechanisms between January 2010 and November 2012. It is observed that solar capacity development has achieved a greater height under state policies (689.81 MW than others. A study is made in this paper of various national and state level schemes, incentives, packages, instruments, and different mechanisms to promote solar photovoltaics and its effectiveness.

  5. Forschungverbund Sonnenenergie. Subjects 97/98: Solar energy and buildings; Forschungsverbund Sonnenenergie. Themen 97/98: Solare Gebaeudetechniken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This volume comprises 19 contributions on solar technology in buildings, e.g. seasonal heat storage, perspectives and uses of district heat, seasonal shading of outer walls with transparent thermal insulation, solar energy use in modernized buildings, and photovoltaic systems in the outer walls of buildings. (AKF) [Deutsch] Der Band enthaelt 19 Beitraege, die sich mit solaren Gebaeudetechniken befassen, insbesondere mit der saisonalen Waermespeicherung, der Perspektiven bzw. Bedeutung der Nahwaerme, der saisonalen Abschattung von transparent gedaemmten Gebaeudewaenden, der Solarenergienutzung bei der Sanierung von Gebaeuden, der Photovoltaik-Fassadenanlagen. (AKF)

  6. Progress to Develop an Advanced Solar-Selective Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2008-03-01

    The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.

  7. Solar Chimney Power Plants – Developments and Advancements

    OpenAIRE

    Bernardes, Marco Aurélio dos Santos

    2010-01-01

    The previous literature review about SCPP presents an outstanding technological development enlightening considerable advances in its construction, operation, including its technical economical and ecological relevant facets. In contrast with other solar facilities, SCPPs can be used above and beyond power production. Very relevant byproducts are distilled water extracted from ocean water or ground water. Under certain conditions, agribusiness may be appropriate under the solar collector. It ...

  8. Solar cookers - a step towards sustainable development : an analysis of the impact of solar cooking practices in Ajmer District, India

    OpenAIRE

    Juell, Linn-Cathrin

    2015-01-01

    The thesis explore the links between energy, technology and development and assess the appropriateness of solar cooking technology in Ajmer District, India. A qualitative case study approach is applied to investigate the solar cookers impact beyond energy and its potential to meet all dimensions of sustainable development. This study aims to investigate the added value of solar cookers beyond energy by analyzing the implementation of solar cookers in Ajmer District, India. Furthermore...

  9. Research and Development of a Low Cost Solar Collector

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the

  10. Development of ultrastable filters and lasers for solar seismology

    Science.gov (United States)

    Rust, D. M.; Kunski, R.; Cohn, R. F.

    1986-01-01

    The Stable Solar Analyzer is a recently developed instrument for the measurement of solar magnetic fields and surface velocities that is being employed at the U.S. National Solar Observatory to study the subsurface convection cells of the sun and the structure of surface and subsurface magnetic fields. The Analyzer is expected to ultimately be flown aboard such spacecraft as the ESA/NASA Solar and Heliospheric Observatory. This instrument is based on a crystalline lithium niobate Fabry-Perot filter that is used in conjunction with a stabilized laser that furnishes an absolute wavelength reference; this laser Fabry-Perot combination has achieved wavelength stabilities of the order of 2 parts in 10 to the 10th, over a six-hour interval.

  11. Development of institutional size pre-engineered solar DHW systems

    Energy Technology Data Exchange (ETDEWEB)

    Swartman, R.K.; Dobbin, W.

    1983-05-01

    The objective of this work was to develop designs for a series of pre-engineered solar hot water systems suitable for institutional, commercial, and industrial applications. Six common hot water loads between 2,500 and 14,750 liters per day are selected for various institutional applications, including restaurants, schools, and nursing homes. Both F-chart and WATSUN III computer simulations were performed for the systems using the appropriate load profile for each application. The parameter of major interest was the ratio of effective surface area of the solar collector to the heating load. Solar hot water systems were then designed for each load, with 3 collector area options offering 3 different solar contributions for each load. The pre-engineering of the systems included selection of components and the design of freeze protection and other plumbing features. 14 figs., 2 tabs.

  12. Recent Development in ITO-free Flexible Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Shudi Lu

    2017-12-01

    Full Text Available Polymer solar cells have shown good prospect for development due to their advantages of low-cost, light-weight, solution processable fabrication, and mechanical flexibility. Their compatibility with the industrial roll-to-roll manufacturing process makes it superior to other kind of solar cells. Normally, indium tin oxide (ITO is adopted as the transparent electrode in polymer solar cells, which combines good conductivity and transparency. However, some intrinsic weaknesses of ITO restrict its large scale applications in the future, including a high fabrication price using high temperature vacuum deposition method, scarcity of indium, brittleness and scaling up of resistance with the increase of area. Some substitutes to ITO have emerged in recent years, which can be used in flexible polymer solar cells. This article provides the review on recent progress using other transparent electrodes, including carbon nanotubes, graphene, metal nanowires and nanogrids, conductive polymer, and some other electrodes. Device stability is also discussed briefly.

  13. Market development directory for solar industrial process heat systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  14. Development of an economical silicon solar cell

    Science.gov (United States)

    Lindmayer, J.

    1975-01-01

    The growth of electronically viable silicon films on inexpensive foreign substrates is studied, with the objective of creating a technology to radically reduce the overall cost of the silicon employed in photovoltaic solar energy conversion. The approach employed is to enhance crystalline ordering during film nucleation by confining arriving silicon atoms to a narrow band traveling across a substrate, i.e., the Lateral Growth Technique (LGT). The efforts have employed physical vapor deposition of silicon in a vacuum evaporator on glass and metal substrates with both slit masks and single defining edges, and subsequent chemical vapor deposition (CVD) of thicker films on these thin film structures by pyrolysis of silane at higher temperatures.

  15. Development of Surfaces Optically Suitable for Flat Solar Panels

    Science.gov (United States)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  16. The Diagnostic Method Features of Communication Subject Development (ORSO

    Directory of Open Access Journals (Sweden)

    Lioznova E.V.,

    2014-08-01

    Full Text Available The purpose of the article is familiarization with the development of questionnaire "Features of communication subject development" (ORSO. This new psychodiagnostic tool assesses communicative personality traits, its characteristics as the subject of communication. We present the theoretical foundation of the approach to the personality as a subject of communication, propose a structure of such subject, including two levels of properties: generic and specific. The latter include the responsibility in communication, unconditional acceptance of self, attitude to the partner as an absolute value. The questionnaire comprises five scales and measures the level of these features, as well as integrated communication success rate. The accuracy of responses is controlled by the scale of the adequacy of self-esteem. We describe communication styles, revealed by the ratio of the generic properties. The test is intended for men and women older than 12 years and allows to predict the success of communication with different partners in different situations and features of communicative behavior, attitudes, experiences of the respondent. We presented satisfactory performance criteria of test quality: reliability, validity and representativeness of the ORSO technique, provide examples of its application in scientific and applied purposes and prospects for future work.

  17. Solar Energy: A Necessary Investment in a Developing Economy ...

    African Journals Online (AJOL)

    Electrical Energy is the pivot of all developmental efforts in both the developed and the developing nations. Due to the fact that sources or conventional means of energy generation arc finite and fast depleting, most industrialized countries have started research on solar energy as a renewable sources or energy. This paper ...

  18. Solar power and policy powerlessness − perceptions of persuasion in distributed residential solar energy policy development

    Directory of Open Access Journals (Sweden)

    Simpson Genevieve

    2017-01-01

    Full Text Available Distributed residential solar energy (photovoltaic technologies have been praised as a mechanism to not only increase the penetration of renewable energy but engage the community in a clean energy revolution. In spite of this it is unclear how much potential there is for stakeholders to influence processes around the adoption of solar energy, including policy development and regulation. As part of a wider research project assessing the social acceptance of residential solar energy in Western Australia a variety of stakeholders, including public servants, network operators, Members of Parliament, energy advocates, renewable energy industry members and community members, were asked whether they thought they had the potential to influence solar policy. The objective of this research was to highlight positions of influence over policy development. In total 23 interviews with regional Western Australian householders and 32 interviews with members of industry and government were undertaken between May and October 2015. Most respondents believed that they had previously, or could in future, influence solar policy by taking advantage of networks of influence. However, stakeholders perceived as having policy influence did not necessarily demonstrate the capacity to influence policy beyond providing information to decision-makers, namely Cabinet members. Instead, networks of renewable energy advocates, industry and community members could apply political pressure through petitions, media coverage and liaising with parliamentarians to develop support for policy changes. Furthermore, while policies for the promotion of solar energy, and renewable energy more generally, could be implemented at various levels of government, only those policies delivered at the state level could address socio-political barriers to renewable energy adoption. These barriers include: a lack of political will and funding to overcome technical issues with network connection

  19. Near Earth Asteroid Solar Sail Engineering Development Unit Test Program

    Science.gov (United States)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 30x20x10cm (6U) cubesat reconnaissance mission to investigate a near Earth asteroid utilizing an 86m2 solar sail as the primary propulsion system. This will be the largest solar sail NASA will launch to date. NEA Scout is a secondary payload currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis furthered understanding of thermal, stress, and dynamics of the stowed system and matured an integrated sail membrane model for deployed flight dynamics. This paper will address design, fabrication, and lessons learned from the NEA Scout solar sail subsystem engineering development unit. From optical properties of the sail material to folding and spooling the single 86m2 sail, the team has developed a robust deployment system for the solar sail. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  20. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  1. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    Science.gov (United States)

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  2. Development of Solar Sail Propulsion for Inner Solar System NASA Science Missions

    Science.gov (United States)

    Montgomery, Edward E., IV; Johnson, Les

    2004-01-01

    This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-Space Propulsion program in NASA to achieve near-term products that move this important technology from low technology readiness level toward the goal of application to science missions in near-Earth space and beyond.

  3. DEVELOPMENT OF A FURNACE TO FABRICATE SILICON SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    Sérgio Boscato Garcia

    2012-06-01

    Full Text Available Solar cell world market had an exponential growth in the last decade and nowadays it continues in expansion. To produce solar cells, dopants need to be introduced into the crystalline silicon wafer in order to form the pn junction. This process is carried out in diffusion furnaces. The aim of this paper is to present the development of a compact diffusion furnace to process up to 156 mm × 156 mm silicon wafers and to operate at temperature up to 1100°C. The furnace is automated and it is constituted by a heating system with three zones and systems to introduce the wafers inside the furnace as well as to control of gas flows. This equipment is the first one developed in Brazil to promote impurity diffusions in order to produce silicon solar cells and it was manufactured jointly with a Brazilian company.

  4. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  5. Improved Modeling Tools Development for High Penetration Solar

    Energy Technology Data Exchange (ETDEWEB)

    Washom, Byron [Univ. of California, San Diego, CA (United States); Meagher, Kevin [Power Analytics Corporation, San Diego, CA (United States)

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight.

  6. Developing the Immunology Book for Animal and Human Physiology Subject

    Directory of Open Access Journals (Sweden)

    Zuni Mitasari

    2017-07-01

    Full Text Available he objective of the study was to develop an immunology book for Animal and Human Physiology subject. This book was developed based on the Thiagarajan development model which was modified of: Define, Design, Develop, dan Disseminate (4D. The data expert validation instrument was questionnaire using Likert scales, comments, and recommendation sheets. Expert appraisal was done by material expert and media and design learning expert. The developmental testing was conducted using questionnaire to test the readibility. The expert validation was conducted by material expert as well as design and media learning expert validator; meanwhile, the field test was done to measure the readability. The validity test results were: the material expert state that the material is valid (97.14%, as well as the design and learning media expert (84.88% and field test by students (88.17%.

  7. Development of accumulative solar collector with semitransparent solar isolations; Desarrollo de un colector solar acumulador con aislaciones termicas semitransparentes

    Energy Technology Data Exchange (ETDEWEB)

    Fasulo, A.; Barral, J.; Follari, J.

    2004-07-01

    We present, in the first part, the process for the development of an accumulative solar collector (ASC) of simple design. A tank of stainless steel, recovered by an absorbent material of the solar radiation and protected thermally by three semi-transparent covers. The central objective, in this part of the development, is to determine the material to use in the sensitive parts to the reception and conservation of the heat. With this finality we have followed the thermal evolution along several clear days of two CSA of same dimensions. In one tank recovered with painting and covered with glass and policarbonate. In the other tank this recovered with a selective surface and policarbonates. The experience allows us to determine the behavior of both combinations so much in the heating processes like of cooling. The results show a clear difference in favour of the selective policarbonate combination. (Author)

  8. Solar heating and cooling systems design and development: quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-11

    This program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for single-family residences, multiple-family residences and commercial applications. This document describes the progress of the program during the fifth program quarter, 1 July 1977 to 30 September 1977.

  9. Development of high efficiency solar cells on silicon web

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  10. How Solar Resource Data supports Research and Development

    OpenAIRE

    Kern, Jürgen

    2013-01-01

    The presentation describes the methods of renewable resource data, how the research and development will benefits from Renewable Resource Atlas and how institutions will leverage the solar monitoring station data to support renewable energy project deployment in other locations throughout the Kingdom.

  11. DEVELOPMENT OF AN AUTOMATED BATCH-PROCESS SOLAR ...

    African Journals Online (AJOL)

    This work presents the development of an automated batch-process water disinfection system aimed at solving this challenge. Locally sourced materials in addition to an Arduinomicro processor were used to control the algorithm of the water disinfection system. A comparison of solar radiation sensing accuracy of the ...

  12. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    An extensive review of the literature was conducted which was concerned with the characterization of systems and equipment that could be applicable to the development of solar-powered air conditioners based on the Rankine cycle approach, and the establishment of baseline data defining the performance, physical characteristics, and cost of systems using the LiBr/H2O absorption cycle.

  13. Development of adaptive optics elements for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Kovadlo, P. G.; Konyaev, P. A.; Kopulov, E. A.; Skomorovsky, V. I.; Trifonov, V. D.; Chuprakov, S. A.

    2012-07-01

    The devices and components of adaptive optical system ANGARA, which is developed for image correction in the Big solar vacuum telescope (BSVT) at Baykal astrophysical observatory are described. It is shown that the use of modernized adaptive system on BSVT not only reduces the turbulent atmospheric distortions of image, but also gives a possibility to improve the telescope developing new methods of solar observations. A high precision Shack-Hartmann wavefront (WF) sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640X640 μm with an error not exceeding 4.80 arc.sec. Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourier-demodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  14. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  15. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    Science.gov (United States)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  16. Development of Solar Electricity Supply System in India: An Overview

    OpenAIRE

    Sandeep Kumar Gupta; Raghubir Singh Anand

    2013-01-01

    Solar electricity supply system has grown at very rapid pace in India during the last few years. A total of 1047.84 MW of grid connected photovoltaic projects and 160.8 MW of off-grid systems have been commissioned under different policy mechanisms between January 2010 and November 2012. It is observed that solar capacity development has achieved a greater height under state policies (689.81 MW) than others. A study is made in this paper of various national and state level schemes, incentives...

  17. Developments in solar still desalination systems: A critical review

    KAUST Repository

    Ayoub, George M.

    2012-10-01

    Solar still desalination uses a sustainable and pollution-free source to produce high-quality water. The main limitation is low productivity and this has been the focus of intensive research. A major concern while increasing productivity is to maintain economic feasibility and simplicity. The authors present a critical review of the research work conducted on solar stills development. Studies addressing each parameter of concern are grouped together and results compared. Novelty in design and newly introduced features are presented. Modeling efforts of flow circulation within the still and methods to estimate internal heat transfer coefficients are discussed and future research needs are outlined. © 2012 Taylor & Francis Group, LLC.

  18. Solar and Space Weather Radiophysics Current Status and Future Developments

    CERN Document Server

    Gary, Dale E

    2005-01-01

    The book explores what can be learned about the Sun and interplanetary space using present-day and future radio observations and techniques. The emphasis is on interpretation of radio data with high spatial and spectral resolution, motivated by the planned construction of a new, powerful, solar-dedicated radio array called the Frequency Agile Solar Radiotelescope (FASR). The book is unique in exploring a broad frequency range, which corresponds to heights ranging from the low solar atmosphere out to the Earth. The book contains a thorough review of the entire field of solar and Space Weather radio research; gives background information suitable for advanced undergraduates, graduates, and researchers in solar and Space Weather research and related fields; and looks at what new results may be expected in the next two decades with FASR and other new instruments now under development. The individual chapters are written by international experts in each topic, and although each chapter may be read as a stand-alone...

  19. Design and development of a solar powered mobile laboratory

    Science.gov (United States)

    Jiao, L.; Simon, A.; Barrera, H.; Acharya, V.; Repke, W.

    2016-08-01

    This paper describes the design and development of a solar powered mobile laboratory (SPML) system. The SPML provides a mobile platform that schools, universities, and communities can use to give students and staff access to laboratory environments where dedicated laboratories are not available. The lab includes equipment like 3D printers, computers, and soldering stations. The primary power source of the system is solar PV which allows the laboratory to be operated in places where the grid power is not readily available or not sufficient to power all the equipment. The main system components include PV panels, junction box, battery, charge controller, and inverter. Not only is it used to teach students and staff how to use the lab equipment, but it is also a great tool to educate the public about solar PV technologies.

  20. Development of polyhouse type solar dryer for Kashmir valley.

    Science.gov (United States)

    Shahi, Navin Chandra; Khan, Junaid N; Lohani, Umesh C; Singh, Anupama; Kumar, Anil

    2011-06-01

    Polyhouse type solar dryer (PSD) consist of drying chamber, drying trays and exhaust fan was developed for drying fruits and vegetables. The relative humidity (RH) inside the PSD varied in between 21 to 74% as compared to outside RH which ranged from 40 to 75%. The performance was found suitable and resulted in efficient drying at low RH. The thermal performance test for PSD under full and no load testing conditions were calculated. The temperature inside the dryer was 62 to 76% higher than the ambient conditions. PSD was helpful in reducing the drying ranging from 33 to 53%. The capacity of PSD was 100-150 kg per batch. The economic cost of solar dryer was compared with mechanical drying for beneficial to local producer. The cost of PSD Rs 80,000 could recover within the period of 1.5 years by adopting solar drying technology.

  1. Development of climatic zones and passive solar design in Madagascar

    Energy Technology Data Exchange (ETDEWEB)

    Rakoto-Joseph, O.; Randriamanantany, Z.A. [Department of Physics, University of Antananarivo, B.P. 566, Ambohitsaina (Madagascar); Garde, F.; David, M.; Adelard, L. [University of Reunion Island, L.P.B.S. (EA 4076), Faculty of Human and Environmental Science, 117 rue du General Ailleret 97430 Le Tampon Ile de La Reunion (Madagascar)

    2009-04-15

    Climate classification is extremely useful to design buildings for thermal comfort purposes. This paper presents the first work for a climate classification of Madagascar Island. This classification is based on the meteorological data measured in different cities of this country. Three major climatic zones are identified. Psychometric charts for the six urban areas of Madagascar are proposed, and suited passive solar designs related to each climate are briefly discussed. Finally, a total of three passive design zones have been identified and appropriate design strategies such as solar heating, natural ventilation, thermal mass are suggested for each zone. The specificity of this work is that: it is the first published survey on the climate classification and the passive solar designs for this developing country. (author)

  2. Development of circuit model for arcing on solar panels

    Science.gov (United States)

    Mehta, Bhoomi K.; Deshpande, S. P.; Mukherjee, S.; Gupta, S. B.; Ranjan, M.; Rane, R.; Vaghela, N.; Acharya, V.; Sudhakar, M.; Sankaran, M.; Suresh, E. P.

    2010-02-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 μs duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator

  3. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...... on solar heating has been improved....

  4. Development of a closed and open loop solar tracker technology

    Directory of Open Access Journals (Sweden)

    Aurélio Gouvêa Melo

    2017-05-01

    Full Text Available Solar energy is among the renewable energy sources that received greater addition in installed capacity. However, it accounts for a small fraction of the energy matrix of most countries. Electric energy generation by solar systems can be improved through tracking. This work aimed to develop and compare a closed and an open loop solar tracking system. The closed loop system was developed using Light Dependent Resistors. An algorithm was developed for the open loop tracker as a function of the geometric relation between the sun and the photovoltaic module. A simulation was run to compare this algorithm with a system using tracking at fixed time intervals, for clear sky conditions, with different tracking parameters and for five different latitudes. No significant difference was observed between the proposed open loop tracking algorithm and the fixed time interval algorithm for the tracking parameters evaluated. The open and closed loop solar tracking systems were compared experimentally in Rio das Ostras, Brazil (22.49 °S 41.92° W. An average gain of 28.5% was observed for the open loop tracking system over a latitude tilted system and 33.0% for the closed loop tracking system.

  5. Solar solutions | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-09-07

    Sep 7, 2016 ... Using water wisely to feed growing cities. Tunisia is helping to feed its growing cities by developing more efficient and sustainable agriculture that uses rainwater and recycled urban waste. View moreUsing water wisely to feed growing cities ...

  6. Materials development for solar thermoelectric generators, SOLAR-TEP - 2007 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2007-07-01

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done at the Swiss Federal Laboratories for Materials Science and Technology EMPA in 2007 on Thermoelectric applications that are emerging as a potential technology that allows the conversion of heat into electric power. This energy conversion procedure uses the Seebeck effect to generate electricity without using moving parts or any chemical conversion. The Solar-TEP project is based on the idea of the potential use of concentrated solar heat as a source of energy for Solar Thermoelectric Generators (Solar-TEG). The development of novel functional materials with enhanced figures of merit, high temperature stability, and without harmful effects is commented on. The authors state that oxide ceramics can be used at high temperatures due to their chemical stability and their resistance to thermal oxidation in air. The advantages offered by thermoelectric modules based on oxide materials for the generation of power with increased temperature operating ranges are discussed. Additionally, thermoelectric oxide devices which can be realised on the basis of low-cost materials with low toxicity are discussed.

  7. Development of solar concentrators for high-power solar-pumped lasers.

    Science.gov (United States)

    Dinh, T H; Ohkubo, T; Yabe, T

    2014-04-20

    We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2  m×2  m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0  W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.

  8. DEVELOPING STUDENTS’ ENTREPRENEURIAL SPIRIT THROUGH THE SUBJECT ILMU HITUNG KEUANGAN

    Directory of Open Access Journals (Sweden)

    Retno Subekti

    2015-07-01

    Full Text Available This article was written to share the experiences of teaching 'trading or doing business' in the subject of Ilmu Hitung Keuangan in 2010. This Article also share about the phenomenon of appeared ‘kantin kejujuran’ or the honesty canteen in Mathematics and Natural Sciences Faculty of Yogyakarta State University in early 2011. Based on the syllabus of the subject, there is a topic of trading that makes lecturer is motivated to participate in developing the entrepreneurial spirit of students. The way taken by the lecturer was giving big trust to the students to manage funds for trading. Before trading begins, students should discuss about what are the things that can be bought cheaply and then sold with ease so that will give them the advantage. The result is that all groups got benefit. 4 groups formed are the group of ‘donuts’, ‘accessories’, ‘snacks’, and ‘stickers’. Then groups of food division that are donuts group and snack’s one were part of the pioneers of honesty canteen. This method is in line with lecturers expectancy to participate and develop entrepreneurship on campus.

  9. The technology development status of the Solar Probe

    Science.gov (United States)

    Randolph, James E.; Ayon, Juan A.; Harvey, Geoffrey D.; Imbriale, William A.; Miyake, Robert N.; Mueller, Robert L.; Nesmith, Bill J.; Turner, P. Richard; Dirling, Ray B.; Preble, Jeffrey C.; Rawal, Suraj; Vaughn, Wallace L.

    1997-01-01

    The continuing development of new spacecraft technologies promises to enable the Solar Probe to be the first mission to travel in the atmosphere or corona of the sun. The most significant technology challenge is the thermal shield that would protect the spacecraft from the flux of 3000 suns (400 W/cm ** 2) at the perihelion radius of 4 solar radii while allowing the spacecraft subsystems to operate at near room temperature. One of the key design issues of the shield is not simply surviving, but operating at temperatures well above 2000K while minimizing the sublimation from the shield surface. Excessive sublimation could cause interference with the plasma science experiments that are fundamental to the Solar Probe's scientific objectives of measuring the birth and development of the solar wind. The selection of a special type of carbon-carbon as the shield material seems assured at this time. Tests of this material in late 1996 were designed to confirm its optical surface properties and mass loss characteristics and the results are encouraging. The shield concept incorporates dual functions as a thermal shield and as a large high gain antenna. This latter function is important because of the difficult communications environment encountered within the solar corona. A high temperature feed concept under development is discussed here. The NASA guideline requiring non-nuclear power sources has introduced the requirement for alternative power sources. The current concept uses high temperature photovoltaic arrays as well as high energy, low mass batteries to provide power during the perihelion phase of the mission. Testing of photovoltaic cells at high sun angles was completed in 1996 and the results are presented here. Finally, a miniaturized science payload which relies on the latest advances in analyzer and detector technologies will be developed to minimize mass and power requirements.

  10. United States Department of Energy solar receiver technology development

    Science.gov (United States)

    Klimas, P. C.; Diver, R. B.; Chavez, J. M.

    The United States Department of Energy (DOE), through Sandia National Laboratories, has been conducting a Solar Thermal Receiver Technology Development Program, which maintains a balance between analytical modeling, bench and small scale testing, and experimentation conducted at scales representative of commercially-sized equipment. Central receiver activities emphasize molten salt-based systems on large scales and volumetric devices in the modeling and small scale testing. These receivers are expected to be utilized in solar power plants rated between 100 and 200 MW. Distributed receiver research focuses on liquid metal refluxing devices. These are intended to mate parabolic dish concentrators with Stirling cycle engines in the 5 to 25 kW(sub e) power range. The effort in the area of volumetric receivers is less intensive and highly cooperative in nature. A ceramic foam absorber of Sandia design was successfully tested on the 200 kW(sub t) test bed at Plataforma Solar during 1989. Material integrity during the approximately 90-test series was excellent. Significant progress has been made with parabolic dish concentrator-mounted receivers using liquid metals (sodium or a potassium/sodium mixture) as heat transport media. Sandia has successfully solar-tested a pool boiling reflux receiver sized to power a 25 kW Stirling engine. Boiling stability and transient operation were both excellent. This document describes these activities in detail and will outline plans for future development.

  11. Development of a system for accurate forecasting of solar activity

    Science.gov (United States)

    Sofia, Sabatino

    1994-10-01

    The objectives were to study the solar activity cycle both to understand its physical nature and to forecast the timing and magnitude of future maxima with as much anticipation as possible. Because solar activity affects so many processes on Earth, from the reliability of solid state components on satellites, to electric power grids, to the orbital lifetime of low Earth orbit satellites, etc., such information is important to the DoD in general, and to the USAF in particular. The specific components of this study were three different tasks. The first consisted in developing an empirical forecasting scheme based on general but sound physical principles whose only objective was to provide the timing and magnitude of the following activity maximum both half-a-cycle and, hopefully, one-and-a-half cycle in advance. The second task involved a realistic modeling of the magnetized flow in the solar convective envelope with the ultimate objective of producing a dynamo model sufficiently solid to allow detailed forecasting of the behavior of future cycles. The third task involved partial support for the development of the Solar Disk Sextant, a spaceborne experiment which measures variations of the size and shape of the Sun with milli-arcsec accuracy.

  12. Sustainable Development for Solar Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Keh-Chin Chang

    2015-02-01

    Full Text Available In response to the impact of the United Nations Framework Convention on Climate Change, developing and using renewable energy sources and technologies have become vital for managing energy supply and demand in Taiwan. The long-term subsidy programs (1986–1991, 2000–present for solar water heaters (SWHs launched by the Taiwanese government constitute the main driving force for market expansion. By the end of 2013, the cumulative area of installed solar collectors was 2.27 million m2. Approximately 0.3 million systems (or 1.545 million m2 are in operation. This corresponds to an annual collector yield of 0.92 TWh, which is equivalent to savings of 98.7 thousand tons of oil and 319 thousand tons of CO2,eq. The market-driven mechanism is associated with cost-to-benefit ratios, construction businesses, types of building architecture, degree of urbanization and household composition. The strong wind load of typhoons is another major concern. For sustaining the solar thermal industry in Taiwan, the dominant factor for disseminating SWHs in metropolitan areas involves developing building-integrated solar thermal systems. Alternative financial incentives are required for industrial heating processes in the commercial sector.

  13. Solar electric systems

    Science.gov (United States)

    Warfield, G.

    Subjects discussed in connection with solar electricity are related to solar radiation fundamentals, wind electric conversion and utilization, the basic theory of solar cells, photovoltaic materials, photovoltaic technology, components of solar thermal electric systems, solar thermal power plants, and integrated solar thermal electric complexes. The solar technology development in the Arab world is also examined, taking into account the horizon of solar energy in the Arab countries, solar energy activities at the Scientific Research Council in Iraq, solar energy activities at the Royal Scientific Society in Jordan, the solar energy program at Kuwait Institute for Scientific Research, application of solar energy in Libya, prospects of solar energy for Egypt, solar energy programs in Qatar, performance characteristics of a 350 kW photovoltaic power system for Saudi Arabian villages, nonconventional energy in Syria, wind and solar energies in Sudan, solar electric research and development program in Tunisia, and solar energy research and utilization in Yemen Arab Republic. No individual items are abstracted in this volume

  14. Silicon web process development. [for low cost solar cells

    Science.gov (United States)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  15. Development of a solar tracker for photovoltaic applications; Desenvolvimento de um rastreador solar para aplicacoes fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Daniel Rizzo; Lacerda Filho, Adilio Flauzino de; Resende, Ricardo C. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. Engenharia Agricola], E-mail: daniel.carvalho@ufv.br; Possi, Maurilio A. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Ciencia da Computacao; Ferreira, Ana Paula S. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Fitotecnia

    2012-11-01

    In this work are presented the design, construction and relevant results related to the production of electricity using a photovoltaic panel attached to the solar tracking mechanism. The objective was to develop a tracking device with high accuracy, reliable, low cost, high efficiency and easy operation, aiming at the possibility of residential, agricultural and industrial use of solar photovoltaic technologies with high efficiency of conversion. Was evaluated the performance of the tracker, comparing it to a fixed system and based on results analyzed, was observed a significant increase in energy production of photovoltaic panel attached to the tracking system, in relation to the fixed system the slope of the local latitude. Its performance was satisfactory, electromechanical structure requires no maintenance during the trial even when exposed to various weather conditions. The system showed great potential for application, usability and effectivity. (author)

  16. Review of Solar PV Market Development in East Africa

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Pedersen, Mathilde Brix; Nygaard, Ivan

    While the diffusion of solar home systems in Kenya has been market-based for some years, the diffusion of PV in most other Sub-Saharan African countries has been driven by government and donor-supported projects aimed at serving specific needs for electricity while at the same time creating...... a national niche market for PV. This practice is rapidly changing and, as in industrialised countries, there is evidence of a transition towards more market-based diffusion and private-sector involvement for PV systems for private consumers, institutions and villages. This transition has been facilitated...... to understanding these effects by reviewing the development of markets for solar PV in Kenya, Tanzania and Uganda, focusing on how the differences in market development have been explained in the literature. The paper finds that, although Tanzania and Uganda are rapidly catching up, Kenya is still leading...

  17. Development of a monitoring system for a PV solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Forero, N. [Licenciatura en Fisica, Universidad Distrital, Bogota (Colombia); Hernandez, J. [Departamento de Ingenieria Electrica, Universidad Nacional de Colombia, Bogota (Colombia); Gordillo, G. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2006-09-15

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well. (author)

  18. BOOK REVIEW: Development of Solar Research - Entwicklung der Sonnenforschung

    Science.gov (United States)

    Sterken, C.; Wittmann, A. D.; Wolfschmidt, G.; Duerbeck, H. W.

    2006-12-01

    This publication contains the Proceedings of a Colloquium on the development of solar research, supplemented with a number of papers which were written especially for this book. The volume contains 14 papers dealing with archeo-astronomy related to the Sun, solar cults, and (mainly) solar research. Ten papers are written in English, the remaining four are in German, but all papers have a quite extensive Abstract in both languages. The volume closes with a comprehensive Name Index. I found this book most pleasant to read with many useful illustrations (more than 120 photographs and reproductions of which about 100 cover truly historic material, quite often from authors' private archives). The first three papers (by A. Haenel, W. Schlosser and R. Hansen) deal with very ancient information: megalithic tombs as solar observatories, the Nebra sky-disk (showing Sun, Moon, Pleiades and other stars), and solar cults. These papers (adding up to about 90 pages) are not only descriptive, but also contain an analysis based on quantitative facts. One paper deals with letters exchanged by astronomers serving as data sources for the counting of sunspots during the Maunder minimum. More specifically, several hundreds of letters by Gottfried Kirch (1639-1710) are being edited and analysed by Klaus-Dieter Herbst. Medieval solar-eclipse maps with totality paths are reproduced in an interesting paper by Robert van Gent, who presents eclipse cartography of as early as 1699 - at least 15 years prior to the generally accepted first such map by Edmond Halley. R. Schielicke's paper on the 1851 Koenigsberg daguerrotype photograph of the solar corona gives interesting details on the history of daguerrotype photography, and has a number of very useful basic references, including OCR-based transcripts of a 1851-dated document describing an early corona daguerrotype (in German). Three consecutive papers (one by H.W. Duerbeck, followed by papers by G. Wolfschmidt and M.P. Seiler) not only reveal

  19. Development and application of an automated precision solar radiometer

    Science.gov (United States)

    Qiu, Gang-gang; Li, Xin; Zhang, Quan; Zheng, Xiao-bing; Yan, Jing

    2016-10-01

    Automated filed vicarious calibration is becoming a growing trend for satellite remote sensor, which require a solar radiometer have to automatic measure reliable data for a long time whatever the weather conditions and transfer measurement data to the user office. An automated precision solar radiometer has been developed. It is used in measuring the solar spectral irradiance received at the Earth surface. The instrument consists of 8 parallel separate silicon-photodiode-based channels with narrow band-pass filters from the visible to near-IR regions. Each channel has a 2.0° full-angle Filed of View (FOV). The detectors and filters are temperature stabilized using a Thermal Energy Converter at 30+/-0.2°. The instrument is pointed toward the sun via an auto-tracking system that actively tracks the sun within a +/-0.1°. It collects data automatically and communicates with user terminal through BDS (China's BeiDou Navigation Satellite System) while records data as a redundant in internal memory, including working state and error. The solar radiometer is automated in the sense that it requires no supervision throughout the whole process of working. It calculates start-time and stop-time every day matched with the time of sunrise and sunset, and stop working once the precipitation. Calibrated via Langley curves and simultaneous observed with CE318, the different of Aerosol Optical Depth (AOD) is within 5%. The solar radiometer had run in all kinds of harsh weather condition in Gobi in Dunhuang and obtain the AODs nearly eight months continuously. This paper presents instrument design analysis, atmospheric optical depth retrievals as well as the experiment result.

  20. Development and investigation of solar collectors for conversion of solar radiation into heat and/or electricity

    Directory of Open Access Journals (Sweden)

    Stefanović Velimir P.

    2006-01-01

    Full Text Available This article describes work on two projects of the National Energy Efficiency Program NEEP 709300036 and NPEE 271003 titled "The model of solar collector for middle temperature conversion of solar radiation in heat" and "Development and investigation on hybrid solar collector for heat and electricity generation", respectively. This first project deals with solar collector that transfers solar radiation in heat in area of middle temperature conversion (at temperatures above 100 ºC. During entire year it can realize significant saving of electric energy used for preparation of warm water and in central and district heating. During work on the second project, two hybrid solar collectors, their installation, mathematical model, software, and experimental set-up were designed and realized. The first collector had the photovoltaic panel located above the absorber and the second collector had the panel located on the absorber. For both collectors, the results show that efficiency of fossil fuel replacement is 85%. .

  1. The calculation of the mean radiant temperature of a subject exposed to the solar radiation - a generalised algorithm

    Energy Technology Data Exchange (ETDEWEB)

    La Gennusa, M.; Rizzo, G.; Scaccianoce, G. [Universita dglie Studi di Palermo (Italy). Dpto. di Ricerche Energetiche ed Ambientali; Nucara, A. [Universita Mediterranea di Reggio Calabria (Italy). Dpto. di Informatica

    2005-03-01

    The thermal sensation experienced by a subject in a confined environment is significantly affected by the radiative heat exchange between the human body and the surrounding surfaces: it contributes as far as 30% of the whole thermal exchanges of the subject. Besides, the presence of high-intensity radiation sources like, for example, the sun, may appreciably modify the radiant field to which people are exposed. As a consequence, this could alter notably the comfort conditions. In order of properly taking into account this issue, a simple analytical method is introduced in this work, which allows the easy evaluation of the thermal radiant field induced by the presence of the solar radiation. An application to a typical thermal comfort computation is finally presented. (author)

  2. Solar Energy Development Assistance for Fort Hunter Liggett

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.; Hoffman, Michael G.; Chvala, William D.

    2011-03-30

    Pacific Northwest National Laboratory provided assistance to Fort Hunter Liggett to determine the opportunities for solar energy development on the site. Increasing use of renewable energy is mandated by several executive orders and legislation. Fort Hunter Liggett has many attributes that enhance its suitability for renewable energy development. First, the site is located south of San Francisco in a remote portion of the costal foothills. Brush and forest fires are frequent and often result in power outages, which subsequently impacts the site’s training mission. In addition, the site’s blended electric rate during fiscal year (FY) 2010 was high at 12 ¢/kWh. Lastly, the solar resource is moderately high; the site receives nearly 5.7 kWh/m2/day on a south facing, latitude-tilted surface. In light of these factors, the site is a clear candidate for a solar photovoltaic array. Prior to Pacific Northwest National Laboratory’s (PNNL) involvement, the site secured funding for a 1 megawatt (MW) photovoltaic (PV) array that will also provide shading for site vehicles. To best implement this project, PNNL conducted a site visit and was tasked with providing the site technical guidance and support regarding module selection, array siting, and other ancillary issues.

  3. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).

  4. Learning sustainability by developing a solar dryer for microalgae retrieval

    Directory of Open Access Journals (Sweden)

    Benedita Malheiro

    2016-01-01

    Full Text Available Excessive fossil fuel consumption is driving the search for alternative energy production solutions and, in particular, for sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. After producing the microalgae, they must be harvested and dried. Existing drying solutions consume too much energy and are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the team’s sustainable development awareness, active learning and motivation.

  5. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  6. WHY ARE SOLAR COOKERS STILL UNPOPULAR AMONG DEVELOPMENT EXPERTS?

    Directory of Open Access Journals (Sweden)

    PAUL KRÄMER

    2010-03-01

    Full Text Available The household energy problem in countries of the South remains critical. Solar cookers can contribute to a solution; however, their potential is seldom realized by the academic and political world. By contrast, bio-energy as a replacement for fossil fuels is increasingly popular in Europe. With regard to tropical developing countries, this European enthusiasm implies unrealistic views about the renewability of woody biomass in drylands under conditions of climate change and increasing population pressure. Another reason of error is a too narrow concept of modernization of energy supplies, neglecting affordable cooking energies and focusing nearly exclusively on electricity. Cheap solar cooking appliances with a low thermal output are useful in extreme situations like refugee camps to allow survival of large numbers of individuals or mini-groups. Under normal circumstances, families need appliances which can cope with the volume of staple food needed, which is the number of people times about 1 litre/person/day.

  7. Material Development of Faraday Cup Grids for the Solar Probe Plus Mission

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.; Wright, K. H.; Cirtain, J. W.; Lee, R.; Kasper, J. C.

    2011-01-01

    The Solar Probe Plus mission will launch a spacecraft to the Sun to study it's outer atmosphere. One of the instruments on board will be a Faraday Cup (FC) sensor. The FC will determine solar wind properties by measuring the current produced by ions striking a metal collector plate. It will be directly exposed to the Sun and will be subject to the temperature and radiation environment that exist within 10 solar radii. Conducting grids within the FC are biased up to 10 kV and are used to selectively transmit particles based on their energy to charge ratio. We report on the development of SiC grids. Tests were done on nitrogen-doped SiC starting disks obtained from several vendors, including annealing under vacuum at 1400 C and measurement of their electrical properties. SiC grids were manufactured using a photolithographic and plasma-etching process. The grids were incorporated into a prototype FC and tested in a simulated solar wind chamber. The energy cutoffs were measured for both proton and electron fluxes and met the anticipated sensor requirements.

  8. The Development of Solar Sail Propulsion for NASA Science Missions to the Inner Solar System

    Science.gov (United States)

    Montgomery, Edward E, IV; Johnson, Charles Les

    2004-01-01

    This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-space Propulsion Program in NASA to achieve near term products that move this important technology from low technology readiness level (TRL) toward the goal of application to science missions in near earth space and beyond. The status of on-going efforts to design, build, and test ground demonstrators of alternate approaches to structures (inflatable versus rigid), membrane materials, optical shape sensing, and attitude control will be presented along with planned future investments.

  9. Nonlinear development of shocklike structure in the solar wind.

    Science.gov (United States)

    Lee, E; Parks, G K; Wilber, M; Lin, N

    2009-07-17

    We report first in situ multispacecraft observations of nonlinear steepening of compressional pulses in the solar wind upstream of Earth's bow shock. The magnetic field of a compressional pulse formed at the upstream edge of density holes is shown to suddenly break and steepen into a shocklike structure. During the early phase of development thermalization of ions is insignificant. Substantial thermalization of ions occurs as gyrating ions are observed at the steepened edge. These observations indicate that the mechanisms causing the dissipation of magnetic fields (currents) and ions are different in the early phase of shock development.

  10. Measuring Subjective Happiness by Newly Developed Scale in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Kambiz Abachizadeh

    2015-10-01

    Full Text Available Background: Happiness as one of the main positive health indicators has drawn more attention in recent years among policy makers and health system managers. There are few studies performed to measure happiness in population-based settings in Iran. In response to this need, our study tends to assess Iranians subjective happiness in Tehran, Capital city of Iran.Materials and Methods: Present study was conducted in Tehran, Capital of Iran, with more than 7 Million populations in January 2013, using a two-step approach. In first step c conceptual framework of Iranians’ happiness was developed. In the second phase of study, a survey recruiting 700 participants was conducted. Stratified cluster sampling method was employed. Participants were recruited from all the 22 municipal divisions of Tehran as strata, proportional to the population size and its gender and age distribution. Happiness was measure by a 40-item questionnaire with scores ranged among 40 to 200.Results: Conceptual framework of Iranians’ happiness based on reviewed documents and consensus building process was the product of first step. At second step, from a pool of 700 persons, 696 (97% agreed to participate and filled out the questionnaire completely.  The mean of happiness score was 143.9 (95% confidence interval, 142.5 to 145.4. The results show that the happiness score of jobless people (135.1, 95%CI: 128.1-142.0 and widowed singles (126.6, 95%CI: 113.0-140.2 were significantly lower than other corresponding groups. There was no significant association between gender, age group, educational level as determinants and happiness.Conclusion: Happiness level of Tehranians is somewhat higher than the moderate level. This finding is consistent with findings of other conducted studies in country. However, it is not consistent with some of international reports of happiness, For instance, Happy Planet Index. Due to inadequate information, it is necessary to conduct more research to

  11. Solar considerations in the development of cutaneous melanoma.

    Science.gov (United States)

    Loggie, B W; Eddy, J A

    1988-12-01

    On the basis of these considerations, the possible action spectrum for melanoma can be narrowed considerably, but not confined to any one solar emission band. The physical factors discussed eliminate all but UV, visible, and NIR radiation as possible solar agents. Ionizing radiation fits neither the epidemiologic data nor first-order physical considerations. Wavelengths longer than the NIR wavelengths, although they could conceivably account for the occurrence of melanoma under clothed parts of the body, carry so little energy that they are probably unimportant. Epidemiologic evidence regarding the effects of skin pigment favors UV or visible radiation. A distinction between these two components is not obvious; UV-C and UV-B photons carry greater energy and are more likely to induce biochemical cutaneous effects, but the total flux in the UV-A and visible radiations is far greater. That UV-B radiation may play a role in melanoma is supported; at the same time, one cannot exclude the possibility that the action spectrum for melanoma is, instead, the UV-A, the visible, or even the NIR portion of the sunlight spectrum. The strong differential effect of altitude on the transmission of light of different wavelengths might serve as an important discriminating variable. If solar UV radiation is implicated in the development of melanoma, then altitude should emerge as a significant factor in epidemiologic studies. If visible or IR radiation is the active agent, then differences on the basis of altitude should be small or negligible. Intrinsic solar variations that follow the annual sunspot number appear inadequate in either the UV or the visible band to account directly for the apparent 11-year modulation of melanoma incidence found in some registries. Secondary atmospheric effects brought about by the action of solar UV changes on the ozone layer may be adequate to explain a weak 11-year modulation in melanoma incidence, although continuous measurements of UV-B flux made

  12. Priority Development Area (Solar Energy Zone) and Variance Area letter-size Maps for Colorado

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — Map (letter-size) showing BLM-administered lands available for solar energy development as identified in the Solar PEIS Record of Decision, including maps of the...

  13. US solar energy policy for less developed countries

    Energy Technology Data Exchange (ETDEWEB)

    Russett, B.

    1980-10-01

    By many different standards, solar energy is considered to be, at least potentially, a good thing. The assessment of its utility, however, typically is made on technical engineering grounds, or on economic standards of cost-effectiveness, without close attention to political and sociological implications of its use. While remaining sensitive to engineering and economic considerations, this report will concentrate on some political and sociological issues which will have great affect on decisions whether and how to make use of solar energy technology in less developed countries (LDCs). Only with an understanding of these issues - and with answers to some of the questions raised - can there be any serious effort to devise a satisfactory United States government policy for the promotion of solar energy applications abroad. This report, in the form of tentative propositions outlining issues about which further information is required, is based on the results of interviews in the United States, India and the Middle East, and an analysis of various reports by private individuals, national and transnational organizations, and government agencies.

  14. A numerical tool for the development of solar wood dryers

    Energy Technology Data Exchange (ETDEWEB)

    Oueslati, M.M. [Centre de Recherche et des Technologies de l' Energie, Hammam Lif (Tunisia). Laboratoire Energetique et procedes Thermiques; Guellouz, M.S. [Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia). Laboratoire d' Etudes des Systemes Thermiques et Energetiques

    2010-07-01

    In order to reduce the energy demand associated with wood drying, conventional fossil fuels can be substituted with renewable energy. Solar energy is an appropriate alternative in Tunisia, where the wood furniture industry is dominated by small artisans. In order to improve product quality, small scale affordable wood dryers have to be made accessible to these artisans. The overall objective of this study was to minimize energy consumption of industrial wood drying and offer small businesses access to low cost solar dryers. The amount of energy required to evaporate water from wood and the drying time length depend on the type of equipment and technology used as well as the wood type and thickness. In order to design an optimal solar dryer, a numerical tool was developed using Fortran 90 to simulate the drying of a wood stack. The numerical tool predicts the time evolution of the wood and air properties and calculates the energy needed for the process. It also describes the space-time variation of heat and mass transport in the wood, in the drying air and at their interface. A finite difference scheme was used to discretize the equations. When applied in a representative case of drying a 2 cubic metre wood stack, the model highlighted the advantages of using industry established drying schedules rather than using constant temperature drying air. It also illustrated the advantages of airflow reversals to uniformly distribute the moisture content in the wood pile. The results from this study were used to estimate the required area of solar air collectors to provide the drying thermal energy. The study showed that using a drying schedule with an hourly flow reversal improved the drying quality and shortened the drying time. 11 refs., 1 tab., 10 figs.

  15. Understanding Emerging Impacts and Requirements Related to Utility-Scale Solar Development

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Heidi M. [Argonne National Lab. (ANL), Argonne, IL (United States); Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heath, Garvin A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, Robert G. [Argonne National Lab. (ANL), Argonne, IL (United States); Walston, Leroy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wescott, Konstance L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Utility-scale solar energy plays an important role in the nation’s strategy to address climate change threats through increased deployment of renewable energy technologies, and both the federal government and individual states have established specific goals for increased solar energy development. In order to achieve these goals, much attention is paid to making utility-scale solar energy cost-competitive with other conventional energy sources, while concurrently conducting solar development in an environmentally sound manner.

  16. Development of a Greek solar map based on solar model estimations

    Science.gov (United States)

    Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.

    2016-05-01

    The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.

  17. Adaptive control for solar energy based DC microgrid system development

    Science.gov (United States)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  18. Beyond human subjects: risk, ethics, and clinical development of nanomedicines.

    Science.gov (United States)

    Kimmelman, Jonathan

    2012-01-01

    Clinical testing of nanomedicines presents two challenges to prevailing, human subject-centered frameworks governing research ethics. First, some nanomedical applications may present risk to persons other than research subjects. Second, pressures encountered in testing nanomedicines may present threats to the kinds of collaborations and collective activities needed for supporting clinical translation and redeeming research risk. In this article, I describe how similar challenges were encountered and addressed in gene transfer, and sketch policy options that might be explored in the nanomedicine translation arena. © 2012 American Society of Law, Medicine & Ethics, Inc.

  19. Development of 12.5 m² Solar Collector Panel for Solar Heating Plants

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    Theoretical and experimental investigations have elucidated how different changes in the design of the 12.5 m(2) HT flat-plate solar collector from the Danish company ARCON Solvarme A/S influence the solar collector efficiency and the yearly thermal performance. The collector is designed for medium...... and large solar heating systems. Based on the theoretical findings a prototype of an improved HT solar collector was built and tested side-by-side with the original HT solar collector. The improved HT collector makes use of a changed insulation material, an absorber with improved absorptance and emittance...

  20. Developments in solar drying using forced ventilation and solar regenerated desiccant materials

    Energy Technology Data Exchange (ETDEWEB)

    Thoruwa, T.F.N. [Kenyatta University, Nairobi (Kenya). Mechanical Engineering Dept.; Smith, J.E. [Strathclyde University, Glasgow (United Kingdom). Dept. of Bioscience and Biotechnology; Johnstone, C.M. [Strathclyde Univ., Glasgow (United Kingdom). Energy Simulation Research Unit

    1996-09-01

    In many countries, grains are naturally sun dried in the field, resulting in large-scale spoilage. Purpose-built solar grain dryers are being introduced with some success, but to be effective, their performance must be carefully controlled to prevent cracking of grains, fungal growth and aflatoxin production during storage. This paper describes some of the performance aspects of an autonomous solar desiccant maize dryer developed for village use in Kenya. Since most commercial desiccants are expensive, a low cost solid desiccant was fabricated from bentonite clay and calcium chloride materials. This desiccant is capable of regeneration at 45{sup o}C, has high moisture sorption of 45% (dwb), significantly extends the drying process at night and reduces aflatoxin contamination of the grain. Laboratory and field testing took place to determine the drying performance and allow conclusions to be drawn. This showed the prototype dryer had the capability of drying 90kg of fresh maize from 38% (dwb) to 15% (dwb) within 24 hours. (Author)

  1. Role of government in solar energy development: a view from the Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Goodnight, J.A.; King, S.T.

    1978-08-01

    Several economic feasibility studies of solar heating in the Northwest are described. The case for federal assistance to the solar industry and the consumer is developed. The solar-related activities undertaken by the Northwest states of Oregon, Idaho, Washington, and Montana are detailed. Finally, roles are addressed which municipal government may play either to encourage or to deter the widespread use of solar heating systems. (MHR)

  2. The Design And Development Of Solar Maize Dryer With Subsidiary ...

    African Journals Online (AJOL)

    A solar Dryer with a subsidiary heating source for drying maize seed is designed and constructed. The dryer is made up a solar collector (heat source), the drying chamber (Product storage), and a subsidiary heating source (local oil). The plant when put in operation by expositing it to the solar rays, is capable of attaining a ...

  3. Solar thermal upper stage: Economic advantage and development status

    Science.gov (United States)

    Adams, Alan M.

    1995-01-01

    A solar thermal upper stage (STUS) is envisioned as a propulsive concept for the future. The STUS will be used for low Earth orbit (LEO) to geostationary-Earth orbit (GEO) transfer and for planetary exploration missions. The STUS offers significant performance gains over conventional chemical propulsion systems. These performance gains translate into a more economical, more efficient method of placing useful payloads in space and maximizing the benefits derived from space activity. This paper will discuss the economical advantages of an STUS compared to conventional chemical propulsion systems, the potential market for an STUS, and the recent activity in the development of an STUS. The results of this assessment combined with the performance gains, will provide a strong justification for the development of an STUS.

  4. Development of a Battery-Free Solar Refrigerator

    Science.gov (United States)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls

  5. Subject Knowledge Development by Science Student Teachers: The Role of University Tutors and School-Based Subject Mentors

    Science.gov (United States)

    Youens, Bernadette; McCarthy, Susan

    2007-01-01

    Following the introduction of a National Curriculum for Science, all secondary science teachers in England need to be prepared to teach all aspects of a broad and balanced science curriculum. This is the second paper in which we explore science student teachers' subject knowledge development during a one-year postgraduate teacher preparation…

  6. CIBS Solar Cell Development Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Exstrom, Christopher L.; Soukup, Rodney J.; Ianno, Natale J.

    2011-09-28

    Efforts to fabricate and study a new photovoltaic material, copper indium boron diselenide (CuInxB1-xSe2 or CIBS), were undertaken. Attempts to prepare CIBS using sputtering deposition techniques resulted in segregation of boron from the rest of elements in the material. CIBS nanocrystals were prepared from the reaction of elemental Se with CuCl, InCl3, and boric acid in solution, but the product material quickly decomposed upon heating that was required in attempts to convert the nanocrystals into a thin film. The investigation of the reasons for the lack of CIBS material stability led to new structure-property studies of closely-related photovoltaic systems as well as studies of new solar cell materials and processing methods that could enhance the development of next-generation solar technologies. A detailed compositional study of CuIn1-xAlxSe2 (CIAS, a system closely related to CIBS) revealed a non-linear correlation between crystal lattice size and the Al/(In+Al) ratios with dual-phase formation being observed. A new nanocrystal-to-thin-film processing method was developed for the preparation of CuIn1-xGaxSe2 (CIGS) thin films in which colloidal Se particles are sprayed in contact with CuIn1-xGaxS2 nanoparticles and heated in an argon atmosphere with no other Se source in the system. The process is non-vacuum and does not require toxic gases such as Se vapor or H2Se. Expertise gained from these studies was applied to new research in the preparation of thin-film pyrite FeS2, an attractive earth-abundant candidate material for next-generation photovoltaics. Three methods successfully produced pure pyrite FeS2 films: sulfurization of sputtered Fe films, chemical bath deposition, and sulfurization of Fe2O3 sol-gel precursors. The last method produced pinhole-free films that may be viable for device development. Nickel, platinum, and possibly carbon would appear to serve as good ohmic contact materials. While CdS has a reasonable conduction band energy match to

  7. How Achieving the Millennium Development Goals Increases Subjective Well-Being in Developing Nations

    Directory of Open Access Journals (Sweden)

    Shizuki Fukuda

    2016-02-01

    Full Text Available The target date in 2015 for the United Nation’s Millennium Development Goals (MDGs was reached, and a new period of global goals for the post-2015 is dawning. To assess whether and how regional progress towards achieving the MDGs has contributed to better quality of life in developing nations, we formulated a correlation between various aspects of human development, indicated by MDG indicators, and subjective well-being (SWB, a response to the question of how much people feel happy or satisfied. We demonstrated that national levels of SWB can be explained by the degree of development; poverty reduction is the strongest determinant, and achieving the MDGs is associated with higher SWB levels. Scenario assessment of SWB allowed which domain of development should be improved preferentially in each region to be determined, hence the SWB approach is expected to offer an innovative proxy of human development for the assessment of the Sustainable Development Goals (SDGs.

  8. Influence of climate and air pollution on solar energy development in Serbia

    Directory of Open Access Journals (Sweden)

    Radivojević Aleksandar R.

    2015-01-01

    Full Text Available The paper introduces basic information on the geographical location, climate and solar radiation in Serbia. It focuses particularly on the air pollution in Serbia and its influence on the solar cells energy efficiency. Moreover, detailed information on the development of solar energy in Serbia and the examples of the application of the low, medium and high temperature and photovoltaic conversion of solar radiation is provided. The paper also gives an overview of the installed greater capacity solar power stations related to the electricity network and the smaller capacity solar power stations as the independent sources of electricity in Serbia. In conclusion, the paper stresses Serbia’s favourite climate and other conditions for the prospective successful development of solar energy.

  9. Silicon Web Process Development. [for solar cell fabrication

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  10. Licensing arrangements and the development of the solar energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.

    1979-06-01

    The process by which technology and information related to technology are transferred within industry is explored. Property rights in technology are part of the broader field of intellectual property. The general contours of legal protection for knowledge are explored. The four basic forms of intellectual property - patents, trade secrets (or know-how), trademarks, and copyrights - are covered in varying degrees of depth, depending on their relative applicability to the development of the solar industry. Once this background has been established, the legal aspects of licensing are examined. A license is a legal arrangement whereby a party (licensor) who controls the right to use an idea, invention, etc. shares the right to use the particular intellectual property with someone else (licensee). The advantages and disadvantages of licensing are described from the point of view of potential licensees and licensors. Barriers to licensing are discussed.

  11. The ARA Mark 3 solar array design and development

    Science.gov (United States)

    vanHassel, Rob H. A.

    1996-01-01

    The ARA (Advanced Rigid Array) Mark3 solar array of Fokker Space BV is currently in its final stages of qualification (wing tests to be completed in March, 1996; unit/part tests in April, 1996). With regard to its predecessor, the ARA Mark2, the design has not only been improved in terms of mechanical and electrical performance, but also with regard to production cost and throughput time. This 'state of the art' array is designed to fit the needs of a wide variety of geostationary telecommunications satellites and is qualified for launch on the complete range of medium/large size commercial launchers (Ariane IV & V, Atlas, Delta, Proton, Long March, H2). The first mission to fly the new ARA Mk3 array is Hot Bird 2 (customer: Eutelsat, prime contractor: Matra Marconi Space; launch: mid-1996). In this configuration, its end of life (EOL) power-to-mass ratio is 42 W/kg, with an operational life of more than 12 years. The main mechanisms on a solar array are typically found in the deployment system and in the hold down and release system. During the design and development phase of these mechanisms, extensive engineering and qualification tests have been performed. This paper presents the key design features of these mechanisms and the improvements that were made with regard to their predecessors. It also describes the qualification philosophy on unit/part and wing level. Finally, some of the development items that turned out to be critical, as well as the lessons learned from them, are discussed.

  12. Subject of research on effects of tourism on population development

    Directory of Open Access Journals (Sweden)

    Devedžić Mirjana

    2007-01-01

    Full Text Available The importance of tourism in the context of economic and demographic recovery of certain regions has created an image of tourism as a development catalyst. Thus strategies of revitalization in depopulated and passive regions often consider tourism as an activity that can speed up the development and successfully valorize existing natural, cultural and demographic potentials. This "key" is used mainly in the absence of other development resources since tourism valorizes issues that other industries ignore (landscape features, ethnical heritage, authentic folk architecture, etc. In addition it is more difficult to recommend the right forms of tourism to be developed in depopulated regions, as well as to estimate the resulting economic and demographic effects. To this end, there are success stories, but there is also evidence of non-rational initiatives and projects that were never completed. This paper attempts to discover the most logical links between population development and tourism development, based on some important characteristics of population development. The characteristics used are overall population increase, population migrations, population structures and changes in households. They were selected because they best reflect not only direct, but also indirect multiplicative effects of tourism. Along with the theoretical and methodological background, the research is also supported by selected examples, interviews, and demographic analyzes. The effects are not universal. They depend on the region, the kind of tourism and the degree of its development, the demographic situation as it is, and the research approach, since global and local effects need not necessarily be unidirectional. Population increase initiated by tourism development is achieved due to the migration component, but the effects are most obvious at the level of tourist regions and their tourist centers. One can also note counter processes in some places that have tourist

  13. AXAF-I Low Intensity-Low Temperature (LILT) Testing of the Development Verification Test (DVT) Solar Panel

    Science.gov (United States)

    Alexander, Doug; Edge, Ted; Willowby, Doug

    1998-01-01

    The planned orbit of the AXAF-I spacecraft will subject the spacecraft to both short, less than 30 minutes for solar and less than 2 hours for lunar, and long earth eclipses and lunar eclipses with combined conjunctive duration of up to 3 to 4 hours. Lack of proper Electrical Power System (EPS) conditioning prior to eclipse may cause loss of mission. To avoid this problem, for short eclipses, it is necessary to off-point the solar array prior to or at the beginning of the eclipse to reduce the battery state of charge (SOC). This yields less overcharge during the high charge currents at sun entry. For long lunar eclipses, solar array pointing and load scheduling must be tailored for the profile of the eclipse. The battery SOC, loads, and solar array current-voltage (I-V) must be known or predictable to maintain the bus voltage within acceptable range. To address engineering concerns about the electrical performance of the AXAF-I solar array under Low Intensity and Low Temperature (LILT) conditions, Marshall Space Flight Center (MSFC) engineers undertook special testing of the AXAF-I Development Verification Test (DVT) solar panel in September-November 1997. In the test the DVT test panel was installed in a thermal vacuum chamber with a large view window with a mechanical "flapper door". The DVT test panel was "flash" tested with a Large Area Pulse Solar Simulator (LAPSS) at various fractional sun intensities and panel (solar cell) temperatures. The testing was unique with regards to the large size of the test article and type of testing performed. The test setup, results, and lessons learned from the testing will be presented.

  14. Latest developments in the field of solar thermal standardisation

    OpenAIRE

    Fischer, S.; M. J. Carvalho; Kovacs, P.; Malenkovic, I.

    2011-01-01

    The European project QAiST-―Quality Assurance in Solar Thermal Heating and Cooling Technology‖ funded by the Intelligent Energy Europe program and by the participating countries, gathers 15 participating organizations including the European Solar Thermal Industry Federation ESTIF and major testing and research institutes in Europe. The objective of the project is to enhance the competitiveness of the European Solar thermal industry and further increase consumer confidence through improved ...

  15. Predictive Factors Associated with Solar Energy Development in Laikipia District Central Kenya

    Directory of Open Access Journals (Sweden)

    Oscar Wambuguh

    2015-10-01

    Full Text Available The abundance of sunlight and the availability affordable solar technologies in many areas far from grid-based electricity has sparked the development of renewable energy technologies (RETs which tap solar radiation energy to provide electricity. A study on solar photovoltaics (SPVs use and utilization took place in the Wiyumiririe Location of Kenya. A purposive randomized convenience sample of 246 households was selected and landowner interviews conducted guided by a questionnaire, followed by field surveys and observations. Although solar energy contributed less than a quarter of total household energy needs, residents specifically associated it with specific developmental initiatives. Correlation and logistic regression model analyses showed that solar power development was closely associated (and thus can be predicted from five main independent variables. The findings of the study allowed the development of a probabilistic model general enough to be applicable elsewhere in the development of alternative energy resources particularly those based on solar input.

  16. Community-scale solar photovoltaics: housing and public development examples

    Energy Technology Data Exchange (ETDEWEB)

    Komoto, K.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at community-scale photovoltaics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. This report provides examples of housing developments and incorporated townships that have integrated multiple stakeholder values into business solutions. The authors are of the opinion that builders, developers, architects and engineers need to consider orientation, aesthetics, load diversity, energy efficiency, grid infrastructure and end use. Residential and commercial building owners or occupants need to consider the design of electric services relative to loads, green image, and economic opportunities such as feed-in tariffs. Local government should give preference to granting permission to high-performance building projects. It is suggested that the finance and insurance sector consider the operational savings in overall debt allowances. System manufacturers and integrators should develop standardised systems. In the emerging PV community market, utilities are quickly gaining awareness of business opportunities. The need for professionals and skilled labour is quoted as having grown as drastically as the PV market itself.

  17. The Development of a Roof Integrated Solar Hot Water System

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Infrastructure and DER Dept.; Moss, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solar Technologies Dept.; Palomino, G. Ernest [Salt River Project (SRP), Tempe, AZ (United States)

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  18. Pressure and temperature development in solar heating system during stagnation

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Chen, Ziqian

    2010-01-01

    This paper presents an investigation of stagnation in solar collectors and the effects it will have on the collector loop. At a laboratory test stand at the Technical University of Denmark, a pressurized solar collector loop was designed to test different numbers of collectors and different designs...... of the pipes of the solar collector loop. During the investigation the pre-pressure of the expansion vessel and system filling pressure was changed. The investigations showed that a large pressurised expansion vessel will protect the collector loop from critically high temperatures as long as the solar...

  19. Development of a Solar Assisted Drying System Using Double-Pass Solar Collector with Finned Absorber

    Science.gov (United States)

    Azmi, M. S. M.; Othman, M. Y.; Sopian, K.; Ruslan, M. H.; Majid, Z. A. A.; Fudholi, A.; Yasin, J. M.

    2012-09-01

    The Solar Energy Research Group, Universiti Kebangsaan Malaysia, International Islamic University Malaysia and Yayasan FELDA has designed and constructed a solar assisted drying system at OPF FELDA Factory, Felda Bukit Sagu 2, Kuantan, Pahang. The drying system has a total of six double-pass solar collectors. Each collector has a length of 480 cm and a width of 120 cm. The first channel depth is 3.5 cm and the second channel depth is 7 cm. Longitudinal fins made of angle aluminium, 0.8 mm thickness were attached to the bottom surface of the absorber plate. The solar collectors are arranged as two banks of three collectors each in series. Internal manifold are used to connect the collectors. Air enters through the first channel and then through the second channel of the collector. An auxiliary heater source is installed to supply heat under unfavourable solar radiation condition. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 70-75 °C can be achieved at solar radiation range of 800-900 W/m2 and flow rate of 0.12 kg/s. The average thermal efficiency of a solar collector is approximately 37%.

  20. Development of high band gap materials for tandem solar cells and simulation studies on mechanical tandem solar cells

    Science.gov (United States)

    Vijayakumar, Vishnuvardhanan

    Development of low cost, high efficiency tandem solar cells is essential for large scale adoption of solar energy especially in densely populated regions of the world. In this thesis four-terminal mechanical (stack like) tandem solar cells were evaluated using detailed simulation models and design criteria for selecting candidate materials were established. Since silicon solar cells are low cost and have a multi-giga watt global manufacturing and supply chain capacity already in place then only tandem stacks incorporating silicon as one of the layers in the device was investigated. Two candidate materials which have high band gaps that could be used as top cells in the mechanical tandem device were explored as part of the thesis. Dye-sensitized solar cells (DSSC) sensitized with N719 dye (one of the candidates for the top cell) were fabricated with the goal of enabling a flexible processing path to lower cost. Stainless steel (SS) mesh substrates were used to fabricate anodes for flexible DSSC in order to evaluate them as replacements for more expensive Transparent Conducting Oxides (TCO's). Loss mechanisms in DSSC's due to SS mesh oxidation were quantified and protective coatings to prevent oxidation of SS mesh were developed. The second material which was evaluated for use as the top cell was copper zinc tin sulfide (CZTS). CZTS was deposited through a solution deposition route. Detailed investigations were done on the deposited films to understand the chemistry, crystal structure and its opto-electronic properties. Deposited CZTS films were found to be highly crystalline in direction. The films had a direct band gap of 1.5 eV with absorption coefficient greater than 104 cm -1 in agreement with published values. In the second part of the thesis detailed electrical and optical simulation models of the mechanical tandem solar cells were developed based on the most up-to-date materials physical constants available for each layer. The modeling was used to quantify

  1. Development of a battery-free solar refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, Michael K; Bergeron, David J. III [Houston, TX (United States)

    2000-07-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well-insulated refrigerator cabinet and by developing a microprocessor-based control system that allows direct connection of a PV panel to a variable-speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric., Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, and integral evaporator/thermal storage tank, two 77 watt PV panels, and the novel controller mentioned above. The system's only moving part was the variable-speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as a little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor, and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, vacuum insulation and the stainless steel thermal storage tank were not used in order to reduce cost and make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls. Its compressor

  2. Solar energy in Portugal: development perspectives based on a comparison with Germany

    OpenAIRE

    Virgilio, Rodrigo Pedro da Piedade Coelho

    2009-01-01

    Master in International Management / JEL Classification: Q42 - Alternative energy sources; Q43 - Government Policy Solar energy is one of the renewable energies that has greater potential for future development. Portugal is one of the European countries with better solar conditions, but is certainly not one of the countries that has been taking the best advantage of it. It is therefore appropriate to know why Portugal is not using and developing solar energy in accordance with its...

  3. Photovoltaic Advanced Research and Development Project: Solar Radiation Research annual report

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, C.; Hulstrom, R.; Cannon, T.; Myers, D.; Stoffel, T.

    1990-11-01

    This report gives an overview of the fiscal year 1990 research activities and results under the Solar Radiation Research Task of the Photovoltaic Advanced Research and Development Project at the Solar Energy Research Institute. The activities under this task include developing and applying measurement techniques, instrumentation, and data and models to understand and quantify the response of photovoltaic devices to variations in broadband and spectra solar radiation. The information presented in this report was presented at the SERI Photovoltaic Advanced Research and Development Project 10th Review Meeting, October 1990, and will be published in a special issue of Solar Cells dedicated to the meeting.

  4. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  5. Technology development and application of solar energy in desalination: MEDRC contribution

    KAUST Repository

    Ghaffour, Noreddine

    2011-12-01

    Desalination has become one of the sources for water supply in several countries especially in the Middle East and North Africa region. There is a great potential to develop solar desalination technologies especially in this region where solar source is abundantly available. The success in implementing solar technologies in desalination at a commercial scale depends on the improvements to convert solar energy into electrical and/or thermal energies economically as desalination processes need these types of energies. Since desalination is energy intensive, the wider use of solar technologies in desalination will eventually increase the demand on these technologies, making it possible to go for mass production of photovoltaic (PV) cells, collectors and solar thermal power plants. This would ultimately lead to the reduction in the costs of these technologies. The energy consumed by desalination processes has been significantly reduced in the last decade meaning that, if solar technologies are to be used, less PV modules and area for collectors would be needed. The main aspects to be addressed to make solar desalination a viable option in remote location applications is to develop new materials or improve existing solar collectors and find the best combinations to couple the different desalination processes with appropriate solar collector. In the objective to promote solar desalination in MENA, the Middle East Desalination Research Center has concentrated on various aspects of solar desalination in the last twelve years by sponsoring 17 research projects on different technologies and Software packages development for coupling desalination and renewable energy systems to address the limitations of solar desalination and develop new desalination technologies and hybrid systems suitable for remote areas. A brief description of some of these projects is highlighted in this paper. The full details of all these projects are available the Centers website. © 2011 Elsevier

  6. Development of Solar Drying Model for Selected Cambodian Fish Species

    Directory of Open Access Journals (Sweden)

    Anna Hubackova

    2014-01-01

    Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  7. Development and preliminary testing of a parabolic trough solar ...

    African Journals Online (AJOL)

    It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for ...

  8. The research and development of the automatic solar power tracker

    Directory of Open Access Journals (Sweden)

    Li Yan Ping

    2016-01-01

    Full Text Available The article describes a kind of automatic tracker using solar power. It depends on two important parts which are servo system and adjusting mechanism system to keep the tracker operating normally. The article focuses on describing the characteristics and functions of two systems and the operating details of the automatic solar power tracker.

  9. Development of solar drying model for selected Cambodian fish species.

    Science.gov (United States)

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6 °C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg · h(-1). Based on coefficient of determination (R(2)), chi-square (χ(2)) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  10. development of an automated batch-process solar water disinfection

    African Journals Online (AJOL)

    user

    (Joules) preset at the beginning of the experiment/disinfection process. Fig. 2: Schematic diagram of the automated batch- process solar water disinfection system. Fig. 3: Pictorial view of the automated batch-process solar water disinfection system. Figure 4: Circuitry of Arduino® microcontroller with the different sensors ...

  11. Development of a household solar box cooker | Fumen ...

    African Journals Online (AJOL)

    About 60 - 80% Nigerians live in the rural areas and rely heavily on firewood as the main household energy source. A solar cooker or solar oven that uses direct sunlight, the cheapest and the most sustainable source of energy could be introduced in rural communities to help reduce the amount of firewood used by rural ...

  12. Defect engineering in solar cell manufacturing and thin film solar cell development

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L. [National Renewable Energy Lab., Golden, CO (United States)

    1995-08-01

    During the last few years many defect engineering concepts were successfully applied to fabricate high efficiency silicon solar cells on low-cost substrates. Some of the research advances are described.

  13. Japan's Sunshine Project. 1988 annual summary of solar energy research and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Mentioned in relation to the research and development of photovoltaic power generation systems are fundamental research on solar cells, research on advanced photovoltaic system technologies, research and development of amorphous solar cells, etc. Mentioned in relation to the technical development for the practical use of photovoltaic power generation systems are low-cost SOG(spin on glass)-silicon experimental production and verification, solar cell panel experimental manufacture and verification, technical development of high efficiency cell fabrication, research and development of amorphous silicon solar cells, research and development of evaluation systems for photovoltaic cells and modules, development of support technology for photovoltaic power generation (power generation support technology, interconnection and control of photovoltaic systems), etc. Also discussed are a stand-alone dispersed system, meteorological analysis, centralized solar power system, development of photovoltaic thermal hybrid solar power generation system, etc. In relation to solar thermal energy, a solar thermal power generation system, and an evaluation system are taken up, and the development is discussed of a fixed heat process type system, an advanced heat process type system, and a long-term heat storage system, these for application to industrial processes. Reference is also made to international cooperation. (NEDO)

  14. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  15. Student feedback on a pioneer subject on leadership and intrapersonal development in Hong Kong.

    Science.gov (United States)

    Shek, Daniel T L; Yu, Lu; Xie, Qiu Zhi

    2017-02-01

    To promote leadership and intrapersonal development in university students, a subject entitled "Tomorrow's Leaders" was developed and offered at The Hong Kong Polytechnic University. To assess the perceived effectiveness of this subject, 647 students completed the student feedback questionnaire (SFQ). Results showed that the feedback questionnaire had very good psychometric properties, including internal consistency reliability and construct validity. Regarding students' views of the subject, results showed that students generally had good evaluation of the content of the subject, teaching quality, and perceived benefits of the subject. The present findings have implications for the teaching of general education regarding leadership development.

  16. Development and Commercialization of the Lunar Solar Power System

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    The proposed Lunar Solar Power (LSP) System consists of pairs of power bases located on opposite limbs of the Moon as seen from Earth. The power bases collect the solar energy and convert it to beams of microwaves. The microwaves are delivered directly to moonward-facing receivers on Earth or indirectly through relay satellites in orbit about Earth (1, 2, 3, 4). The LSP System may be the only reasonable method for establishing sustainable global energy prosperity within two generations. Commercial power prosperity requires at least 2 kWe/person. For ten billion people this implies 20 TWe and 2,000 TWe-y of electric energy or ~6,000 TWt-y of thermal energy per century (5, 6, 7, 8). A brief overview is presented of a reference LSP System that supplies 20 TWe by 2050. The engineering scales and the cost and benefits of this system are described. In order to provide low cost commercial electric energy, the power bases are made primarily of local lunar materials by machines, facilities, and people deployed from Earth (1, 2, 3). In addition, lunar production machinery can be made primarily from lunar materials. Advantages of this approach, versus the reference LSP System, are discussed. Full-scale production of a LSP System will certainly be proceeded by terrestrial and lunar operation of the production machinery and a small-scale demonstration of the operational system (1). Using government funds to establishing a permanent lunar base and the associated transportation system would significantly reduce the upfront cost for the demonstration of a commercial LSP System (2). The government program would provide a legal framework for commercial development of the LSP System (3, 9). The LSP System offers the opportunity to establish a materials industry on the Moon that can produce a growing mass and variety of goods and enable new services of benefit on the Earth and the Moon (10). New priorities are suggested for civilian space programs that can accelerate the establishment

  17. Approach to develop space solar power as a new energy system for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, Makoto [Inst. of Space and Astronautical Science, Sagamihara (Japan)

    1996-12-31

    The idea of space solar power proposed by Glaser was explained as a set of a solar power station in geostationary earth orbit to transmit microwave power and a ground station to receive the microwave power. Most of the ideas and concepts since Glaser used the same context. On the other hand, Collins et al. introduced the concept of microwave `fuel` to assess the commercial relations of power from space, in which space solar power stations are considered to sell microwave power to any unspecified rectenna. This concept changed the theoretical context of `power from space` to an industrial and economic relation of producers and buyers of an industrial product. This new context has been applied to the SPS 2000 conceptual study. As a result, if 2.45 GHz microwave power transmission is used, each rectenna can be planned and engineered independently from the space sector by local users, especially in developing countries, who are familiar with such activities as introducing solar energy systems. 7 refs., 3 figs.

  18. Mathematical Modeling of a developed Central Receiver Based on Evacuated Solar Tubes

    Directory of Open Access Journals (Sweden)

    Ali Basil. H.

    2016-01-01

    Full Text Available Solar central receiver plays a considerable role in the plant output power; it is one of the most important synthesis in the solar power tower plants. Its performance directly affects the efficiency of the entire solar power generation system. In this study, a new designed receiver model based on evacuated solar tube was proposed, and the dynamic characteristics of the developed receiver were investigated. In order to optimise and evaluate the dynamic characteristics of solar power plant components, the model investigates the solar radiation heat conversion process through the developed receiver, where the energy and mass conservation equations are used to determine the working fluid temperature and state through the receiver parts, beside the calculation and analysis of the thermal losses.

  19. Development of the solar array deployment and drive system for the XTE spacecraft

    Science.gov (United States)

    Farley, Rodger; Ngo, Son

    1995-05-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  20. Developing Efficient Charge-Selective Interfacial Materials for Polymer and Perovskite Solar Cells

    Science.gov (United States)

    2016-01-25

    Materials for Polymer and Pervskite Solar Cells 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4066 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Alex K...fabrication of multi-junction organic and perovskite solar cells to reach high efficiency, low-cost, and good stability. To gain insights in these...enable the fabrication of highly efficient single- and multi-junction organic/hybrid solar cells . 15.  SUBJECT TERMS nanoscience, AOARD 16

  1. Potential Visual Impacts of Utility-Scale Solar Energy Development within Solar Energy Zones on Selected Viewpoints in Death Valley and Joshua Tree National Parks, and El Camino Real De Tierra Adentro National Historic Trail

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert G. [Argonne National Lab. (ANL), Argonne, IL (United States); Abplanalp, Jennifer M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cantwell, Brian L. [Argonne National Lab. (ANL), Argonne, IL (United States); Beckman, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-06-01

    In connection with the Bureau of Land Management’s (BLM’s) Solar Programmatic Environmental Impact Statement (Solar PEIS), Argonne National Laboratory (Argonne) has conducted an extended visual impact analysis for selected key observation points (KOPs) within three National Park Service (NPS) units located within the 25-mi (40-km) viewshed of four solar energy zones (SEZs) identified in the Solar PEIS. The analysis includes only those NPS units that the Solar PEIS identified as potentially subject to moderate or strong visual contrasts associated with solar development within the SEZs. The NPS units included in the analysis are Death Valley and Joshua Tree National Parks and El Camino Real De Tierra Adentro National Historic Trail. The analysis showed that certain KOPs in each of these NPS units could potentially be subject to major visual contrast and impacts from solar development within the SEZs, but many of the KOPs would likely be subject to moderate, minor, or negligible contrasts and impacts, generally because they were relatively distant from the relevant SEZ, had views of the SEZ partially blocked by intervening terrain, and/or had very low vertical angles of view toward the SEZ. For all three NPS units, power tower facilities were found to be major contributors to potential visual contrasts, primarily because of the long-distance visibility of intensely bright reflection of light from the receivers on the central towers, but also because of the height and strong vertical line of the tower structures and the potential for night-sky impacts from FAA-mandated hazard navigation lighting.

  2. Development of an Electrostatically Clean Solar Array Panel

    Science.gov (United States)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  3. Evaluating the enablers in solar power developments in the current scenario using fuzzy DEMATEL

    DEFF Research Database (Denmark)

    Luthra, Sunil; Govindan, Kannan; Kharb, Ravinder K.

    2016-01-01

    Determining solar power initiatives and developments for a country as large as India is difficult due to the involvement of different enablers. The decisions of these enablers will influence the formulation of strategies to encourage solar power development in India. The present research work...... critically analyzes Indian solar power developments to recognize and to evaluate key enablers that will encourage greater usage in Indias current scenario. A literature review that explores the Indian solar power sector is included, with a focus on need potential, and an examination of the key enablers...... is useful in dealing with the inherent ambiguity involved in studying interrelationships among the evaluated enablers. Research findings suggest that Initiatives taken at the state level (E7) and Power sector reforms (E12) have significant influence in adopting and encouraging Indias solar power development...

  4. Estimation of the solar energy potential in Egypt by developing high resolution solar Atlas and nowcasting service in real time

    Science.gov (United States)

    El-Askary, H. M.; Kosmopoulos, P.; Kazadzis, S.; Taylor, M.; Raptis, P.; Keramitsoglou, I.; Kiranoudis, C. T.

    2016-12-01

    In light of efforts made by the Government of the Arab Republic of Egypt to achieve the desired economic growth while preserving the environment, the government tries to address the demand for energy efficiency through the use of renewable energy sources. In the framework of the HORIZON 2020 GEO-Cradle project, we report on the estimation of the solar energy potential in Egypt by developing the analytical solar Atlas of Egypt for optimal Photovoltaics and Concentrated Solar Power system installations as well as an innovative nowcasting service in real time based on a number of priority parameters (optical properties of clouds and aerosols, solar zenith angle, total ozone column, water vapor, etc) for efficient energy planning. The mean monthly solar energy maps are based on a 15-year complex and highly variable climatology taking into account the clouds and aerosols impact on Direct Normal and Global Horizontal Irradiances (DNI and GHI respectively), while the spatial resolution is almost 5 km, maximizing the exploitative value of the solar energy technologies. On the other hand, the operational nowcasting service of the GHI and DNI is developed in the framework of the solea project (www.solea.gr) and is based on a synergy of large (2.5M record) Radiative Transfer Model simulation look-up tables, neural networks and satellite-based cloud (Meteosat) and aerosol inputs (CAMS) in real time. This system is able to produce maps of Egypt at high resolution (1nm, 0.05 x 0.05 degrees, 15 min) and the whole approach is ideal for effective energy planning and services while it can support the local energy managing authorities.

  5. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application

    Directory of Open Access Journals (Sweden)

    Hrushikesh Bhujangrao Kulkarni

    2016-02-01

    Full Text Available Concentrating collectors absorbs solar energy and convert it into heat for generating hot water, steam at required temperature, which can be further used for solar thermal applications. The developing countries like India where solar energy is abundantly available; there is need to develop technology for harnessing solar energy for power production, but the main problem associated with concentrating solar power technology is the high cost of installation and low output efficiency. To solve this problem, a prototype cylindrical parabolic solar collector having aperture area of 1.89 m2 is designed and developed using low cost highly reflecting and absorbing material to reduce initial cost of project and improve thermal efficiency. ASHRAE Standard 93, 1986 was used to evaluate the thermal performance and it was observed that this system can generate hot water at an average temperature of 500C per day with an average efficiency of 49% which is considerable higher than flat plate solar collectors. Hot water produced by this system can be useful for domestic, agricultural, industrial process heat applications.Article History: Received Sept 19, 2015; Received in revised form Dec 23, 2015; Accepted February 2, 2016; Available online How to Cite This Article: Bhujangrao, K.H. (2016. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application. International Journal of Renewable Energy Development, 5(1, 49-55 http://dx.doi.org/10.14710/ijred.5.1.49-55 

  6. The History of the Development of the Rectenna. [solar power satellites

    Science.gov (United States)

    Brown, W. C.

    1980-01-01

    The history of the development of the rectenna is reviewed through its early conceptual developmental phases. Some selective aspects of the current solar power satellite rectenna development are examined.

  7. The Solar Energy Consortium of New York Photovoltaic Research and Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M.

    2012-10-15

    Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

  8. National Program Plan for Research and Development in Solar Heating and Cooling. Interim Report.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the Energy Research and Development Administration (ERDA) program plan for solar heating and cooling of buildings and for agricultural and industrial process applications. An overview of the program plan is followed by a description of the ten paths to the solar heating and cooling of buildings and a brief discussion of the…

  9. Development of a par-boiled rice solar dryer | Abubakar | Bayero ...

    African Journals Online (AJOL)

    Energy is required in various forms to do useful work and necessary for the continual improvement in the standard of any society. This study presents the development of a par-boiled batch type rice solar dryer using an indirect mode natural convection solar energy. The dryer was designed and constructed to provide easier, ...

  10. How Does That Work? Developing Pedagogical Content Knowledge from Subject Knowledge

    Science.gov (United States)

    Hillier, Judith

    2013-01-01

    The development of subject knowledge and pedagogical content knowledge has been the focus of much educational research and debate in recent years. Of particular interest is the process by which preservice science teachers develop pedagogical content knowledge from their subject knowledge. In the study presented here, a process of writing narrative…

  11. Development of a thin film solar cell interconnect for the PowerSphere concept

    Energy Technology Data Exchange (ETDEWEB)

    Simburger, Edward J. [Aerospace Corporation, El Segundo, CA 90245 (United States)]. E-mail: edward.j.simburger@aero.org; Matsumoto, James H. [Aerospace Corporation, El Segundo, CA 90245 (United States); Giants, Thomas W. [Aerospace Corporation, El Segundo, CA 90245 (United States); Garcia, Alexander [The Aerospace Corporation, El Segundo, CA 90245 (United States); Liu, Simon [Aerospace Corporation, El Segundo, CA 90245 (United States); Rawal, Suraj P. [Lockheed Martin Corporation, Denver, CO 80125 (United States); Perry, Alan R. [Lockheed Martin Corporation, Denver, CO 80125 (United States); Marshall, Craig H. [Lockheed Martin Corporation, Denver, CO 80125 (United States); Lin, John K. [ILC Dover Incorporated, Dover, DE 19946 (United States); Scarborough, Stephen E. [ILC Dover Incorporated, Dover, DE 19946 (United States); Curtis, Henry B. [NASA Glen Research Center, Cleveland, OH 44135 (United States); Kerslake, Thomas W. [NASA Glen Research Center, Cleveland, OH 44135 (United States); Peterson, Todd T. [NASA Glen Research Center, Cleveland, OH 44135 (United States)

    2005-02-15

    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the PowerSphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference.

  12. 78 FR 17716 - Notice Seeking Public Interest for Solar Energy Development on Public Lands in the State of Colorado

    Science.gov (United States)

    2013-03-22

    ... Bureau of Land Management Notice Seeking Public Interest for Solar Energy Development on Public Lands in... an interest in proposing solar energy development projects on approximately 3,705 acres of public.... DATES: Parties interested in proposing a solar energy development project on the lands described in this...

  13. Design, development and performance testing of a new natural convection solar dryer

    Energy Technology Data Exchange (ETDEWEB)

    Pangavhane, D.R. [K.K. Wagh College of Engineering, Nashik (India). Department of Mechanical Engineering; Sawhney, R.L.; Sarsavadia, P.N. [Devi Ahilya Vishwa Vidhyalaya, Indore (India). School of Energy and Environmental Studies

    2002-06-01

    Mechanical drying of agricultural products is an energy consuming operation in the post-harvesting technology. Greater emphasis is given to using solar energy sources in this process due to the high prices and shortages of fossil fuels. For these purposes, a new natural convection solar dryer consisting of a solar air heater and a drying chamber was developed. This system can be used for drying various agricultural products like fruits and vegetables. In this study, grapes were successfully dried in the developed solar dryer. The qualitative analysis showed that the traditional drying, i.e. shade drying and open sun drying, dried the grapes in 15 and 7 days respectively, while the solar dryer took only 4 days and produced better quality raisins. (author)

  14. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  15. Process Development for High Voc CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  16. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  17. Historic Developments, Current Technologies and Potential of Nanotechnology to Develop Next Generation Solar Cells with Improved Efficiency

    Directory of Open Access Journals (Sweden)

    Nisith Raval

    2015-07-01

    Full Text Available Sun is the continuous source of renewable energy, from where we can get abundant of solar energy. Concept of conversionof solar energy into heat was used back in 200 B.C. since then, the solar cells have been developed which can convert solar energy into theelectrical energy and these systems have been produced commercially. The technologies to enhance the power conversion efficiency (PCEhave been continuously improved. Different technologies used for developing solar cells can be categorized either on the basis of materialused or techniques of technology development which is further termed as ‘first generation’ (e.g. crystalline silicon, ‘second generation’(thin films of Amorphous silicon, Copper indium gallium selenide, Cadmium telluride, ‘Third generation’ (Concentrated, Organic and Dyesensitize solar cell. These technologies give PCE up to 25% depending on the technology and the materials used. Nanotechnology enablesthe use of nanomaterial whose size is below 100 nm with extraordinary properties which has the capability to enhance the PCE to greaterextent. Various nanomaterials like Quantum Dots, Quantum well, carbon nanotubes, Nanowire and graphene have been used to makeefficient and economical solar cells, which not only provide high conversion efficiency economically but also are easy to produce. Today,by using nanotechnology, conversion efficiency up to 44.7 % has been achieved by Fraunhofer Institute at Germany. In this review article,we have reviewed the literature including various patents and publications, summarized the history of solar cell development, developmentof different technologies and rationale of their development highlighting the advantages and challenges involved in their development forcommercial purpose. We have also included the recent developments in solar cell research where different nanomaterials have beendesigned and used successfully to prove their superiority over conventional systems.

  18. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    Science.gov (United States)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  19. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  20. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplishing solar water splitting through semiconductor particulate photocatalysis seems to be the 'Holy Grail' problem of science.

  1. Development of an active solar crop dryer: design analysis and ...

    African Journals Online (AJOL)

    The design analysis and performance evaluation of an active solar crop dryer was undertaken by drying marched cassava. The drying rate, system drying, collector and pick-up efficiencies were 1.6kg/day (14%/day), 9%, 46% and 29% respectively. Comparatively, the drying rate for sun drying was 0.9kg/day. The collector ...

  2. Development of an uninterrupted solar powered traffic light from ...

    African Journals Online (AJOL)

    The design made use of an Atmel series of 89S51 Microcontroller Unit (MCU), a Vero board, resistors, transistors, diodes, capacitors, Light Emitting Diodes (LED) and battery charged with a solar powered photovoltaic module. The testing of the traffic light was carried out at the pre-implementation and post-implementation ...

  3. design and development of solar still for effectiveness in eliminating ...

    African Journals Online (AJOL)

    2006-08-08

    Aug 8, 2006 ... Key words: Solar still, portable water; health protection. Introduction. Portable water may be described as water fit for human consumption. Since time immemorial, the portability of water stood out to be the clear. definition of water quality (Walter, 1987). However, a large fraction of the World's population,.

  4. Materials development and interface studies of inverted organic solar cells

    Science.gov (United States)

    Jeng, Lim Fang

    This thesis presents a detailed study on organic solar cells with an inverted architecture. Inverted organic solar cells (IOSC) were utilized because it can significantly improve the device lifetime while maintaining comparable device performance. Three major aspects of inverted organic solar cell devices were studied: (1) Processability; (2) Practicality and; (3) Stability. Firstly, the long-standing processability issue of inferior wettability of PEDOT:PSS on glass/ITO substrate was overcome by modifying the hole transport layer with a novel fluorosurfactant. Secondly, the light-soaking issue, which severely hinders the device practicality, was overcome by using chemical bath deposited fluorinated titanium dioxide (F-TiOx) electron transport layer as a key alternative to conventional sol-gel TiOx. Finally, with incorporation of various donor-acceptor materials other than the commonly used poly-3-hexylthiophene (P3HT), a systematic degradation study and the light-soaking characteristics of low-bandgap benzodithiophene-thienothiophene based co-polymer and diketopyrrolopyrrole based small molecules were conducted on the modified IOSC devices. Ultimately, a solution-processed, light-soaking free, stable and high efficiency inverted organic solar cell was successfully achieved and reported in this thesis.

  5. Design and development of solar still for effectiveness in eliminating ...

    African Journals Online (AJOL)

    The water does not acquire the \\'flat\\' taste of commercially distilled water since it is not boiled. This study is therefore an application of physics for the production of distilled water from contaminated water for both human health protection and environmental sustainability. Keywords:Solar still, portable water, health protection.

  6. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    Science.gov (United States)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  7. Development of Solar Grade (SoG) Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, David B; Schmid, Frederick

    2008-01-18

    The rapid growth of the photovoltaics (PV) industry is threatened by the ongoing shortage of suitable solar grade (SoG) silicon. Until 2004, the PV industry relied on the off spec polysilicon from the electronics industry for feedstock. The rapid growth of PV meant that the demand for SoG silicon predictably surpassed this supply. The long-term prospects for PV are very bright as costs have come down, and efficiencies and economies of scale make PV generated electricity ever more competitive with grid electricity. However, the scalability of the current process for producing poly silicon again threatens the future. A less costly, higher volume production technique is needed to supply the long-term growth of the PV industry, and to reduce costs of PV even further. This long-term need was the motivation behind this SBIR proposal. Upgrading metallurgical grade (MG) silicon would fulfill the need for a low-cost, large-scale production. Past attempts to upgrade MG silicon have foundered/failed/had trouble reducing the low segregation coefficient elements, B, P, and Al. Most other elements in MG silicon can be purified very efficiently by directional solidification. Thus, in the Phase I program, Crystal Systems proposed a variety of techniques to reduce B, P, and Al in MG silicon to produce a low cost commercial technique for upgrading MG silicon. Of the variety of techniques tried, vacuum refining and some slagging and additions turned out to be the most promising. These were pursued in the Phase II study. By vacuum refining, the P was reduced from 14 to 0.22 ppmw and the Al was reduced from 370 ppmw to 0.065 ppmw. This process was scaled to 40 kg scale charges, and the results were expressed in terms of half-life, or time to reduce the impurity concentration in half. Best half-lives were 2 hours, typical were 4 hours. Scaling factors were developed to allow prediction of these results to larger scale melts. The vacuum refining required the development of new crucibles

  8. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink and its subcontractor Magnolia Solar will develop and demonstrate advanced anti-reflection coating (ARC) designs that will provide a better broadband and...

  9. Development of Subjective Recollection: Understanding of and Introspection on Memory States

    Science.gov (United States)

    Ghetti, Simona; Mirandola, Chiara; Angelini, Laura; Cornoldi, Cesare; Ciaramelli, Elisa

    2011-01-01

    The development of subjective recollection was investigated in participants aged 6-18 years. In Experiment 1 (N = 90), age-related improvements were found in understanding of the subjective experience of recollection, although robust levels of understanding were observed even in the youngest group. In Experiment 2 (N = 100), age-related…

  10. Assessing Adolescents' Positive Psychological Functioning at School: Development and Validation of the Student Subjective Wellbeing Questionnaire

    Science.gov (United States)

    Renshaw, Tyler L.; Long, Anna C. J.; Cook, Clayton R.

    2015-01-01

    This study reports on the initial development and validation of the Student Subjective Wellbeing Questionnaire (SSWQ) with a sample of 1,002 students in Grades 6-8. The SSWQ is a 16-item self-report instrument for assessing youths' subjective wellbeing at school, which is operationalized via 4 subscales measuring school connectedness, academic…

  11. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    Energy Technology Data Exchange (ETDEWEB)

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  12. Development, testing, and certification of Owens-Illinois model SEC-601 solar energy collector system

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    The final results are presented of the additional development work on the existing air-cooled solar energy collector subsystem for use with solar heating and cooling systems. The report discusses the intended use of the final report, describes the deliverable end items, lists program objectives, relates how they were accomplished, deals with problems encountered during fabrication and testing, and includes a certification statement of performance. The report shows that the products developed are marketable and suitable for public use.

  13. 78 FR 50086 - Notice of Competitive Auction for Solar Energy Development on Public Lands in the State of Colorado

    Science.gov (United States)

    2013-08-16

    ... Bureau of Land Management Notice of Competitive Auction for Solar Energy Development on Public Lands in... applicant to submit a right-of-way (ROW) application and a plan of development for solar energy projects on... solicitations of interest and ROW applications within two designated Solar Energy Zones (SEZ): Los Mogotes East...

  14. Contributions to the development of novel solar cells concepts

    OpenAIRE

    Villa Morales, Juan

    2017-01-01

    Esta Tesis contribuye al desarrollo de nuevos conceptos de células solares. Estos nuevos conceptos son aquellas propuestas tecnológicas que no están sujetas al límite de Shockley- Queisser (S-Q), pudiendo sobrepasarlo. Dentro de estas nuevas propuestas tecnológicas, la más avanzada y que hoy en día ya se aplica a nivel industrial es la célula solar de multiunión (MJSC, por sus siglas en inglés). El récord de eficiencia de conversión experimental de las MJSCs es del 46.0% bajo 508 soles de con...

  15. Development of high-efficiency solar cells on silicon web

    Science.gov (United States)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  16. Development of economical improved thick film solar cell contact

    Science.gov (United States)

    Ross, B.

    1979-01-01

    Metal screened electrodes were investigated with base metal pastes and silver systems being focused upon. Contact resistance measurements were refined. A facility allowing fixing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed and base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised. Aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4 in diameter solar cell back contacts, both with good results.

  17. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  18. A promising line of development of solar energy

    Science.gov (United States)

    Klimov, Nikolai; Salomatov, Vladimir

    2017-10-01

    By analyzing the electricity generation and the capabilities of modern photovoltaic power stations (PPS), we assessed the expenditures connected with the transition to solar power production. We also examine the issue related to improving the efficiency of PPS through the use of Stokes and anti-Stokes coatings. Analytical expressions are obtained for the voltage value of the photovoltaic cell (PC) at a different distance from the beginning of the cell as well as dependences of the working voltage on the source length.

  19. Decoding development in the XXI century: subjectivity, complexity, sinapsis, sinergy, recursivity, lidership and territorial dependency

    National Research Council Canada - National Science Library

    Sergio Boisier

    2010-01-01

      BOISIER, Sergio. Decoding development in the XXI century: subjectivity, complexity, sinapsis, sinergy, recursivity, lidership and territorial dependency. Semest. Econ. [online]. 2010, vol.13, n.27, pp. 11-37. ISSN 0120-6346...

  20. Solar-stellar Coffee: A Model For Informal Interdisciplinary Professional Development

    Science.gov (United States)

    Metcalfe, Travis S.

    2007-12-01

    Initiated at NCAR more than two years ago, solar-stellar coffee is a weekly informal discussion of recent papers that are relevant to solar and stellar physics. The purpose is to generate awareness of new papers, to discuss their connections to past and current work, and to encourage a broader and more interdisciplinary view of solar physics. The discussion is local, but traffic to the website (http://coffee.solar-stellar.org/) is global -- suggesting that solar and stellar astronomers around the world find value in this intelligent pre-filter for astro-ph and other sources (papers are selected by local participants). In addition to enhancing the preprint posting and reading habits of solar physicists (with the associated boost in citation rates), the weekly discussion also provides an interdisciplinary professional development opportunity for graduate students, postdocs, and early career scientists. The web page is driven by a simple set of scripts (available on request), so this interaction model can easily be replicated at other institutions for topics of local interest. The concept of solar-stellar coffee began with support from an NSF Astronomy & Astrophysics Postdoctoral Fellowship under award AST-0401441. The National Center for Atmospheric Research is a federally funded research and development center sponsored by the National Science Foundation.

  1. Development of Space Qualified Microlens Arrays for Solar Cells Used on Satellite Power Systems

    Directory of Open Access Journals (Sweden)

    Ömer Faruk Keser

    2017-08-01

    Full Text Available The power system, one of the main systems of satellite, provides energy required for the satellite. Solar cells are also the most used energy source in the power system. The third generation multi-junction solar cells are known as the ones with highest performance. One of the methods to increase the performance of the solar cells is anti-reflective surface coatings with the Micro Lens Array-MLA. It's expected that satellite technologies has high power efficiency and low mass. The space environment has many effects like atomic oxygen, radiation and thermal cycles. Researches for increasing the solar cells performance shows that MLA coated solar cell has increased light absorption performance and less cell heating with very low additional mass. However, it is established that few studies on MLA coatings of solar cells are not applicable on space platforms. In this study, the process of development of MLA which is convenient to space power systems is investigated in a methodological way. In this context, a method which is developed based on MLA coatings of multi-junction solar cells for satellite power systems is presented.

  2. THE DEVELOPMENT OF PROFESSIONAL SUBJECTIVE POSITION OF MANAGEMENT HUMAN RESOURCES FOR HEALTH

    Directory of Open Access Journals (Sweden)

    Ol'ga L. Zadvornaya

    2016-01-01

    Full Text Available The article is devoted to the problem of development of professional-subjective position of managerial staff of health care in the system of continuous professional education in the conditions of optimization of activities of the health system. Professional and subject position reflects the position of individual managers in a professional environment, its relationship to the quality of professional activity, to himself, to patients and colleagues to level their skills.Purpose/objectives: analysis of core competencies, forming the professional and subject position of heads of medical organizations; identify possible ways of development of professional-subjective position of managerial staff of the public health based on the use of modern technologies and active methods of training in system of continuous professional education. Methodology. In conducting the present study used data from official sources, literature review, scientific methods of analysis and synthesis, comparative analysis and modeling. The results of the study indicate the necessity of actualization of the subject position of heads of medical organizations. Conclusions /Significance. The necessity of formation and development of professional subjective position of the heads due to the needs of society and the health care system with modern requirements for quality management training of health. Professional and subject position is a characteristic feature of a highly qualified specialist in the area of governance, reflecting its active attitude toward self and professional activity, factor of efficiency of activity of medical organizations. The real practice of activity of medical organizations requires improved approaches in the preparation of healthcare managers. Most of the leaders are having difficulties, associated not only with necessity of development of universal and professional competences, but also the necessity of development of professional-subjective position

  3. The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle

    Science.gov (United States)

    Sai, Li; Wei, Zhou; Xueren, Wang

    2017-03-01

    By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.

  4. Towards Development of Robotic Aid for Rehabilitation of Locomotion-Impaired Subjects

    Science.gov (United States)

    Bejczy, Antal K.

    2000-01-01

    Manual assistance of therapists to help movement of legs of spinal cord injured (SCI) subjects during stepping on a treadmill for locomotion rehabilitation has severe economic and technical limitations. Scientists at the Department of Physiological Science at the University of California Los Angeles (UCLA) and roboticists at the Jet Propulsion Laboratory (JPL) initiated a joint effort to develop a robotic mechanism capable of performing controlled motions equivalent to the arm and hand motions of therapists assisting the stepping of locomotion impaired subjects on a treadmill, while the subjects' body weight is partially supported by an overhead harness. A first necessary technical step towards this development is to measure and understand the kinematics and dynamics of the therapists' arm and hand motions as they are reflected on the subjects' leg movement. This paper describes an initial measurement system developed for this purpose together with the related measurement results, and outlines the planned future technical work.

  5. Agua Caliente Solar Feasibility and Pre-Development Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Carolyn T. Stewart, Managing Partner; Red Mountain Energy Partners

    2011-04-26

    Evaluation of facility- and commercial-scale solar energy projects on the Agua Caliente Band of Cahuilla Indians Reservation in Palm Springs, CA. The Agua Caliente Band of Cahuilla Indians (ACBCI) conducted a feasibility and pre-development study of potential solar projects on its lands in southern California. As described below, this study as a logical and necessary next step for ACBCI. Support for solar project development in California, provided through the statewide California Solar Initiative (CSI), its Renewable Portfolio Standard and Feed-in Tariff Program, and recently announced Reverse Auction Mechanism, provide unprecedented support and incentives that can be utilized by customers of California's investor-owned utilities. Department of Energy (DOE) Tribal Energy Program funding allowed ACBCI to complete its next logical step to implement its Strategic Energy Plan, consistent with its energy and sustainability goals.

  6. Entering a Developing Country with a Solar Cooker: Strategies for Start-ups

    OpenAIRE

    Larsen, Even Sønnik Haug; Seim, Guro Grytli

    2015-01-01

    Today, 2.7 billion people rely on biomass as their primary cooking fuel, leading to severe health and environmental impacts in many developing countries. Solar cooking represents a technologically viable alternative to the use of biomass, but scaling up the market has failed despite many years of efforts, mostly by non-profits, donor agencies and governments. Literature shows that there are several barriers to the adoption of solar cookers, where factors such as disruptiveness of the technolo...

  7. Status of Solar Generator Related Technology Development Activities Supporting the Juice Mission

    OpenAIRE

    Baur Carsten; Khorenko Victor; Siefer Gerald; Inguimbert Virginie; Park Seonyong; Boizot Bruno; Bourgoin Jacques C.; Casale Mariacristina; Campesato Roberta; Schnell Hans-Georg; Gerhard Andreas; Zanella Pietro; Ferrando Emanuele; Reutenauer Xavier; Bongers Ed

    2017-01-01

    The paper provides an overview of the current status of several technical development activities initiated by the European Space Agency (ESA) to support the JUICE mission to the Jovian system. First of all, the qualification status of the solar cells to be used in the JUICE mission will be reported. Then, the conclusions from a dedicated activity aiming at assessing the potential degradation of triple-junction solar cells upon primary discharges will be discussed. Finally, the results on the ...

  8. Development of flat-plate solar collectors for the heating and cooling of buildings: Executive summary

    Science.gov (United States)

    1978-01-01

    An efficient, low cost, flat-plate solar collector was developed. Computer aided mathematical models of the heat process in the collector were used in defining absorber panel configuration; determining insulation thickness; and in selecting the number, spacing, and material of the covers. Prototypes were built and performance tested. Data from simulated operation of the collector are compared with predicted loads from a number of locations to determine the degree of solar utilization.

  9. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  10. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  11. Subjective wellbeing and income: Empirical patterns in the rural developing world

    Science.gov (United States)

    Reyes-García, Victoria; Babigumira, Ronnie; Pyhälä, Aili; Wunder, Sven; Zorondo-Rodríguez, Francisco; Angelsen, Arild

    2016-01-01

    A commonality in the economics of happiness literature is that absolute income matters more for the subjective wellbeing of people at low income levels. In this article, we use a large sample of people in rural areas of developing countries with relatively low income levels to test whether subjective wellbeing an increasing function of absolute income in our sample, and to analyze the existence of adaptation and social comparison effects on subjective wellbeing. Our sample includes 6973 rural households in 23 countries throughout Asia, Africa, and Latin America. The average total income per adult equivalent in our sample was US$1555, whereas levels of subjective wellbeing resembled levels found in previous research using cross-country data. We find that, despite low levels of absolute income, levels of subjective wellbeing of our respondents resemble levels found in previous research using cross-country data. We also find remarkable similarities in many of the determinants of subjective wellbeing previously tested. Our data show that absolute income covariates with subjective wellbeing, but -as for richer samples- the magnitude of the association is lower once we control for adaptation and social comparison. Finally, our results suggest that social comparison has a stronger effect than adaptation in explaining the subjective wellbeing of our sample. Our findings highlight the importance of adaptation and social comparison even at low levels of absolute income. PMID:27642259

  12. Social existence: between subjective and objective conditions. Impact on the theoretical discussion on development

    Directory of Open Access Journals (Sweden)

    Aura González Serna

    2012-01-01

    Full Text Available This article aims to instill reflections on the theoretical debate around the development. The premise for fixing the analysis is to consider the impact of modes of apprehending social existence, since it is demarcated between subjectivities and objective conditions. Different conceptions appear to interpret and represent the individual and collective imagination. Fragmentation between subjectivity and objectivity, constitute an impediment to understanding the generic nature of being that builds and permanently transformed the social existence.

  13. Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production

    Energy Technology Data Exchange (ETDEWEB)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie [Faculty of Engineering, Tohoku University, Sendai 980-8579 (Japan); Satake, Akira [Technical Research Institute, Maeda Corporation, Tokyo 179-8914 (Japan); Yoshie, Ryuichiro [Faculty of Engineering, Tokyo Polytechnic University, Atsugi 243-0297 (Japan); Baba, Seizo [Earth Clean Tohoku Co. Ltd., Sendai 984-0038 (Japan)

    2010-02-15

    This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions. (author)

  14. Development of a solar powered residential air conditioner (General optimization)

    Science.gov (United States)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  15. New developments in luminescence for solar energy utilization

    Science.gov (United States)

    Reisfeld, Renata

    2010-07-01

    As our fossil sources of energy diminish constantly search for alternative energy solutions becomes vital. The interest in exploiting solar energy for photovoltaic electricity has grown exponentially in recent decade, however, its high cost is still a limiting factor for massive uses. Static luminescent concentrator could provide a partial solution if properly designed. The paper summarizes the requirements for efficient and photostable luminescent concentrators, provides the latest results and ideas and shows how they can be materialized. It is demonstrated how the plate efficiency can be improved by applying a thin film with optical contact to transparent plate, silver plasmons that increase the transition probability of the colorants, photonic systems preventing the escape of the luminescence from the plate when traveling to the cell, creating fluorescence in the UV and visible part of the spectrum, using materials in which the absorption and emission from different electronic levels prevent self-absorption.

  16. New developments on diamond photodetector for VUV solar observations

    Science.gov (United States)

    Ben Moussa, A.; Soltani, A.; Haenen, K.; Kroth, U.; Mortet, V.; Barkad, H. A.; Bolsee, D.; Hermans, C.; Richter, M.; DeJaeger, J. C.; Hochedez, J. F.

    2008-03-01

    A new large-size metal-semiconductor-metal photoconductor device of 4.6 mm in diameter based on diamond material has been reprocessed and characterized in the vacuum-ultraviolet (VUV) wavelength range. The metal finger contacts have been processed to 2 µm in width with spacing between the contacts of 5 µm for a bias voltage of 5 V. The responsivity, stability, linearity and homogeneity have been tested. Solutions and progresses on diamond processing are identified and are reported. In the VUV wavelength range of interest, the diamond photodetector is sensitive with a maximum response of 48 mA W-1 at 210 nm with a corresponding external quantum efficiency of 42%, homogenous and stable under short irradiation. It indicates a 200-400 nm rejection ratio of more than four orders of magnitude and demonstrates the advantages of diamond-based detectors in terms of high rejection ratio and high output signal for VUV solar observation missions.

  17. The rapid bi-level exploration on the evolution of regional solar energy development

    Science.gov (United States)

    Guan, Qing; An, Haizhong; Li, Huajiao; Hao, Xiaoqing

    2017-01-01

    As one of the renewable energy, solar energy is experiencing increased but exploratory development worldwide. The positive or negative influences of regional characteristics, like economy, production capacity and allowance policies, make them have uneven solar energy development. In this paper, we aim at quickly exploring the features of provincial solar energy development, and their concerns about solar energy. We take China as a typical case, and combine text mining and two-actor networks. We find that the classification of levels based on certain nodes and the amount of degree avoids missing meaningful information that may be ignored by global level results. Moreover, eastern provinces are hot focus for the media, western countries are key to bridge the networks and special administrative region has local development features; third, most focus points are more about the application than the improvement of material. The exploration of news provides practical information to adjust researches and development strategies of solar energy. Moreover, the bi-level exploration, which can also be expanded to multi-level, is helpful for governments or researchers to grasp more targeted and precise knowledge.

  18. The Development of a New Model of Solar EUV Irradiance Variability

    Science.gov (United States)

    Warren, Harry; Wagner, William J. (Technical Monitor)

    2002-01-01

    The goal of this research project is the development of a new model of solar EUV (Extreme Ultraviolet) irradiance variability. The model is based on combining differential emission measure distributions derived from spatially and spectrally resolved observations of active regions, coronal holes, and the quiet Sun with full-disk solar images. An initial version of this model was developed with earlier funding from NASA. The new version of the model developed with this research grant will incorporate observations from SoHO as well as updated compilations of atomic data. These improvements will make the model calculations much more accurate.

  19. Lunar Solar Power System Driven Human Development of the Moon and Resource-Rich Exploration of the Inner Solar System

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    The people of Earth require, by the middle of the 21st century, a new source of commercial power that is sustainable, clean, reliable, low in cost ( 2 kWe/person or > 20 TWe) than now (1, 2). The Lunar Solar Power (LSP) System appears to be the only reasonable option (2, 3). The Moon dependably receives 13,000 TWs of solar power. The LSP System consists of pairs of power bases located on opposite limbs of the Moon as seen from Earth. The power bases collect the solar energy and convert it to beams of microwaves. The microwaves are delivered directly to moonward-facing receivers on Earth or indirectly through relay satellites in orbit about Earth. To achieve low cost, the power bases are made primarily of local lunar materials by machines, facilities, and people deployed from Earth. Hundreds to thousands of people will be required on the Moon, in cis-lunar space, and operating tele-robotically from Earth to construct the full scale LSP System. Models indicate that power sales on Earth can easily support the required people, their regular transport between the Earth and Moon, and provide the required return on investment to develop the LSP System (4, 5). Construction of the LSP System, even at an early stage, creates fundamentally new wealth and capabilities supportive of rapid growth of human activities within the inner solar system. A factor of ten increase in global Earth-to-orbit transport will be required in the demonstration phase. Launch cost of 5,000 /kg is acceptable. Lower cost transport decreases the upfront cost of the LSP System but is not critical to the cost of energy from the mature LSP. Logistic and assembly facilities in orbit about the Earth and Moon will be required that are at least a factor of ten large than planned for the full scale International Space Station. Transport must be provided between the Earth and the Moon of hundreds, possibly thousands, of workers. Production machinery will be available that can build fundamentally new

  20. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Habte, Aron; Sengupta, Manajit; Kutchenreiter, Mark

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.

  1. SolarSyngas: Results from a virtual institute developing materials and key components for solar thermochemical fuel production

    Science.gov (United States)

    Roeb, Martin; Steinfeld, Aldo; Borchardt, Günter; Feldmann, Claus; Schmücker, Martin; Sattler, Christian; Pitz-Paal, Robert

    2016-05-01

    The Helmholtz Virtual Institute (VI) SolarSynGas brings together expertise from solar energy research and materials science to develop metal oxide based redox materials and to integrate them in a suitable way into related process technologies for two-step thermochemical production of hydrogen and carbon monoxide from water and CO2. One of the foci of experimental investigation was exploring the impact of doping on the feasibility of ceria-based materials - mainly by Zr-doping. The results indicate that a certain Zr-content enhances the reducibility and therefore the splitting performance. Increasing the Zr-content to x = 0.15 improved the specific CO2-splitting performance by 50% compared to pure ceria. This finding agrees with theoretical studies attributing the improvements to lattice modification caused by the introduction of Zr4+. Thermogravimetric relaxation experiments and equilibrium oxygen isotope exchange experiments with subsequent depth profiling analysis were carried out on ceria. As a result the reduction reaction of even dense samples of pure ceria with a grain size of about 20 µm is surface reaction controlled. The structure of the derived expression for the apparent activation energy suggests that the chemical surface exchange coefficient should show only a very weak dependence on temperature for ceria doped with lower valence cations. A solar receiver reactor exhibiting a foam-type reticulated porous ceramics made of ceria was tested. It could be shown that applying dual-scale porosity to those foams with mm-size pores for effective radiative heat transfer during reduction and μm-size pores within its struts for enhanced kinetics during oxidation allows enhancing the performance of the reactor significantly. Also a particle process concept applying solid-solid heat recovery from redox particles in a high temperature solar thermochemical process was analysed that uses ceramic spheres as solid heat transfer medium. This concept can be implemented

  2. Solar Powered Propulsion for Space. (Latest citations from the Aerospace Database)

    Science.gov (United States)

    1998-01-01

    The bibliography contains citations concerning the design, development, and performance of solar propulsion systems. Solar electric propulsion and solar thermal propulsion are reviewed. Topics include solar power satellites, nuclear electric propulsion, solar-powered orbit transfer vehicles, and solar dynamic and bimodal power systems. References also discuss atmospheric pollution control, telephone services, space commercialization, interplanetary missions, and lunar and Mars exploration. (Contains 50-250 citations and includes a subject term index and title list.)

  3. Solar Power Generation for ICT and Sustainable Development in Emerging Economies

    Science.gov (United States)

    Paul, Damasen I.; Uhomoibhi, James

    2012-01-01

    Purpose: The purpose of this paper is to systematically examine and draw attention to the potential benefits of solar power generation for access to and use of information and communication technologies (ICT) aimed at sustainable development in emerging economies. Design/methodology/approach: Electricity plays a crucial role in the development and…

  4. On the Effectiveness of Feed-in Tariffs in the Development of Photovoltaic Solar

    NARCIS (Netherlands)

    E. Dijkgraaf (Elbert); T. van Dorp (Tom); E. Maasland (Emiel)

    2014-01-01

    markdownabstract__Abstract__ Growing concern for climate change and rising scarcity of fossil fuels prompted governments to stimulate the development of renewables. This paper empirically tests whether feed-in tariff (FIT) policies have been effective in the development of photovoltaic solar

  5. Centaur gas-turbine modification and development for solar-fossil hybrid operation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P B; Kubasco, A J

    1982-09-01

    A study was performed with the objectives of developing conceptual designs of the hardware and systems modifications required to operate the Solar Turbines Incorporated Centaur recuperative gas turbine-generator set in a solar-fossil hybrid mode. The combustion and control systems were defined as the major technology voids and a single-shaft Centaur generator set with a parallel trim combustor selected as the preferred system configuration. A bench-scale combustor development program was conducted to generate the design and performance data necessary for preliminary definition of the full-size trim combustor. A bench-scale trim combustor was developed with the turndown capabilities necessary for the hybrid solar-fossil system.

  6. Continued Development of an Ultra-Narrow Bandpass Filter for Solar Research

    Science.gov (United States)

    Rust, David M.

    1993-01-01

    The objective of work under this task was to develop ultranarrow optical bandpass filters and related technology necessary for construction of a compact solar telescope capable of operating unattended in space. The scientific problems to which such a telescope could be applied include solar seismology, solar activity monitoring, solar irradiance variations, solar magnetic field evolution, and the location of targets for narrow-field specialized telescopes. We have demonstrated a Y-cut lithium-niobate Fabry-Perot etalon. This filter will be used on the Flare Genesis Experiment. We also obtained solar images with a Z-cut etalon. The technical report on etalon filters is attached to this final report. We believe that work under this grant will lead to the commercial availability of a universal optical filter with approximately 0.1 A bandwidth. Progress was made toward making a suitable 1-2 A tunable blocker filter, but it now appears that the best approach is to make a double-cavity etalon that will not require such a narrow blocker. Broader band blockers are commercially available.

  7. Development of a solar-powered electric bicycle in bike sharing transportation system

    Science.gov (United States)

    Adhisuwignjo, S.; Siradjuddin, I.; Rifa'i, M.; Putri, R. I.

    2017-06-01

    The increasing mobility has directly led to deteriorating traffic conditions, extra fuel consumption, increasing automobile exhaust emissions, air pollution and lowering quality of life. Apart from being clean, cheap and equitable mode of transport for short-distance journeys, cycling can potentially offer solutions to the problem of urban mobility. Many cities have tried promoting cycling particularly through the implementation of bike-sharing. Apparently the fourth generation bikesharing system has been promoted utilizing electric bicycles which considered as a clean technology implementation. Utilization of solar power is probably the development keys in the fourth generation bikesharing system and will become the standard in bikesharing system in the future. Electric bikes use batteries as a source of energy, thus they require a battery charger system which powered from the solar cells energy. This research aims to design and implement electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. It is necessary to develop an electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. The study was conducted by means of experimental method which includes the design, manufacture and testing controller systems. The designed fuzzy algorithm have been planted in EEPROM microcontroller ATmega8535. The charging current was set at 1.2 Amperes and the full charged battery voltage was observed to be 40 Volts. The results showed a fuzzy logic controller was able to maintain the charging current of 1.2 Ampere with an error rate of less than 5% around the set point. The process of charging electric bike lead acid batteries from empty to fully charged was 5 hours. In conclusion, the development of solar-powered electric bicycle controlled using fuzzy logic controller can keep the battery charging current in solar-powered electric bicycle to remain stable. This shows that the fuzzy algorithm can be used as

  8. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  9. Subject- and Experience-Bound Differences in Teachers' Conceptual Understanding of Sustainable Development

    Science.gov (United States)

    Borg, C.; Gericke, N.; Höglund, H.-O.; Bergman, E.

    2014-01-01

    This article describes the results of a nationwide questionnaire study of 3229 Swedish upper secondary school teachers' conceptual understanding of sustainable development in relation to their subject discipline and teaching experience. Previous research has shown that teachers have difficulties understanding the complex concept of sustainable…

  10. "Biosphere Reserve"--The Actual Research Subject of the Sustainable Development Process"

    Science.gov (United States)

    Khasaev, Gabibulla R.; Sadovenko, Marina Yu.; Isaev, Roman O.

    2016-01-01

    The relevance of the analyzed issue is caused by the growing slippage of research funds of sustainable development in its practice. The purpose of the article is the theoretical basis of the biosphere reserve as a scientific research subject that is relevant to rules of the scientific activity. The leading approach to the study of this issue is…

  11. Satisfaction with travel and subjective well-being: development and test of a measurement tool

    NARCIS (Netherlands)

    Ettema, D.F.; Gärling, T.; Eriksson, L.; Friman, M.; Olsson, L.E.; Fujii, S.

    2011-01-01

    Subjective well-being (SWB) that includes individuals’ cognitive and affective evaluations of life in general is proposed to be a more appropriate measure capturing the benefits individuals derive from travel improvements. We develop and testa measure of travel-related SWB, the nine item self-report

  12. 86Rubidium uptake in mononuclear leucocytes from young subjects at increased risk of developing essential hypertension

    DEFF Research Database (Denmark)

    Nielsen, J R; Johansen, Torben; Pedersen, K E

    1988-01-01

    parents. 86Rubidium uptake was significantly increased in the borderline hypertensive subjects, especially in the borderline hypertensive offspring of hypertensive patients. Our results indicate that the sodium-potassium pump is activated in mononuclear leucocytes from borderline hypertensives......, and especially in those borderline hypertensives with at least one hypertensive parent. The latter group was also the group at greatest risk of developing essential hypertension....

  13. Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigeration for lesser developed countries

    Science.gov (United States)

    Erickson, Donald C.

    1990-02-01

    The Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigerator is a solar thermal technology which provides low cost, efficient, reliable ice-making to areas without ready access to electricity. An ISAAC refrigeration system consists of a compound parabolic solar collector, two pressure vessels, a condenser, a cold box or refrigerated space, and simple connective piping -- no moving parts or electrical components. Most parts are simple construction or plumbing grade materials, locally available in many remote areas. This technology has numerous potential benefits in lesser developed countries both by providing a cheap, reliable source of ice, and, since manufacture requires only semi-skilled labor, a source of employment to the local economy. Applications include vaccine storage for health care clinics; fish, meat, and dairy product storage; and personal consumption. Importantly, this technology increases the quality of life for people in lesser developed countries without depleting fossil fuel resources or increasing the release of greenhouse gases such as CO2 and chlorofluorocarbons.

  14. Development of the Kiel sensors for the EPD instrument on-board Solar Orbiter

    Science.gov (United States)

    Martin, Cesar; Wimmer-Schweingruber, Robert F.; Kulkarni, Shrinivasrao R.; Tammen, Jan; Terasa, Christoph; Yu, Jia; Boden, Sebastian; Steinhagen, Jan; Panitzsch, Lauri; Ravanbakhsh, Ali; Boettcher, Stephan; Hamann, Christian; Seimetz, Lars; Rodriguez-Pacheco, Javier

    2015-04-01

    Solar Orbiter is ESA's next solar and heliospheric mission, planned for launch in January 2017 and approaching the Sun as close as 0.28 AU. One of the Solar Orbiter's scientific questions is "How do the solar eruptions produce energetic particle radiation that fills the heliosphere?". The Energetic Particle Detector (EPD) will provide key measurements for this and the other Solar Orbiter science objectives. The EPD suite consists of four sensors measuring electrons, protons, and ions from helium to iron, and operating at partly overlapping energy ranges from 2 keV/n up to 200 MeV/n. The EPD sensors are: SupraThermal Electrons and Protons(STEP), Suprathermal Ion Spectrograph (SIS), Electron Proton Telescope (EPT) and High Energy Telescope (HET). Besides, the EPD sensors share the Instrument Control Unit (ICU). The University of Kiel in Germany is responsible for developing the EPT-HET, STEP and SIS sensors. Here we present the development status of the EPT-HET and STEP sensors focusing on the activities planned for the current phase C. Those activities include results of the integration and EMC tests on the EPT-HET and STEP Engineering Model (EM) and the assembly of the Proto Qualification Model (PQM).

  15. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    Energy Technology Data Exchange (ETDEWEB)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  16. Solar Collectors

    Science.gov (United States)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  17. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  18. Lung function and breathing pattern in subjects developing high altitude pulmonary edema.

    Directory of Open Access Journals (Sweden)

    Christian F Clarenbach

    Full Text Available INTRODUCTION: The purpose of the study was to comprehensively evaluate physiologic changes associated with development of high altitude pulmonary edema (HAPE. We tested whether changes in pulmonary function and breathing pattern would herald clinically overt HAPE at an early stage. METHODS: In 18 mountaineers, spirometry, diffusing capacity, nitrogen washout, nocturnal ventilation and pulse oximetry were recorded at 490 m and during 3 days after rapid ascent to 4559 m. Findings were compared among subjects developing HAPE and those remaining well (controls. RESULTS: In 8 subjects subsequently developing radiographically documented HAPE at 4559 m, median FVC declined to 82% of low altitude baseline while closing volume increased to 164% of baseline (P<0.05, both instances. In 10 controls, FVC decreased slightly (to 93% baseline, P<0.05 but significantly less than in subjects with HAPE and closing volume remained unchanged. Sniff nasal pressure was reduced in both subjects with and without subsequent HAPE. During nights at 4559 m, mean nocturnal oxygen saturation dropped to lower values while minute ventilation, the number of periodic breathing cycles and heart rate were higher (60%; 8.6 L/min; 97 cycles/h; 94 beats/min, respectively in subjects subsequently developing HAPE than in controls (73%; 5.1 L/min; 48 cycles/h; 79 beats/min; P<0.05 vs. HAPE, all instances. CONCLUSION: The results comprehensively represent the pattern of physiologic alterations that precede overt HAPE. The changes in lung function are consistent with reduced lung compliance and impaired gas exchange. Pronounced nocturnal hypoxemia, ventilatory control instability and sympathetic stimulation are further signs of subsequent overt HAPE.

  19. Development of Web Based Learning Material in Physics Subject for Kalor and Temperature Material

    Directory of Open Access Journals (Sweden)

    Fatwa Aji Kurniawan

    2015-12-01

    Full Text Available It has been done, the research which aims to develop a web-based teaching materials on the subjects of physics subject with subject mater of temperature and heat. This study using a modified model of the 4D development by eliminating the deployment phase. The validation of product development conducted by validator media experts and experts matter of physics, whereas small-scale trials conducted by physics teacher and 10 students. Validator review results stating that the quality of the product development were included in the category very well with the average percentage rating of 83.93%. The percentage value assigned by media expert by 75% in the good category and the percentage of the value provided by a matter expert 92.85% were in the very good category. Experiments by physics teacher to obtain result of equal to 94.44% were in the very good category and the average percentage of the test results by the students of 90.5% were in the very good category. The characteristics of the products developed include material composition using the curriculum in 2013, there was a recording facility and the results of evaluation of students' activities, there were feedback evaluation results were immediately known by the students and there were some links related to the material either youtube or other learning website.

  20. Training-related brain plasticity in subjects at risk of developing Alzheimer's disease.

    Science.gov (United States)

    Belleville, Sylvie; Clément, Francis; Mellah, Samira; Gilbert, Brigitte; Fontaine, Francine; Gauthier, Serge

    2011-06-01

    Subjects with mild cognitive impairment are at risk of developing Alzheimer's disease. Cognitive stimulation is an emerging intervention in the field of neurology and allied sciences, having already been shown to improve cognition in subjects with mild cognitive impairment. Yet no studies have attempted to unravel the brain mechanisms that support such improvement. This study uses functional magnetic resonance imaging to measure the effect of memory training on brain activation in older adults with mild cognitive impairment and to assess whether it can reverse the brain changes associated with mild cognitive impairment. Brain activation associated with verbal encoding and retrieval was recorded twice prior to training and once after training. In subjects with mild cognitive impairment, increased activation was found after training within a large network that included the frontal, temporal and parietal areas. Healthy controls showed mostly areas of decreased activation following training. Comparison with pre-training indicated that subjects with mild cognitive impairment used a combination of specialized areas; that is, areas activated prior to training and new alternative areas activated following training. However, only activation of the right inferior parietal lobule, a new area of activation, correlated with performance. Furthermore, the differences between the brain activation patterns of subjects with mild cognitive impairment and those of healthy controls were attenuated by training in a number of brain regions. These results indicate that memory training can result in significant neural changes that are measurable with brain imaging. They also show that the brains of people with mild cognitive impairment remain highly plastic.

  1. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  2. JPL - Small Power Systems Applications Project. [for solar thermal power plant development and commercialization

    Science.gov (United States)

    Ferber, R. R.; Marriott, A. T.; Truscello, V.

    1978-01-01

    The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.

  3. Development of a solar-powered residential air conditioner. Program review

    Science.gov (United States)

    1975-01-01

    Progress in the effort to develop a residential solar-powered air conditioning system is reported. The topics covered include the objectives, scope and status of the program. The results of state-of-art, design, and economic studies and component and system data are also presented.

  4. Development of a Code to Analyze the Solar White-Light Images ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 1. Development of a Code to Analyze the Solar White-Light Images from the Kodaikanal Observatory: Detection of Sunspots, Computation of Heliographic Coordinates and Area. Ragadeepika Pucha K. M. Hiremath Shashanka R. Gurumath. Volume ...

  5. Solar Electricity Generation: Issues of Development and Impact on ICT Implementation in Africa

    Science.gov (United States)

    Damasen, Ikwaba Paul

    2013-01-01

    Purpose: The purpose of this paper is to examine and discuss, in-depth, how solar electricity can be developed and used to tackle grid electricity-related problems in African countries suffering from unreliable and inadequate grid electricity. Design/methodology/approach: The paper discusses in depth the current status of grid electricity in…

  6. Solar Power for Post Harvest Losses - A Sensible Solution for Developing Countries!

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwar, C.; Chilukuri, Snigdha

    2010-09-15

    About 30% of horticultural crops grown in developing countries like India (38.77 million tonnes amounting to US $13 billion), get wasted annually due to gaps in Cold Chain like insufficient cold storage capacity, unavailability of cold storages in close proximity to farms, poor transportation infrastructure etc. With solar energy availability (Insolation) averaging 5.0 KWh/sq. m/day with 3000 hours of sunshine every year, about 30-35% of these losses can be reduced by transporting the freshly harvested produce to the cold storages in 40,000 TEUs of refrigerated containers with 5 million sq. ft. of solar PV panels fixed on their rooftops and sides.

  7. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    Energy Technology Data Exchange (ETDEWEB)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  8. Near Earth Asteroid Scout Solar Sail Engineering Development Unit Test Suite

    Science.gov (United States)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 6U reconnaissance mission to investigate a near Earth asteroid utilizing an 86m(sub 2) solar sail as the primary propulsion system. This will be the largest solar sail NASA has launched to date. NEA Scout is currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis was able to capture understanding of thermal, stress, and dynamics of the stowed system as well as mature an integrated sail membrane model for deployed flight dynamics. Full scale system testing on the ground is the optimal way to demonstrate system robustness, repeatability, and overall performance on a compressed flight schedule. To physically test the system, the team developed a flight sized engineering development unit with design features as close to flight as possible. The test suite included ascent vent, random vibration, functional deployments, thermal vacuum, and full sail deployments. All of these tests contributed towards development of the final flight unit. This paper will address several of the design challenges and lessons learned from the NEA Scout solar sail subsystem engineering development unit. Testing on the component level all the way to the integrated subsystem level. From optical properties of the sail material to fold and spooling the single sail, the team has developed a robust deployment system for the solar sail. The team completed several deployments of the sail system in preparation for flight at half scale (4m) and full scale (6.8m): boom only, half scale sail deployment, and full scale sail deployment. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  9. Recent Developments in Ionosphere-Thermosphere Modeling with an Emphasis on Solar Variability

    Science.gov (United States)

    Sojka, J.; Smithtro, C.; Schunk, R.

    The Utah State University modeling developments have led to new results in several areas of ionospheric research. This presentation will present the most recent of these results and their synergisms with both ground-based and satellite-based observations. Particular attention is given to new results associated with solar variability, a central theme to this TIGER symposium. The effect on the ionosphere of differences in solar X-EUV spectra will be demonstrated by studies using the Time Dependent Ionospheric Model (TDIM) while their effect on the coupled thermosphere-ionosphere will be shown using a new model, the Global Average Ionosphere Thermosphere (GAIT) model. How the dayside solar-produced plasma is also an aspect of SAPS, SEDs, Tongues of Ionization, Patches, Polar Wind Jets, and Polar Cap Scintillations, will be described via recent modeling results from a variety of coupled or driven thermosphere, ionosphere, magnetosphere models. The presentation will further the need for improved solar output specification whether via observation or model. These improvements need to be over the flare through solar cycle time scale with particular attention to the short wavelength end of the spectrum.

  10. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization

    Directory of Open Access Journals (Sweden)

    Wenguang Fan

    2016-02-01

    Full Text Available Increasing utilization of solar energy is an effective strategy to tackle our energy and energy-related environmental issues. Both solar photocatalysis (PC and solar photovoltaics (PV have high potential to develop technologies of many practical applications. Substantial research efforts are devoted to enhancing visible light activation of the photoelectrocatalytic reactions by various modifications of nanostructured semiconductors. This review paper emphasizes the recent advancement in material modifications by means of the promising localized surface plasmonic resonance (LSPR mechanisms. The principles of LSPR and its effects on the photonic efficiency of PV and PC are discussed here. Many research findings reveal the promise of Au and Ag plasmonic nanoparticles (NPs. Continual investigation for increasing the stability of the plasmonic NPs will be fruitful.

  11. Development of processes for the production of low cost silicon dendritic web for solar cells

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.

    1980-01-01

    High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).

  12. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces

    Science.gov (United States)

    Litzov, Ivan; Brabec, Christoph J.

    2013-01-01

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423

  13. Renewable Energy Feasibility Study Leading to Development of the Native Spirit Solar Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carolyn Stewart; Tracey LeBeau

    2008-01-31

    DOE-funded renewable energy feasibility study conducted by Red Mountain Tribal Energy on behalf of the Southwest Tribal Energy Consortium (SWTEC). During the course of the study, SWTEC members considered multiple options for the organization structure, selected a proposed organization structure, and drafted a Memorandum of Understanding for the SWTEC organization. High-level resource assessments for SWTEC members were completed; surveys were developed and completed to determine each member’s interest in multiple participation options, including on-reservation projects. With the survey inputs in mind, multiple energy project options were identified and evaluated on a high-level basis. That process led to a narrowing of the field of technology options to solar generation, specifically, utility-scale Concentrating Solar-Powered Generation projects, with a specific, tentative project location identified at the Fort Mojave Indian Reservation -- the Native Spirit Solar Energy Facility.

  14. Status of Solar Generator Related Technology Development Activities Supporting the Juice Mission

    Directory of Open Access Journals (Sweden)

    Baur Carsten

    2017-01-01

    Full Text Available The paper provides an overview of the current status of several technical development activities initiated by the European Space Agency (ESA to support the JUICE mission to the Jovian system. First of all, the qualification status of the solar cells to be used in the JUICE mission will be reported. Then, the conclusions from a dedicated activity aiming at assessing the potential degradation of triple-junction solar cells upon primary discharges will be discussed. Finally, the results on the coupon tests currently running at ESA will be presented. The coupons consist of representative solar cell assemblies including coverglasses with a conductive Indium Tin Oxide (ITO layer. Dedicated coverglass grounding technologies are tested on the coupons which connect the conductive coverglass surfaces to the panel ground. It will be shown how the resistivity of the materials used in the coupons evolves upon submission to extreme thermal cycles.

  15. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ Solar Cells Using Different Metal Oxide Interfaces

    Directory of Open Access Journals (Sweden)

    Ivan Litzov

    2013-12-01

    Full Text Available Solution-processed inverted bulk heterojunction (BHJ solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL and as hole transport/extraction layers (HTL/HEL in inverted BHJ solar cells will be reviewed and discussed.

  16. 'Inorganics-in-organics': recent developments and outlook for 4G polymer solar cells.

    Science.gov (United States)

    Jayawardena, K D G Imalka; Rozanski, Lynn J; Mills, Chris A; Beliatis, Michail J; Nismy, N Aamina; Silva, S Ravi P

    2013-09-21

    Recent developments in solution processable single junction polymer solar cells have led to a significant improvement in power conversion efficiencies from ∼5% to beyond 9%. While much of the initial efficiency improvements were driven through judicious design of donor polymers, it is the engineering of device architectures through the incorporation of inorganic nanostructures and better processing that has continued the efficiency gains. Inorganic nano-components such as carbon nanotubes, graphene and its derivatives, metal nanoparticles and metal oxides have played a central role in improving device performance and longevity beyond those achieved by conventional 3G polymer solar cells. The present work aims to summarise the diverse roles played by the nanosystems and features in state of the art next generation (4G) polymer solar cells. The challenges associated with the engineering of such devices for future deployment are also discussed.

  17. A Study to Determine the Need for Development of a Vocational Education Program in Solar Energy Technology.

    Science.gov (United States)

    Green, C. Paul; Orsak, Charles G.

    To determine the need for the development of a vocational education program in solar energy, an advisory committee considered opportunities for solar energy technicians and the need for the development of training programs and curricula and formulated recommendations for a program and curriculum. They concluded that the immediate need for persons…

  18. Development of a credit-bearing service leadership subject for university students in Hong Kong.

    Science.gov (United States)

    Shek, Daniel T L; Yu, Lu; Ma, Cecilia M S; Sun, Rachel C F; Liu, Ting Ting

    2013-01-01

    Given that service industries contribute to 93% of Hong Kong's GDP, an important question that should be asked is whether the education system can promote the development of service leadership among young people in Hong Kong. Unfortunately, service leadership programs specifically designed for university students are lacking in Hong Kong. In this paper, the basic tenets of the Service Leadership and Management framework are presented. Based on the fundamental postulation that effective service leadership is a function of moral character, competence and care (E=MC(2)), a subject called "Service Leadership" has recently been developed at The Hong Kong Polytechnic University. This paper outlines the objectives, intended learning outcomes, syllabus, assessment, and references of the subject. The proposed evaluation strategies are also described.

  19. Recognition and development of "educational technology" as a scientific field and school subject

    OpenAIRE

    Danilović Mirčeta S.

    2004-01-01

    The paper explores the process of development, establishment and recognition of "educational technology" as an independent scientific field and a separate teaching subject at universities. The paper points to: (a) the problems that this field deals with or should deal with, (b) knowledge needed for the profession of "educational technologist", (c) various scientific institutions across the world involved in educational technology, (d) scientific journals treating issues of modern educational ...

  20. A review on recent developments in solar distillation units

    Indian Academy of Sciences (India)

    less than 1% fresh water is within the human reach, which is insufficient to meet all the requirements. Besides, 90% of urban sewage in developing countries is discharged into water bodies which generate enormous waste in water bod- ies, turning them into sewers or sources of poisoned water. Till date, approximately 884 ...

  1. Passive solar poultry eggs incubator: II development and preliminary ...

    African Journals Online (AJOL)

    Tests carried out on the incubator during day time operations indicate that passive systems can be used to solve the heating problems of poultry farmers with free energy from the sun. Further tests and development work are still in progress. Journal of Applied Science, Engineering and Technology Vol. 3(2) 2003: 30-36 ...

  2. Learning Sustainability by Developing a Solar Dryer for Microalgae Retrieval

    Science.gov (United States)

    Malheiro, Benedita; Ribeiro, Cristina; Silva, Manuel F.; Caetano, Nídia; Paulo Ferreira,; Guedes, Pedro

    2015-01-01

    The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather…

  3. New data analysis technique developed for the determination of the solar limb position in measurements of the solar diameter and oblateness, and application to observations obtained with the balloon-borne Solar Disk Sextant (SDS) experiment.

    Science.gov (United States)

    Djafer, D.; Sofia, S.; Irbah, A.; Thuillier, G.; Egidi, A.; Caccin, B.

    Solar diameter measurements performed from ground by several instruments during these last decades show variations which are not in agreement. In relation with solar activity, these measurements do not reveal consistent results. These results can be either attributed to Earth atmosphere effects or to instrumental ones especially in presence of noise. Noise affects directly the determination of the solar diameter defined as the zero crossing of the second derivative of the solar limb. Furthermore, presence of noise in data causes additional problems requiring appropriate data filtering without changing the solar limb slope. Several methods have been developed and used for a correct inflexion point position determination, among them, is the Fast Fourier Transform Definition (FFTD). We first present a complete description of the FFTD tool and in particular a new method to choose the filtering parameter (a) to be determined for applying FFDT. An alternative method by filtering using the wavelet analysis is also shown. The Solar Disk Sextant (SDS) is an instrument which has been flown on stratospheric balloons from 1992 to 1998 at 37 km altitude preventing all atmospheric effects. SDS uses a prism as angular reference. We present and discuss results obtained from SDS data analysis and compare them using others methods of inflexion point position detection. Finally, we discuss all other SDS experimental parameters able to cause solar diameter measurement variations.We show the relationship between the diameter variation and solar variability.

  4. The Assessment Of Solar Photovoltaic Electricity In ICT for Sustainability In Developing Countries

    DEFF Research Database (Denmark)

    Tsivor, Kenneth; Adjin, Daniel Michael Okwabi

    2013-01-01

    Poor basic infrastructure and reliable electricity supply play a significant role in development of Information, Communication Technologies (ICT) industry and could eventually lead to attaining sustainable development. From research studies, quality electricity supply has been an integral part....... Unfortunately, electricity delivery in the third countries is so much appalling due to limited electricity generating capacity, poor distribution networks, etc. which is hindering effective development including the ICT industry in these countries. To address some of these challenges locally without recourse...... to importation of fossil fuel energy resources that will compromise sustainable development goals, it is important to that locally, abundantly and freely available energy source such as solar electricity are given priority by policy makers, researcher and industries in third world countries. Solar electricity...

  5. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

    Science.gov (United States)

    2015-07-01

    Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver...Aluminum Gallium Arsenide (AlGaAs) Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kimberley A Olver

  6. Factors Affecting The Use and Development of Solar Energy in Iran's Agricultural Sector

    Directory of Open Access Journals (Sweden)

    Mohsen Mohammadi

    2017-03-01

    Keywords: Agriculture, Renewable Energy, Fossil, Fuel, Sustainability Article History: Received Nov 16th 2016; Received in revised form January 12nd 2017; Accepted 3rd February 2017; Available online How to Cite This Article: Mohammadi, M and Yavari, G. (2017 Factors affecting the use and development of solar energy in Iran's agricultural sector. International Journal of Renewable Energy Development, 6(1,45-53. http://dx.doi.org/10.14710/ijred.6.1.45-53

  7. The Mediterranean solar plan, a development catalyst; Le plan solaire mediterraneen, un catalyseur de developpement

    Energy Technology Data Exchange (ETDEWEB)

    Lorec, Ph. [Energie du Climat, 92 - La Defense (France); Laffitte, M. [Inspection Generale des Finances, 75 - Paris (France)

    2009-08-15

    In the framework of the 'Union for the Mediterranean area', the Mediterranean Solar Plan aims at answering the energy needs of populations but the global and regional challenges of the decades to come as well. Using mature technologies, for which an acceleration of the industrial development and a cost reduction are requested, it proposes a new sustainable development policy and a durable, profitable and shared economic model. (J.S.)

  8. Guidebook for the Development of a Nationally Appropriate Mitigation Action for Solar Water Heaters

    DEFF Research Database (Denmark)

    Haselip, James Arthur; Lütken, Søren E.; Sharma, Sudhir

    This guidebook provides an introduction to designing government-led interventions to scale up investment in solar water heater (SWH) markets, showing how these interventions can be packaged as Nationally Appropriate Mitigation Actions (NAMAS). Reflecting the changing balance in global greenhouse...... gas emissions, NAMAs embody the principle of common but differentiated responsibilities. In addition to developed countries’ commitments to make quantitative reductions of greenhouse gas emissions, developing countries are invited to contribute with voluntary actions that are ‘nationally appropriate...

  9. Solar heating and cooling system design and development (status summay through December 1977)

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-06

    The program scope is to develop, fabricate, install, and monitor the operation of prototype solar heating and cooling systems. Application studies have been completed for three application categories: single-family residential, multi-family residential, and commercial. The program currently consists of development of heating and cooling euipment for single-family residential and commercial applications and eight operational test sites (four heating and four heating and cooling). Four are single-family residences and four are commercial buildings.

  10. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    Science.gov (United States)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  11. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  12. Development of a Façade Assessment and Design Tool for Solar Energy (FASSADES

    Directory of Open Access Journals (Sweden)

    Jouri Kanters

    2014-03-01

    Full Text Available Planning energy-efficient buildings which produce on-site renewable energy in an urban context is a challenge for all involved actors in the planning process. The primary objective of this study was to develop a façade assessment and design tool for solar energy (FASSADES providing the necessary information for all stakeholders in the design process. The secondary objective was to demonstrate the tool by performing an assessment analysis of a building block. The FASSADES tool is a DIVA4Rhino script, combining Radiance/Daysim and EnergyPlus for simulating the annual production of solar thermal and photovoltaic systems on facades, the cost-effectiveness of the solar energy system, and the payback time. Different output methods are available; graphically within the 3D drawing environment and numerically within post-processing software. The tool was tested to analyse a building block within a city under Swedish conditions. Output of the developed tool showed that shading from nearby buildings greatly affects the feasibility of photovoltaic and solar thermal systems on facades.

  13. Development of pulsed processes for the manufacture of solar cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Minnucci, J.A.

    1979-04-01

    The results of a one and half year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells are described. The program included (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation and furnace annealing. During the program, phosphorus ions at an energy of 10 keV and dose of 2 x 10/sup 15/ cm/sup -2/ were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10/sup 15/ cm/sup -2/ were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100-mA, automated implanter with a production capacity of 100 MW/sub e/ per year. Two process sequences were developed which employ ion implantation and furnace or pulse annealing. The JPL-Solar Array Manufacturing Industry Simulation (SAMIS) computer program was used to determine costs for junction formation by ion implantation and various furnace annealing cycles to demonstrate cost effectiveness of these methods.

  14. The Finnish solar cluster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    There are numerous drivers behind the increasing utilization of solar energy. Currently solar energy is a relatively small market in Finland but there are many visible signs of increasing interest towards solar technologies and solar energy. There are already some Finnish companies offering their products and services for the global solar market. Considering the high Finnish competence in various fields of technology, there should be no reason why more companies would not follow in the future. This report drafts the Finnish solar cluster in its current form, including both those companies that operate in and along the solar value chain as well as those who have the opportunity to promote solar implementation and utilization. Further, this report brings up existing solar-related strengths of Finnish companies and research including inverters and material technology as well as the identified main obstacles for large-scale solar expansion in Finland. In addition, this report will also list some key barriers for solar implementation identified during the study. The report will also look solar from an urban planning perspective and discuss about implementing solar into new and existing built environments, which extends the study further beyond the traditional solar value chain. In order to get insights into urban solar development in Finland, we have interviewed the following exerts for this work: Robert Eriksson from City of Espoo; Alpo Tani from City of Helsinki, Pauli Valimaki and Elina Seppanen from City of Tampere; Mika Pekkinen from Tampereen Saehkoelaitos; Maarit Tuomainen and Kimmo Ruokoniemi from SATO, Kaisa Kekki and Pellervo Matilainen from Skanska; Eero Vartiainen from Fortum; Jari Suominen from ST1 and Karin Wikman from Tekes. We would like to express our sincere thanks to the persons we interviewed for their support and ideas regarding the subject. This report relates to the Solar Energy Forum organized by the Finnish Funding Agency for Technology and

  15. Development of high-efficiency solar cells on silicon web

    Science.gov (United States)

    Meier, D. L.

    1986-01-01

    Achievement of higher efficiency cells by directing efforts toward identifying carrier loss mechanisms; design of cell structures; and development of processing techniques are described. Use of techniques such as deep-level transient spectroscopy (DLTS), laser-beam-induced current (LBIC), and transmission electron microscopy (TEM) indicated that dislocations in web material rather than twin planes were primarily responsible for limiting diffusion lengths in the web. Lifetimes and cell efficiencies can be improved from 19 to 120 microns, and 8 to 10.3% (no AR), respectively, by implanting hydrogen at 1500 eV and a beam current density of 2.0 mA/sq cm. Some of the processing improvements included use of a double-layer AR coating (ZnS and MgF2) and an addition of an aluminum back surface reflectors. Cells of more than 16% efficiency were achieved.

  16. Design and development of a brushless, direct drive solar array reorientation system

    Science.gov (United States)

    Jessee, R. D.

    1972-01-01

    This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.

  17. Therapeutic misconception in research subjects: development and validation of a measure.

    Science.gov (United States)

    Appelbaum, Paul S; Anatchkova, Milena; Albert, Karen; Dunn, Laura B; Lidz, Charles W

    2012-12-01

    Therapeutic misconception (TM), which occurs when research subjects fail to appreciate the distinction between the imperatives of clinical research and ordinary treatment, may undercut the process of obtaining meaningful consent to clinical research participation. Previous studies have found that TM is widespread, but progress in addressing TM has been stymied by the absence of a validated method for assessing its presence. The goal of this study was to develop and validate a theoretically grounded measure of TM, assess its diagnostic accuracy, and test previous findings regarding TM's prevalence. A total of 220 participants were recruited from clinical trials at four academic medical centers in the United States. Participants completed a 28-item Likert-type questionnaire to assess the presence of beliefs associated with TM, and a semistructured TM interview designed to elicit their perceptions of the nature of the clinical trial in which they were participating. Data from the questionnaires were subjected to factor analysis, and items with poor factor loadings were excluded. This resulted in a 10-item scale, with three strongly correlated factors and excellent internal consistency; the fit indices of the model across 10 training sets were consistent with the original results, suggesting a stable factor solution. The scale was validated against the TM interview, with significantly higher scores among subjects coded as displaying evidence of TM. Receiver operating curve (ROC) analysis based on a 10-fold internal cross-validation yielded area under the ROC (AUC) = 0.682 for any evidence of TM. When sensitivity (0.72) and specificity (0.61) were both optimized, positive predictive value was 0.65 and negative predictive value was 0.68, with a positive likelihood ratio of 1.89 and a negative likelihood ratio of 0.47. In all, 50.5% (n = 101) of the participants manifested evidence of TM on the TM interview, a somewhat lower rate than in most previous studies. The

  18. Configuration and Development of a Solar Cloth Dryer

    Directory of Open Access Journals (Sweden)

    Kirar Dheeraj Singh

    2016-01-01

    Full Text Available This unique duplicate shows effective blueprint and headway of effective imperativeness profitable, effective, useful of disconnected sun arranged energized pieces of clothing dryer. This unique duplicate begins with an incitement of numerical model addresses of sun arranged dryer brought after with an examination of effective segments basic as long as viably arranging effective distinctive parts of daylight based dryer. Effective sun arranged drying execution achieved an ordinary drying rate of 0.35 kg/h and drying time of 3 h in a regular day, even under neighborhood low incorporating clamminess of around 35% and at moderate outside wind speed. Fur effective more, effective computational fluid component CFD of transient warm direct in light of Navies-Stokes numerical articulations was used to demonstrate effective overall temperature rises in effective sun based typical ventilation system associated with effective inside warmth flux on account of sun fueled radiation and moistness clearing. Effective viability of sun situated dryer was upgraded using Nano covering development. Effective result showed incredible assertion between effective computational solid multiplication and effective test estimations procured from this system.

  19. Recognition and development of "educational technology" as a scientific field and school subject

    Directory of Open Access Journals (Sweden)

    Danilović Mirčeta S.

    2004-01-01

    Full Text Available The paper explores the process of development, establishment and recognition of "educational technology" as an independent scientific field and a separate teaching subject at universities. The paper points to: (a the problems that this field deals with or should deal with, (b knowledge needed for the profession of "educational technologist", (c various scientific institutions across the world involved in educational technology, (d scientific journals treating issues of modern educational technology, (e the authors i.e. psychologists and educators who developed and formulated the basic principles of this scientific field, (f educational features and potentials of educational technologies. Emphasis is placed on the role and importance of AV technology in developing, establishing and recognition of educational technology, and it is also pointed out that AV technology i.e. AV teaching aids and a movement for visualization of teaching were its forerunners and crucial factors for its establishing and developing into an independent area of teaching i.e. school subject. In summary it is stressed that educational technology provides for the execution of instruction through emission transmission, selection, coding, decoding, reception, memorization transformation of all types of pieces of information in teaching.

  20. ADMINISTRATIVE REGULATORY INSTRUMENTS OF SOCIO-ECONOMIC DEVELOPMENT OF SOLAR ENERGY IN UKRAINE

    Directory of Open Access Journals (Sweden)

    M. Rymkina

    2015-06-01

    Full Text Available The paper highlights the administrative regulatory instruments of socio-economic development of solar energy in Ukraine. This article considers that the current state of the energy market requires fundamental change. Analysis of international studies and publications indicates the balance between social, economic and environmental aspects that give rise to the development of alternative energy. Scientific originality of this article in a study of the dynamics of solar energy in Ukraine. International studies show that among the proposed renewable energy is the most environmentally friendly solar power. The practical significance of the study is to seek proposals for ensuring effective socio-economic development of enterprises in the industry for the future. For the implementation and development of the national energy strategy based on alternative energy in Ukraine has everything: raw materials, experience, technical and technological developments, training of highly qualified specialists in higher education. An important issue is the comprehensive state support, which will attract additional investment resources. As a result, at the macroeconomic level to mitigate the potential effects of the energy crisis.

  1. The Subject and the Setting: Re-Imagining Opportunities for Primary Teachers' Subject Knowledge Development on School-Based Teacher Education Courses

    Science.gov (United States)

    Knight, Rupert

    2017-01-01

    The landscape of teacher education is undergoing significant change in many countries and this is often associated with a move towards greater school involvement in the preparation of teachers. One aspect of teaching expertise that is particularly challenging for primary student-teachers is the development of subject knowledge across a wide range…

  2. Advanced optical coating technology used in the development of concentrator arrays for solar space power applications

    Science.gov (United States)

    Fulton, Michael L.; O'Neill, Mark J.

    2006-08-01

    Since 1990 thin film optical coatings have taken a prominent role in the development of highly efficient solar power concentrators for future space applications. During the initial development of this coating technology, the Boeing High Technology Center explored various ways of protecting ENTECH's DC93-500 silicone Fresnel lenses from the harsh space environment. ENTECH's mini-dome lenses focused solar energy onto small high-efficiency solar cells for generating electrical power. To protect the silicone lenses from solar UV darkening, one early approach involved a cerium-doped glass cover cemented over the lens. Unfortunately, during launch simulation shock testing the glass lens covers cracked. We next explored the deposition of a UV blocking thin film coating directly to the silicone lens surface. This was a problem of immense proportions analogous to pouring concrete on to the surface of a reservoir filled with "Jell-O." Differential in coefficient of thermal expansion between the DC93-500 silicone and the deposited dielectric optical coating had to be balanced with intrinsic stress of the optical coating materials. Ion Beam Optics' work has culminated, some fifteen years later, in the current coating technology that is being incorporated in the Stretched Lens Array SquareRigger (SLASR). SLASR is designed to replace classic flat panel solar arrays with a lighter, lower cost, and more efficient (30%) concentrator arrays for future space applications. This paper will describe the coating technology and show its performance and benefits for SLASR space power systems. Results from both ground tests and space flight tests will be presented.

  3. Development of a solar-powered infrared injection laser microminiature transmitting system

    Energy Technology Data Exchange (ETDEWEB)

    Falter, D.D.; Alley, G.T.; Falter, K.G.; Rochelle, J.M.; Valentine, K.H.; Westbrook, R.D.; Jellison, G.E. Jr.; Fleming, P.H. (Oak Ridge National Lab., TN (USA))

    1989-01-01

    A solar-powered infrared microminiature transmitting system is being developed to provide scientists with a tool to continuously track and study Africanized bees. Present tracking methods have limited ranges and lack the capability of continuously tracking individual insects. Preliminary field tests of a stationary prototypic transmitter have demonstrated a range of 1.1 km. The basic design consists of an array of nine 1-mm{sup 2} solar cells, which collect energy for storage in a 1.0-{mu}F tantalum chip capacitor. When the capacitor has been charged to a sufficient level, the circuitry that monitors the capacitor voltage level wakes up'' and fires a 5-{mu}s pulse through an 840-nm GaAlAs injection laser diode. The process is then repeated, making the signal frequency (which ranges from 50 to 300 Hz) dependent on solar luminance. The solar cells, capacitor, and laser diode are mounted in hybrid microcircuit fashion directly on the silicon substrate containing the CMOS control and driver circuitry. The transmitter measures {approximately}4 {times} 6 mm and weighs {approximately}65 mg. The receiving system is based on an 8-in. telescope and a Si PIN diode detector. 8 refs., 10 figs.

  4. Development of Intelligent Fuzzy Controller for a Two-Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Cong-Hui Huang

    2016-05-01

    Full Text Available This paper proposes the development of a two-axis sun tracking solar energy system using fuzzy logic as intelligent quality policy. To achieve maximum efficiency for solar panels, it is necessary to follow the sun’s path in the sky. Therefore, the architecture for the two-axis sun tracking solar energy system uses software to control the hardware. The hardware comprises (i solar cells; (ii lead-acid batteries; (iii a gear box; (iv a stepping motor; and (v a light detection circuit, while the software comprises (i a detection system; (ii a fuzzy tracking controller; and (iii a database system. A fuzzy logic controller is designed as the software architecture of the system to decide the timing for tracking the sun. The nearest position that results in receiving direct sunlight is obtained from the database. Our system is fully automatic in a changing environment and takes into account meteorological changes and the effects of the external environment arising from a malfunction. This approach reduces the number of starting motors and results in smaller energy loss in cloudy, cloud mask, or unstable weather conditions.

  5. History and Development of Coronal Mass Ejections as a Key Player in Solar Terrestrial Relationship

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    Coronal mass ejections (CMEs) are relatively a recently discovered phenomenon in 1971, some 15 years into the Space Era. It took another two decades to realize that CMEs are the most important players in solar terrestrial relationship as the root cause of severe weather in Earths space environment. CMEs are now counted among the major natural hazards because they cause large solar energetic particle (SEP) events and major geomagnetic storms, both of which pose danger to humans and their technology in space and ground. Geomagnetic storms discovered in the 1700s, solar flares discovered in the 1800s, and SEP events discovered in the 1900s are all now found to be closely related to CMEs via various physical processes occurring at various locations in and around CMEs, when they interact with the ambient medium. This article identifies a number of key developments that preceded the discovery of white-light CMEs suggesting that CMEs were waiting to be discovered. The last two decades witnessed an explosion of CME research following the launch of the Solar and Heliospheric Observatory mission in 1995, resulting in the establishment of a full picture of CMEs.

  6. Toward a Next Generation Solar Coronagraph: Development of a Compact Diagnostic Coronagraph on the ISS

    Science.gov (United States)

    Cho, K.-S.; Bong, S.-C.; Choi, S.; Yang, H.; Kim, J.; Baek, J.-H.; Park, J.; Lim, E.-K.; Kim, R.-S.; Kim, S.; Kim, Y.-H.; Park, Y.-D.; Clarke, S. W.; Davila, J. M.; Gopalswamy, N.; Nakariakov, V. M.; Li, B.; Pinto, R. F.

    2017-10-01

    The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) and to install it on the International Space Station (ISS). The coronagraph is an externally occulted one-stage coronagraph with a field of view from 3 to 15 solar radii. The observation wavelength is approximately 400 nm, where strong Fraunhofer absorption lines from the photosphere experience thermal broadening and Doppler shift through scattering by coronal electrons. Photometric filter observations around this band enable the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with a high time cadence (<12 min) of corona images used to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in August 2017 with the filter system and to perform a stratospheric balloon experiment in 2019 with the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g., coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

  7. Development of a New, High-Power Solar Array for Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Zimmermann C.G.

    2017-01-01

    Full Text Available Airbus is currently developing the Next Generation Solar Array (NGSA for telecommunication satellites. It is based on a hybrid array concept which combines a conventional rigid panel array with lightweight, semi-rigid lateral panels. The main figures of merit power/mass and power/volume can be doubled through this concept. Mechanically, the semi-rigid panels are the key new element. Through acoustic testing as well as sine vibration testing in air and in vacuum it was verified that these panels are suitable as cell support in stowed configuration. With the help of finite element modelling it is demonstrated that the semi-rigid panels are compatible with a free deployment. Electrically, the new array is to be equipped with a new generation of 4 junction solar cells with efficiencies above 30%. The increased radiation dose due to electric orbit raising has to be taken into account to arrive at the optimum shielding while still minimizing the array mass. By adjusting the ratio of rigid to semi-rigid panels and through the choice of solar cell type and mass, the NGSA can be tailored in a wide range to needs of a given platform. This is illustrated for the solar array to be flown on the new Airbus platform Eurostar Neo.

  8. Development of Local Supply Chain : The Missing Link for Concentrated Solar Power Projects in India

    OpenAIRE

    World Bank

    2013-01-01

    Amid the success of Solar Photovoltaic (PV) projects in India, Concentrated Solar Power (CSP) technology also provides a compelling case for support by the government as among solar technologies; CSP is the only techno-economically viable option at present that provides a storage option for dispatchable and dependable solar energy. Furthermore, the conversion of solar to steam is a relativ...

  9. Development of Local Supply Chain : A Critical Link for Concentrated Solar Power in India

    OpenAIRE

    World Bank

    2013-01-01

    Amid the success of Solar Photovoltaic (PV) projects in India, Concentrated Solar Power (CSP) technology also provides a compelling case for support by the government as among solar technologies; CSP is the only techno-economically viable option at present that provides a storage option for dispatchable and dependable solar energy. Furthermore, the conversion of solar to steam is a relativ...

  10. ToHajiilee Economic Development, Inc.(TEDI) Feasibility Study for Utility-Scale Solar

    Energy Technology Data Exchange (ETDEWEB)

    Burpo, Rob

    2012-02-29

    To Hajiilee Economic Development, Inc. (TEDI) is the economic development entity representing the ToHajiilee Chapter of the Navajo Nation, also known as the Caoncito Band of Navajo (CBN). Using DOE funding, TEDI assembled a team of qualified advisors to conduct a feasibility study for a utility-scale 30 MW Photovoltaic (PV) solar power generation facility on TEDI trust lands. The goal for this project has been to gather information and practical business commitments to successfully complete the feasibility analysis. The TEDI approach was to successively make informed decisions to select an appropriate technology best suited to the site, determine environmental viability of the site, secure options for the sale of generated power, determine practicality of transmission and interconnection of power to the local grid, and secure preliminary commitments on project financing. The feasibility study has been completed and provides TEDI with a practical understanding of its business options in moving forward with developing a solar project on CBN tribal lands. Funding from DOE has allowed TEDI and its team of professional advisors to carefully select technology and business partners and build a business model to develop this utility-scale solar project. As a result of the positive feasibility findings, TEDI is moving forward with finalizing all pre-construction activities for its major renewable energy project.

  11. Development of ICT competences in the environmental studies subject in Slovenia

    Directory of Open Access Journals (Sweden)

    Vlasta Husa

    2011-12-01

    Full Text Available Digital literacy is one of eight key competences that were defined by the European Parliament and Council as those that member states should develop as a part of their strategies for lifelong learning (Official Journal of the European Union, 2006, p.11. It would contribute to a more successful life in a knowledge society. The purpose of this paper is to Npresent the results of empirical research on the use of ICT in the lessons of the environmental studies subject in the first triennium of primary schools in the Republic of Slovenia. Data were collected through a questionnaire and according to the protocol. We found that among all of the ICT tools, teachers mostly use the computer. The majority of the teachers use the computer once a week, most often in mathematics and environmental studies subject. In the observed lessons of the environmental studies subject, less than half of teachers use the computer in the lessons. This was followed by the use of computer and the LCD projector, and the interactive whiteboard. Among the obstacles that teachers indicate when they try to include ICT in the learning process are insufficient, out of date equipment, lack of time and lack of their own competence.

  12. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  13. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading: Appendices

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  14. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. [Appendices

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  15. Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces

    Science.gov (United States)

    Rodriquez, Melissa C.; Allton, J. H.; Burkett, P. J.

    2012-01-01

    The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF.

  16. Development, Validity and Reliability of the Londrina Activities of Daily Living Protocol for Subjects With COPD.

    Science.gov (United States)

    Sant'Anna, Thaís; Donária, Leila; Furlanetto, Karina C; Morakami, Fernanda; Rodrigues, Antenor; Grosskreutz, Talita; Hernandes, Nidia A; Gosselink, Rik; Pitta, Fabio

    2017-03-01

    To avoid symptoms, patients with COPD may reduce the amount of activities of daily living (ADL). Therefore, the aim of the present study was to develop a standardized protocol to evaluate ADL performance in subjects with COPD (Londrina ADL protocol) and to assess the validity and reliability of the protocol in this population. The Londrina ADL protocol was created based on activities included in previous studies aimed at investigating outcomes from ADL. Activities were included in the protocol because they could represent other activities of similar patterns and because they could be actually performed, not simulated. Twenty subjects with COPD (12 men, 70 ± 7 y old, FEV1 = 54 ± 15% predicted) wore 2 motion sensors while performing the protocol 4 times, 2 of them wearing a portable gas analyzer. Subjects were also submitted to assessments of lung function, functional exercise capacity, functional status, impact on health status, and physical activity in daily life. The Londrina ADL protocol comprised of 5 activities representing ADL, involving upper limbs, lower limbs, and trunk movements. Londrina ADL protocol duration presented high values of intraclass correlation coefficient, even using a mask for gas analysis (intraclass correlation coefficient >0.90, P < .001). Intensity of movement during the protocol performance was highly correlated to intensity of movement in daily life (r = 0.71). The protocol duration was correlated with functional status and impact on health status variables from questionnaires (0.36 ≤ r ≤ 0.59). There was also correlation between functional exercise capacity and the protocol duration (r = -0.64). The Londrina ADL protocol was a valid and reliable protocol to evaluate ADL performance in subjects with COPD. It is a protocol that can be used in clinical practice and in future studies to investigate ADL outcomes, including those studies that require gas analysis and the wearing of a mask. Copyright © 2017 by Daedalus Enterprises.

  17. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  18. Analysis of the Expected Development of Solar PV Market in Turkey

    OpenAIRE

    Sabah, Ibrahim

    2014-01-01

    Electricity generation through solar photovoltaic (PV) technology has been one of the leading renewable energy generation options in the global arena and in many countries that are working to address increasing energy demand and high fuel import dependencies. Due to the feed in tariff (FIT) amendment in 2011 and decreasing costs in global PV sector, the interest in this emerging market is quickly increasing in Turkey. The aim of this thesis is to explore the prospects for development of the s...

  19. High-Efficiency Solar-Powered 3-D Printers for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT, has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic (PV-powered mobile systems have been developed, but recent improvements in novel delta-style 3-D printer designs allows for reduced costs and improved performance. This study builds on these innovations to develop and experimentally validate a mobile solar-PV-powered delta 3-D printer system. It is designed to run the RepRap 3-D printer regardless of solar flux. The electrical system design is tested outdoors for operating conditions: (1 PV charging battery and running 3-D printer; (2 printing under low insolation; (3 battery powering the 3-D printer alone; (4 PV charging the battery only; and (5 battery fully charged with PV-powered 3-D printing. The results show the system performed as required under all conditions providing feasibility for adoption in off-grid rural communities. 3-D printers powered by affordable mobile PV solar systems have a great potential to reduce poverty through employment creation, as well as ensuring a constant supply of scarce products for isolated communities.

  20. Modeling a solar-heated anaerobic digester for the developing world using system dynamics

    Science.gov (United States)

    Bentley, Johanna Lynn

    Much of the developing world lacks access to a dependable source of energy. Agricultural societies such as Mozambique and Papua New Guinea could sustain a reliable energy source through the microbacterial decomposition of animal and crop waste. Anaerobic digestion produces methane, which can be used directly for heating, cooking, and lighting. Adding a solar component to the digester provides a catalyst for bacteria activity, accelerating digestion and increasing biogas production. Using methane decreases the amount of energy expended by collecting and preparing firewood, eliminates hazardous health effects linked to inhalation of particles, and provides energy close to where it is needed. The purpose of this work is two fold: initial efforts focus on the development and validation of a computer-based system dynamics model that combines elements of the anaerobic digestion process in order to predict methane output; second, the model is flexed to explore how the addition of a solar component increases robustness of the design, examines predicted biogas generation as a function of varying input conditions, and determines how best to configure such systems for use in varying developing world environments. Therefore, the central components of the system: solar insolation, waste feedstock, bacteria population and consumption rates, and biogas production are related both conceptually and mathematically through a serious of equations, conversions, and a causal loop and feedback diagram. Given contextual constraints and initial assumptions for both locations, it was determined that solar insolation and subsequent digester temperature control, amount of waste, and extreme weather patterns had the most significant impact on the system as a whole. Model behavior was both reproducible and comparable to that demonstrated in existing experimental systems. This tool can thus be flexed to fit specific contexts within the developing world to improve the standard of living of many

  1. Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells

    OpenAIRE

    Iftikhar Ahmad; McCarthy, Joseph E.; Alexander Baranov; Gun'ko, Yurii K.

    2015-01-01

    Graphene has been envisaged as a highly promising material for various field emission devices, supercapacitors, photocatalysts, sensors, electroanalytical systems, fuel cells and photovoltaics. The main goal of our work is to develop new Pt and transparent conductive oxide (TCO) free graphene based counter electrodes (CEs) for dye sensitized solar cells (DSSCs). We have prepared new composites which are based on graphene nano-platelets (GNPs) and conductive polymers such as poly (3,4-ethylene...

  2. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Adam Schaut

    2011-12-30

    performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity

  3. Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, D.; Mehos, M.

    2010-12-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

  4. Photoelectrochemistry of metallo-octacarboxyphthalocyanines for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2011-09-01

    Full Text Available Significant attention is being paid to dye solar cells (DSCs) as the next generation in solar cell technology for their low cost alternative as compared to solid state solar cells....

  5. Solar-MEC Development Program. Project 61019 final report, September 1, 1977-March 9, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kinast, J.A.; Wurm, J.; Zawacki, T.S.; Macriss, R.A.

    1985-03-01

    The Solar-MEC is an open-cycle, solid-desiccant solar-powered, heating/cooling system. Its development has been under way since 1974 under sponsorship of the National Science Foundation, the American Gas Association, and several private companies within the gas industry. The results, conclusions, and recommendations of the program are presented. All laboratory testing and evaluations carried out in support of the conceptual and engineering design and fabrication of an ''improved'' Solar-MEC (System III) unit are described. The performance of the ''improved'' Solar-MEC (System III) unit was evaluated in detail in the laboratory, under full-, part-, and overload conditions of weather; the results were used to develop a characteristic model and computer program for the System III unit. This model was subsequently used to carry out seasonal performance simulations for heating and cooling in six US cities to develop optimized operating control strategies for maximum efficiency with reasonable controls system complexity and, therefore, reasonable costs. The demonstrated improved performance of this new unit (System III) includes: cooling thermal COP of 0.50 under ARI conditions; unit cooling capacity of 2.6 tons under ARI conditions; average Energy Efficiency Ratio (EER) under ARI conditions of 26.5; electric parasitic power requirements (as percent of thermal power input requirements) of only 6.2; and tolerable capacity degradation. On the basis of the results of seasonal performance simulations with the new unit (System III), it was concluded that, for most climates, in order to maximize the system's efficiency for solar cooling at reasonable system complexity, the unit must be designed to operate in the ventilating mode and must be provided with sensing capability to respond to ambient high humidities. The unit must be capable of operating most of the time with combined solar-gas firing and part of the time (only in very

  6. Silicon-on-ceramic solar cell development. Solar cell development for the cell development task of the Low-Cost Solar Array Project. Quarterly report No. 1, February 15--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P W; Grung, B L; Zook, J D

    1978-07-30

    The objective of this program is to investigate unique cell processing/design approaches to the successful fabrication of high-performance solar cells on silicon-on-ceramic (SOC) material. The work in the cell development area consists of two broad categories of activities: (1) the development of standard cell processing techniques, and (2) the investigation of novel device design approaches. The first area of activity has to do with the development of processing techniques for use with silicon dipped on ''slotted'' ceramic substrates. This embodiment allows us to make contact to the back surface of the silicon, thereby minimizing the front surface contact area. The second activity area is initially concerned with producing a ''stripe'' geometry cell on an unslotted ceramic substrate. The idea here is to expose the base layer for electrical contact on the top surface of the substrate and make up for the lost cell area by using an optical collector. Progress is reported.

  7. Development and optimization of a noncontact optical device for online monitoring of jaundice in human subjects

    Science.gov (United States)

    Polley, Nabarun; Saha, Srimoyee; Singh, Soumendra; Adhikari, Aniruddha; Das, Sukhen; Choudhury, Bhaskar Roy; Pal, Samir Kumar

    2015-06-01

    Jaundice is one of the notable markers of liver malfunction in our body, revealing a significant rise in the concentration of an endogenous yellow pigment bilirubin. We have described a method for measuring the optical spectrum of our conjunctiva and derived pigment concentration by using diffused reflection measurement. The method uses no prior model and is expected to work across the races (skin color) encompassing a wide range of age groups. An optical fiber-based setup capable of measuring the conjunctival absorption spectrum from 400 to 800 nm is used to monitor the level of bilirubin and is calibrated with the value measured from blood serum of the same human subject. We have also developed software in the LabVIEW platform for use in online monitoring of bilirubin levels in human subjects by nonexperts. The results demonstrate that relative absorption at 460 and 600 nm has a distinct correlation with that of the bilirubin concentration measured from blood serum. Statistical analysis revealed that our proposed method is in agreement with the conventional biochemical method. The innovative noncontact, low-cost technique is expected to have importance in monitoring jaundice in developing/underdeveloped countries, where the inexpensive diagnosis of jaundice with minimally trained manpower is obligatory.

  8. The pharmaceutical industry's responsibility for protecting human subjects of clinical trials in developing nations.

    Science.gov (United States)

    Kelleher, Finnuala

    2004-01-01

    Pharmaceutical companies increasingly perform clinical trials in developing nations. Governments of host nations see the trials as a way to provide otherwise unaffordable medical care, while trial sponsors are drawn to those countries by lower costs, the prevalence of diseases rare in developed nations, and large numbers of impoverished patients. Local governments, however, fail to police trials, and the FDA does not monitor trials in foreign countries, resulting in the routine violation of international standards for the protection of human subjects. This Note proposes independent accreditation of those institutions involved in clinical trials--the institutional review boards which oversee trial protocol; the organizations, such as pharmaceutical companies, which sponsor the trials; and the research organizations that conduct the trials. Accreditation, similar to that used in the footwear and apparel industries, would increase the transparency of pharmaceutical trials and would enable the United States government and consumers to hold trial sponsors accountable for their actions.

  9. A Review of a Successful Unsubsidized Market-Based Rural Solar Development Initiative in Laikipia District, Central Kenya

    Directory of Open Access Journals (Sweden)

    O. Wambuguh

    2013-10-01

    Full Text Available The development of renewable energy technologies (RETs in many areas far from grid-based electricity have primarily involved solar photovoltaics (SPVs which tap solar radiation to provide heat, light, hot water, electricity, and cooling for homes, businesses, and industry. A study on RETs took place in the Wiyumiririe Location of Laikipia District (north-central Kenya, a rich agricultural region. To explore this solar initiative in such a remote part of the country, a purposive randomized convenience sample of 246 households was selected and landowner interviews conducted, followed by field visits and observations. Although more than half of the households visited had SPV installations, solar energy was found to contribute only 18% of household estimated total energy needs; most residents still primarily relying on traditional energy sources. Several types of solar panels of different capacities and costs were utilized. Many landowners had at least one or two rooms using solar energy for household lighting, for appliance charging and to power radio and television. Almost all respondents appreciated that solar energy was clean renewable energy that greatly improved household living conditions; gave them some prestige; was easy to use and maintain; and was available year around. Although such significant benefits were associated with SPVs, only about 40% of residents interviewed were somehow satisfied with its development. Respondents expressed specific developmental initiatives that were closely associated with the availability of solar energy. Nevertheless, a number of challenges were raised associated with SPVs primarily investment capital and equipment costs and maintenance. As solutions to capital building will not solely rely on subsidies or individual farmer inputs, strategies must be found to mobilize the essential and tested tools for success including sustainable capital generation, building local institutions and capacities that

  10. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Julia, W. P.

    2008-09-01

    Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti

  11. Development and characterization of PCDTBT:CdSe QDs hybrid solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Shiv Kumar, E-mail: shivkumardixit.7@gmail.com; Bhatnagar, Chhavi, E-mail: shivkumardixit.7@gmail.com; Kumari, Anita, E-mail: shivkumardixit.7@gmail.com; Madhwal, Devinder, E-mail: shivkumardixit.7@gmail.com; Bhatnagar, P. K., E-mail: shivkumardixit.7@gmail.com; Mathur, P. C., E-mail: shivkumardixit.7@gmail.com [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 (India)

    2014-10-15

    Solar cell consisting of low band gap polymer poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10, 30-benzothiadiazole)] (PCDTBT) as donor and cadmium selenide/zinc sulphide (CdSe/ZnS) core shell quantum dots (QDs) as an acceptor has been developed. The absorption measurements show that the absorption coefficient increases in bulk heterojunction (BHJ) structure covering broad absorption spectrum (200nm–700nm). Also, the photoluminescence (PL) of the PCDTBT:QDs film is found to decrease by an order of magnitude showing a significant transfer of electrons to the QDs. With this approach and under broadband white light with an irradiance of 8.19 mW/cm{sup 2}, we have been able to achieve a power conversion efficiency (PCE) of 3.1 % with fill factor 0.42 for our typical solar cell.

  12. Photogrammetry and Videogrammetry Methods Development for Solar Sail Structures. Masters Thesis awarded by George Washington Univ.

    Science.gov (United States)

    Pappa, Richard S. (Technical Monitor); Black, Jonathan T.

    2003-01-01

    This report discusses the development and application of metrology methods called photogrammetry and videogrammetry that make accurate measurements from photographs. These methods have been adapted for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, non-contact, dynamic characterization using dot projection videogrammetry. The accuracy of the measurement of the resonant frequencies and operating deflection shapes that were extracted surpassed expectations. While other non-contact measurement methods exist, they are not full-field and require significantly more time to take data.

  13. Luminescent solar concentrator development: Final subcontract report, 1 June 1982-31 December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, P.S.; Parent, C.R.

    1987-04-01

    An investigation of luminescent solar concentrators (LSCs) was begun by the US Department of Energy (DOE) at Owens-Illinois, Inc., in 1978. Experimental and theoretical results of that investigation are summarized in this report. An assessment of the LSC technology was compiled to provide a concise description to guide future research in this field. Since 1978, tremendous progress was made in the development of this device as a practical nonimaging concentrator for achieving solar concentration ratios on the order of 10X. The two most important technical achievements appear to be first, the understanding that dye self-absorption of radiated energy is not as serious a problem as originally thought; and second, the demonstration that organic dyes in polymeric hosts are capable of surviving outdoors in bright sunlight for years without serious degradation. System efficiencies approaching 4% have been achieved for photovoltaic conversion and theoretical efficiencies on the order of 9% appear feasible for large-area devices.

  14. Solar Highway Program : from concept to reality : a guidebook for Departments of Transportation to develop solar photovoltaic systems in the highway right-of-way.

    Science.gov (United States)

    2016-11-01

    This guidebook is intended to provide an overview for state Departments of Transportation (DOTs) of the process for developing solar photovoltaic (PV) projects in the highway right-of-way. The goal is to help others navigate the process towards a suc...

  15. Development of a new connection for precast concrete walls subjected to cyclic loading

    Science.gov (United States)

    Vaghei, Ramin; Hejazi, Farzad; Taheri, Hafez; Jaafar, Mohd Saleh; Aziz, Farah Nora Aznieta Abdul

    2017-01-01

    The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.

  16. Positive youth development programs for adolescents with greater psychosocial needs: subjective outcome evaluation over 3 years.

    Science.gov (United States)

    Shek, Daniel T L; Sun, Rachel C F

    2014-06-01

    This study examined the views of 153,761 students participating in a positive youth development program designed for participants with greater psychosocial needs (the Tier 2 Program) in the context of the Project P.A.T.H.S. in Hong Kong. The program was implemented in the extension phase of the project from 2009/10 to 2011/12 school years. A validated subjective outcome evaluation scale was used to assess the views of the program participants toward the program qualities, implementer qualities, and program effectiveness after completion of the program. Nine datasets were used which were derived from the aggregated reports submitted by social service providers designing the Tier 2 Program. Participants generally held favorable views of program qualities, implementer qualities, as well as program effectiveness of the Tier 2 Program. Some small grade and program differences on subjective outcome evaluation were also found. Both program qualities and implementer qualities were significant predictors of program effectiveness in different grades. Consistent with the findings of the initial phase of the Project P.A.T.H.S., the present study suggests that the Tier 2 Program of the Project P.A.T.H.S. in Hong Kong is perceived favorably by program participants and its perceived effectiveness was high. Significant but small grade and program approach differences on subjective outcome evaluation were found. Both program and implementer qualities were predictive of perceived program effectiveness in different grades. Copyright © 2014 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  17. Informed consent for inclusion into clinical trials: a serious subject to note in the developing world.

    Science.gov (United States)

    Izadi, Morteza; Fazel, Mozhgan; Nasiri-Vanashi, Taha; Saadat, Seyed Hasan; Taheri, Saeed

    2012-05-01

    Informed consent is a critical issue especially in conducting clinical trials that expose human life to medical or surgical interventions. It necessitates a long and complex process through which the participant is presented with all potential favorable and non-favorable consequences upon getting enrolled in the study. The process of taking informed consent is well-understood in developed countries, with every effort taken to enhance and maintain the autonomy of patients and their right to make an informed choice of whether to participate or not. This may not be the case in the developing world.The information given to patients before the trial might not be properly developed and presented, an issue that can result in serious threat to the decision-making process. On the other hand, investigators should remember that enrolling people into a trial with no potential benefit for themselves cannot be considered ethical. In the current debate, we aim to address the issue of how respectfully and ethically clinical research trials can be done on human subjects and what we can do to enhance the practice in an ethical context. Development of a system through which we could warrant all rights of study participants in all cases around the world seems far from view. However, if we are in doubt about the ethics of a clinical trial, we can ask ourselves: "what would we do, if we were in the same position our patients are in now?"

  18. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary

  19. People's Republic of China. Concentrating Solar Thermal Power Development

    Energy Technology Data Exchange (ETDEWEB)

    Servert, J.; Wang, Zhifeng; Martinez, D.; Zhu, Li; Hu, Jicai; Ma, Chongfan; Huan, Dongfeng; Lu, Zhenwu; Zhang, Suhua; Lin, Bao; Lui, Huaiquan; Chen, Changzheng

    2012-01-15

    This report outlines the key findings, project rationale, CSP ( Concentrating Solar Power) road map, support on the 1MWe Dahan Tower, CSP demo plants in Gansu and Qinghai feasibility analysis, dissemination activities and knowledge product created. Task 1: Development of a roadmap for CSP power demonstration and deployment in Gansu an Qinghai provinces. Task 2: Implementation of a pilot MW-scale CSP power plant. Task 3: Identification of a priority demonstration project and prefeasibility assessment in Gansu and Qinghai provinces. Task 4: Capacity assessment and strengthening of CSP power demonstration. Task 5: Dissemination of knowledge products to relevant provinces on lessons learned and challenges in CSP power development.

  20. Potential development in dye-sensitized solar cells for renewable energy

    CERN Document Server

    Pandikumar, Alagarsamy

    2013-01-01

    The development of photovoltaic technology is expected to solve problems related to energy shortages and environmental pollution caused by the use of fossil fuels. Dye-sensitizedsolar cells (DSSCs) are promising next-generation alternatives to conventional silicon-based photovoltaic devices owing to their low manufacturing cost and potentially high conversion efficiency. This special topic volume addresses recent advances in the research on dye-sensitized solar cells. The focus of this special topic volume is on materials development (sensitizers, nanostructured oxide films, and electrolyte),

  1. Vacuum-free, cost-effective, developing-country-material-available solar cell encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Dross, Frederic; Labat, Ariane; Antonio Perez Lopez, Mauro; Antonio Perez Lopez, Marco; Raudez, Rudolfo; Bruce, Anna; Kinne, Susan; Komp, Richard [Grupo Fenix, UNI, Managua (Nicaragua)

    2006-09-06

    We describe a novel cast encapsulation method based on room-temperature vulcanizing (RTV) silicone. This method does not require vacuum, nor lamination, and all the material needed, except for the encapsulant itself is available in developing countries. It is successfully used in Nicaragua. In addition, we report in detail on a recently developed solution to limit trapping of bubbles in the encapsulant during curing. We deposit, prior to encapsulation, a thin film of RTV silicone on the cells. The resulting solar panels made using this technique show a lot less trapped bubbles. (author)

  2. Solar Astronomy as a Means to Promote Authentic Science Research in a Teacher Professional Development Program

    Science.gov (United States)

    Walker, C. E.; Croft, S.; Pompea, S. M.; Plymate, C.; McCarthy, D.

    2003-12-01

    Teacher Leaders in Research Based Science Education (TLRBSE) is an NSF-funded Teacher Enhancement Program hosted by the National Optical Astronomy Observatory (NOAO) in Tucson, AZ. Consistent with national priorities in education, TLRBSE seeks to retain and renew middle and high school science teachers. Within the exciting context of astronomy, TLRBSE integrates the best pedagogical practices of Research Based Science Education with the process of mentoring. One means by which participants are provided training in astronomy content, pedagogy, image processing, research and leadership skills is through a 15-week distance-learning course and an in-residence, two-week institute at Kitt Peak National Observatory and the National Solar Observatory (NSO). Throughout the program, teachers work with professional astronomers and education specialists. At the in-situ, two-week institute, teachers are the researchers on one of four research projects, including solar astronomy. Preparation for the solar project dictates much of the design of the program (e.g., development and feasibility testing of the observing program, the reduction and analysis software, the preparatory documents for the teachers). The program design of the solar project is centered on teachers experiencing the scientific process. Initially through a staff-facilitated guided inquiry and then on their own as a team, the teachers propose a research question and discuss alternative hypotheses. They operate the solar telescope and take, calibrate, reduce and analyze the data. Teachers interpret and report results to their peers and pundits. Ultimately the observing experience and knowledge gained by the teachers is transferred to the classroom, where students learn science by doing science. Staff astronomers and education specialists provide continuing support with the goal of sustaining a professional learning community that outlives the research experience. Further observing experience is available during the

  3. Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

    Directory of Open Access Journals (Sweden)

    Nirmal C. Sacheti

    2014-01-01

    Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.

  4. Some recent developments in the international guidelines on the ethics of research involving human subjects.

    Science.gov (United States)

    Levine, R J

    2000-11-01

    We are in a period of reconsideration and revision of international ethical guidelines for the conduct of biomedical research involving human subjects. The proximate cause of much of this activity is the recent controversy over the ethics of the use of a placebo control in the clinical trials of the short-duration regimen of zidovudine for prevention of perinatal transmission of HIV infection, trials that were carried out in several so-called technologically developing countries. Critics of these trials claimed that they were in violation of Article II.3 of the Declaration of Helsinki, which states: "In any medical study, every patient--including those of a control group, if any--should be assured of the best proven diagnostic and therapeutic method. This does not exclude the use of inert placebo in studies where no proven diagnostic or therapeutic method exists." The critics claimed that since the "best proven ... method" is the 076 regimen, this is what must be provided to members of the control groups. Failure to do so, they asserted, was a serious breach of ethics. In response to this allegation, several major international and national agencies convened multidisciplinary groups to consider the ethics of multinational clinical research. The first thing they realized was that Article II.3 was in error in that it did not reflect contemporary ethical thinking. Moreover, it was routinely violated in research conducted in developed as well as in developing countries. What replaces this standard? The 1993 CIOMS International Ethical Guidelines for Biomedical Research Involving Human Subjects include several criteria for justification of research carried out in developing countries. Most importantly, the research must be responsive to the health needs and priorities of the host country. They also require that any therapeutic products developed in such research must be made "reasonably available" to residents of the host country. A new standard is emerging for

  5. Mechanical Anisotropy Development of a Two-Phase Composite Subject to Large Deformation

    Science.gov (United States)

    Dabrowski, M.; Schmid, D. W.; Yu, Podladchikov, Yu,

    2009-04-01

    Evolution of overall mechanical properties has been demonstrated in large strain deformation experiments. Strain softening is frequently employed in geodynamic simulations. In this paper, we quantify the structural and mechanical evolution of a two-phase composite rock subject to pure and simple shear. An inclusion-host type of geometry is assumed, we focus on the weak inclusion scenario and both materials obey a linear viscous behavior. Finite deformation leads to a shape preferred orientation development that results in an overall mechanical anisotropy. We derive the shape evolution model based on an analytical solution for an isolated elliptical inclusion embedded in an anisotropic host and subject to a uniform far field load. The presence of a strong anisotropy in the host leads to an enhanced inclusion stretching. A differential effective medium type of scheme predicting an overall anisotropic viscosity of a composite consisting of aligned elliptical inclusions is proposed and validated by finite element modeling. A comparison with an existing self-consistent averaging scheme is given and the new scheme is shown to provide an improved estimate of the effective normal and shear viscosity for high inclusion concentrations. The two models are combined into a final set of equations describing evolution of a two-phase rock under a shear. Hardening is predicted in pure shear. In simple shear, the hardening phase is followed by a pronounced softening after a shear strain of one, irrespective of inclusion concentration. Numerical simulations resolving evolution of inclusion-host systems under pure and simple shear demonstrate the high accuracy of our model prediction. The shape evolution model provides a sufficient approximation to the shape preferred orientation developing in an aggregate of interacting inclusions. Both in pure and simple shear, deformation localizes into conjugate trails of inclusions leading to formation of complex sigmoidal inclusion shapes.

  6. Evaluation of Sustainable Development Indicators With Fuzzy TOPSIS Based on Subjective and Objective Weights

    Directory of Open Access Journals (Sweden)

    Nang Idayu Nik Zahari

    2012-04-01

    Full Text Available ABSTRACT: Sustainable development aims at improving and maintaining the well-being of people and the ecology. However, this paper focuses only on the ecological aspects. The selection of the proper ecological protection determinant plays a very important role in improving the environment of Malaysia. This paper will propose a method from Wang and Lee (2009, and Yong (2006 which applies a fuzzy TOPSIS method -- based on subjective and objective weights – to make the required selection. Four alternatives will be tested which are: prevent pollution (A1, conservation (A2, well-manage (A3, and public awareness (A4. Along with these, four criteria need to be considered: water quality factor (C1, land integrity factor (C2, air quality factor (C3, and biodiversity factor (C4. Finally, a numerical example of ecological protection determinant selection is used to illustrate the proposed method. ABSTRAK: Pembangunan lestari bermatlamat memperbaiki dan mengekalkan kesejahteraan rakyat serta ekologi. Walau bagaimanapun, kertas kajian ini hanya memberi tumpuan kepada aspek-aspek ekologi. Pemilihan penentu perlindungan serta keselamatan bagi aspek ekologi memainkan peranan yang amat penting dalam meningkatkan kualiti alam sekitar di Malaysia. Kertas kajian ini telah menggunakan kaedah Wang dan Lee (2009 dan Yong (2006 yang mengaplikasikan kaedah TOPSIS kabur berdasarkan pemberat subjektif dan objektif. Terdapat empat alternatif yang akan diuji iaitu: pencegahan pencemaran (A1, pemuliharaan (A2, pengurusan yang baik (A3, kesedaran orang awam (A4. Selain itu, terdapat empat kriteria yang perlu dipertimbangkan: faktor kualiti air (C1, faktor kualiti tanah (C2, faktor kualiti udara (C3, faktor kepelbagaian biologi (C4. Kesimpulannya, contoh pengiraan untuk memperoleh penentu pemilihan perlindungan ekologi telah digunakan bagi menunjukkan kaedah yang dicadangkan.KEYWORDS: sustainable development; ecological factors; subjective and objective weight; fuzzy TOPSIS

  7. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    Science.gov (United States)

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  8. Breast cancer development in transsexual subjects receiving cross-sex hormone treatment.

    Science.gov (United States)

    Gooren, Louis J; van Trotsenburg, Michael A A; Giltay, Erik J; van Diest, Paul J

    2013-12-01

    Transsexual people receive cross-sex hormones as part of their treatment, potentially inducing hormone-sensitive malignancies. To examine the occurrence of breast cancer in a large cohort of Dutch male and female transsexual persons, also evaluating whether the epidemiology accords with the natal sex or the new sex. Number of people with breast cancer between 1975 and 2011. We researched the occurrence of breast cancer among transsexual persons 18-80 years with an exposure to cross-sex hormones between 5 to >30 years. Our study included 2,307 male-to-female (MtF) transsexual persons undergoing androgen deprivation and estrogen administration (52,370 person-years of exposure), and 795 female-to-male (FtM) subjects receiving testosterone (15,974 total years of exposure). Among MtF individuals one case was encountered, as well as a probable but not proven second case. The estimated rate of 4.1 per 100,000 person-years (95% confidence interval [CI]: 0.8-13.0) was lower than expected if these two cases are regarded as female breast cancer, but within expectations if viewed as male breast cancer. In FtM subjects, who were younger and had shorter exposure to cross-sex hormones compared with the MtF group, one breast cancer case occurred. This translated into a rate of 5.9 per 100,000 person-years (95% CI: 0.5-27.4), again lower than expected for female breast cancer but within expected norms for male breast cancer. The number of people studied and duration of hormone exposure are limited but it would appear that cross-sex hormone administration does not increase the risk of breast cancer development, in either MtF or FtM transsexual individuals. Breast carcinoma incidences in both groups are comparable to male breast cancers. Cross-sex hormone treatment of transsexual subjects does not seem to be associated with an increased risk of malignant breast development. © 2013 International Society for Sexual Medicine.

  9. Solar-TEP - Development of materials for solar-thermal electricity generation plant; Solar-TEP. Materialentwicklung fuer solarthermische Stromerzeuger. Jahresbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R.; Weidenkaff, A.

    2006-11-15

    This illustrated annual report for the Swiss Federal Office of Energy (SFOE) summarises work done at the Swiss Federal Laboratories for Materials Testing and Research EMPA on the direct conversion of solar energy into electrical energy using thermoelectric power generators that can harvest energy from the whole solar radiation spectrum. Work done reported on includes the high-temperature thermo-electric properties of materials based on lanthanum cobaltate / titanium oxide compounds and the characterisation of Perovskite type oxides. Morphology and crystal structures are looked at. Alternative materials are briefly mentioned.

  10. Financial and Performance Analyses of Microcontroller Based Solar-Powered Autorickshaw for a Developing Country

    Directory of Open Access Journals (Sweden)

    Abu Raihan Mohammad Siddique

    2016-01-01

    Full Text Available This paper presents a case study to examine the economic viability and performance analysis of a microcontroller based solar powered battery operated autorickshaw (m-SBAR, for the developing countries, which is compared with different types of rickshaws such as pedal rickshaw (PR, battery operated autorickshaw (BAR, and solar-powered battery operated autorickshaw (SBAR, available in Bangladesh. The BAR consists of a rickshaw structure, a battery bank, a battery charge controller, a DC motor driver, and a DC motor whereas the proposed m-SBAR contains additional components like solar panel and microcontroller based DC motor driver. The complete design considered the local radiation data and load profile of the proposed m-SBAR. The Levelized Cost of Energy (LCOE analysis, Net Present Worth, payback periods, and Benefit-to-Cost Ratio methods have been used to evaluate the financial feasibility and sensitivity analysis of m-SBAR, grid-powered BAR, and PR. The numerical analysis reveals that LCOE and Benefit-to-Cost Ratio of the proposed m-SBAR are lower compared to the grid-powered BAR. It has also been found that microcontroller based DC motor control circuit reduces battery discharge rate, improves battery life, and controls motor speed efficiency.

  11. Development of origami-style solar panels for use in support of a Mars mission

    Science.gov (United States)

    Holland, Alexander; Straub, Jeremy

    2016-05-01

    This paper presents work on the development of an Origami-style solar panel technology. This approach increases a satellite's solar array's power generation surface area, given constrained space and mass. The same deployable structure (used for the solar panels) can also house a phased array on the reverse side. For a proposed Mars demonstration mission, this array is used for communications and microwave wireless power transmission. The design of the solution is presented in detail, including a discussion of the pre-deployment configuration, the deployment process, and the final configuration. The panels, prior to deployment, are folded around the square base of the spacecraft, covering all four of its sides. To deploy them, a slight circular motion can be introduced to use centrifugal force to cause each side to fold out from the side of the satellite. A simple hinge mechanism is used to interconnect the panels and inflatable tubes or wire that is designed to stiffen in a straightened orientation when electrified, are used to move the panels into their final position and provide rigidity. The efficacy of the proposed technology is considered in the context of the Martian mission. This demonstrates its mass and volume efficiency as well as the utility of the approach for enabling the mission. A qualitative analysis of the benefits and drawbacks of the approach is presented. A discussion of the technology's overall impact on mission design is presented, before concluding with a discussion of the next steps for the research.

  12. Effectiveness of State-Level Policies on Solar Market Development in Different State Contexts

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Krasko, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hillman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    In response to public interest in customer-sited distributed solar photovoltaics (PV), state and local policymakers have implemented policy initiatives with the goal of encouraging private investment and building a robust PV market. Policymakers face challenges, including limited budgets and incomplete information about the effectiveness of the various policy options in their specific situation, in crafting and executing policy that supports market development goals. Recent work investigated the effect of the order in which policies are implemented (referred to as 'policy stacking') and the presence of low-cost enabling policies, such as interconnection standards and net metering, can have on the success of states in promoting PV markets. Findings indicate that implementation of interconnection standards and policy related to the valuation of excess electricity (e.g., net metering), along with indicators of long term government support for a solar PV market (e.g., RPS) and a non-policy determinant (population), explain about 70% of the variation among states in new PV capacity. This paper builds on that research to determine the most effective policy strategies for different types of states, as determined by their physical, demographic and macroeconomic context. A number of researchers have investigated the effectiveness of state-level policy using various statistical methods to determine relationships between installed solar PV projects and policy initiatives. In this study, the grouping of states by non-policy factors adds dimension to these analyses by identifying how policies function in different non-policy environments.

  13. Agreement and Null Subjects in German L2 Development: New Evidence from Reaction-Time Experiments.

    Science.gov (United States)

    Clahsen, Harald; Hong, Upyong

    1995-01-01

    Reports on reaction time experiments investigating subject-verb agreement and null subjects in 33 Korean learners of German and a control group of 20 German native speakers. Results found that the two phenomena do not covary in the Korean learners, indicating that properties of agreement and null subjects are acquired separately from one another.…

  14. The development of multiple drug use among anabolic-androgenic steroid users: six subjective case reports

    Directory of Open Access Journals (Sweden)

    Nyberg Fred

    2008-11-01

    Full Text Available Abstract Background The inappropriate use of anabolic androgenic steroids (AAS was originally a problem among athletes but AAS are now often used in nonsport situations and by patients attending regular addiction clinics. The aim of this study was to improve understanding of the development of multiple drug use in patients seeking treatment at an addiction clinic for AAS-related problems. Methods We interviewed six patients (four men and two women with experience of AAS use who were attending an addiction clinic for what they believed were AAS-related problems. The patients were interviewed in-depth about their life stories, with special emphasis on social background, substance use, the development of total drug use and subjective experienced psychological and physical side effects. Results There was significant variation in the development of drug use in relation to social background, onset of drug use, relationship to AAS use and experience of AAS effects. All patients had initially experienced positive effects from AAS but, over time, the negative experiences had outweighed the positive effects. All patients were dedicated to excess training and took AAS in combination with gym training, indicating that the use of these drugs is closely related to this form of training. Use of multiple drugs was common either in parallel with AAS use or serially. Conclusion The study shows the importance of understanding how AAS use can develop either with or without the concomitant use of other drugs of abuse. The use of AAS can, however, progress to the use of other drugs. The study also indicates the importance of obtaining accurate, comprehensive information about the development of AAS use in designing treatment programmes and prevention strategies in this area.

  15. An approach to enhance the conservation-compatibility of solar energy development.

    Directory of Open Access Journals (Sweden)

    D Richard Cameron

    Full Text Available The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%; that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.

  16. DEVELOPING OF ELECTRONIC TEACHING MATERIAL BASED ON MOBILE LEARNING IN THE WAVE SUBJECTS

    Directory of Open Access Journals (Sweden)

    D. H. Rif’ati

    2015-07-01

    Full Text Available In the advanced and modern era, technological sophistication led to learning which initially runs, in which teachers and students meet each other and communicate in the classroom, can be implemented through of information technology. Along with the development of information, where books and teachers who initially as a primary source of learning, are now beginning to experience growth from the internet. Mobile learning defined as mobile devices that are used in the learning process. The wave course is one of subject that must be taken by students of physics education in the third semester. This course emphasizes the concepts of wave were reviewed mathematically and the phenomenon that occurs in everyday life. Mobile learning developed in this study in the form of electronic teaching materials on subjects of waves. The aim of this study was to develop electronic teaching material in the form of mobile learning. The sample of this study is 80 students in the third semester students who are taking waves courses. The results show that mobile learning that has been developed has score 3.8 and included valid criteria. Pada era yang serba maju dan modern, kecanggihan teknologi menyebabkan pembelajaran yang awalnya berjalan satu arah, dimana guru dan siswa saling bertemu dan berkomunikasi di dalam kelas, dapat dilaksanakan melalui bantuan teknologi.informasi. Seiring dengan perkembangan informasi, buku dan guru yang awalnya sebagai sumber belajar utama, saat ini sudah mulai mengalami perkembangan dimana sumber belajar yang berasal dari internet sudah mulai sering dimanfaatkan dalam proses pembelajaran. Mobile larning didefinisikan sebagai perangkat mobile yang dipergunakan dalam proses belajar mengajar. Mata kuliah gelombang sendiri merupakan salah satu mata kuliah yang wajib ditempuh oleh mahasiswa program studi pendidikan fisika semester 3. Mata kuliah ini menekankan pada konsep gelombang yang ditinjau secara matematis dan fenomenanya yang terjadi

  17. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    OpenAIRE

    Allen, Michael F.; McHughen, Alan

    2011-01-01

    California deserts are faced with unprecedented anthropogenic change. Impact factors range from expanding urban centers and military bases, to potential significant habitat loss from solar and thermal power expansions (including ground water exploitation and depletion beyond recovery, land stripping for power generation units, and fragmentation from power and associated transportation corridors), and climate change. Together these factors threaten remaining suitable habitat for endangered and...

  18. Double lens collimator solar feedback sensor and master slave configuration: Development of compact and low cost two axis solar tracking system for CPV applications

    KAUST Repository

    Burhan, Muhammad

    2016-08-31

    The conventional CPV systems, as big unit design, are only suitable to be installed in the open regions, like desert areas. This gigantic system design restricts their use on the rooftop of commercial and residential buildings, unlike the conventional PV systems. This paper proposes a compact but highly accurate and cheap two axis solar tracking system, designed for CPV system field operation. The proposed system is designed and verified for tracking accuracy requirement of 0.3 degrees, and has maximum capability of as high as 0.1 degrees tracking accuracy. High tracking accuracy is ensured using in-house built double lens collimator solar feedback sensor, within a fraction of the cost of commercial solar tracking sensors. A hybrid tracking algorithm is developed in C-programming using astronomical and optical solar tracking methods. As compact CPV system design demands larger number of tracking units, for same power capacity of system. Therefore, a master slave control configuration is also proposed for the CPV field operation. Only master tracker will be equipped with the expensive tracking devices, while the required tracking information will be sent to all of the slave trackers using wireless communication through ZigBee devices. With detailed optical design, simulation and control strategy, a prototype of the proposed CPV tracking system is developed, experimentally investigated and verified for tracking accuracy for outdoor operation at the rooftop. (C) 2016 Elsevier Ltd. All rights reserved.

  19. E-MODULE DEVELOPMENT FOR THE SUBJECT OF MEASURING INSTRUMENTS AND MEASUREMENT IN ELECTRONICS ENGINEERING EDUCATION

    Directory of Open Access Journals (Sweden)

    Nuryake Fajaryati

    2016-09-01

    Full Text Available This study aims to develop an e-module as a medium of learning for the practice course of Measuring Instruments and Measurement in the Department of Electronics Engineering Education of Yogyakarta State University and to determine the feasibility of the e-module. This study employed a method of research and development. The development process was conducted through four phases by using the model of Lee and Owens which consisted of analysis phase, design phase, developing and implementation phase, as well as evaluation phase.The evaluation was conducted in several stages. Firstly, an alpha test for product validation was conducted by the experts on material and media. After that, a beta test was conducted by testing the product in small group users. The subjects of this study were the students of Electronics Engineering. The instruments used to collect the data were a validation sheet and questionnaires. The results of qualitative data were then modified into quantitative data with a range of 1 to 5, then they were converted with a rating scale to determine the feasibility of the medium. The results showed that based on the alpha test, the medium was in a very high quality. Meanwhile, in the beta test of the instructional aspect, in terms of material and evaluation and the multimedia aspect the e-module was respectively considered feasible and quite feasible. The four indicators namely text, image, animation and video were all generally considered feasible. In terms of usage aspect, the e-module was considered feasible where its two indicators, namely instructions and navigation, were generally regarded as very feasible by all respondents.

  20. Seventy Years of Biochemical Subjects' Development in Pharmacy Curricula: Experience from Serbia.

    Science.gov (United States)

    Georgiev, Andrijana Milošević; Krajnović, Dušanka; Manojlović, Jelena; Ignjatović, Svetlana; Majkić Singh, Nada

    2016-01-01

    The pharmacists played an important role in the development of biochemistry as applied chemistry in Serbia. What is more, the first seven state chemists in Serbia were pharmacists. State chemists performed the chemical-toxicological analysis as well as some medical and biochemical ones. When it comes to the education of medical biochemists as health workers, the period after the beginning of the second half of the twentieth century should be taken into account because that is when the training of pharmaceutical staff of the Faculty of Pharmacy, University of Belgrade, begins on the territory of Serbia. This paper presents the development of medical biochemistry through the development of curriculum, personnel and literature since the foundation of the Faculty of Pharmacy in Serbia until today. The aim of this paper is to present the historical development of biochemistry at the Faculty of Pharmacy, University of Belgrade, through analysis of three indicators: undergraduate and postgraduate education of medical biochemists, teaching literature and professional associations and trade associations. The method of direct data was applied in this paper. Also, desktop analysis was used for analyzing of secondary data, regulations, curricula, documents and bibliographic material. Desktop research was conducted and based on the following sources: Archives of the University of Belgrade-Faculty of Pharmacy, Museum of the History of Pharmacy at the University of Belgrade-Faculty of Pharmacy, the Society of Medical Biochemists of Serbia and the Serbian Chamber of Biochemists. The curricula, the Bologna process of improving education, the expansion of the range of subjects, the number of students, professional literature for teaching biochemistry, as well as professional associations and trade associations are presented through the results.

  1. Insulin resistance is associated with the development of albuminuria in Korean subjects without diabetes.

    Science.gov (United States)

    Jang, Cheol Min; Hyun, Young Youl; Lee, Kyu Beck; Kim, Hyang

    2015-02-01

    Previous studies have shown that insulin resistance is associated with the development of albuminuria. However, most studies are done on a background of diabetes or metabolic syndrome and there is little data from general population. The aim of this study is to define the effect of insulin resistance on the development of albuminuria in healthy individuals without diabetes. We analyzed 60,047 participants without baseline diabetes or chronic kidney disease, who underwent at least two health maintenance visits at a 2-year interval between 2002 and 2009 at a tertiary hospital in Korea. We measured the incidence of albuminuria at the second examination and calculated the odds ratio for the development of albuminuria according to the quintile of the homeostasis model assessment of insulin resistance (HOMA-IR). After 2 years, 880 cases of incident albuminuria were observed. The cumulative incidences of albuminuria were 1.08, 1.50, 1.35, 1.47, and 1.92% for the 1st to 5th quintiles of HOMA-IR. On multivariate logistic analysis, the odds ratios for incident albuminuria compared to those in the 1st quintile were 1.38 (95% CI 1.10-1.73; P=0.006), 1.23 (95% CI 0.97-1.55; P=0.087), 1.32 (95% CI 1.04-1.67; P=0.020), and 1.66 (95% CI 1.31-2.09; Palbuminuria in relatively healthy subjects without diabetes. Further research is needed to verify the role of insulin resistance in the development of albuminuria and renal injury.

  2. Research Project "Subject Developing Environment of Preschool Education" for Russian Preschool Bilinguals (By the Example of Textile Educational Materials)

    Science.gov (United States)

    Latipova, Liliya A.; Krapotkina, Irene E.; Koudrjavtseva, Ekaterina L.

    2016-01-01

    The problem's relevance stated in the article is determined by the following: forming preschool bilinguals' subject developing environment is connected with their active education and development, as well as with flexible preparation for studying at school. The purpose of this article is to develop methodology of textile developing materials' use…

  3. Development of solar energy education IASEE-Argentina, Arquisur and Alfa-built

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, S. de; Evans, J.M. [Buenos Aires Univ. (Argentina). Faculty of Architecture

    1997-02-01

    Three educational experiences are presented in this paper on the development of national and regional networks to incorporate renewable energy in curricular programmes. IASEE-Argentina, established in 1990 as the National Section of IASEE, the International Association for Solar Energy Education, was designated in 1993 as the Education Working Group of ASADES, the Argentine Association of Solar Energy. It holds annual meetings to coincide with the ASADES conference. Arquisur is a regional network established by Architectural Faculties of State Universities within the Mercosur Region, covering Argentina, southern Brazil, Paraguay and Uruguay, to promote exchange and development between the 19 faculties involved. A Working Group set up by Arquisur with members from four countries developed the programme for short post-graduate courses on bioclimatic design and rational energy use in buildings, which has been given in Argentina and Uruguay. Alfa-Built, a project supported by the European Union for promoting academic exchange in the field of energy efficient building is also introduced. This paper presents the development and initial results of these educational experiences. (author)

  4. Quadrantal macular retinal thickness changes in strabismus subjects with abnormal binocular vision development.

    Science.gov (United States)

    Oka, Mayumi; Yamashita, Tsutomu; Ono, Shizuka; Kubo, Ikumi; Tabuchi, Akio

    2013-03-01

    To investigate retinal morphological changes in strabismus patients with abnormal binocular vision development by comparing differences in quadrantal macular retinal thickness. Six strabismus patients (6 dominant and 5 non-dominant eyes) with abnormal binocular vision (mean age 22 years), and 11 control subjects (11 dominant and 11 non-dominant eyes) (mean age 21 years) were enrolled. Macular retinal thickness measurements were performed by optical coherence tomography, with total macular retinal (TMR) and ganglion cell complex (GCC) thicknesses measured in 3- and 6-mm regions in each quadrant. Measurement values were then used to determine quadrant ratios. Compared to the dominant eyes of the controls, the superior/inferior (S/I) ratio of the TMR thickness and GCC thickness in the 3-mm region was significantly lower in the dominant eyes of the strabismus group (P binocular vision development exhibited thinner superior temporal GCC thicknesses in the 3-mm region. Retinal ganglion cells in this region might be affected by efferent neural degeneration that originates in the visual pathway responsible for adaptations to the visual experience.

  5. Research and Development on Automatic Information Organization and Subject Analysis in Recent Decades

    Directory of Open Access Journals (Sweden)

    Yuen-Hsien Tseng

    2014-10-01

    Full Text Available Information organization and subject analysis (IOSA is an important issue in the field of library and information science(LIS.As the fast advance in information technology, more and more digital documents are emerging in a pace such that automated IOSA become inevitable. This article firstly introduces the development of related automatic techniques in recent decades and promotes a tranditional viewpoint based on the workflow of:(1 data collection and aggregation, (2 cataloguing, (3 regulation, (4 archving, and (5 usage,to regulate the whole process when applying automated techniques to any IOSA task.Some application examples are then described to let the readers have a feel of the feasibility of these techniques; specifically the applications of keyword extraction, association analysis, document clustering, and topic categorization are mentioned.We conclude that the related techniques and applications are still developing in a quick pace such that only a few percentages of them can be mentioned.This article is intended to promote the mutual cooperation among the LIS and other fields.

  6. The Predictors of Subjective Career Success: An Empirical Study of Employee Development in a Korean Financial Company

    Science.gov (United States)

    Park, Yongho

    2010-01-01

    Subjective career success has recently been discussed widely in the academic field of career development. The purpose of this study was to investigate the predictors of subjective career success. It examined the effects of the calling work orientation, the individual's career-enhancing strategy and the organizational learning climate on the…

  7. BLM Solar Energy Zones

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — Priority development areas for utility-scale solar energy facilities as identified in the Solar PEIS Record of Decision. An additional Solar Energy Zone identified...

  8. Energy resources of the developing countries and some priority markets for the use of solar energy

    Science.gov (United States)

    Siddiqi, T. A.; Hein, G. F.

    1977-01-01

    Energy consumption for the developed and non-developed world is expressed as a function of GNP. An almost straight-line graph results when energy consumption statistics are treated in this manner. The richest countries consume the most energy, and the poorest countries the least. It therefore follows that greater energy production in the developing countries (leading to greater energy consumption) will contribute to their economic growth. Energy resources in the developing countries are compared, including: solid fossil fuels, crude oil, natural gas, oil shale, and uranium. Mention is also made of the potential of renewable energy resources, such as solar, wind, and hydroelectric power, in the underdeveloped world; and it is these resources which offer the greatest possibilities for economic improvement if the money is forthcoming, i.e., from the world bank, to fund the necessary technology.

  9. Computational Methodologies for Developing Structure–Morphology–Performance Relationships in Organic Solar Cells: A Protocol Review

    KAUST Repository

    Do, Khanh

    2016-09-08

    We outline a step-by-step protocol that incorporates a number of theoretical and computational methodologies to evaluate the structural and electronic properties of pi-conjugated semiconducting materials in the condensed phase. Our focus is on methodologies appropriate for the characterization, at the molecular level, of the morphology in blend systems consisting of an electron donor and electron acceptor, of importance for understanding the performance properties of bulk-heterojunction organic solar cells. The protocol is formulated as an introductory manual for investigators who aim to study the bulk-heterojunction morphology in molecular details, thereby facilitating the development of structure morphology property relationships when used in tandem with experimental results.

  10. Development of a Mathematical Lumped Parameters Model for the Heat Transfer Performance of a Solar Collector

    Directory of Open Access Journals (Sweden)

    G. Iordanou

    2011-10-01

    Full Text Available This work describes the developed of a lumped parameter model and demonstrates its practical application. The lumped parameter mathematical model is a useful instrument to be used for rapid determination of design dimensions and operational performance of solar collectors at the designing stage. Such model which incorporates data from relevant Computational Fluid Dynamics design and experimental investigations can provide an acceptable accuracy in predictions and can be used as an effective design tool. A computer algorithm validates the lumped parameter model via a window environment program.

  11. Solar photovoltaic development's French strategy; La strategie francaise de developpement du solaire photovoltaiqe

    Energy Technology Data Exchange (ETDEWEB)

    Bal, J.L. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, Dir. des Energies Renouvelables, des Reseaux et des Marches Energetiques, 75 - Paris (France)

    2010-04-15

    Following the 'Grenelle de l'Environnement', the French Government has decided that solar PV would represent an installed capacity of 5 400 MW in 2020. Priority is given to applications integrated in buildings and to those relevant to overseas. Industrial players are taking their place throughout the chain from silicon to system installation. 13 000 jobs should be concerned by 2012. A major effort of research and development is undertaken involving in particular ADEME, ANR, OSEO, the INES and 'Competitiveness Clusters'. (author)

  12. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  13. Retrospective on 30 years of nonimaging optics development for solar energy at the University of Chicago

    Science.gov (United States)

    O'Gallagher, Joseph J.

    2016-09-01

    As the field of nonimaging optics has developed over the last 50 years, among its many applications, the best known and recognized is probably in solar energy. In particular, the approach provides the formalism that allows the design of devices that approach the maximum physically attainable geometric concentration for a given set of optical tolerances. This means that it has the potential to revolutionize the design of solar concentrators. Much of the experimental development and early testing of these concepts was carried out at the University of Chicago by Roland Winston and his colleagues and students. In this presentation, some of many embodiments and variations of the basic Compound Parabolic Concentrator that were developed and tested over a thirty-year period at Chicago are reviewed. Practical and economic aspects of concentrator design for both thermal and photovoltaic applications are discussed. Examples covering the whole range of concentrator applications from simple low-concentration non-tracking designs to ultrahigh-concentration multistage configurations are covered.

  14. Solar Photovoltaic Development in Australia—A Life Cycle Sustainability Assessment Study

    OpenAIRE

    Man Yu; Anthony Halog

    2015-01-01

    Australia possesses the highest average solar radiation of any continent in the world, but solar energy in total contributes less than 1% to Australia’s primary energy consumption. This study intends to assess whether solar photovoltaic (PV) is really a sustainable option for Australia’s energy transition on the project level. A life cycle sustainability assessment (LCSA) was conducted on a 1.2 MW flat-roof mounted PV solar array called UQ Solar, and the results suggested UQ Solar performed...

  15. Towards 12% stabilised efficiency in single junction polymorphous silicon solar cells: experimental developments and model predictions

    Directory of Open Access Journals (Sweden)

    Abolmasov Sergey

    2016-01-01

    Full Text Available We have combined recent experimental developments in our laboratory with modelling to devise ways of maximising the stabilised efficiency of hydrogenated amorphous silicon (a-Si:H PIN solar cells. The cells were fabricated using the conventional plasma enhanced chemical vapour deposition (PECVD technique at various temperatures, pressures and gas flow ratios. A detailed electrical-optical simulator was used to examine the effect of using wide band gap P-and N-doped μc-SiOx:H layers, as well as a MgF2 anti-reflection coating (ARC on cell performance. We find that with the best quality a-Si:H so far produced in our laboratory and optimised deposition parameters for the corresponding solar cell, we could not attain a 10% stabilised efficiency due to the high stabilised defect density of a-Si:H, although this landmark has been achieved in some laboratories. On the other hand, a close cousin of a-Si:H, hydrogenated polymorphous silicon (pm-Si:H, a nano-structured silicon thin film produced by PECVD under conditions close to powder formation, has been developed in our laboratory. This material has been shown to have a lower initial and stabilised defect density as well as higher hole mobility than a-Si:H. Modelling indicates that it is possible to attain stabilised efficiencies of 12% when pm-Si:H is incorporated in a solar cell, deposited in a NIP configuration to reduce the P/I interface defects and combined with P- and N-doped μc-SiOx:H layers and a MgF2 ARC.

  16. Towards 12% stabilised efficiency in single junction polymorphous silicon solar cells: experimental developments and model predictions

    Science.gov (United States)

    Abolmasov, Sergey; Cabarrocas, Pere Roca i.; Chatterjee, Parsathi

    2016-01-01

    We have combined recent experimental developments in our laboratory with modelling to devise ways of maximising the stabilised efficiency of hydrogenated amorphous silicon (a-Si:H) PIN solar cells. The cells were fabricated using the conventional plasma enhanced chemical vapour deposition (PECVD) technique at various temperatures, pressures and gas flow ratios. A detailed electrical-optical simulator was used to examine the effect of using wide band gap P-and N-doped μc-SiOx:H layers, as well as a MgF2 anti-reflection coating (ARC) on cell performance. We find that with the best quality a-Si:H so far produced in our laboratory and optimised deposition parameters for the corresponding solar cell, we could not attain a 10% stabilised efficiency due to the high stabilised defect density of a-Si:H, although this landmark has been achieved in some laboratories. On the other hand, a close cousin of a-Si:H, hydrogenated polymorphous silicon (pm-Si:H), a nano-structured silicon thin film produced by PECVD under conditions close to powder formation, has been developed in our laboratory. This material has been shown to have a lower initial and stabilised defect density as well as higher hole mobility than a-Si:H. Modelling indicates that it is possible to attain stabilised efficiencies of 12% when pm-Si:H is incorporated in a solar cell, deposited in a NIP configuration to reduce the P/I interface defects and combined with P- and N-doped μc-SiOx:H layers and a MgF2 ARC.

  17. Solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sommer-Larsen, P.; Krebs, F.C. (Risoe DTU, Roskilde (Denmark)); Plaza, D.M. (Plataforma Solar de Almeria-CIEMAT (Spain))

    2010-11-15

    Solar energy is the most abundant energy resource on earth. In a sustainable future with an ever-increasing demand for energy, we will need to use this resource better. Solar energy technologies either convert sunlight directly into heat and electrical energy or use it to power chemical conversions which create 'solar fuels' or synthetic compounds. Solar heating technologies have developed steadily for many years and solar heating and cooling is one of the world's commonest renewable energy technologies. This chapter, however, focuses on technologies for electricity production and touches more briefly on the prospects for solar fuels. The section on Danish perspectives also discusses solar thermal heating in district heating plants. In recent decades, two technologies for converting solar energy into electrical energy have dominated: photovoltaics (PV) and concentrating solar power (CSP). Today's silicon and thin-film PV technologies are advancing steadily, with new materials and technologies constantly being developed, and there are clear roadmaps for lowering production costs. In the discussion below we assess the maturation potential of currently emerging PV technologies within the next 40 years. Concentrating solar power is already a proven technology, and below we evaluate its potential to become a substantial part of the energy mix by 2050. Solar fuels cover a range of technologies. The chapter is to a great extent based on two recent roadmaps from the International Energy Agency (IEA). Many reports, predictions, scenarios and roadmaps for solar energy deployment exist. The IEA predictions for the penetration of solar energy in the future energy system are low relative to many of the other studies. The IEA roadmaps, however, cover most aspects of the future deployment of the technologies and reference older work. (Author)

  18. Early solar physics

    CERN Document Server

    Meadows, A J

    1970-01-01

    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  19. Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma.

    Science.gov (United States)

    Adachi, Sayaka; Yuki, Kenya; Awano-Tanabe, Sachiko; Ono, Takeshi; Shiba, Daisuke; Murata, Hiroshi; Asaoka, Ryo; Tsubota, Kazuo

    2018-02-13

    To investigate the relationship between clinical risk factors, including visual field (VF) defects and visual acuity, and a fear of falling, among patients with primary open-angle glaucoma (POAG). All participants answered the following question at a baseline ophthalmic examination: Are you afraid of falling? The same question was then answered every 12 months for 3 years. A binocular integrated visual field was calculated by merging a patient's monocular Humphrey field analyzer VFs, using the 'best sensitivity' method. The means of total deviation values in the whole, superior peripheral, superior central, inferior central, and inferior peripheral VFs were calculated. The relationship between these mean VF measurements, and various clinical factors, against patients' baseline fear of falling and future fear of falling was analyzed using multiple logistic regression. Among 392 POAG subjects, 342 patients (87.2%) responded to the fear of falling question at least twice in the 3 years study period. The optimal regression model for patients' baseline fear of falling included age, gender, mean of total deviation values in the inferior peripheral VF and number of previous falls. The optimal regression equation for future fear of falling included age, gender, mean of total deviation values in the inferior peripheral VF and number of previous falls. Defects in the inferior peripheral VF area are significantly related to the development of a fear of falling.

  20. Library Subject Guides: A Case Study of Evidence-Informed Library Development

    Science.gov (United States)

    Wakeham, Maurice; Roberts, Angharad; Shelley, Jane; Wells, Paul

    2012-01-01

    This paper describes the process whereby a university library investigated the value of its subject guides to its users. A literature review and surveys of library staff, library users and other libraries were carried out. Existing library subject guides and those of other higher education libraries were evaluated. The project team reported…

  1. Process development for automated solar cell and module production. Task 4: automated array assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hagerty, J.J.

    1980-06-30

    The scope of work under this contract involves specifying a process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use. This process sequence is then critically analyzed from a technical and economic standpoint to determine the technological readiness of each process step for implementation. The process steps are ranked according to the degree of development effort required and according to their significance to the overall process. Under this contract the steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development. Economic analysis using the SAMICS system has been performed during these studies to assure that development efforts have been directed towards the ultimate goal of price reduction. Details are given. (WHK)

  2. Procurement Specifications Templates for On-Site Solar Photovoltaic: For Use in Developing Federal Solicitations

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-16

    With the increasing adaption of on-site renewable energy systems designed to feed site loads, there is a critical need to develop tools that allow the federal sector to become a mature and sophisticated consumer. This document is intended to reduce project development and operational risks while increasing the speed at which projects are completed; two necessary components to reach the scale required to meet mandates and achieve cost savings for taxpayers. This guide is intended to act as a living document where lessons learned from the increasing number of projects can be incorporated and provide guidance for efforts. While additional guides will be developed to cover other renewable technologies, this guide covers on-site solar photovoltaic systems with an emphasis on third-party designed, financed, owned, and operated systems.

  3. Brief assessment of subjective health complaints: Development, validation and population norms of a brief form of the Giessen Subjective Complaints List (GBB-8).

    Science.gov (United States)

    Kliem, Sören; Lohmann, Anna; Klatt, Thimna; Mößle, Thomas; Rehbein, Florian; Hinz, Andreas; Beutel, Manfred; Brähler, Elmar

    2017-04-01

    Although there is no causal relationship to medical morbidity, routine clinical assessment of somatic symptoms aids medical diagnosis and assessment of treatment effectiveness. Regardless of their causes, somatic symptoms indicate suffering, distress, and help-seeking behavior. The aim of the present study was to develop and validate a brief self-report questionnaire to assess somatic symptom strain. A brief form of the Giessen Subjective Complaints List (GBB-8) was developed and validated in a large population sample representative of the Federal Republic of Germany (N=2008). Psychometric analyses included confirmation of factor structure, classical item analysis, and measurement invariance tests. The sample furthermore served as a norm group. As indicators of construct validity, correlations with measures of anxiety, depression, alexithymia, and primary care contact were computed. Psychometric analyses yielded excellent scale properties regarding item characteristics, factor structure, and measurement invariance tests (Cronbach's alpha=0.88; CFI=0.980, TLI=0.965, RMSEA=0.049) for the second-order four-factor model; strict invariance was confirmed for gender, depression status, and physician contacts; strong invariance was confirmed regarding age and age×gender. The GBB-8 with its four subscales exhaustion, gastrointestinal complaints, musculoskeletal complaints, and cardiovascular complaints proves to be an economic measure of subjective symptom strain. Psychometric analyses deem it suitable for epidemiological research. The availability of norms makes it a potential everyday tool for general practitioners and psychosomatic clinics. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    Science.gov (United States)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  5. Development and life cycle analysis of double slope active solar still with flat plate collector

    Directory of Open Access Journals (Sweden)

    A.K. Sethi

    2014-02-01

    Full Text Available Potable water is an essential ingredient of socio-economic development and economic growth. Often water sources are brackish (i.e. contain dissolved salts and/or contain harmful bacteria and therefore cannot be used for drinking. In addition, there are many coastal locations where seawater is abundant but potable water is not available. This study is focused on a development of solar still with flat plat collector for water desalination considered for small scale applications at remote locations where only saline water is available. In this paper the cost of distilled water per kg has been calculated by using the concept of life cycle cost analysis. The pay back periods for different conditions of the distribution of distilled water, namely at the cost it is produced and at the selling price on market rate have been evaluated. The cost of water per kg is minimum Rs. 0.59, when the interest rate and the lifetime of solar still are taken as 4% and 50 years respectively. The lowest payback time 1.23 years is obtained when the selling price of water Rs. 10 per kg.

  6. Development of Coring Procedures Applied to Si, CdTe, and CIGS Solar Panels

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, Helio R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnston, Steven [National Renewable Energy Laboratory (NREL), Golden, CO (United States); To, Bobby [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jiang, Chun Sheng [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Xiao, Chuanxiao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moseley, John [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tynan, Gerald D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Al-Jassim, Mowafak M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dhere, N. G. [Florida Solar Energy Center

    2018-01-04

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that we developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.

  7. History of Public Policies for Research, Development and Deployment for Solar Photovoltaics in Japan

    Science.gov (United States)

    Kimura, Osamu

    Developing new renewable energy sources, such as solar photovoltaics (PV), is a key to establishing climate-friendly economy. Japan has been one of the centers of research, development, and diffusion (RD&D) of PV since the 1970's. While it is true that Japan was outnumbered by Germany in installed capacity and by US and Chinese companies in production in recent years, Japan still retains an important position in the world PV market. This paper examines the history of public policies for RD&D of PV in Japan, focusing on two kinds of policies, namely, public support for R&D under the Sunshine Program and various market creation policies in the early 1990's. Based on literature survey and interviews with key persons involved, the paper reveals that those support policies played an indispensable role to accelerate RD&D of PV technology. The Sunshine Program provided stable R&D budgets and space for technology learning throughout the 1980's to 1990's, and contributed to the progress of solar cell efficiency and cost reduction. The various market creation policies in the early 1990's also created regulatory and economic conditions that were necessary to commercialize residential PV systems, and became the direct driver to launch the initial PV market.

  8. Community Solar: An Opportunity to Enhance Sustainable Development on Landfills and Other Contaminated Sites

    Science.gov (United States)

    This discussion paper describes the linkage between the need for solar access for some sites, the mechanism of community solar and the opportunities for using formerly contaminated lands, landfills and mine sites for renewable energy.

  9. Development of the optical waveguide solar lighting system for space-based plant growing.

    Science.gov (United States)

    Nakamura, T; Case, J A; Mankamyer, M

    1998-01-01

    This article summarizes the study on the Optical Waveguide (OW) Solar Lighting System for space-based plant growing. In the OW solar lighting system, solar radiation is collected by the concentrator, which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the plant growing units where the solar radiation from the optical fibers is defocused and directed to the plants for optimum intensity for plant growing. In this study, the laboratory OW solar lighting system was constructed and tested for plant growth. The OW system consists of: 1) tracking reflective concentrators; 2) the optical waveguide transmission line; and 3) the plant lighting device. Results of the performance tests and the plant growth tests of the OW solar lighting system showed that the OW system is a viable plant lighting system for growing plant in space.

  10. Solar Energy Development Impacts on Land-Cover Change and Protected Areas

    Science.gov (United States)

    Hoffacker, M. K.; Hernandez, R. R.; Murphy-Mariscal, M. L.; Wu, G. C.; Allen, M. F.

    2015-12-01

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE; i.e., ≥ 1 megawatt [MW]) development requires large quantities of space and land; however, studies quantifying the effect of USSE on land-cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type (photovoltaic [PV] vs. concentrating solar power [CSP]), area (km2), and capacity (MW) within the global solar hotspot of the state of California (USA). Additionally, we utilized the Carnegie Energy and Environmental Compatibility Model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Lastly, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrub- and scrublands, comprising 375 km2 of land-cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in compatible areas. The majority of incompatible USSE power plants are sited far from existing transmission infrastructure and all USSE installations average at most seven and five km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  11. Solar energy development impacts on land cover change and protected areas.

    Science.gov (United States)

    Hernandez, Rebecca R; Hoffacker, Madison K; Murphy-Mariscal, Michelle L; Wu, Grace C; Allen, Michael F

    2015-11-03

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥ 1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in "Compatible" areas. The majority of "Incompatible" USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  12. Solar energy development impacts on land cover change and protected areas

    Science.gov (United States)

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Murphy-Mariscal, Michelle L.; Wu, Grace C.; Allen, Michael F.

    2015-01-01

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km2 of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions. PMID:26483467

  13. Development of a Code to Analyze the Solar White-Light Images ...

    Indian Academy of Sciences (India)

    In the focal plane a green color filter is used to improve the quality of the solar image. More detailed ... The solar white-light images were stored on the photographic plates of size 25.4 sq. cm till 1975. From Jan. ... image and then. Figure 1. Digitized white-light image of the Sun obtained from Kodaikanal Solar Observatory.

  14. Optimized solar-wind-powered drip irrigation for farming in developing countries

    Science.gov (United States)

    Barreto, Carolina M.

    The two billion people produce 80% of all food consumed in the developing world and 1.3 billion lack access to electricity. Agricultural production will have to increase by about 70% worldwide by 2050 and to achieve this about 50% more primary energy has to be made available by 2035. Energy-smart agri-food systems can improve productivity in the food sector, reduce energy poverty in rural areas and contribute to achieving food security and sustainable development. Agriculture can help reduce poverty for 75% of the world's poor, who live in rural areas and work mainly in farming. The costs associated with irrigation pumping are directly affected by energy prices and have a strong impact on farmer income. Solar-wind (SW) drip irrigation (DI) is a sustainable method to meet these challenges. This dissertation shows with onsite data the low cost of SW pumping technologies correlating the water consumption (evapotranspiration) and the water production (SW pumping). The author designed, installed, and collected operating data from the six SWDI systems in Peru and in the Tohono O'odham Nation in AZ. The author developed, tested, and a simplified model for solar engineers to size SWDI systems. The author developed a business concept to scale up the SWDI technology. The outcome was a simplified design approach for a DI system powered by low cost SW pumping systems optimized based on the logged on site data. The optimization showed that the SWDI system is an income generating technology and that by increasing the crop production per unit area, it allowed small farmers to pay for the system. The efficient system resulted in increased yields, sometimes three to four fold. The system is a model for smallholder agriculture in developing countries and can increase nutrition and greater incomes for the world's poor.

  15. Solar energy development and aquatic ecosystems in the southwestern United States: potential impacts, mitigation, and research needs.

    Science.gov (United States)

    Grippo, Mark; Hayse, John W; O'Connor, Ben L

    2015-01-01

    The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.

  16. Solar Energy Development and Aquatic Ecosystems in the Southwestern United States: Potential Impacts, Mitigation, and Research Needs

    Energy Technology Data Exchange (ETDEWEB)

    Grippo, Mark; Hayse, John W.; O’Connor, Ben L.

    2014-10-21

    The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface–groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.

  17. Expanding subjectivities

    DEFF Research Database (Denmark)

    Lundgaard Andersen, Linda; Soldz, Stephen

    2012-01-01

    A major theme in recent psychoanalytic thinking concerns the use of therapist subjectivity, especially “countertransference,” in understanding patients. This thinking converges with and expands developments in qualitative research regarding the use of researcher subjectivity as a tool to understa...

  18. Rhetorical meta-language to promote the development of students' writing skills and subject matter understanding

    Science.gov (United States)

    Pelger, Susanne; Sigrell, Anders

    2016-01-01

    Background: Feedback is one of the most significant factors for students' development of writing skills. For feedback to be successful, however, students and teachers need a common language - a meta-language - for discussing texts. Not least because in science education such a meta-language might contribute to improve writing training and feedback-giving. Purpose: The aim of this study was to explore students' perception of teachers' feedback given on their texts in two genres, and to suggest how writing training and feedback-giving could become more efficient. Sample: In this study were included 44 degree project students in biology and molecular biology, and 21 supervising teachers at a Swedish university. Design and methods: The study concerned students' writing about their degree projects in two genres: scientific writing and popular science writing. The data consisted of documented teacher feedback on the students' popular science texts. It also included students' and teachers' answers to questionnaires about writing and feedback. All data were collected during the spring of 2012. Teachers' feedback, actual and recalled - by students and teachers, respectively - was analysed and compared using the so-called Canons of rhetoric. Results: While the teachers recalled the given feedback as mainly positive, most students recalled only negative feedback. According to the teachers, suggested improvements concerned firstly the content, and secondly the structure of the text. In contrast, the students mentioned language style first, followed by content. Conclusions: The disagreement between students and teachers regarding how and what feedback was given on the students texts confirm the need of improved strategies for writing training and feedback-giving in science education. We suggest that the rhetorical meta-language might play a crucial role in overcoming the difficulties observed in this study. We also discuss how training of writing skills may contribute to

  19. DESIGNING CROSS SUBJECT COMMUNICATIONS AS THE CONDITION FOR DEVELOPING SOCIAL SKILLS IN TEACHERS

    Directory of Open Access Journals (Sweden)

    Nina Ivanovna Lygina

    2013-09-01

    Full Text Available In this paper we will present the results of a pedagogical experiment aimed at studying the level of social skills in university professors. Planning cross subject communications in an academic subject with consideration of the previous and associated knowledge and skills of students in the educational programme formed the basis of the pedagogical experiment. Problems have occurred when university professors are faced with elaborating cross subject communications. It was discovered that the problems professors had were connected to their responsiveness and to the various strategies they applied while working within small groups. We will analyze the results, provide recommendations and show the change in the level of the professors’ social skills during elaboration of  cross subject communications.DOI: http://dx.doi.org/10.12731/2218-7405-2013-8-21

  20. Campbell-Bristow development Model for Estimating Global Solar radiation in the Region of Junin, Perú

    Directory of Open Access Journals (Sweden)

    Dr. Becquer Frauberth Camayo-Lapa

    2015-11-01

    Full Text Available In order to have a tool to estimate the monthly and annual solar radiation on the horizontal surface in Junín region, in which is not available with this information, adapted Bristow-Campbell (1984 model for estimating global solar radiation monthly average.   To develop the model of Bristow-Campbell that estimates the average daily global solar radiation monthly modeling technique proposed by Espinoza (2010, were recorded daily maximum and minimum temperatures of 19 weather stations and the equations proposed  by the Solar High Peru 2003 was adapted to this model.  The Bristow-Campbell model was developed with data recorded in stations: Santa Ana, Tarma and Satipo belonging to Sierra and Selva, respectively. The performance of applications calculated solar radiation was determined by considering the OLADE (1992 that solar radiation over 4,0 kWh/m2/day are profitable and 5,0 kWh/m2/day very profitable. The results indicate that the monthly average global solar radiation in Junín  region is 5,3  kWh/m2/day corresponding to the  4,2 Forest and the Sierra 5,6 kWh/m2/day kWh/m2/day. Profitability is determined for the less profitable Selva and Sierra is very profitable. In addition, the operating model is simple and available to all users. We conclude that application of the Bristow-Campbell model adapted, it is an instrument of great utility to generate a comprehensive database of available solar radiation in Junín region.

  1. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    Science.gov (United States)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  2. Development of an Embedded Solar Tracking System with LabVIEW Motion Control

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jin; Hyun, Jun Ho; Oh, Won Jong; Kim, Yeong Min; Lee, Yoon Joon; Chun, Won Gee [Jeju National University, Jeju (Korea, Republic of)

    2010-10-15

    Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device such as a hydraulic pump, linear actuator, or an electric motor. The motion control is widely used in the packaging, printing, textile, semiconductor production, and power plants. National Instruments LabVIEW is a graphical programming language that has its roots in automation control and data acquisition. Its graphical representation, similar to a process flow diagram, was created to provide an intuitive programming environment for scientist and engineers. Crystal River Nuclear Plant engineers developed automated testing system of nuclear plant control modules in an aging nuclear power plant using LabVIEW to improve performance and reliability and reduce cost. In this study, an embedded two-axis solar tracking system was developed using LabVIEW motion control module

  3. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    Science.gov (United States)

    Gates, W. R.

    1983-02-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  4. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  5. Development the Internet - Resources in Solar-Terrestrial Physics for the Science and Education

    Science.gov (United States)

    Zaistev, A.; Ishkov, V.; Kozlov, A.; Obridko, V.; Odintsov, V.

    Future development of research in the solar-terrestrial physics (STP) will motivated by needs into fundamental knowledge and the practical demands in the format of space weather. Public community realized that outer space disturbances affects on the operation of high technologies systems integrated into everyday life, so they need into Internet resources of solar-terrestrial physics as the open scientific and public domain. Recent achievements of STP lead to burst of data sources and we have now many different types of information available free in Internet: solar images from SOHO and GOES-12 satellites, WIND and ACE interplanetary data, satellite and ground-based magnetic field variations, aurora images in real time, ionospheric data and many more. In this paper we present some experience to establish in Russian language the open scientific and public domain in Internet which can served for better understanding of STP in wide scientific community and into the general public including different media sources. Now we have more than one hundred sites which present the STP data: Space Research Institute (www.iki.rssi.ru), IZMIRAN (www.izmiran.rssi.ru), Institute of Solar-Terrestrial Physics (www.iszf.irk.ru), Institute of Nuclear Physics in Moscow University (http://alpha.npi.msu.su) Institute of Nuclear Physics in Moscow University ) and many more. Based on our own experience and our colleagues we decide to create information resources in solar-terrestrial physics as the open scientific and public domain. On this way the main directions of our activity as follows: to produce the catalogues of resources in Internet with detailed description of its content in Russian, to publish the list of Russian institutes working in STP, to present the biographical dictionary of Russian scientists in STP, to create the interactive forum for discussion of latest scientific results, to form the team of authors who willing to publish summarized analytical papers on the STP problems

  6. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data.

    Science.gov (United States)

    Kiarashi, Nooshin; Nolte, Adam C; Sturgeon, Gregory M; Segars, William P; Ghate, Sujata V; Nolte, Loren W; Samei, Ehsan; Lo, Joseph Y

    2015-07-01

    Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images

  7. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  8. The empirical and semiempirical methodology in the cosmic ray and solar energetic particle flux model development

    Science.gov (United States)

    Nymmik, R. A.

    Due to the complexity of processes, causing the occurrence of cosmic ray and solar energetic particle fluxes in space, the available physical models are hardly capable of giving a complete description of the fluxes and their dynamics. In order to describe the particle fluxes numerically, empirical and semi-empirical models are developed. Empirical models restrict themselves to a quantitative description of the final effect - particle fluxes and their dynamics or variations in the form of simple approximations, represented as tables or figures. When developing semi-empirical models, descriptions of intermediate regularities are used. The set of such intermediate regularities, comprising a logic series leads to the final effect. Such models are capable of describing not only the final effect, but also the intermediate phenomena, refinement of which permit to increase the reliability of the model in general. As an example of an empirical model we can indicate CRÈME-81, where particle flux variations during the solar cycle were described by means of a sinusoidal function. Later, a semi-empirical model was developed at Moscow State University. This model used Wolf numbers as the initial parameter, and accounted for effects, caused by the 22-year dynamics of the large-scale magnetic field. One of the versions of this model was used in CRÈME-96 and adopted as an International Standard (ISO 15390). A similar situation currently exists for SEP particle fluxes. Along with such empirical models as JPL-91 and Xapsos et al. (a number of publications), a semi-empirical model has been developed at MSU. This model has been submitted for discussion as the draft of an international standard. Whilst empirical models describe proton fluxes for some abstract active Sun period and for proton fluxes of certain fixed energies, a semi-empirical model describes particle fluxes for any solar activity level, providing the output data in analytical form and giving the user with additional

  9. Design, Development and Performance Evaluation of a Small Scale Solar Assisted Paddy Dryer for on Farm Processing

    Directory of Open Access Journals (Sweden)

    Sidrah Ashfaq

    2016-04-01

    Full Text Available With the continued escalation in population growth and the expansion of international food trade and demand of high quality product for food security at low cost has created considerable interest in the development of new post-harvest technologies. This is particularly important for developing countries where post-harvest losses of cereals are between 10-20% and of fruits and vegetables as high as 20- 100% A new solar assisted paddy dryer with central air distribution model (along the length of drying chamber has been developed. Due to this distinct feature of the dryer high drying rate was achieved during the drying processes .Other components of the dryer are perforated drying chamber, blower and flat plat solar air collector. Dryer was evaluated using 100kg of freshly harvested paddy at 23.78% moisture content (wb. Performance evaluation results showed that the mean drying rate of the solar assisted paddy dryer was 0.87kg/hr per for every 100kg, whereas 0.46kg/hr was the sun drying rate comparatively. The faster drying rate of the dryer reveals its suability to dry the paddy for its safe storage moisture content rapidly. By using the solar assisted paddy dryer, approximately 50% saving in time was also achieved as compared with the traditional sun drying method. Solar assisted paddy dryer took 10hr for drying the 100kg paddy up to 14%, while sun drying method dried paddy up to 13.89% in 19 hours. Cost analysis also showed that, by using solar assisted paddy dryer we candry good quality paddy at low cost as compared with the open sun drying method. For development of agriculture in the rural areas, commercial size of the solar assisted paddy dryer can be amplified and produced at community level.

  10. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  11. Development of Laboratory Experimental System to Clarify Solar Wind Charge Exchange Mechanism with TES Microcalorimeter

    Science.gov (United States)

    Enoki, T.; Ishisaki, Y.; Akamatsu, H.; Ezoe, Y.; Ohashi, T.; Kanda, T.; Ishida, T.; Tanuma, H.; Ohashi, H.; Shinozaki, K.; Mitsuda, K.

    2012-06-01

    Significant fraction of the cosmic diffuse soft X-ray emission (0.1-1 keV) is caused by the Solar Wind Charge eXchange (SWCX) process between the solar wind ion (C q+, N q+, O q+ etc.) and the interplanetary neutral matter. It is difficult to identify spectral features of SWCX with the spectral resolution of existing X-ray astronomy satellites. We are developing a laboratory experimental system with transition edge sensor (TES) X-ray microcalorimeters, in order to clarify the SWCX mechanism. This experiment is designed to measure Charge eXchange (CX) X-rays using Electron Cyclotron Resonance Ion Source (ECRIS) that generates multi-charged ions. Emission lines (OVIII: 2p→1s; 654 eV) by CX between O8+ and neutral He atom is aimed to be measured with energy resolution better than 10 eV. The TES microcalorimeter is cooled by a double-stage adiabatic demagnetization refrigerator (DADR), however, our TES microcalorimeter are not working potentially due to magnetic field contamination. This paper reports our experimental system, present results, and future prospects.

  12. Development of a solar-powered residential air conditioner: Screening analysis

    Science.gov (United States)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  13. Development and Operation of a Liquid Scintillator Purification System for a Solar Neutrino Detector

    Science.gov (United States)

    Chen, M.; Benziger, J. B.; Calaprice, F. P.; Darnton, N.; Johnson, M.; Loeser, F.; Vogelaar, R. B.

    1996-10-01

    An on-line purification system for a large-scale, liquid scintillator detector has been developed for the Counting Test Facility (CTF), a five-ton prototype of the Borexino solar neutrino detector at Gran Sasso. This purification system was operated to remove radioactive impurities from the pseudocumene-based scintillator in the CTF. Counter-current water extraction was performed to remove ionic impurities from the scintillator. Notably, the radon daughters ^210Bi and ^210Po were identified prior to purification and were successfully removed by water extraction. Vacuum distillation of the entire scintillator mixture allowed high radiopurity and chemical purity to be maintained; in addtion, it enabled a test of the origin of ^14C in the scintillator mixture to be performed. Finally, nitrogen stripping was utilized to remove noble gas radioactive isotopes, such as ^85Kr and ^222Rn. The results of the CTF purification activities and an overview of the purification scheme for the Borexino solar neutrino experiment will be presented.

  14. Wildlife conservation and solar energy development in the Desert Southwest, United States

    Science.gov (United States)

    Lovich, Jeffrey E.; Ennen, Josua R.

    2011-01-01

    Large areas of public land are currently being permitted or evaluated for utility-scale solar energy development (USSED) in the southwestern United States, including areas with high biodiversity and protected species. However, peer-reviewed studies of the effects of USSED on wildlife are lacking. The potential effects of the construction and the eventual decommissioning of solar energy facilities include the direct mortality of wildlife; environmental impacts of fugitive dust and dust suppressants; destruction and modification of habitat, including the impacts of roads; and off-site impacts related to construction material acquisition, processing, and transportation. The potential effects of the operation and maintenance of the facilities include habitat fragmentation and barriers to gene flow, increased noise, electromagnetic field generation, microclimate alteration, pollution, water consumption, and fire. Facility design effects, the efficacy of site-selection criteria, and the cumulative effects of USSED on regional wildlife populations are unknown. Currently available peer-reviewed data are insufficient to allow a rigorous assessment of the impact of USSED on wildlife.

  15. Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells.

    Science.gov (United States)

    Ahmad, Iftikhar; McCarthy, Joseph E; Baranov, Alexander; Gun'ko, Yurii K

    2015-09-07

    Graphene has been envisaged as a highly promising material for various field emission devices, supercapacitors, photocatalysts, sensors, electroanalytical systems, fuel cells and photovoltaics. The main goal of our work is to develop new Pt and transparent conductive oxide (TCO) free graphene based counter electrodes (CEs) for dye sensitized solar cells (DSSCs). We have prepared new composites which are based on graphene nano-platelets (GNPs) and conductive polymers such as poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS). Films of these composites were deposited on non-conductive pristine glass substrates and used as CEs for DSSCs which were fabricated by the "open cell" approach. The electrical conductivity studies have clearly demonstrated that the addition of GNPs into PEDOT:PSS films resulted in a significant increase of the electrical conductivity of the composites. The highest solar energy conversion efficiency was achieved for CEs comprising of GNPs with the highest conductivity (190 S/cm) and n-Methyl-2-pyrrolidone (NMP) treated PEDOT:PSS in a composite film. The performance of this cell (4.29% efficiency) compares very favorably to a DSSC with a standard commercially available Pt and TCO based CE (4.72% efficiency in the same type of open DSSC) and is a promising replacement material for the conventional Pt and TCO based CE in DSSCs.

  16. Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    2015-09-01

    Full Text Available Graphene has been envisaged as a highly promising material for various field emission devices, supercapacitors, photocatalysts, sensors, electroanalytical systems, fuel cells and photovoltaics. The main goal of our work is to develop new Pt and transparent conductive oxide (TCO free graphene based counter electrodes (CEs for dye sensitized solar cells (DSSCs. We have prepared new composites which are based on graphene nano-platelets (GNPs and conductive polymers such as poly (3,4-ethylenedioxythiophene poly(styrenesulfonate (PEDOT:PSS. Films of these composites were deposited on non-conductive pristine glass substrates and used as CEs for DSSCs which were fabricated by the “open cell” approach. The electrical conductivity studies have clearly demonstrated that the addition of GNPs into PEDOT:PSS films resulted in a significant increase of the electrical conductivity of the composites. The highest solar energy conversion efficiency was achieved for CEs comprising of GNPs with the highest conductivity (190 S/cm and n-Methyl-2-pyrrolidone (NMP treated PEDOT:PSS in a composite film. The performance of this cell (4.29% efficiency compares very favorably to a DSSC with a standard commercially available Pt and TCO based CE (4.72% efficiency in the same type of open DSSC and is a promising replacement material for the conventional Pt and TCO based CE in DSSCs.

  17. Development and testing of shingle-type solar cell modules. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, N.F.

    1979-02-28

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASG SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.

  18. Design and development of solar power-assisted manual/electric wheelchair.

    Science.gov (United States)

    Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min

    2014-01-01

    Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties.

  19. Development and validation of a biomarker for diarrhea-predominant irritable bowel syndrome in human subjects.

    Directory of Open Access Journals (Sweden)

    Mark Pimentel

    Full Text Available Diarrhea-predominant irritable bowel syndrome (IBS is diagnosed through clinical criteria after excluding "organic" conditions, and can be precipitated by acute gastroenteritis. Cytolethal distending toxin B (CdtB is produced by bacteria that cause acute gastroenteritis, and a post-infectious animal model demonstrates that host antibodies to CdtB cross-react with vinculin in the host gut, producing an IBS-like phenotype. Therefore, we assessed circulating anti-CdtB and anti-vinculin antibodies as biomarkers for D-IBS in human subjects. Subjects with D-IBS based on Rome criteria (n=2375 were recruited from a large-scale multicenter clinical trial for D-IBS (TARGET 3. Subjects with inflammatory bowel disease (IBD (n=142, subjects with celiac disease (n=121, and healthy controls (n=43 were obtained for comparison. Subjects with IBD and celiac disease were recruited based on the presence of intestinal complaints and histologic confirmation of chronic inflammatory changes in the colon or small intestine. Subjects with celiac disease were also required to have an elevated tTG and biopsy. All subjects were aged between 18 and 65 years. Plasma levels of anti-CdtB and anti-vinculin antibodies were determined by ELISA, and compared between groups. Anti-CdtB titers were significantly higher in D-IBS subjects compared to IBD, healthy controls and celiac disease (P<0.001. Anti-vinculin titers were also significantly higher in IBS (P<0.001 compared to the other groups. The area-under-the-receiver operating curves (AUCs were 0.81 and 0.62 for diagnosis of D-IBS against IBD for anti-CdtB and anti-vinculin, respectively. Both tests were less specific in differentiating IBS from celiac disease. Optimization demonstrated that for anti-CdtB (optical density≥2.80 the specificity, sensitivity and likelihood ratio were 91.6%, 43.7 and 5.2, respectively, and for anti-vinculin (OD≥1.68 were 83.8%, 32.6 and 2.0, respectively. These results confirm that anti-CdtB and

  20. Development and validation of a biomarker for diarrhea-predominant irritable bowel syndrome in human subjects.

    Science.gov (United States)

    Pimentel, Mark; Morales, Walter; Rezaie, Ali; Marsh, Emily; Lembo, Anthony; Mirocha, James; Leffler, Daniel A; Marsh, Zachary; Weitsman, Stacy; Chua, Kathleen S; Barlow, Gillian M; Bortey, Enoch; Forbes, William; Yu, Allen; Chang, Christopher

    2015-01-01

    Diarrhea-predominant irritable bowel syndrome (IBS) is diagnosed through clinical criteria after excluding "organic" conditions, and can be precipitated by acute gastroenteritis. Cytolethal distending toxin B (CdtB) is produced by bacteria that cause acute gastroenteritis, and a post-infectious animal model demonstrates that host antibodies to CdtB cross-react with vinculin in the host gut, producing an IBS-like phenotype. Therefore, we assessed circulating anti-CdtB and anti-vinculin antibodies as biomarkers for D-IBS in human subjects. Subjects with D-IBS based on Rome criteria (n=2375) were recruited from a large-scale multicenter clinical trial for D-IBS (TARGET 3). Subjects with inflammatory bowel disease (IBD) (n=142), subjects with celiac disease (n=121), and healthy controls (n=43) were obtained for comparison. Subjects with IBD and celiac disease were recruited based on the presence of intestinal complaints and histologic confirmation of chronic inflammatory changes in the colon or small intestine. Subjects with celiac disease were also required to have an elevated tTG and biopsy. All subjects were aged between 18 and 65 years. Plasma levels of anti-CdtB and anti-vinculin antibodies were determined by ELISA, and compared between groups. Anti-CdtB titers were significantly higher in D-IBS subjects compared to IBD, healthy controls and celiac disease (PIBS (PIBS against IBD for anti-CdtB and anti-vinculin, respectively. Both tests were less specific in differentiating IBS from celiac disease. Optimization demonstrated that for anti-CdtB (optical density≥2.80) the specificity, sensitivity and likelihood ratio were 91.6%, 43.7 and 5.2, respectively, and for anti-vinculin (OD≥1.68) were 83.8%, 32.6 and 2.0, respectively. These results confirm that anti-CdtB and anti-vinculin antibodies are elevated in D-IBS compared to non-IBS subjects. These biomarkers may be especially helpful in distinguishing D-IBS from IBD in the workup of chronic diarrhea.

  1. Recent developments in single-subject methodology: methods for analyzing generalization, maintenance, and multicomponent treatments.

    Science.gov (United States)

    Barrios, B A; Hartmann, D P

    1988-01-01

    At the outset of this chapter we asked whether or not single-subject methodology has outlived its usefulness to behavior therapy. We did so because serious doubts have been expressed about the ability of single-subject methodology to address the salient issues of the day. This chapter allays many of these doubts. This chapter reveals that single-subject researchers are far from helpless when investigating generalization and maintenance and identifying the active (and inactive) components in their compound treatments. In fact, a number of powerful strategies are at their disposal--strategies that are not strangers to the armamentarium of single-case researchers. These strategies are in essence nothing more than extensions of the reversal, multiple baseline, and simultaneous and alternating-treatments designs. In the case of the assessment of generalization, these extensions involve little more than the inclusion of continuous measures (or regular probes) of untrained responses throughout the investigation. In the case of the assessment of maintenance, they involve the replacement of a comparison of two or more acquisition procedures with a comparison of two or more maintenance procedures. And in the case of the identification of active (and inactive) components of compound treatments, they involve the aggregation of the findings from a series of single-subject investigations. When the requirements of single-subject designs and their extensions cannot be met, investigators still have available a set of traditional group designs (e.g., factorial and additive designs) for attacking these same issues. Assessment of generalization, maintenance, and the components of compound treatments are not the only salient issues facing behavior therapy today. Another is the widening gap between the researcher and the practitioner (e.g., Barlow, 1980; Wilson, 1981). It is thought by some that single-subject methodology may be the means of bridging this gap; that through single-subject

  2. Development of a solar array drive mechanism for micro-satellite platforms

    Science.gov (United States)

    Galatis, Giorgos; Guo, Jian; Buursink, Jeroen

    2017-10-01

    Photovoltaic solar array (PVSA) systems are the most widely used method for spacecraft power generation. However, in many satellite missions, the optimum orientation of the PVSA system is not always compatible with that of the payload orientation. Many methods, have been examined in the past to overcome this problem. Up to date, the most widely used active method for large costly satellites is the Solar Array Drive Mechanism (SADM). The SADM serves as the interface between the satellite body and the PVSA subsystem, enabling the decoupling of their spatial orientation. Nonetheless, there exists a research and development gap for such systems regarding low cost micro-satellites. During the literature study of this paper, individual orbital parameters of various micro-satellites have been extracted and compared to the rotational freedom of the corresponding SADMs used. The findings demonstrated that the implemented SADMs are over designed. It is therefore concluded that these components are not tailored made for each spacecraft mission individually, but rather, exhibit a generic design to full fill a majority of mission profiles and requirements. Motivated by the above analysis, the cardinal objective of the current research is to develop a low cost mechanism that will be precisely tailored for the use of a low Earth orbit (LEO) micro-satellite platform orbiting in altitudes of 500 - 1000km . The design of the mechanism may vary from the existing miniaturized SADMs. For example, the preliminary analysis of the current research suggests, that the conventional use of the slip ring system as the electronic transfer unit can be replaced by a seMI Orientation Unit (MIOU). Systems engineering tools for concept generation and selection have been used. In addition, simulation and mathematical modelling have been implemented on component and system level, to accurately predict the behaviour of the system under various modes of operation. The production and system testing of

  3. Using Portfolios to Engage Introductory Geoscience Students in Their Subject and to Develop Learning Skills.

    Science.gov (United States)

    Boyle, A. P.; Prior, D. J.

    2008-12-01

    It is often difficult to deal with wide-ranging, exciting geoscience topics at introductory level when the background geoscience knowledge of the incoming students is limited. This means that new students can often be confronted by self-contained, subject-based topics (e.g. introductory mineralogy) and fail to see where the bigger pictures may be. Another issue, partly arising from massification and thus increasing diversity of student cohorts but also to changes in UK school education goals, is the realisation that incoming students have difficulties combining lecture note taking, reading and general organisation of paper-based materials into a learning package that can help them write structured essays. They need help with the transfer from school to university education. Two years ago, a curriculum review provided the opportunity to develop a new module that could address these issues. The module deals with current topics. Students attend a series of 8 lectures given by 8 different faculty staff covering topics like The Origin of the Moon, Earthquake Prediction, Mass Extinctions, Snowball Earth, and Geohazards spread over the introductory year. Each lecturer uses whatever delivery style they want (PowerPoint, chalk and talk), but the lecture must be an illustration of the scientific method dealing with evidence, models and uncertainty, and must direct students towards a range of associated reading. The students develop a portfolio with a section for each lecture topic. Each section contains their notes, annotated copies of the reading and a one page (A4) summary of the main points of the topic, derived from both the notes and reading. The students also develop a glossary of geological terms. In addition, the students must attend 6 extra talks given by guest speakers at either the student society meetings or the departmental seminar series. Assessment is by the portfolio (40%) and a final essay paper (60%). The portfolio is collected in at the end of the first

  4. Imbalances of innovative industrial development of subjects of Federation, members of the Russian Arctic zone

    Directory of Open Access Journals (Sweden)

    Zharov V. S.

    2016-06-01

    Full Text Available The results of testing the previously developed methodological approach and methods of assessing the innovativeness level of the industrial development of the regions – subjects of the Federation (members of the Russian Arctic zone – on the basis of the calculation and analysis of scorecard values have been presented. It has been shown that during the years 2005–2013, the highest level of technological innovation of industrial development had been achieved in the Republic of Sakha (Yakutia. Представлены результаты апробации разработанных ранее методологического подхода и методики оценки уровня инновационности промышленного развития регионов – субъектов Федерации, входящих в Арктическую зону РФ, – на основе расчета и анализа значений системы показателей. Показано, что в течение 2005–2013 гг. наиболее высокий уровень технологической инновационности промышленного развития достигнут в Республике Саха (Якутия

  5. Solar Radio Observation using Callisto Spectrometer at Sumedang West Java Indonesia: Current Status and Future Development Plan in Indonesia

    Science.gov (United States)

    Manik, T.; Sitompul, P.; Batubara, M.; Harjana, T.; Yatini, C. Y.; Monstein, C.

    2016-04-01

    Sumedang Observatory (6.91°S, 107,84°E) was established in 1975 and is one of the solar observation facilities of the Space Science Center of Indonesian National Institute of Aeronautics and Space (LAPAN), located around 40 km, east part of Bandung City, West Java, Indonesia. Several instrumentations for solar and space observation such as optical telescopes, radio solar spectrograph, flux gate magnetometer, etc. are operated there, together with an ionosphere sounding system (ionosonde) that was set up later. In July 2014, a standard Callisto (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer was installed at Sumedang Observatory for solar radio activity monitoring. Callisto has been developed in the framework of IHY2007 and ISWI, supported by UN and NASA. Callisto spectrometer has observation capability in the frequency range of 45-870 MHz. The Callisto spectrometer receives signal by using a set of 21 elements log-periodic antenna, model CLP5130-1N, pointed to the Sun and equipped with a low noise pre-amplifier. With respect to the Radio Frequency Interferences (RFI) measurements, the Callisto spectrometer is operated individually in frequency ranges of 45-80 MHz and 180-450 MHz. Observation status and data flow are monitored in on-line from center office located in Bandung. The data was transferred to central database at FHNW (Fachhochschule Nordwestschweiz) server every 15 minutes to appear on e-Callisto network subsequently. A real time data transfer and data processing based on Python software also has been developed successfully to be used as an input for Space Weather Information and Forecasting Services (SWIFtS) provided by LAPAN. On 5th November 2014, Callisto spectrometer at Sumedang observed the first clear solar radio event, a solar radio burst type II corresponding to a coronal mass ejection (CME), indicated by a strong X-ray event of M7.9 that was informed on by Space Weather

  6. The metal wrap through solar cell. Developement and characterisation; Die metal wrap through Solarzelle. Entwicklung und Charakterisierung

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Florian

    2009-03-20

    This work focuses on the development and the optimization of the metal wrap through (MWT) solar cell. Primary goal of this work has been the development of an appropriate process flow for MWT solar cells, which generates only insignificant extra costs compared to the conventional process flow, however, achieves a significant efficiency increase for MWT cells compared to conventionally processed cells. The latter was one of the main challenges of this work. For this purpose MWT solar cells have been studied and characterized in detail. Loss mechanisms have been detected and improvements evaluated as well as transferred to the cell process. Furthermore, the assembling process for MWT solar cells in the module has been optimized focusing on less series resistance losses. A comparison with the conventional module assembling process is presented. A process flow similar to the one for the conventional process has been developed for MWT solar cells. Merely two additional laser process steps for hole drilling and rear contact isolation as well as one screen printing step for the through connection turn out to be necessary. It is shown that the additional screen printing process can be omitted without significant efficiency losses, if the through connection and solder pad metallization is done in a single process step. Furthermore, a fast and reliable through connection process has been developed and characterized in detail. Moreover, a gauge mounting block for MWT solar cells has been constructed, analyzed and calibrated for current-voltage-characteristic measurements. With multi crystalline MWT silicon solar cells an efficiency gain up to 0.5% absolute has been achieved compared to conventionally processed solar cells - thereby reaching a maximum cell efficiency of more than 16.7%. Due to a novel MWT module technology developed in this work the efficiency compared to the conventional technology could be improved further by another 0.3% absolute. The primary loss

  7. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations

    Energy Technology Data Exchange (ETDEWEB)

    BenMoussa, A., E-mail: ali.benmoussa@stce.be [Solar Terrestrial Center of Excellence (STCE), Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Soltani, A.; Gerbedoen, J.-C [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), F-59652 Villeneuve d’Ascq (France); Saito, T. [Department of Environment and Energy, Tohoku Institute of Technology, 35-1, Yagiyama-Kasumi-cho, Taihaku-ku, Sendai, Miyagi 982-8577 (Japan); Averin, S. [Fryazino Branch of the Kotel’nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 141190 Square Vvedenski 1, Fryazino, Moscow Region (Russian Federation); Gissot, S.; Giordanengo, B. [Solar Terrestrial Center of Excellence (STCE), Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Berger, G. [Catholic University of Louvain-la-Neuve, Chemin du Cyclotron 2, B-1348 Louvain la Neuve (Belgium); Kroth, U. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany); De Jaeger, J.-C. [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), F-59652 Villeneuve d’Ascq (France); Gottwald, A. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany)

    2013-10-01

    For next generation spaceborne solar ultraviolet radiometers, innovative metal–semiconductor–metal detectors based on wurtzite aluminum nitride are being developed and characterized. A set of measurement campaigns and proton irradiation damage tests was carried out to obtain their ultraviolet-to-visible characterization and degradation mechanisms. First results on large area prototypes up to 4.3 mm diameter are presented here. In the wavelength range of interest, this detector is reasonably sensitive and stable under brief irradiation with a negligible low dark current (3–6 pA/cm{sup 2}). No significant degradation of the detector performance was observed after exposure to protons of 14.4 MeV energy, showing a good radiation tolerance up to fluences of 1 × 10{sup 11} protons/cm{sup 2}.

  8. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Ana Maria Díez-Pascual

    2018-02-01

    Full Text Available Graphene (G and its derivatives, graphene oxide (GO and reduced graphene oxide (rGO have enormous potential for energy applications owing to their 2D structure, large specific surface area, high electrical and thermal conductivity, optical transparency, and huge mechanical strength combined with inherent flexibility. The combination of G-based materials with polymers leads to new nanocomposites with enhanced structural and functional properties due to synergistic effects. This review briefly summarizes recent progress in the development of G/polymer nanocomposites for use in polymer solar cells (PSCs. These nanocomposites have been explored as transparent conducting electrodes (TCEs, active layers (ALs and interfacial layers (IFLs of PSCs. Photovoltaic parameters, such as the open-circuit voltage (Voc, short-circuit current density (Jsc, fill factor (FF and power-conversion efficiency (PCE are compared for different device structures. Finally, future perspectives are discussed.

  9. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  10. Learning and the development of social identities in the subjects Care and Technology

    NARCIS (Netherlands)

    Volman, M.L.L.; ten Dam, G.

    2007-01-01

    This article discusses the way in which social identities structure the learning processes of students in two subjects in the Dutch secondary school curriculum - Care and Technology. It analyses interviews with 23 students and their teachers with a view to explaining the disappointing results in

  11. Learning and the development of social identities in the subjects: Care and Technology

    NARCIS (Netherlands)

    Volman, M.L.L.; ten Dam, G.T.M.

    2007-01-01

    This article discusses the way in which social identities structure the learning processes of students in two subjects in the Dutch secondary school curriculum - Care and Technology. It analyzes interviews with 23 students and their teachers with a view to explaining the disappointing results in

  12. Developing Multimedia Enhanced Content to Upgrade Subject Content Knowledge of Secondary School Teachers in Tanzania

    Science.gov (United States)

    Mtebe, Joel S.; Kibga, Elia Y.; Mwambela, Alfred A.; Kissaka, Mussa M.

    2015-01-01

    The failure rates and lack of interest amongst students in science and mathematics in secondary schools in Tanzania is a serious problem. The Ministry of Education and Vocational Training (MoEVT) implemented a project to enhance and upgrade the pedagogical knowledge and subject content knowledge of teachers in selected difficult topics in science…

  13. The Role of Subjectivity in Teacher Expertise Development: Mindfully Embracing the "Black Sheep" of Educational Research

    Science.gov (United States)

    Inoue, Noriyuki

    2016-01-01

    In Western cultures, subjectivity has often been seen as the "black sheep" of educational research because of its heavy emphasis on objectivity. Consequently many research initiatives in education share the assumption that objective reasoning should play a central role. However, mentoring teachers' practice improvement research often…

  14. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  15. Developing, testing, evaluating and optimizing solar heating systems. Project status report for October and November 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report describes progress on 3 projects: Integrated tank/heat exchanger modeling and experiments for solar thermal storage; Advanced residential solar domestic hot water systems; and Incident angle modifiers (IAMs) by the Monte Carlo method for cylindrical solar collectors. IAMs are used to correct for effects such as shading, back plane reflectance, inter-reflection, etc. Summaries are given for the first two projects; however, a full draft report is given for the third.

  16. Development of Efficient Charge-Selective Materials for Bulk Heterojunction Polymer Solar Cells

    Science.gov (United States)

    2015-01-15

    decent conductivity, and electrode WF tuning capability. In addition, these fullerene-based EELs have also been applied into perovskite solar...applied these fullerene-based EELs into the perovskite solar cells (PVSCs) to obtain improved device performance and stability. All these results...Th:PC71BM device. Besides, we have also applied these fullerene-based EELs into the perovskite solar cells (PVSCs) to obtain improved device

  17. Using experiments and demographic models to assess rare plant vulnerability to utlity-scale solar energy development

    Science.gov (United States)

    Moore, K. A.

    2015-12-01

    Pressing challenges for the implementation of solar energy are the effects of construction and operation on protected animal and plant species. Siting and mitigation of solar energy often requires understanding of basic biology and distributions of rare species that are unknown. How can we rapidly collect the information necessary on species- and site-specific population dynamics to effectively design mitigation and conservation measures? We have developed an integrated approach to assessing the vulnerability of a suite of representative rare plant species in the region. We implemented a prioritized series of demographic and experimental studies over the past four years to identify the types of species, populations, and life stages most vulnerable to impact or prone to conservation efforts. We have found substantial variation in vegetative and sexual reproduction between study populations for several rare plants, including between populations that vary in putative impact by development and/or effects of experimental solar arrays. For a subset of species, we designed population viability analysis and applied them to identify sensitive vital rates and compare quasi-extinction probabilities under different climate and impact scenarios. By utilizing practical experiments to test for the effects of real or simulated impacts, we found differences in vital rates between natural and disturbed populations adjacent to and within solar installations. We draw conclusions from our work to guide the analysis of benefits, permitting, and design of utility-scale solar energy facilities.

  18. Design, Development, and Performance Evaluation of Solar Heating System for Disinfection of Domestic Roof-Harvested Rainwater.

    Science.gov (United States)

    Akintola, O A; Sangodoyin, A Y

    2015-01-01

    A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh(-1) (2.61 × 10(-5) m(3) s(-1)) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses.

  19. Effect of State Policy Suites on the Development of Solar Markets

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Doris, E.

    2014-11-01

    There are an increasing number of state and local policy initiatives with the goal of encouraging private investment and building robust solar photovoltaic (PV) markets. While some states have seen many-fold increases in solar PV installations over the last decade, many other states, some with very similar policies, have been less successful. The lack of a clear relationship between implementation of specific policies and increases in solar installations has been challenging to policymakers seeking to support such markets within their jurisdictions. This paper builds on recent work that has aimed at clarifying the relationships between policy implementation and successful solar PV markets.

  20. Introduction to meteorological measurements and data handling for solar energy applications. Task IV-Development of an insolation handbook and instrument package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Recognizing a need for a coordinated approach to resolve energy problems, certain members of the Organization for Economic Cooperation and Development (OECD) met in September 1974 and agreed to develop an International Energy Program. The International Energy Agency (IEA) was established within the OECD to administer, monitor and execute this International Energy Program. In July 1975, Solar Heating and Cooling was selected as one of the sixteen technology fields for multilateral cooperation. Five project areas, called tasks, were identified for cooperative activities within the IEA Program to Develop and Test Solar Heating and Cooling Systems. The objective of one task was to obtain improved basic resource information for the design and operation of solar heating and cooling systems through a better understanding of the required insolation (solar radiation) and related weather data, and through improved techniques for measurement and evaluation of such data. At the February 1976 initial experts meeting in Norrkoeping, Sweden, the participants developed the objective statement into two subtasks. (1) an insolation handbook; and (2) a portable meteorological instrument package. This handbook is the product of the first subtask. The objective of this handbook is to provide a basis for a dialogue between solar scientists and meteorologists. Introducing the solar scientist to solar radiation and related meteorological data enables him to better express his scientific and engineering needs to the meteorologist; and introducing the meteorologist to the special solar radiation and meteorological data applications of the solar scientist enables him to better meet the needs of the solar energy community.

  1. Consolidation of the subjects of the Russian Federation as an element of economic development

    Directory of Open Access Journals (Sweden)

    Lev Aleksandrovich Korshunov

    2011-09-01

    Full Text Available The discussion on the optimality of the currently existing structure of the subjects of the Russian Federation is illustrating the contradictions that have been accumulated in the dominion form of government of our country in recent years. In this paper, we attempt to assess the impact of past enlargements, which are considered as a part of the process called modernization of the country as a whole. A system of criteria for the process of consolidating and enlarging the regions was elaborated. The main criterion proposed is the quality of life in the enlarged regions. Diagnostics of the state, as well as the estimated dynamics of the socio-demographic security of the individual subjects of the Russian Federation, members of the Siberian Federal District in the period 2000-2009, was done. An integrated assessment of the socio-demographic security in the discussed subjects on the basis of estimates was obtained for the six indicative blocks: reproduction of the population, health status, level of life and material well-being of the population, quality of life, migration flows and indicators of age-sex and marriage-family structure.

  2. Development and Ecological-Energy Comparative Analysis оf Vapor Compression and Solar Absorption Schemes of Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2017-12-01

    Full Text Available The mission of the research included the following objectives: the development of new circuit decisions for the alternate refrigerating systems based on the use of an open absorptive circuit and on the use of solar energy for absorbent solution regeneration; an assessment of the energy and envi-ronmental characteristics of the developed systems; obtaining of the experimental data for an assess-ment of the principal capabilities of the proposed new solar air-conditioning systems. New principles for design of heat and mass transfer equipment in the version with a movable packing of heat exchange elements (fluidized bed packing "gas - liquid - solid body" placed in the packed bed were developed, which allows self-cleaning of the working surfaces and walls of the heat and mass transfer equipment HMT. This new solution, when working with outdoor air and solutions of absorbents, seems to be a fundamentally important condition for maintaining the working capacity of solar absorption systems. The new schemes of absorber with internal steam cooling allowing the improve-ment of the new scheme of the alternate refrigerating system were developed. Comparative analysis based on the methodology of the "Life Cycle Assessment" (LCA showed that new, developed solar systems provide the considerable decrease in energy consumption, their use leads to the decrease of exhaustion of natural resources, influences less global climate change.

  3. Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Xin, Peipei

    Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction

  4. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  5. Population Pharmacokinetic and Pharmacodynamic Modeling of Lusutrombopag, a Newly Developed Oral Thrombopoietin Receptor Agonist, in Healthy Subjects.

    Science.gov (United States)

    Katsube, Takayuki; Ishibashi, Toru; Kano, Takeshi; Wajima, Toshihiro

    2016-11-01

    The aim of this study was to develop a population pharmacokinetic (PK)/pharmacodynamic (PD) model for describing plasma lusutrombopag concentrations and platelet response following oral lusutrombopag dosing and for evaluating covariates in the PK/PD profiles. A population PK/PD model was developed using a total of 2539 plasma lusutrombopag concentration data and 1408 platelet count data from 78 healthy adult subjects following oral single and multiple (14-day once-daily) dosing. Covariates in PK and PK/PD models were explored for subject age, body weight, sex, and ethnicity. A three-compartment model with first-order rate and lag time for absorption was selected as a PK model. A three-transit and one-platelet compartment model with a sigmoid E max model for drug effect and feedback of platelet production was selected as the PD model. The PK and PK/PD models well described the plasma lusutrombopag concentrations and the platelet response, respectively. Body weight was a significant covariate in PK. The bioavailability of non-Japanese subjects (White and Black/African American subjects) was 13 % lower than that of Japanese subjects, while the simulated platelet response profiles using the PK/PD model were similar between Japanese and non-Japanese subjects. There were no significant covariates of the tested background data including age, sex, and ethnicity (Japanese or non-Japanese) for the PD sensitivity. A population PK/PD model was developed for lusutrombopag and shown to provide good prediction for the PK/PD profiles. The model could be used as a basic PK/PD model in the drug development of lusutrombopag.

  6. Solar Heating Equipment

    Science.gov (United States)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  7. The solar century

    Energy Technology Data Exchange (ETDEWEB)

    Heller, P.W. [CANOPUS Foundation, Freiburg (Germany)

    1999-07-01

    The Solar Century (TSC) is a new solar developer, run by former head of the Solar Inititative at Greenpeace International, Dr. Jeremy Leggett, formed with the support from the financial services industry as a result of the December 1996 Oxford Solar Investment Summit, an event which brought together senior executives from finacial institutions and solar companies to discuss mutual strategic interests for the first time. Group of non-profit and for-profit companies. The Solar Century aims to provide an international solar developer service built primarily around a world-class British-American core operations consortium, twinned with local and regional partner companies. (orig./RHM)

  8. Solar-Based Rural Electrification and Micro-Enterprise Development in Latin America: A Gender Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.

    2000-11-16

    Worldwide, an estimated 1.5 to 2 billion people do not have access to electricity, including 100 million in the Latin America region. Depending on the country, 30 to 90% of this unelectrified Latin American population lives in rural areas where geographic remoteness and low energy consumption patterns may preclude the extension of the conventional electricity grid. Women are heavily impacted by the energy scarcity given their role as primary energy procurers and users for the household, agricultural and small industrial subsectors in developing countries. As a result, women spend disproportionately more time engaged in energy-related activities like carrying water and searching for cooking fuel. This paper describes the use of decentralized renewable energy systems as one approach to meet the energy needs of rural areas in Latin America. It outlines the advantages of a decentralized energy paradigm to achieve international development goals, especially as they relate to women. The paper studies Enersol Associates, Inc.'s Solar-Based Rural Electrification model as an example of a decentralized energy program which has merged energy and development needs through the local involvement of energy entrepreneurs, non-governmental organizations and community members.

  9. Development and design of a zero-G liquid quantity gauge for a solar thermal vehicle

    Science.gov (United States)

    Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; van Dresar, Neil T.

    2002-01-01

    The development and design of a cryogenic liquid quantity gauge for zero-g applications is described. The gauge, named the Compression Mass Gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of +/-1% of tank volume. Southwest Research Institute™ and NASA-GRC have developed several previous breadboard and engineering development gauges and tested them in cryogenic hydrogen and nitrogen to establish the gauge capabilities, to resolve several design issues, and to formulate data processing algorithms. The CMG has been selected by NASA's Future X program for a flight demonstration on the USAF/Boeing Solar Thermal Vehicle Space Experiment (SOTVSE). This paper reviews the design trade studies needed to satisfy the SOTVSE limitations on CMG power, volume, and mass, and describes the mechanical design of the CMG. .

  10. Design and Development of the Solar Dynamics Observatory (SDO) Electrical Power System

    Science.gov (United States)

    Denney, Keys; Burns, Michael; Kercheval, Bradford

    2009-01-01

    The SDO spacecraft was designed to help us understand the Sun's influence on Earth and Near-Earth space by studying the solar atmosphere on small scales of space and time and in many wavelengths simultaneously. It will perform its operations in a geosynchronous orbit of the earth. This paper will present background on the SDO mission, an overview of the design and development activities associated specifically with the SDO electrical power system (EPS), as well as the major driving requirements behind the mission design. The primary coverage of the paper will be devoted to some of the challenges faced during the design and development phase. This will include the challenges associated with development of a compatible CompactPCI (cPCI) interface within the Power System Electronics (PSE) in order to utilize a "common" processor card, implementation of new solid state power controllers (SSPC) for primary load distribution switching and over current protection in the PSE, and the design approach adopted to meet single fault tolerance requirements for all of the SDO EPS functions.

  11. Is the Non-unitary Subject a Plausible and Productive Way to Understand Development Bureaucrats?

    NARCIS (Netherlands)

    Tamas, P.A.; Sato, C.

    2012-01-01

    Development bureaucrats are the human instruments of the policies that mobilise funds, create organisations and underwrite interventions. For their home audiences development organisations need to present bureaucrats who are reliable instruments. In the field these same organisations need staff who

  12. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  13. The development of an Infrared Environmental System for TOPEX Solar Panel Testing

    Science.gov (United States)

    Noller, E.

    1994-01-01

    Environmental testing and flight qualification of the TOPEX/POSEIDON spacecraft solar panels were performed with infrared (IR) lamps and a control system that were newly designed and integrated. The basic goal was more rigorous testing of the costly panels' new composite-structure design without jeopardizing their safety. The technique greatly reduces the costs and high risks of testing flight solar panels.

  14. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  15. Development of Proposed Standards for Testing Solar Collectors and Thermal Storage Devices. NBS Technical Note 899.

    Science.gov (United States)

    Hill, James E.; And Others

    A study has been made at the National Bureau of Standards of the different techniques that are or could be used for testing solar collectors and thermal storage devices that are used in solar heating and cooling systems. This report reviews the various testing methods and outlines a recommended test procedure, including apparatus and…

  16. Development of a Learning Progression for the Formation of the Solar System

    Science.gov (United States)

    Plummer, Julia D.; Palma, Christopher; Flarend, Alice; Rubin, KeriAnn; Ong, Yann Shiou; Botzer, Brandon; McDonald, Scott; Furman, Tanya

    2015-01-01

    This study describes the process of defining a hypothetical learning progression (LP) for astronomy around the big idea of "Solar System formation." At the most sophisticated level, students can explain how the formation process led to the current Solar System by considering how the planets formed from the collapse of a rotating cloud of…

  17. Evaluating Potential Human Health Risks Associated with the Development of Utility-Scale Solar Energy Facilities on Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. -J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chang, Y. -S. [Argonne National Lab. (ANL), Argonne, IL (United States); Hartmann, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Wescott, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Kygeris, C. [Indiana Univ. of Pennsylvania, PA (United States)

    2013-09-01

    This report presents a general methodology for obtaining preliminary estimates of the potential human health risks associated with developing a utility-scale solar energy facility on a contaminated site, based on potential exposures to contaminants in soils (including transport of those contaminants into the air).

  18. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    Science.gov (United States)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  19. Development of Experienced Science Teachers' Pedagogical Content Knowledge of Models of the Solar System and the Universe

    Science.gov (United States)

    Henze, Ineke; van Driel, Jan H.; Verloop, Nico

    2008-01-01

    This paper investigates the developing pedagogical content knowledge (PCK) of nine experienced science teachers in their first few years of teaching a new science syllabus in the Dutch secondary education system. We aimed to identify the content and structure of the PCK for a specific topic in the new syllabus, "Models of the Solar System and…

  20. Solar heating and cooling systems design and development. Quarterly report, 9 October 1976-9 January 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Honeywell is to develop twelve prototype solar heating/cooling systems. Six of these are to be heating and six are to be heating/cooling systems, two each for single family, multi-family, and commercial applications. Schedules and technical discussions are given, along with illustrations on the progress made from October 9, 1976 through January 9, 1977.

  1. Emotions over time: synchronicity and development of subjective, physiological, and facial affective reactions to music.

    Science.gov (United States)

    Grewe, Oliver; Nagel, Frederik; Kopiez, Reinhard; Altenmüller, Eckart

    2007-11-01

    Most people are able to identify basic emotions expressed in music and experience affective reactions to music. But does music generally induce emotion? Does it elicit subjective feelings, physiological arousal, and motor reactions reliably in different individuals? In this interdisciplinary study, measurement of skin conductance, facial muscle activity, and self-monitoring were synchronized with musical stimuli. A group of 38 participants listened to classical, rock, and pop music and reported their feelings in a two-dimensional emotion space during listening. The first entrance of a solo voice or choir and the beginning of new sections were found to elicit interindividual changes in subjective feelings and physiological arousal. Quincy Jones' "Bossa Nova" motivated movement and laughing in more than half of the participants. Bodily reactions such as "goose bumps" and "shivers" could be stimulated by the "Tuba Mirum" from Mozart's Requiem in 7 of 38 participants. In addition, the authors repeated the experiment seven times with one participant to examine intraindividual stability of effects. This exploratory combination of approaches throws a new light on the astonishing complexity of affective music listening.

  2. Hard Times in Higher Education: The Closure of Subject Centres and the Implications for Education for Sustainable Development (ESD

    Directory of Open Access Journals (Sweden)

    Brian Chalkley

    2011-04-01

    Full Text Available Within many British Universities and, indeed, across higher education internationally, how best to provide education for sustainable development (ESD has become an increasingly important issue. There is now a widespread view that higher education sectors have a key part to play in preparing societies for the transition to a low carbon economy and the shift towards more sustainable ways of living and working. In the UK, a leading role in this field has been played by the Higher Education Academy and especially its network of 24 Subject Centres, each of which promotes curriculum enhancement in a particular discipline area. The mission of the Higher Education Academy has been to help raise the overall quality of the student learning experience across all disciplines and all Higher Education institutions (HEIs. As part of promoting and supporting many kinds of curriculum innovation and staff development, the HE Academy has championed the cause of ESD. Now, however, as a result of government spending cuts, the Academy is facing severe budget reductions and all its Subject Centres are soon to close. At this pivotal moment, the purpose of this paper is, therefore, to review the HE Academy’s past contribution to ESD and to explore the likely future implications of the demise of its Subject Centres. The paper ends by outlining some ideas as to how the ESD agenda might be advanced in the post-Subject Centre era, in the light of the Academy’s intention to support subject communities under its new structure. The paper has been developed through participation in key committees, engagement with Academy and Subject Centre staff, as well as through a literature review.

  3. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  4. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    2002-01-01

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  5. Combined non-gray conductive and radiative heat transfer simulation of a single glass window subjected to solar and thermal radiation

    Directory of Open Access Journals (Sweden)

    Khoukhi Maatouk

    2015-01-01

    Full Text Available Combined nongray conductive and radiative heat transfer in single glass window using the Radiation Element Method by Ray Emission Model REM2, has been investigated in one dimensional case. The optical constants of the glass window have been determined by using Fourier Transform Infrared Spectrophotometer (FTIR. The absorption and emission within the glass layer are taken into consideration. The boundary surfaces of the glass are specular. Spectral dependence of radiation properties of the glass is taken into account. Both collimated and diffuse solar and thermal irradiations are applied at boundary surfaces, using the spectral solar model proposed by Bird. The simulation has been performed for one position of the sun at noon true solar time on the 5th of July for three locations in Japan, Sendai, Tokyo, and Sapporo cities. Steady state temperature and heat flux distributions within the glass layer for each position of the sun of the three locations are obtained. The radiative heat flux through the glass mediums is the predominant mode compared with the conductive one. Therefore, the temperature distributions within the glass layer are not linear in shape.

  6. Evaluating a Professional Development Programme for Implementation of a Multidisciplinary Science Subject

    National Research Council Canada - National Science Library

    Visser, Talitha Christine; Coenders, Ferdinand G.M; Terlouw, C; Pieters, Julius Marie

    2013-01-01

    This study aims to evaluate a professional development programme that prepares and assists teachers with the implementation of a multidisciplinary science module, basing the evaluation on participants...

  7. Development of advanced algorithms to detect, characterize and forecast solar activities

    Science.gov (United States)

    Yuan, Yuan

    Study of the solar activity is an important part of space weather research. It is facing serious challenges because of large data volume, which requires application of state-of-the-art machine learning and computer vision techniques. This dissertation targets at two essential aspects in space weather research: automatic feature detection and forecasting of eruptive events. Feature detection includes solar filament detection and solar fibril tracing. A solar filament consists of a mass of gas suspended over the chromosphere by magnetic fields and seen as a dark, ribbon-shaped feature on the bright solar disk in Halpha (Hydrogen-alpha) full-disk solar images. In this dissertation, an automatic solar filament detection and characterization method is presented. The investigation illustrates that the statistical distribution of the Laplacian filter responses of a solar disk contains a special signature which can be used to identify the best threshold value for solar filament segmentation. Experimental results show that this property holds across different solar images obtained by different solar observatories. Evaluation of the proposed method shows that the accuracy rate for filament detection is more than 95% as measured by filament number and more than 99% as measured by filament area, which indicates that only a small fraction of tiny filaments are missing from the detection results. Comparisons indicate that the proposed method outperforms a previous method. Based on the proposed filament segmentation and characterization method, a filament tracking method is put forward, which is capable of tracking filaments throughout their disk passage. With filament tracking, the variation of filaments can be easily recorded. Solar fibrils are tiny dark threads of masses in Halpha images. It is generally believed that fibrils are magnetic field-aligned, primarily due to the reason that the high electrical conductivity of the solar atmosphere freezes the ionized mass in

  8. An analysis of key environmental and social risks in the development of concentrated solar power projects

    Science.gov (United States)

    Otieno, George A.; Loosen, Alexander E.

    2016-05-01

    Concentrated Solar Power projects have impacts on local environment and social conditions. This research set out to investigate the environmental and social risks in the development of such projects and rank these risks from highest to lowest. The risks were analysed for parabolic trough and tower technologies only. A literature review was undertaken, identifying seventeen risks that were then proposed to six CSP experts for scoring. The risks were scored based of five factors on a five tier scale. The scores from the experts were compiled to develop an overall rank of the identified risks. The risk of disruption of local water resources was found to represent the highest risk before and after mitigation with a score of moderate-high and moderate respectively. This score is linked to the importance of water in water scarce regions typified by the best regions for CSP. The risks to avian species, to worker health and safety, due to noise on the environment, to visual and recreational resources completed the top five risks after mitigation.

  9. Radiation Exposure Analyses Supporting the Development of Solar Particle Event Shielding Technologies

    Science.gov (United States)

    Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.

    2013-01-01

    NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.

  10. The Development of A Chip-Scale Spectrometer for In Situ Characterization of Solar System Surfaces

    Science.gov (United States)

    Chanover, Nancy J.; Voelz, David; Cho, Sang-Yeon; Pelzman, Charles

    2017-10-01

    We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.

  11. Multi-Generation Concentrating Solar-Hydrogen Power System for Sustainable Rural Development

    Energy Technology Data Exchange (ETDEWEB)

    Krothapalli, A.; Greska, B.

    2007-07-01

    This paper describes an energy system that is designed to meet the demands of rural populations that currently have no access to grid-connected electricity. Besides electricity, it is well recognized that rural populations need at least a centralized refrigeration system for storage of medicines and other emergency supplies, as well as safe drinking water. Here we propose a district system that will employ a multi-generation concentrated solar power (CSP) system that will generate electricity and supply the heat needed for both absorption refrigeration and membrane distillation (MD) water purification. The electricity will be used to generate hydrogen through highly efficient water electrolysis and individual households can use the hydrogen for generating electricity, via affordable proton exchange membrane (PEM) fuel cells, and as a fuel for cooking. The multi-generation system is being developed such that its components will be easy to manufacture and maintain. As a result, these components will be less efficient than their typical counterparts but their low cost-to-efficiency ratio will allow for us to meet our installation cost goal of $1/Watt for the entire system. The objective of this paper is to introduce the system concept and discuss the system components that are currently under development. (auth)

  12. Design development and testing of a solar PV pump based drip system for orchards

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. [Central Arid Zone Research Inst., Jodhpur (India)

    2003-03-01

    A Solar Photovoltaic (PV) pump operated drip irrigation system has been designed and developed for growing orchards in arid region considering different design parameters like pumps size, water requirements, the diurnal variation in the pressure of the pump due to change in irradiance and pressure compensation in the drippers. The system comprising a PV pump with 900 W{sub p} PV array and 800 W dc motor-pump mono-block, microfilter, main and sub-mains and three open-able low-pressure compensating drippers on each plant was field tested. The emission uniformity was observed to be 92-94% with discharge of 3.8 l/h in the pressure range of 70-100 kPa provided by the pump and thus the system could irrigate some 1 ha area within 2 h. Based on the performance of the PV pump and the drip system, it was inferred that about 5 ha area of orchard could be covered. The projected benefit-cost ratio for growing pomegranate orchards with such a system was evaluated to be above 2 even with the costly PV pump and therefore the system was considered to be an appropriate technology for the development of arid region. (Author)

  13. The Attitude of the College Students to Entrepreneurial Skills Development in the Subject E-Commerce

    Science.gov (United States)

    Beránek, Ladislav

    2015-01-01

    One of the main goals of many educational courses at various colleges, especially those which focus on applied economics and management, is the development of students' entrepreneurship skills. It is usually accomplished through various project-oriented tasks. The development of the students' entrepreneurship skills is also the primary objective…

  14. Model of the Students' Key Competences Development through Interactive Whiteboard in the Subject of Technology

    Science.gov (United States)

    Brecka, Peter; Valentová, Monika

    2017-01-01

    The basis of the submitted study are the continuously rising demands to alter the curricula with the aim to develop students' key competences in order to increase their professional versatility. The lack of scientific research and discussions show that little investigation has been done on the issue of development of key competences. Therefore,…

  15. Comparative Analysis of Participation of Teachers of STEM and Non-STEM Subjects in Professional Development

    Science.gov (United States)

    Chiyaka, Edward T.; Kibirige, Joachim; Sithole, Alec; McCarthy, Peter; Mupinga, Davison M.

    2017-01-01

    School administrators continuously consider teacher professional development (PD) as one of the key strategies to improving teachers' pedagogical skills. Modern proposals for advancing education by improving student learning outcomes are centered on high quality professional development for teachers. However, teachers face a number of barriers…

  16. Solar prominences

    CERN Document Server

    Engvold, Oddbjørn

    2015-01-01

    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...

  17. Solar water splitting for hydrogen production: development of photocatalysts based on earth abundant and biocompatible materials (TiO2 and Fe2O3)

    OpenAIRE

    El koura, Zakaria

    2016-01-01

    Fossil fuels have been critical to the development of modern society, but concerns over pollution, environmental degradation and climate change demand humans transition to renewable sources of energy. Solar energy is, among renewables, by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. The principal problem related to solar energy use is its intermittency. Collecting and storing solar energy in che...

  18. Predictors of the Development of Elementary-School Children=s Intentions to Smoke Cigarettes: Hostility, Prototypes, and Subjective Norms

    Science.gov (United States)

    Hampson, Sarah E.; Andrews, Judy A.; Barckley, Maureen

    2008-01-01

    Children’s intentions to smoke are reliable predictors of subsequent smoking and precede smoking initiation, so identifying predictors of intentions is important for preventing or delaying smoking initiation. Children’s hostility and sociability, mediated by the development of prototypes (i.e., social images of children who smoke cigarettes) and subjective norms regarding smoking among peers, were expected to predict the development of their intentions to smoke cigarettes in the future. Children in 2nd through 5th grades (N = 809) from a Western Oregon community participated in a longitudinal study. Hostility and sociability were assessed by teachers = ratings, and prototypes, subjective norms, and intentions were assessed by self-report at each of the first four annual assessments. Children’s intentions to smoke predicted whether they had tried cigarettes by the fifth assessment. For both genders, latent growth modeling demonstrated that hostility, but not sociability, predicted the development of smoking intentions. More hostile children were more likely to have higher initial levels of intentions to smoke and, for boys, this effect was mediated by their higher initial levels of subjective norms about smoking. Sociability was not related to the development of smoking cognitions for boys or girls. These results were discussed in terms of opportunities to intervene on early influences on smoking intentions. PMID:17577804

  19. Predictors of the development of elementary-school children's intentions to smoke cigarettes: hostility, prototypes, and subjective norms.

    Science.gov (United States)

    Hampson, Sarah E; Andrews, Judy A; Barckley, Maureen

    2007-07-01

    Children's intentions to smoke are reliable predictors of subsequent smoking and precede smoking initiation; thus identifying predictors of intentions is important for preventing or delaying smoking initiation. Children's hostility and sociability, mediated by the development of prototypes (i.e., social images of children who smoke cigarettes) and subjective norms regarding smoking among peers, were expected to predict the development of their intentions to smoke cigarettes in the future. Children in 2nd through 5th grades (N = 809) from a western Oregon community participated in a longitudinal study. Hostility and sociability were assessed by teachers' ratings, and prototypes, subjective norms, and intentions were assessed by self-report at each of the first four annual assessments. Children's intentions to smoke predicted whether they had tried cigarettes by the fifth assessment. For both genders, latent growth modeling demonstrated that hostility, but not sociability, predicted the development of smoking intentions. Children who were more hostile were more likely to have higher initial levels of intentions to smoke, and for boys this effect was mediated by their higher initial levels of subjective norms about smoking. Sociability was not related to the development of smoking cognitions for boys or girls. These results are discussed in terms of opportunities to intervene in early influences on smoking intentions.

  20. Metallic Inks for Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-10-370

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, M.

    2013-04-01

    This document describes the statement of work for National Renewable Energy Laboratory (NREL) as a subcontractor for Applied Nanotech, Inc. (ANI) for the Phase II SBIR contract with the Department of Energy to build silicon solar cells using non-contact printed, nanoparticle-based metallic inks. The conductive inks are based upon ANI's proprietary method for nanoparticle dispersion. The primary inks under development are aluminum for silicon solar cell back plane contacts and copper for top interdigitated contacts. The current direction of silicon solar cell technology is to use thinner silicon wafers. The reduction in wafer thickness reduces overall material usage and can increase efficiency. These thin silicon wafers are often very brittle and normal methods used for conductive feed line application, such as screen-printing, are detrimental. The Phase II program will be focused on materials development for metallic inks that can be applied to a silicon solar cell using non-contact methods. Uniform BSF (Back Surface Field) formation will be obtained by optimizing ink formulation and curing conditions to improve cell efficiency.

  1. Development of a model and computer code to describe solar grade silicon production processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gould, R K; Srivastava, R

    1979-12-01

    Models and computer codes which may be used to describe flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides are described. A prominent example of the type of process which may be studied using the codes developed in this program is the SiCl/sub 4//Na reactor currently being developed by the Westinghouse Electric Corp. During this program two large computer codes were developed. The first is the CHEMPART code, an axisymmetric, marching code which treats two-phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. This code, based on the AeroChem LAPP (Low Altitude Plume Program) code can be used to describe flow reactors in which reactants mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, depositon of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail than can be afforded using CHEMPART. These two codes have been used in this program to predict particle formation characteristics and wall collection efficiencies for SiCl/sub 4//Na flow reactors. Results are described.

  2. Development and Design of Zero-g Liquid Quantity Gauge for Solar Thermal Vehicle

    Science.gov (United States)

    Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; VanDresar, Neil T.

    2002-11-01

    The development and design of a cryogenic liquid quantity gauge for zero-gravity (zero-g) applications are described. The gauge, named the compression mass gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of 11 percent of tank volume. The CMG has been selected by NASA's Future-X program for a flight demonstration on the United States Air Force-Boeing Solar Orbit Transfer Vehicle Space Experiment (SOTVSE). This report reviews the design trade studies needed for the CMG to satisfy the SOTVSE limitations on its power, volume, and mass and also describes the mechanical design of the CMG.

  3. DEVELOPMENT AND PRELIMINARY TESTING OF A PARABOLIC TROUGH SOLAR WATER HEATER

    Directory of Open Access Journals (Sweden)

    O. A. Lasode

    2011-06-01

    Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.

  4. Solar pond-based rural development programme for selected coastal regions - A concept

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The concept of Ocean Coupled Solar Pond Power Station (OCSPPS) has been explained. Supply of fresh water, extraction of salts and marine chemicals and improvement of coastal aquaculture are included as part of the project. This multi-purpose scheme...

  5. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink Devices will increase the efficiency of multi-junction solar cells by designing and demonstrating advanced anti-reflection coatings (ARCs) that will...

  6. Development of flat-plate solar collectors for the heating and cooling of buildings

    Science.gov (United States)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  7. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    Science.gov (United States)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  8. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Daye, Tony [Green Power Labs (GPL), San Diego, CA (United States)

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  9. 'India - Solar cells' : trade rules, climate policy, and sustainable development goals

    OpenAIRE

    KARTTUNEN, Marianna B.; MOORE, Michael O.

    2017-01-01

    India – Solar Cells is one of a growing number of WTO disputes that highlight the continuing tensions between climate change polices (and renewable energy manufacturing initiatives in particular) and established multilateral trading rules. The United States alleged that Indian policies discriminated against foreign solar cell suppliers operating in the Indian market. The Appellate Body broadly rejected India’s arguments to justify the measure either under Article III.8 public procurement dero...

  10. Evaluating a Professional Development Programme for Implementation of a Multidisciplinary Science Subject

    NARCIS (Netherlands)

    Visser, Talitha Christine; Coenders, Ferdinand G.M.; Terlouw, C.; Pieters, Julius Marie

    2013-01-01

    This study aims to evaluate a professional development programme that prepares and assists teachers with the implementation of a multidisciplinary science module, basing the evaluation on participants’ reactions, the first level of Guskey’s five-level model for evaluation (2002). Positive

  11. Academic Developers as Change Agents Improving Quality in a Large Interprofessional Undergraduate Subject

    Science.gov (United States)

    Cordiner, Moira

    2014-01-01

    Much has been written about academic developers as change agents but not in an interprofessional education (IPE) context. IPE involves teaching students in different health professions how to work effectively in teams across professional boundaries to improve the quality of patient care. Extensive evidence reveals that implementing sustainable IPE…

  12. Thyroid peroxidase antibodies, levels of thyroid stimulating hormone and development of hypothyroidism in euthyroid subjects

    NARCIS (Netherlands)

    Roos, A.; Links, T.P.; de Jong-van den Berg, L.T.; Gans, R.O.; Wolffenbuttel, B.H.; Bakker, S.J.

    2010-01-01

    Objective: Thyroid peroxidase antibodies (TPOAbs) have been found to be related to the levels of thyroid stimulating hormone (TSH) and to predict future development of thyroid failure in selected populations. We investigated these relations in a euthyroid general population. Design: Cross-sectional

  13. Creative Workshop as a Form of Contemporary Art and a Space for Subjective Development

    Science.gov (United States)

    Józefowski, Eugeniusz

    2015-01-01

    The article presents the original concept of the author's creative workshop which is treated as an art form and the method of education. It contains a presentation of the structure of the original workshop developed by the author in the context of multi-layered relations occurring in the interconnected areas of art and education leading to…

  14. Why do certain consumers avoid new media developments? : An investigation of three prudent users’ subjectivity

    NARCIS (Netherlands)

    Gauttier, Stéphanie; Gauzente, Claire

    2015-01-01

    New media development constantly challenges consumer’s habits. While innovations are supposed to bring new facilities to users, a certain number of them still remain reluctant in accepting, adopting and using new media offers. The aim of this research is to review the theoretical frameworks that are

  15. It Takes Two to Tango: Studying How Students Constitute Political Subjects in Discourses on Sustainable Development

    Science.gov (United States)

    Lundegard, Iann; Wickman, Per-Olof

    2012-01-01

    A great deal of the ongoing discussion about environmental education and education for sustainable development has to do with democracy and deliberation. Here, for example, the normative approach has been challenged. As an alternative, there is sometimes a call for a curriculum and education that is characterized by democracy, participation, and…

  16. Developing, Using, and Interacting in the Flipped Learning Movement: Gaps among Subject Areas

    Science.gov (United States)

    Chen, Hsin-liang; Summers, Kevin L.

    2015-01-01

    The purpose of this paper is to investigate the current video collection of an open-access video website (TED-Ed). The research questions focus on its content as evidence of development, its viewership as evidence of use, and flipping as evidence of interaction in informal learning. In late September 2013, 686 video lessons were posted on the…

  17. Rhetorical Meta-Language to Promote the Development of Students' Writing Skills and Subject Matter Understanding

    Science.gov (United States)

    Pelger, Susanne; Sigrell, Anders

    2016-01-01

    Background: Feedback is one of the most significant factors for students' development of writing skills. For feedback to be successful, however, students and teachers need a common language--a meta-language--for discussing texts. Not least because in science education such a meta-language might contribute to improve writing training and…

  18. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

    Directory of Open Access Journals (Sweden)

    M. M. Aliyu

    2012-01-01

    Full Text Available This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears the most favorable candidate, while close spaced sublimation (CSS, electrodeposition (ED, magnetic sputtering (MS, and high vacuum thermal evaporation (HVE have been found to be most common deposition technologies used for CdTe on metal foils. The advantages of these techniques include large grain size (CSS, ease of constituent control (ED, high material incorporation (MS, and low temperature process (MS, HVE, ED. These invert-structured thin film CdTe solar cells, like their superstrate counterparts, suffer from problems of poor ohmic contact at the back electrode. Thus similar strategies are applied to minimize this problem. Despite the challenges faced by flexible structures, efficiencies of up to 13.8% and 7.8% have been achieved in superstrate and substrate cell, respectively. Based on these analyses, new strategies have been proposed for obtaining cheaper, more efficient, and viable flexible CdTe solar cells of the future.

  19. The actual status of the development of a Danish/Swedish system concept for a solar combisystem

    DEFF Research Database (Denmark)

    Fiedler, Frank; Bales, Chris; Thür, Alexander

    2005-01-01

    partners a system concept has been developed that is characterized by its high compactness and flexibility. It allows the use of different types of boilers, heating distribution systems and a variable store and collector size. Two prototypes have been built, one for the Danish market with a gas boiler......At the beginning of 2003 the four year long research project REBUS on education, research, development and demonstration of competitive solar combisystems was launched. Research groups in Norway, Denmark, Sweden and Latvia are working together with partners from industry on innovative solutions...... for solar heating in the Nordic countries. Existing system concepts have been analyzed and based on the results new system designs have been developed. The proposed solutions have to fulfill country specific technical, sociological and cost requirements. Due to the similar demands on the systems in Denmark...

  20. [Early mother-infant separation and psychosocial development. II. Longitudinal study on 42 subjects].

    Science.gov (United States)

    Domenici, R; Papini, M A

    1988-01-01

    It is the purpose of the present investigation to obtain some information as they can be drown from the activity of our follow-up for premature babies and infants at higher risk. The main objectives of the study were: - to evaluate the aspects of parent's emotional status and parent-infant interaction in the first year of life; - to evaluate possible effects of the early separation on later development of the children. We have observed 42 LBW infants (hospitalized at birth for a period of one-three months) and their parents for 7-8 years. Our study has included: interviews with parents, observation of interaction, clinical examinations, designs. Recurrent interactive patterns have been defined in their peculiarities in the first year of life. Patterns of later psychosocial development are also exposed: they are strictly related to the kind of the precocious interaction.